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Summary. — We describe a few of the recent theory highlights in the field of
transverse-spin physics.

PACS 12.38.-t – Quantum chromodynamics.
PACS 13.88.+e – Polarization in interactions and scattering.

1. – Introduction

Single-transverse-spin asymmetries play an important role for our understanding of
QCD and nucleon structure. They have a long history, starting from the 1970s and
1980s when surprisingly large asymmetries were observed in hadronic reactions such as
p↑p → πX at forward angles of the produced pion [1]. The last few years have seen
a renaissance in the experimental studies of single-spin asymmetries. HERMES and
COMPASS, in particular, have investigated them in semi-inclusive hadron production
eN↑ → eπX in deep-inelastic scattering [2, 3]. The advent of the first polarized proton-
proton collider, RHIC, has opened new possibilities for extending the studies of single-
spin asymmetries in hadronic scattering into a regime where the use of QCD perturbation
theory in the analysis of the data appears to be justified. The STAR [4], PHENIX [5] and
BRAHMS [6] collaborations have presented data for single-inclusive hadron production,
and large single-spin effects at forward rapidities were found to persist to RHIC energies.

The observed large size of single-spin asymmetries in hadronic scattering has pre-
sented a challenge for QCD theorists. Two mechanisms have been proposed and been
extensively applied in phenomenological studies. The first relies on the use of transverse-
momentum–dependent parton distributions for the transversely polarized proton. For
these distributions, among them the Sivers functions [7], the parton transverse momen-
tum is assumed to be correlated with the proton spin vector, so that spin asymmetries
naturally arise from the directional preference expressed by that correlation. The other
mechanism [8] is formulated in terms of the collinear factorization approach and twist-
three transverse-spin–dependent quark-gluon correlation functions of the proton.
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A concept common to both mechanisms is the factorization of the spin-dependent
cross section into functions describing the distributions of quarks and gluons in the polar-
ized proton, and partonic hard-scattering cross sections, calculated in QCD perturbation
theory. The question of which mechanism should be used in the analysis of a single-spin
asymmetry is therefore primarily tied to the factorization theorem that applies for the
single-spin observable under consideration. For the single-inclusive process p↑p → πX,
there is only one hard scale, the transverse momentum pT of the produced pion, and
the spin asymmetry is power-suppressed (“higher-twist”) by 1/pT . In this case, one can
prove a collinear factorization theorem in terms of the quark-gluon correlation func-
tions [8, 9]. On the other hand, the observables typically investigated in deep-inelastic
lepton scattering are characterized by a large scale Q (the virtuality of the DIS photon)
and by the much smaller, and also measured, transverse momentum qT of the produced
hadron. In this two-scale case, single-spin asymmetries may arise at leading twist, i.e.
not suppressed by 1/Q. The relevant factorization theorem is formulated in terms of
transverse-momentum–dependent (TMD) functions, among them the Sivers function.

Theoretical studies have revealed a striking property of the Sivers functions [10-13]:
the functions contributing to DIS and to the Drell-Yan process have opposite sign,

fSivers(x, kT )
∣∣∣
Drell-Yan

= −fSivers(x, kT )
∣∣∣
DIS

.(1)

The non-universality of the Sivers functions is reflected in a process-dependence of the
space-time direction of the gauge-link in the distribution. The crucial role played by the
gauge link has given rise to intuitive model interpretations of single-spin asymmetries
in terms of spatial deformations of parton distributions in a transversely polarized nu-
cleon [14], and also to approximate relations between the Sivers functions and generalized
parton distributions [15].

Much new theoretical progress has been made very recently. This talk describes a few
of the highlights of what has been achieved. Most of the topics are discussed in more
detail in other papers of these proceedings. Some of the recent progress originated in the
course of a 10-week program “Gluons and the quark sea at high energies: Distributions,
polarization, tomography” held at the INT in Seattle last fall. The goal of this program
was to help develop the science case for a future Electron-Ion Collider (EIC). The results
obtained there are summarized in [16].

