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Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. 
For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better 
understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association 
studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are 
located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete 
understanding of genotype–phenotype correlations, for example through differential regulation of gene expression. Here, 
the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with 
a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of 
non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, 
examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and 
to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and 
considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic 
variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that 
may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.

Keywords  Parkinson’s disease · Non-coding variation · Genetic modifier · Gene regulation · Genome-wide association 
studies · Genetic susceptibility · Polygenic risk scores

Parkinson’s disease

Parkinson’s disease (PD) is the most common neurodegen-
erative movement disorder, with a wide range of motor and 
non-motor symptoms, showing marked differences in age at 
symptom onset and progressivity (Poewe et al. 2017). The 
precise etiology of the disease remains largely unknown—
both genetic and environmental factors that can lead to PD 

symptoms have been identified. The accumulation of Alpha-
synuclein in Lewy bodies is a major neuropathological hall-
mark of the disease. Loss of dopaminergic (DA) neurons in 
the substantia nigra and the associated loss of dopaminergic 
innervation in the striatum are the main drivers of impaired 
motor function (Kalia and Lang 2015). The physiological 
changes resulting in the very varied range of additional non-
motor symptoms (such as hyposmia, obstipation and others) 
are less well understood.

Phenotypes of Parkinson’s disease

PD patients present with highly variable symptoms. This 
and the fact that most PD cases are ‘idiopathic’, thus of 
unknown etiology, poses challenges to clinicians and 
researchers. Stratification strategies are needed to identify 
subgroups of patients. Clinically patients can be assigned 
to different subgroups, using measures such as motor func-
tion scores, disease progression rates, cognitive performance 
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indicators, dementia status and the co-occurrence of REM 
sleep behavior disorder (RBD) (Heinzel et al. 2016). Recent 
PD cohort studies aim to capture this variability through 
the integration of detailed clinical information with genetics 
and additional datasets generated from an extensive range 
of matched biospecimens (e.g. blood, saliva, stool and post 
mortem brain samples) (Mollenhauer et al. 2016, 2019; 
Heinzel et al. 2017; Hipp et al. 2018). This deep phenotyp-
ing of PD patients is expected to better inform the selection 
of individuals suited for specific clinical trials in a true preci-
sion medicine approach (Tolosa et al. 2020).

Genetics of Parkinson’s disease

Only around 5–10% of all PD cases can be attributed to 
monogenic causes. Mutations in Parkin (PRKN), PTEN 
Induced Kinase 1 (PINK1), and DJ-1 (PARK7) are linked 
to early-onset autosomal recessive PD. Mutations in the 
Synuclein Alpha (SNCA), Leucine Rich Repeat Kinase 2 
(LRRK2) and Vacuolar Protein Sorting associated Protein 
35 (VPS35) genes have been linked to autosomal dominant 
PD (Klein and Westenberger 2012; Blauwendraat et al. 
2020). For another ~ 10% of familial cases, the underlying 
genetic causes still need to be defined. Sporadic (non-famil-
ial) cases make up the remaining ~ 80% of observed cases 
and the underlying etiology is poorly understood. In sporadic 
forms of the disease, genetic factors have been identified 
that contribute significantly to the risk to develop PD. The 
major risk factors are mutations in Glucosylceramidase Beta 
(GBA; e.g. N370S or L444P)) and LRRK2 (e.g. G2019S), 
where low penetrance of mutations contribute to the lack of 
familial aggregation of cases (Nalls et al. 2019).

Many PD-associated mutations display incomplete pen-
etrance or striking variation in expressivity (e.g. age at onset 
or disease progression rates). This is a common phenom-
enon observed for most complex traits/disease phenotypes 
(Cooper et al. 2013). Even for fully penetrant PD mutations, 
variability in severity and progression of clinical symptoms 
are common. SNCA mutations that are implicated in famil-
ial PD can contribute to the risk to develop either PD, PD 
with dementia (PDD) or dementia with Lewy bodies (DLB) 
(Guella et al. 2016). Similarly, for carriers of the same 
LRRK2 mutation different clinically and neuropathologically 
defined diseases were described besides PD, e.g. pure nigral 
degeneration and multiple system atrophy (Zimprich et al. 
2004). To what extend the genetic background or genetic 
architecture shapes disease risk in individuals is still unclear. 
Also unclear is how environmental factors contribute to the 
disease and to what extent this depends on an individual’s 
genetic background.

Interestingly, marked heritability of PD can be observed 
in some families with no known genetic causes (Blauwen-
draat et al. 2020). From the observed heritability of PD it 

is estimated that genetic factors account for up to 30% of 
identified cases (Nalls et al. 2014). However, this percent-
age may still increase as our understanding of the genetics 
of complex diseases improves. The expected presence of yet 
unknown genetic factors contributing to disease (apart from 
and in addition to known PD genes) is also supported by the 
observation of high numbers of phenocopies in familial PD 
where family members not carrying known PD gene muta-
tions display the same PD symptoms (Klein et al. 2011).

This discrepancy between observed heritability and what 
can be explained by current genetic knowledge is often 
referred to as missing heritability. How to approach this 
missing heritability in the context of complex phenotypes 
and diseases and how to unravel the underlying genetic con-
tributors has been subject of a wide body of work over the 
last decades (Manolio et al. 2009; Eichler et al. 2010).

