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ABSTRACT
Mixed solvents (i.e., binary or higher order mixtures of ionic or nonionic liquids) play crucial roles in chemical syntheses, separations, and
electrochemical devices because they can be tuned for specific reactions and applications. Apart from fully explicit solvation treatments
that can be difficult to parameterize or computationally expensive, there is currently no well-established first-principles regimen for reliably
modeling atomic-scale chemistry in mixed solvent environments. We offer our perspective on how this process could be achieved in the
near future as mixed solvent systems become more explored using theoretical and computational chemistry. We first outline what makes
mixed solvent systems far more complex compared to single-component solvents. An overview of current and promising techniques for
modeling mixed solvent environments is provided. We focus on so-called hybrid solvation treatments such as the conductor-like screening
model for real solvents and the reference interaction site model, which are far less computationally demanding than explicit simulations. We
also propose that cluster-continuum approaches rooted in physically rigorous quasi-chemical theory provide a robust, yet practical, route for
studying chemical processes in mixed solvents.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143207., s

I. INTRODUCTION

Solvents give rise to drastic effects on chemical kinetics, ther-
modynamics, and reaction mechanisms.1 Mixed solvents are appeal-
ing because their polarity and Brønsted acidity and basicity can
be continuously modulated to optimize reaction outcomes.2–7 For
a recent example, tuning the concentration of hydroxyl groups in
aqueous organic solvent mixtures tremendously increases rates of
various acid-catalyzed reactions up to 1000 fold.8 The synergis-
tic effects of complicated solvent environments are clearly worth
studying, but it remains unclear how to best translate practical cal-
culation schemes used for single-component (pure) solvents (e.g.,
for predicting pKas,9 standard redox potentials,10 and hydrici-
ties11) to make insightful predictions in complicated mixed solvent
environments.

In this Perspective, solvation thermodynamics, which are more
thoroughly discussed in other references,12–14 will be approximated

as arising mostly from electrostatic, dispersion, and configurational
entropy contributions. Figure 1 graphically represents key differ-
ences between pure and mixed solvents acting on a system having a
net dipole. For charged or polar solutes in polar or ionic solvents, the
largest contributions to solvation free energies are electrostatic, and
these terms have been well treated historically by existing theories.
A significant amount of electrostatic solvation free energy is gained
through the reorientation of solvent molecules to cancel the electric
field of the solute. Under solvation in a pure solvent, the solvent den-
sity remains homogeneously distributed apart from heterogeneities
due to formation of direct contacts with the solute [Fig. 1(a)]. How-
ever, in a mixed solvent, the relative densities of the solvent com-
ponents can change, and this allows for charge migration as well as
segregation of molecules having different dipole moments to result
in complex double-layer structures [Fig. 1(b)].

Beyond electrostatic terms, electronic fluctuations of polariz-
able molecules lead to dispersion forces between the solvent and
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FIG. 1. (a) A molecular solute with a dipole moment (yellow sphere) may strongly
interact with other molecules of the solvent (blue spheres) via electrostatic, deple-
tion, or dispersion forces. Further away from the solute, molecular ordering is
mainly driven by electrostatics (i.e., aligned dipoles, depicted as arrows) and
becomes progressively weaker and more smoothly defined (blue ripples). (b) A
molecular solute with a dipole moment in a mixed solvent system. Local solvent
molecules (blue and green spheres) preferentially organize and segregate around
the solute. The added ability of charge densities and dipoles to migrate allows for
complex double-layer structures in both position and orientation, even out to the
“medium” range.

the solute. Traditionally, most solvation models have treated disper-
sion forces as short-range interactions, but recent work has shown
that electronic fluctuations can also drive long-range and highly col-
lective interactions that are not adequately modeled as short-range
two-body forces.15,16

Finally, flexible solute molecules may possess significant con-
figurational entropy arising from their nuclear motion, and this can
either increase or decrease (in much the same way as dispersion
energies) depending on how collective degrees of freedom of the
solute are coupled to solvent fluctuations. These three categories of
solvation free energies are furthermore all coupled, crossing over
in particular when mesoscale electrostatic effects alter the solute
electronic structure.

Once the physical components of solvation free energies are
accounted for, computational procedures can be used to predict
reaction energies, acidity constants, standard redox potentials, and
other quantities.17,18 Using a generalized thermodynamic cycle, as
shown in Scheme 1, one can compute the free energy change for

SCHEME 1. Generalized thermodynamic cycle for calculating free energy differ-
ences in different (electro)chemical environments. The top leg reflects the change
in gas-phase free energy of a reaction involving a species X and different numbers
of protons and electrons. Each vertical leg represents the solvation free energy
of a different species so that the bottom leg will reflect the solvated free energy of
that reaction. The objective is to determine the free energy of this (electro)chemical
process in the liquid phase (bolded term).

a chemical process in any solvating liquid phase as the lower hori-
zontal leg, ΔG∗liq, as a function of an (electro)chemical environment
(e.g., pH and an applied bias, ϕ).18 The superscript ∗ denotes the
liquid standard state of 1M. The upper horizontal leg of the cycle
is the gas phase free energy difference for the same reaction (using
a standard state of 1 bar, denoted by superscript ○). An assortment
of quantum chemical methods from Kohn–Sham density functional
theory (DFT) to correlated wave function theories with correspond-
ing ideal gas, rigid rotor, and harmonic oscillator approximations
may be convenient in this setting.

The solvation free energy contributions shown by the ver-
tical legs of this thermodynamic cycle (Scheme 1) are normally
assumed to be challenging to determine precisely, as well as accu-
rately. For instance, solvation free energies can be determined
using implicit, explicit, or hybrid solvation models, but those calcu-
lated energies can be sensitive to solute geometries and simulation
parameters.

