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Summary. — We present a basic introduction to stochastic evolution of classical
and quantum finite level systems. We discuss the properties of classical and quantum
states and classical and quantum channels. Moreover, we provide the description of
Markovian semigroups and discuss the structure of local in time master equations.
A short discussion of non-Markovian dynamics is included as well.
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1. – Introduction

Stochastic systems play an important role both in classical and quantum physics [1,2].
The aim of this paper is to provide a basic introduction to the mathematical description
of such systems. The main focus is on quantum systems, however, for pedagogical reasons
we present a parallel discussion for both classical and quantum systems.

The dynamics of open quantum systems attracts nowadays increasing attention [3-7].
It is relevant not only for a better understanding of quantum theory but it is fundamen-
tal in various modern applications of quantum mechanics. Since the system-environment
interaction causes dissipation, decay and decoherence it is clear that the dynamic of open
systems is fundamental in modern quantum technologies, such as quantum communica-
tion, cryptography and computation [8].

We start with the discussion of classical and quantum states. These are convex sets
of probability distributions and density operators, respectively. In the classical case a
set of states shares an additional important property —it is a simplex. Quantum theory
generalized a simplex to much more sophisticated convex sets. After introducing states
we analyze an important concept of channels, i.e. linear maps mapping states into states.
In the classical case they are represented by stochastic matrices and in the quantum one
by the linear completely positive trace preserving maps. This is a powerful generalization
which plays an important role in the modern formulation of quantum theory.
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Equipped with these mathematical concepts we analyze the structure of classical and
quantum dynamics described by families of classical and quantum channels —classical
and quantum dynamical maps. We discuss Markovian semigroups and then general
dynamics based on local in time master equations. We conclude with a short discussion
of non-Markovian evolution.

2. – Classical states and classical channels

Let us consider n-states classical stochastic system. States of such system are repre-
sented by the probability vectors p = (p1, . . . , pn)T and hence the corresponding space
of states defines a simplex

Σn = {p ∈ R
n
+ | p1 + . . . + pn = 1}.(1)

Pure states correspond to vertices of Σn. Note that there are exactly n vertices and any
point in Σn is uniquely represented as a convex combination of vertices

p = p1e1 + . . . + pnen ,(2)

where {e1, . . . , en} is a set of vertices, that is, e1 = (1, 0, . . . , 0)T, . . . , en = (0, . . . , 0, 1)T.
Let T : R

n → R
n be a linear map. It is called positive if T (Rn

+) ⊂ R
n
+. It is called a

classical channel if T (Σn) ⊂ Σn, i.e. it maps classical states into classical states. It is
clear that T is positive iff all matrix elements of T satisfy Tij ≥ 0. Moreover T defines a
classical channel iff

Tij ≥ 0,

n∑
i=1

Tij = 1.(3)

A matrix satisfying (3) is called stochastic. It is clear that stochastic matrices form a
convex set.

The vector space R
n is equipped with a family of p-norms

‖x‖p =

(
n∑

k=1

|xk|p
)1/p

.(4)

One shows that if T is a stochastic matrix, then

‖Tx‖1 ≤ ‖x‖1,(5)

for all x ∈ R
n. Hence, classical channels (stochastic matrices) are contractions in 1-

norm. Let us observe that ‖x‖1 provides a natural distance measure in Σn: for any pair
p,q ∈ Σn one defines

D[p,q] =
1
2
‖p − q‖1.(6)

One calls D[p,q] the distinguishability of p and q. Note that 0 ≤ D[p,q] ≤ 1 and
D[p,q] = 0 if and only if p = q. Formula (5) implies that if T is a stochastic matrix,
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then

D[Tp, Tq] ≤ D[p,q],(7)

for all p,q ∈ Σn. Hence, the distance between any pair of states never increases under
the action of a classical channel T . A similar property holds for a relative entropy

S(p‖q) =
n∑

k=1

pk (log pk − log qk).(8)

One shows that for any stochastic matrix T

S(Tp‖Tq) ≤ S(p‖q),(9)

for all p,q ∈ Σn.
Now, let us pass to the dual picture, i.e. a space of classical observables. It is a real

unital commutative algebra An = (Rn, ◦) such that a ◦ b = c, with ck = akbk. The unit
element e is defined by e = (1, . . . , 1)t. Note that if T is a stochastic a matrix then the
dual map T t is unital, that is, T te = e. The algebra An is equipped with the max-norm
‖a‖∞ := maxk |a|k. The analog of (5) reads

‖T ta‖∞ ≤ ‖a‖∞,(10)

for all a ∈ R
n. Hence the dual channel T t is a contraction in the max-norm.

