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Abstract. Probabilistic spatial reconstructions of past cli-
mate states are valuable to quantitatively study the climate
system under different forcing conditions because they com-
bine the information contained in a proxy synthesis into a
comprehensible product. Unfortunately, they are subject to
a complex uncertainty structure due to complicated proxy–
climate relations and sparse data, which makes interpola-
tion between samples difficult. Bayesian hierarchical models
feature promising properties to handle these issues, like the
possibility to include multiple sources of information and to
quantify uncertainties in a statistically rigorous way.

We present a Bayesian framework that combines a net-
work of pollen and macrofossil samples with a spatial prior
distribution estimated from a multi-model ensemble of cli-
mate simulations. The use of climate simulation output aims
at a physically reasonable spatial interpolation of proxy data
on a regional scale. To transfer the pollen data into (local)
climate information, we invert a forward version of the prob-
abilistic indicator taxa model. The Bayesian inference is per-
formed using Markov chain Monte Carlo methods following
a Metropolis-within-Gibbs strategy.

Different ways to incorporate the climate simulations into
the Bayesian framework are compared using identical twin
and cross-validation experiments. Then, we reconstruct the
mean temperature of the warmest and mean temperature of
the coldest month during the mid-Holocene in Europe us-
ing a published pollen and macrofossil synthesis in com-
bination with the Paleoclimate Modelling Intercomparison
Project Phase III mid-Holocene ensemble. The output of our

Bayesian model is a spatially distributed probability distri-
bution that facilitates quantitative analyses that account for
uncertainties.

1 Introduction

Spatial or climate field reconstructions of past near-surface
climate states combine information from proxy samples,
which are mostly localized, with a model for interpolation
between those samples. They are valuable for comparisons
of the state of the climate system under different external
forcing conditions because they produce a comprehensible
product containing the joint information in a proxy synthe-
sis. Thereby, spatial reconstructions are more suitable for
many quantitative analyses of past climate than individual
proxy records. Unfortunately, spatial reconstructions are sub-
ject to a complex uncertainty structure due to uncertainties
in the proxy–climate relation and the sparseness of available
proxy data, which leads to additional interpolation uncertain-
ties. Therefore, a meaningful reconstruction has to include
these uncertainties (Tingley et al., 2012). A natural way to
represent uncertainties in the proxy–climate relation are so-
called probabilistic transfer functions (Ohlwein and Wahl,
2012). To account for uncertainties due to the sparseness of
proxy data, we suggest the use of stochastic interpolation
techniques. Most standard geostatistical methods like krig-
ing or Gaussian process modeling are designed for interpo-
lation in data-rich situations, while in paleoclimatology we
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deal with sparse data. Therefore, their direct application to
paleo-situations is not suitable. Instead, we propose using in-
terpolation schemes that contain additional physical knowl-
edge such that the resulting product combines the informa-
tion from a proxy network in a physically reasonable way
(Gebhardt et al., 2008). Our approach can additionally be
used for structural extrapolation of the proxy data.

We use Bayesian statistics to combine the two modules
mentioned above: the (local) proxy–climate relation and spa-
tial interpolation. The Bayesian framework allows for the
combination of multiple data types. In our case, these are
pollen and macrofossil records to constrain the local climate,
and climate simulations, which produce physically consistent
spatial fields for a given set of large-scale external forcings.
In addition, our framework accounts for several sources of
uncertainty in a statistically rigorous way by estimating and
inferring a multivariate probability distribution, the so-called
posterior distribution (Gelman et al., 2013).

Pollen is the terrestrial proxy with the highest spatial cov-
erage (Bradley, 2015), and there is a long tradition of using it
for inferring past climate by applying statistical transfer func-
tions (Birks et al., 2010). In recent years, several traditional
transfer functions like indicator taxa, modern analogues, and
weighted averaging have been translated to Bayesian frame-
works (e.g., Kühl et al., 2002; Haslett et al., 2006; Holden
et al., 2017). Pollen records contain information on the lo-
cal climate during a time slice, and the spatial scale is con-
strained by the influx domain of horizontal pollen transport.
Typically, macrofossils have a higher taxonomic resolution
than pollen such that the climatic niche of the occurring taxa
can be better constrained than with pollen alone (Bradley,
2015). Equilibrium simulations with earth system models
(ESMs) produce a physically consistent estimate of the atmo-
spheric and oceanic circulation and the regional energy bal-
ance given a set of forcings (boundary conditions). Important
boundary conditions, for which information is available from
proxy data and physical models, are insolation determined
by the earth orbital parameters, greenhouse gas concentra-
tions, ice sheet configurations, and land–sea masks. We use
an ensemble of simulations from different ESMs to estimate
a prior distribution, which contains a wide range of physi-
cally reasonable climate states. The combination of these two
sources of information can be interpreted as a downscaling
of forcing conditions via ESMs and an upscaling of local in-
formation contained in pollen records via spatial covariance
matrices. The result is a spatially distributed and physically
reasonable probabilistic climate reconstruction on continen-
tal domains.

We apply our framework to a mid-Holocene (MH, around
6 ka) example for two reasons. First, compared with other
time slices before the common era, the MH has high proxy
data coverage, particularly for Europe. Therefore, we can use
pollen and macrofossil data with a sparse but relatively uni-
form spatial coverage over Europe as input for probabilis-
tic transfer functions, while still having other reconstructions

available that can be compared with our results. Second, a
multi-model ensemble of climate simulations with boundary
conditions adjusted to the MH was produced in the Paleocli-
mate Modelling Intercomparison Project Phase III (PMIP3;
Braconnot et al., 2011). This ensemble is used to estimate the
spatial prior distribution. The posterior distribution, which
we estimate, is a multivariate probability distribution with
marginal distributions for each grid box, as well as spatial
correlations and correlations between two climate variables,
the mean temperature of the warmest month (MTWA) and
the mean temperature of the coldest month (MTCO). For fur-
ther analyses, we create samples from this distribution such
that each sample is an equally probable estimate of the bi-
variate spatial field. In the context of temporal reconstruc-
tions these samples were called “climate histories” by Par-
nell et al. (2016). From the samples, quantitative properties
of the climate state during the MH, which account for un-
certainties, are computed. In addition, our framework can be
used to study the model–data mismatch of ESMs, to analyze
the consistency of proxy networks, and to help in the identi-
fication of potential outliers.

This work is related to several concepts that were devel-
oped for applications in paleoclimatology. In recent years,
several authors constructed Bayesian hierarchical models
(BHMs) for paleoclimate reconstructions: Tingley and Huy-
bers (2010) introduced a spatiotemporal BHM for recon-
structions of the last millennium with an underlying struc-
ture that is stationary, linear, and Gaussian. Other authors
developed temporal (Parnell et al., 2015) or small-scale spa-
tiotemporal BHMs (Holmström et al., 2015). All of these ap-
proaches differ from our model in being purely proxy data
driven. Additional information on orbital configurations was
incorporated by Gebhardt et al. (2008) and Simonis et al.
(2012) via an advection–diffusion model that is combined
with proxy data using a variational inference approach. Li
et al. (2010) included information on solar, greenhouse gas,
and volcanic forcing for spatially averaged reconstructions of
the last millennium. Annan and Hargreaves (2013) combined
PMIP2 simulations with proxy syntheses in a multi-linear re-
gression model. We build on these approaches by incorporat-
ing fields that are simulated from a set of MH forcings in
a fully Bayesian framework. A different approach to com-
bine proxy data and climate simulations for spatiotemporal
reconstructions of the common era was developed by Steiger
et al. (2014) and Dee et al. (2016) using so-called offline data
assimilation methods. They apply an ensemble Kalman fil-
ter, whereby the observation operators are forward models
for proxy data, and the prior covariance is estimated from a
database of transient climate simulations. Our purely spatial
reconstructions can be interpreted as an offline data assimi-
lation with only one time step. This reduced dimensionality
permits the exploration of the full posterior distribution de-
spite incorporating nonlinear and non-Gaussian elements in
the observation operator and the spatial interpolation scheme.
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The structure of the paper is as follows. In Sect. 2, we de-
scribe the proxy synthesis and climate simulations that we
use. This is followed by a detailed description of our pro-
posed Bayesian framework in Sect. 3. Results from a com-
parison study of different ways to incorporate the climate
simulations in the Bayesian framework and from our re-
construction of the European MH climate are presented in
Sect. 4. Finally, we discuss and summarize our methodology
and results in Sects. 5 and 6.

2 Data

2.1 Proxy and calibration data

The pollen and macrofossil synthesis that we use in this
study stems from Simonis et al. (2012) as part of the Euro-
pean Science Foundation project DECVeg (Dynamic Euro-
pean Climate–Vegetation impacts and interactions). Out of
the four time slices (6, 8, 12, 13 ka) that were compiled,
we only use the 6 ka dataset because there is no ensem-
ble of climate simulations available for the other three time
slices. For 50 paleosites, information on the occurrence of
taxa is provided, and 59 taxa occur at least at one site. For
some sites, information from very nearby records is com-
bined into a joint sample; 15 of the sites combine macrofossil
and pollen information, three samples contain just macrofos-
sil data, and for 32 sites only pollen data are available. In gen-
eral, the macrofossil data provide more detailed taxonomic
information than pollen. Because pollen is more prevalent
than macrofossil data, pollen samples are included to pro-
vide a broader spatial picture of the European vegetation at
the MH.

The 50 paleosites are sparsely but relatively uniformly
distributed over Europe. Their locations are delimited by
6.5◦W, 26.5◦ E, 37.5◦ N, and 69.5◦ N. Compared with other
recent syntheses like Bartlein et al. (2011), fewer records are
included due to high quality control criteria (Simonis, 2009).
Each site is assigned to the corresponding cell of a 2◦ by 2◦

grid that we use for our reconstructions. The locations of the
proxy samples are depicted by black dots in Fig. 1. The full
list of sites included in the synthesis can be found in Simo-
nis et al. (2012). The list of taxa, which occur at the sites, is
published in Simonis (2009).

Modern climate and vegetation data are used for the cali-
bration of the transfer functions. The climate data are com-
puted from the University of East Anglia Climatic Research
Unit (CRU) 1961 to 1990 reference climatology (CRU TS
v.4.01; Harris et al., 2014; Harris and Jones, 2017). The veg-
etation data stem from digitized vegetation maps (Schölzel
et al., 2002). The regions that are used for the transfer func-
tion calibration were determined individually for each taxon
by pollen experts (Kühl et al., 2007). The number of calibra-
tion sites varies between 14 543 and 28 844, depending on
the taxa.

2.2 Climate simulations

We use a multi-model ensemble of climate simulations that
were run within PMIP3 with forcings adjusted to the MH.
This includes changed orbital configurations and greenhouse
gas concentrations (Braconnot et al., 2011). The ensemble
contains all available MH simulations in the PMIP3 database
that have a grid spacing of at least 2◦. This constraint, which
retains only the models with the smallest grid spacings, is
chosen to better match the resolutions of proxy samples
and simulations. The condition results in using seven model
runs performed with CCSM4, CNRM-CM5, CSIRO-Mk2-
6-0, EC-Earth-2-2, HadGEM2-CC, MPI-ESM-P, and MRI-
CGCM3. Properties of the included simulations are given in
Table 1. The ensemble is a multi-model ensemble with com-
mon boundary conditions. Therefore, the differences within
the ensemble can be interpreted as modeling uncertainties
(epistemic uncertainty).