Known disease‑related non‑coding variants 
in Parkinson’s Disease

The genetic factors contributing to PD discussed above are 
resulting in changes in coding sequences. In contrast, non-
coding variation associated with PD is currently understud-
ied. ClinVar (https​://www.ncbi.nlm.nih.gov/clinv​ar/) is the 
main curated public resource for the assessment of genomic 
variation in the context of public health and diseases. Using 
the Simple ClinVar (Pérez-Palma et al. 2019) web inter-
face we investigated the current knowledge about the con-
tribution of non-coding variation in the context of PD. The 
ClinVar version from Nov 27th 2019 lists for the keyword 
search ‘Parkinson disease’ in total 1211 variants related to 
42 genes. When filtering for variants in non-coding regions 
and only considering curated variants, 346 variants (28%) 
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Fig. 1   Overview of non-coding variants in ClinVar (27 Nov 2019). 
Results show the remaining variants after filtering for non-coding 
regions (‘Splice-D/A’, ‘3-UTR’, ‘5-UTR’, ‘Non-coding’, ‘intronic’), 
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related to 21 genes (50%) associated with 21 phenotypes 
were found (Fig. 1). The only variants annotated as patho-
genic or likely pathogenic were six splicing-related variants 
and only one intronic 164 bp deletion in PRKN (Lücking 
et al. 1998). Most non-coding variants were variants of 
unknown significance (228 (66%)) and most of them were 
only found in a single study (329 (95%)). This highlights 
both the lack of knowledge about the impact of non-coding 
variants as well as the lack of supporting experimental and 
genetic data for the characterization of non-coding variants 
in PD. The chapters below will discuss the potential impact 
of non-coding variation on gene expression and the estab-
lishment of disease phenotypes.

Complex disease phenotypes and missing 
heritability

For some phenotypes and diseases, individual mutations 
with strong effects in single genes can be identified. How-
ever, many traits are of a more complex nature involving the 
interaction of several genes. In these, the associated genetic 
variants are acting in concert with many additional factors 
in complex functional networks (Riordan and Nadeau 2017). 
Genetic contributors to complex phenotypes can be missense 
variants, splice variants, copy number variants and non-cod-
ing variants with regulatory function. The effect of a single 
variant contributing to a given trait might be very small, as is 
the case for example in body height, where individual vari-
ants influence the phenotype at most by 0.5 cm (Guo et al. 
2017). Therefore, the additive effects of several variants are 
likely required to the shape trait or disease phenotypes.

Work in mice has shown that the observed genotype–phe-
notype correlation in one defined genetic background is not 
necessarily transferable to other strains (Sittig et al. 2016). 
In humans, substantial inter-individual differences in the 
penetrance of the same mutation defining a disease pheno-
type can be observed even for monogenic diseases: some 
mutation carriers may not develop any disease symptoms 
due to their specific genetic background (Chen et al. 2016). 
This suggests that in monogenic diseases certain genetic 
variants or sets of variants can act as modifiers of disease 
phenotypes. In complex diseases with no single genetic 
cause, disease modifiers are likely at work, but even more 
difficult to identify due to the complex interactions shaping 
the disease-associated phenotypes.

Most of the effects of inter-individual genetic variation 
are expected to act indirectly, or in trans (see Fig. 2), chang-
ing not only coding sequence, or the expression of indi-
vidual genes, but whole networks of genes and gene prod-
ucts (Cheung and Spielman 2009). Recent estimates from 
theoretical work suggest that the majority of all phenotypes 
are shaped by many interactions of low effect size acting in 

trans (Liu et al. 2019). These effects in trans are much more 
difficult to identify and to date there is a lack of detailed 
networks of trans effects.

Genetic variation can play important roles in shaping 
expressivity and penetrance of certain traits. In complex 
diseases, many variants are expected to influence several 
intermediate traits. In the case of monogenic diseases, 
genetic modifiers are expected to act on the same interme-
diate traits as the disease-associated mutation. Identifying 
disease-associated genetic variants and understanding their 
mode of action is essential to advance our understanding of 
how complex traits and disease phenotypes depend on the 
genetic background.

Strategies to uncover missing heritability

Genome-wide association studies (GWAS) leverage infor-
mation on recombination events during meiosis in the gen-
eration of germline cells. Associating certain recombina-
tion blocks to the manifestation of a phenotype (clinical or 
physiological) allows to identify phenotype/disease-associ-
ated common single nucleotide variants (SNVs) or small 
insertions or deletions (INDEL). GWAS have contributed 
significantly to our understanding of complex traits and for 
many diseases, GWAS have uncovered previously unknown 
disease-associated variants and pointed towards implicated 
mechanisms (Visscher et al. 2017). However, for complex 
traits and complex diseases GWAS failed to fully explain 
heritability. In case of PD, GWAS variants can only explain 
16–36% of the observed heritability, based on the to-date 
most complete meta-analysis covering 17 datasets and over 
30,000 PD patients (Nalls et al. 2019). Not included in these 
heritability estimates are the contributions of rare variants 
(of any effect size) that can currently not be captured due to 
the limited sample numbers. Efforts to increase these num-
bers are underway to expand GWA studies to also include 
rarer variants with minor allele frequencies of 1% and below. 
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Latest estimates suggest that for this the current sample size 
will have to be tripled. It is expected that through this effort, 
additional variants that are currently not reaching genome-
wide significance cutoff will make it into the set of identified 
risk variants (Nalls et al. 2019). In a parallel effort GWAS 
are for the first time applied to non-Caucasian populations. 
This will help to overcome the current bias and improve 
current knowledge on PD genetics through the inclusion of 
genetically diverse populations, e.g. from India within the 
Luxembourg-German-Indian Alliance on Neurodegenera-
tive diseases and Therapeutics (Lux-GIANT) (Peterson et al. 
2019; Kishore et al. 2019; Schekman and Riley 2019).

