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Summary. — We study the kinematics of deep inelastic scattering corresponding
to the rotationally symmetric distribution of quark momenta in the nucleon rest
frame. It is shown that the rotational symmetry together with Lorentz invariance
can impose constraints on the quark intrinsic momenta. Obtained constraints are
discussed and compared with the available experimental data.

PACS 12.38.Aw – General properties of QCD (dynamics, confinement, etc.).
PACS 13.88.+e – Polarization in interactions and scattering.

1. – Introduction

The motion of quarks inside the nucleons plays an important role in some effects
which are at present intensively investigated both experimentally and theoretically. The
actual goal of this effort is to obtain a more consistent 3-D picture of the quark-gluon
structure of nucleons. For example the quark transverse momentum creates the asym-
metries in particle production in polarized or in unpolarized (Cahn effect) deep inelastic
scattering (DIS) experiments. Relevant tool for the study of these effects is the set of the
transverse momentum dependent distributions (TMDs). A better understanding of the
quark intrinsic motion is also a necessary condition to clarify the role of quark orbital
angular momenta in generating nucleon spin.

We have paid attention to these topics in our recent studies, see [1-5] and citations
therein. In particular we have shown that the requirements of Lorentz invariance (LI)
and the nucleon rotational symmetry in its rest frame (RS), if applied in the framework of
the 3-D covariant quark-parton model (QPM), generate a set of relations between parton
distribution functions. Recently we obtained within this approach relations between the
usual parton distribution functions and the TMDs. The Wanzura-Wilczek approximate
relation (WW) and some other known relations between the g1 and g2 structure functions
were similarly obtained in the same model before [6]. Let us remark that the WW relation
has been obtained independently also in other approaches [7,8] in which the LI represents
a basic input.
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Fig. 1. – Diagram describing DIS as a one photon exchange between the charged lepton and
quark. Lepton and quark momenta are denoted by k, p (k′, p′) in initial (final) state, P is initial
nucleon momentum.

The aim of the present report is to consistently apply the assumption LI&RS to the
kinematics of DIS and to obtain the constraints on related kinematical variables. This
task is complementary to the study of the above mentioned relations between distribution
functions, which depend on these variables. So, the report can be considered as an
addendum to our former papers related to the covariant QPM [1-5,9,6,10,11]. However,
the results obtained in this report are more general and are independent of any specific
model.

2. – Kinematic variables

2.1. The Bjorken variable and light-cone coordinates. – First, let us shortly remind
the properties of the Bjorken variable

(1) xB =
Q2

2Pq
,

which plays a crucial role in the phenomenology of lepton-nucleon scattering. Regardless
of the mechanism of the process, this invariant parameter satisfies

(2) 0 ≤ xB ≤ 1,

for complete proof of this general relation see appendix A. Now let us consider QPM,
where the process of lepton-nucleon scattering is initiated by the lepton interaction with
a quark (see fig. 1), which obeys

(3) p′ = p + q, p′2 = p2 + 2pq − Q2; Q2 = −q2.

The second equality implies

(4) Q2 = 2pq − δm2; δm2 = p′2 − p2,
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which, with the use of relation (1), gives

(5)
pq

Pq
= xB

(
1 +

δm2

Q2

)
.

The basic input for the construction of QPM is the assumption

(6) Q2 � δm2,

which allows us to identify

(7) xB =
Q2

2Pq
=

pq

Pq

and to directly relate the quark momentum to the parameters of scattered lepton. More-
over, if one assumes

(8) Q2 � 4M2x2
B ,

where M is the nucleon mass, then one can identify

(9) xB = x ≡ p0 − p1

P0 − P1

in any reference frame in which the direction of the first axis is defined by the vector q
(see appendix A). The last relation expressed in the nucleon rest frame reads

(10) x =
p0 − p1

M
,

which after inserting into (2) gives

(11) 0 ≤ p0 − p1

M
≤ 1.

However the most important reason why we require large Q2 is in physics. If we accept
a scenario in which a probing photon interacts with a quark, we need a sufficiently large
momentum transfer Q2 so that the quarks can be considered as effectively free due to
asymptotic freedom. At small Q2 the picture of quarks (with their momenta and other
quantum numbers) inside the nucleon disappears.

