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Fast Adaptive Reparametrization (FAR) with
Application to Human Action Recognition

Enjie Ghorbel, Girum Demisse, Djamila Aouada, Björn Ottersten

Abstract—In this paper, a fast approach for curve
reparametrization, called Fast Adaptive Reparamterization
(FAR), is introduced. Instead of computing an optimal matching
between two curves such as Dynamic Time Warping (DTW)
and elastic distance-based approaches, our method is applied
to each curve independently, leading to linear computational
complexity. It is based on a simple replacement of the curve
parameter by a variable invariant under specific variations of
reparametrization. The choice of this variable is heuristically
made according to the application of interest. In addition to
being fast, the proposed reparametrization can be applied not
only to curves observed in Euclidean spaces but also to feature
curves living in Riemannian spaces. To validate our approach,
we apply it to the scenario of human action recognition using
curves living in the Riemannian product Special Euclidean space
SE(3)n. The obtained results on three benchmarks for human
action recognition (MSRAction3D, Florence3D, and UTKinect)
show that our approach competes with state-of-the-art methods
in terms of accuracy and computational cost.

Index Terms—Reparametrization, action recognition Rieman-
nian manifolds

I. INTRODUCTION

CURVES have been shown to be a very powerful rep-
resentation in the fields of computer vision and pat-

tern recognition. In fact, due to their simplicity, they are
used for the description of various observations such as
objects or shapes, through their contours in 2D [1][2][3], or
level sets in 3D [4][5][6]. Curves are also used to repre-
sent temporal information such as speech [7][8], and motion
field [9][10][11][12][13][14][15].

A curve may be defined as a mapping α : I → M where
I ⊂ R is an interval of reals regulating the order of the
data to be mapped into M, the manifold of observations.
The interval I governs what is called the parametrization
of the curve. However, curve parametrization is not unique
and the same curve in M can be expressed in an infinite
number of different parameter spaces. Hence, this variability
of parametrization can lead to the mismatch of similar curves.
Thus, to compare and manipulate curves, a reparametrization
step is usually undertaken where the domain I of a curve is to
be redefined [16][17][3]. First curve matching techniques have
been based on the detection of a set of finite points called land-
marks [18][19] which are used to statistically describe curve
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Fig. 1. Application of the proposed FAR method in the context of human
action recognition: (Top) features are first extracted from skeleton sequences.
(Middle) they are expressed as time dependant curves lying in a given
manifold M denoted as α1 and α2. (Bottom) to overcome execution
rate variability, the curves are reparametrized using the FAR approach by
respectively computing sα1 and sα2 .

shapes. In later works, more sophisticated reparametrization
techniques using the global information of curves [20][17]
have been introduced. These curves are usually considered
as varying in a Euclidean space. Nevertheless, some dis-
criminative curves lie in nonlinear spaces. More particularly,
curves living in Riemannian manifolds have shown great
potential such as the space of Symmetric Positive Definite
matrices [21] and the Special Euclidean group [22][3]. Thus,
the non-linearity of these informative spaces makes classical
reparametrization methods not directly applicable.

To overcome this issue, several attempts have been made
towards the generalization of reparametrization to Riemannian
manifolds. For instance, Dynamic Time Warping (DTW) [23],
which has been initially designed for curves in Rn, has been
adapted to different Riemannian manifolds [24] by replac-
ing the Euclidean distance used to compute the similarity
measure by a more appropriate entity (geodesic distance,
distance between curves projected to the Lie algebra). On the
other hand, instead of using the similarity measure resulting
from DTW, other approaches have proposed to define elastic
distances [9][2][16]. This rate-invariant distance is usually
computed by defining an optimization problem that finds
the optimal parametrization. In [16], the Transported Square-
Root Vector Field (TSRVF) which represents the extension
of the Square-Root Vector Field (SRVF) method [3] to Rie-
mannian manifolds has been introduced. Anirudh et al. [9]
applied the TSRVF framework on two different Riemannian
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Fig. 2. Overview of the proposed reparametrization technique: First, a change
of variable is realized by replacing the parameter t by the parametrization
function sα(t) described in (4). After that, an interpolation followed by a
uniform sampling is performed to make the two curves comparable for the
same level sα(t).
manifolds (SE(3) and the Special Orthogonal group SO(3)).
Also, Demisse et al. [2] described curves as sequences of
transformation matrices of SE(3) and formulated the problem
of curve matching as an optimization problem using the
geodesic distance of SE(3).