As mentioned above, at current sample sizes GWAS fail 
to capture rare variants. However, increasing evidence sug-
gests that rare variants play a major role in shaping complex 
traits or complex disease phenotypes (Germer et al. 2019). 
Whole exome sequencing (WES) is instrumental in the iden-
tification of rare disease-associated coding variants that are 
not captured by GWAS. The Parkinson’s progression marker 
initiative (PPMI) has generated over 600 whole  exome 
sequences of blood samples of the PPMI cohort including 
sporadic PD and control subjects (Marek et al. 2011). There 
are additional efforts ongoing in parallel (Sudlow et al. 
2015). WES studies generated mixed results for both spo-
radic as well as familial PD. While some studies have not 
uncovered any disease-associated variants, others were able 
to identify and functionally validate rare disease-associated 
variants (Farlow et al. 2016; Jansen et al. 2017; Sandor et al. 
2017; Shulskaya et al. 2018; Germer et al. 2019). Others 
point towards risk variants that are shared across PD and 
Alzheimer’s disease (AD) (Nuytemans et al. 2016). Impor-
tantly, none of these studies identified the same rare coding 
variants. While this is expected for rare variants in the until 
now limited sample numbers, differences in data processing 
can contribute to this (Shulskaya et al. 2018)—highlighting 
a need for standardized analytical pipelines. As will be dis-
cussed below, gene expression is highly cell type-specific. 
Therefore, it is expected that detailed cell type-resolved 

data from tissues implicated in the disease will dramatically 
improve future sequencing studies.

Through the dramatic drop in price, whole  genome 
sequencing (WGS) is now applicable to studies with larger 
sample numbers. In contrast to WES, WGS offers single-
nucleotide resolution in both coding as well as non-coding 
regions. In addition, WGS is untargeted, providing even 
coverage over the whole genome, alleviating biases intro-
duced by exon-capturing kits (Belkadi et al. 2015). WGS 
studies leverage information on disease-associated varia-
tion together with functional genome annotation (compare 
Table 1) and predictive scores to narrow down the number 
of promising candidates for follow up studies. For coding 
variants, a plethora of in silico tools exist that can be used to 
estimate the potential deleterious effects of identified vari-
ants (Adzhubei et al. 2010; Sim et al. 2012; Kircher et al. 
2014). For the biggest part of the non-coding genome no 
or only limited functional annotation exists. Most often in 
silico predictions of non-coding variant effects are there-
fore not feasible or of poor quality. Non-coding variants 
can, however, be prioritized based on additional functional 
genomic annotations discussed in the paragraphs below. 
Due to the small numbers of included participants, WGS 
studies in neurodegenerative diseases are currently under-
powered for the discovery of novel risk variants. Concerted 
efforts to increase sample numbers are currently underway: 
The Global Parkinson’s Genetics program (GP2) within the 
Aligning Science Across Parkinson’s (ASAP) initiative aims 
to genotype samples from over 150,000 subjects (Schekman 
and Riley 2019). Importantly, in this effort currently under-
represented populations from e.g. Africa and India are going 
to be included as well.

Potential causative variants in GWAS

GWAS studies have identified large numbers of variants 
associated with complex traits and diseases. However, the 

Table 1   Resources for functional genome annotation, annotations for non-coding variants, and tools for their integration

NIH Roadmap Epigenomics Project Tissue and cell line resolved epigenome datasets https​://www.roadm​apepi​genom​ics.org/
ENCODE Encyclopedia of DNA Elements https​://www.encod​eproj​ect.org/
GTEx Gene expression/tissue resolved eQTLs https​://www.gtexp​ortal​.org/home/
Dropviz.org scRNA-seq atlas of the mouse brain https​://dropv​iz.org/
Simple ClinVar Summary statistic from ClinVar https​://simpl​e-clinv​ar.broad​insti​tute.org/
SCAN SNV and CNV Annotation Database https​://www.scand​b.org/newin​terfa​ce/about​.html
AlleleDB Annotations of cis-regulatory SNVs https​://allel​edb.gerst​einla​b.org/
RegulomeDB Regulatory element annotations for SNVs https​://regul​omedb​.org/
Database of Genomic Variants (DGV) Structural variation in the human genome https​://dgv.tcag.ca/dgv/app/home
FUMA Functional Mapping and Annotation of GWAS https​://fuma.ctgla​b.nl/
iPDGC Mendelian randomization portal Parkinson’s Disease Mendelian Randomization 

Portal
https​://pdgen​etics​.shiny​apps.io/MRpor​tal/

https://www.roadmapepigenomics.org/
https://www.encodeproject.org/
https://www.gtexportal.org/home/
https://dropviz.org/
https://simple-clinvar.broadinstitute.org/
https://www.scandb.org/newinterface/about.html
https://alleledb.gersteinlab.org/
https://regulomedb.org/
https://dgv.tcag.ca/dgv/app/home
https://fuma.ctglab.nl/
https://pdgenetics.shinyapps.io/MRportal/
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identification of underlying causative variants remains dif-
ficult. Here, we are summarizing current strategies to iden-
tify disease-related variants and genes from common variant 
studies.

Variant fine mapping

One major limitation of GWAS is the use of tag SNVs as 
proxies for whole recombination blocks and by extension all 
the co-segregating SNVs (Visscher et al. 2017). It is there-
fore possible—and more likely than not—that the disease-
associated tag SNV is not a causative variant but in fact 
other SNVs in linkage disequilibrium (LD) are. To improve 
resolution on the recombination blocks several strategies 
for fine-mapping of GWAS variants have been developed 
(Kichaev et al. 2014; Schaid et al. 2018). While fine-map-
ping strategies help to improve GWAS resolution, it is not 
alleviating the underlying uncertainty on which of the SNVs 
identified under a GWAS hit locus might be causative.

One promising approach to combine common and rare 
variant analyses is to use GWAS results in combination 
with WES or WGS data. The large amounts of rare variants 
from WES or WGS can be effectively filtered by prioritiz-
ing genetic variants for causality on the basis of preferential 
linkage disequilibrium (LD). This method assumes that most 
GWAS signals are not reflecting the actual causal variant, 
but are only tagging a rare variant in their proximity with a 
higher effect size variant (Zhu et al. 2012).