2. – News

2.1. News item 1: No TMD factorization for general QCD hard scattering . – It has
been known for a few years now [17] that the process-dependence of the Sivers functions
manifests itself in an even more striking way in more complicated QCD hard-scattering.
An example is the single-spin asymmetry in dijet angular correlations [18, 19], to which
to lowest order all 2 → 2 QCD partonic processes contribute. Tremendous progress has
been made recently in our understanding of the gauge links for such more general QCD
observables [17]. The more involved color structure of the hard-scattering functions has
profound consequences. As a result, the Sivers functions for this reaction differ from those
in DIS by more than just a sign. In fact, universality is lost completely: the u-quark
distribution in, say, the process ud → ud will differ from that in ug → ug. This feature has
profound ramifications whenever transverse-momentum dependent parton distributions
are relevant in hard-scattering reactions. It expresses the deep quantum-mechanical
interplay between the structure of an object and the probe that is used to examine it.
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Fig. 1. – Diagram that contributes to a violation of generalized TMD-factorization. Taken
from [20].

Until recently, there still seemed to be a logical possibility that despite the breakdown
of universality there could still be a “generalized” factorization for hadronic single-spin
asymmetries. By this one means that a factorized description of the observable can be
achieved, albeit with non-universal distribution functions. Very recent work [20] has
shown, however, that even such a generalized factorization does not appear to hold. The
breakdown occurs at high order of perturbation theory. Figure 1 shows a sample diagram
that contributes to a violation of generalized TMD-factorization.

2.2. News item 2: Most complete (to date) analysis of pp → πX data. – Collinear
factorization, on the other hand, is known to hold for the spin asymmetry in single-
inclusive particle production in pp → πX [8, 9]. An extensive phenomenological study
of the asymmetries measured in fixed-target scattering [1] and at RHIC [4-6] has first
been performed in [21], based on the so-called soft-gluon-pole contributions to the twist-3
asymmetry. The framework and its phenomenological analysis has now been significantly
improved by the recent work [22] through inclusion of the soft-fermion-pole contributions.
These lead to a much better description of the data. In particular, the calculation in
ref. [22] describes also the transverse-momentum (pT )-dependence of the data well, as
shown in fig. 2, whose explanation had remained elusive prior to the analysis. In addition,
a quantitative description of the spin asymmetry in η-production is given, which comes
out larger than the π0 spin asymmetry, in accordance with measurements at RHIC [23].

2.3. News item 3: A sign puzzle? . – An intriguing observation has recently been made
that may impact our understanding of single-spin asymmetries [24]. It has been known
for some time [25-27] that the kT -moment of a quark’s Sivers function is related to the
corresponding twist-three quark-gluon correlation function Tq,F (x, x):

gTq,F (x, x) = −
∫

d2kT
|kT |2
M

f⊥q
1T (x, k2

T )|DIS.(2)

Both functions have been extracted from data for single-spin asymmetries in semi-
inclusive deep inelastic scattering and in single-inclusive hadron production in pp col-
lisions, respectively. This opens the possibility for a test of the theoretical framework
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Fig. 2. – pT -dependence of the spin asymmetry in pp → π0X as measured by STAR [4], compared
to theoretical descriptions in the twist-3 formalism. Taken from [22].

by using the extracted phenomenological functions and inserting them into eq. (2). Sur-
prisingly, one finds a “sign mismatch”: while the magnitude of the functions is roughly
consistent, the kT -moment of the Sivers function has opposite sign from that of Tq,F (x, x),
both for up and for down quarks. This is shown in fig. 3.

In fact, the basic problem is easy to see: the Sivers contributions to the single-spin
asymmetries depend on initial- or final-state interactions in the scattering processes.
The single-spin asymmetry in SIDIS comes from a final-state interaction. A negative
up-quark Sivers function is known to generate a positive SIDIS spin asymmetry for π+

production. In p↑p → πX at forward rapidities, however, the main partonic channel is
ug → ug, for which initial-state interactions play the dominant role, resulting in negative
partonic hard-scattering functions. Therefore, if the Sivers mechanism (or its twist-3
variant) is primarily responsible for the single-spin asymmetry in this process, one would
expect a negative asymmetry for π+, contrary to what is observed. Thus the Tq,F (x, x)
functions needed to describe the RHIC single-spin asymmetries cannot have the signs
suggested by eq. (2).