Scheme 1 also requires knowledge about the proton solvation
free energy in the solvent, ΔG∗S (H+

), as well as a reference (i.e.,
absolute) free energy for an electron in a reference electrode inter-
acting with that solvent, G(e−). The latter can be derived using
the former, and both are known in water and some other pure
solvents through semiempirical schemes.19,20 Note that ΔG∗S (H+

)

and G(e−) are generally not known in mixed solvents. In addition,
there are discrepancies in the literature due to whether the reported
proton solvation free energy and its corresponding absolute elec-
trode potential are correctly accounting for the phase potential for
the solvent, as discussed later.17,21 In the traditional derivation of
Trasatti,22 the absolute proton solvation free energy used (−1088
kJ/mol) led to an absolute reduction potential of −4.44 V for the
standard hydrogen electrode. Another widely used value for the pro-
ton solvation free energy in water from Tissandier et al.,23

−1105
kJ/mol, is a value that we believe represents a real solvation energy
that includes a negative valued phase potential contribution. Kelly et
al.20 calculated a similar value to derive an absolute reduction poten-
tial of −4.28 V, a value also obtained by Isse and Gennaro19 with
ΔG∗S (H+

) = −1101 kJ/mol and Fermi–Dirac instead of Boltzmann
statistics.

Based on Scheme 1, the following equation provides the com-
plete expression to calculate the pH- and potential-dependent
energy difference for any general (electro)chemical process involv-
ing m protons and/or n electron transfers to an arbitrary molecule X
in an arbitrary solvent:

ΔG∗liq(pH,ϕ) = G(XH(m−n)m (g)) + ΔG∗S (XH(m−n)m )

−G(X(g)) − ΔG∗S (X) −m[G(H
+
(g))

−ΔG∗S (H
+
) − RT ln(10)pH + ΔG○→∗]

−n[G(e−) − Fϕ]. (1)

Note that the pH dependence of ΔG∗liq enters as linear correc-
tions based on the Nernst relation. The dependence on ϕ is also
treated as a linear correction. Combined, accounting for these cor-
rections is sometimes referred to as the computational hydrogen
electrode model.24 In sum, Eq. (1) is useful for several straightfor-
ward calculations. The negative logarithm of the acid dissociation
constant for a single proton transfer (m = 1, n = 0) is given by
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pKa = −ΔG∗liq(pH,ϕ)/[RT ln (10)], where R is the gas con-
stant and T is the temperature of the system. Likewise, the stan-
dard redox potential for an n electron transfer with no proton
transfers (m = 0) with respect to a given reference electrode is
E○ = −ΔG∗liq(pH,ϕ)/[nF], where F is the Faraday constant. For
more details about other terms, see Refs. 17 and 18.

II. CHALLENGES IN MODELING MIXED SOLVENTS
The generalized thermodynamic cycle in Scheme 1 allows for

the practical determination of changes in Gibbs free energies for
liquid phase reactions. Since gas-phase free energy calculations can
be treated at reasonably high accuracy with appropriate quantum
chemistry methods, the remaining challenges in using this cycle are
the determination of solvation free energies, as well as the important
terms for ΔG∗S (H+

) and G(e−). We now discuss issues that obfuscate
the determination of these values.

A. Phase potential
A frequently overlooked complexity of solvation thermody-

namics arises due to the presence of two definitions for the solvation
free energy: “real” and “absolute” (often called intrinsic). The “real”
ΔGS includes the reversible work for the solute to cross the vapor-
liquid interface. In the case that the solvent orders at the interface,
such as to create a net dipole moment perpendicular to the sur-
face, it then follows from Gauss’s theorem that there is a change
in electric potential from the vapor to the liquid, called the phase
potential.25–31 Real and absolute solvation free energies are thus
related by

ΔGreal
S = ΔGabs

S + zFχ, (2)

where z is the charge of the solute, χ is the phase potential of the
solvent, and F again is Faraday’s constant. The charge z present
in Eq. (2) means that there is no phase potential contribution for
neutral molecules. Gauss’s theorem refers to an integral over the
whole surface of a closed volume; so, for cases where a solution is
in a vessel (particularly in a sealed vessel, as for many industrial
processes), ordering at solid-liquid interfaces may be more signifi-
cant in determining the phase potential than that at the vapor-liquid
interface.

In a practical sense, the phase potential of a chemically bal-
anced reaction in a single phase will cancel so long as real or abso-
lute solvation free energies are used consistently.32 Being unsure
whether a phase potential is included in a solvation free energy can
lead to errors in properties (e.g., pKas and redox potentials) cal-
culated from the thermodynamic cycle in Scheme 1. Furthermore,
quantifying the phase potential is difficult and lacks clear consen-
sus.33–35 There have been numerous classical and quantum mechan-
ical estimates for water ranging from −1.10 V to +3.63 V. Inves-
tigation of other pure and mixed solvent phase potentials would
require carefully crafted classical force fields or significant computa-
tional cost for molecular dynamics with quantum chemistry. There
is currently little empirical or computational benchmark informa-
tion for the phase potentials of mixed solvents with air, indicating
a need for the further work in this field. In the absence of accu-
rate phase potential calculations or measurements, the best (but

unsatisfactory) approximation is to refer to any known solvents
hypothesized to have a comparable surface structure to the system at
hand.