Quantitative trait loci

One approach to select variants from the overwhelming 
number of trait-/disease-associated variants is to prioritize 
them based on information on quantitative trait loci (QTL). 
QTLs are genomic loci that correlate with a quantitative 
phenotypic measure such as gene expression (eQTL) or 
DNA methylation levels (metQTLs). At these loci, certain 
variants can be associated with altered gene expression or 
DNA methylation (DNAm) levels. The majority of eQTLs 
are acting in cis and are predominantly found in promoter 
elements of correlated genes (Fig. 2). It has been found that 
disease-associated variants are more likely to be eQTLs 
(Nicolae et al. 2010). This is in line with the observation that 
disease-associated variants are more likely to be in gene reg-
ulatory elements (GREs; see chapters below). It was shown 
that eQTLs correlation with gene expression depends on the 
tissues analyzed (Hernandez et al. 2012). Like gene expres-
sion profiles and the associated GREs, eQTLs are highly 
cell type-specific. This has implications for the identifica-
tion of functional variants from GWAS. Dependent on the 
interrogated phenotype, different cell type/tissue-specific 
eQTL information needs to be considered. Many studies in 

the past disregarded this need for cell type-resolved func-
tional datasets.

Polygenic risk scores

The high number of common disease-associated variants 
with small effect sizes suggests they could contribute in con-
cert or synergistically to increased disease risk. Polygenic 
risk scores (PRS) aim to capture this cumulative risk within 
individuals with the aim to differentiate healthy individuals 
from patients or individuals at risk (Khera et al. 2018).

While PD age at onset (AAO) GWAS have not uncov-
ered many individual variants with strong effects, work 
on the cumulative effects of small effect size variants has 
identified sets of SNVs contributing to the increased over-
all risk of earlier AAO of PD symptoms (Escott-Price et al. 
2015; Pihlstrøm et al. 2016). Interestingly it was shown 
that the exclusion of all SNVs located in genomic regions 
with known PD susceptibility loci did not reduce predic-
tive power of the PD polygenic risk scores (Reynolds et al. 
2019). Focusing on variants in mitochondrial genes a poly-
genic risk of small effect variants was shown to contribute 
to disease risk and AAO in PD (Billingsley et al. 2019). 
These findings suggest that mainly common variants with 
small effect sizes (not reaching genome-wide significance 
in GWAS) are contributing to disease risk. Their concerted 
action is expected to act on a larger set of pathways and pro-
cesses resulting in disease. It is however also plausible that 
rare variants with individual significant impact are shaping 
this risk. Both scenarios are likely and probably both types 
of variants contribute together to disease.

PRS currently do provide sufficient predictive power on 
whether an individual will develop PD. For example, the 
1085 variants PRS by Nalls et al. (2019) identifies 14 false 
positives for one true positive finding, limiting its practical 
use. Nevertheless, PRS can be useful for patient population 
stratification: cognitive decline and motor progression over 
several years could be clearly linked to PRS in PD cohort 
studies (Latourelle et al. 2017; Paul et al. 2018). A clear 
polygenic risk has been reported recently to influence dif-
ferential penetrance observed in PD with LRRK2 mutations 
(Iwaki et al. 2020). The most recent approaches include 
information on rare loss of function variants from WES 
studies and thereby further improve predictive risk scores 
(Bobbili et al. 2020).

Mendelian randomization

In the context of complex phenotypes/diseases, individual 
gene expression or protein levels can be considered as inter-
mediate traits contributing to the complex trait. Through 
mendelian randomization (MR) approaches, causal inter-
mediate traits contributing to the appearance of a complex 
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trait can be identified and distinguished from confounding 
factors (Neumeyer et al. 2019). Using this information, risk 
variants can be annotated with genes whose expression they 
are correlated with. Through this, putative candidates can be 
selected from the large number of SNVs in LD with the tag 
SNV. Genetic, metabolomic as well as environmental fac-
tors can be considered in MR. In the specific case of GWAS 
this information can be used to associate LD blocks with 
their associated regulated genes (Do et al. 2017). Through 
the integration of tissue-specific DNA methylation and gene 
expression profiles polygenic risk to PD can be compared 
to the polygenic risk of another exposure (Nalls et al. 2019; 
Kolber and Krüger 2019). The recently published MR por-
tal allows to browse two-sample MR results from a wide 
range of exposures with the latest PD Meta-GWAS analysis 
(Noyce et al. 2019).

Family‑based strategies

An alternative strategy to identify disease-associated or 
modifier variants can be family-based approaches. These 
methods either use classical linkage analyses, which—simi-
lar to GWAS—are based on genotyping data of common 
variants and then search for haplotype blocks or identity 
by descent that are following the segregation pattern of a 
certain trait or disease. Similar to GWAS, this was used in 
the pre-sequencing era to narrow done regions of interest in 
large pedigrees. Since the advent of WES and WGS family-
based sequencing was also used to identify rare and ultra-
rare causal or modifier variants in other diseases (Roach 
et al. 2010; Schubert et al. 2014; Lalli et al. 2015; Amin 
et al. 2017). WGS of families allows to detect the segrega-
tion of whole shared haplotypes or blocks that are inherited 
by identity by descent (IBD) for specific traits. These can be 
used to filter rare disease-causing or modifier variants. Fil-
tering by shared haplotype blocks efficiently narrows down 
the list of segregating rare and common variants (Roach 
et al. 2010; Bahlo et al. 2014). Tools like pVaast (Hu et al. 
2014) combine linkage analysis and rare-variant association 
tests from WGS data using family information and differ-
ent modes of inheritance to prioritize disease-causing vari-
ants. Family information combined with GWAS has already 
been used to detect variants in DNM3 as genetic modifier 
for AAO in patients with the LRRK2G2019S mutation (Trinh 
et al. 2016).

Gene × environment interactions

The search for unknown genetic contributors to complex 
traits and diseases is complicated by environmental fac-
tors that can affect disease development (Ball et al. 2019). 
What is more, individual genetic background might shape 

an individual’s gene × environment interactions (Cavalli and 
Heard 2019). A thorough review on gene and environment 
interactions and MR studies in the context of PD can be 
found elsewhere (Kolber and Krüger 2019).