However, in spite of their effectiveness, these generalized
methods designed for curves in Riemannian spaces present
some drawbacks: (1) they are highly dependant on the quality
of data since curves are compared in pairs; (2) they rely on
optimization leading to an important computational complex-
ity, and (3) they are performed using discrete data that are
matched without necessarily corresponding to each other.

To address these limitations, a novel and fast curve
reparametrization framework applicable to Euclidean and Rie-
mannian spaces called Fast Adaptive Reparametrization (FAR)
is introduced. Instead of comparing curves in pairs, this
method reparametrizes any curve α : I →M by heuristically
defining an adequate homeomorphism sα : Iα → I such
that α : Iα → M. To avoid relying on discrete data, the
reparametrized numerical curves are interpolated and resam-
pled uniformly. To evaluate our approach, FAR is adapted to
the context of human action recognition in SE(3)n, as illus-
trated in Figure 1, and tested on three different benchmarks.

II. PROPOSED FAST ADAPTIVE REPARAMETRIZATION

The main goal of the proposed approach is to extract the
properties of curves that are invariant under reparametrization
in order to recognize equivalent curves. The question to be
raised is, therefore, the following: what is the meaning of
equivalent curves?

Let α1 : I1 →M and α2 : I2 →M be two curves withM
as the observation manifold and I1 = [a1, b1], I2 = [a2, b2] ∈
R as their respective parameter domains. Follows the classical
mathematical definition of equivalent curves.

Definition 1: The two curves α1 and α2 are considered to
be equivalent (α1 ∼ α2 ) if and only if there exists a one-
to-one function s(t) : I2 → I1 such that ∀t, ṡ(t) 6= 0 and
α2(s(t)) = α1(t).

The primary challenge is therefore to find the appropriate
parametrization function s(t).

Usually, reparametrization techniques as in [9][2][3] define
s(t) by minimizing a well-chosen similarity measure d be-
tween a pair of curves α1 and α2 such that

s∗ = min
s
d (α1, α2 ◦ s) , (1)

where s∗ denotes the optimal parametrization of α2 with
respect to α1. Unfortunately, this leads to polynomial complex-
ity. Note that the similarity measure dα between two curves is
sometimes implicitly defined using an intermediate mapping
such as TSRVF [16], SRVF [3], etc.

However, in pattern recognition, the definition of curve
equivalence is slightly different from the original mathematical
definition (Definition 1): curves are considered equivalent if
they describe a similar pattern. Thus, the notion of equivalence
can be confused with the notion of class. In fact, the goal of
reparametrizing curves is to ensure that curves describing the
same class look more similar. Therefore, it can be stated that
the meaning of equivalence widely depends on the final appli-
cation and on the properties that we aim to extract from curves.
Thus, we propose to make use of our prior knowledge to define
s(t) in order to reduce the complexity of reparametrization
algorithms. Instead of finding the optimal parametrization by
comparing a given curve α : Iα = [aα, bα] → M to a
template, we define a homeomorphism as a parametrization
function sα : Iα → [0, 1] independently of any other reference
curve. The function sα(t) is therefore computed and applied
to α(t) as described below.