B. Preferential solvation
Preferential solvation is the local concentration variation in a

mixed solvent that occurs when one chemical species has a different
affinity for the solute than others. In the example of Fig. 1(b), this sit-
uation leads to formation of alternating layers. For complex species
or for strong concentration gradients, this phenomenon can become
highly intractable, even leading to local demixing and the forma-
tion of droplets or other structures. In the special case of monatomic
ions around charged or polar solutes, Poisson–Boltzmann–Debye–
Hückel theory is available to rewrite the Coulomb electrostatic
potential with an additional ion screening term, solved in spheri-
cal symmetry to give ϕ ∝ eκ/r/ϵr (where ϵ is the dielectric constant
and 1/κ is the Debye length over which screening by mobile charges
becomes significant), rather than ϕ ∝ 1/ϵr as in the absence of
salt.36 Poisson–Boltzmann–Debye–Hückel theory is powerful, but it
neglects shape effects and nonelectrostatic forces, thus being mainly
useful for monatomic cations, and mainly far from the solute sur-
face. Additions to the theory to treat the modification of ion density
in a short range by finite radius of ions and the presence of nonelec-
trostatic interactions exist and can be highly effective.37 However,
the theory remains more useful for long-range electrostatics but less
so for steric and dispersion effects, which are usually in the short
range.

Other theoretical frameworks provide a preferential solvation
parameter on a general basis for a solute X in a mixture of i and
j, δXi. This parameter is defined as the difference between the local
and bulk mole fractions (x) of a solvent component i around the
solute X, δXi = xL

Xi − xi. For example, Kirkwood–Buff (KB) theory
relates preferential solvation to integrals of the radial distribution
function in the form of a KB integral (KBI). Such integrals usefully
distill the affinity between X and i to a scalar greater than one for two
species that associate, or less than one for two species that repel each
other.38,39 Inferring δXi can be achieved by using the concentration
dependence of experimental data such as isothermal compressibility,
partial molar volumes, or excess molar Gibbs free energy of mix-
ing. Additionally, the standard molar Gibbs free energy of transfer
(ΔGtr) of the solute from a reference solvent i to a mixture of i and j
is required to obtain the KBI via the inversion of KB theory.40 These
properties and their derivatives must be determined with high accu-
racy, such that experiments may be difficult or expensive,41 so the
alternative of molecular dynamics is sometimes used to determine
the KBI. Convergence of integrals over correlation functions using
molecular dynamics is, however, difficult due the large weight given
to long-range parts of the correlation function (which are also the
slowest to sample),42,43 ensemble effects, and systematic force field
errors that may be present in medium and long ranges. The prefer-
ential solvation parameter is directly dependent on the derivatives
of these properties, thus motivating the need for highly accurate
parameterizations.

The quasi-lattice quasi-chemical (QLQC) method is another
way to predict δXi.44–46 The QLQC method also requires infor-
mation typically acquired through experiments such as ΔGtr and
excess molar Gibbs free energy of mixing of components i and j at
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equimolar composition. Additionally, the QLQC method requires
the selection of a lattice parameter, Z, which defines the num-
ber of neighbors around the solute and every solvent molecule. Z
is conceptually related to the coordination number of the solute
(and solvent molecules), but it mostly serves as a fitting parame-
ter for the excess Gibbs energy of mixing curve. This adds empha-
sis to quality experimental data and can make a priori prediction
of δXi difficult. The QLQC method typically uses the same Z for
all compositions of the same mixed solvent; this would be valid if
the coordination number is independent of composition, which is
not always the case. There are ways to have concentration depen-
dence in Z, but this is generally avoided because it greatly com-
plicates calculations and reduces intuitive understanding. In addi-
tion, the assumption of ideal mixing of the neighboring molecules
in the quasi-lattice sites is inherently incompatible with preferen-
tial solvation. With all of these characteristics, the QLQC method
is typically restricted to small solutes with sufficient experimental
data.47

In summary, the above models and others48–50 are useful
and powerful for predicting preferential solvation effects for var-
ious solutes in mixed solvents. However, each of them has lim-
itations due to computational cost, narrow range of well-treated
cases, or requirement for specific empirical parameters. One might
be tempted to average properties of the pure solvent components
linearly to obtain a reasonable approximation to a mixed solvent
system, as discussed in some textbooks on the subject.46,51 This
approach is enticing because it avoids the effort of predicting prefer-
ential solvation and seems plausible, but in general, mixed solvent
properties exhibit nonlinearities and solute-solvent properties are
dominated by the local solvent structure. Figure 2 shows the Gibbs
free energy required to transfer Na+ or CH3COO– from pure water
to a mixture of water/acetonitrile at varying mole fractions.52,53 Both
ions deviate from the linear interpolation line between pure water
and pure acetonitrile. Na+ even has favorable transfer Gibbs free
energy at acetonitrile mole fractions ranging from 10% to 50% com-
pared to transfer from pure water to pure acetonitrile. Thus, sim-
ple averaging schemes not only are sometimes unphysical approx-
imations but may also produce significant errors that arise from
preferential solvation effects.

FIG. 2: Gibbs free energy of transfer of Na+ (triangles) and CH3COO– (cir-
cles) from water to the water/acetonitrile mixture of varying concentrations. Ener-
gies exhibit concentration-dependent nonlinearities from preferential solvation and
other cosolvent effects.

III. MODELING MIXED SOLVENTS
Explicit solvation methods involve placing the solute(s) in a

large box surrounded by solvent molecules, where forces on each
atom are calculated to determine the trajectories for the entire sys-
tem. This straightforward technique over time has become a ubiq-
uitous treatment for mixed solvent systems. Evaluation of the forces
involves classical force fields, quantum chemical methods, and com-
binations of both. However, each method is dependent either on
accurate parameterizations or on computationally expensive molec-
ular dynamics with quantum chemistry. Useful information about
mixed solvent systems is available from explicit modeling, but other
less costly methods should be considered.