Gene regulatory elements

Complicating matters in the search for functional vari-
ants is that the vast majority of disease-associated variants 
identified through GWAS and other methods are located in 
non-coding regions of the genome. Previously regarded as 
‘genetic desert’, it is now understood that the non-coding 
genome provides important gene regulatory functions 
(Spielmann and Mundlos 2016). It has been shown that 
disease-associated non-coding variants are more likely to 
be located in regions with putative regulatory functions 
(Maurano et al. 2012), in particular in regions controlling 
genes expressed and playing important roles in a cell type-
specific manner (Hnisz et al. 2013). Understanding the 
precise effects of non-coding variants on these regulatory 
regions is essential to understand how they contribute to 
disease phenotypes by shaping gene expression and down-
stream pathways.

The principles of regulation of gene expression and 
the associated changes on DNA and chromatin can be 
briefly summarized [reviewed for example in (Holoch 
and Moazed 2015; Allis and Jenuwein 2016; Klemm 
et al. 2019)]: the expression of a gene is controlled by its 
promoter and its associated enhancer elements. Promot-
ers serve as the sites for the assembly of the transcrip-
tion machinery, as a result of the presence of general and 
sequence-specific transcription factors (TF). TFs can bind 
to specific motifs of DNA, recruiting other TFs and co-
factors to this location. While binding normally occurs in 
open chromatin, pioneer transcription factors have been 
shown to be able to also bind motifs in heterochroma-
tin and to recruit additional factors that eventually will 
result in an opening of chromatin. These pioneer TFs are 
critical during development. Enhancer elements are short 
stretches of DNA that can be bound by TFs and as a result, 
through recruitment of co-activators and interactions with 
the RNA polymerase complex at the target gene promoter, 
enhance the transcription of RNA from the target gene. A 
single enhancer element can contribute to the regulation 
of more than one gene, and a single gene’s expression 
can be controlled by several enhancer elements. While 
this interaction is in cis, the genomic distances between 
enhancer and promoter elements can be tens to hundreds 
of thousands of base pairs (compare Fig. 2). These long-
range interactions are facilitated by chromosomal loop-
ing, which can bring distal enhancer elements in physi-
cal contact with their target promoter regions, triggering 
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transcription initiation (Schoenfelder and Fraser 2019). 
As a consequence, enhancer and promoter elements are 
integrating spatial and temporal information on TF pres-
ence and activation status within a cell into distinct gene 
expression profiles.

Identification of gene regulatory elements

During cellular differentiation but also in postmitotic cells, 
covalent DNA- and histone modifications are deposited 
and removed by writer and eraser enzymes respectively. 
Reader proteins can further interpret these marks. This is a 
highly dynamic process essential in the regulation of gene 

expression (Zhang et al. 2015). Modifications of DNA and 
histones are often referred to as epigenetic marks. The term 
epigenetics—originally coined by Conrad Waddington—
has received a lot of attention in recent years, but lacks a 
clear-cut definition (Waddington 1942; Greally 2018). It 
has been suggested that epigenetics can be separated into 
two aspects: nature—deposition and removal of DNA and 
histone marks during regulation of gene expression—and 
nurture—accumulation of marks as a consequence of envi-
ronmental exposure, age or disease state (Do et al. 2017). 
Below, the different features of active gene regulatory 
elements (GREs) and methods for their identification are 
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formation and 3D organization of the chromosome. a Schematic pres-
entation of DNA- and chromatin marks and chromatin accessibility. b 
Chromatin organization into separated domains, Cohesins and CTCF 
transcription factors establish domain boundaries. Enhancer and pro-
moter elements can interact within TADs but not with neighboring 
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how they can be translated into functional annotations mapped to the 
genome
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outlined (also compare Fig. 3). Typically, a combination of 
several different approaches is needed for accurate annota-
tion of GREs.

Histone modifications

Nucleosomes are built from four different histone subunits 
that can be covalently modified at specific amino acid resi-
dues. Altogether over 100 different modifications of histones 
are known (Tan et al. 2011). Among the best understood 
histone marks are methylation and acetylation of specific 
residues. These are deposited by residue-specific histone-
methylases and -acetylases and removed by histone-demeth-
ylases and -deacetylases. These marks are highly dynamic 
and reflect the regulatory state of genomic loci. By analyz-
ing their occupancy, for example, using chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) with 
combinations of suitable antibodies, chromatin states such 
as active or inactive promoters, active enhancers and actively 
transcribed gene bodies can be identified (Ernst et al. 2011). 
For example, genomic regions flanked by nucleosomes car-
rying histone H3 acetylated at lysine 27 (H3K27ac) have 
been shown to reveal active enhancers engaged in transcrip-
tional regulation (Creyghton et al. 2010; Rada-Iglesias and 
Wysocka 2011), while poised enhancers that are currently 
not active lack this mark but harbor histone H3 monomethyl-
ated at lysine 4 (H3K4me1).

Chromatin accessibility

The accessibility of chromatin can serve as a pointer towards 
genome regions that are open to interaction with the regu-
latory machinery (TFs and others) (Klemm et al. 2019). 
Generally, these regions stretch narrow genomic intervals. 
Their accessibility can be probed by e.g. DNase-seq (Boyle 
et al. 2008) and more recently the assay for tagmentation 
accessible chromatin followed by sequencing (ATAC-seq) 
(Buenrostro et al. 2013). Within the accessible regions, foot-
printing strategies allow to identify short intervals that are 
occupied by TFs (Li et al. 2019b).

