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Abstract
1.	 There is a strong economic interest in commercial deep-sea mining of polymetallic 

nodules and therefore a need to define suitable preservation zones in the abyssal 
plain of the Clarion Clipperton Fracture Zone (CCZ). However, besides ship-based 
multibeam data, only sparse continuous environmental information is available 
over large geographic scales.

2.	 We test the potential of modelling meiofauna abundance and diversity on high 
taxonomic level on large geographic scale using a random forest approach. Ship-
based multibeam bathymetry and backscatter signal are the only sources for 11 
predictor variables, as well as the modelled abundance of polymetallic nodules 
on the seafloor. Continuous meiofauna predictions have been combined with all 
available environmental variables and classified into classes representing abyssal 
habitats using k-means clustering.

3.	 Results show that ship-based, multibeam-derived predictors can be used to cal-
culate predictive models for meiofauna distribution on a large geographic scale. 
Predicted distribution varies between the different meiofauna response variables.

4.	 To evaluate predictions, random forest regressions were additionally computed 
with 1,000 replicates, integrating varying numbers of sampling positions and par-
allel samples per site. Higher numbers of parallel samples are especially useful to 
smoothen the influence of the remarkable variability of meiofauna distribution on 
a small scale. However, a high number of sampling positions is even more impor-
tant, integrating a greater amount of natural variability of environmental condi-
tions into the model.

5.	 Synthesis and applications. Polymetallic nodule exploration contractors are re-
quired to define potential mining and preservation zones within their licence area. 
The biodiversity and the environment of preservation zones should be represent-
ative of the sites that will be impacted by mining. Our predicted distributions of 
meiofauna and the derived habitat maps are an essential first step to enable the 
identification of areas with similar ecological conditions. In this way, it is possible 
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1  | INTRODUC TION

Although the deep sea represents the largest ecosystem on Earth, it 
remains largely unexplored (Ramirez-Llodra et al., 2010). Nevertheless, 
increasing demands for minerals and metals have greatly enhanced 
the interest in potential mining of deep-sea resources (Miller, 
Thompson, Johnston, & Santillo, 2018). In the Clarion Clipperton 
Fracture Zone (CCZ) in the north-eastern equatorial Pacific Ocean, 
such resources are widespread in the form of polymetallic nodules 
(Wedding et al., 2015), which are a potential source of copper, cobalt, 
nickel and manganese (Wegorzewski & Kuhn, 2014). However, mining 
such resources will inherently have a severe impact on environment 
and fauna, the scale of which is difficult to ascertain despite the con-
siderable number of disturbance experiments that have been carried 
out so far (Jones et al., 2017). A common method to protect the ma-
rine environment from human impacts is through the establishment of 
marine-protected areas. In the CCZ, such areas have been established 
by the International Seabed Authority (ISA) based on environmental 
proxies and expert opinion (Wedding et al., 2013, 2015). However, 
these so-called Areas of Particular Environmental Interest (APEI) 
are mainly positioned outside the core of the CCZ (Kaiser, Smith, & 
Martínez Arbizu, 2017). Therefore, it will be crucial to establish ad-
ditional preservation zones on smaller spatial scales within the con-
tractor areas in order to protect the environment from serious harm, 
promote recovery and provide baseline conditions against which the 
impacts of mining in an adjacent, ecologically similar area can be as-
sessed (Vanreusel, Hilario, Ribeiro, Menot, & Martínez Arbizu, 2016).

To develop a sound mining and environmental management plan, 
it is essential that contractors define sites that are prospective in 
terms of mining but also potential preservation zones that shall not 
be impacted by mining but contain benthic communities representa-
tive for the communities of mining sites. To do so, it is important to 
investigate the continuous spatial distribution of taxa and commu-
nity characteristics across the contractor areas and combine it with 
the available environmental data. But how can a continuous mapping 
of benthic communities be warranted within a license area that is 
75,000 km2 large, has a water depth of over 4,500 m and in which 
barely any information on benthic communities is available?