An implicit solvation model is an alternative to explicit meth-
ods. In this case, the solvent is treated as a dielectric continuum,
possibly with electrostatic screening by mobile ions. Simplifying the
solvent to a homogeneous medium requires extensive experimen-
tal data for significant parameterization. Furthermore, implicit sol-
vation models calculate only a single parameter per lattice point
(the electrostatic potential or its gradient), meaning that complex
ordering of co-solvents, often important near the solute, cannot be
captured. Forfeiting the capability to account for preferential solva-
tion makes mixed solvents challenging for implicit solvation mod-
els, especially for polar or ionic chemical species. However, some
implicit solvation models [e.g., the Solvation Model based on Den-
sity (SMD) and the Integral Equation Formalism (IEF)] have seen
success with ionic liquids, but so far applications have been limited
to small, neutral molecules.54,121

Improved theoretical foundations are needed to physically and
accurately allow for predictions of solutes in mixed solvent envi-
ronments without the high computational cost of explicit quantum
solvation. Two such models, COnductor-like Screening MOdel for
Real Solvents (COSMO-RS) and reference interaction site model
(RISM), are briefly summarized as they have been demonstrated to
model mixed solvents with reasonable accuracy and computational
cost.

A. COSMO-RS
The COnductor-like Screening MOdel for Real Solvents

(COSMO-RS) is classified as a hybrid solvation model.55–59 Every
COSMO-RS calculation starts from the COSMO implicit solva-
tion model cavity with an infinite dielectric (perfect conductor)
reference state (ϵ = ∞). The local interaction energy, Eint(A,B),
of two molecules contacting each other in a liquid is quantified
in COSMO-RS from the COSMO polarization charge densities,
σ and σ′, from their respective COSMO surfaces. COSMO-RS
sums nonideal screening from unbalanced σ and σ′ contributions
(so-called electrostatic misfits) and hydrogen bonding by using
surface segments with acont contact surface area to account for
Eint(A,B).

By summing all energy corrections over all molecular sur-
face contacts, COSMO-RS obtains a total energy correction for
that specific molecular configuration. This energy correction then
needs to be expanded into an ensemble to represent a liquid.
Instead of employing molecular dynamics or Monte Carlo proce-
dures, a simpler statistical thermodynamics model of an ensem-
ble of independently pairwise interacting surface segments is
used.
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In COSMO-RS, the chemical potential of a unit surface seg-
ment of kind σ in any pure or mixed solvent S is

μS(σ) =
−kBT
acont

ln∫ pS(σ)exp[−β acont(e(σ, σ′) − μS(σ′))] dσ, (3)

where β = 1/kBT, kB is the Boltzmann constant, and e(σ, σ′) is the
surface-specific interaction energy of polarization charges σ and σ′.
pS(σ) is the sigma profile of the solvent or mixture S, which is
essentially the reduction of the 3D σ-potential information into a
histogram that conveys the probability of finding a surface segment
of kind σ.

COSMO-RS can use this ensemble of surface segment chemical
potentials to calculate the chemical potential of the solute X in the
solvent S with

μX
S = ∫ pX

(σ)μS(σ) dσ + kBT ln γcomb(X, S) + kBT ln xX. (4)

Note that μX
S is the same as ΔG∗S (X) (i.e., the solvation free energy for

a solute X mentioned earlier) but on a per mole basis. The first term
in Eq. (4) represents the solute-solvent (surface segment chemical
potentials) interactions described by COSMO-RS in terms of σ. The
second and third terms represent the combinatorial contribution of
the chemical potential arising from the dependencies of solute size
and concentration, respectively.

Overall, COSMO-RS is a valuable tool for chemical engineering
thermodynamics.58 The COSMO-RS scheme significantly simplifies
the problem of lengthy explicit simulations and produces solvation
free energies in pure and mixed solvents. A self-consistent gener-
alization of COSMO-RS, Direct COSMO-RS (DCOSMO-RS), has
been implemented in several quantum chemistry packages.60

While COSMO-RS has several significant improvements over
COSMO and other implicit solvation models, it still experiences
some shortcomings. COSMO-RS also requires parameterizations
for nonelectrostatic contributions from cavitation, dispersion, and
repulsion,61 but robust parameterizations in turn require extensive
databases. Thus, approximate parameters are generally used in prac-
tice even though they might not be suitable for highly accurate com-
putational investigations. COSMO-RS was originally developed and
parameterized for the neutral solute and solvents and incorrectly
assigned misfit charges while modeling charged solutes.62 However,
recent developments have shown promising success with ionic liq-
uids63 and electrolytes.64 In addition, an extension called COSMO-
RSC was developed to relieve some of the error associated with
highly localized charges; however, these corrections are not consis-
tently implemented in quantum chemistry packages and thus should
be used with caution.21,65

B. RISM
The reference interaction site model (RISM) is another hybrid

method, based on the integral equation theory of liquids. It was first
developed in 1972 by Chandler and Anderson,66 but it has gone
through several iterations to make it an intriguing solvation model
for the study of future problems. Extensive literature on the RISM
already exists,67–71 so only a brief summary is given here.

In the 1D-RISM, a single radial distribution for each solvent site
around the solute is determined. In the so-called 3D-RISM, a three-
dimensional density distribution gγ(r) for each interaction site (γ) of

each solvent species present is determined. A value of gγ(r) greater
or less than one shows solvent site enrichment or depletion, respec-
tively. Thermodynamic quantities, such as entropy, enthalpy, and
pressure, are then determined as integrals (single, double, or higher)
over the 3D density fields of the various interacting sites.

An advantage of working with 3D density maps is that distri-
butions of specific atoms or functional groups of the solvent(s) in
relation to the solute can be plotted directly. Unlike implicit solva-
tion models, the 3D-RISM directly accounts for nontrivial ordering
in the solvent, such as electric double-layers or even more complex
density variations, as illustrated with a peptide fibril structure72 in
Fig. 3.

