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Summary. — The leading hadronic effects in electroweak theory derive from vac-
uum polarization which are non-perturbative hadronic contributions to the running
of the gauge couplings, the electromagnetic αem(s) and the SU(2)L coupling α2(s).
I will report on my recent package alphaQED, which besides the effective fine struc-
ture constant αem(s) also allows for a fairly precise calculation of the SU(2)L gauge
coupling α2(s). I will briefly review the role, future requirements and possibilities.
Applied together with the Rhad package by Harlander and Steinhauser, the package
allows to calculate all SM running couplings as well as running sin2 Θ versions with
state-of-the-art accuracy.

PACS 12.15.-y – Electroweak interactions.
PACS 13.40.-f – Electromagnetic processes and properties.
PACS 12.15.Lk – Electroweak radiative corrections.
PACS 13.40.Ks – Electromagnetic corrections to strong- and weak-interaction pro-
cesses.

1. – Introduction

Precise Standard Model (SM) predictions require to determine the U(1)Y ⊗SU(2)L⊗
SU(3)c SM gauge couplings αem, α2 and αs ≡ α3 (QCD) as accurately as possible.
Obviously, the predictability of theory is limited by the precision of its input parameters.
This in particular requires to fight precision limitations due to non-perturbative hadronic
contributions. Precise predictions confronting precise measurements are the basis for all
SM precision tests, which allow us to unravel new physics from discrepancies between
theory and experiment. An important test case, which requires as precise as possible
running couplings, is the quest of gauge coupling unification in grand-unified extensions
of the SM.
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Key input parameter for ILC physics currently are known to precision:

δα

α
∼ 3.6 × 10−9,

δα(MZ)
α(MZ)

∼ 1.6–6.8 × 10−4,(1)

δGμ

Gμ
∼ 8.6 × 10−6,

δMZ

MZ
∼ 2.4 × 10−5.

We observe that the accuracy of α(MZ) is roughly one order of magnitude worse than that
of the next best MZ ! The loss in precision caused by non-perturbative strong interaction
effects is 105 between the classical low energy α and α(MZ). The requirement for ILC
precision physics is

(2)
δα(MZ)
α(MZ)

∼ 5 × 10−5.

A prominent example where theory may be obscured by lack of precision in the effective
α is the indirect Higgs mass bound obtained from the precise measurement of sin2 θlep

eff .
The required improvement could be achieved by dedicated efforts in cross-section mea-
surements in the energy range from 1.2 to 3.2 GeV, and be adopting the Adler function
controlled split in parts evaluated from data (from experiments or from lattice QCD
simulations) and parts which can be calculated reliably in perturbative QCD (pQCD):

Δα
(5)
had(M2

Z) = Δα
(5)
had(−s0)data +

[
Δα

(5)
had(−M2

Z) − Δα
(5)
had(−s0)

]pQCD

(3)

+
[
Δα

(5)
had(M2

Z) − Δα
(5)
had(−M2

Z)
]pQCD

,

where s0 can be optimized by adopting the Adler function as a monitor for the range
of validity of pQCD [1, 2]. In the following we will present a description of the package
alphaQED which allows state-of-the-art calculations of the SM running couplings, option-
ally, with their imaginary parts. Some emphasis is put on the not so straightforward
determination of the running SU(2)L coupling α2(s), which is important for the calcula-
tion of variants of the weak mixing parameter sin2 ΘW (s), an interesting quasi-observable
and monitor of new physics particularly at ILC energy scales.

