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Summary. — Most experimental studies of the effects of depletion forces in a
colloidal suspensions have so far been performed on systems where the depletion
agent can be regarded as ideal. Here, we review our recent results on systems where
depletants present self-interactions. In the first case we focus on a system where
strong electrostatic coupling is present in the suspension. At fixed colloid volume
fraction, colloidal aggregation takes place when the surfactant concentration reaches
a critical value which raises for increasing ionic strength. Screening repulsive elec-
trostatic interactions inhibits the depletion mechanism and weakens the effective
colloid-colloid attraction. In the second case, investigating the depletion effects
brought in by surfactants that show a liquid-liquid phase separation with water, we
shall conversely deal with a situation where long-range spatial correlations are of
primary importance in setting the phase behavior of the colloidal fluid. Our exper-
imental and theoretical results show that, in the proximity of the critical demixing
point, depletion effects merge continuously into critical Casimir effects, displaying
distinctive scaling properties.

PACS 82.70.Dd – Colloids.
PACS 82.70.Uv – Surfactants, micellar solutions, vesicles, lamellae, amphiphilic
systems, (hydrophilic and hydrophobic interactions).
PACS 05.70.Ce – Thermodynamic functions and equations of state.
PACS 05.70.Jk – Critical point phenomena.

1. – Introduction

Colloidal particles dispersed in a medium encompass a large class of complex fluids.
In these systems the addition of other smaller components as polymers, salt, surfactant
molecules that can self-aggregate forming micelles, induces effective interactions between
the bigger solid particles. This ability of easily tuning particles interaction has made
colloidal dispersion one of the most useful experimental system in order to prove liquid
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state theory. In this field the investigation of systems of colloidal particles interacting
via very short-ranged (much smaller than particle radius) attractive forces has yielded
valuable and often unforeseen insights into the contingency of the liquid state and into
the origin of metastable gel or glassy phases [1-3]. In this regard, the Adhesive Hard
Spheres (AHS) limit [4], corresponding to an attractive potential of vanishing range
u(r)/kBT = − ln[σδ(r − σ)/12τ ], where σ is the particle diameter and τ is a “stickiness
parameter”, has become the paragon model. Short-ranged interactions can be induced by
the addition into the colloidal suspension of small non-adsorbing components (polymers,
micelles, spheres,. . . ): when two big particles of radius R approach until the center-to-
center distance is smaller than the typical size of the added component, this will be ejected
from the overlap volume. The pressure unbalance generates a net attraction between the
big particles. This kind of forces is commonly called “depletion interactions”. Recently [4]
we investigated the full equation of state of a system of AHS, in which interactions are
induced by the addition of a non-ionic surfactant (Triton X100), in order to inspect fine
details of the phase diagram, and to provide quantitative information on the structure
and elastic properties of gel phases. It is useful briefly recall some qualitative observation
made in this latter study. Depending on the micellar volume fraction Φs, the samples
display two radically different kinds of behavior. While for Φs < 0.105 they remain
transparent and sediment very slow, samples with higher surfactant concentration show
a sudden increase of turbidity, witnessing strong fluctuations of concentration, followed
by rapid settling, leading in a few hour to the formation of a dense sediment. The
transition between these two different regimes is abrupt and reversible: An increase
by less than ΔΦs = 0.007 in micellar volume fraction leads a transparent sample to
become turbid and sediment fast. The Noro-Frenkel generalized law of corresponding
states [5], stating that all short-ranged spherically symmetric attractive potentials are
characterized by the same thermodynamics properties if compared at the same reduced
density and virial coefficient, was then used to map the experimental phase boundaries
onto the phase diagram predicted for short-ranged depletion potential with the very small
range set by the micelle/particle size ratio. The most noticeable feature of the results
presented in [4] is that all rapidly settling samples are placed within, or very close to,
the metastable liquid-liquid (L-L) separation gap in the theoretical phase diagram [6],
suggesting to regard gelation as an arrested phase-separation process. Fast sedimentation
can be therefore regarded as a basic clue for locating the L-L phase separation boundary,
a crucial observation that will be a guiding line for the present paper. Triton micelles
behave as an ideal gas and do not interact. In this case it was possible to derive an exact
expression for the force, the celebrated Asakura-Oosawa [7] formula, which is rightly
considered a paradigmatic description of the depletion interaction. However, in real
systems the depletion agent, that is the fluid hosting the colloidal particles, is often
far from being an ideal gas and in those cases the Asakura-Oosawa formula is a crude
approximation. This opens up a totally new question, which we could summarize as
follows: What is the behavior of a colloidal suspensions in an effective solvent, made of
a solution of much smaller colloids which have a generic self-interactions? From the
theoretical point of view, this amounts to investigating whether the classical McMillan-
Mayer approach to the potential of the mean force can be extended to yield general ideas
on the phase behavior of mesoscopic particles in such a structured solvent. Sticking
to depletion interactions, the problem is far from being trivial. Consider for instance
only repulsive self-interactions of the depletant. On the one hand, its osmotic pressure
increases, so that depletion forces on the colloids become stronger. On the other, however,
the depletant gets structured, and this has been shown to reduce depletion. According to
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urban myth, at least for binary Hard Spheres, this second contribution eventually wins,
so that depletion is weaker than in the ideal case. But the theoretical results have been
grossly overlooked. A more careful analysis shows that there is a subtle effect of the
depletant/particle size ratio: in fact, for very small size, the opposite is true. When the
repulsive self-interactions are longer range, as for electrostatic forces, the osmotic effect
becomes even more dominant [8]. In the next section indeed, we give ample evidence
that depletion interactions using a charged depletant (SDS) becomes much stronger,
to the extent that even a tiny amount of surfactant is sufficient to phase-separate the
colloids. An even more interesting question concerns the effect of strong attractive forces
between the depletant. Here the depletant osmotic pressure decreases, so that one should
get weaker depletion. But structuring effects play a strongly conflicting role, increasing
in this case depletion forces. As is well known, the surfactant micelles of a non-ionic
surfactant, which at room temperature behave almost as an ideal gas, show an inverted
consolution curve with water at high (but accessible) T . In the second part of the
paper we demonstrate that if one then add colloids, the amount of surfactant needed
to phase-separate the colloids strongly decreases by increasing T and approaching the
surfactant-water consolution curve: this trend is strongly correlated with the growth of
the correlation length of the micellar solution [9-11]. The idea that fluctuations between
two macroscopic bodies can induce a force of attraction (or repulsion) between them
originates from the work of Casimir [12] who recognized that two parallel metallic plates
placed a distance L apart in vacuum experience a force of attraction due to the zero-point
fluctuations of the electromagnetic field. Thirty years ago, Fisher and de Gennes [13]
demonstrated using the scaling theory that, if the fluid confined between the dielectric
plates exhibits long-ranged critical fluctuations, then an additional critical Casimir force
must exist. Our experimental result and its theoretical interpretation strongly suggest
that a deep relation exists between depletion forces and the critical Casimir effect. In
fact, depletion merges continuously into critical Casimir effect, fully sharing its scaling
properties and allowing to speak of “Critical Depletion” [9].

