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Abstract. The dawning era of quantum computing has initiated var-
ious initiatives for the standardization of post-quantum cryptosystems
with the goal of (eventually) replacing RSA and ECC. NTRU Prime is
a variant of the classical NTRU cryptosystem that comes with a couple
of tweaks to minimize the attack surface; most notably, it avoids rings
with “worrisome” structure. This paper presents, to our knowledge, the
first assembler-optimized implementation of Streamlined NTRU Prime
for an 8-bit AVR microcontroller and shows that high-security lattice-
based cryptography is feasible for small IoT devices. An encapsulation
operation using parameters for 128-bit post-quantum security requires
8.2 million clock cycles when executed on an 8-bit ATmegal284 micro-
controller. The decapsulation is approximately twice as costly and has
an execution time of 15.6 million cycles. We achieved this performance
through (i) new low-level software optimization techniques to accelerate
Karatsuba-based polynomial multiplication on the 8-bit AVR platform
and (ii) an efficient implementation of the coefficient modular reduction
written in assembly language. The execution time of encapsulation and
decapsulation is independent of secret data, which makes our software
resistant against timing attacks. Finally, we assess the performance one
could theoretically gain by using a so-called product-form polynomial as
part of the secret key and discuss potential security implications.

Keywords: Lightweight cryptography - Post-quantum cryptography -
Key encapsulation mechanism - NTRU Prime - Efficient implementation

1 Introduction

The advent of quantum computing is a technological revolution that will soon
have a massive impact on our daily life and may even disrupt whole industries
[19]. In short, a quantum computer operates on so-called qubits (the “quantum
analog” of bits), which can not only take the two states 0 and 1, but also be in
a superposition of both states. A quantum computer with n qubits can be in an
arbitrary superposition of up to 2" states simultaneously, enabling it to process
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2™ values in parallel or to store 2" values in one step. For example, a quantum
computer with about 50 logical qubits could solve certain complex optimization
problems a lot faster than the most advanced classical supercomputer today. In
the not-so-distant future, our daily life will start to get affected by large-scale
quantum computers that are powerful enough to aid the discovery of new drugs
or materials, organize the routes of millions of self-driving cars in metropolitan
areas without introducing traffic jams, and improve the efficiency of national
power grids [19]. Unfortunately, quantum computing has also a destructive side
because a large-scale quantum computer with a few thousand qubits would be
able to break essentially every public-key cryptosystem in use today. This was
discovered in the mid-90s by Peter Shor, who also developed a polynomial-time
quantum algorithm to factor large integers, which could break the widely-used
RSA cryptosystem [25]. Later, it was also found that a generalization of Shor’s
algorithm would enable one to take discrete logarithms in a large elliptic curve
groups, thereby breaking Elliptic Curve Cryptography (ECC).

Estimates as to when the first large-scale quantum computer might become
available vary significantly, but optimistic predictions suggest it could happen
before the end of the 2020s [21]. Given the real-world threat posed by quantum
computing, it is little surprising that research in the domain of Post-Quantum
Cryptography (PQC), i.e. cryptography that is able to withstand cryptanalytic
attacks carried out using a large quantum computer [3], has gained momentum
over the past few years. In 2016, the U.S. National Institute of Standards and
Technology (NIST) announced a process to “solicit, evaluate, and standardize
quantum-resistant public-key cryptographic algorithms” and published a call to
submit proposals [22]. This call, whose submission deadline passed at the end
of November 2017, covered the complete spectrum of public-key functionalities
considered by the NIST, i.e. public-key encryption, key agreement, and digital
signatures. A total of 72 candidates were submitted, of which 69 satisfied the
minimum requirements for acceptability and entered the first round of a multi-
year evaluation process. In early 2019, the NIST selected 26 of the submissions
as candidates for the second round; among these are 17 public-key encryption
or key-establishment algorithms and nine signature schemes. The 17 algorithms
for encryption (resp. key establishment) include nine that are based on certain
hard problems in lattices, seven whose security rests upon classical problems in
coding theory, and one that claims security from the presumed hardness of the
(supersingular) isogeny walk problem on elliptic curves [22].

NTRU Prime is a family of lattice-based cryptosystems developed by Bern-
stein, Chuengsatiansup, Lange, and van Vredendaal [4], who drew inspiration
from the 20-year old classical NTRU cryptosystem [12]. There are two variants
of NTRU Prime; one is the so-called Streamlined NTRU Prime, which uses the
quotient h = g/(3f) of two secret polynomials g, f as public key (similar to the
classical NTRU), while the other, NTRU LPRime, has public keys of the form
h=e+ Af, where e, f are secret and A is public (like in cryptosystems based
on the Ring Learning With Errors (RLWE) problem [20], e.g. NewHope [1]). In
essence, NTRU Prime can be seen as an attempt to improve the security of the
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classical NTRU encryption algorithm (and other lattice-based cryptosystems)
by avoiding rings with “worrisome” structure and using extension fields of the
form R/q = (Z/q)[x]/(zP — x — 1) instead, where p is prime. Multiplication in
such fields can be efficiently implemented through several layers of Karatsuba’s
technique [17], which makes NTRU Prime relatively fast on 64-bit processors
with vector instructions. Concretely, the designers of NTRU Prime describe in
[4] a highly-optimized implementation of the field multiplication using Intel’s
AVX2 vector instructions that executes 16 separate multiplications of integers
modulo 2'¢ in a SIMD-parallel way. NTRU Prime is among the 26 candidates
in the second round of NIST’s evaluation process. This second round will focus
on evaluating the candidates’ performance across a wide variety of systems and
platforms, which includes “not only big computers and smart phones, but also
devices that have limited processor power” [22].