What are the implications of this finding? There are certainly some caveats. First,
it could be that the Sivers effect in fact plays a relatively small role for the p↑p → πX
spin asymmetries and that the Collins effect dominates. This is a logical possibility, even
though the Collins effect would need to be strong enough to overcome the “wrong-sign”
Sivers contribution.

Secondly, there could be a node in kT in the integrand of eq. (2), such that the large-kT

tail of the distribution has a sign opposite from that of the distribution at kT ∼ ΛQCD

where it is mostly constrained by the SIDIS data. In other words, the current SIDIS
data may not sufficiently constrain the kT -moment of the quark Sivers functions. Such
a possibility might be tested by a precise experimental mapping of the kT -dependence of
the Sivers functions, possible perhaps at an EIC [16]. It is also worth keeping in mind
that the kT -integral in (2) requires UV renormalization.

Finally, there could also be a node of Tq,F (x, x) in x, as recently discussed in [30,31].
The SIDIS and RHIC data cover somewhat different regions in x, with the former mostly
sitting at x ≤ 0.3 and the latter extending to rater high values x ≥ 0.4. It is thus
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Fig. 3. – Illustration of the “sign puzzle”: Quark-gluon correlation function gTq,F (x, x) as a
function of momentum fraction x for u-quarks (left) and d-quarks (right). The dashed (dotted)
lines are gTq,F (x, x)|new Sivers [28] (gTq,F (x, x)|old Sivers [29]) obtained by taking the kT -moments
of the corresponding quark Sivers functions according to the right-hand-side of eq. (2). The solid
lines represent the correlation functions extracted directly from data on single-spin asymmetries
for inclusive pion production in proton-proton collisions, p↑p → π + X [21] (after correcting for
a sign convention; see [24] for details). Taken from [24].

conceivable that Tq,F (x, x) has one sign at lower x, but the opposite sign at the higher
x. Kang and Prokudin [31] have performed a fit to both sets of data, and they find
indeed that a joint description is possible, at the expense of a Tu,F (x, x) that has a
node. Again, this possibility calls for extended measurements of the x-ranges of the
distributions. It should be emphasized that, if Tu,F (x, x) indeed has a node, there are
important implications for the shape of the predicted Drell-Yan single-spin asymmetry,
which in turn is important for the related efforts at COMPASS and RHIC to probe the
predicted sign change of the Sivers functions between SIDIS and Drell-Yan.

Whatever the solution to the sign puzzle may be, it will likely teach us something new
about the nucleon and QCD. If all of the above caveats can be ruled out, the observed
sign puzzle would mean that we face an inconsistency in our QCD formalism for single-
spin asymmetries. One would then have to wonder if we have sufficiently understood
important issues such as the process dependence of the Sivers functions, the sign change
between DIS and Drell-Yan, etc.

2.4. News item 4: QCD corrections to single-spin observables. – Major progress has
been made on the theoretical side by addressing the role of higher-order QCD corrections
to single-spin observables, which will likely take this field to a new level and will be crucial
at the EIC.

In refs. [32-34], the LO “DGLAP” evolution kernels (splitting functions) for the
Tq,F (x, x) were derived. These will be important in further phenomenological analy-
ses of the RHIC p↑p → πX data. Reference [32, 34] performed a direct computation of
the kernels, while in [33] actually a full NLO calculation of the inclusive (qT -weighted)
Drell-Yan spin asymmetry was carried out, which yields the kernels as a side product.
It should be noted that the results given in [34] differ from those in [32, 33], which still
needs to be understood.