2. – Charged depletant

The aim of this section is highlighting and quantitatively accounting for additional de-
pletion attraction that is actually brought in by repulsive Coulomb interactions between
the components. A more detailed discussion can be found in [8].

2.1. Materials and experimental methods

Colloidal system. The colloids we have used in both the experiments described in the
present paper are aqueous suspensions of HyflonTM MFA, a copolymer of tetrafluoroethy-
lene (TFE) and perfluoromethylvinylether (PF-MVE) produced by Solvay-Solexis (Bol-
late, Italy). While pure polytetrafluoroethylene (PFTE) is almost a fully crystalline
polymer, usually forming by emulsion polymerization polydisperse rod-shaped particles,
the addition of PF-MVE, bestowing a larger flexibility to the chains, yields spherical,
monodisperse particles, which can be envisioned as a polycrystalline assembly embedded
into an amorphous matrix [14]. For the particle we have used to investigate charged
depletant effects, Dynamic Light Scattering (DLS) yields an average radius of 90 nm
and a polydispersity of about 4%. The surface of MFA latex particles bears a negative
charge, mostly due to the to the presence of trapped fluorinated surfactant used in the
emulsion polymerization and, possibly, to added ionic stabilizers. In all what follows,
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Fig. 1. – Phase transition curve of MFA with SDS depletant as a function of added salt (full
dots). The curves correspond to theoretical predictions, obtained from the mapping onto the
Baxter model, corresponding to two different values of the critical τ . The data are plotted in
the double-log inset as a function of λDH , with a power-law fit.

therefore, we shall assume the bare MFA particle charge is high enough to fully satisfy
the requirements for charge renormalization.