The 3D-RISM integral equation method is a set of approximate
solutions for the Ornstein–Zernike equation that writes the “total”
(many-body) correlation at r from a test species or site to a second
site γ [hγ(r)] as a sum over volume integrals of “direct” (two-body)
correlations to sites α (cα) times the total correlations between sites
α and γ (hαγ),

hγ(r) = cγ(r) +∑
α
ρα ∫ cα(r − r′)hαγ(r′) dr′. (5)

hγ(r) of the interaction site γ is then related to the density distri-
bution by gγ(r) = hγ(r) + 1. Equation (5) has indices γ and α that
enumerate over all sites on all solvent species. The number density of
the solvent site α is ρα. The total correlation function hαγ(r) appears
as an unknown one on both sides of the equation, making iterative
solution (and further constraint of the relationship between c and h)
necessary.

The 3D-RISM connects the 3D total correlation hαγ(r), an
emergent many-body property, and the direct two-body correlation
functions cαγ(r). The two-body correlation is directly determined
by the susceptibility and can be calculated to a good approxima-
tion for small fluctuations directly from the pairwise interaction

FIG. 3. Output from a calculation using the tool 3drism.snglpnt,75 showing a cross
section cutting the long axis of an extended peptide fibril in 10 mM HCl. μ[Cl] is the
chemical potential field for chloride ions, showing a clear structure even out to the
third shell.
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potential −βuγα(r). Such two-body correlations are also observable
with scattering experiments made at low concentrations such that
many-body effects are limited. Conversely, the theory can also find
intermolecular potentials based on hαγ(r) from scattering experi-
ments at high concentrations.

The variation between 3D-RISM implementations and much
of the art in applying this method arises from the choice of a clo-
sure relation, which is necessary to render Eq. (5) tractable by fixing
cγ(r) in relation to hγ(r) and also to control the entry of system-
specific information via u(r). There are several closure relations, but
two popular ones are the hypernetted chain (HNC)73 approximation
and Kovalenko–Hirata (KH).74 The solvation free energy can then
be found, for example, by using the KH closure resulting in

μX
S =

ρ
β∑γ

∫
1
2
[hγ(r)]2Θ[−hγ(r)] − cγ(r) −

1
2
hγ(r)cγ(r) dr, (6)

where Θ is the Heaviside step function originating from the KH clo-
sure that ensures the term h2 is only in effect in regions of solvent
site depletion.

By this point, it should be clear that the 3D-RISM can be highly
effective for analyzing the role of mixed solvents.76–78 The computa-
tional expense of the 3D-RISM depends on which closure relation is
chosen, as well as the parameters (e.g., Lennard-Jones) of the given
system. As the solvent increases in complexity (i.e., the number of
co-solvents or number of sites treated per solvent), the number of
pair correlations and therefore cost of a self-consistency iteration
rise as the square of the number of sites. Furthermore, the num-
ber of density field grids needed increases per site and thus requires
significant computer memory resources. The 3D-RISM is therefore
quite elegant but also very challenging for complex and flexible sol-
vents. These challenges can be reduced if complicated co-solvents
are treated as being present only in the low concentration limit so
that solvent-solvent site interactions can be ignored within the prob-
lematic species.77 The required fineness of the grid increases with the
sharpness of concentration gradients; therefore, small or strongly
interacting solvent/co-solvent sites can dramatically increase the
computational cost. The generalization of the method to adaptive
grids would appear to be a potential avenue for progress. Strong
interactions and high concentrations also increase the importance of
three-body and higher terms in the mapping from pair to total corre-
lations, thus increasing the likelihood of slow or failed convergence
depending on the closure.

Because the 3D-RISM can use pairwise interaction potentials as
an input, the user is at liberty to supply the input data at arbitrary lev-
els of quantum mechanical accuracy, although of course many-body
electronic interactions cannot enter via the two-body parameteriza-
tion process. With all of these technical aspects aside, the 3D-RISM
is convenient to use with conventional DFT calculations, and it also
has overlapping characteristics as an algorithm, so it has been inte-
grated into some quantum chemistry packages such as Amsterdam
Density Functional (ADF).79

IV. CLUSTER CONTINUUM
Another technique commonly used to model solvents is

cluster-continuum or mixed implicit/explicit solvation modeling.
Explicit solvent molecules are added around the solute and then this

cluster is placed in an implicit solvation model, such that the blue
region described as a “large volume with weak order” in Fig. 1(a) is
treated as a continuum dielectric, while the inner region is modeled
classically or via quantum chemistry. This procedure is advanta-
geous for several reasons, including balanced computational costs
and retention of local solvent environment characteristics.

Several challenges still remain, and there is a lack of widely
accepted best practices for cluster-continuum modeling. For exam-
ple, there is no clear consensus on choosing the number and loca-
tion of the explicit solvent molecules. Often, chemical intuition has
guided the placement of solvent molecules, but this is limited by a
priori understanding of the chemical process.80 In this section, we
present our interpretation for modeling chemistry in a complicated,
mixed solvent environment.

A. Quasi-chemical theory
Partitioning the contributions of the inner and outer solvation

shells around a solute is fundamental in these cluster-continuum sol-
vation schemes. Quasi-chemical theory (QCT) represents the most
robust method to partition the system and calculate the solvation
free energy of any solute. Only a brief introduction will be given here
as there is already substantial literature on the subject.27,81–84

QCT is rooted in the potential-distribution theorem,85 which
provides an expression for the excess chemical potential (solva-
tion free energy) of the solute X, μ(ex)

X , as a sum of free energy
contributions,

μ(ex)
X = −kBT ln[p(0)X (n)] + kBT ln[pX(n)] + μ(ex)

X (n), (7)

where pX(n) is the probability of observing n ligands (solvent
molecules) in the inner shell and μ(ex)

X (n) is the excess chemical
potential of X having exactly n ligands in the inner shell. p(0)X (n) rep-
resents the probability that n ligands occupy the inner shell with no
solute-solvent interactions. In other words, this quantity describes
the probability of ligands occupying the designated inner-shell vol-
ume without X actually being present.