Research on software optimization techniques that enable fast implementa-
tions of (Streamlined) NTRU Prime has, until now, been limited to 64-bit Intel
processors with AVX2 vector engine. When using a parameter set for 128 bits
of post-quantum security, the AVX2 implementation introduced in [4] requires
59,600 clock cycles for encryption (i.e. “encapsulation” of a 256-bit key) on an
Intel Haswell processor, while the decryption (“decapsulation”) is 63.5% more
costly and takes 97,452 cycles. The only performance figures for NTRU Prime
on small platforms (e.g. 8, 16, or 32-bit microcontrollers) we are aware of were
reported in a recent paper on pgmé [16], a testing and benchmarking toolsuite
for NIST PQC candidates on ARM Cortex-M4 devices. Due to the lack of an
optimized ARM implementation, the authors of [16] resorted to the reference
C code provided by the designers of NTRU Prime, which requires 54.9 million
clock cycles for encapsulation and 166.5 million cycles for decapsulation (these
cycle counts were determined with Streamlined NTRU Prime and parameters
for 128-bit post-quantum security). However, both results do not allow one to
reason about the actual performance of NTRU Prime on microcontrollers since
the aim of a reference C implementation is to promote the understanding of an
algorithm rather than achieving high speed. Therefore, not much is known on
how to optimize NTRU Prime for a small microcontroller and what execution
time a carefully-tuned assembler implementation could achieve.

In this paper we present a highly-optimized implementation of Streamlined
NTRU Prime for 8-bit AVR microcontrollers that we developed from scratch to
reach high speed and resistance against timing attacks. We chose 8-bit AVR as
evaluation platform for two reasons. First, the 8-bit AVR architecture remains
very popular in devices with increased security requirements, e.g. smart cards
and (wireless) sensor nodes. Second, 8-bit AVR microcontrollers are among the
most resource-limited of all currently used computing platforms, which implies
that if NTRU Prime can be implemented to run with acceptable speed on an
AVR device, it can also be implemented to run satisfactorily on more powerful
16 and 32-bit microcontrollers (e.g. an ARM Cortex-M), whereas the opposite
is not necessarily true. The implementation we describe in the next sections is
not purely optimized for speed, but strives for a balance between performance
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and other metrics of interest for low-end devices used in the Internet of Things
(IoT), in particular binary code size. Therefore, we decided to refrain from full
loop unrolling and other optimization techniques that are likely to increase the
code size significantly (especially on an 8-bit device) for marginal performance
benefits. We also restrict our arsenal of polynomial multiplication algorithms to
the basic (i.e. recursive) Karatsuba variant and the schoolbook method for the
same reason. Recent results by Kannwischer et al [15] show that a combination
of Karatsuba’s technique with the asymptotically faster Toom-Cook algorithm
[27] can slightly reduce the multiplication time, e.g. by 17.4% for polynomials
of degree 701 (excluding the reduction of coefficients), but only at the expense
of almost doubled stack usage and significantly increased implementation com-
plexity. On the other hand, our Karatsuba/schoolbook multiplication is simple
to implement and has the further advantage of enabling compact code size (see
Sect. 4) while remaining competitive in terms of performance.

Instead of potential speed-ups due to the Toom-Cook algorithm, we analyze
the performance benefits one could achieve by utilizing so-called product-form
polynomials, which were first proposed in [13, 14] to reduce the computational
cost of the classical NTRU scheme. We show that representing the secret key in
product form would cut the decapsulation time by 30%, but we also emphasize
that the security implications of product-form secret keys in NTRU Prime are
yvet to be carefully analyzed. Furthermore, we present efficient implementations
of the fast reduction of coefficient products of a length of up to 29 bits modulo
a 13-bit prime ¢. Finally, we demonstrate that, for some 8-bit AVR models like
the ATtiny45, the modulo-3 reduction code generated by optimizing compilers
may have operand-dependent execution time and enable timing attacks.

2 A Brief Overview of NTRU Prime

NTRU Prime is introduced in [4] as a high-security prime-degree large-Galois-
group inert-modulus ideal-lattice-based cryptosystem. A distinguishing feature
of NTRU Prime is the use of an irreducible non-cyclotomic polynomial P; the
designers recommend to choose a polynomial P of prime degree p with a large
Galois group. More specifically, they suggest P = 2P — x — 1 and recommend to
take a prime modulus ¢ such that P is irreducible modulo ¢, which means ¢ is
inert in the ring R = Z[z]/P and R/q = (Z/q)[x]/P is actually a field. Due to
the prime degree of P, the only subfields of (Z/q)[z]|/P are Z/q and the entire
field (Z/q)[x]/P. Furthermore, the requirement of a large Galois group implies
that P has, at most, a few roots in any field of reasonable degree, which makes
automorphism computations hard. Finally, since ¢ is an inert prime, there are
no ring homomorphisms from (Z/q)[x]/P to any smaller non-0 ring.