3. – Quantum states and quantum channels

In the algebraic approach to quantum theory one considers a unital C
∗-algebra [9-11]

U and quantum states correspond to positive unital functionals ω : U → C, that is,
ω(aa∗) ≥ 0 for all a ∈ U and ω(e) = 1, where e denotes a unit element in U. Self-adjoint
part of U serves as an algebra of observables and standard Gelfand-Naimark-Segal (GNS)
construction enables one to reconstruct a Hilbert space given a state ω [12, 13,11].

Consider now a linear map Φ : A → B(H), where H is an arbitrary (in general infinite
dimensional) Hilbert space and as usual B(H) denotes a linear space of bounded linear
operators in H. A map Φ is called positive [9,10] if Φ(aa∗) ≥ 0 for all a ∈ U. Φ is unital
if Φ(e) = IH. It is clear that unital positive map Φ provide a natural generalization of a
state. Let Mk(C) be an algebra of k× k complex matrices and let idk denote an identity
map in Mk(C), that is, idk(X) = X for any X ∈ Mk(C). Finally, let us introduce a
linear map

Φk := idk ⊗Φ : Mk(C)⊗U → Mk(C)⊗U , k = 1, 2, . . . .(11)

A map Φ is k-positive iff Φk is positive and Φ is completely positive (CP) iff it is k-positive
for all k = 1, 2, . . .. A celebrated GNS construction is generalized by the following:

Theorem 1 (Stinespring dilation theorem [14]). A map Φ is CP if and only if there exist
a Hilbert space K and the ∗-homomorpsim

π : A → B(K),(12)
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such that for each a ∈ A one has

Φ(a) = V π(a)V †,(13)

with V being a bounded linear operator V : K → H satisfying ‖Φ(IK)‖ = ‖V ‖2.

The triple (π, V,K) is usually called a Stinespring representation of Φ.
In this paper we restrict ourselves to finite-dimensional situation where both U and

H are finite dimensional and U = B(H). In this case one has B(H) = Mn(C), where
n = dimH. Let Φ : Mn(C) → Mn(C) be a linear map. Interestingly, one has the
following characterization:

Proposition 1 (Choi [15]). If dimH = n, then Φ is CP if and only if Φ is n-positive.

Denoting by Pk a convex set of k-positive maps one has the following chain of inclusions:

CP ≡ Pn ⊂ . . . ⊂ P2 ⊂ P1 ≡ Positive maps.(14)

If Φ1 ∈ Pk and Φ2 ∈ Pl then both compositions Φ1 ◦ Φ2 and Φ2 ◦ Φ1 belong to Pk∧l,
where k ∧ l = min{k, l}. In particular if Λ is CP and Φ ∈ Pk with k < n, then Λ ◦ Φ is
in general only k-positive and hence not CP. Note, however, that if both Φ1 and Φ2 are
CP then Φ1 ◦Φ2 and Φ2 ◦Φ1 are CP as well. Hence CP maps define a subalgebra in the
algebra of linear maps in Mn(C). In the finite-dimensional case the Stinespring theorem
reduces to the following:

Proposition 2 (see [9, 10,15,16]). A map Φ is CP if and only if

Φ(X) =
∑
α

KαX K†
α,(15)

for X ∈ Mn(C).

Formula (15) is usually called a Kraus representation of Φ and Kα are called Kraus op-
erators. Actually, the above formula appeared already in the Sudarshan et al. paper [17].
It should be stressed that a Kraus representation is highly non-unique.

Let {e1, . . . , en} be a fixed orthonormal basis in H and let |ψ+
n 〉 = 1√

n

∑n
k=1 ek ⊗ ek

denote maximally entangled state in H⊗H. Moreover, let P+
n = |ψ+

n 〉〈ψ+
n | denote the

corresponding rank-1 projector.

Proposition 3 (Choi [15]). Φ is CP if and only if (idn ⊗Φ)(P+
n ) ≥ 0.

