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Summary. — We study the single-spin asymmetries for the D-meson production,
Drell-Yan lepton-pair production and the direct-photon production in the pp col-
lision induced by the twist-3 three-gluon correlation functions in the transversely
polarized nucleon. We present a corresponding polarized cross section formula in
the leading-order with respect to the QCD coupling and a model calculation for the
asymmetries, illustrating the sensitivity to the form of the correlation functions.

PACS 12.38.Bx – Perturbative calculations.
PACS 13.85.Ni – Inclusive production with identified hadrons.
PACS 13.88.+e – Polarization in interactions and scattering.

1. – Introduction

Understanding the origin of the large single spin asymmetries (SSAs) observed in
various high-energy semi-inclusive processes have been a big challenge during the past
decades. The SSA can be generated as a consequence of the multiparton correlations
inside the hadrons in the collinear factorization approach which is valid when the trans-
verse momentum of the particle in the final state can be regarded as hard. Among such
multiparton correlations, purely gluonic correlations have a potential importance, since
gluons are ample in the nucleon. The best way to probe such gluonic correlations is
the measurement of SSA for a heavy meson production in semi-inclusive deep inelastic
scattering (SIDIS) and the pp collision [1, 2], since the heavy-quark pair one of which
fragments into the final-state meson is mainly produced, respectively, by the photon-
gluon and gluon-gluon fusion mechanisms. The measurement of SSA for the D-meson
production in the pp collision is ongoing at RHIC [3].

In this report, we study the contribution of the three-gluon correlation functions rep-
resenting such multigluonic effects to SSA in the pp collision for the D-meson production
(p↑p → DX) [4], Drell-Yan lepton-pair production (p↑p → γ∗X) and the direct-photon
production (p↑p → γX) [5]. We will present the corresponding single-spin dependent
cross sections by applying the formalism developed for SIDIS, ep↑ → eDX [2]. We will
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also present a model calculation of the SSAs for p↑p → DX and p↑p → γX induced by
the three-gluon correlation functions in comparison with the RHIC preliminary data for
the former [3].

2. – Three-gluon correlation functions

Three-gluon correlation functions in the transversely polarized nucleon are defined
as the color-singlet nucleon matrix element composed of the three gluon’s field strength
tensors Fαβ . Corresponding to the two structure constants for the color SU(3) group,
dbca and fbca, one obtains two independent three-gluon correlation functions O(x1, x2)
and N(x1, x2) as [2]

Oαβγ(x1, x2) = −g(i)3
∫

dλ

2π

∫
dμ

2π
eiλx1eiμ(x2−x1)(1)

×〈pS|dbcaF βn
b (0)F γn

c (μn)Fαn
a (λn)|pS

= 2iMN

[
O(x1, x2)gαβεγpnS + O(x2, x2 − x1)gβγεαpnS

+ O(x1, x1 − x2)gγαεβpnS
]
,

Nαβγ(x1, x2) = −g(i)3
∫

dλ

2π

∫
dμ

2π
eiλx1eiμ(x2−x1)(2)

×〈pS|ifbcaF βn
b (0)F γn

c (μn)Fαn
a (λn)|pS

= 2iMN

[
N(x1, x2)gαβεγpnS − N(x2, x2 − x1)gβγεαpnS

− N(x1, x1 − x2)gγαεβpnS
]
,

where S is the transverse-spin vector for the nucleon, n is the light-like vector satisfying
p · n = 1, and we have used the shorthand notation as F βn ≡ F βρnρ etc. The gauge-
link operators which restore gauge invariance of the correlation functions are suppressed
in (1) and (2) for simplicity. The nucleon mass MN is introduced to define O(x1, x2) and
N(x1, x2) dimensionless.

3. – D-meson production in pp collision

Applying the formalism for the contribution of the three-gluon correlation functions
to SSA developed in [2], the twist-3 cross section for p↑(p, S⊥)+p(p′) → D(Ph)+X with
the center-of-mass energy

√
S can be obtained in the following form [4]:

P 0
h

dσtw3,D

d3Ph
=

α2
sMNπ

S
εPhpnS⊥

∑
f=cc̄

∫
dx′

x′ G(x′)(3)

×
∫

dz

z2
Df (z)

∫
dx

x
δ
(
s̃ + t̃ + ũ

) 1
zũ

[
δf

{(
d
dx

O(x, x) − 2O(x, x)
x

)

× σ̂O1+
(

d
dx

O(x, 0)− 2O(x, 0)
x

)
σ̂O2 +

O(x, x)
x

σ̂O3 +
O(x, 0)

x
σ̂O4

}

+
{(

d
dx

N(x, x) − 2N(x, x)
x

)
σ̂N1 +

(
d
dx

N(x, 0) − 2N(x, 0)
x

)
σ̂N2

+
N(x, x)

x
σ̂N3 +

N(x, 0)
x

σ̂N4

}]
,

where δc = 1 and δc̄ = −1, Df (z) represents the c → D or c̄ → D̄ fragmentation
functions, G(x′) is the unpolarized gluon density, pc is the four-momentum of the c (or
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Fig. 1. – (a) AD
N for D0 and (b) AN for D̄0 for Model 1 in (4) with O(x) = N(x) and KG = 0.004,

and (c) AD
N for D0 and (c) AN for D̄0 for Model 2 in (5) with O(x) = N(x) and K′