One possibility is to compute species distribution models (Guisan 
& Thuiller, 2005). However, modelling distribution and abundance 
of deep-sea organisms is often constrained by the availability of 
spatially continuous predictor variables at appropriate geographic 
scales (Ostmann, Schnurr, & Martínez Arbizu, 2014). Most of the 
GIS layers available in open databases are at low (global) resolution, 

sometimes only including coastal areas or referring to surface water 
variables such as temperature and salinity derived from satellite 
remote sensing (Sayre et al., 2017). The most frequent continuous 
environmental variables measured in deep marine environments 
are bathymetry, backscatter strength and derived variables that can 
be measured using ship-based, seafloor-mapping multibeam echo-
sounders (Lamarche, Orpin, Mitchell, & Pallentin, 2016).

Although deep-sea organisms may not be influenced by depth di-
rectly, bathymetric parameters can mirror the influence of other en-
vironmental co-variables on the benthic fauna (Ostmann & Martínez 
Arbizu, 2018) acting as proxies for ecological patterns (Elith & 
Leathwick, 2009). In the deep sea, increasing depth has usually been 
linked to a decrease in meiofauna abundance, but this relationship 
is presumably attributable to a decrease in food availability due to 
a steady reduction of POC-flux with depth (Ostmann & Martínez 
Arbizu, 2018). Similarly, Stefanoudis, Bett, and Gooday (2016) ob-
served that abyssal hills influence foraminiferal density, but this pat-
tern can possibly be traced back to enhanced bottom-flow currents 
that, in turn, influence grain size distribution and food availability for 
suspension feeders (Stefanoudis et al., 2016).

Another variable having a significant influence on the meio-
fauna of the CCZ is the distribution and size of polymetallic nod-
ules (Miljutina, Miljutin, Mahatma, & Galéron, 2010). Backscatter 
strength can be used to distinguish nodule fields on the seafloor 
from areas devoid of nodules (Weydert, 1990). Moreover, the anal-
ysis of backscatter data in the German license area (GLA) also al-
lows for the discrimination between seafloor areas with small-sized 
nodules (long axis <4 cm) and medium-sized to large-sized nodules 
(>4 cm) (Knobloch et al., 2017; Kuhn, Uhlenkott, Vink, Rühlemann, &  
Martínez Arbizu, 2020).

In this study, we focus on metazoan meiofauna. Meiofauna is the 
size class of benthic organisms passing through a 1-mm mesh and 
being retained on a 32-µm mesh-sized sieve. With increasing oligot-
rophy, meiofauna often becomes the most abundant metazoan size 
class and has the highest biomass (Galéron, Sibuet, Mahaut, & Dinet, 
2000). In the CCZ, point source data of meiofauna have been pub-
lished from different areas (e.g. Miljutina et al., 2010; Pape, Bezerra, 
Hauquier, & Vanreusel, 2017), but no modelling has been conducted 
so far. However, our modelling approach could also be applied to 
macrofauna and megafauna.

Different methods can be used to produce species distribution 
models (Elith & Leathwick, 2009). In the marine environment, the use 
of general linear models has become popular (Elith & Leathwick, 2009). 
However, there can also be nonlinear responses to environmental 

to define preservation zones not only based on expert opinion and environmental 
proxies but also integrating evidence from the distribution of benthic communities.
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parameters, especially using multiple variables of unknown influ-
ence (Elith & Leathwick, 2009). Tree-based methods like random for-
est (Breiman, 2001) are more robust under such conditions (Hastie, 
Tibshirani, & Friedman, 2001) and are hence preferred here.

Assuming that scientific evidence is essential to support sound 
management plans in the polymetallic nodule areas, we aim at ex-
ploring the predictive power of models calculated with ship-based 
predictors only, as this is the most likely source of continuous large-
scale environmental information for most of the contractors in the 
CCZ. Combining the environmental data with predictions of faunal 
distribution based on such models in the form of habitat maps, it 
is possible to target preservation zones with similar environmental 
conditions and similarly predicted benthic communities.

To achieve this, distribution models have been computed for 
meiofauna abundance and diversity to produce environmental base-
line information for the target area. To evaluate their use and robust-
ness in management planning, three different aspects of the models 
have been investigated:

•	 comparison of the model-based predictions with actual 
observations;

•	 influence of varying numbers of parallel samples per site on the 
predictions;

•	 influence of varying numbers of sampling sites on the predictions.