The NTRU Prime family of Key Encapsulation Mechanisms (KEMs) speci-
fied in [4, 5] consists of Streamlined NTRU Prime and NTRU LPrime, but we
only consider the former since it is more implementation-friendly. Streamlined
NTRU Prime is similar to classical NTRU, but adopts a rounding technique in
the encapsulation and, as explained above, uses a field instead of a ring.
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Notation and Parameters. A parameter set for Streamlined NTRU Prime
consists of the triple (p, ¢, w), which defines the main algebraic structures. The
parameter p is the degree of the irreducible polynomial P = 2P — x — 1 and is
prime; the parameter sets given in [5] use 653, 761, and 857. Also the modulus
g, which represents the characteristic of the field R/q = (Z/q)[z]/P, is a prime
with typical values of 4621, 4591, and 5167, respectively, for the three degrees
considered in [5]. The weight parameter w is a positive integer that defines the
number of non-0 coefficients of certain polynomials. A valid parameter set has
to satisfy 2p > 3w and ¢ > 16w + 1. Reusing the notation of [5], we abbreviate
the ring Z[z]/P, the ring (Z/3)[z]/P, and the field (Z/q)[z]/P as R, R/3, and
R/q, respectively. An element of the ring R is small if all its coefficients are
in {—1,0,1}. Short is defined as the set of small weight-w elements of R, while
Rounded is the set of polynomials r(z) € R where each coefficient r; lies is the
range [—(¢ —1)/2, (¢ — 1)/2] and is rounded to the nearest multiple of 3.

Key Generation. To generate a key pair for Streamlined NTRU Prime, the
following operations have to be performed (note that, for brevity, we skip some
operations such as the encoding of polynomials to strings).

1. Generate a uniform random small polynomial g(z) € R. Repeat this step
until g(z) is invertible in R /3.

Compute v(z) =1/g(x) in R/3.

Generate a uniform random polynomial f(x) € Short.

Compute h(z) = g(z)/(3f(x)) in R/q.

Generate a uniform random polynomial p(z) € Short.

Output h(zx) as public key and (f(x),v(x), h(z), p(z)) as private key.

o U N

Encapsulation. The encapsulation operation gets a public key as input and
produces a ciphertext and session key as output (again, for brevity, we skip all
encoding and decoding operations).

1. Generate a uniform random polynomial r(x) € Short.

2. Compute c¢(x) = h(z)r(z) € Rounded.

3. Compute C' = (c(x), HASH(r(x), h(x))).

4. Output C as ciphertext and Hasu(1,7(z), C) as session key.

Decapsulation. The decapsulation gets a key pair and a ciphertext as input
and produces a session key as output (encodings and decodings are skipped).

1. Compute e(z) = 3f(z)c(x) € R/q and represent each coefficient e; of e(z)
as an integer between —(¢ — 1)/2 and (¢ — 1)/2.

Compute e(z) = e(z) mod 3 € R/3 (i.e. reduce each e; modulo 3).
Compute ' (z) = e(z)v(z) € R/3.

Lift v'(x) € R/3 to a small polynomial '(z) € R.

If the weight of 7/(x) is not w then set '(z) = (1,1,...,1,0,0,...,0).

Gt D
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6. Compute ¢'(z) = h(z)r'(z) € Rounded.

Compute C' = (¢/(z), HAsH(r'(x), h(x))).

8. If C’ equals C then output HAsH(1,r'(x), C) else output HAsH(O, p(z), C)
as session key.

=~

3 Polynomial Multiplication

Since Streamlined NTRU Prime is closely related to the classical NTRU scheme
(i.e. NTRUEncrypt), it is not surprising that they share many implementation
aspects; in particular, they have in common that their performance depends to
a large extent on the polynomial arithmetic. However, the underlying algebraic
structures are (slightly) different: NTRUEncrypt is based on the residue class
ring R = (Z/q)[z]/(z" — 1) where ¢ is a power of two, while NTRU Prime uses
the extension field (Z/q)[x]/(z? — x — 1) where ¢ is a prime, e.g. ¢ = 4621. The
reduction modulo ¢ is basically free in the former case, but relatively expensive
for NTRU Prime, especially when constant execution time is required so as to
foil timing attacks. Furthermore, the irreducible polynomial P of NTRU Prime
contains an additional non-0 coefficient, which makes the reduction operation
more costly. Finally, most performance-optimized implementations of classical
NTRU for constrained IoT devices use a parameter set with so-called product-
form polynomials [14] to minimize the execution time of the ring multiplication
(see e.g. [2,7]). However, product-form parameter sets were not included in the
NTRU Prime specification. For all these reasons, one can expect the arithmetic
part of NTRU Prime, when implemented for an 8-bit AVR microcontroller, to
be significantly slower than that of the classical NTRU cryptosystem.