Depletion agent . The experiments have been performed using as a depletion agent sodium
dodecyl sulfate (SDS). The physical properties of aqueous solutions of SDS, a simple an-
ionic surfactant with molecular weight Msds = 288 Da, have been extensively investigated
in the past [15]. Beyond a critical micellar concentration (cmc) that depends on the ionic
strength I (decreasing from 8.3 mM in pure water to 0.9 mM for I = 200 mM), SDS forms
globular micelles with a pretty constant hydrodynamic radius a � 2.5 nm. Their aggrega-
tion number N , and therefore structural charge Z, is around 80–110, varying by no more
than ±10% up to an ionic strength I � 0.4 M, beyond which the micellar morphology
becomes elongated and N grows consistently.

2.2. Phase separation line. – Aiming to unravel phase separation effects in the presence
of a charged depletant, we consider the dependence of the minimal micellar volume
fraction cmin

s required to induce rapid phase separation as a function of the solution
ionic strength, varied by the addition of NaCl. Samples were prepared at several different
values of the salt concentration, at fixed particle volume fraction Φ = 0.02. The value of
cmin
s was fixed by visually checking for rapid sedimentation effects, which indicates those

samples lying within the unstable region. Actually, the critical micellar concentration in
the absence of added salt sets a lower limit of about 8 mM for the minimum ionic strength
that can be reached in the experiments, limiting therefore the Debye-Hückel length to a
value λDH < 3.5 nm, which is comparable to the size of a SDS micelle, but much smaller
than the colloid radius. We assume that the surfactant concentration in micellar form cs

(in g/l) is given by the difference between the amount of the surfactant actually added to
the solvent and the (ionic strength dependent) critical micelle concentration (cmc). The
experimental results, presented in fig. 1, show that all samples displayed a sharp value for
cmin
s , even at the lowest accessible ionic strength, which however decreases by decreasing
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the salt concentration, witnessing a consistent increase of depletion efficiency at low ionic
strength. The inset show also that, at least within this ionic strength range, cmin

s displays
an approximately power-law trend with the Debye screening length, cmin

s = aλ−b
DH , with

a phenomenological exponent which is around b � 0.6.
In the following we attempt an interpretation of the experimental results in the frame-

work of classical statistical mechanics and liquid state theory, starting from a microscopic
description of the colloidal suspension.

2.3. Theoretical analysis. – We consider a homogeneous dispersion of colloids and
micelles in an electrolyte at room temperature. Here and in the following the subscripts
b and s will denote quantities related to the colloids (the big species) and the micelles
(the small species), respectively, whereas the Greek indices μ and ν will be used to refer
either species.

Both the colloids and the micelles are represented as charged hard spherical particles,
neglecting dispersion forces, with diameter σμ, radius aμ = σμ/2 and number density
nμ carrying a net negative charge −Zμe, e being the elementary charge. Electrostatic
interactions in colloidal dispersions are deeply affected by screening from mobile charges
in the solution, which include: positive and negative ions resulting from the dissolution of
a salt of bulk molar concentration csalt; the cmc contribution due to free SDS surfactant
molecules; positive counterions released by the colloids and the micelles. In the following
we will neglect the colloid counterions because their contribution is always negligible at
the concentrations we investigated. The relevant parameter governing the amount of
mobile charges is the ionic strength I = csalt + cmc + Zeff

s ns

2NA
, where NA is the Avogadro

number and Zeff
s is the number of mobile counterions released by each micelle.

A key quantity characterizing the screening cloud at a surface is the inverse Debye
length κ =

√
8π lBNAI, β is the inverse thermal energy and ε is the relative permittivity

of the solvent. In the parameter range of our experiments the Debye length is the smallest
length-scale in our problem. In order to calculate an effective colloid-colloid interaction
mediated by the micelles we have to define the micelle-micelle (vss(r)), colloid-colloid
(vbb(r)) and micelle-colloid (vbs(r)) direct interaction potentials:

– We will therefore model the micelles through a purely repulsive interaction vss(r)
comprising hard sphere exclusion and Coulomb repulsion, represented in the
Yukawa form:

(1) βvDH(r) =
a

2lB
y2

s

exp[−κ(r − σ)]
r/σ

,

where the amplitude ys provides the effective surface potential.