3D genome conformation

Chromosomes are organized in a three-dimensional man-
ner inside the nucleus. They are tethered to the nuclear 
lamina and structured into distinct domains. Using chromo-
some conformation capture sequencing techniques distal 
interactions between e.g. promoters and enhancer elements 
have been identified, including interactions in cis over long 
distances (Sajan and Hawkins 2012). Knowledge of these 
interactions are instrumental for the association of putative 
GREs with their respective target genes. In addition, distinct 
borders in chromosomes can be identified. It was shown that 

GREs can interact with each other inside so-called topologi-
cally associated domains (TAD), while interaction across 
TAD borders is rarely observed (Symmons et al. 2014). Bor-
ders between the TAD domains are established by Cohesins 
and the CTCF transcription factor that physically close the 
domain into a large loop of approximately 1 million base 
pairs (Fig. 3). The disruption of TAD borders has been 
reported to introduce pathological changes in cancer and 
other human disease when GREs can gain aberrant control 
over additional target genes and, therefore, introduce drastic 
changes in gene regulation (Spielmann and Mundlos 2016).

DNA methylation

High levels of DNA methylation (DNAm) at enhancer ele-
ments are usually associated with reduced gene expression 
from the target promoters (Lea et al. 2018). However, it 
should be noted that methylation of specific cytosines can 
also facilitate TF binding, both by repressors as well as acti-
vators (Yin et al. 2017). In particular, pioneering factors can 
bind to methylated DNA and then lead to demethylation of 
the locus. It is important to note that DNAm is generally a 
consequence of cell type-specific gene regulatory processes. 
In addition, environmental factors (for example cigarette 
smoke) can contribute to differential levels of DNAm. Inter-
estingly, the individual genetic background has been shown 
to also influence the extent to which environmental exposure 
or disease conditions can influence the associated differen-
tial DNAm profiles (Hannon et al. 2018b). DNAm can be 
probed using methylation-sensitive microarrays, bisulfite 
sequencing, or through immunoprecipitation using anti-
bodies specific for methylated DNA (MeDIP) (Weber et al. 
2005). More recently, novel technologies such as nanopore 
sequencing have also enabled the detection of modified DNA 
bases directly during sequencing (Simpson et al. 2017). Dif-
ferentially methylated regions are at the heart of epigenome-
wide association studies (EWAS) described below.

Epigenetic changes in neurodegenerative 
diseases

In addition to their actively controlled role in regulating gene 
expression, DNA and histone modifications can accumulate 
over time in response to environmental exposure and disease 
conditions. This can be referred to as the nurture aspect of 
epigenetics. Changed metabolism as a result of increasing 
age, but also of a disease phenotype, could contribute to the 
differential deposition of these marks. The landmark paper 
by Horvath has introduced the concept of an epigenetic clock 
in the form of differential DNAm at specific loci, that can 
serve as a measure for biological age (Horvath 2013). What 
has become clear is that certain genomic loci can be subject 
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to changes of these regulatory marks in a disease state, espe-
cially so in late-onset diseases such as AD, PD or dementia 
(Wüllner et al. 2016; Hwang et al. 2017; van Heesbeen and 
Smidt 2019).

Epigenome-wide association studies (EWAS) aim to 
identify trait- or disease-associated differential epigenetic 
marks at specific loci that are a consequence of exposure 
or disease. Inherently problematic for EWAS is that sample 
composition needs to be thoroughly controlled to exclude 
bias through changes in cell populations (e.g. in blood or 
tissues). Very importantly, since genetic variation has been 
shown to affect the deposition of DNA and histone marks, 
disease-associated differential marks need to be controlled 
for e.g. metQTLs that can be changed as a result of genetics 
rather than disease or environment (Do et al. 2017). Despite 
these limitations, EWAS have identified disease-associated 
changes. DNA methylation marks, for example, are primarily 
found in enhancer and insulator regions and not in promoter 
elements, pointing towards function in cell type-specific 
regulatory processes. This is in contrast to metQTLs that 
are predominantly found in promoter elements controlling 
gene expression in a more direct fashion (Do et al. 2017). 
As discussed before, DNA- and histone modifications are 
highly cell type-specific. It is therefore crucial that these 
are not sampled only in the tissues but preferably even in 
the exact cell types that are contributing to or are affected 
by a trait or disease. For other diseases and traits DNAm 
has been investigated in post-mortem brain tissue (Hannon 
et al. 2018a).

Evidence for concordant PD-associated changes in 
DNAm in the frontal cortex and peripheral leukocytes has 
been reported (Masliah et al. 2013), suggesting that blood-
derived samples could serve as a surrogate sample for fur-
ther studies. However, these findings have not been thor-
oughly validated and were not reproduced so far. In contrast, 
current studies argue against a high degree of inter-tissue 
concordance of DNAm marks—with the exemption of age-
associated DNAm (Hannon et al. 2015; Farré et al. 2015). 
Still the use of easily accessible samples may be justified 
as a potential source for biomarker discovery. Even if these 
changes are not reflected in brain tissue, DNAm changes 
in the blood of PD patients could be correlated with symp-
tom progression in several longitudinal studies (Chuang 
et al. 2019; Henderson-Smith et al. 2019). The promises 
and pitfalls of epigenetic marks as biomarkers for PD were 
reviewed in detail recently (Jakubowski and Labrie 2017).

In the case of PD, the obvious candidate tissue for EWAS 
that would capture any changes in DA neurons is the sub-
stantia nigra in the midbrain. However, most studies focused 
either on easily accessible samples, such as blood or saliva 
(Kaut et al. 2017; Chuang et al. 2017) or more readily avail-
able frontal cortex postmortem tissues (Pieper et al. 2008). 
PD-related differences in DNAm are also investigated in 

neuron cultures derived from induced pluripotent stem cell 
(iPSC) of PD patients and controls. While the methylation 
marks deposited in iPSC derived cultures are not capturing 
the nurture aspect of epigenetics, these models are useful in 
the identification of differential regulation of gene expres-
sion as a consequence of genetic background (Fernández-
Santiago et al. 2019). A better understanding of PD cell 
type-specific regulatory networks and the GREs involved in 
shaping them is needed as a baseline for the identification 
of PD-specific dysregulation of such networks.