The encapsulation operation of NTRU Prime includes a single polynomial
multiplication where one operand is an element of R/q (i.e. its coefficients are
bounded by ¢) and the other operand is an element of Short, which means it is
a ternary polynomial with exactly w non-0 coefficients. Hence, the polynomial
multiplication carried out in NTRU Prime encapsulation is very similar to the
ring multiplication in the encryption operation of classical NTRU [12]. On the
other hand, the decapsulation of NTRU Prime involves three polynomial mul-
tiplications, which is one more than the number of multiplications that have to
be executed in classical NTRU decryption. The first polynomial multiplication
in the decapsulation gets an element of Rounded (i.e. an element of R/¢q) and
an element of Short as input. In contrast, the second polynomial multiplication
(Step 3 of the decapsulation as presented in the previous section) is performed
on two elements of R/3, i.e. two ternary polynomials. The third multiplication
of the decapsulation is exactly the same as the polynomial multiplication in the
encapsulation, which means the operands are elements of R/q and Short.

3.1 Karatsuba-Based Polynomial Multiplication

Most algorithms for high-speed polynomial multiplication have their origins in
well-known algorithms for multiple-precision multiplication of integers, such as
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needed for common public-key cryptosystems like RSA and ECC [8, 11]. From
a high-level perspective, polynomial multiplication algorithms can be split into
two main categories, namely basic techniques that require n? coefficient multi-
plications to obtain the product of two polynomials consisting of n coefficients
each, and advanced techniques with sub-quadratic complexity, e.g. Karatsuba’s
algorithm [17]. Examples of the former category are the operand-scanning and
product-scanning method, which produce the coefficient-products in a row-wise
or column-wise fashion and differ with respect of the number of load and store
instructions they need to execute [11]. The so-called hybrid technique proposed
in [10] is beneficial on microcontrollers with a large number of general-purpose
registers (e.g. AVR ATmega) and combines the individual strengths of operand
scanning and product scanning. It has a “nested loop” structure and computes
d > 2 coefficient-products in each iteration of the inner loop, which reduces the
number of load instructions by a factor of d compared to product scanning.

Multiplication algorithms with sub-quadratic complexity have been known
since the 1960s when Karatsuba published his seminal paper [17]. Karatsuba’s
method reduces a multiplication of two operands consisting of n coefficients to
three multiplications of (n/2)-coefficient polynomials and a few additions. The
half-size multiplications, in turn, can be implemented using any multiplication
technique, including conventional operand and product scanning, as well as the
hybrid method. Alternatively, it is possible to apply the Karatsuba algorithm
recursively until the operands consist of just a single coefficient, in which case
the asymptotic complexity becomes ©(n'°82(3)). Yet another option is the so-
called Arbitrary Degree Karatsuba (ADK) variant described and analyzed in
detail in [24]. Also a few multiplication algorithms with even better asymptotic
complexity have been studied; an example is the Toom-Cook multiplication we
mentioned in Sect. 1 in the context of Kannwischer et al’s work on polynomial
multiplication for ARM Cortex-M4 processors [15]. An efficient implementation
of a 4-way Toom-Cook algorithm for multiplication of degree-256 polynomials
on a Cortex-M4 device is described in [18].

Finding the optimal multiplication strategy for the two forms of polynomial
multiplication mentioned at the beginning of this section (i.e. R/q x Short and
R/3 x R/3) is a difficult task. Intuitively, one may assume that a combination
of multiplication techniques with sub-quadratic and quadratic complexity will
yield peak performance. Yet, the concrete implementation of such a combined
strategy raises a few non-trivial questions. Asymptotic complexity bounds are
not always meaningful in the real world, especially when the involved operands
are relatively short. Therefore, it is necessary to find out which sub-quadratic
algorithms are most efficient ones for the multiplications in NTRU Prime (this
depends besides the lengths of the polynomials also on certain characteristics
of the target architecture). For constrained platforms like 8-bit AVR, it makes
sense to base this decision not solely on speed but also on RAM requirements
and code size. A second important question is how many recursions of Karat-
suba’s and/or Toom-Cook’s algorithm should be performed before switching to
a multiplication method with quadratic complexity, i.e. what operand length is
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the “crossover” point? Finally, a third question is which of the basic algorithms
should be used: operand scanning, product scanning, or the hybrid method? In
order to answer all these questions, we conducted a multitude of experiments
with different sub-quadratic algorithms?, different numbers of recursions of the
sub-quadratic algorithms (i.e. different “crossover” points), and different basic
multiplication techniques with quadratic complexity.

The results of these experiments show that for a polynomial multiplication
of the form R/q x Short (carried out in Step 2 of encapsulation as well as Step
1 and 6 of decapsulation), five recursions of Karatsuba’s algorithm provide the
best performance across all parameter sets specified in [5]. Below the five levels
of Karatsuba, the normal product-scanning technique is used since, due to the
bitlength of the coefficient-products and the limited register space, the hybrid
multiplication is not efficient. Also alternative Karatsuba variants, such as the
ADK algorithm from [24], did not yield superior performance. The situation is
different for the polynomial multiplication of the form R/3 x R/3, which has to
be carried out in Step 3 of the decapsulation. For this multiplication, a combi-
nation of the (recursive) Karatsuba algorithm and hybrid method achieves the
best results. To be precise, we reached peak performance with four recursions
of Karatsuba and using the hybrid method with d = 4 at the “lower level” (this
is possible because the coefficient-products are relatively small and, thus, more
free registers are available). We implemented Karatsuba’s algorithm in C and
the hybrid multiplication method in both C and AVR assembler, whereby the
latter is very similar to the implementations described in [10, 8].