α(sα(t)) = α ◦ sα(t). (2)

This heuristic approach is inspired by the TVR algo-
rithm proposed in [10]. However, while TVR is restricted
to the specific case of temporal normalization for human
action recognition using curves lying in Euclidean spaces,
our approach presents a generalized formulation applicable to
various applications for curves lying not only in Euclidean
spaces but also in Riemannian manifolds. Therefore, the main
idea of our approach is to define sα using a score function
fα : [aα, bα] → R which include a heuristic invariance under
reparametrization of relevant curve properties. Instead of rely-
ing on the pure mathematical definition of curve equivalence,
a physical component is included to orient the choice of the
function fα. In other words, our main goal is not to make the
curves themselves invariant to reparametrization, but to restrict
this invariance to the discriminative curve features in link with
the application. The function fα is computed based on the
curve α itself. Therefore, we note that when designing fα, it
is important to take into account the topological structure of
the spaceM. Indeed, if curves are living in a non-linear space
M, classical measures such as Euclidean distance, derivative,
etc. are not suitable.

Since open curves are numerically assimilated to ordered
data, sα(t) is constrained to be strictly increasing with respect
to the variable t. To that aim, an increasing energy function
Eα is designed using fα as follows:

Eα(t) =

∫ t

a

‖fα(t)‖22dt. (3)

Furthermore, in order to ensure the variation in a single
interval I = [0, 1], the parametrization function sα(t) is
computed as follows:

sα(t) =
Eα(t)

Eα(b)
. (4)
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Note that arclength reparametrization can be considered as a
specific case of this reparametrization, for which fα(t) = α̇(t).

Numerical consideration: One of the strengths of FAR
is that it takes into consideration the discrete nature of the
data. Instead of trying to match non-corresponding curve
points, we propose to follow a different strategy: we realize
an interpolation of curves followed by uniform sampling.
Figure 2 illustrates the different components of the proposed
framework.

III. APPLICATION TO HUMAN ACTION RECOGNITION IN
SE(3)

In this section, we present the application of FAR in
the context of action recognition using features expressed in
SE(3). First, a brief mathematical background that overviews
the properties of the Riemannian manifold SE(3) is recalled.
Then, the used human motion representation, as well as the
adaptation of FAR in this particular case, are described.
A. Special Euclidean Group SE(3)

The Special Euclidean group SE(3) is defined as the set
containing the 4× 4 square matrices with the following form:

T (R,
−→
t ) =

(
R
−→
t

0 1

)
, (5)

where R is a three-dimensional rotation matrix and
−→
t is a

three-dimensional translation vector. As SE(3) is a Lie group
and consequently is a non-linear structure, classical operations
are not trivial. The more common practice is to map SE(3)
elements to its Lie algebra at the identity element I4. The Lie
algebra, denoted by se(3), represents the tangent space and
is characterized by a vector space structure. To map elements
of SE(3) to se(3), and vice-versa, the exponential and the
logarithm maps respectively denoted by exp and log are used.
For more details about differential geometry and the Lie group
SE(3), we respectively refer the reader to [25] and [26].

Distance in SE(3): The geodesic distance dG between
two matrices TA(RA,

−→
tA) and TB(RB ,

−→
tB) ∈ SE(3) can be

computed as follows [2]:

dG(TA,TB) = (‖ log(RT
ARB)‖2F + ‖−→tA −

−→
tB‖22)1/2. (6)

Distance in SE(3)n: The cross product space SE(3)n inher-
its the Lie group structure of SE(3). Therefore, the geodesic
distance D between two elements α1 = (T1,T2, ...,Tn) and
α2 = (Q1,Q2, ...,Qn) ∈ SE(3)n, with Ti and Qi ∈ SE(3)
∀i, is computed as follows:

D(α1, α2) = (

n∑
i=1

dG(Ti,Qi)
2)1/2. (7)

B. FAR Reparametrization in SE(3)n

To model human motion using skeletal data, we propose
to use the representation introduced in [22] called Lie Alge-
bra Relative Pairs (LARP) representing trajectories lying in
SE(3)n.

In [22], authors suggest that a human skeleton S, com-
posed of m edges, at an instant t can be represented
by an ordered set of transformation matrices α(t) =

{T1,2(t),T2,1(t), ...,Tm,m−1(t),Tm−1,m(t)} ∈ SE(3)n.
These transformation matrices are estimated between using
the skeleton edges. Thus, the full action can be seen as
a trajectory (α(t))t∈[t0,t0+L] varying in the product Special
Euclidean Group SE(3)n with L the duration of the action,
t0 the starting time and n = 2C2

m, where C2
m is the number

of combinations. More details about this representation can be
found in the original paper [22].