2  | MATERIAL S AND METHODS

The study area is the eastern GLA allocated by the ISA to the Federal 
Institute for Geosciences and Natural Resources, Germany (BGR) for 
the exploration of polymetallic nodules (Figure 1). It is located at the 
easternmost limit of the polymetallic nodule belt of the CCZ having 
an average water depth of approximately 4,200 m. Meiofauna has 
been sampled in the GLA during seven cruises between 2010 and 

2016. Sampling has been conducted with a multicore equipped with 
12 cores. A total of 88 multicore deployments (319 corers) was used 
in this study (Figure 1).

On board, the upper 5 cm of sediment was fixed with a 4% form-
aldehyde/seawater solution. Polymetallic nodules were fixed sepa-
rately in the same way to enable the investigation of their attached 
fauna and crevice meiofauna. To extract the meiofauna organisms, 
the sieved sediment was centrifuged according to the differential 
flotation method (Heip, Vincx, & Vranken, 1985) with the colloidal 
gel Levasil®. The polymetallic nodules were pestled gently and cen-
trifuged in the same way as the sediment. All organic materials in 
the supernatant were stained with Rose Bengal to simplify the rec-
ognition of organisms. Finally, metazoan meiofauna was identified 
and counted on high taxonomic level under a dissecting microscope.

All distribution models were computed with random for-
est (Breiman, 2001) in R (R Core Team, 2019) using the r-package 
randomForest (Liaw & Wiener, 2002). Every model is based on 1,000 
trees with 1/3 of all variables randomly sampled at each split as sug-
gested by Liaw and Wiener (2002).

Figure 2 shows the basic workflow for deriving environmental 
predictors from ship-based multibeam data. The ship's multibeam 
echosounder system with a frequency of 12 kHz produces two basic 
datasets: water depth based on sound velocity and backscatter 
based on signal energy (Wiedicke-Hombach & Shipboard Scientific 
Party, 2009). Backscatter data were standardized to values between 
0 and 255. The higher the value, the more likely it is to reflect hard 

F I G U R E  1   Bathymetric map of the German license area for 
the exploration of polymetallic nodules; lines mark water depths 
of 3,000 m (black) and 3,700 m (red), points indicate meiofauna 
sampling positions

F I G U R E  2   Workflow of ship-based multibeam data obtained 
from the sea surface and their use as predictors for modelling 
meiofauna in the German license area
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rocks on the ocean floor, while lower backscatter values indicate un-
consolidated, water-saturated sediments.

From the predicted depth, we produced a contiguous bathym-
etry map and calculated the derivatives of the maps. Slope, aspect, 
terrain ruggedness index (TRI) and roughness were computed using 
the terrain-function of the r-package raster (Hijmans, 2017). The 
bathymetric position index (BPI) was computed on two different 
scales, at the smallest parameter radius appropriate (1  km) and at 
an intermediate distance (17 km), using the function focal also im-
plemented in the raster-package (Hijmans, 2017). Additionally, the 
distance to the next seamount was determined using two different 
limits. The higher limit defines seamounts as elevations exceeding a 
water depth of 3,000 m, thus representing an elevation of around 
1,000  m above the seafloor in the study area. The lower limit is 
based on a water depth of 3,700  m, representing approximately 
300 m elevation. The distance was calculated from every grid pixel 
to the nearest contour line of the respective limit.

Both, the backscatter as a proxy for nodule presence and size 
and the bathymetry data with its derivatives, were used as predic-
tor to model the abundance of polymetallic nodules on the seafloor 
using artificial neural networks that were trained with a dataset 
of true nodule abundance obtained from >200 box-corer samples 
(Knobloch et al., 2017).

Summarizing, a total of 11 predictor variables (Table 1) were used 
as grid layers with 372,510 pixels having a resolution of 0.0045° 
(715  m). In the prediction dataset, pixels with depths less than 
3,000 m were excluded to avoid prediction on seamounts, resulting 
in a grid of 206,250 regularly spaced points.

Based on these predictors, distribution models for overall meio-
fauna abundance and richness (number of higher taxa) were com-
puted. Additionally, the diversity index by Simpson (1949) and the 
evenness based in this diversity index were modelled. Spatial distri-
butions of the most abundant individual taxon Nematoda are also 

presented here, as well as of the taxa Tardigrada, Kinoryncha and 
Ostracoda as their model performances were best of all models 
(Table 2). To reduce the influence of high small-scale variability of 
the fauna, the mean of the response variables within all cores from 
one multicore deployment was used as response variable.