A multiplication of two polynomials of degree p — 1 through a combination
of Karatsuba’s algorithm and the hybrid method (or any other multiplication
technique) yields a product-polynomial r(x) of degree 2p — 2, which has to be
reduced modulo the irreducible polynomial P = 2P — z — 1 to get a polynomial
of degree p — 1. Thanks to the relation P = x + 1 mod P, this reduction can
be performed by simply substituting each term ;2% with i > p in r(x) by the
sum r;z°"PH1 4 7;287P [5]. These substitutions are nothing else than additions
of the p — 1 higher coefficients r; to r;_,4+1 and r;_,, which reduces the degree
of r(z) to (at most) p so that two further coefficient additions suffice to obtain
a result of degree p — 1. Thus, the cost of the reduction modulo P amounts to
2p additions of (unreduced) coefficients. The final step of the multiplication is
the reduction of the p — 1 remaining coefficients modulo ¢ or modulo 3.

Coefficient-Reduction Modulo q. As explained above, we implemented the
multiplication of the form R /g x Short using five recursions of Karatsuba as
“higher level” algorithm and product scanning at the “lower level.” Taking the
parameter set sntrup653 as example, we have p = 653, which means the hybrid
method is executed with operands of degree [653/2%] = 21. Furthermore, since

3 As stated in Sect. 1, we do not consider the Toom-Cook multiplication algorithm
due to its high RAM consumption. The AVR device we use for benchmarking, an
ATmegal284 microcontroller, has only 16 kB SRAM, which makes a strong case to
take memory requirements into account in the algorithm exploration.
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Algorithm 1. Table-based constant-time modular reduction

Input: Integer s of a length of (up to) 29 bits, modulus g of a fixed length of 13 bits
Output: r = s mod ¢

1: b« (s28,...,824) > extract the five bits b = (sa2s,. .., $24) from s
2: r < RT1[p] > reduce b2%* modulo ¢ via look-up table RT1
3: b4 (s23,...,516) > extract the eight bits b = (s2s3, ..., s16) from s
4: r < r+ RT2[}) > reduce b2'® modulo ¢ via look-up table RT2
5: 1« r 4+ s & Ox{ffff > add 16 least-significant bits of s to r
6: b+ (r16,...,712) > extract the five bits b = (r16,...,712) from r
7: v+ (r & Oxfff) + RT3[b] > reduce b2'? modulo ¢ via look-up table RT3
8 r«r—gq-(r=q) > conditionally subtract ¢ from r
9: return r

q = 4621 and we represent the —1 coefficients of a ternary polynomial (i.e. an
element of Short) as ¢ — 1 = 4620, a single coefficient-product has a maximum
length of 24 bits. The column sum to which the 24-bit coefficient-products are
accumulated can become up to 29 bits long, i.e. we need an efficient algorithm
for reducing a 29-bit integer modulo a 13-bit integer.

Algorithm 1 shows a generic technique for reducing a 29-bit integer modulo
an arbitrary 13-bit integer g using three look-up tables, which we call reduction
tables. It is assumed that the input s (representing a column sum of the hybrid
method described above) is held in four 8-bit registers, i.e. the individual bytes
of s can be conveniently accessed. At first, the five most-significant bits of s are
assigned to b and then 522* mod ¢ is computed with the help of reduction table
RT1, which contains 32 entries. Next, the second-most significant byte of s is
processed in a similar way, whereby the 256-entry table RT2 is used to obtain
its residue modulo g. The two residues are added up and form the intermediate
result . Then, we extract the 16 least-significant bits from s and add them to
r, which has now a length of at most 17 bits. Similar as before, we assign the
five most-significant bits of r to b, reduce it using RT3, and add the residue to
the 12 least-significant bits of r. Because r is now always less than 2¢, a single
subtraction of ¢ is sufficient to have a fully reduced result. However, to ensure
constant execution time, we first compare r with the modulus ¢, which returns
1 if r > g and 0 otherwise. This comparison-result is multiplied by ¢ and the
product (either ¢ or 0) is then subtracted from r. Note that Algorithm 1 works
for any 13-bit modulus ¢, though each ¢ requires its own set of tables.

Coefficient-Reduction Modulo 3. The reduction modulo 3 can exploit the
fact that some multiples of 3 (e.g. 15, 255) have the form 2 + 1, which allows
for a particularly efficient implementation. Thus, the reduction modulo 3 is less
costly (in terms of look-up tables) than the modulo-¢ case, but requires special
attention regarding timing attacks. Namely, as described in Sect. 2, one of the
operands of the R/3 x R/3 multiplication in the decapsulation is v(z), which is
a part of the private key. Therefore, an implementer has to take care that this
multiplication, including the reduction of all coefficient-products modulo 3, has
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Table 1. Execution time (in cycles) of the __udivmodhi4 function for all 2'¢ possible
16-bit unsigned integers. Columns labeled with “Frequ” and “%” give the frequency (in
absolute numbers) and probability (in per cent) of the occurrence of the cycle count.