To overcome execution rate variability, we propose to apply
to the LARP representation, the FAR approach on the obtained
curve α, as described in (4). To compute the parametrization
function sα(t), two different score functions fα(t) are pro-
posed, namely, arclength and motion quantity.

Arclength: To compute the arclength of the curve α(t) at
an instant t on the manifold SE(3)n, we propose to compute
the geodesic distance D between α(t) and α(t− 1),

fα(t) = D(α(t), α(t− 1)). (8)

Therefore, the faster the motion is, the higher f(t) is. Integrat-
ing this function in the parametrization function s(t) makes
α invariant to velocity variation. This can be seen as the
extension of arclength reparametrization for the space SE(3)n.

Motion quantity: We define motion quantity as the distance
between the current pose α(t) the rest pose denoted as αref .
We propose to compute it using the geodesic distance D as
follows:

fα(t) = D(α(t), αref ). (9)

The closer to the rest pose the current pose is, the less
important it is considered. In the experiments, we assume that
the rest pose is encoded in the first frame of the video since
the used datasets are composed of segmented actions. Never-
theless, this approach can be further extended by learning a
generic rest pose model.

Interpolation and uniform sampling: We propose to use
the interpolation scheme for SE(3) as introduced in [27] and
used in [22]. Each reparametrized temporal sequence SE(3)
is interpolated individually. For each sequence αj defined
by Tj(t0),Tj(t1), ...,Tj(ti), ...,Tj(t0 + L) ∈ SE(3), the
following interpolation formula is used. Considering s(t) ∈
[s(ti), s(ti+1)], we have:

α̂j(sα(t)) = Tj(sα(ti)) exp

(
sα(t)− s(ti)

sα(ti+1)− sα(ti)
Bi

)
, (10)

with Bi = log
(
Tj(sα(ti))

−1Tj(sα(ti+1))
)
.

Finally, the interpolated curve α̂ = (α̂j)j∈[1,n] is uniformly
sampled to recover the final descriptor.

IV. EXPERIMENTS

Our reparametrization approach is applied to LARP, as pre-
sented in Section III, and tested on three benchmarks collected
for action recognition: Florence3D dataset [28], UTKinect
dataset [29] and MSRAction3D dataset [30].

Florence3D dataset [28] is composed of 9 different actions.
Each action is performed by 10 different subjects from two
to three times. This dataset acquired using Kinect provides
RGB images, depth maps as well as skeleton sequences. Each
skeleton is constituted of 15 joints. UTKinect dataset proposed
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in [29] contains 10 different classes of action. Each action
class is repeated by 10 different subjects twice. Captured using
Kinect, the three RGB-D modalities are also provided for
this benchmark. However, in contrast to Florence3D, skeletons
are formed by 20 joints. MSRAction3D introduced in [30] is
probably one of the most well-known datasets. This dataset is
composed of 20 actions performed by 10 different subjects
from two to three times. It is also captured using Kinect.
However, only skeletons and depth maps are provided. As in
the UTKinect dataset, each skeleton is composed of 20 joints.

Our reparametrization applied to LARP is denoted as
LARP+FAR-A (when using the arclength as a score function
fα) and LARP+FAR-MQ (when using the motion quantity
as fα). As discussed in [9], the Fourier Temporal Pyramid
(FTP), which is a tool used to remove noise from skeletons,
is not applied to non-Euclidean features. Indeed, analyzing and
exploring the warping is not a trivial task when using FTP. In
the experiments, we follow the same protocol proposed in [9],
where five train-test protocols are realized and then averaged.
For each protocol, half of the subjects are used for the training,
while the rest is used for testing. For the classification, we also
use the same one-vs-all SVM classifier proposed in [22].