– The electrostatic energy of interaction of two colloidal particles, whose radii are
much larger than the screening length, is usually modeled within Derjaguin ap-
proximation [16]:

(2) βvbb(r) =
ab

2lB
y2

b log
[
1 + e−κ(r−σb)

]
,

in the physically accessible region r > σb, where yb ∼ 4.
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– The colloid-micelle interaction is described by the Hogg-Healy-Fuerstenau form [17]:

(3) βvbs(h) =
1

4lB

abas

ab + as + h

[
4ybys atanh(e−κh) − (y2

b + y2
s) log

(
1 − e−2κh

) ]
.

Once defined vμν(r), a common way to obtain the effective potential is to calculate
the free energy of the small particles at fixed configuration of the big ones. Here we
employ an approach based on integral equations from the theory of simple liquids. It is
known that in a homogeneous one-component fluid the zero density limit of the radial
distribution function equals the Boltzmann factor of the two-body term in the interaction
potential [18]. The same property holds in the mixture:

(4) lim
nb→0

gbb(r;nb, zs) = exp
[
−β[vbb(r) + w(2)(r; z2)]

]
.= exp[−βV eff(r; zs)],

where gbb is the radial distribution function of the large particles and we defined V eff

as the two-body term of the effective potential. Thus, the latter is known once the
correlations between the particles in the mixture are calculated at the pair level.

To obtain the correlations, we consider the Ornstein-Zernike relations for the mix-
ture [18] in the limit of vanishing density of the large particles:

hss(r) = css(r) + nr
s [css ∗ hss](r),(5a)

hbs(r) = cbs(r) + nr
s [cbs ∗ hss](r),(5b)

hbb(r) = cbb(r) + nr
s [cbs ∗ hsb](r);(5c)

here, hμν = gμν − 1 and cμν are the sets of total and direct correlation functions, the
symbol ∗ denotes the three-dimensional product of convolution and nr

s is the so-called
reservoir density of the small particles, defined as the density of particles in a system
comprising the small species alone in osmotic equilibrium with the mixture at a given
composition.We supplement the Ornstein-Zernike equations (5) with the hypernetted-
chain (HNC) closure [18]:

(6) log gμν(r) = −βvμν(r) + hμν(r) − cμν(r).

Once the effective pair potential V eff is calculated, the thermodynamic properties of
the effective one-component fluid comprising the big particles alone can be obtained by
several methods. When dealing with short-ranged interactions in colloidal systems, the
Noro-Frenkel extended law of corresponding states is usually invoked: the compress-
ibility factor is a universal function of the reduced temperature, density and of the
reduced second virial coefficient B∗

2 , but is independent of the specific shape of the po-
tential [5]. Thus, the properties of the system of interest can be mapped onto those of
an adhesive-hard-sphere fluid with a stickiness parameter τ corresponding to the given
B∗

2 [4]. Values of τ close to zero signal strong adhesion between the big particles, whereas
large values point out a behavior akin to hard spheres. τ is defined in terms of the second
virial coefficient of the colloids as τ = 1/(4−B∗

2). The sticky sphere model has been ex-
tensively investigated in the past [6] and its phase diagram is by now well known leading,
via the Noro-Frenkel scaling, to a simple way to investigate the thermodynamic proper-
ties of this class of systems. If the experimentally observed aggregation of the colloidal
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particles is interpreted as a thermodynamic instability driven by the divergence of the
isothermal compressibility, then the experimental transition points in the (csalt, cs)-plane
shown in fig. 1 should correspond to the spinodal boundary at a fixed colloid volume
fraction Φb = 0.02. From the Monte Carlo simulations in ref. [6] we can approximately
locate the transition point at a stickiness parameter τ in the range 0.04–0.08. The depen-
dence of τ on the physically accessible quantities (csalt, cs) has been evaluated from our
effective colloid potential at different ionic strengths and surfactant concentrations. The
results of the predicted transition line, evaluated for τ = 0.02 and τ = 0.04, are shown in
fig. 1 together with the experimental data. Due to the uncertainties in the parameters
and the simplifications of the adopted model only a semi-quantitative agreement can
be obtained. However, the experimentally observed trend is clearly present also in our
model which in fact displays an enhanced tendency towards colloid aggregation when the
electrostatic repulsion is poorly screened (at low ionic strength).