2.2. Rotational symmetry . – The RS means that the probability distribution of the
quark momenta p = (p1, p2, p3) in the nucleon rest frame depends, apart from Q2, on
|p|. It follows that also −p is allowed, so together with the inequality (11) we have

(12) 0 ≤ p0 + p1

M
≤ 1.

The combinations of (11), (12) imply

(13) 0 ≤ |p1| ≤ p0 ≤ M, |p1| ≤
M

2
.
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And if we again refer to RS, then further inequalities are obtained:

(14) 0 ≤ |p| ≤ p0 ≤ M, |p| ≤ M

2
, 0 ≤ pT ≤ p0 ≤ M

and

(15) pT ≤ M

2
,

where

|p| =
√

p2
1 + p2

2 + p2
3, pT =

√
p2
2 + p2

3.

Obviously inequality (15) is satisfied also in any reference frame boosted in the direc-
tions ±q. Further, the above inequalities are apparently valid also for average values
〈p0〉, 〈p1〉, 〈|p|〉 and 〈pT 〉. In addition, if one assumes that the pT distribution is a de-
creasing function, then necessarily

(16) 〈pT 〉 ≤
M

4
.

The above relations are valid for sufficiently high Q2 suggested by eqs. (6) and (8). Let us
note that the on-mass-shell assumption has not been applied for obtaining these relations.

These inequalities can be compared with relations obtained in [11], where the ad-
ditional on-mass-shell condition m2 = p2 = p2

0 − p2 had been applied. Corresponding
relations are more strict:

(17)
m2

M2
≤ x ≤ 1, p0 ≤ M2 + m2

2M
, |p| ≤ M2 − m2

2M

and

(18) p2
T ≤ M2

(
x − m2

M2

)
(1 − x) .

However, it is clear that in general the on-mass-shell assumption is not realistic. In the
following we will discuss only the off-mass-shell approach.

3. – Discussion

First let us summarize more accurately what we have done in the previous section.
We assumed:

a) Lorentz invariance

It means that the theoretical description in terms of the standard kinematical variables
(see fig. 1)

q, xB , x, p = (p0, p1, p2, p3), P = (P0, P1, P2, P3)

can be boosted also to the nucleon rest frame.
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b) Rotational symmetry

The kinematical region R3 of the quark intrinsic momenta p = (p1, p2, p3) in the nucleon
rest frame has rotational symmetry (i.e. p ∈R3 ⇒ p′ = Rp ∈ R3, where R is any
rotation in R3).

c) Equality xB = x

It means that all the conditions necessary for eq. (9) are satisfied.
We proved that these assumptions imply bounds (11)–(15) independently of any spe-

cific model.
Further we want to make a few comments on the obtained results:
i) The ratio x of light-cone variables (9) has a simple interpretation in a frame,

where the proton momentum is large: x is the fraction of this momentum carried by the
quark. However an interpretation of the same variable in the nucleon rest frame is more
complicated. In this frame the quark transverse momentum cannot be neglected and x
depends on both longitudinal and transverse quark momenta components. In the limit
of massless quarks the connection between the variable x in (10) and the quark momenta
components is given by the relations

x =
p0 − p1

M
; p0 =

√
p2
1 + p2

T ,(19)

p1 = −Mx

2

(
1 − p2

T

M2x2

)
, p0 =

Mx

2

(
1 +

p2
T

M2x2

)
.

These variables were used in our recent papers on TMDs [2,1]. The value of the invariant
variable x does not depend on the reference frame, but its interpretation e.g. in the rest
frame differs from that in the infinite momentum frame.

ii) The relations (14), (15), which follow from RS, can be compared with the experi-
mental data on 〈pT 〉 or 〈p〉. We have discussed the available data in [2,1] and apparently
relation (15) is compatible with the set of lower values 〈pT 〉 corresponding to the “leptonic
data”. On the other hand the second set giving substantially greater 〈pT 〉 and denoted
as the “hadronic data”, seems to contradict this relation. Actually a conflict with rela-
tion (15) would mean a conflict with some of the assumptions a)–c). Let us remark that
the failure of the assumption c) means that the Bjorken variable cannot be replaced by the
light-cone ratio. And then correspondingly the light-cone formalism itself would be ques-
tioned, since the experimentally measured structure functions (xB dependence) could not
be compared with the light-cone calculations (x dependence). In this way, the large intrin-
sic quark momenta (pT > M/2) are incompatible with the light-cone formalism combined
with the RS. No such problem arises provided the data satisfy relations (14), (15).