The mean summer climate expressed as MTWA (Fig. 1a)
from the MH ensemble is warmer than the CRU reference
climatology (CRU TS v.4.01 over land and HadCRUT ab-
solute over sea; Jones et al., 1999) in large parts of Europe,
especially eastern Europe and the Norwegian Sea. These ar-
eas predominantly coincide with areas of large ensemble
spreads, expressed as point-wise empirical standard devia-
tions in Fig. 1c. The standard deviations increase up to 4 K
in some areas of southern and eastern Europe. In contrast,
the MH mean winter climate measured by MTCO in Fig. 1b
shows a more dispersed structure with cooling in Fennoscan-
dia, warming in the Mediterranean and Balkan peninsula, and
mixed patterns in western and central Europe. The ensemble
spread is predominantly small (Fig. 1d) but increases towards
northern Europe with very large inter-model differences for
the Norwegian Sea and eastern Fennoscandia.

2.3 Reconstruction variables

It was shown in Simonis (2009) that the pollen and macro-
fossil synthesis is well suited for joint reconstructions of July
and January temperature as measures for the warmth of the
growing season and cold in winter because at least one of
these two variables is a limiting factor for most taxa grow-
ing at the middle and high latitudes of Eurasia during the
Holocene. Instead, testing various climate variables as in-
dicators for moisture availability was less promising since
moisture availability is rarely a limiting factor for Euro-
pean taxa (Simonis, 2009). Hence, in this study, we choose
MTWA and MTCO as the target variables for our climate
reconstructions, which are bioclimatically more meaningful
than July and January temperature. To calculate MTWA and
MTCO from time series of monthly averages, the data are
first interpolated to the desired spatial grid. Then, for each
hydrological year (October to September), the warmest and
coldest month are extracted to ensure that the months are
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Figure 1. PMIP3 MH ensemble mean anomaly from CRU reference climatology for (a) MTWA and (b) MTCO. Ensemble spread as an
empirical standard deviation of the ensemble members for (c) MTWA and (d) MTCO. Black dots depict proxy samples from Simonis et al.
(2012).

Table 1. Basic information on the PMIP3 climate simulations used to construct the process stage in the Bayesian framework (from https:
//pmip3.lsce.ipsl.fr, last access: 30 May 2019).

Model Institute Atmospheric grid Simulated
years

CCSM4 NCAR 288× 192×L26 301
CNRM-CM5 CNRM-CERFACS 256× 128×L31 200
CSIRO-Mk3-6-0 CSIRO-QCCCE 192× 96×L18 100
EC-Earth-2-2 ICHEC 320× 160×L62 40
HadGEM2-CC MOHC 192× 144×L60 35
MPI-ESM-P MPI-M 19× 98×L47 100
MRI-CGCM3 MRI 320× 160×L48 100

taken from connected seasons. Afterwards, we average over
the values for each year.

3 Methods

3.1 Bayesian framework

We use Bayesian statistics to combine a network of pollen
samples with an ensemble of PMIP3 simulations because in
this approach each source of information has an associated
uncertainty that is naturally included in the inference process.

In this section, we specify the quantities that are combined in
our reconstruction and describe the inference algorithm that
is used to create the results presented below.

In the following, we denote fossil pollen and macrofos-
sil data by Pp, past climate by Cp, modern vegetation and
climate data for the calibration of transfer functions by Pm
and Cm, respectively, and additional model parameters by2.
We are interested in the conditional distribution of Cp and
2 given Pp, Pm, and Cm; i.e., we want to estimate the pos-
terior distribution P (Cp,2 |Pp,Cm,Pm). Applying Bayes’
theorem to P (Cp,2 |Pp,Cm,Pm) (in the following, we omit
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normalizing constants), we get

P (Cp,2 |Pp,Cm,Pm)︸ ︷︷ ︸
Posterior

∝ P (Pp,Pm |Cp,Cm,2)︸ ︷︷ ︸
Data Stage /Likelihood

·P (Cp,Cm |2)︸ ︷︷ ︸
Process Stage

P (2)︸ ︷︷ ︸
Prior Stage

. (1)

Following Tingley and Huybers (2010), we call
P (Pp,Pm |Cp,Cm,2) the data stage, P (Cp,Cm |2) the
process stage, and P (2) the prior stage. In paleoclimatology,
the data stage is traditionally called a transfer function,
which in our case is formulated in a forward way. It prob-
abilistically models the proxy data given climate variables
and is described in detail in Sect. 3.2. The process stage
stochastically interpolates the local climate information
from the proxy data to a spatial domain and is described in
Sect. 3.3. The prior stage defines prior distributions for the
model parameters 2, which are necessary to ensure that the
posterior is a valid probability distribution (Gelman et al.,
2013).

To further structure the framework, we split the model pa-
rameters 2 into θ , which represents parameters associated
with the data stage, and ϑ , which represents parameters that
influence the process stage. We assume that θ and ϑ are a pri-
ori independent of each other and that the data stage is con-
ditionally independent of ϑ given Cp. Furthermore, by con-
struction, Pm and Cm only contribute to the reconstruction
via the transfer function parameters; i.e., they are assumed to
be independent of all other quantities. Hence, we can rewrite
Eq. (1) and get

P
(
Cp,2 |Pp,Cm,Pm

)
∝ P (Pm |Cm,θ )︸ ︷︷ ︸

Calibration Stage

P (Pp |Cp,θ )︸ ︷︷ ︸
Observation Stage

P (Cp |ϑ)P (θ )P (ϑ). (2)

Here, P (Pm |Cm,θ ) is called the calibration stage and
P (Pp |Cp,θ ) is called the observation stage (Parnell et al.,
2015). The structure of the Bayesian model can be expressed
by a directed acyclic graph as shown in Fig. 2.

3.2 Transfer function

The Bayesian model uses probabilistic transfer functions to
model proxy data, in our case occurrence information on
taxa, given a climate state and transfer function parameters.
From all the terms in Eq. (2), the calibration stage, the obser-
vation stage, and the prior distribution of the transfer function
parameters are related to the transfer function. As described
above, our main reconstruction target is the bivariate climate
C = (C1,C2), where C1 is MTWA and C2 is MTCO.

To reconstruct climate from the Simonis et al. (2012)
synthesis, the probabilistic indicator taxa method (PITM) is
used, which is a well-established transfer function to quan-
titatively constrain past climate states with occurrence in-
formation on taxa. It uses taxa that are sensitive to MTWA

and MTCO and determines the climatic niche where they oc-
cur by fitting response functions. The classical indicator taxa
method (Iversen, 1944) estimates binary limits. PITM, also
called the probability density function (PDF) method in the
literature (Kühl et al., 2002), is an extension wherein prob-
ability distributions are fitted to acknowledge the fact that
the transitions between climates in which taxa usually oc-
cur and those in which they do not grow are soft. Initially,
Gaussian distributions were used for calibration (Kühl et al.,
2002) against vegetation maps (Schölzel et al., 2002). Later,
the model was extended to mixtures of Gaussians (Gebhardt
et al., 2008) and quadratic logistic regression (Stolzenberger,
2011, 2017).

We integrate the forward formulation of PITM from
Stolzenberger (2017) in our Bayesian framework. For each
taxon, we fit a quadratic logistic regression model describ-
ing the probability of taxa occurrence for a given value of
C. The idea of using quadratic logistic regression stems from
the BIOMOD software for predicting species distributions
(Thuiller, 2003). The regression for taxa T contains linear
and quadratic terms for each of the climate variables as well
as an interaction term:

P (T = 1 |C = (C1,C2))

= logit
(
βT1 +β

T
2 C1+β

T
3 C2+β

T
4 C1C2+β

T
5 C

2
1 +β

T
6 C

2
2

)
. (3)

Here, “logit” denotes the logistic function, and βT1 , . . . , βT6
represents regression coefficients. This regression leads to a
unimodal response function that is anisotropic but has two
symmetry axes, as can be seen for dwarf birch (Betula nana)
and European ivy (Hedera helix) in Fig. 3.

To fit response functions, vegetation data are used because
they contain more accurate information on the occurrence of
a taxon on the spatial scales of interest compared to modern
pollen samples. The disadvantage of using vegetation data
for the calibration is that the probability of the presence of
a taxon is only valid in vegetation space on the spatial scale
taken for the training data but not in the pollen or macrofossil
space in which there can be multiple non-climatic reasons for
the absence of a taxon like local plant competition or pollen
transport effects, as well as local climatic effects below the
resolution of our reconstruction.

For the calibration against the modern dataset, we use
presence (T = 1) as well as absence (T = 0) information on
the taxa that is justified by assuming that the vegetation maps
contain accurate information on taxa presence and absence.
From the definition given in Sect. 2.3, it follows that at any
location MTWA is larger than or equal to MTCO. Formally
incorporating this constraint into the inference leads to a non-
linear condition on the regression parameters, which is very
hard to implement. Therefore, we choose the more practi-
cal way of adding artificial absence information for combina-
tions of MTWA and MTCO such that MTCO>MTWA. This
makes reconstructions of MTCO values larger than MTWA
very improbable. To apply the response functions for individ-

www.clim-past.net/15/1275/2019/ Clim. Past, 15, 1275–1301, 2019



1280 N. Weitzel et al.: Combining proxy data and climate simulations for spatial reconstructions

Figure 2. Directed acyclic graph corresponding to the Bayesian framework in Eq. (2). Involved quantities are given by nodes, and arrows
indicate the dependencies of variables. White: inferred quantities; gray: input data.

Figure 3. Response functions for (a) Betula nana and (b) Hedera helix. The relative frequency of occurrence in 1 K bins is shown in colors,
and the contours depict the probability of presence as estimated by the logistic response function. Gray boxes denote bins without calibration
data. In the climate space, combinations of MTWA and MTCO with MTWA<MTCO cannot occur by definition. White bins in the upper
left depict artificial absence information added to account for this constraint.

ual taxa to a set of proxy data, we assume that proxy samples
P (s), where s = 1, . . . , S subscripts the proxy samples, are
conditionally independent given a climate field and that, con-
ditioned on C(xs), where xs is the location of the sth sample,
P (s) is independent of the climate at all other locations. This
leads to the following probabilistic model for the set of mod-
ern vegetation samples:

P (Pm |Cm,θ )

=

Sm∏
s=1

∏
T ∈ T (P )

P
(
P Tm (s) |Cm(xs),βT1 , . . .,β

T
6

)
. (4)

Here, P Tm (s) is the presence or absence of taxa T in the sth
calibration sample, T (P ) is the set of all taxa occurring in

the fossil pollen and macrofossil synthesis, and θ = (βTi , i =
1, . . .,6, T ∈ T (P )).