Using the resulting model, meiofauna abundance and diversity 
were predicted for the whole GLA. Maps were generated based 
on these predictions using the rasterize function (Hijmans, 2017). 
Prediction accuracy of the random forest models was determined 
using Pearson's product moment correlation coefficient (r), cor-
relating the predicted values to the observed values at the 88 
sampling locations. Additionally, the explained variance computed 
during model computation and the mean residuals are given.

For habitat mapping of the GLA, only models with positive ex-
plained variance and significant Pearson's correlation coefficient 
were used. The predicted values of the meiofauna were combined 
with the environmental variables and clustered using the k-means 
clustering algorithm (Hartigan & Wong, 1979) as implemented in the 
function cascadeKM in the r-package vegan (Oksanen et al., 2018). 
The number of clusters used in the habitat maps was set according 
to the Calinski criterion (Calinski & Harabasz, 1974).

To evaluate the influence of the number of multicore deploy-
ments as well as the number of cores used, the random forest mod-
els were computed simulating a varying amount of these as training 
data. To evaluate the number of cores used, subsets of all available 
cores per multicore were randomly sampled with replacement using 
1–5 cores per deployment but integrating all deployments into 
the models. Likewise, subsets of 21, 42, 63 and 84 deployments 
were randomly sampled as training data. For both the numbers of 
cores and the numbers of deployments, numbers were picked that 
would represent a realistic sampling scope with varying effort. For 
every sampling scope, 1,000 individual models were computed for 
meiofauna abundance, diversity and evenness as well as the taxa 

Predictor variable Source/citation R-function

Water depth Wiedicke-Hombach and Shipboard Scientific 
Party (2009)

—

Backscatter Wiedicke-Hombach and Shipboard Scientific 
Party (2009)

—

Polymetallic nodule abundance Knobloch et al. (2017) —

Distance to seamount 
(>1,000 m)

— distance()

Distance to seamount (>300 m) — distance()

Broad-scale bathymetric 
position index

Lundblad et al. (2006) focal()

Small-scale bathymetric 
position index

Lundblad et al. (2006) focal()

Slope Wilson, O'Connell, Brown, Guinan, and 
Grehan (2007)

terrain()

Aspect Wilson et al. (2007) terrain()

Roughness Wilson et al. (2007) terrain()

Terrain ruggedness index Wilson et al. (2007) terrain()

TA B L E  1   Environmental variables 
used as predictors for random forest 
regressions, given R-functions have been 
used for computation
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Nematoda, Kinoryncha, Ostracoda and Tardigrada using identical 
subsets. Hence, 1,000 habitat maps could be produced for every 
scope. To evaluate the improvement of the predictions with increas-
ing training data, the predictions across the GLA were compared to 
the distribution and habitat maps computed with all available data.

3  | RESULTS

3.1 | Meiofauna communities modelled with all 
available data

The overall mean meiofauna abundance amounts to 3,494 ± 1,311 indi-
viduals per 100 cm2 of sediment (Table 2). Nematoda are largely domi-
nant (92.8 ± 2.5% of all organisms), followed by Copepoda (4.5 ± 1.8%) 
and Annelida (1.2 ± 0.7%). All other taxa comprise less than 1% of the 
overall abundance. The richness varies between 3 and 15 higher taxa, 
with a mean of 11 ± 2 taxa (Table 2). Due to the small number of taxa 
and the dominance of Nematoda on high taxonomic level, Simpson's 
diversity is relatively low at 0.14 ± 0.04. The dominance of Nematoda is 
also the reason for the relatively small evenness of 0.51 ± 0.13.

A highly significant Pearson correlation is obtained for overall 
meiofauna abundance and diversity as well as for the taxa Kinoryncha, 
Nematoda, Ostracoda and Tardigrada (Table 2). Regarding these re-
sponse variables, Pearson's correlation coefficient varies between 
0.29 for Kinoryncha and 0.58 for Tardigrada (Table 2), indicating good 
model fit. Regarding random forest's own indicator ‘percent variance 
explained’, the best values can be computed for the taxon Tardigrada 
(Table 2). The percentage of variance explained is very low for taxon 
richness and the taxa Annelida, Copepoda, Gastrotricha, Loricifera 
and Tantulocarida (Table  2); hence, these variables were excluded 
from further computations.

