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Summary. — The condition and specific features of the non-dipole regime of
radiation is discussed in the context of the results of the recent CERN experiment
NA63 on measurement of the radiation power spectrum of 149GeV electrons in thin
tantalum targets. The first observation of a logarithmic dependence of radiation
yield on the target thickness that was done there is the conclusive evidence of the
effect of radiation suppression in a thin layer of matter, which was predicted many
years ago, and which is the direct manifestation of the radiation of a relativistic
electron with non-equilibrium own Coulomb field. The special features of the angular
distribution of the radiation and its polarization in a thin target at non-dipole regime
are proposed for a new experimental study.

PACS 41.60.-m – Radiation by moving charges.
PACS 41.75.Ht – Relativistic electron and positron beams.

1. – Introduction

During last two years the results of recent experimental investigations on the special
features of a relativistic electron bremsstrahlung in a thin target were published [1, 2].
These measurements were done by the international Collaboration NA63 in CERN using
SPS secondary electron beam with energy around 200 GeV. One of the main motives
to carry out this experiment was to make clear the unexpected result of the SLAC
experiment E-146 [3-5] that showed a strange behavior of the radiation spectrum of
25 GeV electrons in a relatively small-thickness target, especially for the gold target with
a thickness of 0.7% of the radiation length [3, 4].

The SLAC experiment E-146 was generally devoted to the verification of the Migdal
quantitative theory of the Landau-Pomeranchuk-Migdal (LPM) effect [6, 7], which de-
scribes the suppression of radiation of relativistic electrons in an amorphous matter due
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to the multiple scattering on atoms in comparison with the predictions of the Bethe-
Heitler theory [8]. The analysis of the data obtained in SLAC experiment E-146 showed
good agreement between the calculations using the Migdal formula (LPM effect) and the
experimental data for relatively thick targets and not very low photon energies. How-
ever, for the case of the gold target with a thickness of 0.7% of the radiation length
there was a significant disagreement between theory and experiment [4]. Such “unex-
pected” behavior of the radiation spectrum at low frequencies was named in [4] as “edge
effect” and firstly they tried to exclude it by subtraction procedure, because “no satisfac-
tory theoretical treatment of this phenomenon” was found for that moment. Actually,
they found out the Ternovskii article [9], in which the Migdal theory of the LPM ef-
fect that developed for the boundless amorphous medium was improved for the finite
target thickness case. However, when they tried to use the Ternovskii formula to de-
scribe the “edge effect”, they obtained the excess of the Bethe-Heitler result [8] instead
of the expected suppression, and they wrote in [3] that this formula gives “unphysical
result”.

The discrepancy observed in SLAC experiment stimulated a new wave of theoretical
investigations of the multiple scattering effect on radiation (see [10-15]). In [10] it was
shown that the deviation from predictions of the Migdal theory observed in [3-5] takes
place when the target thickness t is small in comparison with the coherence length (or
formation zone) of the radiation process lc = 2ε′ε/m2ω [16] (here m and ε are the mass
and initial energy of an electron, ω is the emitted photon energy, ε′ = ε − ω, we use
the system of units: h = c = 1). Exactly this case t � lc was theoretically considered
earlier in [17,18], where the specific effect of the suppression of radiation in a thin layer
of matter was described and discussed in details including its essential distinction from
the LPM and BH regimes of radiation. As was shown in [10], the “unphysical result”
obtained by the Ternovskii formula in [3] is connected with the usage of the asymptotic
formula for a mean-square angle of multiple scattering, which is not applicable for the
SLAC experiment E-146 conditions.

The quantitative theory of the radiation suppression effect in a thin layer of matter
was developed later in [10-15] using different approaches. The results obtained in these
works are in good agreement with the SLAC experimental data for the thin golden target
(see, for example, reviews [4,19]). However, it was the only one explicit manifestation of
this effect during the SLAC experiment E-146 and it took place in a relatively narrow
photon energy region for 25 GeV electrons. That is why it was necessary to carry out
a special experimental investigation of this effect at higher electron energy that gives a
wider photon energy region for observation of this effect and, that is even more important,
to study the thickness dependence of radiation intensity in a thin-target case, which is
fundamentally different from the BH and LPM regime of radiation (see [17-19]).