As described above, the absence of a taxon in a pollen or
macrofossil sample can have reasons that are not included in
the absence probability estimated from Eq. (4), as this cali-
bration is only valid in the vegetation space. As information
on the absence of a taxon in the vegetation space is not avail-
able from pollen and macrofossil data, the only reliable oc-
currence information on a taxon in the respective grid box in
the past is the presence of the taxon in a pollen or macrofos-
sil sample (Gebhardt et al., 2003). Hence, only occurring taxa
are included in the reconstruction step. Violations of the as-
sumption that taxa are treated as conditionally independent
given climate, i.e., due to the co-occurrence of taxa (Kühl
et al., 2002), can lead to over-fitting. Therefore, a statistical
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preselection of taxa, which are present in a sample, is applied
(Gebhardt et al., 2008). For the pollen and macrofossil syn-
thesis used in this study, the preselection was carried out by
Simonis (2009) and we follow his results. Following these
considerations, P (Pp |Cp,θ ) is given by

P (Pp |Cp,θ )

=

Sp∏
s=1

∏
T ∈ T (s)

P
(
P Tp (s) |Cp(xs),βT1 , . . .,β

T
6

)
, (5)

where T (s) represents the taxa occurring in sample s and
picked by the preselection procedure.

Finally, we define a prior distribution for θ . We use a Gaus-
sian distribution centered at 0 and a marginal variance of 10
for each parameter βTi . Due to the absence of prior informa-
tion on the correlation structure, we assume independence
between the taxa as well as within a taxon. Due to the high
information content in the calibration dataset, the influence
of the prior on the response functions is negligible for most
taxa. It slightly smooths the corresponding maximum likeli-
hood estimates, particularly for rare taxa, but does not influ-
ence the reconstructions significantly.

Using a flat prior for Cp(xs) and removing spatial corre-
lations, local climate reconstructions at the locations of the
proxy samples can be calculated. These reconstructions de-
pend only on the proxy data in grid box xs . Results of lo-
cal MH reconstructions for each grid box with proxy data
are shown in Fig. 4, where the local reconstruction means
and 90 % credible intervals (CIs) are plotted. Local recon-
structions can also be used to evaluate the ability of the
transfer functions to reconstruct modern climate, which pro-
vides a reference for possible regional biases. For the PITM
model such evaluations have been performed by Gebhardt
et al. (2008) and Stolzenberger (2011). Both evaluations
show that the model tends to underestimate north–south gra-
dients, leading to positive biases in Fennoscandia and slightly
negative biases in the Mediterranean. The biases and the un-
certainties are larger for winter temperature than for sum-
mer. Therefore, results for MTCO in northern Fennoscandia
should be treated with caution, while for all other regions the
biases of the reconstruction means are within reconstruction
uncertainties.

An issue of the PITM version used in this study is the in-
consistent use of calibration and fossil data by using presence
and absence information on taxa for the calibration but only
occurring taxa in the reconstruction. Despite this inconsis-
tency, the reconstructions in this study are in agreement with
previous versions of PITM, for which only occurrence infor-
mation was used for calibration. However, there is no simple
solution for the problem that the calibration is in vegetation
space, whereas the absence of taxa in the fossil samples is
information in the pollen or macrofossil space. A promising
idea might be to model the absence due to non-climatic rea-
sons as zero inflation by adding a latent variable to estimate

the detection probability of a taxon (MacKenzie et al., 2002).
But the estimation of detection probabilities is a very chal-
lenging task because it depends on many factors like pollen
influx area, local topography, soil properties, and plant com-
petition, which might change over time. In addition, the pro-
cesses that influence the detection probability of macrofos-
sils are very different than for pollen. Therefore, a different
detection probability has to be estimated for pollen than for
macrofossils. Resolving the described issues is an interesting
direction for future research but is beyond the scope of this
study.

3.3 Process stage

The ensemble of climate simulations is used to control the
spatial structures of the reconstruction and to constrain the
range of physically possible climate states for a given exter-
nal forcing by computing a spatial prior distribution from the
ensemble members. This distribution is combined with inter-
polation parameters ϑ to facilitate a more flexible adjustment
to the proxy data. The estimation of the prior distribution is
hampered by the small number of ensemble membersK = 7.

It is not obvious which method for estimating the prior
distribution is best suited for the problem at hand and which
additional model parameters are appropriate to preserve as
much physical consistency contained in the climate simula-
tions as possible but to correct for climate model inadequa-
cies. Therefore, we perform a comparison study of six pro-
cess stage models that are composed of three techniques to
formulate the process stage and two choices for the involved
spatial covariance matrix.

3.3.1 Gaussian model

The most common approach in the data assimilation litera-
ture is to assume that the ensemble members are indepen-
dent and identically distributed (iid) samples from an un-
known Gaussian distribution of possible climate states (Car-
rassi et al., 2018). In the following, the climatological means
of the K ensemble members are denoted by µk . Subse-
quently the spatial prior distribution is given byN (µ,6prior),
where N denotes a Gaussian distribution, µ is the ensem-
ble mean, and 6prior is a spatial covariance matrix, which is
given by a regularized version of the empirical covariance:

6emp =
1

K − 1

K∑
k=1

(µk −µ) (µk −µ)t . (6)

The superscript t denotes the matrix transpose. Hence, the
covariance matrix is based on the inter-model differences
as an estimate of epistemic uncertainties. The regularization
techniques of 6emp are specified below. The Gaussian dis-
tribution is N -dimensional, where N is the number of grid
boxes times the number of jointly reconstructed variables.

The main advantage of this Gaussian model (GM) is that
inference is simpler than in more complex probability density
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Figure 4. Summary statistics of local reconstructions using the PITM forward model. (a, b) Mean anomaly from CRU reference climatology;
significant anomalies (5 % level) are marked by black crosses. (c, d) Uncertainty measured by the size of marginal 90 % CIs.

estimation techniques. The disadvantage is that it relies on
the strong assumption that µk represents iid samples from an
unknown Gaussian distribution. This assumption tends to be
more realistic for samples from just one ESM, whereas statis-
tics of multi-model ensembles are often not well described by
purely Gaussian distributions (Knutti et al., 2010). A second
disadvantage of this model is that the absence of additional
parameters limits the possibilities to adjust the posterior dis-
tribution to the proxy data. The third disadvantage is that the
spatial structures of individual ensemble members are lost by
averaging over all members. Nevertheless, in many climate
prediction applications multi-model averages outperformed
each individual ESM (e.g., Krishnamurti et al., 1999).

3.3.2 Regression model

A relaxation of the assumptions of the GM is the second
model, which we call the regression model (RM) because it is
inspired by regression-based models popular in postprocess-
ing and climate change detection and attribution (Hegerl and
Zwiers, 2011). In the RM, variable weights λk , k = 1, . . . , K
are introduced to allow for weighted averages of the ensem-
ble members. This means that samples that fit better to the
proxy data are weighted higher in the posterior. The sum of
the weights is set to one such that an unrealistically warm or

cold state is prevented. This leads to the process stage model

P(Cp|λ1, . . .,λK )=N
(
Cp |

K∑
k=1

λkµk,6prior

)
, (7)

and an additional prior distribution for the model weights,

P (λ)= Dir
(
λ1, . . .,λK |

1
2
, . . .,

1
2

)
. (8)

“Dir” denotes a Dirichlet distribution, which guarantees that
the weights take values between zero and one and sum up to
one. Conditioned on λ, the process stage distribution is Gaus-
sian, but non-Gaussianity is permitted through the variable
weights. The parameters of the prior distribution are chosen
to prefer combinations with one dominant ensemble mem-
ber that is adjusted by the other members to improve the fit
to the proxy data. Thereby, it preserves more physical struc-
tures from individual members than the GM, as better-fitting
models are only weakly corrected for climate model inade-
quacies. The RM has the advantage of possessing more de-
grees of freedom compared to the GM. The inference process
becomes a little more involved than for the GM because the
ensemble member weights have to be estimated, too, but the
conditional Gaussian distribution of Cp helps design efficient
inference algorithms.
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3.3.3 Kernel model

The third model has been introduced in the data assimilation
literature by Anderson and Anderson (1999) to combine par-
ticle and Gaussian filtering approaches. This kernel model
(KM) assumes that each ensemble member is a sample from
an unknown distribution of possible climate states given a
set of forcings, but it does not assume that this unknown dis-
tribution is Gaussian. Instead, nonparametric kernel density
estimation techniques (Silverman, 1986), in which the proba-
bility distribution is given by a mixture of multivariate Gaus-
sian kernels, are used. Each ensemble member climatology
corresponds to the mean of a kernel.

Ideally, the covariance matrix of each kernel would cor-
respond to the respective ESM such that the spatial autocor-
relation of that ESM is preserved when we sample from its
kernel. Unfortunately, there is only one MH run available for
each ESM, and the internal variability in those runs is much
smaller than the inter-model differences. Using the internal
variability of those runs would thus lead to very distinct ker-
nels and allow for too few climate states. Therefore, the co-
variance of each kernel is estimated from the inter-model dif-
ferences even though autocorrelation of the individual mod-
els is lost. This is a very common choice in kernel-based
probability density approximations (Liu et al., 2016; Silver-
man, 1986).

Compared to the GM, the empirical covariance matrix
6emp is scaled by the Silverman factor (Silverman, 1986),

f =

(
4

K · (N + 2)

) 2
N+4

, (9)

which optimizes the variances of the kernels. Hence, in the
KM the scaled empirical covariance matrix 6̃emp, given by
f ·6̃prior, is regularized, leading to the spatial covariance ma-
trix 6̃prior. Note that the small number of ensemble members
leads to a standard deviation reduction of only around 2 % in
our applications.

Each kernel gets an assigned weight ωk , k = 1, . . . , K ,
which is inferred in the Bayesian framework. The weights
sum up to one. The resulting process stage is a mixture dis-
tribution:

P
(
Cp |ω1, . . .,ωK

)
=

K∑
k=1

ωkN
(
Cp |µk, 6̃prior

)
. (10)

A Dirichlet distributed prior is used for ω with parameter
1
2 for each of the K components. A computational disadvan-
tage of the KM is that the process stage is multi-modal and
non-Gaussian. We augment the model with an additional pa-
rameter z, which follows a categorical distribution, denoted
by “Cat”, to restore Cp as Gaussian conditioned on ω and z. z
selects a kernel k according to its weight ωk , i.e., z is defined

such that

P (ω)= Dir
(
ω1, . . .,ωK |

1
2
, . . .,

1
2

)
, (11)

P (z |ω)= Cat(z1, . . .,zK |ω1, . . .,ωK ) , (12)

P
(
Cp |z

)
=

K∏
k=1

(
N
(
Cp |µk,6prior

))zk . (13)

Integrating out z yields the mixture distribution Eq. (10).
Two advantages of the KM are that it is not assumed that

the unknown prior distribution is Gaussian and that the ker-
nels do not rely on an iid assumption for their first-moment
properties. However, the KM still relies on an iid assumption
for the second moments. The KM preserves the spatial struc-
tures of each ESM in the first moments of the kernels. This
preservation of physical consistency reduces the degrees of
freedom compared to the RM. For example, when the true
climate state lies exactly between µ1 and µ2, the posterior
mode cannot be changed to 1

2 (µ1+µ2), which is possible in
the RM. Another disadvantage of the KM is that the multi-
modality makes the design of efficient inference algorithms
a lot more challenging.