Although the residuals are large for all taxa, mean predicted 
abundance and mean observed abundance are almost identical 

(Table 2). Regarding overall abundance, richness and diversity, the 
mean absolute residuals are always smaller than the observed stan-
dard deviation for all predicted variables. There is also great congru-
ence between observed and predicted mean values (Table 2).

Regarding the spatial distribution predicted with these mod-
els, overall abundance is elevated especially within the north- 
to-south-trending ridges across the GLA, as well as in the north-west 
(Figure  3b). Lowest abundance is predicted next to the seamount 
areas at a longitude between −118.5 and −118.0 and in the south-
east of the GLA (Figure 3b). The most important spatial predictors 
for the random forest model are backscatter (Figure 4a), as an in-
dicator for the presence or absence of nodules as well as for the 
dominating nodule size class, and the modelled abundance of poly-
metallic nodules (Figure 4b). Generally, an increase in both leads to a 
stepwise decrease in meiofauna abundance.

Comparing overall abundance to diversity according to Simpson's 
Index, the predicted distribution is largely opposite (Figure  3a), 
which can be confirmed by Pearson's correlation (r: −0.70;  
p value: ~0). Partial dependence plots of the random forest models 
suggest that diversity is higher in areas where nodules are present 
(Figure 4c,d). Spatially, diversity is predicted to be highest directly 
next to the seamounts, and lowest in the north-western region of 
the GLA (Figure 3a). The predicted distribution of the Simpson Index 
is almost identical to the distribution of the evenness, which can be 
confirmed by a high Pearson correlation (r: 0.98, p value: ~0).

The predicted distribution of the most abundant taxon 
Nematoda is almost identical to the distribution of the general 
meiofauna abundance (Figure  3c) with high correlation of 0.99  
(p value: ~0) according to Pearson's correlation coefficient The 
abundance of the taxon Kinoryncha is low in the vicinity of the 
large seamounts but heightened in the abyssal plains at longitudes 
between −180 and −119.5 (Figure 3d). This is opposite of the dis-
tribution of the taxon Ostracoda, that is especially abundant close 
to the large seamounts (Figure 3e). The abundance of Tardigrada 

TA B L E  2   Model evaluation for the random forest models applied to different meiofauna response variables; n = number of sampled 
individuals, r = pairwise Pearson's correlation coefficient between predicted and observed values; p = probability value of r

Response variable n
Actual mean 
per 100 cm2

Predicted mean 
per 100 cm2

Mean absolute 
residuals per 100 cm2

% Variance 
explained r p

Overall abundance 1,114,540 3,494 ± 1,311 3,593 ± 742 433 ± 440 8.56 0.35 0.0007

Richness   10.6 ± 1.9 13.7 ± 1.1 0.8 ± 0.6 −12.34 0.05 0.63

Simpson Index   0.14 ± 0.04 0.13 ± 0.02 0.01 ± 0.01 7.65 0.30 0.004

Evenness   0.51 ± 0.13 0.61 ± 0.08 0.05 ± 0.04 10.85 0.34 0.001

Annelida 8,039 40 ± 21 39 ± 8 6 ± 5 −5.9 0.20 0.06

Copepoda 30,137 149 ± 56 146 ± 24 18 ± 20 −14.47 0.06 0.59

Gastrotricha 1,182 6 ± 8 6 ± 3 2 ± 2 −20.81 0.06 0.58

Kinoryncha 721 3 ± 3 3 ± 1 1 ± 1 5.58 0.29 0.006

Loricifera 1,502 7 ± 10 8 ± 5 4 ± 5 −20.17 −0.002 0.98

Nematoda 665,986 3,256 ± 1,267 3,369 ± 732 415 ± 423 9.31 0.36 0.0005

Ostracoda 2,737 13 ± 9 13 ± 4 2 ± 2 20.05 0.45 ~0

Tantulocarida 1,154 6 ± 7 6 ± 2 2 ± 2 −11.19 0.13 0.23

Tardigrada 1,715 8 ± 12 8 ± 7 3 ± 4 32.33 0.58 ~0
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is comparably low across the whole GLA, but high peaks are pre-
dicted directly next to seamounts at longitudes between −119.0 
and −119.4 (Figure 3f).