Within the QCT framework, the inner solvation shell is thought
of as a chemical equilibrium reaction concerning the association of
ligands (L) with the solute,

X + nL⇌ XLn. (8)

This reaction in Eq. (8) is described by a chemical equilibrium ratio
defined by KnρnL = pX(n)/p(0)X (n = 0), or the probability ratio of
having n ligands to zero ligands within the solvation shell. Substi-
tuting this definition of Kn into Eq. (7) evaluated for n = 0, and
expressing Kn in terms of an ideal gas-phase chemical equilibrium
constant, K(0)n , leads to the cluster QCT formula82

μ(ex)
X = −kBT ln[K(0)n ρnL] + kBT ln[pX(n)] + (μ(ex)

XLn
− nμ(ex)

L ). (9)

Here, the excess chemical potential is broken into three terms.
The first being concerned with the ligand-association chemical reac-
tion in an ideal gas phase is denoted by the (0) superscript. An
advantage of the QCT formulation is that calculation of K(0)n may
be accomplished with gas-phase electronic structure calculations for
the free energies of the solute, individual ligand, and solute-ligand
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cluster. The overall availability of ligands for the reaction is repre-
sented by the bulk density of the ligand, ρL. This association reaction
is designated to occur within a volume chosen to represent the inner
shell.

The second term accounts for the thermal fluctuations of hav-
ing n ligands occupying the inner shell, defined by considering
the probability of observing that particular case, pX(n). Evaluating
this probability involves molecular dynamics, usually with quan-
tum chemistry, with adequate sampling of the solute surrounded
by the solvent. In some circumstances, classical force fields can
be used, but then results become dependent on the quality of
parameterization.86

The outer shell (bulk) contribution to the solvation free energy
of X is captured in the third term. Essentially, it is the free energy
contribution of solvating the solute-ligand complex and remov-
ing the ligands from the outer solvation environment. A standard
implicit solvation model, while an approximation, has effectively
evaluated μ(ex)

XLn
and nμ(ex)

L in previous applications.27,87–98

In QCT, selection of the inner solvation shell is typically done
manually. While any shape can be used, a sphere with the radius
λ centered around X is commonly used. The selection of λ is gen-
erally chosen to capture the innermost-solvation shell defined by a
neighborship analysis of solvent molecules that contribute to the first
radial distribution function peak;27,99,100 however, any choice of λ is
valid in QCT. Ultimately, the choice of λ dictates the probabilities of
observing n ligands in the inner shell, and any case of n ligands for
the inner solvation shell can be evaluated in QCT.

Some care toward selecting λ and n can deliver tremendous
computational feasibility and minimize errors for several reasons.
Implicit solvation models depend on the definition of the cav-
ity to calculate solvation free energies, which are sensitive to the
radii being used. When a complete solvation shell is defined, the
free energy of solvation by the implicit solvation model is less
sensitive to specific radius definitions. This trend suggests choos-
ing λ that captures complete inner-shell occupancies for conve-
nient error cancellation. While any number of complete solvation
shells could be treated, the simplest inner shell volume contains
only the nearest neighboring ligands that are continuously inter-
acting with the solute. This “no split occupancies rule” means λ
should be selected by a neighborship decomposition analysis,99

where distant neighbors that encompass many shells (multimodal)
are excluded.27,92,96,100

As previously mentioned, pX(n) must be determined by the
observation frequency. Choosing n that is rarely observed would
require long simulation times.93 When molecular dynamics with
quantum chemistry is used, the higher computational cost motivates
choosing the most probable n within λ for the solute, n̄. Apply-
ing QCT to the case of n̄ would have pX(n) near one, so the term
can be dropped altogether. The case of n̄ with QCT can reduce the
computational cost, but it is not always known. While n̄ can be deter-
mined from explicit simulations and neighborship analyses, it can
become computationally impractical for large solutes without vet-
ted, highly accurate force fields. This makes direct implementation
into computational chemistry challenging.

QCT has produced predictions of solvation free energies in
excellent agreement with experimental values for hydration of
cations and anions,27,87–93,95–98 as well as other molecules,101,102

and of free energies of ion binding to proteins and solvation by

nonaqueous solvents.27,83,86,94,95,100,103–106 In addition, QCT predic-
tions of pKas and redox potentials agree well with experimental
values.107,108 While QCT is completely generalized for any solute
and solvent, its application to mixed solvents has not yet been pub-
lished. Nevertheless, these characteristics of QCT demonstrate its
robustness and theoretical rigor for calculating absolute solvation
free energies.

The advantage of QCT is the separation of solvation free
energies into components from inner-shell and outer-shell solvent
molecules, permitting exploitation of the known chemical physics
analyses of clusters. Issues that can be treated in cluster analyses
include proper overlap repulsions, polarizability, charge transfer,
London dispersion interactions, n-body ligand interactions gener-
ally, distortion of flexible ligands, and zero-point motion of the
cluster. Large displacements in the vibrational motions of the clus-
ters can be treated with molecular dynamics, as done recently for
anions using quantum chemical simulations, and earlier for hydro-
gen using classical force field simulations.98,102 Current implemen-
tations of QCT require significant effort from manual evaluation
of terms, with molecular dynamics simulations and neighborship
analyses used to guide selection of inner and outer solvation shells
and determine n̄ for computational feasibility and to minimize
errors.

B. Local solvation motifs using machine learning
When modeling chemical processes (e.g., reaction mechanisms

with several intermediates), QCT may become impractical due to
the high computational cost of molecular dynamics or requirement
of accurate force field parameters for all structures (i.e., reactants,
products, intermediates, and transition states) to determine pX(n)
or n̄. However, theoretical and conceptual foundations of QCT are
valuable for developing future solvation schemes. Here, we discuss a
novel, automatable procedure for studying solvent effects and com-
puting solvation free energies.109 The key feature is the integration
of the QCT framework twice (ligand free energy and ion solva-
tion free energy) into a standard thermodynamic cycle in combi-
nation with a machine learning analysis of local solvent environ-
ments. This dual-QCT approach achieves additional error cancel-
lation by balancing QCT terms in such a way that evaluating pX(n)
or seeking n̄ and using harmonic approximations are unnecessary.
Additional advantages are automation and eliminating potentially
cost-prohibitive molecular dynamics with quantum chemistry and
neighborship analyses.