3.3.4 Glasso-based covariance matrices

The first technique to regularize the empirical covariance ma-
trix (the scaled empirical covariance in the KM), which is
applied in this study, is the graphical lasso algorithm (glasso;
Friedman et al., 2008, implemented in the R package glasso).
This algorithm approximates the precision matrix (inverse
covariance) by a positive definite, symmetric, and sparse ma-
trix6−1

prior. Therefore,6prior is a valid N -dimensional covari-
ance matrix. Glasso maximizes the penalized log likelihood:

log det 6−1
prior− trace

(
6emp6

−1
prior

)
− ξ ||6−1

prior||1, (14)

where ξ is the penalty parameter, || · ||1 is the vector L1
norm, and the first two terms are the Gaussian log likeli-
hood. Because applying the glasso algorithm is computation-
ally expensive, it is not feasible to formally include ξ in the
Bayesian framework. Instead a suitable value of ξ has to be
determined prior to the inference. In this study, ξ is chosen
such that6prior is a numerically stable covariance matrix and
the performance in cross-validation experiments (CVEs) is
optimized. Technical details on the determination of ξ are
described in Appendix A.

The advantage of the glasso approach is that the empiri-
cal matrix can be approximated very closely and the sparse-
ness of the precision matrix facilitates the use of efficient
Gaussian Markov random field (GMRF) techniques (Rue and
Held, 2005) in the inference algorithm. A disadvantage is that
no new spatial structures are added to 6emp. Therefore, the
effective number of spatial modes is much smaller than the
dimension of the climate vector, which can lead to a collapse
onto a very small subspace of the N -dimensional state space
and subsequently biases and under-dispersion.
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3.3.5 Shrinkage-based covariance matrices

To overcome the deficiencies of the glasso approach, we pro-
pose an alternative covariance regularization technique. The
so-called shrinkage approach (Hannart and Naveau, 2014)
uses a weighted average of the empirical correlation matrix
and a reference correlation matrix, which in our case con-
tains additional spatial modes such that the effective number
of spatial modes in the covariance matrix is increased. This
allows for deviations from the spatial structures prescribed
by the climate simulation ensemble and is therefore a strat-
egy to account for climate model inadequacies.

Let9emp be the empirical correlation matrix of the climate
simulation ensemble, which is related to 6emp by

6emp = Diag
(
6emp

) 1
2 9emp Diag

(
6emp

) 1
2 , (15)

where Diag(6emp) denotes a diagonal matrix with the same
diagonal entries as 6emp, and the exponent 1

2 means that the
square root of each diagonal entry is taken. Replacing 9emp
by a weighted average of9emp and a shrinkage target8 leads
to the shrinkage covariance matrix

6prior = Diag
(
6emp

) 1
2
(
α9emp+ (1−α)8

)
Diag

(
6emp

) 1
2 . (16)

α is the weighting parameter, which takes values between
zero and one. 8 is computed from a numerically efficient
GMRF approximation of a stationary Matérn correlation ma-
trix (Lindgren et al., 2011). The Matérn correlation matrix
is controlled by three parameters: the smoothness, the range
ρ, and the anisotropy ν. We fix the smoothness for compu-
tational reasons. ρ controls the decorrelation length, and ν
parameterizes the ratio of the meridional versus zonal decor-
relation length. For joint reconstructions of multiple climate
variables, independent correlation matrices for each variable
are combined in a block structure. Details about the defini-
tion of 8 are given in Appendix B.

Ideally, the parameters α, ρ, and ν are estimated from
the proxy data. But initial tests showed that the signal in
the proxy data is not informative enough to constrain the
parameters. Therefore, an ensemble of parameter combina-
tions is created from fitting the shrinkage model to each of
the climate simulation ensemble members given all other
members. This results in seven consistent sets of α, ρ, and
ν. Those are passed to the reconstruction framework such
that each parameter set is chosen with a probability inferred
from the proxy data. Thereby, each set is based on a fit
against physically consistent structures, and the problem of
non-identifiability of the parameters from proxy data alone
is reduced. The resulting parameter estimates cover a wide
range of possible values. The main advantage of the shrink-
age approach over the glasso-based matrices is that more spa-
tial modes are included in the covariance matrix. Thereby,
the collapsing of the reconstruction towards a very low-
dimensional subspace is mitigated.

3.4 Inference strategy

Because PITM is non-Gaussian and nonlinear, the posterior
climate does not belong to a standard probability distribu-
tion. Therefore, Markov chain Monte Carlo (MCMC) tech-
niques are used to asymptotically sample from the correct
posterior distribution. These samples allow for analyses be-
yond summary statistics like means and standard deviations.
A Metropolis-within-Gibbs strategy is implemented, which
means that in each update of the Markov chain, we sample
sequentially from the full conditional distributions (i.e., the
distribution of the respective variable given all other vari-
ables) of θ , ϑ , and Cp. This strategy is chosen because for
many variables the full conditional distributions follow prob-
ability distributions for which efficient sampling algorithms
exist, and for the remaining variables Metropolis–Hastings
updates are used for sampling.

To sample the regression parameters θ in Eqs. (3) to (5)
efficiently, the data augmentation scheme of Polson et al.
(2013) is used. For taxa T , the full conditional only depends
on Cp, Cm, P Tp , and P Tm but not on other taxa. Therefore, we
can sample βT1 , . . .,β

T
6 independently from the other taxa.

Polson et al. (2013) introduce help variables γ Tl , l = 1, . . . ,
L(T ), where L(T ) is the number of observations of taxa T ,
such that P(γ Tl |β

T
1 , . . .,β

T
6 ,Cm,Cp) is Pólya–gamma (PG)

distributed, and P(βT1 , . . .,β
T
6 |P

T
m ,P

T
p ,γ

T
1 , . . .,γ

T
L ) is Gaus-

sian. Therefore, the MCMC algorithm samples alternately
from a PG distribution using the sampler of Windle et al.
(2014) and from a Gaussian distribution. The PG sampler
is implemented in the R package BayesLogit (Windle et al.,
2013).

Sampling from ϑ depends on the particular process stage
model. In models with a shrinkage covariance matrix, α,
ρ, and ν are sampled from the K parameter sets in a
Metropolis–Hastings step. The weights λ in the RM are sam-
pled from a random-walk-type Metropolis–Hastings update.
In the KM, Eqs. (11) to (13) lead to full conditionals for ω
and z, which are again Dirichlet and categorically distributed
but with updated parameters. Therefore, Gibbs sampling can
be used to update ω and z.

To sample from the full conditional of Cp, we separate the
grid boxes xP with at least one proxy record from those with-
out any proxy records denoted by xQ. There is no closed form
available for the full conditionals of Cp(xP ). Therefore, we
use a random walk Metropolis–Hastings algorithm to update
Cp(xP ) sequentially for all members of xP . As the transfer
functions act locally, Cp(xQ) is conditionally independent of
Pp given Cp(xP ) and ϑ . Therefore, we update Cp(xQ) by
sampling from P

(
Cp(xQ) |Cp(xP ),ϑ

)
, which is Gaussian.

The multi-modality of the KM makes inference for this
model a lot more challenging than for the GM and RM. The
problem of efficient MCMC algorithms for multi-modal pos-
terior distributions is a widely acknowledged issue in the lit-
erature (Tawn and Roberts, 2018), and in this study Metropo-
lis coupled Markov chain Monte Carlo (MC3; Geyer, 1991),
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which is also known as parallel tempering, is used to over-
come this issue. Details on this procedure are provided in
Appendix D.

To speed up the inference, grid boxes with proxy data
and those without proxy data are treated sequentially. First,
Cp(xQ) is integrated out to get an estimate of the joint distri-
bution of 2 and Cp(xP ). In a second step, we sample from
Cp(xQ) conditioned on Cp(xP ) and 2. The remaining bot-
tleneck in computation time is the estimation of the transfer
function parameters due to the large modern calibration set.
While in theory the observation layer influences the updates
of θ , in practice the influence of Eq. (5) on the posterior of
θ is negligible. Therefore, a modularization approach (Liu
et al., 2009; Parnell et al., 2015) is used in CVEs, wherein a
sequence of reconstructions with slightly changed proxy net-
works is computed. This means that first MCMC samples of
θ are drawn using only Eq. (4). Then, Cp is reconstructed
using these samples instead of sampling θ from its full con-
ditional.

Detailed formulas for the full conditional distributions are
given in Appendix C. The pseudo-code for the MCMC and
MC3 algorithms is provided in the Supplement. For a 798-
dimensional climate posterior, as is the case in joint recon-
structions of MTWA and MTCO with 45 grid boxes that
contain at least one proxy record, 75 000 MCMC samples are
created. The first 25 000 samples are discarded as burn-in. To
reduce the autocorrelation of subsequent samples, every fifth
sample is extracted to create a set of 10 000 posterior sam-
ples for further analyses. On a standard desktop computer,
reconstructions with the modularized model are computed in
approximately 30 min. The convergence of all MCMC vari-
ables is checked using the Gelman–Rubin–Brooks criterion
(Brooks and Gelman, 1998) implemented in the R package
coda (Plummer et al., 2006).

4 Results

In this section, results from a comparison study of the six dif-
ferent process stage models are shown. Then, the MH recon-
struction for Europe with the Simonis et al. (2012) synthesis
and the PMIP3 MH ensemble is presented.

4.1 Comparison of different process stage frameworks

In this section, the reconstruction skill of the three process
stage formulations (GM, RM, KM) and the two covariance
models (glasso, shrinkage) are compared using two types of
experiments. Identical twin experiments (ITEs) use the cli-
mate simulation ensemble by simulating pseudo-proxy data
from one ESM and trying to reconstruct that reference clima-
tology from the simulated proxies and the remaining ensem-
ble members. These experiments facilitate the understanding
of different modeling approaches for the process stage in a
controlled environment. In particular, the evaluations do not
have to rely on indirect observations, as is the case in real pa-

leoclimate applications for which the true climate state is un-
known. The second type of experiments are CVEs for which
spatial reconstructions with the Simonis et al. (2012) syn-
thesis are performed but the samples from one grid box are
left out. Then, the reconstructions for this grid box are evalu-
ated against the left-out sample in the vegetation space. The
advantage of these experiments is that the models are com-
pared in a real-world setting. The disadvantage of CVEs is
that no direct observations of paleoclimate are available such
that evaluations against observations have to be indirect.

4.1.1 Identical twin experiments

The first step in an ITE is to choose a reference ESM with
climate stateCtrue

p . Then, for each grid box that contains sam-
ples from the Simonis et al. (2012) synthesis (denoted by
xP ), pseudo-proxies are simulated from a Gaussian approx-
imation of the uncertainty structure of the local reconstruc-
tions depicted in Fig. 4. The pseudo-proxies are assumed to
be unbiased with a bivariate Gaussian distribution and co-
variance matrix 6xsp , i.e.,

P (xs)∼N
(
Ctrue

p (xs),6xsp

)
, xs ∈ xP . (17)

Using unbiased Gaussian pseudo-proxies is a common strat-
egy to test climate field reconstruction techniques (e.g.,
Gomez-Navarro et al., 2015). It allows for a direct study of
the ability of the process stage methods to estimate spatial
climate fields from sparse and noisy proxy data, without hav-
ing to factor in potential biases in the transfer function. Fi-
nally, a probabilistic spatial reconstruction is computed from
the simulated proxies and the remaining ensemble members.
For each of the six different process stage configurations and
each of the seven PMIP3 ensemble members as reference cli-
matology, five randomized ITEs are performed. The evalua-
tion of the ITEs focuses on biases in the reconstructions, po-
tential under-dispersion, and the ability of the reconstruction
to probabilistically predict past climate.