Information on disease-associated changes in DNA- and 
histone-marks can be leveraged to prioritize distinct regu-
latory elements for functional characterization. For AD it 
was shown that certain loci that are differentially methylated 
between patients and control groups also contain disease-
associated variants (Li et al. 2019a). Importantly, also on the 
level of histone modifications differences have been identi-
fied between AD patients and healthy controls (Marzi et al. 
2018). In a mouse model of PD, strong association between 
gene expression changes and differences in histone marks in 
DA neurons were reported (Södersten et al. 2018). Disrup-
tive variants at these loci could be contributing to disease-
associated changes in the deposition of these marks and, in 
extension, contribute to an intermediate disease phenotype. 
Such interplay was recently also shown at the SNCA locus, 
where a differentially methylated region in PD patients 
(Jowaed et al. 2010) was also found to contain PD-associated 
variants and that this site is a target for DNA demethylases 
(Sharma et al. 2019). These findings highlight the complex 
interconnection of regulatory marks and genetics and the 
inherent difficulty to dissociate environment- or disease-
associated contributions from genetic effects on DNA and 
histone modifications.

Non‑coding variants and their role in gene 
regulation

Advances in next-generation sequencing technologies and 
bioinformatic analysis tools are increasingly allowing to 
test and functionally annotate the non-coding regions of 
the genome. An extensive body of work has resulted in an 
increased appreciation of the complex mechanisms by which 
regulatory elements shape gene expression in a cell type-
specific manner. The ENCODE and Roadmap consortia have 
collected and compared data on gene expression, histone and 
DNA modifications as well as chromatin accessibility from 
many different cell types and tissues (Dunham et al. 2012; 
Kundaje et al. 2015). In their estimates, the majority of the 
genome serves regulatory functions. One of the important 
early findings of this work was that accessibility and usage 
of GREs such as enhancers show high cell type-specific-
ity (Dunham et al. 2012). It was furthermore shown that 
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disease-associated variants are specifically enriched in GREs 
and even more so in clusters of enhancers, so called super-
enhancers, suggesting an important role of gene regulation 
in disease etiology (Maurano et al. 2012; Whyte et al. 2013; 
Galhardo et al. 2015). Until now, no computational tools 
exist that could determine GREs from sequence information 
alone. Due to their highly dynamic nature and high speci-
ficity, cell type-resolved maps of these GREs are required 
for further investigation of regulatory genetic variation in 
complex phenotypes and diseases (Hekselman and Yeger-
Lotem 2020).

Both common and rare non-coding variants were shown 
to contribute to differential gene expression in several tis-
sues (Zhao et al. 2016; Li et al. 2017). For frontal cortex, it 
was shown that approx. 9% of all transcripts’ gene expres-
sion levels were regulated by proximal SNPs (Webster et al. 
2009) and that 5% of these could be utilized to distinguish 
between samples from AD patients and healthy controls. 
More specifically, genetic variants at promoters can result in 
changed levels of gene expression. This has been shown for 
the TERT promoter in cancer (Fredriksson et al. 2014) and 
a large body of additional work in other contexts supports 
this (Deplancke et al. 2016). In addition, it was shown that 
AD-associated variants in enhancer elements are often found 
in CTCF binding motifs, suggesting a role in dysregulated 
chromatin looping and resulting changes in gene expression 
networks (Kikuchi et al. 2019). Examples of changed gene 
expression, as a consequence of disease-associated varia-
tion altering TF binding at enhancer elements, have been 
reported for several other diseases and developmental disor-
ders (Karnuta and Scacheri 2018). Importantly, the targets of 
enhancer variants are not necessarily protein-coding genes 
but can also be non-coding genes including microRNAs and 
long non-coding RNAs.

Moreover, SNVs in GREs can change the allele prefer-
ence, resulting in preferential expression of one allele over 
the other. This was shown to alter the abundance of coding 
variant containing transcripts and could serve to explain dif-
ferent penetrance in monogenic diseases (Castel et al. 2018). 
Differential DNAm at GREs and changes in CTCF binding 
involved in chromatin structure establishment are discussed 
as the mechanisms by which variants in non-coding regions 
can influence allele preference (Wang et al. 2019a).

In summary, non-coding variants can alter gene expres-
sion and gene regulatory networks suggesting an important 
role for non-coding regulatory variants in disease. Below, 
strategies to identify functional candidates from the vast 
pool of potential variants will be summarized.

Leveraging functional genomics to identify 
disease‑associated variants

Translating the vast information of disease-associated 
genetic variation into a functional understanding of the 
underlying cellular pathways is challenging. Functional 
annotation of the genome and increased knowledge on which 
variants/loci can be associated with certain phenotypic out-
comes has advanced this a lot. A list of resources on func-
tional genome annotation can be found in Table 1.

As discussed above, the highly specific use of GREs in 
different cell types suggests that approaches to identify regu-
latory variants in complex diseases need to be based on tis-
sue- or cell type-resolved data. Disease-associated variants 
are enriched in loci with functional histone modifications. 
Through the integration of cell type-resolved histone mark 
datasets, it was shown that for certain cell types a higher bur-
den of disease-associated variants can be identified. Disease-
associated variants were found to be particularly enriched 
within GREs of those tissues or cell types that are implicated 
in the respective diseases, e.g. brain tissue for neuropsy-
chiatric disorders and pancreatic islets for type 2 diabetes 
(Trynka et al. 2013; Pasquali et al. 2014; Quang et al. 2015). 
Other work has included information on disease-associated 
changes of gene expression and chromatin state from animal 
models. In the case of AD, a clear cell type-specific enrich-
ment of GWAS variants in putative GREs was shown, impli-
cating e.g. microglia as a key cell type in disease etiology 
(Gjoneska et al. 2015). This work also highlights the value 
of animal models for the identification of regulatory variants 
in GREs that are conserved across species.

