IL NUOVO CIMENTO DOI 10.1393/ncc/i2013-11401-2 Vol. 36 C, N. 1

Gennaio-Febbraio 2013

Colloquia: IFAE 2012

Recent Charm results from the B factories

N. NERI on behalf of the BABAR COLLABORATION INFN, Sezione di Milano - Milano, Italy

ricevuto il 31 Agosto 2012

Summary. — I report on recent Charm physics results from *BABAR* and Belle experiments that are sensitive to physics beyond the Standard Model. I discuss the searches for *CP* violation in charged and neutral *D* meson decays and the recent evidence for *CP* violation in the difference of the *CP* asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ modes and also the evidence in the $D^+ \to K_S^0 \pi^+$ mode.

PACS 11.30.Er – Charge conjugation, parity, time reversal, and other discrete symmetries. PACS 13.25.Ft – Decays of charmed mesons.

1. – Introduction

CP violation in D meson decays, though notoriously difficult to calculate precisely, is expected to be very small in the Standard Model: at the level of 10^{-3} or below [1,2]. Relatively large CP asymmetries, at the percent level, might be a signature of new physics effects. Recent results from the LHCb experiment [3] reported evidence for direct CP violation measuring the difference of CP asymmetries in singly-Cabibbo-suppressed (SCS) $D^0 \to \pi^+\pi^-(1)$ and $D^0 \to K^+K^-$ decays, with a statistical significance of 3.5σ . The observed asymmetries are marginally compatible with the Standard Model (SM) but not conclusive for establishing new physics [4-6]. These intriguing results renew the interest for studying CP violation in charm meson decays. In particular, studying other decay modes with identical quark-level transitions, $c \to ud\bar{d}$ and $c \to us\bar{s}$, is helpful for understanding if the observed evidence can be accommodated in the SM or not [4-6].

In addition, in the SM *CP* violation asymmetries in *D* meson decays with a K_S^0 in the final state are expected to be $A_{CP} = [-0.332 \pm 0.006]\%$ [7], originated by *CP* violation in the $K^0 \overline{K}^0$ mixing. The \pm sign depends on the fact that a K^0 or a \overline{K}^0 is produced in the decay. The SM prediction has to be corrected for the detector acceptance as

^{(&}lt;sup>1</sup>) Charge conjugation is implied throughout the paper unless otherwise stated.

[©] Società Italiana di Fisica

TABLE I. – Summary of the CP asymmetry results in SCS modes $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$.

Experiment	$A_{CP}^{KK}(\%)$	$A_{CP}^{\pi\pi}$ (%)	ΔA_{CP} (%)
BABAR (2008) [9]	$0.00 \pm 0.34 \pm 0.13$	$-0.24 \pm 0.52 \pm 0.22$	_
LHCb (2012) [3]	_	_	$-0.82 \pm 0.21 \pm 0.11$
CDF(2012)[10,11]	$-0.24 \pm 0.22 \pm 0.09$	$0.22 \pm 0.24 \pm 0.11$	$-0.62 \pm 0.21 \pm 0.10$
Belle (2012) [12]	$-0.32 \pm 0.21 \pm 0.09$	$0.55 \pm 0.36 \pm 0.09$	$-0.87 \pm 0.41 \pm 0.06$

a function of the decay time [8]. The correction is at the level of few percent at the *B* factories. Sizable difference from this value would indicate *CP* violation in the $\Delta C = 1$ quark transition, possibly due to new physics effects.

