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Summary. — We studied numerically the structure of angular distributions of
Cherenkov radiation (ChR) from moderately relativistic heavy ions (RHI) taking
into account the decrease of the ion velocity due to stopping in the radiator. The
calculations clearly show that both the width and fine structure of the ChR angular
distribution in the vicinity of the Cherenkov cone are remarkably different for iso-
topes with different masses, at equal initial relativistic factor (velocity) of isotopes.
This stopping and isotopic effects in ChR can be observed using RICH detectors of
RHI.

PACS 61.85.+p – Channeling phenomena (blocking, energy loss, etc.).
PACS 78.70.-g – Interactions of particles and radiation with matter.
PACS 41.60.Bq – Cherenkov radiation.

1. – Introduction

Tamm-Frank’s theory [1] describes ChR of a particle that moves rectilinearly with a
constant velocity v in a medium of refractive index n larger than v/c (c is the speed of
light in vacuum). This theory neglects both the bending of the particle trajectory (due
to multiple scattering) and the decrease of its velocity (due to ionization energy loss).
Dedrick [2] was the first who has taken into account the influence of the particle-radiator
interaction on the angular density of the particle’s ChR. He examined the influence of
multiple scattering ignoring the slowing-down effect.

Kuzmin and Tarasov [3] considered another limiting case where the multiple scattering
effect is insignificant, that is the slowing-down effect playing a key role in forming the
angular distribution of ChR. It occurs when relativistic heavy ions (Z,A � 1) cross
thin radiators. They ignored the fluctuations of ionization energy loss and the trajectory
bending effect due to multiple scattering and studied the angular distribution of ChR
emitted by an ion moving rectilinearly but at a decreasing velocity. This assumption

(∗) E-mail: Bov@tpu.ru
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allowed them to obtain the formula for the angular density of ChR when taking into
account the slowing down in the thin radiator. The thin radiator approximation was
used in [3] to obtain a simple expression for the velocity decrease with depth penetration
x due to ionization energy loss.

Thus, the width of ChR radiation angular distribution in the vicinity of the Cherenkov
cone Δϑ becomes proportional both to the stopping power in the radiator and to the
radiator thickness L. Within Δϑ, the authors of ref. [3] predict the diffraction-like
structure in the angular distribution, with a diffraction parameter (the distance between
maxima) depending on the emission wavelength, the initial velocity and the stopping
power dE/dx of the radiator.

In order to avoid the approximations made in [3] for the thin radiator, recently a
new approach was developed [4], which uses the popular computer code SRIM’06 [5]
to calculate the ion velocity depending on its penetration depth in the radiator. We
subsequently substituted it into the formula of classical electrodynamics for the spectral-
angular distribution of radiation from a particle moving in a medium along a trajectory
r(t) taking into account the slowing-down due to ionization energy loss in the radiator.
New suggested method allowed investigating in more detail dependences of the ChR
angular distributions on the square of the ion charge, on the radiator thickness, on the
emission wavelength and on the refractive index of the radiator material.

In the present work, we pay attention to another peculiarity of ChR from RHI, which
we call “isotopic effect”, i.e. ChR from RHI with the same charges but different masses,
which is connected with a slight difference in stopping in a radiator.

2. – RHI stopping: influence on ChR

The general expression for the intensity of the radiation from RHI with a charge Ze
penetrating through a non-magnetic dielectric medium characterized by the dielectric
function ε = ε(ω) may be written in the form (see, e.g., [6])
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In the case of rectilinear motion, r(t) = vt, therefore,
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The integral in the above expression is the Dirac δ-function that means
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Here, ϑ is the angle between the emission direction n and the velocity vector v, and
β = v/c. The appearance of δ-function in expression (3) is due to infinite penetration
time with a constant velocity and leads to infinite spectral density of the radiation emitted
at the Cherenkov angle. If one takes into account the finite time 2T of RHI penetration
through the radiator, then the divergence disappears:
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Thus, the spectral-angular distribution of ChR (Tamm-Frank distribution) from RHI
in the finite-size radiator is defined by the following equations:
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The width ΔϑTF = λ/L
√

ε of the Tamm-Frank distribution (concentrated in the
vicinity of the Cherenkov cone) is inversely proportional to the radiator thickness L.
Therefore, at large L there appears a very sharp maximum at the Cherenkov angle
ϑ = ϑC defined by cos ϑC = 1/β

√
ε.