The foundation of this solvation technique is the cluster-
continuum approach represented by the thermodynamic cycle, com-
monly referred to as the cluster cycle, shown in Scheme 2.110

Conceptually, a solvent cluster with n molecules is desolvated,
−ΔG∗S ((L)n), a solute X binds to the solvent cluster in the gas
phase, ΔG○g, bind, and then the solute-solvent cluster is solvated,
ΔG∗S (X(L)n). The solvation free energy of the solute X can be
calculated with

ΔG∗S (X) = ΔG
∗
S (X(L)n) − ΔG

∗
S ((L)n) + ΔG○g, bind

−ΔG○Ð→∗ − RT ln([L]/n). (10)

There is a standard state correction, ΔG○Ð→∗, remaining because
of the different numbers of species on the left-hand and right-hand
sides of the cluster cycle. In addition, when desolvating the solvent
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SCHEME 2. A thermodynamic cycle of solvating a solute, X, by using a preformed
solvent cluster containing n solvent ligands, L. The top horizontal leg represents
binding the free energy of binding X to a solvent cluster in the gas phase. Vertical
legs represent the required free energy to solvate each chemical species from
the gas to the liquid phase with the appropriate state corrections. The bottom leg
represents the same binding reaction, but in the liquid phase that requires no free
energy. We are interested in determining the solvation free energy of the solute
(bolded term).

cluster, there is an additional state correction from 1M (∗) to the
molar concentration of the solvent, [L], in the term RT ln([L]/n)
that is the density term in QCT. The solute solvation free energy
problem is consequently transformed into the calculation of sol-
vent and solute-solvent cluster solvation free energies. When QCT
[Eq. (9)] is applied to ΔG∗S ((L)n) and ΔG∗S (X(L)n) with any n, there
are two inner shell contributions: K(0)n ρnL and p(n). Because the two
clusters are similar in size, error cancellation from the cluster cycle
renders the need for a precise understanding of n̄ or evaluation of
p(n) less necessary. The remainder of this section will detail how
local solvent environment analysis using machine learning algo-
rithms guides quantification and placement of solvent molecules
around a solute.

The central idea is to generate many candidate clusters of dif-
ferent structures and a number of solvent molecules (sizes). Then,
clusters that satisfy specific criteria are used in the cluster cycle to
calculate the solute solvation free energy. In past applications of the
cluster cycle, solvent molecules are manually placed or carved out
of an explicit simulation. This route proves to be tedious or com-
putationally inefficient. Alternatively, an algorithm can be used to
automatically generate the prospective clusters. One such example
is ABCluster, which employs the artificial bee colony algorithm to
find global and local minima of atomic or molecular clusters.111,112

For each size, thousands of clusters can be rapidly generated and
initially ranked according to their energy with classical force fields.
Then, the lowest (e.g., five) can be further optimized at 0 K with
quantum chemical methods such as DFT. To achieve an adequate
representation of the local solvent environment with this multistep
filtering procedure, the Boltzmann-weighted average of same sized
clusters is taken. Note that the cluster cycle requires solvation free
energies for solvent and solute-solvent clusters, so the above proce-
dure is performed both in the absence and in the presence of the
solute.

This still leaves the main challenge of determining the appro-
priate cluster size unsolved. One could compare to experimental

data to solve this problem; however, this would not be different
from current practices of ad hoc selection of the number of solvent
molecules. Furthermore, having experimental solvation energies for
any and all chemical species and environments is an unfeasible
endeavor; there need to be separate selection criteria independent
of experimental data.

As mentioned before, the local solvent environment is the
largest contributor to solvation energetics, so this is a natural
choice for selection criteria. To avoid requiring a priori informa-
tion about the local solvent environment, a separate technique can
be used to compare clusters of different sizes. Comparing the struc-
tures of molecules, or clusters, is not novel and is commonly done
through connectivity and distances as in root mean square dis-
placement (RMSD). Calculating RMSDs, however, requires manual
alignment of the systems being compared that becomes impossible
when comparing clusters containing different numbers of atoms.
Over the last few years, several fingerprint functions have been
used to characterize the environment of atoms, but one function
that fits all does not apply here. Each is designed to differentiate
between specific system characteristics. For example, some finger-
print functions characterize a system by elemental characteristics or
bond angles which would not be able to differentiate local solvent
environments. Hence, selecting an appropriate fingerprint func-
tion is paramount for the critical evaluation of these microsolvated
clusters.

One promising algorithm is the smooth overlap of atomic posi-
tions (SOAP) kernel that enables comparison between clusters that
is invariant to translations, rotations, and permutations.113,114 The
SOAP kernel evaluates the local environment by placing a Gaussian
function centered on each atom. Then, the SOAP gathers informa-
tion from where there is overlap of Gaussian functions (local atomic
neighbor densities) and reports high-dimensional pair-similarity
data. Essentially, this quantifies the similarities and differences of the
local solvent environment of different clusters.

After employing the SOAP kernel, one has detailed informa-
tion about the local solvent environments but needs an intuitive
way to compare them. A data dimensionality reduction and visu-
alization scheme called the sketch-map can be used to compare and
visualize the high-dimensional pairwise data from the SOAP.115,116

The sketch-map algorithm optimizes a nonlinear objective func-
tion that finds a metric, typically Euclidean distance, which best
describes the high-dimensional SOAP metrics. Basically, it takes
the SOAP data and converts them to a 2D space for human read-
ability. There is an abundance of data that can be gleaned from a
sketch-map analysis. One potentially confusing aspect is the axes
that have no physical meaning; they could even be flipped without
changing the information from the SOAP. Conclusions about the
similarity of the local solvent environment can only be made qual-
itatively from the distances between points. In other words, points
that are near each other (clustered) represent similar local solvent
environments.