3.2 | Spatial habitat mapping

The computed distributions of meiofauna abundance and diversity 
have been combined with the available continuous environmental 

variables in order to carry out a habitat classification of the en-
tire area. The Calinski criterion suggests the use of four clusters 
(Figure  5b), and therefore the area was divided into four habitats 
(Table  3). The most common habitat is habitat 2, covering 37.1% 
of the whole GLA. This habitat is spread all over the area without 
clearly defining larger continuous areas (Figure 5a). It is character-
ized by high polymetallic nodule abundance and medium meiofauna 
abundance. The potential for mining in this habitat is high. It is fol-
lowed by habitat 1 which covers 27.7% of the GLA, specifically in 
the vicinity of small seamounts (e.g. in the north-western part of the 
GLA) (Figure 5a). This habitat is characterized by very high nodule 
abundance and lowest meiofauna abundance. Habitat 4, covering 
25.4% of the GLA, is also spread out all over the area (Figure 5a). It 

F I G U R E  3   Distribution maps for the German license area for (a) Simpson's Index on high taxonomic level, (b) meiofauna abundance, (c) 
Nematoda abundance, (d) Kinoryncha abundance, (e) Ostracoda abundance, (f) Tardigrada abundance; all abundances are given for 100 cm2

F I G U R E  4   Partial dependence of the random forest regression 
of (a) backscatter signal on meiofauna abundance per 100 cm2,  
(b) nodule abundance on meiofauna abundance per 100 cm2,  
(c) backscatter signal on Simpson's Index on high taxonomic level, 
(d) nodule abundance on Simpson's Index on high taxonomic level
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has low nodule abundance and high meiofauna abundance. The least 
common habitat 3 (9.9% of the GLA) (Figure 5a) covers most areas 
where the abundance of nodules is predicted to be very low (Table 3) 
and is therefore unimportant from a mining perspective, but it har-
bours the highest meiofauna densities.

3.3 | Modelling with varying numbers of 
parallel samples

Computing all of the models with a varying number of parallel sam-
ples, that is, cores obtained with one multicore deployment, the 
mean standard deviation between predicted points decreases with 
an increasing number of cores (Figure  6). For the taxa Tardigrada, 
Kinoryncha and Ostracoda, the standard deviation decreases by 
one-third when integrating data from four cores; for all other mei-
ofauna attributes, standard deviation decreases by one-third using 
five cores.

Investigating spatial variation of the predictions for meiofauna 
abundance in detail, we find that it is not evenly distributed across 
the whole area (Figure 7a–e). Areas with high variation are observed 
especially across the rippled area in the northwest of the GLA at 

latitudes between 12 and 13, and extending into the area north of 
the seamount chain that covers the GLA from east to west starting 
at a longitude of −117.5 (Figure 7a–e). Although variation generally 
decreases with the number of cores integrated into the models, 
higher variation is still observed at the same positions.

The habitat maps based on predictions integrating varying num-
bers of cores are almost identical (Figure 7f–j). The mean percentage 
area of the correctly chosen habitat increases from 64.7  ±  12.9% 
when integrating one core to 78.5  ±  14.9% when integrating five 
cores.

The spatial distribution of these variations between clusters is 
highest in the vicinity of large seamounts (Figure 7k–o). Highest con-
sensus of habitat maps can be observed in the northwest of the GLA 
(Figure 7k–o). Consensus also increases slightly using an increasing 
number of parallel samples per deployment.

3.4 | Modelling with varying numbers of 
deployments

The variation between models decreases continuously when an 
increasing number of deployments are integrated into the mod-
els. For the abundance of the taxon Tardigrada, the mean of 
the standard deviation between prediction points decreases by 
half when using more than 42 deployments (Figure  8b,e–f). For 
Simpson's diversity, overall abundance and the abundance of the 
taxa Nematoda, Kinoryncha and Ostracoda, the mean of standard 
deviation decreases by half when using more than 63 deployments 
(Figure 8a,c–d).