l Cycles ‘ Frequ. ‘ % H Cycles ‘ Frequ. ‘ % H Cycles ‘ Frequ. ‘ % ‘

193 31 0.005 198 7956 | 12.140 203 3825 | 5.836
194 45| 0.069 199 | 12243 | 18.681 204 1323 | 2.019
195 312 | 0.476 200 | 14121 | 21.547 205 312 | 0.476
196 1323 | 2.019 201 | 12244 | 18.683 206 45| 0.069
197 3825 | 5.836 202 7956 | 12.140 207 31 0.005

constant execution time. When using C or C++, a modulo-3 reduction can be
implemented by an operation of the form y = x % 3, whereby in our case x is
a 16-bit integer. However, in the course of our work we found out that one can
not take it for granted that a C compiler generates constant-time code for this
operation. Concretely, we discovered that certain versions of avr-gcc generate
code with operand-dependent execution time for some AVR models, which can
leak information about the secret polynomial v(zx).

Frequency (log scale)
N

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
Execution time

Fig. 1. Frequency of the occurrence (in absolute numbers) of a certain execution time
(in cycles) of the __udivmodhi4 function for all 2'® possible 16-bit unsigned integers.

For example, we determined the execution time of the modulo-3 reduction
compiled with avr-gcc 4.8.2 for an ATtiny45 microcontroller with help of the
cycle-accurate simulator Avrora [26]. For target devices that have no hardware
multiplier, e.g. ATtiny microcontrollers, avr-gcc uses the __udivmodhi4 func-
tion from the runtime library libgcc to perform the reduction modulo 3. The
same function was also used for devices with hardware multiplier, including the
ATmegal284 (our benchmarking device, see Sect. 4), until version 4.7.0 of the
avr-gcc compiler; thereafter it was replaced with __umulhisi3 [9]. While the
latter function has a constant execution time (i.e. 54 cycles) for all 2'6 possible
inputs, the time required by the former depends on the value of the operand to
be reduced. Concretely, the execution time of __udivmodhi4 varies between 193
clock cycles (for input values 0, 1, and 2) and 207 cycles (for 49149, 49150, and
49151). Thus, the time difference between the longest and shortest execution is
14 cycles. Further details are provided in Table 1 and Figure 1.
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In order to ensure that the resistance against timing attacks does not depend
on the compiler, we implemented the modulo-3 reduction in assembly language
following the approach described in [7].

3.2 Product-Form Polynomial Multiplication

A well-known way to improve the execution time of the original NTRU scheme
(i.e. NTRUEncrypt) is to use ternary polynomials in product form, which was
originally proposed some 20 years ago [13, 14]. In essence, a ternary polynomial
f(x) in product form can be expressed as f(z) = fi(x) * fo(x) + f3(x), where
fi(x), f2(x), f3(x) are three extremely sparsely populated ternary polynomials
and x symbolizes a “convolution,” i.e. a polynomial multiplication modulo the
irreducible polynomial P = 2%V — 1 of NTRUEncrypt [12]. For example, when
using parameters for 128-bit security (based on a ring of degree N = 443), the
given number of +1 and —1 coefficients of fi(x), f2(z), and f5(z) is 9, 8, and
5, respectively, which means that a convolution requires just a bit over 15,000
coefficient additions or subtractions. Despite the extremely low weight of these
“sub-polynomials,” it is possible to maintain security against all known attacks
since the terms of fi(x) and fy(z) cross-multiply and the polynomial f(z) has
a weight of about 2N/3. However, product-form parameters are rarely used in
practice because the necessary index-based sparse polynomial multiplication is
difficult to implement in a timing-attack-resistant fashion. Only recently it was
shown that on AVR (and other microcontrollers without cache), product-form
convolution can be fast and have constant execution time [7].

The designers of NTRU Prime decided not to support product-form parame-
ters, claiming that product-form arithmetic “saves time for non-constant-time
sparse-polynomial-multiplication algorithms, but loses time for constant-time
algorithms” [4, Sect. T.3]. However, as recently demonstrated in [7], this claim
is not necessarily true for microcontrollers without data cache. The advantages
and disadvantages of the product form for NTRU Prime were also discussed on
the official mailing list of NIST’s PQC standardization project?. In light of the
interest in product-form polynomials, we decided to assess how much they can
accelerate NTRU Prime. Concretely, we evaluated the performance gain for the
decapsulation when the ternary polynomial f(x) € Short, which is a part of the
private key, is represented in product form. However, our work should not be
seen as a recommendation to use the product form in practice.

A product-form parameter set for the classical NTRU cryptosystem includes
the parameters di, da, ds specifying the number of +1 coefficients of the sub-
polynomials fi(z), fo(x), f3(x), whereby the number of +1 coefficients equals
the number of —1 coefficients (i.e. polynomial f;(z) has weight w; = 2d;). On
the other hand, a set of parameters for NTRU Prime comes with just a single
weight parameter w that specifies the number of non-0 coefficients of elements
of Short. Hence, in order to use the product form for NTRU Prime, we have to