2. – Effective running coupling αQED

The effective fine-structure “constant” α(E) depends on the energy scale because of
charge screening by vacuum polarization:

(4) Δα(s) = −e2 [Re Π′γγ(s) − Π′γγ(0)]

which exhibit the leading hadronic non-perturbative part Δ(5)
hadα. Π(s) = Π(0) + sΠ′(s)

denotes the transversal current correlator, for the electromagnetic current Π(0) = 0.
While electroweak effects (leptons, etc.) are calculable in perturbation theory, the cal-
culation of the strong interaction effects (hadrons/quarks, etc.) by perturbative QCD
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fails. Fortunately, dispersion relations and the optical theorem allow us to perform rather
accurate evaluations in terms of experimental e+e−–data encoded in

(5) Rγ(s) ≡ σ(e+e− → γ∗ → hadrons)
σ(e+e− → γ∗ → μ+μ−)

.

For the electromagnetic running coupling the dispersion integral reads

(6) Δα
(5)
had(s) = −αs

3π

(
P
∫ E2

cut

4m2
π

ds′
Rdata

γ (s′)
s′(s′ − s)

+ P
∫ ∞

E2
cut

ds′
RpQCD

γ (s′)
s′(s′ − s)

)

The high energy tail is neatly calculable perturbatively by the virtue of asymptotic
freedom of QCD. Errors of data imply theoretical uncertainties. Some of the data sets
are old and of rather limited precision, especially in the range above 1.4 GeV to about
2.2 GeV, a range which is subject to new measurement at the VEPP 2000 facility at
Novosibirsk. Data from different experiments are combined by standard methods as
recommended by the Particle Data Group (see, e.g., [3]). In recent years progress has
been due to much better σ(e+e− → hadrons) determinations at Novosibirsk (CMD2,
SND) [4,5] and more recently by the novel radiative return high accuracy measurements
by KLOE [6, 7] and BaBar [8] (see also [9, 10]). Typically, vacuum polarization leads to
large corrections and in fact α(E) is steeply increasing at low E already. So the deviation
of α(mμ) at the muon mass scale mμ from α gives the big leading hadronic correction to
the muon g−2 [11]. That is why we need to know the running of αQED very precisely at all
scales (see fig. 1). Non-perturbative hadronic effects in electroweak precision observables
affect most SM predictions via non-perturbative effects in parameter shifts, typically:

(7) sin2 Θi cos2 Θi =
πα√

2 Gμ M2
Z

1
1 − Δri

,

where

(8) Δri = Δri(α,Gμ,MZ ,mH ,mf �=t,mt)

represent the quantum corrections from gauge boson self-energies, vertex– and box–
corrections. Uncertainties obscure in particular the indirect bounds on the Higgs
mass obtained from electroweak precision measurements. Basic observables like MW

[sin2 ΘW = 1 − M2
W /M2

Z ], g2 [sin2 Θg = e2/g2
2 = (πα)/(

√
2 Gμ M2

W )] or the vector cou-
pling vf [sin2 Θf = (4|Qf |)−1 (1 − vf/af ), f �= ν] are related to versions of sin2 ΘW

obtained form (7) and the general form of Δri reads

(9) Δri = Δα − fi(sin2 Θi)Δρ + Δri remainder

with a universal term Δα which affects the predictions for MW , ALR, Af
FB , Γf , etc. Only

the ρ parameter in the axial coupling af , which is renormalized by ρf = 1/(1 − Δρ), is
independent of leading non-perturbative hadronic effects.

One issue concerning running couplings concerns the question complex vs. real α(s).
For s �= 0 (4) provides the definition of a complex coupling if we relax from taking the real
part only. A typical example where this happens is the vacuum polarization correction to
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Fig. 1. – Δαem(E) and Δα2(E) as functions of energy E in the time-like and space-like domain.
The smooth space-like correction (dashed line) agrees rather well with the non-resonant “back-
ground” above the φ-resonance (kind of duality). In resonance regions as expected “agreement”
is observed in the mean, with huge local deviations.

be performed on R(s) before it can be used in (6): Rphysical → R(0) .= (α/α(s))2 Rphysical.
Usually, α(s) is take to be real, i.e. (α/α(s))2 = |1 − Re Π′(s)|2 (Π′(0) subtracted).
More precisely, one should subtract |1 − Π′(s)|2 = (α/|αc(s)|)2 where αc(s) denotes
the complex version of running α. Typically, corrections from imaginary parts given
by 1 − |1 − Π′(s)|2/(α/α(s))2, are small � 0.1% in non-resonance regions. However, at
resonances corrections are of order ∼ 1/ΓR and thus are large for narrow resonances.