3. – Critical depletion

In this section, by investigating depletion interactions in colloidal suspensions charac-
terized by a depletant with a miscibility gap, we show that Depletion Force and colloid
phase separation close to a critical demixing point of the solvent (Critical Casimir Force)
are two effects intimately connected. A more detailed analysis can be found in [9, 10].

3.1. Materials and experimental methods

Depletion agent . As depletion agent, we have used C12E8 (octaethylene glycol monodo-
decyl ether), a nonionic surfactant, with molecular weight Mw = 538.75 g/mol and a
density very close to 1 g/cm3, belonging to the class of ethoxylate alcohols CmEn, where
m is the number of carbon atoms in the hydrophobic chain, and n is the number of
ethoxylate groups constituting the hydrophilic head group. Beyond its critical micel-
lar concentration cmc = 0.038 g/l (� 71 μM, [19]), C12E8 forms at room temperature
globular micelles with a radius a = 3.4 nm and an aggregation number N � 95–100 as
determined by both light [19] and neutron [20] scattering. Experiments are performed
in the presence of 250 mM of NaCl in order to screen electrostatic interactions. As many
nonionic surfactants, C12E8 shows an inverted consolution gap with water, with a critical
concentration cc � 1.8% and a lower critical solution temperature that is Tc � 64.5 ◦C.
Thus, compared to simple critical mixtures, the critical concentration of C12E8 is very
low and the critical (osmotic) pressure is vanishingly small. Approaching the critical
point amounts to inducing effective attractive interactions between the C12E8 micelles,
which can be detected and quantified by light scattering. Hence, C12E8 can no longer be
regarded as an ideal depletant, and the simple Asakura-Oosawa model is not expected
to yield meaningful results.

3.2. Phase separation line. – We may then inquire, as in the previous section, whether
and how the minimum amount of surfactant cs needed to induce particle phase separation
depends on T . Figure 2 shows that cs noticeably decreases by increasing T , approach-
ing the value cs � cc for T → Tc. The transition points are interpreted as signature
of the crossing of the G-L coexistence line in the colloid phase diagram. According to
the Noro-Frenkel principle [5] of corresponding states, these points are then associated
to the same value B∗

2 � −6 for the dimensionless second virial coefficient of the par-
ticle effective interaction. Close to Tc the interactions between C12E8 micelles become
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Fig. 2. – Minimum amount of surfactant cs needed to induce phase separation for aqueous MFA
suspensions (full dots). The consolution curve of the surfactant solution is shown by open dots.
Full squares represent maxima of the isothermal susceptibility. The inset shows the quantity Πξ3

plotted vs. the reduced temperature, together with its average value (full line) and 1 standard
deviation bounds (dashed lines).

strongly attractive, thus their osmotic pressure Π(cs, Ts) is much smaller than for an
ideal solution at the same concentration. Since in the simple Asakura-Oosawa picture
the strength of the depletion attractive potential is proportional to Π(cs, Ts), this sensible
decrease in cs must be attributed to noticeable nonideality effect, and, in particular, to
the growth of critical fluctuations. The osmotic pressure Π(cs, Ts) of the (particle-free)
surfactant solution at those values (cs, Ts) corresponding to the state points in fig. 2
can be obtained by integrating the osmotic isothermal compressibility, measured up to
cs by light scattering. Data show that, sufficiently close to Tc, the difference cs − cc

approximately behaves as a power law cs − cc ∝ Π(cs, Ts)2/3 [9, 10], having neglected
the extremely small contribution coming from the osmotic pressure at the critical point.
Moreover, within the critical region all physical properties should solely depend on the
diverging correlation length ξ which can be readily evaluated from the diffusion constant
D measured by dynamic light scattering as ξ = kBT/6πηD, where η is the viscosity
of the solution. Exactly at state point (cs, Ts) data shows that cs − cc also scales as a
power law cs − cc ∝ ξ(cs, Ts)−1.8 [9, 10]. The two empirical trends we found imply that,
along the transition line, the product Πξ3 should depend very weakly on temperature.
The inset in fig. 2 shows that this is actually the case in the whole temperature range
investigated.