In the case of RHI penetrating through a radiator, we may assume that the multiple
scattering effect is negligible, i.e. the direction of RHI velocity v/v = const but its
magnitude decreases due to ionization energy loss, i.e. depends on penetration depth x,
v = v(x). As in [3], we can replace the integration over time in eq. (2) by the integration
over the trajectory, by making use of the substitution

(7) t(x) =
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.

After some algebra we derive the following expression for the spectral-angular distri-
bution of ChR from RHI, taking into account the stopping in the radiator:
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According to eq. (8), the angular distribution of ChR in the vicinity of the Cherenkov
angle is characterized by the new distribution function f (θ, ω). The analytical form of
this function was obtained in ref. [3] using the thin radiator approximation, which allows
to write up a simple expression for the inverse velocity entering eq. (8):
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where v0 is the initial velocity of an ion. In eq. (9), the velocity gradient is expressed
through the stopping power dE/dx of the radiator:
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Here, p,E, γ are the momentum, energy and relativistic factor of the ion.



106 O. V. BOGDANOV and YU. L. PIVOVAROV

The substitution of (10) in eq. (8) leads to new spectral-angular distribution of ChR
(Kuzmin-Tarasov) from RHI in the finite-size radiator:

fKT (ϑ, ω) =
1

2Δϑ sin ϑ0

{
[C (u1) − C (u0)]

2 + [S (u1) − S (u0)]
2
}

.

Here, C(u), S(u) are the Fresnel integrals and u1, u0 are the functions of initial velocity,
refractive index, radiation wavelength, radiator thickness and stopping power of the
radiator [3].

Thus, the width of ChR angular distribution Δϑ now becomes proportional to the
stopping power S of the radiator and to the radiator thickness L. Since the aperture of
the Cherenkov emission cone is fixed by the particle velocity, cos ϑC = c/v

√
ε = 1/β

√
ε,

it is clear that one may expect an additional broadening Δϑ of the angular distribution,
the value of which is determined approximately by the initial and final velocities of the
particle. Within Δϑ, the authors of ref. [3] predicted the diffraction-like structure in
the angular distribution, with a diffraction parameter (the distance between maxima)
depending on the emission wavelength, the initial velocity and the stopping power S of
the radiator.

3. – ChR from isotopes taking account of stopping in radiator

Let us start with the Bethe-Bloch formula for stopping power (see, e.g., [7]):

(11) −dE

dx
= 4πNAr2

emec
2Z2 Zt

A

1
β2

[
ln

Tmax

I
− β2 − δ

2

]
.

The usual meaning is that the stopping of relativistic heavy particles is defined only
by the square of projectile charge and its kinetic energy. Thus, the isotopes with initially
equal velocities (relativistic factors) should have equal energy loss in the radiator. This
is indeed true, but in the problem we are concerned with, i.e. ChR, the key role plays
the change in velocity but not the change in the energy.

Let us consider, for example, penetration of two isotopes with equal charge Ze and
different masses M1,M2 through a thin layer of radiator Δx. Let the isotopes before
the radiator have equal velocities and relativistic factors v0, γ0. After the penetration
through Δx both isotopes loose an equal amount of energy

(12) ΔE1 = ΔE2 = −dE/dx = S (γ0, v0),

Here, the stopping S(γ0, v0) depends on the relativistic factor and velocity before they
pass Δx. Thus, after penetration through Δx the two isotopes will enter the next piece
of radiator with energies

E1(Δx) = E1(0) − ΔE1 = E1(0) − S (γ0, v0) Δx,(13)
E2(Δx) = E2(0) − ΔE2 = E2(0) − S (γ0, v0) Δx.
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Fig. 1. – Dependence of Li isotopes velocities on the penetration depth in a thick LiF radiator.
Initial ion beam energy equals 1000 MeV/u.

As a sequence, new values of their relativistic factors become different :
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Because of γ = 1/
√

1 − β2, one can easily connect the change in relativistic factor with
the corresponding change in velocity, that is Δβ = Δγ/βγ3. Therefore, two isotopes
with initial equal velocities before the piece of radiator, after penetration through this
piece acquire different changes in velocities:
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As a sequence, comparing the change in velocity for two isotopes after penetration
through a thin piece of radiator, we conclude:

(16)
Δβ1

Δβ2
=

M2

M1
.