3. – The coupling α2, MW and sin2 Θf

Unlike for the electromagnetic coupling, for the SU(2)L coupling the hadronic shift
cannot be directly obtained by integration of measured data. There is however a pretty
clean way to evaluate Δ(5)

hadα2, contributing to

(10) Δα2 = − e2

sin2 ΘW

[
Re Π′3γ(s) − Π′3γ(0)

]

which has been proposed long ago in [12]. The surprising fact is that the evaluation of
α2 does not require to separate all individual flavor contributions to recombine them in
the proper way. In fact, up to perturbative or very small contributions the hadronic shift
of α2 is proportional to the self-energy correlation amplitude Π3γ where 3 refers to the
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3rd component of the weak isospin current and γ to the electromagnetic current. For
the non-perturbative low energy range, it implies that the contribution corresponding
to the u, d and s flavors actually requires no flavor separation in the SU(3) limit. This
makes it possible to calculate Δα2 reliably, because the other heavier flavors may be
safely separated by relying on pQCD weighting. The assumption is that for Nf > 3
the Nf − 1 lighter flavors above the Nf flavor threshold can be evaluated by pQCD. A
detailed discussion of the approximations made is given in appendix C of [12]. Given
Πγγ

con = Πγγ
(uds) + Πγγ

(c) + Πγγ
(b) for the continuum and Πγγ

res � Πρ + Πω + Πφ + ΠJ/ψ + ΠΥ

for the narrow resonances, we have the relations

(11) Π3γ
con � 1

2
Πγγ

(uds) +
3
8

Πγγ
(c) +

3
4

Πγγ
(b)

for the background contribution and

Π3γ
res �

1
2

Πρ +
3
4

Πφ +
3
8

ΠJ/ψ +
3
4

ΠΥ(12)

for the resonance contributions. The ρ − ω mixing contribution usually included in the
Πρ taking into account the isospin I = 0 component ω → ππ in the γ → ππ → γ
channel is to be subtracted via the Gounaris-Sakurai parametrization (by setting to zero
the corresponding mixing parameter). The coupling α2 can be “measured” in a charged
current channel via MW (g ≡ g2):

(13) M2
W =

g2 v2

4
=

π α2√
2 Gμ

or via the neutral current channel sin2 Θf . In fact here running sin2 Θf (E) connects the
LEP scale mixing parameter to the one of low energy νee scattering

(14) sin2 Θe(MZ) =
{

1 − Δα2(MZ)
1 − Δα(MZ)

+ Δνμe,vertex+box + Δκe,vertex

}
sin2 Θνμe.

The first correction from the running coupling ratio is largely compensated by the νμ

charge radius which dominates the second term. The ratio sin2 Θνμe/ sin2 Θe is close to
1.002, independent of top and Higgs mass. Note that errors in the ratio (1−Δα2)/(1−Δα)
can be taken to be 100% correlated and thus largely cancel.

Above results allow us to calculate non-perturbative hadronic correction in γγ, γZ,
ZZ and WW self-energies. Gauge boson self-energies potentially are very sensitive to
new physics (oblique corrections), which, however, may be obscured by uncertainties
of the non-perturbative hadronic effects. For complete analytic expressions for elec-
troweak parameter shifts at one-loop see [13,14]. Another interesting version of running
sin2 ΘW (Q2) is found in polarized Moeller scattering asymmetries as advocated by Czar-
necki and Marciano [15]. It includes specific bosonic contribution Δκb(Q2) such that

(15) κ(s = −Q2) =
1 − Δα2(s)
1 − Δα(s)