The evolution of TMDs has also recently been addressed [35]. This is remarkable
progress. By cleverly rearranging the Collins-Soper-Sterman formalism with particular
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attention to the role of soft factors, it has been possible to phrase the qT -dependent
SIDIS cross section in terms of a simple “parton-model–like” TMD formula with, however,
evolved (Q-dependent) TMDs. At low qT , the formalism is merged to phenomenologically
determined non-perturbative terms. The evolution in Q turns out to be quite rapid, as
shown in fig. 4. At low transverse momentum, the distributions can be fit to a Gaussian
form. Recently, also the evolution of single-spin TMDs has been discussed [36,37].

2.5. News item 5: Study of gluon distributions. – So far, the main focus of the field has
been on quark TMDs, which is due to the fact that quark TMDs are primarily probed
in semi-inclusive deep-inelastic scattering (SIDIS) and Drell-Yan dilepton production
process, which have been accessible experimentally. Gluon TMDs [38] and processes
sensitive to them have received closer attention only quite recently, at least for cases where
nucleon or gluon polarization matter. Several processes for accessing the gluonic version
of the Boer-Mulders function (more appropriately described as the TMD distribution of
linearly polarized gluons in an unpolarized nucleon) [39-41], have been proposed for high-
energy hadronic collisions, in particular, at RHIC, or for ep scattering at a future EIC.
Among these, the double-photon production process pp → γγX appears particularly
suited for studying spin-dependent gluonic TMDs in a theoretically clean way. First of
all, since the final state is a color singlet, the diphoton process is expected to share many
features with the Drell-Yan process, as far as factorization is concerned. Indeed, like the
Drell-Yan process, its lowest-order contribution comes from qq̄ annihilation, qq̄ → γγ,
which can be shown to give rise to the same Wilson lines as the Drell-Yan subprocess
qq̄ → γ∗, and hence involves the same quark and antiquark TMDs. Second, it has
been known for a long time that in the spin-averaged case [42] at colliders photon pair
production is in fact dominated by the process gg → γγ, that is, gluon-gluon fusion to a
photon pair via a quark box. Even though this process is formally down by two powers of
the strong coupling constant αs with respect to qq̄ → γγ, the suppression is compensated
by the structure of the associated hard-scattering function, and by the size of the gluon
distribution function. Hence, an experimental study of gluon TMDs should in principle
be possible in this process. Finally, in order to study TMDs, precise measurement of
the (small) transverse momentum of a final state is crucial. This should be relatively
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straightforward to achieve for a photon pair. Figure 5 shows predictions for the various
azimuthal-angle dependencies in unpolarized and single-polarized pp → γγX at RHIC.
The cos(4φ) modulation can be used to extract the gluon Boer-Mulders function. Even
a small effect can be significant since this modulation is absent in the qq̄ channel. The
cos(2φ) modulation ultimately gives information on the sign of h⊥g

1 . Such measurements
may also be performed at the LHC where the production rate from gluon fusion is
much larger. Another unique feature of the diphoton process is its sensitivity to the
gluon Sivers function in polarized proton collisions. Measurements at RHIC could hence
provide important clues about the correlation between gluon motion and hadron spin.
An additional very intriguing feature is that linearly polarized gluons generate a term
in the cross section that is independent of azimuthal angle. In this way they can also
contribute to production of a scalar particle, such as a scalar or pseudoscalar Higgs boson,
when its transverse momentum qT is measured. Even more, as was shown in [43], linearly
polarized gluons may in fact provide a tool to uncover whether the Higgs boson is a scalar
or a pseudoscalar particle, since the double helicity flip piece is opposite in the two cases.

Gluon distribution effects have also been studied for single-inclusive observables,
where they contribute as twist-three three-gluon correlation functions to single-spin
asymmetries. The most complete study has been performed in [44] for SIDIS processes.

2.6. Other recent highlights. – Other important recent theory work that will not be
discussed here in detail addresses the role of orbital angular momentum. The concept of
Wigner distributions, in particular, appears to provide a very promising avenue here [45].
Also, the recent study [46] presents a phenomenological extraction of orbital angular
momentum, using (model-dependent) relations between generalized parton distributions
and the Sivers TMD. Progress on the question of orbital angular momentum is vital for
achieving a complete understanding of the nucleon in QCD, and will likely continue to
be a key focus in future years.
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