Averaged over all ITEs with the same process stage model
and averaged in space, the mean deviation between the ref-
erence climate and posterior mean as a measure for system-
atic biases is close to 0 K for all process stage models with
values between −0.14 K for the shrinkage KM and +0.03 K
for the shrinkage RM (Table 2, Fig. 5a), but the variation
across ITEs is larger for the glasso covariance models (stan-
dard deviation around 0.31 K) than for the shrinkage covari-
ance models (standard deviation around 0.24 K). The stan-
dard deviations for MTCO reconstructions tend to be larger
than for MTWA. This can be explained by the larger noise
level in the local MTCO reconstructions, which makes the
spatial MTCO reconstructions more susceptible to biases.
Concerning the spatial patterns of mean deviations, all ITEs
with glasso covariance matrices exhibit larger local biases
than those with shrinkage matrices (see additional figures in
the Supplement). While the magnitude of biases for the GM
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and RM models with shrinkage covariances is much smaller,
the magnitude of local deviations of the shrinkage KM is just
slightly smaller than for glasso covariances. This shows that
the models with a shrinkage matrix can reconstruct spatial
patterns better than the models that use glasso. In addition,
averaging over different ensemble members in the process
stage mean seems to be a more effective strategy as the GM
and RM reconstruct the spatial structures better than the KM.

The higher number of spatial modes in the shrinkage co-
variances leads to larger posterior uncertainties than for the
glasso models because the limited information contained in
the proxy data can constrain only a small number of spatial
modes (Table 2). To study the dispersiveness of the recon-
struction, coverage frequencies for 50 % and 90 % CIs are
calculated. This means that the frequency of the reference
climate state to be included in the respective CIs is com-
puted. For the 50 % CIs, coverage frequencies below 50 % in-
dicate under-dispersiveness, whereas values above 50 % indi-
cate over-dispersion. Similarly, the target for the 90 % CIs is
90 %. In all ITEs, the glasso models are under-dispersive, and
the shrinkage models are over-dispersive (Table 2, Fig. 5c).
The coverage frequency for 50 % CIs is below 41 % in all
ITEs with a glasso covariance matrix and above 56 % in all
ITEs with a shrinkage covariance matrix. Similarly, the cov-
erage frequencies for 90 % CIs are below 77 % for all glasso
ITEs and above 94 % for all ITEs with a shrinkage matrix
(Fig. 5d). In most grid boxes of the ITEs with a glasso-based
covariance matrix, the coverage frequencies are below the
target values, whereas they are above the desired values in
almost all grid boxes in the ITEs with a shrinkage matrix (see
additional figures in the Supplement). The values are closest
to the target near grid boxes with proxy data in all ITEs.

To analyze the combined effect of biases and dispersive-
ness, the continuous ranked probability score (CRPS) is com-
puted. This is a common strictly proper score function for
evaluating probabilistic predictions (Gneiting and Raftery,
2007), in our case the ability of a reconstruction method to
probabilistically predict past climate from sparse and noisy
data. It is a generalization of the absolute error to probabilis-
tic forecasts (Matheson and Winkler, 1976) given by

CRPS
(
F,Ctrue

p (x)
)
=

∞∫
−∞

(
F (y)− δ(y≥Ctrue

p (x))

)2
dy, (18)

where F is the cumulative distribution function of the re-
construction Cp at grid box x, and Ctrue

p (x) is the reference
climate state at x. The CRPS has a unique minimum at 0 and
is positive unless F is a perfect prediction.

With a spatially averaged mean around 1 K for all three
models, the ITEs with glasso covariance matrices feature a
higher CRPS than the ITEs with shrinkage matrices that have
a spatially averaged mean around 0.4 K (Table 2, Fig. 5b).
This is a result of larger biases on the grid box level and
under-dispersiveness of the posterior distribution. In addi-
tion, the variability between the ITEs with the same pro-

cess stage model is higher for models with glasso covariance,
which shows that these models are less robust. The MTWA
CRPS is slightly lower than the MTCO CRPS since the local
reconstructions constrain MTWA more than MTCO. Among
the process stage models with a shrinkage matrix, the KM
performs slightly worse than the GM and the RM as a result
of the larger biases on the grid box level described above. The
spatial structures of CRPS reflect the mean deviation patterns
(Fig. 6). This is an effect of more pronounced spatial patterns
in the mean deviations compared to dispersiveness.

4.1.2 Cross-validation experiments

CVEs are a way to understand the ability of a spatial recon-
struction method to produce consistent estimates. In paleocli-
matology, the issue is that all observations are indirect, which
means that poor evaluations can result from errors in the pro-
cess stage or the data stage. The assumption behind CVEs
is that the data stage is unbiased or at least consistently bi-
ased among different proxy samples. Cross-validations are
evaluated in the observation space. In this study, this is the
vegetation space, i.e., the occurrence of taxa in a grid box.
As the only reliable information available from the pollen
and macrofossil synthesis on the vegetation composition in
a grid box is the presence of certain taxa, this is also the
only data used for the evaluation. Due to the sparseness of
the proxy network, leave-one-out CVEs are performed and
no more data are left out in each experiment.

In each CVE, a reconstruction with the Bayesian frame-
work is computed with all proxy samples except for those in
one grid box x. Then, the reconstruction Cp(x) at grid box
x is extracted and treated as a probabilistic prediction of the
climate at x. Next, the PITM forward model is applied to
C(x) for each sample Pp located in grid box x to produce
probabilistic predictions of the occurrence of the taxa that
are found in those samples. This prediction of the occurrence
of a taxon T is represented by the probability of presence
p ∈ [0,1]. A common score function for binary variables is
the Brier score (BS; Brier, 1950) given by

BS(T )=
1
2

(
(δT (1)−p)2

+ (δT (0)− (1−p))2
)

=

{
1+p2

− 2p if T = 1

p2 if T = 0,
(19)

where δT denotes the indicator function of taxa T . The BS
takes values between zero and one; zero corresponds to a
perfect prediction and one to the worst possible prediction.
The PITM forward model is applied to each MCMC sample,
which leads to a set of probabilistic predictions pj (T ), j = 1,
. . . , J for taxa T . Predictions are calculated for each taxon
that occurs in sample P (s). The joint score of P (s) is then
calculated by averaging the BS of each taxon and prediction:

BS(P (s))=
1

|T (s)|J

∑
T ∈T (s)

J∑
j=1

(
1+pj (T )2

− 2pj (T )
)
. (20)
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Table 2. Summary measures for ITEs and CVEs. Summary measures for ITEs and CVEs with the six process stage models.

GM RM KM GM RM KM
glasso glasso glasso shrink shrink shrink

Mean deviation (K) 0.004 0.000 −0.032 0.026 0.028 −0.140
Mean 50 % CI size (K) 1.189 1.194 1.238 1.583 1.592 1.755
Mean 90 % CI size (K) 2.906 2.916 3.032 3.880 3.901 4.356
50 % coverage frequency (%) 29.2 29.6 30.5 79.9 78.8 76.5
90 % coverage frequency (%) 64.1 64.4 66.1 99.6 99.3 99.5
Mean CRPS (K) 1.03 1.032 1.010 0.399 0.408 0.468
Mean BS (p2) 0.186 0.186 0.187 0.165 0.163 0.161

Figure 5. Results from ITEs. The box plots depict the distribution of experiments with the same process stage model. (a) Mean deviation
from reference climate, (b) mean CRPS, (c) coverage frequency of 50 % CIs, and (d) coverage frequency of 90 % CIs.

If multiple samples are assigned to one grid box, the mean
score of those samples is taken.

A problematic step in the methodology described above is
that the BS is only evaluated for occurring taxa for the rea-
sons discussed in Sect. 3.2. This can make the BS improper
when comparing statistical models that predict the presence
or absence of taxa. However, the goal of the methodology de-
scribed above is an indirect evaluation of predictions of past
climate via transfer functions. In that context, it would lead

to inconsistencies between the local reconstructions and the
BS evaluations if taxa that are absent in the proxy synthesis
were included. Circumventing this issue is beyond the scope
of this study. It should be noted that for each taxon the BS is a
convex function of climate and minimal for a unique climate
state. These two properties make the methodology described
above useful for the indirect evaluation of climate field re-
construction methods.
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Figure 6. Mean CRPS in ITEs for GM, RM, and KM. Top row: models with glasso covariance matrix, MTWA. Second row: models
with shrinkage covariance matrix, MTWA. Third row: models with glasso covariance matrix, MTCO. Bottom row: models with shrinkage
covariance matrix, MTCO. Grid boxes with simulated proxy data are depicted by black dots.

The models with glasso covariances perform slightly
worse than those with shrinkage covariances, as the mean
BS takes values of 0.186 (GM, RM) or 0.187 (KM) for the
glasso-based models compared to values between 0.161 and
0.165 for models with shrinkage covariances (Table 2). Simi-
lar to the ITEs, the differences between models with different

covariance types are larger than those with the same covari-
ance model. Accordingly, the largest differences in individ-
ual grid boxes between models with different covariance ma-
trix types are on the order of 10−1 but only on the order of
10−2 between models with the same covariance type. The
models with shrinkage covariance matrices tend to perform
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better in western Europe and Fennoscandia, whereas in cen-
tral and eastern Europe, the magnitude of the differences is
very small and the models with glasso covariance matrices
perform slightly better in the majority of grid boxes.

4.1.3 Conclusions from the comparison study

The ITEs show that the models with shrinkage matrix co-
variances are more dispersive, less biased, and more robust
than those with glasso covariance matrices. These properties
transfer to the CVEs in which the models with a shrinkage
covariance matrix perform better, too. The results from mod-
els with the same covariance matrix are very similar except
that the KM with a shrinkage covariance matrix is on aver-
age more biased than the respective GM and RM. This shows
that the covariance matrix choice determines the reconstruc-
tion skill more than the general formulation of the process
stage as Gaussian, regression, or kernel model. The reason
for this strong effect of the regularization technique might
be the small ensemble size and the fact that the modes of
the inter-model variability do not explain the spatial variabil-
ity of the climate optimally, which further reduces the useful
spatial modes in the empirical covariance matrix.

The better performance of shrinkage covariance models
shows that the low number of spatial modes is the main rea-
son for the under-dispersiveness of the glasso-based models.
On the other hand, the over-dispersiveness of the shrinkage
models should be an indicator that this model is not under-
dispersed even in real-world applications that face additional
challenges from potentially biased or under-dispersed trans-
fer functions and a more sophisticated spatial structure of the
climate state than in the ESM climatologies. Additionally,
this over-dispersiveness shows that in most regions the en-
semble spread is wide enough to lead to reconstructions that
do not feature posterior distributions that are too narrow.