This simple characterization gives rise to the following Kraus representation of Φ: as-
suming that Φ is CP one has (idn ⊗Φ)(P+

n ) ≥ 0 and hence the corresponding spectral
representation reads

(idn ⊗Φ)(P+
n ) =

n2∑
α=1

xαPα,(16)
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with xα ≥ 0, and Pα = |ψα〉〈ψα|. Note that |ψα〉 ∈ H⊗H and hence

|ψα〉 =
n∑

k,l=1

Ψ(α)
kl ek ⊗ el,

where Ψ(α)
kl are complex coefficients. Let us introduce Fα ∈ Mn(C) defined as follows:

Fαek =
∑n

l=1 Ψ(α)
kl el. One arrives at the following representation:

Pα = |ψα〉〈ψα| =
n∑

k,l=1

ekl ⊗FαeklF
†
α,(17)

where ekl := |ek〉〈el| denote the matrix units in Mn(C). Finally, one obtains

(idn ⊗Φ)(P+
n ) =

n∑
k,l=1

ekl ⊗
n2∑

α=1

xαFαeklF
†
α,(18)

and recalling that P+
n = 1

n

∑n
k,l=1 ekl ⊗ ekl, one has Φ(ekl) =

∑
α Kαekl K

†
α, where we

introduced Kα =
√

nxαFα. Taking into account that ekl provide an orthonormal basis
one ends up with formula (15).

Let Φ : Mn(C) → Mn(C) be a linear map. It is called trace preserving iff tr[Φ(X)] =
trX for all X ∈ Mn(C). A completely positive trace preserving map (CPTP) is called a
quantum channel. Note, that if Φ is CPTP then its Kraus representation (15) satisfies

∑
α

K†
α Kα = IH.(19)

Remark 1. Note that fixing an orthonormal basis {ek} in H and defining Pk = |ek〉〈ek|
one easily shows that if Φ is a quantum channel, then the following n × n matrix

Tij = Tr(PiΦ(Pj))(20)

is stochastic, i.e. it defines a classical channel.

Theorem 2. Any quantum channel Φ may be constructed as follows:

Φ(ρ) = trE

[
U(ρ⊗ωE)U†],(21)

where U is a unitary operator in H⊗HE and ωE is a density operator in HE.

One usually interprets HE as a Hilbert space of an environment and ωE as a fixed state
on an environment. Let ωEek = λkek, with λk ≥ 0. Moreover, let U =

∑
k,l Ukl ⊗ ekl.

Formula (21) implies

Φ(ρ) =
∑
m,n

∑
i,j

∑
k

λk trE

[
(Uij ⊗ eij)(ρ⊗ ekk)(U†

mn ⊗ enm)
]

=
∑
m,n

∑
i,j

∑
k

λk tr[eijekkenm]UijρU†
mn.
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Using tr[eijekkenm] = δimδjkδkn and introducing Kα := Kmn =
√

λn Umn one arrives
at the Kraus representation Φ(ρ) =

∑
α KαρK†

α which proves that Φ defined via for-
mula (21) is completely positive. One easily proves that Φ is also trace preserving and
hence defines a quantum channel. To show that any quantum channel may be represented
via formula (21) one uses the Stinespring dilation theorem (see e.g. [5]).

For any linear map Φ : Mn(C) → Mn(C) one introduces a dual map Φ∗ : Mn(C) →
Mn(C) defined by

tr[AΦ(X)] = tr[Φ∗(A)X],(22)

for all A,X ∈ Mn(C). Note that Φ is trace preserving if and only if Φ∗ is unital, that is
Φ∗(I) = I. One may consider Φ and Φ∗ as Schrödinger and Heisenberg representation,
respectively. The natural arena in the Schrödinger picture is a Banach space Mn(C)
equipped with the trace norm ‖X‖1. In the Heisenberg picture one deals with a C

∗-
algebra Mn(C) equipped with the operator norm ‖A‖. The basic property of a quantum
channel Φ and its dual Φ∗ is summarized in

Proposition 4 (see [9, 10]). Φ and Φ∗ are contractions, that is,

‖Φ(X)‖1 ≤ ‖X‖1, ‖Φ∗(X)‖ ≤ ‖X‖,(23)

for any X ∈ Mn(C).