G = 0.001.
Short bars denote the RHIC preliminary data taken from [3].

c̄) quark (mass mc) fragmenting into the final D (or D̄) meson and s̃, t̃, ũ are defined
as s̃ = (xp + x′p′)2, t̃ = (xp − pc)2 − m2

c , ũ = (x′p′ − pc)2 − m2
c . The hard cross

sections σ̂O1,O2,O3,O4 and σ̂N1,N2,N3,N4 are listed in [4]. The cross section (3) receives
contributions from O(x, x), O(x, 0), N(x, x) and N(x, 0) separately, which differs from
the previous result [1].

We perform numerical estimate for AN based on (3). For the RHIC kinematics,
we found that the terms with σ̂O3,O4,N3,N4 are negligible compared with those with
σ̂O1,O2,N1,N2 and that σ̂O1 � σ̂O2 ∼ σ̂N1 � −σ̂N2. One can thus regard the cross
section as a function of the correlation functions O(x) ≡ O(x, x) + O(x, 0) and N(x) ≡
N(x, x)−N(x, 0) to a very good approximation. We assume the relation O(x) = ±N(x)
together with O(x, x) = O(x, 0) and N(x, x) = −N(x, 0) for simplicity. For the functional
form of each function, we employ the following two models:

Model 1 : O(x) = KG xG(x),(4)

Model 2 : O(x) = K ′
G

√
xG(x),(5)

where KG and K ′
G are the constants to be determined so that the calculated asymmetry

is consistent with the RHIC data [3].
For the numerical calculation, we use GJR08 [6] for G(x) and KKKS08 [7] for Df (z).

We calculate AN for the D and D̄ mesons at the RHIC energy at
√

S = 200 GeV and
the transverse momentum of the D-meson PT = 2 GeV. We set the scale of all the
distribution and fragmentation functions at μ =

√
P 2

T + m2
c with the charm quark mass

mc = 1.3 GeV.
Figure 1 shows the result of AN for the D0 and D̄0 mesons with the relation O(x) =

N(x) together with the preliminary data [3] denoted by the short bars. The sign of
the contribution from O(x) changes between D0 and D̄0 as shown in (3) and works
constructively (destructively) for D0 (D̄0) for the case O(x) = N(x). The values KG =
0.004 and K ′

G = 0.001 have been determined so that AN does not overshoot the RHIC
data. If one adopts the relation O(x) = −N(x), the result for the D0 and D̄0 mesons
will be interchanged. The rising behavior of AN at large xF as shown in figs. 1(a)
and (c) is originated from the derivative of O(x) and N(x), as in the case of the soft-
gluon-pole (SGP) contribution for the quark-gluon correlation function. By comparing
the results for the models 1 and 2 in figs. 1(a) and (c), one sees that the behavior of
AN at xF < 0 depends strongly on the small-x behavior of the three-gluon correlation
functions. Therefore AN at xF < 0 is useful to get constraint on the small-x behavior of
the three-gluon correlation functions.
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Fig. 2. – The diagrams for the three-gluon contribution to the twist-3 cross section for p↑p →
γ∗X. In the collinear limit, the momenta k1 and k2 coming from the polarized nucleon are set
to ki = xip (i = 1, 2) and the pole contribution from the bared propagator gives rise to the SSA.

4. – Drell-Yan lepton-pair production in pp collision

The analysis of the previous section can be extended to AN for the Drell-Yan lepton-
pair production induced by the three-gluon correlation function. The corresponding
twist-3 diagrams for the hard part are shown in fig. 2, which give rise to SGP contribu-
tion at x1 = x2 due to the initial-state interaction between the extra incoherent gluon
from the polarized proton and the quark coming out of the unpolarized proton. From
these diagrams, one obtains for the single-spin-dependent cross section for the Drell-
Yan process, p↑(p, S⊥) + p(p′) → γ∗(q) + X, with the invariant mass Q2 = q2 for the
lepton-pair as [5]

dσtw3,DY

dQ2dyd2	q⊥
=

2MNα2
emαs

3SQ2

∫
dx

x

∫
dx′

x′ δ(ŝ + t̂ + û − Q2)εqpnS⊥
1
û

∑
a

e2
afa(x′)(6)

×
[
δa

{(
d
dx

O(x, x) − 2O(x, x)
x

)
σ̂1 +

(
d
dx

O(x, 0) − 2O(x, 0)
x

)
σ̂2

+
O(x, x)

x
σ̂3 +

O(x, 0)
x

σ̂4

}

−
(

d
dx

N(x, x) − 2N(x, x)
x

)
σ̂1 +

(
d
dx

N(x, 0) − 2N(x, 0)
x

)
σ̂2

−N(x, x)
x

σ̂3 +
N(x, 0)

x
σ̂4

]
,
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Fig. 3. – (a) AN for Case 1 with Model 1. (b) AN for Case 1 with Model 2. (c) AN for Case 2
with Model 1. (d) AN for Case 2 with Model 2.