A new experimental study of the LPM and analogous effects at essentially higher
electron energies (up to ε = 287 GeV) was carried out recently at CERN by the NA63
Collaboration (see [20, 21] and also [1, 2]). The results of measurements for Ir, Ta and
Cu targets with thicknesses about 4% of the radiation length showed good agreement
with the Migdal theory of the LPM effect [20]. The effect of suppression of radiation
in a thin target, named in these papers as the Ternovskii-Shul’ga-Fomin (TSF) effect,
was also considered, however, the photon energy region, in which the TSF effect could
be observed for chosen target thicknesses, was below the energy threshold of measured
photons ωmin = 2 GeV for both experiments [20, 21]. The condition for the successful
observation of the TSF effect in radiation spectrum was realized later in CERN for 206
and 234 GeV electrons radiation in Ta targets of 5–10μm thickness [1].
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Finally, probably the most complicated measurements for realization, but the most
important for demonstration of the TSF effect essence, namely the logarithmic thickness
dependence of radiation intensity in a thin target, were successfully carried out recently
by the CERN NA63 Collaboration [2]. This is the first direct demonstration of the sup-
pression of radiation effect for a relativistic electron with non-equilibrium own Coulomb
field [18, 22]. Note that this effect should have its analog also in QCD at quark-gluon
interaction.

In this paper we present the theoretical analysis and treatment of the recent CERN
experimental results [1, 2]. We also propose to carry out a new experiment to study
the special features of the angular distribution of radiation at the TSF effect conditions,
which were theoretically described in [23]. These features can give a new opportunity
for obtaining a high degree of linear polarization of gamma-quanta that was proposed
in [24].

2. – General conditions and features of LPM and TSF effects

According to the standard Bethe-Hietler theory of bresstrahlung in amorphous matter
the radiation power spectrum dE/dω defined by scattering of the relativistic electron on
target atoms is proportional to the target thickness t [8]:

(1)
dEBH

dω
=

2t

3X0

[(
1 +

ε′2

ε2

)
+

ω2

2ε2

]
,

where X0 is the radiation length of the target material.
Landau and Pomeranchuk showed [6] that if the root-mean-square angle of electron

multiple scattering θms at the distance of the coherence length lc exceeds the character-
istic angle of relativistic particle radiation θ ∼ γ−1, where γ = ε/m is the Lorentz factor
of an electron, then the radiation power spectrum will be suppressed in comparison with
the Bethe-Hietler result given by formula (1).

The root-mean-square angle of electron multiple scattering on atoms in an amorphous
medium at the depth t is inversely proportional to the electron energy ε [8, 19]

(2) θms(t) = (εs/ε)
√

t/X0 [1 + 0.038 ln(t/X0)] , ε2
s = 4π · m2/e2,

thus, the target thickness lγ , at which θms(lγ) = γ−1, does not depend on the electron
energy ε and is determined by the target material only lγ ≈ 0.15%X0.

Thus, the condition of the suppression of radiation due to the multiple scattering
effect θms(lc) > γ−1 (the so-called non-dipole regime of radiation) can be written in the
following form:

(3) lc > lγ .

If t < lγ , i.e. the target thickness t is less than 0.15%X0, the spectral density of radi-
ation for all possible emitted photon energies is defined by the Bethe-Heitler formula (1).

If t > lγ , there are three possible regimes of radiation in this case depending on the
energy region of the emitted photon.

For the relatively hard part of the emitted spectrum, when lc < lγ , we have a dipole
regime of radiation described by the Bethe-Hietler formula (1) too.
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For the non-dipole radiation, lc > lγ , there are two regions, defined by the ratio
between the coherence length lc and the target thickness t, with quite a different behavior
of the radiation spectrum. If the target is thick enough, t � lc > lγ , the Migdal theory [7]
of the LPM effect, which describes the suppression of radiation in a boundless amorphous
medium, is applicable. For a relatively thin target, lc � t > lγ (intermediate case), the
TSF mechanism of radiation [9, 17] is realized.

Condition (3) determines the photon energy region, where the LPM effect is essential:

(4) ω < ωLPM =
ε

1 + εLPM/ε
, εLPM =

e2m2

4π
X0 ≈ 7.7TeV · X0 (cm).

It means that for ultrahigh electron energy (ε � εLPM) the whole radiation spectrum is
suppressed due to the LPM effect: ωLPM ≈ ε.

If ε � εLPM, then ωLPM ≈ ε2/εLPM ≈ 1600γ2/X0.
The Migdal function ΦM [7] describes the deviation of the radiation spectrum for

ω < ωLPM from the Beth-Hietler formula (1) in a relatively soft part of the spectrum
(ω � ε):

(5)
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The upper limit for the emitted photon energy for the TSF regime of radiation ωTSF

follows from the TSF effect condition

(6) lc � t > lγ ,

It is defined by the equality t = lc and can be written in the following form:

(7) ωTFS =
ε

1 + εTSF/ε
, εTSF = m2t/2 ≈ 6.6PeV · t (cm).

If ε � εTSF, one can use a simpler expression for the TSF effect threshold, ωTSF ≈
2γ2/t.

The quantitative theory of the multiple scattering effect on a radiation of the rela-
tivistic electron in a thin layer of matter (the TSF effect) was developed in [10] using
classical formulas for spectral density of radiation and the results of the Bethe-Moliere
theory of multiple scattering [25]. This approach is valid if ω � ε. Namely such a
condition was realized for both experimental investigations at SLAC E-146 [3, 4] and at
CERN NA63 [1,2].