3.3. Theoretical analysis. – To rationalize these evidences, a basic picture of depletion
effects in correlated fluids is therefore required. Following the McMillan-Mayer approach,
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we will model the depletant as a simple fluid with some solvent mediated interaction
identifying pressure and packing fraction of this fluid with the osmotic pressure Π and the
concentration cs of the original surfactant solution. We will employ Density Functional
Theory (DFT) [18] to obtain a formally exact expression for the effective interaction. If
we denote by A[n(r)] the Helmholtz free energy of the fluid at fixed density profile n(r),
we define the grand free energy functional Ω[n(r)] as

(7) Ω[n(r)] = A[n(r)] +
∫

dr {Φ(r) − μ} n(r)

by including the bulk fluid chemical potential μ and the (external) wall-fluid interaction
Φ(r) = w(z − h

2 ) + w(z + h
2 ). According to the Hohenberg-Kohn theorem [18] the

equilibrium profile n(r) is determined by the extremum condition δΩ[n(r)]/δn(r) = 0.
To provide a quantitative evaluation of the effective depletion force F (h) we must now

introduce some approximation in this formally exact theoretical framework. In primis
we adopt the quasi-planar Derjaguin approximation, which is valid provided that the
distance h between the two colloid surfaces S is much smaller than the colloid radius R.
With this approximation the problem becomes monodimensional. A simple density func-
tional able to capture both the AO low density, uncorrelated limit and the scaling form
of the critical Casimir effect is provided by the local potential approximation. To discuss
the long-range tails of the effective interaction, we adopt an expression for the density
functional A[n(z)] appropriate for describing long-wavelength density fluctuations [21,22]:

(8) A[n(z)] =
∫

dz

[
b

2

∣∣∣∣dn(z)
dz

∣∣∣∣
2

+ f(n(z))

]
.

This form corresponds to a local density approximation plus gradient corrections, where
the parameter b measures the stiffness of the fluid with respect to density fluctuations.
In a critical fluid, long-range fluctuations yield a scaling form for the singular part of
the free-energy density: f(n) ∝ ε2−αΨ(x), where x = δn/εβ is a scaling variable com-
bining the deviation from the critical density (δn) and temperature (ε), while Ψ(x) is a
universal scaling function and α, β are critical exponents, respectively, known with high
accuracy [23]. The precise definition of the scaling fields (δn, ε) in fluids is however rather
subtle and involves field mixing: while in the nearest-neighbor lattice gas model δn and ε
have the usual meaning of reduced density and temperature, respectively, leading to a co-
existence curve fully symmetrical with respect to the critical density, in a fluid the order
parameter δn is generally a linear combination of reduced density and temperature. For
these reasons in real fluids, and markedly in micellar suspensions, the binodal displays
a strong asymmetry between the vapor and the liquid branch and the line x = 0 is con-
veniently identified as the locus of maxima of the isothermal susceptibility χ = ∂n/∂μ.
A more detailed description of the theory can be find in [10]. In the critical region our
theory leads to the scaling form for the effective force per unit surface of the two walls:

(9) F (h) =
kBT

h3
θ(x;h1/νε).

The ratio Fh3/kBT is dimensionless, and in fact universal: the DFT approach, commonly
adopted in colloid science, leads to the same scaling form predicted for the critical Casimir
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effect showing that depletion forces and critical Casimir effect have a common physical
origin. Our approach allows to express F (h) properties of a critical fluid also away
from the critical isochore, where simulations have not been performed yet. Our results
suggests that the Casimir force is small at x < 0 and quickly grows as soon as x > 0.
Therefore, we expect the line x = 0, which we have identified with locus of maxima of the
isothermal susceptibility, to mark the transition between a region where Casimir forces
are negligible (x < 0) and a regime where they become relevant (x > 0). This prediction
is confirmed by our experimental data: fig. 2 shows that our transition line is close to
the locus of the maxima of the isothermal susceptibility, experimentally measured by
light scattering (scattering intensity is proportional to ξ). Along this path, the quantity
(Π−Πc)ξ3/kBT of the surfactant solution is known to be constant, universal and equal
to ∼ 0.1 [23], in remarkable agreement with the data in inset of fig. 2.
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