+ Δκb(Q2) − Δκb(0),
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Fig. 2. – sin2 ΘW (Q) as a function of Q in the space-like region. Hadronic uncertainties are
included but barely visible. Uncertainties from the input parameter sin2 θW (0) = 0.23822(100)
or sin2 θW (M2

Z) = 0.23156(21) are not shown. Future ILC measurements at 1 TeV would be

sensitive to Z′, H−−, etc.

where(1), in our low energy scheme, we require κ(Q2) = 1 at Q2 = 0. Explicitly [15],

Δκb(Q2) =(16)

− α

2π sW

{
−42 cW + 1

12
ln cW +

1
18

−
(r

2
ln ξ − 1

) [
(7 − 4z) cW +

1
6

(1 + 4z)
]

−z

[
3
4
− z +

(
z − 2

3

)
r ln ξ + z(2 − z) ln2 ξ

]}
,

Δκb(0) = − α

2π sW

{
−42 cW + 1

12
ln cW +

1
18

+
6 cW + 7

18

}
,(17)

with z = M2
W /Q2, r =

√
1 + 4z, ξ = r+1

r−1 , sW = sin2 ΘW and cW = cos2 ΘW . Re-
sults obtained in [15] based on one-loop perturbation theory using light quark masses
mu = md = ms = 100MeV are compared with results obtained in our non-perturbative
approach in fig. 2.

(1) Here Δα = dggvap(s,0.d0) and Δα2 = degvap(s,0.d0) are provided by functions from
the package alphaQED.
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4. – Adler function controlled split data vs. pQCD

A strategy to exploit the rather precise perturbative QCD predictions in a optimal
well controlled way is to monitor QCD predictions via the Adler function D(Q2) in the
Euclidean region by comparing theory and data there.

D(−s) .=
3π

α
s

d
ds

Δαhad(s) = −
(
12π2

)
s

dΠ′
γ(s)
ds

,(18)

D(Q2) = Q2

∫ ∞

4m2
π

ds
R(s)

(s + Q2)2
.(19)

Low energies, resonances and thresholds prevent us from making reliable and precise
predictions of R(s) in pQCD. Locally deviations between data and R-predictions can be
huge. In contrast, the smooth function D(Q2) is easy to compare and deviations show up
at low energies only. A detailed inspection of the time-like approach shows that pQCD
works well in “perturbative windows” like 3.00 GeV–3.73 GeV, 5.00 GeV–10.52 GeV and
11.50 GeV–∞. In the space-like approach pQCD works well for

√
Q2 = −q2 > 2.5 GeV [1,

2]. Theory is based on results by Chetyrkin, Kühn et al. [16,17]. One thus requires data
to calculate

(20) Δαhad(−s0) =
α

3π

∫ s0

0

dQ
′2 D(Q

′2)
Q′2

up to s0 = (2.5GeV)2. Equivalently, Δαhad(−s0) can be directly calculated by (6) and
used in (3). One obtains [1, 2]

Δα
(5)
had(−s0)data = 0.007337 ± 0.000090,

Δα
(5)
had(−M2

Z) = 0.027460 ± 0.000134,

Δα
(5)
had(M2

Z) = 0.027498 ± 0.000135.

The result includes a shift +0.000008 from the 5-loop contribution. The error ±0.000103
in the perturbative part is added in quadrature. QCD parameters used are αs(MZ) =
0.1189(20), mc(mc) = 1.286(13) [Mc = 1.666(17)]GeV, and mb(mc) = 4.164(25) [Mb =
4.800(29)]GeV based on a complete 3–loop massive QCD analysis [18]. The latter re-
sults are in agreement with results from lattice QCD [19-21]. Results based on the
Adler controlled split are Δα

(5)
hadrons(M

2
Z) = 0.027498 ± 0.000135 [0.027510 ± 0.000218]

or α−1(M2
Z) = 128.962 ± 0.018 [128.961 ± 0.030] in braces for comparison the results

obtained by the standard approach.
A comparison of error profiles between Δα

(5)
had(M2

Z), Δα
(5)
had(−s0) and aμ may be found

in [2]. Note that our approach, with a conservative cut of
√

s0 = 2.5GeV, does not rely
substantially more on pQCD than standard analyses by Davier, Höcker et al. [9] and
others (see table I). Further progress is possible due to progress in methods to include
the hadronic τ–decay data [22,23].
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Table I. – How much pQCD? Δα
(5)
had(M2

Z) × 104 pQCD part only.