The trace norm defines a natural distance between quantum states represented by density
operators: given two density operators ρ and σ one defines

D[ρ, σ] =
1
2
‖ρ − σ‖1.(24)

The quantity D[ρ, σ] is usually interpreted as a measure of distinguishability of the
quantum states ρ and σ. One has

0 ≤ D[ρ, σ] ≤ 1,(25)

and D[ρ, σ] = 0 iff ρ and σ are perfectly distinguishable, that is, they are orthogonally
supported tr(ρσ) = 0, and D[ρ, σ] = 0 iff ρ = σ. Proposition 4 implies the following:

Corollary 1. If Φ is a quantum channel, then

D[Φ(ρ),Φ(σ)] ≤ D[ρ, σ],(26)

that is, under the action of Φ the distinguishability never increases.

Given two density operators ρ and σ one defines Uhlmann fidelity [18]

F [ρ, σ] =
(
tr

[√√
ρ σ

√
ρ
])2

.(27)

Equivalently, one has F [ρ, σ] = ‖√ρ
√

σ‖2
1 which shows that F [ρ, σ] = F [σ, ρ]. One proves

the following relation between these characteristics:

1 − F [ρ, σ] ≤ D[ρ, σ] ≤
√

1 − F [ρ, σ]2.(28)
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Proposition 5. If Φ is a quantum channel, then

F [Φ(ρ),Φ(σ)] ≥ F [ρ, σ],(29)

that is, under the action of Φ the fidelity never decreases.

Finally, let us recall the definition of relative entropy

S(ρ ‖σ) = Tr(ρ[log ρ − log σ]),(30)

(one assumes that S(ρ ‖σ) = ∞ when supports of ρ and σ do not satisfy supp ρ ⊂ suppσ).

Proposition 6. If Φ is a quantum channel, then

S(Φ(ρ) ‖Φ(σ)) ≤ S(ρ ‖σ),(31)

that is, under the action of Φ the relative entropy never increases.

It should be stressed that contrary to the “common wisdom” it is not always true that
S(Φ(ρ)) ≥ S(ρ). However, if Φ is a unital channel, then

S(Φ(ρ) ‖Φ(I/n)) = S(Φ(ρ) ‖ I/n) = log n − S(Φ(ρ)),

and hence one arrives at the following:

Corollary 2. If Φ is a unital channel, then S(Φ(ρ)) ≥ S(ρ).

Finally, let us recall that if Φ is a quantum channel then its dual Φ∗ being CP unital
map satisfies celebrated Kadison inequality

Φ∗(AA†) ≥ Φ∗(A)Φ∗(A†),(32)

for any A ∈ Mn(C).

4. – Classical Markovian semigroup

Having defined a space of classical states and legitimate classical operations (classical
channels) mapping states into states, let us consider a classical stochastic evolution. Such
evolution is uniqely described by a family of channels Tt with t ≥ 0 such that T0 = In.
One calls Tt a classical dynamical map. If p ∈ Σn is an initial state then pt := Ttp
defines a trajectory in Σn starting at p. Suppose that Tt satisfies a linear equation (so
called classical master equation [1])

d
dt

Tt = MTt, T0 = In,(33)

where the n×n matrix M is called a generator of classical evolution. The formal solution
Tt = eMt guarantees that Tt satisfies the following semigroup property:

Tt · Tu = Tt+u,(34)

for all t, u ≥ 0. A natural question is what are the properties of M such that eMt provides
a classical dynamical map. The answer is given by the following:
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Theorem 3 (see [1]). A classical master equation (33) provides a legitimate solution Tt

iff M satisfies the following conditions:

– Mij ≥ 0 for i �= j,

–
∑n

i=1 Mij = 0 for all j = 1, . . . , n.

The above conditions are usually called Kolmogorov conditions. Originally the master
equation (33) was written in terms of pt as the following Pauli rate equation:

d
dt

pi(t) =
n∑

j=1

[
πijpj(t) − πjipi(t)

]
,(35)

where πij ≥ 0 (i �= j) describes probability rates for the transition from “j” to “i” (note
that a term with i = j does not appear in the summation). One rewrites the above
equation as follows:

d
dt

pi(t) =
n∑

j=1

Mijpj(t),(36)

with

Mij = πij − δij

n∑
k=1

πkj .(37)

It is clear that Mij satisfies Kolmogorov conditions iff Mij satisfies (37) with πij ≥ 0 (i �=
j).