In [2] we explained why the RS, if applied at the level of QPM, follows from the
covariant description. In fact it means that the assumptions a)–c) are common for our
QPM and for the approaches like [8,7] where only Lorentz invariance is explicitly required.
The predictions of all these models are compatible with the bound (15). This fact is not
the result of any specific, simplifying model assumptions, but it is just the consequence
of the general conditions a)–c).

iii) The relation (18) is obtained for the quarks on-mass-shell. In a more general case,
where only the inequalities (14), (15) hold, this relation is replaced by

(20) p2
T ≤ M2

(
x − μ2

M2

)
(1 − x) ; μ2 ≡ p2

0 − p2,
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Fig. 2. – Upper limit of the quark transverse momentum as a function of x for μ = 0 (solid line),
0.1 (dashed line), 0.2 (dotted line) and 0.3 (dash-dotted line).

where the term μ2 is not a parameter corresponding to the fixed mass, but only a number
varying within the limits defined by (14). The last relation implies for all μ2:

(21) p2
T ≤ M2x (1 − x) ,

which is equivalent to the on-mass-shell relation (18) for m = 0. This general upper limit
for p2

T depending on x is displayed in fig. 2. Let us remark that the results on 〈p2
T (x)〉

obtained in [7, 8] are compatible also with the bound (21). An equivalent form of this
inequality was probably for the first time presented in [12].

To conclude, in the present report we studied the kinematic constraints due to the
rotational symmetry of the quark momenta distribution inside the nucleon. In particular,
we have shown that the light-cone formalism (which requires the equality xB = x)
combined with the assumption on the rotational symmetry in the nucleon rest frame
imply pT ≤ M/2. Only part of existing experimental data on 〈pT 〉 satisfies this bound,
but another part does not. In general, the reconstruction of 〈pT 〉 from the DIS data is a
model-dependent procedure. These are the reasons why more study is needed to clarify
this issue.

Appendix A.

The relation (2) follows from the conditions:

(A.1) k′2 = k2, k′ = k − q

i.e. the mass of the lepton is not changed by the scattering displayed in fig. 1, and

(A.2) P ′2 ≥ P 2 = M2; P ′ = P + q,
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which means that the effective mass of the secondary particles coming from the nucleon
is greater than the mass M of the primary nucleon. In more detail

P ′2 =

⎛
⎝ n∑

j=1

P0j

⎞
⎠

2

−

⎛
⎝ n∑

j=1

Pj

⎞
⎠

2

(A.3)

=
n∑

j=1

(
P 2

0j − P2
j

)
+

n∑
j �=k

(P0jP0k − PjPk)

≥
n∑

j=1

m2
j ≥ M2,

where Pj ,mj are the momenta and masses of the secondaries. The last inequality is due
to the baryon number conservation.

One can check that eqs. (A.1), (A.2) imply

(A.4) q2 = (k − k′)2 ≤ 0, 2Pq ≥ −q2,

so we have

(A.5) 2Pq ≥ Q2 ≥ 0; Q2 = −q2,

which is equivalent to eq. (2).
The relation (9) can be proved as follows. Let us consider eq. (7) in a frame in which

the direction of the first axis is defined by the vector q:

(A.6) xB =
p0q

0 − p1|q|
P0q0 − P1|q|

.

In the nucleon rest frame we have

(A.7) |q|2 = ν2 + Q2,
|q|2
ν2

= 1 +
4M2x2

B

Q2
.

It means that for Q2 � 4M2x2
B the relation

(A.8) xB =
p0 − p1

P0 − P1

(
1 + O

(
4M2x2

B

Q2

))

holds in any reference frame connected with the rest frame by the Lorentz boost in
direction q. In this way we have proven that replacement of Bjorken variable by the
invariant light-cone ratio in eq. (9) is valid provided the inequality (8) is satisfied.
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