Method range [GeV] pQCD

Standard approach: 5.2 - 9.5 33.50(0.02)

My choice 13.0 - ∞ 115.69(0.04) → 149.19 (0.06)

Standard approach: 2.0 - 9.5 72.09(0.07)

Davier et al. 11.5 - ∞ 123.24(0.05) → 195.33 (0.12)

Adler function controlled: 5.2 - 9.5 3.92(0.00)

13.0 - ∞ 1.09(0.00)

−∞ - −2.5 201.23(1.03)

−MZ → MZ 0.38(0.00) → 206.62 (1.03)

Fig. 3. – Structure of alphaQEDcomplex. The corresponding diagram for alphaQEDreal is much
simpler as it involves the upper part only.
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5. – The FORTRAN package alphaQED

The FORTRAN package alphaQED.tar.gz [24] for calculating the SM effective cou-
plings includes two versions:

– alphaQEDreal [FUNCTION funalpqed] providing the real part of the subtracted
photon vacuum polarization including hadronic, leptonic and top quark contribu-
tions as well as the weak part (relevant at ILC energies). Hadronic, leptonic, top
and weak contributions are accessible separately via common blocks

common /resu/dalept,dahadr,daltop,Dalphaweak1MSb
common /resg/dglept,dghadr,dgetop,Dalpha2weak1MSb

– alphaQEDcomplex [FUNCTION funalpqedc] provides in addition the correspond-
ing imaginary parts. See fig. 3.

– corresponding options alpha2SMreal and alpha2SMcomplex are available for the
SU(2)L coupling α2 = g2/4π.

The functions are available for the space-like and the time-like region. The complex
versions require to install the Rhad package of Harlander and Steinhauser [25] (FOR-
TRAN package version rhad-1.01 (March 2009 issue)). The latter also provides the QCD
coupling α3(s) = αs(s). The imaginary part given by the bare R(0)(s) is provided in
parametrized form by Chebyshev polynomial fits. For sample plots I refer to the package
description on my web page http://www-com.physik.hu-berlin.de/~fjeger/. The
“organigram” of the program is shown in fig. 3.
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1999, pp. 75–89.

[2] Jegerlehner F., Nucl. Phys. Proc. Suppl., 181-182 (2008) 135 [arXiv:0807.4206 [hep-
ph]].

[3] Eidelman S. and Jegerlehner F., Z. Phys. C, 67 (1995) 585.
[4] Aulchenko V. M. et al. (CMD-2 Collaboration), JETP Lett., 82 (2005) 743 (Pisma

Zh. Eksp. Teor. Fiz., 82 (2005) 841); Akhmetshin R. R. et al., JETP Lett., 84 (2006)
413 (Pisma Zh. Eksp. Teor. Fiz., 84 (2006) 491); Phys. Lett. B, 648 (2007) 28.

[5] Achasov M. N. et al. (SND Collaboration), J. Exp. Theor. Phys., 103 (2006) 380
(Zh. Eksp. Teor. Fiz., 130 (2006) 437).

[6] Ambrosino F. et al. (KLOE Collaboration), Phys. Lett. B, 670 (2009) 285.
[7] Ambrosino F. et al. (KLOE Collaboration), Phys. Lett. B, 700 (2011) 102.
[8] Aubert B. et al. (BABAR Collaboration), Phys. Rev. Lett., 103 (2009) 231801.
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