In order to compare classical and quantum dynamics, let us reformulate the structure
of M as follows: since a term with i = j is irrelevant we may assume that πij ≥ 0 for
all i, j = 1, . . . , n. In this case π : R

n → R
n represents a positive map and hence the

formula for M may be rewritten as follows:

Mp = πp − (πte) ◦ p,(38)

where a ◦b is a commutative product (a ◦b)k = akbk. Introducing {a,b} = a ◦b+b ◦a
one finds

Mp = πp − 1
2
{πte,p}.(39)

Definition 1. A linear operator X : R
n → R

n is dissipative if

X(a ◦ a) ≥ 2a ◦ Xa = {a,Xa},(40)

for all a ∈ R
n.
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One proves the following:

Proposition 7. M satisfies Kolmogorov conditions iff its dual M t is dissipative.

It follows from the commutative version of Kadison inequality [10]: if T is stochastic
matrix then

T t(a ◦ a) ≥ T ta ◦ T ta,(41)

for all a ∈ R
n.

Example 1. Let us consider 2-level system with

M =
(
−γ2 γ1

γ2 −γ1

)
,(42)

with γ1, γ2 ≥ 0. Evidently M satisfies Kolmogorov conditions and it is the most general
form of M for 2-level system. One easily finds the following equations for the probability
vector pt = (p1(t), p2(t))t:

ṗ1(t) = −γ2p1(t) + γ1p1(t),(43)
ṗ2(t) = γ2p1(t) − γ1p1(t),(44)

and the corresponding solution reads

p1(t) = p1(0) e−(γ1+γ2)t + p∗1

[
1 − e−(γ1+γ1)t

]
,(45)

p2(t) = p2(0) e−(γ1+γ2)t + p∗2

[
1 − e−(γ2+γ2)t

]
,(46)

where we introduced

p∗1 =
γ1

γ1 + γ2
, p∗2 =

γ2

γ1 + γ2
.(47)

It is clear that p∗ = (p∗1, p
∗
2)

t defines an equilibrium state which becomes maximally mixed
if γ1 = γ2.

Remark 2. Note that Tt = eMt is an invertible map. One obviously has T−1
t = e−Mt =

T−t. However, the inverse is not a stochastic matrix which means that the dynamics is
not reversible. Consider for example M given by (42) with γ1 = γ2 = γ > 0. One easily
finds

Tt = e−γt

(
cosh γt sinh γt
sinh γt cosh γt

)
,(48)

which is evidently stochastic for all t ≥ 0. However it fails to be a stochastic for t < 0.
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5. – Quantum Markovian semigroup

The quantum analog of classical master equation (33) reads

d
dt

Λt = LΛt, Λ0 = id,(49)

with time-independent generator L : Mn(C) → Mn(C). The formal solution Λt = eLt

guaranties that Λt satisfies the following semigroup property:

Λt Λu = Λt+u,(50)

for all t, u ≥ 0. A family Λt of quantum channels with Λ0 = idn is called a (quantum)
dynamical map [17]. A natural question is what are the properties of a generator L such
that eLt provides a quantum dynamical map. The answer is given by the following:

Theorem 4 (see [19, 20]). The quantum master equation (49) provides a legitimate dy-
namical map Λt if and only if L has the following form

L(ρ) = −i[H, ρ] +
1
2

∑
α

(
[Vαρ, V †

α ] + [Vα, ρV †
α ]

)
,(51)

where H,Vα ∈ Mn(C) with H† = H.

Remark 3. The above Theorem may be generalized for infinite-dimensional Hilbert space
H [20]. In this case one assumes that L is a bounded operator and H,Vα ∈ B(H).

In what follows we shall call such L a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) generator. Defining a CP map

Φ(ρ) =
∑
α

VαρV †
α ,(52)

one may rewrite (51) as follows:

L(ρ) = −i[H, ρ] + Φ(ρ) − 1
2
{Φ∗(I), ρ},(53)

where {a, b} = ab + ba denotes anticommutator. It is, therefore, clear that formula (53)
provides a quantum (non-commutative) generalization of (39).