4 https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/fh2xGahC4LE/
NycdEhTHAgAJ
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determine the weights wy, ws, ws of the sub-polynomials a ternary polynomial
f(x) € Short is composed of. The parameter generation approach we follow in
this paper is derived from [23, Sect. 3.4.2] and assumes an equal split between
+1 and —1 coefficients, though this requirement was dropped in NTRU Prime
to allow for more choices of polynomials [4, Sect. 3.6]. Hoffstein and Silverman
observed in one of the first papers about product-form polynomials that, when
fi(z) and fa(x) are binary polynomials with d; and dy ones, respectively, the
number of ones in the product fi(x)f2(x) is essentially didy [13]. Based on this
observation, the weight of f(z) = fi(x) * f2(x) + f3(x) can be estimated to be
roughly 4d;ds + 2d3 (see [23] for details). However, the weight of f(z) depends
not only on dy, ds, and ds, but also on the irreducible polynomial used in the
convolution. Since the irreducible polynomial P of NTRU Prime has the form
aP — x — 1, the reduction of the product f;(z)f2(x) modulo P introduces more
non-0 coefficients than a reduction modulo P — 1, the irreducible polynomial
of NTRU. For example, any term of the form a,z"™ with n > p gets reduced to
anx” Pt 4+ q,2" P in NTRU Prime, but to just a,z™ P in classical NTRU.

Our approach to calculate (dy, da,ds) for the NTRU Prime parameter sets
(which require f(z) to have a weight of w = 288, 286, and 322, respectively) is
based on [23, Sect. 3.4.2], but takes the difference in the irreducible polynomial
into account. For example, for the parameter set sntrup653 (i.e. w = 288) we
obtained (d1, ds,ds) = (9,8, 4), i.e. the three sub-polynomials f;(z), f2(x), and
f3(x) should have a weight of 18, 16, and 8, respectively. We conducted a large
number of experiments for all three parameter sets of NTRU Prime to ensure
that our approach to generate product-form polynomials is correct. In the case
of sntrup653, the weight of f(x) was always between 280 and 300.

While the security implications of using the product form have been studied
in detail for classical NTRU [14], we are not aware of a similar security analysis
for NTRU Prime. In the course of our work we discovered that the polynomial
f(z) = fi(x) * fa(x) + fs(x) has a linear distribution of non-0 terms (instead
of a uniform distribution like in classical NTRU) if the non-0 coefficients of the
sparse polynomials fi(x), fa(x), f3(x) are uniformly distributed. However, this
effect can be compensated by choosing the distribution of the non-0 coefficients
of f3(x) accordingly. We leave a full-fledged security analysis of product-form
polynomials in NTRU Prime as part of our future work.

We implemented a product-form variant of NTRU Prime by re-using parts
of the NTRU software for 8-bit AVR microcontrollers from [7], in particular the
ring arithmetic. This software contains a ring multiplication function where one
operand is an element of R/q (i.e. a polynomial with coefficients in the range
[0,q — 1]) and the second operand is a ternary polynomial in product form. We
adapted this function to suit the requirements of NTRU Prime, which uses the
field Z[z]/P with P = 2P — x — 1 as underlying algebraic structure. In concrete
terms, this means we modified the reduction modulo the irreducible polynomial
and the reduction of coefficient-sums modulo the prime ¢. The latter reduction
can be performed in a similar way as described in Subsect. 3.1, except that the
maximum length of a coeflicient sum before modulo-q reduction is only 17 bits
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Table 2. Execution time (in clock cycles) and code size (in bytes) of the main arith-
metic operations and full encapsulation and decapsulation of NTRU Prime using the
parameter set sntrup653 on an ATmegal284 microcontroller. Operations annotated
with “PF” use the product-form technique described in Subsect. 3.2.

| Operation [ Time | Size |
R /q % Short multiplication 5,604,929 2,230
R/q x Short multiplication (PF) 740,980 2,812
R /3 x R /3 multiplication 1,277,675 1,510
Full encapsulation 8,160,665 8,694
Full decapsulation 15,602,748 11,478
Full decapsulation (PF) 10,754,219 14,370

(for all three parameter sets of Streamlined NTRU Prime), i.e. Algorithm 1 can
be slightly optimized. We refer to [7] for an in-depth description of the original
product-form multiplication for 8-bit AVR. As explained in Sect. 2, the decap-
sulation of NTRU Prime includes as first step a multiplication of a polynomial
that is an element of R/q by a ternary polynomial of fixed weight, namely the
polynomial f(x) € Short. This multiplication can be accelerated by using the
product-form technique described above when f(x) is generated accordingly.

4 Results and Comparison

The 8-bit AVR device we used to test and benchmark our NTRU Prime imple-
mentation is an ATmegal284 microcontroller, which features 16 kB SRAM and
128 kB flash memory for storing program code. Our software consists of a mix
of C and assembly language; we implement the main arithmetic operations in
assembly to achieve fast and operand-independent execution time, whereas all
functions that are neither performance-critical nor security-critical are written
in C to maximize portability. We use the optimized Assembler implementation
of the SHA-512 hash function introduced in [6] to minimize the execution time
of certain auxiliary functions that are performance-critical. When executed on
our target device, the compression function of SHA-512 takes slightly less than
60k clock cycles, which corresponds to a compression rate of about 467 cycles
per byte. Our implementation of (Streamlined) NTRU Prime can be compiled
with Atmel Studio v7.0 under the -02 optimization option, which produces an
executable that, according to our experiments, does not leak secret information
through execution time and can, therefore, withstand timing attacks.