2. – Search for CP violation in singly-Cabibbo-suppressed decays

2.1. Evidence for direct CP violation in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays. – SCS are uniquely sensitive to new physics among all hadronic D decays in $c \to uq\bar{q}$ transitions and to new contributions to the $\Delta C = 1$ QCD penguin and chromomagnetic dipole operators [1]. In table I are reported the results for the CP asymmetries in the decay modes $D^0 \to K^+K^ (A_{CP}^{KK})$, $D^0 \to \pi^+\pi^ (A_{CP}^{\pi\pi})$ and the difference between the two asymmetries ($\Delta A_{CP} = A_{CP}^{KK} - A_{CP}^{\pi\pi}$). The CP asymmetries in the single modes are sensitive to direct and indirect CP violation, while ΔA_{CP} is mostly sensitive to direct CP violation. In the measurement of ΔA_{CP} , the systematic errors related to the asymmetries in the reconstruction and in the production of D^0 and \overline{D}^0 candidates cancel. The world average value is $\Delta A_{CP} = [-0.74 \pm 0.15]\%$ which is different from zero with a statistical significance of 4.9σ and it represents evidence for direct CP violation in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays.

2[•]2. Measurement of $D^0 \overline{D}^{\ 0}$ mixing and search for indirect CP violation in $D^0 \rightarrow$ K^+K^- and $D^0 \rightarrow \pi^+\pi^-$ decays. – The BABAR and the Belle experiments have recently presented updated results for the measurement of the mixing parameter y_{CP} and the CP violation parameter ΔY (A_{Γ} for Belle). The measurements are based on the ratio of lifetimes simultaneously extracted from a sample of D^0 mesons produced through the flavour-tagged process $D^{*+} \to D^0 \pi^+$, where D^0 decays to $K^-\pi^+$, K^-K^+ , $\pi^-\pi^+$. BABAR uses the additional sample of untagged decays $D^0 \to K^-\pi^+$ and $D^0 \to K^-K^+$. The lifetimes of CP-even modes K^-K^+ , $\pi^-\pi^+$ are compared to that of the CP-mixed mode $K^{-}\pi^{+}$ in order to measure y_{CP} , which is proportional to the ratio of the lifetimes, and $\Delta Y (A_{\Gamma})$ which is proportional to the difference of the effective lifetimes of D^0 and \overline{D}^{0} into CP-even modes. BABAR measures $y_{CP} = [0.72 \pm 0.18(\text{stat}) \pm 0.12(\text{syst})]\%$ and $\Delta Y =$ $[0.09 \pm 0.26(\text{stat}) \pm 0.06(\text{syst})]\%$ using a data sample of 468 fb⁻¹ [13]. Belle measures $y_{CP} = [1.11 \pm 0.22(\text{stat}) \pm 0.11(\text{syst})]\%$ and $A_{\Gamma} = [-0.03 \pm 0.20(\text{stat}) \pm 0.08(\text{syst})]\%$ using a data sample of 976 fb⁻¹. The y_{CP} measurements represent evidence for $D^0 \overline{D}^0$ mixing with a significance of 3.3σ in the case of BABAR (most precise measurement up to date) and 4.5σ in the case of Belle [14].

2[•]3. Search for direct CP violation in charged D mesons with K_S^0 in the final state. – The BABAR experiment has recently measured, using 469 fb⁻¹ of data, CP asymmetries in the $D^+ \to K_S^0 K^+$ and $D_s^+ \to K_S^0 \pi^+$ decay modes [15] to be $A_{CP} = [0.13 \pm 0.36(\text{stat}) \pm 0.25(\text{syst})]\%$ and $A_{CP} = [0.6 \pm 2.0(\text{stat}) \pm 0.3(\text{syst})]\%$ respectively. The contribution to the CP asymmetries due to the $\Delta C = 1$ transition has been measured to be $A_{CP}^{\Delta C} = [0.46 \pm 0.36(\text{stat}) \pm 0.25(\text{syst})]\%$ and $A_{CP}^{\Delta C} = [0.3 \pm 2.0(\text{stat}) \pm 0.3(\text{syst})]\%$ for the two cases. Results are consistent with no CP violation in the $\Delta C = 1$ quark transition.