The larger biases of the KM with the shrinkage covariance
matrix compared to the GM and RM are a result of ensem-
ble member weight degeneracy in the particle filter part of
this model. The ensemble member weights tend to degener-
ate towards the least deviating model such that the mean val-
ues are biased towards that model. This tendency increases
with the strength of the proxy data signal. This is a well-
known issue of Bayesian model selection (Yang and Zhu,
2018) and therefore also of particle filter methods (Carrassi
et al., 2018), which hinders the use of KMs in data assimila-
tion problems. To mitigate this issue, the particle filter part of
the KM is combined with a Gaussian part that is more similar
to Kalman-type filters. The ITEs show that this adjustment is
strong enough to avoid under-dispersiveness, but the degen-
eracy of the ensemble member weights still leads to larger
biases than in the RM and GM.

4.2 Spatial reconstruction of European MH climate

Based on the results presented in the previous section, the
models with a shrinkage matrix should be preferred over
those with glasso covariance models. In addition, the smaller
biases and more robust nature of the GM and RM with the
shrinkage covariance matrix compared to the KM model
makes them superior choices. Because the RM adjusts more
flexibly to the proxy data than the GM, this model is pre-
sumably better suited to deal with additional caveats of real-
world applications. Therefore, this model is used for the spa-
tial reconstructions, whose results are presented in this sec-
tion. Reconstruction results are summarized in Table 1. Re-
sults from reconstructions with the other five process stage
models are presented in the Supplement.

4.2.1 Posterior mean and uncertainty structure

The spatially averaged mean temperature of the recon-
struction (posterior mean) is 18.27 ◦C (90 % CI: (17.79 ◦C,
18.75 ◦C)) for MTWA and 1.81 ◦C (90 % CI: (1.22 ◦C,
2.45 ◦C)) for MTCO, which in both cases is warmer than
the CRU reference climatology (+0.51 K for MTWA and
+0.69 K for MTCO). Larger anomalies are found for sub-
regions (Fig. 7a, b). For MTWA as well as MTCO, temper-
atures were cooler than today in many southern European
areas, while in northern Europe the temperatures were pre-
dominantly higher than today. More specifically, MTWA was
warmer over Fennoscandia, the British Islands, and the Nor-
wegian Sea. Most of these anomalies are significant on a 5 %
level. Here, a positive anomaly is called significant if the pos-
terior probability to exceed the reference climatology is at
least 0.95. Significant negative anomalies are defined accord-
ingly. The significance estimates are calculated point-wise.
Negative MTWA anomalies are found in large parts of the
Mediterranean and eastern Europe, but fewer anomalies are
significant on a 5 % level than in northwestern Europe. The
largest positive MTCO anomalies are found in Fennoscandia
and off the Norwegian coast. In the other parts of the domain,
the majority of MTCO anomalies are negative, but the spatial
pattern is more heterogeneous than for MTWA. A lot fewer
MTCO anomalies are significant on a 5 % level compared to
MTWA anomalies.

Most of the taxa used in the reconstruction are more
strongly confined for MTWA than for MTCO because the
growth of most European plants is more sensitive to condi-
tions during the growing season. This results in more con-
strained local MTWA reconstructions (Fig. 4c), which is
in concordance with findings from Gebhardt et al. (2008).
Hence, the uncertainty in the MTWA reconstruction is
smaller than in the MTCO reconstruction, with spatially av-
eraged point-wise 90 % CI sizes of 4.15 and 5.84 K, respec-
tively (Fig. 7c, d). The uncertainty is smallest in grid boxes
with proxy records and highest in the northeastern and north-
western parts of the domain where the PMIP3 ensemble
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Figure 7. Spatial reconstruction for MH. (a, b) Posterior mean anomaly from CRU reference climatology; point-wise significant anomalies
(5 % level) are marked by black crosses. (c, d) Reconstruction uncertainty plotted as the size of point-wise 90 % CIs and (e, f) reduction of
uncertainty from posterior to prior measured by the ratio of posterior to prior point-wise 90 % CI sizes. Black dots depict proxy samples.

spread is large and the constraint from proxy data is weak.
For MTWA, additional regions with large uncertainties are
found at the eastern and southern boundaries of the domain
due to weak proxy data constraints.

The highest reduction of uncertainty due to the inclusion
of proxy data is found in grid boxes with proxy data, as quan-
tified by a spatially averaged reduction of point-wise CI sizes
from prior to posterior of 50.1 % compared to 26.0 % for grid
boxes without proxy data (Fig. 7e, f). The uncertainty reduc-

tion for MTWA is higher for terrestrial grid boxes than ma-
rine ones, but the smaller PMIP3 ensemble spread over the
British Islands, the North Sea, and the Bay of Biscay leads
to similar posterior CI sizes in these areas. For MTCO, the
reduction of uncertainty is generally smaller than for MTWA
due to the weaker proxy data constraint.

To study whether the degree of spatial smoothing of the
reconstruction is reasonable, a measure inspired by discrete
gradients is calculated. For each grid box, the mean absolute
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difference between the value in the box and its eight near-
est neighbors is computed. Then, the spatial averages of this
homogeneity measure H in the posterior, the climatologies
of the PMIP3 ensemble members, and the reference clima-
tology are compared. A reconstruction with a good degree
of smoothing is expected to have similar spatial homogene-
ity as the PMIP3 ensemble and the reference climatology, as
H depends mainly on local features like orography or land–
sea contrasts, and we expect these features to affect the local
climate of the MH similarly as today’s climate. For MTWA,
the posterior mean value is 1.41 K (90 % CI: (1.31, 1.53 K)),
which is in agreement with 1.39 K for the reference clima-
tology and values between 1.08 and 1.54 K for the PMIP3
climatologies. The heterogeneity of MTCO is higher than of
MTWA, but the mean posterior value of 2.54 K (90 % CI:
(2.33, 2.76 K)) is of comparable magnitude as the reference
climatology (2.02 K) and the PMIP3 climatologies (between
1.89 and 2.41 K). From these results, it is deduced that the
posterior has a reasonable degree of spatial smoothing.

4.2.2 Comparison of unconstrained PMIP3 ensemble
and posterior distribution

By comparing the posterior with the prior and the local re-
constructions, it can be seen that for most areas with nearby
proxy records the posterior mean resembles the local recon-
structions more than the PMIP3 ensemble mean. This shows
that the uncertainty in the prior distribution is large enough
to lead to a reconstruction that is mostly determined by proxy
data, where available. The posterior MTWA mean is warmer
in northern Europe than the prior mean and cooler in southern
and eastern Europe. For MTCO, the posterior mean is much
warmer than the prior mean in Fennoscandia and slightly
cooler in southern Europe.

The posterior weights λ of the PMIP3 ensemble mem-
bers are a combination of the prior distribution of λ and the
likelihood of Cp for each combination of ensemble member
weights (see Appendix C for details). λ provides information
about which combination of ensemble members fits best to
the proxy data. In our reconstruction, the MPI-ESM-P clima-
tology has the highest posterior weights (mean of 0.485) (see
Fig. 8), followed by the EC-Earth-2-2 climatology (posterior
mean of 0.154) and the Had-GEM2-CC climatology (poste-
rior mean of 0.104). Note that the weights of MPI-ESM-P
and the EC-Earth-2-2 are the only ones that are on average
higher than the prior mean of 1/7. The large differences of
the weights are a result of the large differences between the
ensemble member climatologies. Because there is less un-
certainty in the local MTWA reconstructions, it is the ma-
jor variable for determining the posterior weights. Among
all included models, the MPI-ESM-P simulation is closest to
the dipole structure with MTWA warming in northern and
cooling in southern Europe, which explains the high model
weight.

Figure 8. Posterior ensemble member weights (λ) of the recon-
struction. Prior weights (mean of λ) are denoted by the dashed line.

4.2.3 Added value of the reconstruction

CVEs provide inside into the value that is added to the un-
constrained PMIP3 ensemble, represented by process stage
Eq. (7), by constraining it with the Simonis et al. (2012) syn-
thesis. To quantify the added value, the BS from Eq. (20)
is calculated for the unconstrained process stage, which is
called BS(Prior), and compared to the BS of the posterior,
BS(Posterior), calculated from leave-one-out CVEs. Then,
the Brier skill score (BSS),

BSS=
BS(Prior)−BS(Posterior)

BS(Prior)
, (21)

is computed, which is a measure of the added value of the
spatial reconstruction. For positive BSS values, the posterior
distribution is superior to the prior. On the other hand, the
posterior distribution is inferior to the prior for negative val-
ues. This would indicate inconsistencies in the local proxy
reconstructions or the existence of spurious correlations in
the spatial covariance matrix.

For most left-out proxy samples, the BSS is positive
(68.9 % of grid boxes) with a median of 0.28 (Fig. 9). The
BSS values are predominantly positive for all regions but the
British Islands and the Alps. This indicates high consistency
of the reconstruction in large parts of the domain. In partic-
ular, consistent MTWA cooling in southern and eastern Eu-
rope in the local reconstructions compared to the prior distri-
bution leads to cooling and a reduction of uncertainty in the
posterior compared to the unconstrained PMIP3 ensemble.
Similarly, the consistent MTWA and MTCO warming of the
local reconstructions in the northeastern part of the domain
leads to positive BSS values.

The persistent negative BSS values for the British Islands
are evidence of a systematic issue. For this region, the un-
certainty in the local reconstructions is larger than for other
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Figure 9. BSS from leave-one-out cross-validation: (a) histogram, (b) spatial distribution.

areas such that the local proxy records constrain the posterior
less than the posterior ensemble member weights and some
of the more distant proxy records. This leads to a reduction
of the posterior uncertainty compared to the unconstrained
PMIP3 ensemble but without improving the concordance of
the mean state with the local reconstructions, which in turn
results in negative BSS values. In and near the Alps, nega-
tive BSS might be a result of insufficient accounting for oro-
graphic effects in the different sources of information.

4.2.4 Joint versus separate MTWA and MTCO
reconstructions

To study the effect of reconstructing MTWA and MTCO
jointly compared to separately, additional reconstructions
with only one climate variable are computed. Note that the
interactions of MTWA and MTCO are twofold in the joint
reconstruction: (a) the response functions have an interaction
term, and (b) the process stage contains joint ensemble mem-
ber weights for MTWA and MTCO as well as inter-variable
correlations in the empirical correlation matrix.

The separate MTWA reconstruction is on average around
0.5 K warmer than the joint reconstruction, whereas the spa-
tially averaged posterior mean of the separate MTCO recon-
struction is 0.83 K cooler (Table 3). Hence, the seasonal dif-
ference is smaller in the joint reconstruction due to smooth-
ing from the PMIP3 ensemble and slightly positive correla-
tions between MTWA and MTCO in most of the joint local
reconstructions. The MTWA-only reconstruction is warmer
in most land areas, with the largest differences in southern
and eastern Europe, but the differences are almost never sig-
nificant on a 5 % level (Fig. 10a). As this part of the domain
is best constrained by proxy data and the posterior ensem-
ble member weights are similar to the joint reconstruction,
it is likely that the additional warming is due to the missing
interaction in the transfer function. On the other hand, the
posterior ensemble member weights change a lot for the sep-
arate MTCO reconstruction, with HadGEM2-CC and MRI-

CGCM3 being the models with the highest weights (mean λk
of 0.426 and 0.199, respectively). Together with the less con-
strained transfer functions for MTCO than MTWA, this leads
to a cooler reconstruction for most areas except some parts
of the Mediterranean (Fig. 10b). The cooling is strongest
in Scandinavia, the British Islands, the Norwegian Sea, and
the Iberian Peninsula but almost never significant on a 5 %
level. As these are the regions that are least constrained by
proxy data, choosing different PMIP3 ensemble members af-
fects the reconstruction more than in central Europe, where
MTCO is best constrained by proxy data. The reconstruction
uncertainties are of similar magnitude in the joint and the
separate reconstructions (Table 3).