As already observed during modelling with a varying number 
of cores per deployment, positions where a high variation is ob-
served remain the same irrespective of the number of deployments 
(Figure 9a–d). Variation between the models is also especially high in 

TA B L E  3   Summary of the different habitats computed with 
k-means clustering

 
% 
Coverage

Meiofauna 
abundance 
per 100 cm2

Nodule 
abundance

Potential 
for mining

Habitat 1 27.7 3,328 ± 120 Very high High

Habitat 2 37.1 3,631 ± 94 High High

Habitat 3 9.9 4,477 ± 180 Very low Very low

Habitat 4 25.4 3,962 ± 121 Low Low

F I G U R E  6   Boxplot of the standard 
deviation excluding outliers computed 
across all predictions computed with 1,000 
replicates for varying numbers of cores:  
(a) Simpson's Index on high taxonomic 
level, (b) meiofauna abundance per 100 cm2,  
(c) abundance of Nematoda per 100 cm2, 
(d) abundance of Kinoryncha per 100 cm2, 
(e) abundance of Ostracoda per 100 cm2, 
(f) abundance of Tardigrada per 100 cm2
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the vicinity of large seamounts and low in the very northwest of the 
GLA (Figure 9a–d).

In contrast to the varying numbers of cores used per de-
ployment, higher numbers of deployments are needed to find 

consensus between habitat maps (Figure 9i–l). High deviation oc-
curs when only small numbers of deployments are included, but 
with at least 63 deployments the habitat maps reach consensus 
again (Figure 9e–h).

F I G U R E  7   Standard deviation across the predictions for overall meiofauna abundance computed with 1,000 replicates including  
(a) 1 core, (b) 2 cores, (c) 3 cores, (d) 4 cores, (e) 5 cores per deployment; Habitat map dividing the German license area into four clusters 
computed including (f) 1 core, (g) 2 cores, (h) 3 cores, (i) 4 cores, (j) 5 cores per deployment; Percentage confirmation of the habitat maps 
across the 1,000 replicates including (k) 1 core, (l) 2 cores, (m) 3 cores, (n) 4 cores, (o) 5 cores per deployment

F I G U R E  8   Boxplot of the standard 
deviation excluding outliers computed 
across all predictions computed with 
1,000 replicates for varying numbers of 
deployments: (a) Simpson's Index on high 
taxonomic level, (b) meiofauna abundance 
per 100 cm2, (c) abundance of Nematoda per  
100 cm2, (d) abundance of Kinoryncha  
per 100 cm2, (e) abundance of Ostracoda per  
100 cm2, (f) abundance of Tardigrada  
per 100 cm2
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4  | DISCUSSION

The polymetallic nodule belt in the CCZ is in the focus of explora-
tion activities and therefore, plans for monitoring and conservation 
of areas threatened by potential future mining activities are of great 
importance (Kaiser et al., 2017). Contractors are required to prepare 
an environmental management plan for the area subjected to exploi-
tation before a plan of work can be approved by the ISA. However, 
information on the deep-sea habitat, its fauna and especially the 
functioning of ecosystems is still limited and punctual (Ramirez-
Llodra et al., 2010). Under these circumstances, contractors have to 
define potential mining sites and designate equally diverse and rep-
resentative preservation zones within their exploration areas.

In this contribution, we advocate for a classification of the whole 
exploration license area into habitats with similar biotic and abiotic 
characteristics as basic information that should be included into any 
environmental management plan. We were able to show that the 
information derived from ship-based multibeam echosounders is a 
reliable and adequate source for a series of environmental predic-
tors that can be used to produce models of meiofauna communities 
useful for decision-making purposes (see Table  2). Obtaining such 
multibeam data for entire license areas is not extremely cost- or 
time-consuming and forms the basis of any exploration strategy, as 
the prospective nodule fields themselves are also identified using 
this technique (Kuhn, Rühlemann, & Wiedicke-Hombach, 2012).

Spatial distribution models are commonly used for conserva-
tion planning (Guisan & Thuiller, 2005) as they are cost-effective 
(Kennedy & Jacoby, 1999) and can be accessed relatively easily 
(Reiss et al., 2015). More specifically, we show here that distribu-
tion models computed with random forest regression prove to be 
useful for investigating spatial trends in meiofauna abundance and 
habitat mapping across the GLA and can hence be used for spatial 
conservation and management issues in this area.