Remark 4. Note that fixing an orthonormal basis {ek} in H one easily shows that if L is
a GKSL generator, then the following n × n matrix

Mij = Tr(PiL(Pj)),(54)

satisfies Kolmogorov conditions.

Interestingly, one proves
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Proposition 8 (see [19]). L is a GKSL generator if and only if the following n2 × n2

matrix

Mαβ = Tr
[
Pα(id⊗L)(Pβ)

]
,(55)

satisfies Kolmogorov conditions for each set of orthonormal projectors Pα in H⊗H, i.e.
PαPβ = δαβPα and

∑
α Pα = I⊗ I.

The evolution in the Heisenberg picture is described by the dual map Λ∗
t which satisfies

d

dt
Λ∗

t = L∗Λ∗
t , Λ∗

0 = id.(56)

Formula (53) implies

L∗(A) = i[H,A] + Φ∗(A) − 1
2
{Φ∗(I), A},(57)

for A ∈ Mn(C).

Definition 1. A linear map φ : Mn(C) → Mn(C) is called dissipative if

φ(AA†) ≥ φ(A)A† + Aφ(A†),(58)

for all A ∈ Mn(C). It is called completely dissipative if id⊗φ is dissipative.

Proposition 9 (see [20]). L is a GKSL generator if and only if its dual L∗ is completely
dissipative.

The proof [20] easily follows from the Kadison inequality [10]: if Φ is 2-positive and
trace-preserving then

Φ∗(AA†) ≥ Φ∗(A)Φ∗(A†),(59)

for all A ∈ Mn(C).

Example 2. Let us consider a qubit generator defined by H = ω
2 σz and the following CP

map

Φ(ρ) = γ1σ+ρ σ†
+ + γ2σ−ρ σ†

− + γσzρ σz,(60)

where σ+ = |2〉〈1| and σ− = |1〉〈2| = σ†
+ are standard qubit raising and lowering oper-

ators. The corresponding generator reads L(ρ) = −i[H, ρ] + LD(ρ) with the dissipative
part

LD(ρ) =
γ1

2
([σ+, ρσ−] + [σ+ρ, σ−]) +

γ2

2
([σ−, ρσ+] + [σ−ρ, σ+]) +

γ

2
(σzρσz − ρ).(61)

To solve the master equation ρ̇t = Lρt let us parameterize ρt as follows:

ρt = p1(t)P1 + p2(t)P2 + α(t)σ+ + α(t)σ−,(62)
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with Pk = |k〉〈k|. Using the following relations

L(P1) = γ1(P2 − P1) = −γ1 σ3,

L(P2) = γ2(P1 − P2) = γ2 σ3,

L(σ+) = (iω − Γ)σ+ ,

L(σ−) = (−iω − Γ)σ− ,

where

Γ =
γ1 + γ2

2
+ γ,

one finds the following Pauli master equations equations for the probability distribution
(p1(t), p2(t)):

ṗ1(t) = −γ1 p1(t) + γ2 p2(t),(63)
ṗ2(t) = γ1 p1(t) − γ2 p2(t),(64)

together with α(t) = e(iω−Γ)tα(0). Interestingly, equations for (p1(t), p2(t)) are the
same as in Example 1. Hence, we have purely classical evolution of probability vector
(p1(t), p2(t)) on the diagonal of ρt and very simple evolution of the off-diagonal element
α(t). Note, that asymptotically one obtains completely decohered density operator

ρt −→
(

p∗1 0
0 p∗2

)
,

where p∗1 and p∗2 are defined in (47).

6. – Local master equations

Consider now a master equation with time-dependent generator

d
dt

Λt = LtΛt, Λ0 = id.(65)

The formal solution has the following form:

Λt = Texp
(∫ t

0

Ludu

)
,(66)

where T denotes the chronological product. The above formula has rather a formal
meaning. The T-product exponential is defined by the following Dyson series:

T exp
(∫ t

0

Ludu

)
= idn +

∫ t

0

dt1Lt1 +
∫ t

0

dt2

∫ t2

0

dt1 Lt2 Lt1 + . . . ,(67)

which is in general untractable. One of the mathematical problems in this approach is
to formulate necessary and sufficient conditions for a local generator Lt which lead to
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legitimate dynamical map via formula (66). This problem is still open. Interestingly,
one meets a similar problem for classical stochastic systems described by

d
dt

Tt = MtTt, T0 = I,(68)

with formal solution given by

Tt = Texp
(∫ t

0

Mudu

)
.(69)

Again we do not know conditions for Mt that lead to legitimate stochastic dynamics Tt.
Surprisingly a classical problem is as hard as the quantum one.