where y is the rapidity of the virtual photon, αem � 1/137 is the QED coupling constant,
and the partonic hard cross sections are defined as

σ̂1 =
2
N

(
û

ŝ
+

ŝ

û
+

2Q2t̂

ŝû

)
, σ̂2 =

2
N

(
û

ŝ
+

ŝ

û
+

4Q2t̂

ŝû

)
,(7)

σ̂3 = − 1
N

4Q2(Q2 + t̂ )
ŝû

, σ̂4 = − 1
N

4Q2(3Q2 + t̂ )
ŝû

,

with the number of colors N = 3 and ŝ = (xp + x′p′)2, t̂ = (xp− q)2 and û = (x′p′ − q)2.
For a large Q2, σ̂1 differs from σ̂2 significantly, and σ̂3,4 are not negligible. Therefore the
cross section (6), in general, depends on the four functions O(x, x), O(x, 0), N(x, x) and
N(x, 0) independently unlike the case for p↑p → DX in the previous section, where the
twist-3 cross section can be regarded as a function of the combination O(x, x) + O(x, 0)
and N(x, x) − N(x, 0).

The AN for the Drell-Yan process receives contribution not only from the three-gluon
correlation functions but also from the quark-gluon correlation functions, for which the
twist-3 cross section have been derived in [8-10]. The sum of (6) and those from the
quark-gluon correlation functions gives the complete leading-order cross section for the
asymmetry.

5. – Direct photon production in pp collision

Taking the q → 0 limit of (6), the twist-3 cross section for the direct photon produc-
tion, p↑(p, S⊥) + p(p′) → γ(q) + X, induced by the three-gluon correlation functions can
be obtained as [5]

Eγ
dσtw3,DP

d3q
=

4αemαsMNπ

S

∑
a

e2
a

∫
dx′

x′ fa(x′)
∫

dx

x
δ(ŝ + t̂ + û)εqpnS⊥(8)

×
[
δa

(
d
dx

O(x, x) − 2O(x, x)
x

+
d
dx

O(x, 0) − 2O(x, 0)
x

)

− d
dx

N(x, x) +
2N(x, x)

x
+

d
dx

N(x, 0) − 2N(x, 0)
x

] (
1
N

ŝ2 + û2

ŝû2

)
,

where fa(x′) is the twist-2 unpolarized quark density and δa = 1(−1) for quark (anti-
quark). As shown in (8), the combinations O(x) ≡ O(x, x) + O(x, 0) and N(x) ≡
N(x, x) − N(x, 0) appear in the cross section accompanying the common partonic hard
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cross section which is the same as the twist-2 hard cross section for the qg → qγ scattering.
The origin of this simplification can be clearly understood in terms of the master formula
for the contribution from the three-gluon correlation functions developed in [4,5,11]. We
also note that the above result (8) differs from the previous study in [12].

We have performed a numerical calculation for Aγ
N based on the models used for

p↑p → DX in sect. 3. For the models 1 and 2, we calculate the asymmetry Aγ
N for the

two cases: Case 1; O(x) = N(x) and Case 2; O(x) = −N(x). We use GJR08 [6] for fq(x′)
and the models (4) and (5) with KG = 0.004 and K ′

G = 0.001 which are consistent with
the RHIC AD

N data. We calculate Aγ
N at the RHIC energy at

√
S = 200 GeV and the

transverse momentum of the photon qT = 2 GeV, setting the scale of all the distribution
functions at μ = qT .

Figure 3 shows the result for Aγ
N for each case. One can see AN at xF > 0 becomes

almost zero regardless of the magnitude of the three-gluon correlation functions, while
Aγ

N at xF < 0 depends strongly on the small-x behavior of the three-gluon correlation
functions as in the case of p↑p → DX. Even though the derivatives of O(x) and N(x)
contribute, AN is tiny at xF > 0 due to the small partonic cross section. At xF < 0,
large-x′ region of the unpolarized quark distributions and the small-x region of the three-
gluon distributions are relevant. For the above case 1, only antiquarks in the unpolarized
nucleon are active and thus lead to small Aγ

N as shown in figs. 3(a) and (b). On the other
hand, for the case 2, quarks in the unpolarized nucleon are active and thus lead to large
Aγ

N as shown in figs. 3(c) and (d). Therefore Aγ
N at xF < 0 for the direct photon

production could provides us with an important information on the relative sign between
O(x) and N(x).

To summarize, we have studied the SSA for p↑p → DX, p↑p → γ∗X and p↑p → γX
induced by the three-gluon correlation functions in the polarized nucleon. Combined with
the known result for the contribution from the quark-gluon correlations, this complete the
leading-order twist-3 cross sections for these processes. We have also presented a model
calculation for the asymmetry for the p↑p → DX and p↑p → γX at the RHIC energy,
showing the sensitivity of the asymmetry to the form of the three gluon-correlation
functions.
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