Measurement of the Z / γ^{*} forward-backward asymmetry in muon pairs with the ATLAS experiment at the LHC

G. C. Grossi

Università di Roma"Tor Vergata" and INFN, Sezione di Roma2 - Rome, Italy
ricevuto il 31 Agosto 2012

Abstract

Summary. - A study on muon pairs produced through an intermediate Z / γ^{*}, in $p p$ collisions at the LHC, at a center-of-mass energy of 7 TeV , is presented. After a selection aimed at enhancing the contribution from Z boson decay, the topology of the events is analyzed, and the forward-backward asymmetry is measured. The result is then used to test a method to measure the effective weak mixing angle $\sin ^{2} \theta_{W}^{\text {eff }}$. This note summarizes the results obtained with 2011 data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of $4.8 \mathrm{fb}^{-1}$.

PACS 13.75.Cs - Nucleon-nucleon interactions (including antinucleons, deuterons etc.).
PACS 14.70. Hp - Z bosons.
PACS 13.35.Bv - Decays of muons.

The differential cross section for fermion pair production in a Drell-Yan process $q \bar{q} \rightarrow$ $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$, around the Z pole, can be written as

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}=A\left(1+\cos ^{2} \theta\right)+B \cos \theta \tag{1}
\end{equation*}
$$

where A and B are functions that take into account the weak isospin and charge of the incoming quarks and the transferred momentum Q^{2} of the interaction and θ is defined as the angle between the muon and the incoming quark. Events with $\cos \theta>0$ are called forward events, and events with $\cos \theta<0$ are called backward events. The forwardbackward charge asymmetry $A_{f b}$ is defined as

$$
\begin{equation*}
A_{f b}=\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}=\frac{\int_{0}^{1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta-\int_{-1}^{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta}{\int_{0}^{1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta+\int_{-1}^{0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \mathrm{~d} \cos \theta}=\frac{N_{F}-N_{B}}{N_{F}+N_{B}}=\frac{3 B}{8 A} \tag{2}
\end{equation*}
$$

where N_{F} and N_{B} are numbers of forward and backward events.

The Collins-Soper formalism is adopted to minimize the lack of knowledge of the transverse momentum of the incoming quarks. Let $Q\left(Q_{T}\right)$ be the four-momentum (transverse momentum) of the dimuon pair, P_{1} and P_{2} be the four-momentum of the muon and antimuon respectively, all measured in the lab frame. Then a new variable $\cos \theta^{*}$ is used instead of the $\cos \theta$ variable and defined as

$$
\begin{equation*}
\cos \theta^{*}=\frac{2}{Q \sqrt{Q^{2}+Q_{T}^{2}}}\left(P_{1}^{+} P_{2}^{-}-P_{1}^{-} P_{2}^{+}\right) \tag{3}
\end{equation*}
$$

The data sample used in this analysis was collected using the ATLAS detector and corresponds to an integrated luminosity of $4.8 \mathrm{fb}^{-1}$. After the application of some selection requirements we found $1.3 \mathrm{M} Z / \gamma^{*}$ candidates in data sample. To measure $A_{f b}$ we divide an invariant-mass range, from 60 to 1000 GeV , in 21 bins. In each bin we calculate $A_{f b}$ using eq. (2) and obtain a distribution of raw $A_{f b}$ vs. $m_{\mu \mu}$. The measured spectrum of the asymmetry needs to be corrected for three main effects: radiative corrections, detector resolution and dilution. The measurement of $A_{f b}$ is corrected for these effects by means of a response-matrix based unfolding. Matrices are calculated using the available Monte Carlo $Z / \gamma^{*} \rightarrow \mu \mu$ samples and then applied to the raw $A_{f b}$ spectrum. The result is an unfolded $A_{f b}$ spectrum.

In order to extract a measurement of $\sin ^{2} \theta_{\text {eff }}^{f}$ from the unfolded $A_{f b}$ spectrum we use an expansion of $A_{f b}$ in terms of the center-of-mass energy, around the Z pole

$$
\begin{equation*}
A_{f b}(s) \simeq A_{f b}\left(m_{Z}^{2}\right)+\frac{\left(s-m_{Z}^{2}\right)}{s} \frac{3 \pi \alpha(s)}{\sqrt{2} G_{F} m_{Z}^{2}} \frac{2 Q_{q} Q_{f} g_{A q} g_{A \mu}}{\left(g_{V q}^{2}+g_{A q}^{2}\right)\left(g_{V \mu}^{2}+g_{A \mu}^{2}\right)} . \tag{4}
\end{equation*}
$$

This expansion can be used to determine the value of $\sin ^{2} \theta_{W}^{e f f}$ by fitting the $A_{f b}$ vs. $m_{\mu \mu}$ distribution in the vicinity of the Z pole. In order to test the validity of the fitting procedure, a closure test on the true Monte Carlo sample has been performed. The Monte Carlo default value of the weak mixing angle is $\sin ^{2} \theta_{W}^{e f f}=0.232$. The result of the fitting procedure applied to the true $A_{f b}$ distribution should be in agreement with this default value of the weak mixing angle. The value of $\sin ^{2} \theta_{W}^{e f f}$ extracted from the true $A_{f b}$ distribution around the Z pole is

$$
\begin{equation*}
\sin ^{2} \theta_{W}^{e f f}=0.23202 \pm 0.00043 \tag{5}
\end{equation*}
$$