Although modelling of meiofauna distribution was successful, 
the model performance (evaluated as the percentage of explained 
variance; Liaw & Wiener, 2002) is sometimes low. This is due to the 
relatively high variance in the dataset itself, that is, between sets 
of cores taken from the same multicorer deployment. Variance  
explained is computed as:

Therefore, if the mean of squared residuals is larger than the squared 
standard deviation, values even become negative. However, very high 
variation in abundance is commonly observed for deep-sea meiofauna 
(Ostmann & Martínez Arbizu, 2018) and is also mirrored in the correla-
tions between predicted and observed values using Pearson's correla-
tion as suggested by Ostmann et al. (2014) and Ostmann and Martínez 
Arbizu (2018).

1 −
mean of squared residuals

(standard deviation)
2

(

Liaw&Wiener,2002
)

.

F I G U R E  9   Standard deviation across the predictions for overall meiofauna abundance computed with 1,000 replicates including (a) 21 
deployments, (b) 42 deployments, (c) 63 deployments, (d) 84 deployments; Habitat map dividing the German license area into four clusters 
computed including (e) 21 deployments, (f) 42 deployments, (g) 63 deployments, (h) 84 deployments; Percentage confirmation of the habitat 
maps across the 1,000 replicates including (i) 21 deployments, (j) 42 deployments, (k) 63 deployments, (l) 84 deployments
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The main problem of modelling meiofauna in the CCZ is the 
very high variability on small spatial scales (Rosli, Leduc, Rowden, 
& Probert, 2018), being observed even between cores obtained 
during one multicore deployment. Sources of variability are not only 
attributable to the natural patchiness of the meiofauna but also to 
variability of nodule size and abundance, which introduces a bias in 
meiofauna sampling. In distribution modelling, this high point vari-
ability leads to overdispersion, meaning that observed dispersion is 
greater than expected from the probability distribution (Guisan & 
Thuiller, 2005). Therefore, overall variability between models de-
creases when more cores are integrated as training data into the 
random forest regressions. Spatially, however, variability between 
predictions remains highest at the same positions with no regard to 
how many cores are integrated. This is to be expected, as in sum-
mary the multiple models integrate all available data and hence re-
veal positions where the model is less appropriate.

Such areas where differences between model predictions are 
comparably high can also be observed when comparing the mod-
els computed with varying numbers of deployments. Thus, to fur-
ther improve the models for the abyssal plains, it would be useful 
to sample these spots and integrate them as training data into the 
random forest regressions. Although the CCZ is known to be a het-
erogeneous environment (Kaiser et al., 2017), all samples used in 
this study were retrieved from comparable depths (4,000–4,500 m) 
and similar bathymetric conditions in the deep-sea plains. Including 
areas that are not suitable for mining or more variable areas such as 
seamount sites would possibly result in better model performance.

The large APEIs in the CCZ have mainly been defined based 
on environmental proxies such as bathymetry, seamount positions 
and nitrogen flux (Wedding et al., 2013). The benthic communities 
of the CCZ, however, are usually compared in spatially distant, rel-
atively small areas (e.g. Pape et al., 2017). By modelling these point 
source observations on benthic community distribution over larger 
spatial scales and integrating them with continuous environmental 
information into habitat maps, it is possible to define preservation 
zones or larger conservation areas such as marine-protected areas 
or vulnerable marine ecosystems including data on the benthic 
communities.

Although meiofauna is an important component of deep-sea 
environments supporting high levels of biodiversity (Ramirez-Llodra 
et al., 2010), it is important to now also include larger organisms of 
megafauna and macrofauna size into modelling exercises such as the 
one presented here. Furthermore, the environmental proxies should 
be supplemented with environmental variables that are known to 
be of significant influence on the community, such as particulate or-
ganic matter concentration and other sediment properties.

5  | CONCLUSIONS

The definition of mining areas (impact zones) and ecologically simi-
lar preservation zones within manganese nodule license areas in the 
CCZ should be based on scientific evidence. We advocate the use of 

ship-based, derived predictors and statistical learning to model the 
distribution of nodule abundance and benthic communities on the 
seafloor over large spatial scales. This information can then be classi-
fied into spatially defined deep-sea habitats, which in turn should be 
used to determine the appropriate location and extent of mining and 
preservation zones. To improve model performance, we recommend 
the use of sampling positions that cover as many different environ-
mental conditions as possible as well as the use of several parallel 
samples per location to account for the high small-scale variability. 
If a baseline dataset is already available, additional sampling points 
can be set at positions where highest variability is observed between 
predictions of multiple models.
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