In what follows we analyze two important classes of local generators which provide
legitimate dynamical maps Tt and Λt in the classical and quantum case, respectively.

We call a dynamical map Λt commutative if [Λt,Λu] = 0 for all t, u ≥ 0. It is easy to
show that commutativity of Λt is equivalent to commutativity of the local generator

[Lt, Lu] = 0,(70)

for any t, u ≥ 0. Note that in this case the formula (66) considerably simplifies: the “T”
product drops out and the solution is fully controlled by the integral

∫ t

0
Ludu. One has,

therefore, the following:

Theorem 5. If Lt satisfies (70), then Lt is a legitimate generator if and only if
∫ t

0
Lτdτ

is a GKSL generator for all t ≥ 0.

A typical example of commutative dynamics is provided by

Lt = ω(t)L0 + α1(t)L1 + . . . αN (t)LN ,(71)

where [Li, Lj ] = 0 with L0(ρ) = −i[H, ρ], and for i > 0 the generators Li are purely
dissipative, that is, Li(ρ) = Φi(ρ)− 1

2{Φ∗
i (I), ρ}. One has for the corresponding dynamical

map

Λt = eΩ(t)L0 · eA1(t)L1 · . . . · eAN (t)LN ,(72)

with Ω(t) =
∫ t

0
ω(u)du and Ai(t) =

∫ t

0
αi(u)du. It is clear that Λt is CP iff Ai(t) ≥ 0 for

all i = 1, . . . , N .
We call a dynamical map Λt divisible if for any t ≥ s ≥ 0 one has the following

decomposition:

Λt = Vt,s Λs,(73)

with completely positive propagator Vt,s. Note, that Vt,s satisfies the inhomogeneous
composition law

Vt,sVs,u = Vt,u,(74)
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for any t ≥ s ≥ u. In this paper, following [21], we accept the following definition of
Markovian evolution: a dynamical map Λt corresponds to Markovian evolution if and
only if it is divisible. Interestingly, the property of being Markovian (or divisible) is fully
characterized in terms of the local generator Lt. Note, that if Λt satisfies (65) then Vt,s

satisfies

d
dt

Vt,s = LtVt,s, Vs,s = 1l,(75)

and the corresponding solution reads Vt,s = T exp(
∫ t

s
Ludu). One proves [22] the follow-

ing:

Theorem 6. The map Λt is divisible if and only if Lt is defined by (51) for all t.

Example 3. Consider a qubit dynamics governed by

Lt(ρ) =
1
2
γ(t)(σzρσz − ρ),(76)

and let

Γ(t) =
∫ t

0

γ(τ)dτ.

It is clear that Lt belongs to a commutative class. One finds

1. Lt is a legitimate generator iff Γ(t) ≥ 0,

2. Lt generates Markovian evolution iff γ(t) ≥ 0,

3. Lt generates Markovian semigroup iff γ(t) = const > 0.

7. – Markovian vs. non-Markovian dynamics

Consider a quantum evolution represented by a dynamical map Λt. We call it Marko-
vian if Λt is a divisible map, that is, the corresponding local in time generator Lt is GKSL
for all t ≥ 0. It is, therefore, clear that divisible maps provide direct generalization of
Markovian semigroups. Using general properties of quantum channels (see sect. 3) we
can easily formulate several simple necessary conditions for Markovian evolution.

Corollary 1 implies that

D[Λt(ρ),Λt(σ)] ≤ D[ρ, σ],(77)

for any pair of initial states ρ and σ.

Proposition 10. If Λt is a divisible map, then

d
dt

D[Λt(ρ),Λt(σ)] ≤ 0,(78)

for any pair of initial states ρ and σ.



STOCHASTIC EVOLUTION OF CLASSICAL AND QUANTUM SYSTEMS 79

Interestingly, authors of [23] consider the above inequality as a definition of Markovian
evolution.