An example of a sketch-map analysis on the solvation free
energy of Na+ in water is shown in Fig. 4(a).109 The dots are color
coded based on the number of solvent molecules (in this case water)
included in the cluster. To analyze the sketch-map, the proximity
of dots is examined. For example, the dark slate blue dots (all hav-
ing four water molecules) in the upper middle of the sketch-map
have some space between them and are not very close to each other.
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FIG. 4. (a) SOAP/sketch-map represen-
tation of microsolvated clusters with var-
ious numbers of water ligands demon-
strating optimal clusters at 12 water
molecules. The color bar represents
the number of water molecules in
the cluster. (b) Solvation free energies
of Na+ with the variable number of
water ligands from B3LYP-D3BJ/def2-
SVP geometries and ωB97X-D3/def2-
TZVP calculations.109

This means in the five local minima, clusters generated with four
water molecules have different local solvent environments. This
communicates that the Gaussian functions placed on the atoms in
each cluster overlapped in different amounts and locations repre-
senting dissimilarity in the SOAP. To the right in the sketch-map,
the dark green dots cluster more for the eight water molecule case
signifying the structures and local solvent environment begin to look
similar.

The sketch-map places the 12 water clusters very close to each
other and even overlapping with the 16-water molecule case. This
has important significance for determining the correct cluster size
for the cluster cycle. When additional solvent molecules are added,
they start populating outer solvation shells and are not captured
within the solute’s Gaussian function. Namely, the local solvent
environment starts to look the same. Once this occurs, the appro-
priate cluster size (12 water molecules for Na+) is used with the
cluster cycle to calculate the solvation free energy to avoid errors
from the implicit solvation model’s sensitivity to radius definitions
due to incomplete solvation shells. The solvation free energies cal-
culated from the cluster cycle using n water molecules for Na+ are
shown in Fig. 4(b). Starting from zero water molecules (around
−30 kcal/mol error), the cluster cycle solvation energies begin to
approach the experimental value of −101.3 kcal/mol.23 Using the
sketch-map selection criteria of 12 water molecules provided the
most accurate solvation free energy.

The solvation technique discussed here attempts to capture the
following three criteria in an automatable fashion. First, information
of the local solvent environment needs to be retained. Preferential
solvation must be accounted for to ensure accurate solvation ener-
getics in mixed solvents. Second, explicit simulations should not be
required. While substantial information can be gained, the compu-
tational cost of explicit simulations and/or their reliance on parame-
terization prohibits their routine use. Third, no a priori information
about the system should be required. For example, knowing the
coordination number of the solute drastically reduces the number
of applicable systems or demands explicit simulations.

This approach has already been successfully tested in multi-
ple systems. Basdogan and Keith were able to correctly identify an
elusive reaction mechanism for the acid-catalyzed Morita–Baylis–
Hillman reaction in methanol using this technique.117 Additionally,
a complete analysis was also performed for 11 different ionic species’
solvation free energies ranging from 2+ to 2− charges that agreed
with experimental values.109

In summary, we reaffirm that the intent of this Perspective is
to stimulate development, benchmarking, and application of mod-
els used for studying mixed solvents. Over the years, there have
been several challenges of predicting solvation free energies for
drug and pesticide molecules in water (e.g., SAMPL), and in those,
the COSMO-RS model has performed exceedingly well.118,119 Some
computationally intensive RISM implementations have also per-
formed comparably well,120 while cluster-continuum modeling has
largely not been used except for single ion and small molecule sol-
vation free energies. However, as explained above, modeling inter-
mediates in chemical reactions (especially charged intermediates in
electrochemical reactions) requires computational treatments with
one of the above procedures. While COSMO-RS and RISM have
shown strong performances in pure solvents, it is our perspective
that cluster-continuum modeling with QCT and facilitated with the
SOAP/sketch-map would be a useful treatment for studies in mixed
solvents if and when COSMO-RS and RISM fail. The dual-QCT
approach discussed above should make predicting solvation free
energies of challenging systems tractable in mixed solvents without
explicit simulations.

V. CONCLUSION
In this Perspective, we demonstrated that mixed solvents

exhibit several theoretical and computational complexities that
require attention. We discussed two known, but computationally
challenging, characteristics of mixed solvents: the phase poten-
tial and preferential solvation. Phase potentials could impact com-
putational studies with certain solvation treatments (e.g., cluster-
continuum modeling) or inconsistent use of absolute or real
solvation free energies. However, we primarily focused on current
solvation models’ potential to capture preferential solvation. Explicit
solvation methods should produce the correct solvation free ener-
gies in mixed solvents provided sufficient sampling; however, this
confidence comes at a significant computational cost of molecu-
lar dynamics with quantum chemistry or high quality force fields.
Computationally cheaper hybrid methods (e.g., COSMO-RS and
RISM) can more efficiently treat mixed solvent environments, but
these methods have some known pitfalls, particularly with charged
intermediates, that may limit their widespread use.

It is our perspective that additional solvation techniques
should require limited a priori information without the need for
ab initio molecular dynamics or well-parameterized force fields.
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Cluster-continuum modeling, when rooted in QCT, has been use-
ful for modeling charged intermediates, but the conventional QCT
approach also requires explicit solvation to properly evaluate solva-
tion free energies. We show here that the dual-QCT approach (lever-
aging global optimization techniques and SOAP/sketch-map analy-
ses) should provide a suitable framework to account for preferential
solvation in mixed solvents.
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