2.4. Search for direct CP violation in $D^+ \to K^+ K^- \pi^+$ decay. – The BABAR experiment has recently studied CP violation in the $D^+ \to K^+ K^- \pi^+$ decay using a data sample of 476 fb⁻¹ [16]. The 3-body decay studied proceeds mainly through quasi-two-body decays with resonant intermediate states, allowing to probe the Dalitz plot substructure for asymmetries in both the magnitudes and phases of the intermediate states. The CP-violating decay rate asymmetry, A_{CP} , was determined to be $(0.35 \pm 0.30(\text{stat}) \pm 0.15(\text{syst}))\%$. The CP asymmetries in different regions of the Dalitz plot, defined by the reconstructed invariant mass squared $m^2(K^-K^+), m^2(K^-\pi^+)$, were measured to be $A_{CP} = [-0.65 \pm 1.64(\text{stat}) \pm 1.73(\text{syst})]\%$ below the $\bar{K}^*(892)^0$ region, $A_{CP} = [-0.28 \pm 0.37(\text{stat}) \pm 0.21(\text{syst})]\%$ around the $\bar{K}^*(892)^0$ peak, $A_{CP} = [-0.26 \pm 0.32(\text{stat}) \pm 0.45(\text{syst})]\%$ around the $\phi(1020)$ peak, $A_{CP} = [1.05 \pm 0.45(\text{stat}) \pm 0.31(\text{syst})]\%$ above the $\bar{K}^*(892)^0$ and the $\phi(1020)$ regions.

Model-independent techniques were used to search for CP violation in the Dalitz plot and they were based on a comparison of the binned D^+ and D^- Dalitz plots and on a comparison of the Legendre-moment weighted distributions in the K^+K^- or $K^-\pi^+$ system. The distribution of normalized residuals of the D^+ and D^- Dalitz plots in equally populated bins (~ 1000 events per bin) were fitted with a Gaussian with a mean of 0.08 ± 0.15 and a width of 1.11 ± 0.15 , which corresponds to a probability of 72% that the two Dalitz plots are consistent with no CP asymmetry. The comparison of Legendre-moment for the K^+K^- or $K^-\pi^+$ systems was found to be consistent with no CP violation with a probability of 11% and 13%, respectively.

A model-dependent technique based on a comparison of parameterized fits to the two Dalitz plots was also used to search for CP violation. The D^+ decay amplitude was parameterized as a coherent sum of amplitudes describing all the relevant two-body intermediate states (resonances) plus a constant amplitude over the Dalitz plot for the non-resonant (NR) contribution. The Dalitz plot is described with 16 resonances: the most relevant in terms of fit fractions are the $\bar{K}^*(892)^0$ (21.15 ± 0.20)%, the $\phi(1020)$ (28.42 ± 0.13)% and the $\bar{K}^*(1430)^0$ (25.32 ± 2.24)%. The results of the fit to the D^+ and D^- Dalitz plot distributions do not show any evidence for CP violation in the following amplitudes: $\bar{K}^*(892)^0$, $\bar{K}^*(1430)^0$, $\phi(1020)$, NR, $\kappa(800)$, $a_0(1450)^0$, $f_0(980)$, $f_0(1370)$.

3. – Search for CP violation in Cabibbo-favored decays

3[•]1. Evidence for CP violation in $D^+ \to K_S^0 \pi^+$. – Evidence for CP violation was found by the BABAR and Belle experiments in the CF $D^+ \to K_S^0 \pi^+$ decay. The Belle experiment has measured $A_{CP} = [-0.363 \pm 0.094(\text{stat}) \pm 0.067(\text{syst})]\%$ using 977 fb⁻¹ of data [17], while the BABAR experiment has measured $A_{CP} = [-0.44 \pm 0.13(\text{stat}) \pm 0.10(\text{syst})]\%$ using 469 fb⁻¹ of data [18]. The statistical significance of CP violation is about 3.2σ and 2.7σ respectively. Both results are compatible with the predictions of the SM of $(-0.332 \pm 0.006)\%$ corrected for the detector acceptance as a function of the decay time.