This means the change in velocity becomes dependent on isotope mass. This change
is more remarkable for light isotopes, e.g., hydrogen, lithium and berillium, when the
masses may differ by a factor of two-three.

So, the two isotopes enter next piece of the radiator with different velocities and will
loose the energy according to their new different stopping powers S(γ1(Δx), v1(Δx)) and
S(γ2(Δx), v2(Δx)). The further calculation of velocity dependent on penetration depth
in the case of the thick radiator is obvious.

The results of exact calculation of lithium isotopes velocities, as a function of the
penetration depth, are presented in fig. 1. In the calculations, the SRIM’06 code [6] was
used to obtain the isotopes stopping powers [6].
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Fig. 2. – The change in the ChR angular distribution from Li isotopes (Z = 3) in the vicinity of
the Cherenkov cone with the increase of the mass number. The emission wavelength λ = 390 nm,
the radiator material is LiF; the radiator thickness L = 0.25 cm; the index of refraction n =

√
ε

depends on λ according to [8]; initial ion beam energy 1000 MeV/u. Here, ϑ = 0 corresponds
to the Cherenkov angle ϑ = ϑC , cos ϑC = 1/βn and positive ϑ values in fact denote emission
angles smaller than ϑC .

To conclude with velocity change due to stopping, one should remark the very weak
dependence on the projectile mass in the original Bethe-Bloch formula for stopping.
Indeed, the maximal energy transferred to the atomic electron of the target by a charged
heavy relativistic particle (RHI in our case) is defined by the equation

(17) Tmax =
2mec

2β2γ2

1 + 2γ (me/M) + (me/M)2
.

Here, γ and βc are relativistic factor and velocity of the projectile particle, M and me

are the RHI and electron mass, respectively. As a sequence, if γ and βc of two isotopes
(masses M1 and M2) are equal, their stopping powers are very slightly different due to
different Tmax. However, this difference is too small and cannot lead to additional change
of angular distributions of ChR from isotopes.

Thus, our next goal is to study how a small difference, eqs. (15), (16) in the velocity
change may influence the angular distributions of the ChR from isotopes. Since the
velocity v(x) enters the phase of the exponential under the integral sign in eq. (8), even
a small variation of v(x) may lead to serious changes of the angular distribution of ChR.

4. – Isotopic effect in angular distributions of ChR: numerical calculations

Based on eq. (8) and SRIM’06 calculations of v(x) as in [4] (taking account of stop-
ping), we studied numerically the ChR angular distributions from RHI with the same
charge Ze, but different masses, i.e. isotopes, at the fixed radiator thickness L and emis-
sion wavelength λ.

We calculated the new distribution function f(ϑ, ω) for three Li isotopes: Li-12 (A =
12), Li-8 (A = 8) and Li-4 (A = 4). The results of calculations of new distribution
function for ChR in the case of lithium isotopes are presented in fig. 2 and clearly show
the remarkable sensitivity of the position of the maximum and its width to the isotope
mass, if the initial velocities before the radiator were equal.
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Indeed, for an isotope with a smaller mass the change of velocity after penetration
through the every next thin piece of the radiator is little bit greater compared to a much
heavier isotope, and as a result, the final velocity at the exit from the radiator is smaller.
As a result, the Cherenkov angle

cos ϑ =
c

vn(λ)

is shifted to smaller values. That means, the center of gravity of new distribution function
is shifted more remarkably in the case of light isotopes, in accordance with numerical
calculations presented in fig. 2.

5. – Conclusion

The calculations of ChR angular distribution from moderately relativistic heavy ions
(isotopes) taking into account their stopping in the radiator have been performed. The
results of calculations show that the angular distribution of ChR from different isotopes
(in the vicinity of the Cherenkov cone) has a complicated fine structure and width which
depends remarkably on the isotope mass, if the initial velocities before entering a radiator
are equal. It is astonishing, but it occurs unless the variations of the isotopes velocities
are very small (see fig. 1).

The experimental studies of predicted stopping + isotopic effect are possible at exist-
ing (GSI, CERN) and future (FAIR) relativistic heavy ion accelerators, especially using
RICH detectors. The measurements of the width of the ChR angular distribution in the
vicinity of the Cherenkov cone may be even considered as a new method to measure the
isotope masses.
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