The BSS pattern in the MTWA-only reconstruction is
mostly the same as in the joint reconstruction except
for slightly positive skill in the British Islands (Table 3,
Fig. 10c). This shows that the added value of the joint re-
construction compared to the unconstrained PMIP3 ensem-
ble is mainly determined by the MTWA reconstruction. On
the other hand, the added value of the MTCO-only recon-
struction is much smaller (Table 3, Fig. 10d) due to larger
uncertainties in the local MTCO reconstructions.

The results show that the more constrained local MTWA
reconstructions have a higher influence on the joint recon-
struction than the local MTCO reconstructions. Reconstruct-
ing MTWA and MTCO jointly should in theory lead to a
physically more reasonable reconstruction by creating sam-
ples drawn from the same combination of ensemble mem-
bers. On the other hand, Rehfeld et al. (2016) show that
multi-variable reconstructions from pollen assemblages can
be biased when signals from a dominant variable are trans-
ferred to a minor variable. While the PITM model might be
less sensitive to this issue than the weighted averaging trans-
fer function used in Rehfeld et al. (2016) because it better
respects the larger MTCO uncertainties, it will be the subject
of future work to study whether joint or separate reconstruc-
tions lead to more reliable results.
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Table 3. Summary measures for the joint MTWA and MTCO reconstructions (rows 1 and 2) and the separated reconstructions of MTWA
(row 3) and MTCO (row 4). Numbers in brackets are minima and maxima of the corresponding 90 % CIs.

Reconstruction Spatial Spatially Point-wise Spatial Median PMIP3 model
name mean averaged uncertainty homogeneity BSS with highest

anomaly 90 % CI size reduction weight

Joint (0.03 K) (1.31 K)
reconstruction 0.51 K 4.15 K 38.1 % 1.41 K

0.28 MPI-ESM-P
(MTWA) (0.99 K) (1.53 K)

Joint (0.10 K) (2.33 K)
reconstruction 0.69 K 5.84 K 19.6 % 2.54 K
(MTCO) (1.32 K) (2.76 K)

Separate (0.55 K) (1.29 K)
MTWA 1.04 K 4.14 K 38.1 % 1.41 K 0.27 MPI-ESM-P
reconstruction (1.51 K) (1.51 K)

Separate (−0.82 K) (2.45 K)
MTCO −0.14 K 5.72 K 20.6 % 2.69 K 0.05 HadGem2-CC
reconstruction (0.60 K) (2.92 K)

Figure 10. Differences of joint and separate reconstructions of MTWA and MTCO. (a, b) Posterior mean difference; point-wise signif-
icant differences (5 % level) between the separate and the joint reconstructions are marked by black crosses. (c, d) BSS of the separate
reconstructions. Black dots depict proxy samples.
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5 Discussion and possible extensions

5.1 Robustness of the reconstruction

Our approach is designed with the goal of being more suit-
able for sparse data situations than standard geostatistical
models. To understand the robustness of the Bayesian frame-
work with respect to the amount of data included in a proxy
synthesis, five experiments with only half of the samples are
performed, which are either selected to retain the spatial dis-
tribution of proxy samples or chosen randomly. In all of the
tests, the general spatial structure of the posterior distribu-
tion, including the anomaly patterns, is preserved despite the
fact that local anomalies and the magnitude of changes vary
depending on the chosen proxy samples, which should be ex-
pected when such a large portion of the already sparse data is
left out. Only the Norwegian Sea in the MTCO reconstruc-
tion changes substantially in some experiments. Plots from
the experiments with reduced proxy samples are provided in
the Supplement.

The mean spatial averages differ by up to 0.6 K for MTWA
and MTCO, but none of the changes are significant on a
5 % level. In contrast, the uncertainty estimates are consistent
across all five experiments with spatially averaged point-wise
90 % CIs that grow by up to 0.4 K from the reconstruction
with the full proxy synthesis. In all experiments, the spatial
homogeneity H is not significantly different from the val-
ues reported in Table 3, which shows that the spatial ho-
mogeneity is more controlled by the process stage than the
proxy data. In all but one experiment, MPI-ESM-P remains
the ensemble member with the largest weight λk , and the
three ESMs that are favored neither in the MTWA nor in the
MTCO reconstruction retain very low weights in all exper-
iments. However, depending on whether proxy samples for
which MTCO is much less constrained than MTWA are re-
moved or not, the weights of the four models with the highest
values in the joint and separate reconstructions can vary. This
explains the MTCO changes in the Norwegian Sea as this is
the region that is most influenced by the ensemble member
weights. The experiments show that the reconstruction is ro-
bust with respect to the number of proxy samples as long
as the remaining samples are informative and relatively uni-
formly distributed across space. In our example, this is not
the case for the Norwegian Sea as no marine proxies are in-
cluded.

The large PMIP3 ensemble spread for most grid boxes
shows that the prior distribution, which is calculated from the
ensemble, contains a wide range of possible states. In areas
that are well constrained by proxy data, this large total uncer-
tainty leads to a reconstruction that depends little on the cli-
matologies of the ensemble members. Hence, in these areas,
the reconstruction is not sensitive to the particular formu-
lation of the process stage (compare with the Supplement).
This shows that our method is applicable despite well-known
model–data mismatches for the MH (Mauri et al., 2014). On

the other hand, the spatial correlation structure controls the
spread of local information into space. Different formula-
tions of the spatial correlation matrix can lead to substan-
tially different reconstructions in regions that are not well
constrained by proxy samples and, in particular, a spatial co-
variance with too few spatial modes can lead to overly opti-
mistic uncertainty estimates.

5.2 Comparison with previous reconstructions

Several reconstructions of European climate during the MH
have been previously compiled. Here, we compare our re-
constructions to those of Mauri et al. (2015), Simonis et al.
(2012), and Bartlein et al. (2011).

Mauri et al. (2015) use a plant functional type modern
analogue transfer function and a thin-plate spline interpola-
tion for pollen samples stemming mostly from the European
pollen database. Among other variables, summer and win-
ter temperatures are reconstructed. We find a dipole anomaly
structure similar to Mauri et al. (2015) in our reconstructions,
with mostly positive anomalies in northern Europe and nega-
tive anomalies in southern Europe. In Mauri et al. (2015) and
in our reconstruction, the Alps are the only region with sig-
nificant warming in central and southern Europe for summer
temperature. Generally, the amplitude of summer anoma-
lies in the two reconstructions is similar, although locally
there are differences, with cooler anomalies over southwest-
ern Fennoscandia in our reconstruction and warmer anoma-
lies in Finland. For winter temperatures, the cooling in the
Mediterranean and the British Islands is less pronounced and
spatially less consistent in our reconstruction than in Mauri
et al. (2015). As for summer temperatures, we find smaller
anomalies in southern Fennoscandia. In contrast, our recon-
struction shows higher anomalies in northern Scandinavia.

The same pollen dataset and another version of PITM are
used in Simonis et al. (2012) to reconstruct July and Jan-
uary temperature such that differences between the two re-
constructions are mostly related to the different smoothing
technique. Simonis et al. (2012) minimize a cost function
that combines pollen samples with an advection–diffusion
model that is driven by insolation changes between the MH
and today. In Simonis et al. (2012), the dipole structure is
not found in the same way as in our reconstruction. Both re-
constructions share positive summer temperature anomalies
in northern Europe as well as negative anomalies in central
Europe and the Iberian Peninsula. Unlike our reconstruction,
Simonis et al. (2012) find positive anomalies in southeastern
Europe. For winter temperatures, the reconstruction of Simo-
nis et al. (2012) shows an east–west dipole in contrast to the
northeast to southwest dipole in our reconstruction. This dif-
ferent structure might be due to the smaller proxy data con-
trol of the winter reconstructions, which leads to a higher
importance of the interpolation schemes.

A reconstruction designed to evaluate the PMIP3 simu-
lations was provided by Bartlein et al. (2011). They com-
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bine a large number of pollen-based local reconstructions
from the literature to produce a gridded product of six cli-
mate variables including MTWA and MTCO. In contrast
to our reconstruction, the local reconstructions used are not
smoothed across space but only within a grid box. Their re-
sults show a dipole structure but less pronounced than in our
reconstruction. In particular, they find a cooling for eastern
Fennoscandia in summer, a much smaller warming of north-
ern Fennoscandia, and a warming in Germany and France.
On the other hand, the reported anomalies in Bartlein et al.
(2011) for the Mediterranean and eastern Europe are similar
to our results.

The comparisons show that patterns like the dipole-type
anomaly structure, which are not present in the PMIP3 en-
semble, seem to be consistent across reconstructions with
pollen transfer functions. While some of the differences
between the existing literature and our results can be ex-
plained by the used transfer functions and proxy syntheses,
the choice of an appropriate interpolation method plays an
important role, too, especially in areas with very sparse and
weakly informative proxy data.

5.3 Climate model inadequacy and process stage
structure

To account for inadequacies of climate models in simulating
past climate states, we introduced flexible ensemble member
weights λ and the shrinkage matrix approach that combines
the empirical covariance matrix of the climate ensemble with
an independent correlation matrix. Combining ensemble fil-
tering methods with additional techniques to correct model
biases in a physically consistent way is an important but
also challenging direction of future work on climate field re-
constructions, as a balance has to be found between under-
dispersion of the posterior distribution by inducing physical
structures and over-fitting to noisy proxy data by enhancing
the degrees of freedom. Beyond the strategies implemented
in this work, some directions that can be envisaged are an
increase in permitted spatial structures in the prior mean by
adding patterns calculated from alternative physically moti-
vated models and the introduction of multiple shrinkage tar-
gets in the spatial covariance matrix (Gray et al., 2018).

The strong effect of the covariance regularization tech-
nique on the reconstructions might originate from the small
ensemble size. This hypothesis can be tested when more
simulations with sufficient resolution become available, for
example from the PMIP4 project. In addition, it indicates
that the modes of the empirical covariance matrix do not
optimally explain the spatial variability of the climate and
the corresponding uncertainty structures. The difference be-
tween under-dispersive behavior in ITEs with glasso models
and over-dispersion for shrinkage models suggests that the
optimal number of effective degrees of freedom lies between
those two models. However, an optimization procedure for

the number of spatial modes in the covariance matrix is not
straightforward and left for future research.

In the current study, we use a fixed prior distribution for
the ensemble member weights (compare with Sect. 3.3). An
extension of this model would be to let the proxy data inform
whether more balanced weights should be favored or weights
with one dominant ensemble member. This can be achieved
by using a hyperprior that controls the concentration of the
weights.