The radiation power spectrum in this case (lc � t) is determined by the formula [11]

(8)
dETSF

dω
=

2e2

π

∫
dθsfBM(θs)

[
2ξ2 + 1

ξ
√

ξ2 + 1
ln(ξ +

√
ξ2 + 1) − 1

]
, ξ = γθs/2,

in which the averaging over the electron multiple scattering in a target is carried out
with the Bethe-Moliere distribution function fBM [25] (for details see [10,19]). At t � lγ
(that means (ξ � 1) formula (8) gives the Bethe-Hietler result with a linear dependence
on the target thickness. In the opposite case, i.e. at t � lγ , formula (8) gives only a
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Fig. 1. – The radiation power spectrum of 150GeV electrons in tantalum target via target
thickness t(% X0). The detailed description of curves is given in text.

logarithmic increase of the radiation power spectral density with increasing the target
thickness.

Such a strange behavior of the radiation power (the scattering angle still increases
linearly with thickness, but radiation does not) can be explained by the relativistic delay
effect during regeneration of the own Coulomb field of the relativistic electron after its
scattering on a large angle θs > γ−1, and it can be treated as a radiation of the “half-bare”
electron, i.e. the electron with non-equilibrium own Coulomb field (see [18,19,22] for de-
tailed discussion). This logarithmic behavior will be changed to the linear one again when
the target thickness reaches the value of coherence length for the given photon energy ω.

The quantum treatment of the TSF effects was done in [11-15] using different ap-
proaches and it became important for ultrahigh electron energy (ε � εTSF), when
ωTSF ≈ ε and the whole radiation spectrum is suppressed due to the TSF effect.

There are two additional factors that have an essential influence on the radiation
process in matter, namely, the dielectric suppression (or the Ter-Mikaelyan effect [16])
and the transition radiation from the target bounds [5, 16]. Both these effects could be
neglected, if we consider photons energies higher than ω0 = γωp, where ωp is the plasma
frequency [16]. For tantalum target and the electron beam energy ε = 150 GeV this
threshold is about ω0 ≈ 25 MeV.

The qualitative difference between the different regimes of radiation in amorphous
matter, namely the BH, LPM and TSF regimes and their consequent changing clearly
demonstrates the thickness dependence of the radiation power spectrum dE/dω. The
results of theoretical calculations of such dependence are presented in fig. 1.

For t < lγ , i.e. when the target thickness t is so small that the multiple scattering of
relativistic electrons in target is not enough to fulfill condition (3), the radiation process
has a dipole character and the radiation power spectrum is described by the Bethe-Hietler
formula (1). The soft part of the Bethe-Hietler spectrum (ω � ε) does not depend on
ω and is described by a very simple formula, dEBH/dω = 4t/3X0. The corresponding
curve is presented in fig. 1 by the dashed straight line “BH”.

With increasing the target thickness the condition t = lγ could be fulfilled, and at
this point the dipole regime of radiation is changed to the non-dipole one that leads
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Fig. 2. – The radiation power per unit length for 149GeV electron radiation in tantalum target
via target thickness t (%X0). A detailed description of the curves is given in the text.

to suppression of radiation comparing with the Bethe-Hietler formula predictions. For
relatively soft photons, for which lc � t, the radiation power for this part of radiation
spectrum is determined by formula (8) that means the TSF regime of radiation with a
logarithmic dependence on the target thickness t (solid line “TSF” in fig. 1). As follows
from eq. (8) dETSF/dω does not depend on the emitted photon energy ω, however, the
validity condition of the TSF regime (6) does. It means that for different ωn the transition
from the TSF to the LPM regime of radiation takes place at different values of target
thickness tn = lc(ωn). In fig. 1 there are three such points marked by arrows for different
photon energies ωn, namely ω1 = 150, ω2 = 350 and ω3 = 800 MeV. There are also three
different dot-dashed lines “LPM”, which are calculated using the Migdal formula (5) for
these values of photon energy respectively. Thus, changing the target thickness one can
consequently observe three different mechanisms of radiation of relativistic electron in
the amorphous target such as the BH, TSF and LPM.

The first experimental investigation of the thickness dependence transformation from
the linear regime (BH) via the logarithmic one (TSF) to the linear (LPM) one again
was recently done in CERN by the NA63 Collaboration [2]. In spite of all difficulties
connected with a very complicated experimental installation and by operating with a set
of very thin targets of several micrometers thickness, this experiment gave a conclusive
proof of the suppression effect of relativistic electron radiation in a thin layer of matter
predicted many years ago [9,17] and per se it gave the unique demonstration of the space-
time evolution of the radiation process in matter as an example of relativistic electron
with non-equilibrium own Coulomb field [18,19,22].