Fig. 1. – Summary of CP violation asymmetry results from the *B* factories for D^0 (left plot) and charged *D* mesons (right plot).

The BABAR experiment has also measured the *CP* violation asymmetry for the CF $D_s^+ \rightarrow K_S^0 K^+$ decay to be $A_{CP} = [-0.05 \pm 0.23(\text{stat}) \pm 0.24(\text{syst})]\%$ and $A_{CP}^{\Delta C} = [0.28 \pm 0.23(\text{stat}) \pm 0.24(\text{syst})]\%$ [15], compatible with no *CP* violation in the $\Delta C = 1$ transition.

4. – Conclusions

Recent results from the *B* factories relative to *CP* asymmetries in time-integrated analyses and mixing and *CP* violation parameters in time-dependent analyses have been presented. A summary of the results is reported in fig. 1. The *B* factories have studied several SCS *D* decay modes with identical quark transitions to $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$, where evidence of *CP* violation was found with statistical significance of about 4.9σ , when combining all the available results. The measurements provide useful information for the understanding of the origin of the observed *CP* violation. The statistical error is the dominant source of uncertainty for the measurements presented here. The main systematic error in the measurements of *CP* asymmetries is relative to the charge tracking efficiency asymmetries of the detector which is determined using *ad hoc* control samples from data. Improvements in the precision of these measurement are therefore expected when larger data samples will be available from the present and future experiments.

REFERENCES

- [1] GROSSMAN Y., KAGAN A. L. and NIR Y., Phys. Rev. D, 75 (2007) 036008.
- [2] BIANCO S., FABBRI F. L., BENSON D. and BIGI I., *Riv. Nuovo Cimento*, **26**, N. 7 (2003) 1.
- [3] AAIJ R. et al. (LHCb COLLABORATION), Phys. Rev. Lett., 108 (2012) 111602.
- [4] GROSSMAN Y., KAGAN A. L. and ZUPAN J., arXiv:1204.3557 [hep-ph].
- [5] FRANCO E., MISHIMA S. and SILVESTRINI L., JHEP, 05 (2012) 140.
- [6] ISIDORI G., KAMENIK J. F., LIGETI Z. and PEREZ G., Phys. Lett. B, 711 (2012) 46.
- [7] BERINGER J. et al. (PARTICLE DATA GROUP), Phys. Rev. D, 86 (2012) 010001.
- [8] GROSSMAN Y. and NIR Y., JHEP, 04 (2012) 002.
- [9] AUBERT B. et al. (BABAR COLLABORATION), Phys. Rev. Lett., 100 (2008) 061803.

RECENT CHARM RESULTS FROM THE ${\cal B}$ FACTORIES

- [10] AALTONEN T. et al. (CDF COLLABORATION), Phys. Rev. D, 85 (2012) 012009.
- [11] AALTONEN T. et al. (CDF COLLABORATION), arXiv:1207.2158 [hep-ex].
- [12] http://belle.kek.jp/belle/talks/ICHEP12/B.R.Ko.pdf.
- [13] LEES J. P. et al. (BABAR COLLABORATION), arXiv:1209.3896 [hep-ex].
- [14] http://belle.kek.jp/belle/talks/CHARM2012/M.Staric.pdf.
- [15] CENCI R. (BABAR COLLABORATION), prepared for the Charm 2012 conference, http://www.phys.hawaii.edu/indico/materialDisplay.py?contribId=5&sessionId=46 &materialId=slides&confId=338.
- [16] PUROHIT M. (BABAR COLLABORATION), prepared for the Charm 2012 conference, http://www.phys.hawaii.edu/indico/materialDisplay.py?contribId=48&materialId= slides&confId=338.
- [17] KO B. R. et al. (BELLE COLLABORATION), Phys. Rev. Lett., 109 (2012) 021601.
- [18] DEL AMO SANCHEZ P. et al. (BABAR COLLABORATION), Phys. Rev. D, 83 (2011) 071103.