To evaluate our approach, we combine the LARP represen-
tation with different reparametrization techniques. We compare
our approach to LARP without carrying out any warping, using
the modified DTW introduced in [22], the TSRVF method
proposed in [9], the TSRVF with manifold functional variant
of Principal Component Analysis (mfPCA) [9] and Principal
Geodesic Analysis introduced in [31]. These approaches are
respectively denoted as LARP, LARP+DTW, LARP+TSRVF,
LARP+nfPCA, and LARP+PGA.

The results obtained on the Florence3D, UTKinect and
MSRAction3D datasets, are reported in Table I.

Arclength (A) vs. Motion Quantity (MQ): The results
show that LARP+FAR present better results on Florence3D
and UTKinect datasets when associated to the MQ motion sig-
nal (with respectively 92.96% and 86.16% using LARP+FAR-
MQ against 90.88% and 95.35% using LARP+FAR-A). This
could be explained by the fact that MQ function highlights
the frames containing key poses and is less sensitive to noise
resulting from undesired motion. However, on MSRAction
dataset, the obtained result using A as a score function is
slightly higher than the one registered for LARP+FAR-MQ
(only a difference of 0.15%).

Comparison with state-of-the-art: Compared to
LARP+DTW and LARP+PGA, our method improves
the performance on the three datasets by around 4% and 13%,
respectively, on Florence3D, and 4% and 5% on UTKinect,
and 4% and 9% on MSRAction3D. Also, compared to
LARP+TSRVF and LARP+mfPCA , our approach enhances
the results by respectively 3% and 3% on Florence3D and by
2% for both on UTKinect. Nevertheless, LARP+TSRVF and
LARP+mfPCA present better performance than LARP+FAR
on MSRAction3D by slightly exceeding it by respectively 1%
and 2% . Despite that, it can be noted that globally the FAR
approach achieves competitive results for action recognition.

Computational cost: In comparison to state-of-the-art ap-
proaches, our method has the advantage to present very

Method Florence3D UTKinect MSRAction3D
LARP [22] 86.27* 93.57* 75.57*
LARP+DTW [22] 86.74* 92.17* 78.75*
LARP+PGA [31] 79.01 91.26 72.06
LARP+TSRVF [9] 89.50 94.47 84.62
LARP+nfPCA [9] 89.67 94.87 85.16
LARP+FAR-A (ours) 90.88 95.35 83.17
LARP+FAR-MQ (ours) 92.96 96.16 83.03

TABLE I
RECOGNITION ACCURACY ON FLORENCE3D, UTKINECT AND

MSRACTION3D DATASETS. *THE VALUES CORRESPOND TO THE ONES
REPORTED IN [9] AND NOT TO THE ONES REPORTED IN [22], SINCE FTP IS

REMOVED.

low complexity. While LARP+TSRVF and LARP+mfPCA
have a polynomial complexity, LARP+FAR requires only a
complexity of O(N), with N being the number of points
forming the curve. This is explained by the fact that FAR is
applied independently to each trajectory without the use of any
reference, in contrast to other approaches which rely mainly
on optimization between pairs of curves. As an illustration,
DTW (having a complexity of O(N2)) and FAR are compared
in terms of execution time on the UTKinect dataset. Although
DTW is implemented in C, FAR remains almost two times
faster (LARP + DTW is executed in 272.10s, while LARP is
executed in 164.72s).

Limitations and future works: It is important to note that
the proposed approach in its current shape does not completely
answer the equivalence formulation. For example, eliminat-
ing the variability by redefining the parameter space makes
the calculation of a mean trajectory not straightforward in
comparison to elastic approaches. Furthermore, the proposed
functions might be affected by noisy data. Finally, an extension
to closed curves could be important for some applications. All
these points remain interesting to investigate.