Table 2 summarizes the execution time and code size of the core arithmetic
operations (i.e. polynomial multiplications) as well as a full encapsulation and
decapsulation of our NTRU Prime software. The table shows the results of two
implementations of the polynomial multiplication of the form R /g x Short; the
first uses a combination of Karatsuba’s algorithm and product scanning at the
lower level (see Subsect. 3.1), whereas the second is based on the product-form
approach (see Subsect. 3.2). The results in Table 2 show that the product-form
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Table 3. Comparison of our NTRU Prime implementation with other post-quantum
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key-establishment algorithms and ECC (all of which target 128 bits of security).

| Implementation H Algorithm [ Platform [ Encaps. [ Decaps. ‘
This work NTRU Prime | ATmegal284 8,160,665 | 15,602,748
Cheng et al (7] NTRU (PF) | ATmegal281 847,973 1,051,871
Dill et al [§] ECC-255 ATmega2560 | 13,900,397 | 13,900,397
Kannwischer et al [16] || NTRU Prime | Cortex M4 54,942,173 | 166,481,625
Kannwischer et al [16] Frodo Cortex M4 45,883,334 | 45,366,065
Kannwischer et al [16] NewHope Cortex M4 1,903,231 1,927,505
Kannwischer et al [16] Kyber Cortex M4 652,769 621,245
Kannwischer et al [16] NTRU Cortex M4 645,329 542,439

multiplication is significantly faster; it outperforms the Karatsuba-based mul-
tiplication by a factor of 7.56. On the other hand, these two implementations
differ only marginally in terms of binary code size. The implementation of the
R/3 x R/3 polynomial multiplication combines Karatsuba’s method with the
hybrid technique and is much faster than the polynomial multiplication of the
form R/q x Short. This reduced running time is due to the smaller coefficients
(enabling faster coefficient multiplication), smaller intermediate results (requir-
ing fewer registers) and faster reduction (modulo 3 vs. modulo ¢). Also given in
Table 2 are the execution times of encapsulation and decapsulation, which are
primarily dominated by the polynomial arithmetic. The encapsulation includes
just a single multiplication, namely a multiplication of an element of R/g by an
element of Short (i.e. R/q x Short) that accounts for roughly two thirds of the
overall execution time. On the other hand, the decapsulation operation has to
perform three polynomial multiplications (two of the form R/q x Short and one
of the form R/3 x R/3); together they contribute 80% to the overall execution
time. The first R/q x Short multiplication, i.e. the multiplication of ¢(x) by the
ternary polynomial f(z) € Short, can be accelerated through the product-form
technique, which reduces the execution time from 15.6 to 10.8 million cycles. In
other words, product-form multiplication makes a decapsulation 31% faster.
Our software is, to the best of our knowledge, the first optimized implemen-
tation of Streamlined NTRU Prime for constrained devices. The only previous
implementation of NTRU Prime for microcontrollers published in the literature
is the implementation from pgmé4 [16], which is essentially the reference C code
without any assembler optimizations. Compared with the pgm4 timings on an
ARM Cortex-M4, our implementation is 6.7 times faster for encapsulation and
10.7 times faster for decapsulation (see Table 3). However, it needs to be taken
into account that a 32-bit ARM Cortex-M4 is significantly more powerful than
an 8-bit AVR microcontroller. The AVR, assembler implementation of classical
NTRU (i.e. NTRUEncrypt with ees443epl parameters) introduced in [7] uses
a highly efficient product-form convolution and outperforms our NTRU Prime
software by roughly an order of magnitude. On the other hand, when compared
with ECC, our NTRU Prime encapsulation is much faster than a variable-base
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scalar multiplication on Curve25519, while the decapsulation is a bit slower. Due
to the limited number of state-of-the-art implementations of other NIST PQC
candidates for 8-bit AVR, we give in Table 3 also a few recent results from the
pamé library for 32-bit ARM Cortex-M4 microcontrollers.

5 Conclusions

We presented the first highly-optimized implementation of NTRU Prime for an
8-bit microcontroller that is capable to resist timing attacks. When executed on
an ATmegal284 device, the encapsulation takes about 8.2 million cycles, while
the decapsulation has an execution time of 15.6 million cycles (both results are
based on the parameter set sntrup653). For comparison, the reference C code
from the designers requires 54.9 and 166.5 million cycles for encapsulation and
decapsulation, respectively, on a much more powerful 32-bit Cortex-M4 micro-
controller. To achieve these results, we implemented all expensive operations in
AVR assembly language, most notably the polynomial arithmetic, whereby we
strived for a balance between execution time and code size. We also discussed
how the concept of product-form polynomials to speed up classical NTRU can
be applied to NTRU Prime and demonstrated that product-form multiplication
would make the decapsulation 30% faster. However, since a thorough analysis
of the security implications of the product form in NTRU Prime is lacking, we
do (currently) not recommend to use product-form polynomials in a real-world
application. Furthermore, we showed that one cannot count on a C compiler to
generate constant-time code for the modulo-3 reduction, which generally raises
concerns about the security (i.e. resistance against timing attacks) of C imple-
mentations of NTRU Prime. In summary, our results show that NTRU Prime
can be well optimized to run efficiently on small microcontrollers, which makes
it an interesting candidate for securing the post-quantum IoT.
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