The comparison of experimental data with the results of calculations using different
approaches represented in [1, 2] shows a not only qualitative, but also quantitative good
agreement. In this short paper we present the comparison of the results of our calculation
with the experimental data [2] only for two values of the emitted photon energy, ω = 347
and 795 MeV (see fig. 2). Following [2] we present here the radiation power spectrum per
unit length, i.e. dE/dω multiplied by X0/t. In these units the linear dependence of the
radiation power spectrum for the BH (dot-dashed line) and LPM (dashed line) regimes
of radiation are the constants (see fig. 2). The curve TSF shows the logarithmic behavior
of the radiation power spectrum in the intermediate region lc > t > lγ for a given ω.

For numerical calculations we used the original Fortran code based on the same formu-
las as the calculations of the SF curves presented in figures in [1,2]. Following [2] we took
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into account the multiphoton effect by corresponding normalization on the BH radiation
spectrum. The results of our calculations give a little excess (about 10%) over the results
presented in [1, 2] by SF curves in all figures, thereby they show good agreement with
experimental data (see, for example, fig. 2). The essential discrepancy observed around
the point t = lc is easily explainable by the fact that the Migdal theory of the LPM effect
is applicable at t � lc, whereas eq. (8) for the TSF regime of radiation is derived for
t � lc. In the intermediate region (2lc > t > lc/2) we have a smooth transition between
these two regimes.

3. – Angular distribution and polarization of radiation in the non-dipole
regime in a crystal

As was shown in [23], the non-dipole regime of radiation changes essentially not only
the spectrum of emitted gamma quanta, but also their angular distribution. In [24] it
was proposed to use special features of angular characteristics of non-dipole coherent
radiation in a thin crystal for production of intensive photon beams with high degree of
linear polarization.

This idea is based on the fact that the non-dipole regime of radiation, when the
scattering angle becomes larger than the characteristic angle of radiation of a relativistic
electron γ−1, gives the possibility to avoid a mixture of the radiation emitted under
different (greater than γ−1) angles. Using photon collimators with angular width about
γ−1 one can organize the space-angular separation of photons emitted by electrons that
were scattered in essentially different directions, for example, perpendicular ones. To
realize the non-dipole regime of radiation a high energy of the electron beam is necessary.
However, it means that very narrow photon collimators should be used for this purpose:
for the electron energy ε = 150 GeV the angle width of the collimator should be about
3 μrad. So, it is necessary to find the compromise condition for realization of this idea.

To decrease the minimal electron energy for the non-dipole regime radiation is possible
by using the coherent effect at relativistic electron scattering on atomic chains along
the crystallographic axis (the so-called “doughnut scattering effect”, see i.e. [19]). The
mean-square angle of multiple scattering in this case can exceed essentially the analogous
parameter for amorphous matter [26]. This effect is stronger if nuclear charge of the
crystal material is higher, so, the best candidate for the crystal converter would be a
tungsten monocrystal.

On the basis of the theoretical approach explained in details in [24] we have carried
out the calculations of the angular distributions and polarization of radiation by 3.5 GeV
electrons incident on a tungsten crystal at the angle ψ = ψL to the axis 〈111〉 (where ψL is
the Lindhard angle [27]). In this case θms ≈ ψL = 0.6 mrad and the non-dipole parameter
is γθms ≈ 4. The multiple scattering of electrons on crystal atoms was simulated using
the binary collision model that makes it possible to take into account both coherent and
incoherent scattering on lattice atoms [24]. The angular distribution of radiation and
polarization were calculated as the sum of the value from each scattered electron using
the scheme described in details in [24]. The results of these calculations are presented in
fig. 3.

The left part of fig. 3 presents the angular distribution of corresponding spectral-
angular radiation density d2E/dωdo of emitted photons. The right part of fig. 3 presents
the angular distribution of the linear polarization degree of emitted photons from the
100% vertically polarized photons (P = −1) to the 100% horizontal polarization (P = 1).
All angles in fig. 3 are measured in units γ−1.
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Fig. 3. – The angular distributions (in units γ−1) of the radiation power spectrum emitted by
the 3.5 GeV electron beam incident on the tungsten monocrystal of 10 μm thickness at the angle
ψL to the axis 〈111〉 (left) and the degree of linear polarization of this radiation (right).

The integral (over all angles) degree of linear polarization of radiation is close to zero.
However, using the slit-type horizontal (or vertical) photon collimator with the angular
width Δθγ = γ−1 and putting it as shown in fig. 3 by dashed lines it is possible to obtain
a linearly polarized (along the collimator plane) photon beam with polarization degree
of about 60%. Note that the radiation intensity in the case of axially oriented crystal is
much higher than in the planar orientation case, which is applied normally for production
of polarized photon beams.
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