6 Conclusions

We presented a new method for probabilistic spatial re-
constructions of paleoclimate. The approach combines the
strengths of pollen and macrofossil records, which provide
information about the local climate state, and climate simula-
tions, which downscale forcing conditions to physically con-
sistent regional climate patterns. Thus, we reconstruct phys-
ically reasonable spatial fields, which are consistent with a
given proxy synthesis. Our framework can deal with prob-
abilistic transfer functions, which are nonlinear and non-
Gaussian, such that an extension to a wide range of proxies
and associated transfer functions is possible.

Using ITEs and CVEs, we showed that robust spatial re-
constructions with Bayesian filtering methods that exhibit
small biases and are not under-dispersed are possible as long
as the statistical framework is flexible enough to account for
deficiencies of climate simulations and to avoid filter degen-
eracy, which can emerge due to small ensemble sizes and
biases in climate simulations. The resulting model, which
is used for spatial reconstructions of European MH climate,
uses a weighted average of the involved ensemble member
climatologies and a shrinkage matrix approach for spatial in-
terpolation and structural extrapolation of the proxy data.

We apply our framework to reconstruct MTWA and
MTCO in Europe during the MH using the proxy synthe-
sis of Simonis et al. (2012) and the PMIP3 MH ensemble.
Brier scores from cross-validations reveal that the spatial re-
construction predominantly adds value to the unconstrained
PMIP3 ensemble, and analyses of the spatial homogeneity of
the posterior distribution indicate a reasonable degree of spa-
tial smoothing. The large-scale spatial patterns of our recon-
struction are in agreement with previous work (Mauri et al.,
2015; Bartlein et al., 2011). As the posterior mean is more
similar to the local proxy reconstructions than to the prior
mean for most terrestrial areas, we see that a reconstruction,
which is in line with reconstructions that do not include sim-
ulation output, is possible despite well-known model–data
mismatches (Mauri et al., 2014). Our framework provides
a way to quantitatively test hypotheses in paleoclimatology
and to assess the consistency of a given proxy synthesis.

Code and data availability. R code for computing reconstruc-
tions with the presented Bayesian framework is provided in a Bit-
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bucket repository available under https://bitbucket.org/nils_weitzel/
spatial_reconstr_repo (Weitzel, 2019). The pollen and macrofos-
sil synthesis is published in Simonis (2009). It is available in the
Bitbucket repository. The PMIP3 MH simulations are available in
the CMIP5 archives. In this study, they were downloaded from the
DKRZ long-term archive CERA (https://cera-www.dkrz.de, last ac-
cess: 27 April 2016). The modern climate data were downloaded
from the University of East Anglia Climatic Research Unit, avail-
able at http://www.cru.uea.ac.uk/data/ (Harris et al., 2017). The
vegetation data for transfer function calibration were provided by
Thomas Litt and Norbert Kühl.
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Appendix A: Determination of glasso penalty
parameter

To determine the glasso penalty parameter ξ , we first recog-
nize that for values smaller than ξ = 0.3 the resulting ma-
trices become numerically unstable in our application due
to the small ensemble size. Five values for ξ were tested:
0.3, 0.5, 0.7, 1.0, and 2.0. Larger values lead to sparser pre-
cision matrices and therefore to weaker spatial correlations.
For each of the five parameters, we perform CVEs with the
RM and compare the resulting BS (see Sect. 4.1.2). While the
smallest penalty parameters have the best mean BS, the dif-
ferences are generally small (see the Supplement). However,
the influence of the penalty term in Eq. (14) on the overall
regression increases from 79.5 % for ξ = 0.3 to 98.5 % for
ξ = 2.0. Based on these diagnostics, we choose ξ = 0.3 for
the reconstructions in this study. The sensitivity of the recon-
struction with respect to ξ is further studied in the Supple-
ment.

Appendix B: Shrinkage target matrix

The shrinkage target 8 is defined on a regular lat–long
grid following the stochastic partial differential equation ap-
proach of Lindgren et al. (2011). This approach allows for
a computationally efficient approximation of Matérn covari-
ances with parameters that are physically motivated in the
context of stochastic Laplace equations, which model diffu-
sive transport of a stochastic forcing. Setting ζ 2

=
8
ρ2 , the

range parameter ρ is rewritten as a scale parameter ζ 2. More-
over, we let the anisotropy parameter ν parameterize a diago-
nal diffusion matrix υ = Diag(sin(νπ/2),cos(νπ/2)). Then,
the stochastic partial differential equation from which 8 is
deduced is given by(
ζ 2
−∇ · (υ∇)

)
X(x)=W(x). (B1)

W denotes white noise, and X is the stationary Gaussian
random field that solves Eq. (B1). Discretizing this equation
with linear finite elements and using a diagonal approxima-
tion of the involved mass matrix leads to a GMRF with cor-
relation matrix 8̂ (Lindgren et al., 2011). We use degrees as
a distance unit on the regular lat–long grid instead of meters,
which means that the decorrelation length depends on the
latitude. This better reflects the mostly shorter decorrelation
lengths at higher latitudes. 8 is constructed from 8̂ by com-
bining spatial correlation matrices of type 8̂ for each climate
variable in a block diagonal structure. Different parameters
ρ and ν are fitted for each climate variable.

Appendix C: Full conditional distributions

The Metropolis-within-Gibbs approach samples (asymptoti-
cally) from the full conditional distributions of each variable,

i.e., the distribution of the variable given all other variables.
Some variables are treated block-wise. In this Appendix, we
detail the conditional distributions that are used for sampling.

To sample the transfer function parameters, we introduce
augmented variables γ Tl as described in Sect. 3.4. Their full
conditional distribution is given by

γ Tl |β
T , C(l)∼ PG

(
n= 1,XC(l) ·β

T
)
, (C1)

where XC(l) =
(

1,C1(l),C2(l),C1(l)C2(l),C1(l)2,C2(l)2
)
. (C2)

Including the Gaussian prior defined in Sect. 3.2, the full con-
ditional of βT is Gaussian distributed:

βT |P Tm , P
T
p , γ

T
1 , . . .,γ

T
L(T ) ∼N

(
VγX

tκT ,Vγ

)
, (C3)

whereVγ =
(
Xt0X+B−1

)−1
. (C4)

Here, X is a matrix with rows XC(l) for l = 1, . . . , L(T ), 0
is a diagonal matrix with entries γ Tl , B is the 6× 6 prior
covariance matrix of βT , and κT is a vector with entries(
P T (l)− 1

2

)
, where P T (l) is the presence or absence of taxa

T in observation l. In our case,B is a diagonal matrix with all
values equal to 10. Details on the definition of PG variables
and the augmented Gibbs sampler can be found in Polson
et al. (2013).

Sampling from ϑ depends on the specific version of the
process stage used. In the RM, λ= (λ1, . . .,λK ) is influenced
by its prior and by the Gaussian distribution of Cp given λ:

λ|Cp ∼ Dirichlet
(

1
2
, . . .,

1
2

)
N

(
Cp |

∑
k=1
λkµk,6prior

)
. (C5)

This full conditional does not follow a probability distri-
bution from which we can sample directly. Therefore, a
random-walk-type Metropolis–Hastings update is used for
updating λ.

In the KM, the full conditional of ω = (ω1, . . .,ωK ) is
Dirichlet distributed given z= (z1, . . .,zK ) and its Dirichlet
prior:

ω|z∼ Dirichlet
(

1
2
+ z1, . . .,

1
2
+ zK

)
. (C6)

Given ω and Cp, z is categorically distributed:

z|ω, Cp ∼ Cat(α1, . . .,αK ) , (C7)

where αk =
ωk · exp

(
−

1
2 (Cp−µk)t 6−1

prior (Cp−µk)
)

∑K
i=1

(
ωi · exp

(
−

1
2 (Cp−µi )t 6

−1
prior (Cp−µi )

)) . (C8)

If shrinkage covariance matrices are used, the parameters
(α,ρ,ν) have to be chosen in each MCMC step from one of
theK = 7 predefined parameter sets. We use a uniform prior.
Then, the full conditional of τ that indexes the parameter sets
is given by

τ |Cp, µ̂∼N
(
Cp |

∑
k=1
µ̂,6prior(ατ ,ρτ ,ντ )

)
, (C9)
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where µ̂ is given according to conditioning on the process
stage parameters of the GM, RM, or KM. We update τ us-
ing a Metropolis–Hastings step with independent proposals,
which choose τ = k with probability 1

K
.

We update Cp(x) for x ∈ xP sequentially using random
walk Metropolis–Hastings sampling. The set of all grid
boxes besides x is denoted by Yx , and let 6−1

prior(a,b) be the
block of the inverse covariance matrix containing the rows
a and columns b. Then, the full conditional distribution of
Cp(x) depends on the pollen samples Pp(s) with location
xs = x, the climate Cp(Yx) at the other locations, and process
stage parameters ϑ . It does not follow a standard distribution:

Cp(x)|Pp, Cp(Yx), ϑ ∼N
(
µ̃k(x),

(
6−1

prior(x,x)
)−1

)
∏

s with xs=x

∏
T ∈T (s)

logit
(
XCp(x) ·β

T
)
, (C10)

where µ̃k(x)= µ̂k(x)−
(
6−1

prior(x,x)
)−1

6−1
prior(x,Yx)

(
Cp(Yx)− µ̂k(Yx)

)
. (C11)

Conditioned on Cp(xP ) and ϑ , Cp(xQ) follows a Gaussian
distribution:

Cp(xQ)|Cp(xP ), ϑ ∼N
(
µ̃k(xQ),

(
6−1

prior(xQ,xQ)
)−1

)
, (C12)

where µ̃k(xQ)= µ̂k(xQ)−
(
6−1

prior(xQ,xQ)
)−1

6−1
prior(xQ,xP )

(
Cp(xP )− µ̂k(xP )

)
. (C13)

Appendix D: Metropolis coupled Markov chain Monte
Carlo algorithm

As described in Sect. 3.4, the multi-modality of the KM in
combination with the high dimensionality of the posterior
makes the standard MCMC algorithm very inefficient. In our
specific formulation the inefficiency is manifested in a very
slow mixing of z because, conditioned on Cp, the likelihood
of choosing a new model zk from one MCMC step to the
next one is very small. This problem could be shifted to other
variables by integrating out z, but then the conditional Gaus-
sian structure of Cp would be lost, which would lead to new
challenges for generating efficient MCMC strategies. There-
fore, we apply an MC3 or parallel tempering strategy (Geyer,
1991; Altekar et al., 2004; Werner and Tingley, 2015).

We run A MCMC chains in parallel, and after every
M steps, we use an additional Metropolis–Hastings step to
swap the states of the Markov chains a1 and a2 with prob-
ability 0 < pa1,a2 < 1, where pa1,a2 is calculated from the
Metropolis–Hastings odds ratio. The Markov chains are cre-
ated by exponentiating the process stage and the data stage by
constants ν1 = 1 > .. . > νA > 0. The first Markov chain
(ν1 = 1) asymptotically retains the original posterior distri-
bution for all variables, whereas the subsequent chains sam-

ple from a flatter posterior distribution, in which it is eas-
ier to jump from one kernel to another. Following empiri-
cal testing, we run the European reconstructions with A= 8
parallel chains, levels ν1 = 1, ν2 = 1.25−1, . . . , ν8 = 1.25−7,
and swaps after everyM = 30 steps. The pseudo-code for the
MC3 algorithm is given in the Supplement.
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-15-1275-2019-supplement.
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