Example 4. Consider the dynamics governed by the local in time generator

Ltρ = γ(t) (ωt tr ρ − ρ) ,(79)

where ωt is a family of Hermitian operators satisfying tr ωt = 1. The above generator
gives rise to Markovian evolution iff Lt has GKLS form for all t ≥ 0, that is, iff γ(t) ≥ 0
and ωt defines a legitimate state, i.e. ωt ≥ 0. The corresponding solution of the Master
equation ρ̇t = Ltρt with an initial condition ρ reads as follows:

ρt = e−Γ(t)ρ + [1 − e−Γ(t)]Ωt trρ,(80)

where

Ωt =
1

eΓ(t) − 1

∫ t

0

γ(τ)eΓ(τ) ωτdτ .(81)

It is therefore clear that Lt generates a legitimate quantum evolution iff Γ(t) ≥ 0 and
Ωt ≥ 0, that is, Ωt defines a legitimate state. In particular, if ωt = ω is time independent,
then Ωt = ω and the solution simplifies to a convex combination of the initial state ρ and
the asymptotic invariant state ω

ρt = e−Γ(t)ρ + [1 − e−Γ(t)]ω.

One easily shows that the evolution is Markovian iff γ(t) ≥ 0 and ωt is a legitimate
density operator (that is, ωt ≥ 0). Consider now the condition (78). One has ρt − σt =
e−Γ(t)(ρ − σ) and hence

d
dt

‖ρt − σt‖1 = −γ(t) e−Γ(t)‖ρ − σ‖1 ≤ 0,

implies only γ(t) ≥ 0 but says nothing about positivity of ωt. It shows that any ωt which
gives rise to Ωt ≥ 0 leads to the evolution satisfying condition (78) but only ωt ≥ 0 gives
rise to Markovian dynamics. Hence, we may have non-Markovian dynamics (governed
by nondivisible dynamical map) which satisfies condition (78) for all t ≥ 0.

One derives similar monotonicity conditions for fidelity and relative entropy using
Propositions 5 and 6.

Proposition 11. If Λt is a divisible map, then

d
dt

F (Λt(ρ),Λt(σ)) ≥ 0,(82)

and

d
dt

S(Λt(ρ)‖Λt(σ)) ≤ 0,(83)

for any pair of initial states ρ and σ.
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Moreover

Proposition 12. If Λt is a unital divisible map, then

d
dt

S(Λt(ρ)) ≥ 0,(84)

for any initial state ρ.

It proves that for unital Markovian evolution the entropy monotonically increases.

Example 5. Consider once more pure decoherence of a qubit from Example 3. Note, that
Lt(I) = 0 and hence the maximally mixed state is invariant. Therefore, Markovianity
implies

d
dt

S(ρt) = −λ̇+
t log

λ+
t

λ−
t

,(85)

where λ+
t ≥ λ−

t are eigenvalues of ρt. Hence d
dt S(ρt) ≥ 0 if λ̇+

t ≤ 0. One easily finds

λ±
t =

1
2

(
1 ±

√
(ρ11 − ρ22)2 + |ρ12|2e−2Γ(t)

)
.

It is therefore clear that S(ρt) monotonically increases if and only if Γ̇(t) = γ(t) ≥ 0.

For more information about quantum non-Markovian evolution the reader is referred
to recent papers [24-30]. This topic is currently intensively studied with potential appli-
cations in various modern quantum technologies.

8. – Conclusions

We provided a basic introduction to the mathematical description of classical and
quantum systems. The presentation includes classical and quantum stochastic states
and classical and quantum channels. These concepts are used to describe classical and
quantum stochastic evolution. We discuss both Markovian semigroups and go beyond
the semigroup case. The presentation is concluded by a short analysis of Markovian and
non-Markovian behavior.
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[26] Chruściński D. and Kossakowski A., Phys. Rev. Lett., 104 (2010) 070406.
[27] Piilo J., Maniscalco S., Härkönen K. and Suominen K.-A., Phys. Rev. Lett., 100

(2008) 180402.
[28] Haikka P., Cresser J. D. and Maniscalco S., Phys. Rev. A, 83 (2011) 012112.
[29] Vacchini B., Smirne A., Laine E.-M., Piilo J. and Breuer H.-P., New J. Phys., 13

(2011) 093004.
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