V. CONCLUSION

In this paper, a fast open curve reparametrization technique
in Riemannian spaces, called Fast Adaptive Reparametrization
(FAR), is introduced. Instead of reparametrizing curves with
respect to a reference, this approach reparametrizes each curve
independently, ensuring a complexity of O(N). This is done
through the heuristic definition of a parametrization function
depending on the application of interest. The FAR approach
was applied to the LARP descriptor [22] in the domain of
skeleton-based action recognition. This allowed evaluating
our approach on curves in the Riemannian space SE(3)n..
The obtained results on three well-known datasets show the
effectiveness of our approach as compared to other state-of-
the-art techniques for action alignment in terms of accuracy
and computational complexity.
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Supplementary Materials: Example of 2D Curve
Representation with FAR

Fig. 1. Correspondence between two closed curves (red and blue): (Left)
illustrates the correspondence between the two original curves before applying
any reparametrization. It can be noted that the matching quality is very low.
(Middle) shows the point matching of the two curves after applying the
Starting Point alignment (SP) and the uniform reparametrization proposed
in [1]. (Right) illustrates the point correspondence between the two curves
after applying the SP alignment and the FAR reparametrization.

I. REPARAMETRIZATION OF 2D CURVES WITH FAR

To visualize the proposed concept, we apply the FAR
approach to the simple case of correspondence between 2D
curved shapes in R2 (Euclidean space), as shown in Figure 1.

A 2D curve can be represented by a function α : I =
[a, b] → R2 with I regulating the ordering of the curve. To
normalize a curve α, the following preprocessing is carried
out:

α∗(t) =
α(t)− ᾱ

h
, (1)

with ᾱ = 1
b−a

∫
I
α(t)dt and h =

∫
I
‖α(t) − ᾱ‖22. Note that

‖ · ‖2 denotes the L2 norm. Since this kind of curve is usually
closed and our algorithm is adapted to open curves, the starting
point correspondence is found using the protocol proposed
in [1].

In this case, to compute the parametrization function α(t),
the score function fα(t) is defined as the curvature where

fα(t) =
1

α̈∗(t)
, (2)

with α̈∗(t) = d2α∗(t)
dt2 . In this case, since the discrete points

describing the curve are usually equally spaced, the velocity
is not informative. In contrast, the curvature can be seen as an
interesting feature that can orient the resampling. When the
curvature increases, the sampling step should become smaller
in order to take into account crucial information. Then, a linear
interpolation is performed before uniformly resampling the
data. The qualitative example depicted in Figure 1 shows that
the matching quality using FAR is improved compared to the
work of [1] while keeping the same computational complexity
O(N), with N the number of curve nodes.

Methods 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
uniform rep (200 points) [1] 91 89 73 75 63 57 51 44 35 30
ours (50 points) 99 96 86 80 70 66 62 49 44 37
ours (200 points) 99 96 92 86 83 77 70 57 47 48

TABLE I
RETRIEVAL RESULTS ON KIMIA99

II. 2D CURVED SHAPE RETRIEVAL APPROACH

We present additional experiments on KIMIA99 and
KIMIA216 in the context of 2D curved shape retrieval, using
the presented representation in previous section. Then, an L2

similarity measure is used to compare the different shapes after
reparametrizing the curves using (1) and (2). We follow the
same experimental protocol used in [1] which is similar to the
leave-one-out. The accuracy score is measured by respectively
computing the overall results of the top 10 and top 11 in
KIMIA-99 and KIMIA-216 retrievals from the same class,
excluding the query shape [2].

Methods 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
uniform rep (200 points) [1] 212 210 188 181 174 165 159 151 141 132 120
ours (50 points) 216 210 199 190 179 175 166 149 141 127 105

TABLE II
RETRIEVAL RESULTS ON KIMIA216

We compare our method to the uniform representation
proposed in [1].

We respectively report the obtained results for KIMIA99
and KIMIA216 in Table I and Table II. The results show
that FAR outperforms uniform representation Pamigirum on
KIMIA99 while conserving the same complexity O(N2), with
N = 200 the number of points. Even when decreasing the
number of points to N = 50 to reduce the computational
time, FAR remains more efficient than uniform representation
on KIMIA99 and on KIMIA216.
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