For PD, a specific enrichment of GWAS variants in active 
enhancer regions, identified by the presence of H3K27ac, 
was shown for several different tissues, not only in the 
brain (Coetzee et al. 2016). So far, no enrichment of PD-
associated variants in GREs could be shown for any of the 
major brain cell types (Nalls et al. 2019; Nott et al. 2019; 
Reynolds et al. 2019). However, pathway analyses revealed 
a significant enrichment for variants in certain pathways. 
These included lysosomal pathways in microglia as well as 
autophagy pathways in both oligodendrocytes and mono-
aminergic neurons. GREs associated with mitochondrial 
gene sets were enriched for PD-associated variants in almost 
all cell types (Reynolds et al. 2019). While these findings 
need to be interpreted with caution, as pathway enrichment 
analysis are difficult to control (Dørum et al. 2009), they 
nevertheless provide good pointers towards which pathways 
and cell types to prioritize in future studies. Taken together, 
non-coding variants were shown to affect GREs active in 
multiple cell types and are expected to do so in GREs active 
in less abundant cell types such as DA neurons that have not 
yet been studied in sufficient depth.
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Single-cell RNA-seq (scRNA-seq) allows detailed inves-
tigation of gene expression in subpopulations of cells from 
a disease-associated tissue or cell cultures. Using such an 
approach AD-associated gene expression changes in indi-
vidual populations could be identified that were previously 
disguised by the different expression levels in the bulk 
sequencing data. While gene expression changes in early 
disease stages were cell type-specific, in later stages cell 
types tended to share differentially expressed genes (Mathys 
et al. 2019). In a recent study, GWAS variants associated 
with brain disorders and behavioral traits were integrated 
with cell-type resolved annotations of active enhancers, 
active promoters and enhancer × promoter interactions. AD 
GWAS variants were shown to be enriched in microglia-
specific regulatory elements, while schizophrenia-associated 
variants were highly enriched in GREs specific to neurons 
(Nott et al. 2019). The microglia-specific role of an AD-
associated variant containing locus was shown by enhancer 
deletion. Expression levels of the predicted target gene were 
reduced, providing evidence that functionally relevant ele-
ments can be identified by such a data-driven approach. In 
the same study, no cell type-specific enrichment of GWAS 

variants was found for PD. One caveat for these studies is 
that while bulk midbrain RNA-seq and ChIP-seq datasets 
exist, few cell type-resolved datasets of PD-affected brain 
regions like substantia nigra or striatum are available (Welch 
et al. 2019). Others are from human fetal tissue or mouse 
tissue (La Manno et al. 2016; Saunders et al. 2018). Most 
of the work presented here is based on frontal cortex sam-
ples. Therefore, potential enrichment of GWAS variants in 
particular PD implicated cell types (such as DA neurons) or 
cell type-specific enrichment in certain pathways cannot be 
excluded yet. Future work on PD-associated variants will 
depend on better resolved datasets of midbrain tissue, or 
midbrain specific cellular models.

Functional annotation on chromatin accessibility can be 
leveraged to prioritize non-coding variants with putative reg-
ulatory roles in known PD genes. Within accessible regions, 
local drops in next-generation sequencing coverage—foot-
prints—can be identified. These represent TF binding events 
that can protect open chromatin from digestion or tagmen-
tation during the assay. Within these footprints known TF 
binding motifs can be found, indirectly revealing the puta-
tive TFs that could be binding to these sites (Pique-Regi 

Fig. 4   Exemplary prioritization 
approach for non-coding GWAS 
variants located in cell type spe-
cific gene regulatory element. 
Cell type resolved information 
on enhancer marks and chro-
matin accessibility reduces the 
number of potential candidate 
variants. TF footprinting allows 
to prioritize variants that disrupt 
TF binding motifs, target genes 
are identified through chromo-
some conformation capture 
techniques. Here an exemplary 
non-coding variant is identified 
in an enhancer element that 
interacts with the promoter of 
gene 1 in a DA neuron specific 
manner
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et al. 2011; Li et al. 2019b). Disease-associated variants 
disrupting these TF binding motifs are prime candidates for 
functional testing. Using such an approach, common PD-
associated GWAS variants in open chromatin in the SNCA 
locus where prioritized for functional characterization and 
shown to affect SNCA gene expression levels in cultured 
cells (Soldner et al. 2016). Figure 4 shows an exemplary 
workflow capturing these prioritization steps.

Chromosome conformation capture (3C) methods have 
uncovered many enhancer × promoter interactions. Using 
this information, putative GREs containing candidate vari-
ants from GWAS, EWAS or other sources can be linked 
to specific promoter regions and the likely regulated target 
genes. A striking example of how chromosome conforma-
tion annotation can aid the identification of functional non-
coding variants comes from a GWAS of elevated body mass 
index. One of the strongest associations was found at the 
FTO gene locus. However, candidate variants were found 
to disrupt a repressive TF binding site within a GRE that 
controls expression levels of IRX3 and IRX5 located over one 
million base pairs away (Claussnitzer et al. 2015). Using a 
similar approach, a hypomethylated locus at the IGF2 gene, 
identified in neurons of patients with schizophrenia or bipo-
lar disorder, was shown to physically interact with the pro-
moter of the tyrosine hydroxylase (TH) gene, coding for the 
rate-limiting enzyme in dopamine synthesis. Hypomethyla-
tion of DNA at this enhancer element was associated with 
increased TH expression levels, providing an explanation 
for the high levels of dopamine and the observed benefits 
of DA receptor antagonist treatment in psychosis (Pai et al. 
2019). In the context of neurodegenerative disease GWAS, 
cell type-resolved 3C data was used to identify cell type-
specific target genes for individual GREs that contained AD-
associated variants (Nott et al. 2019). While their datasets 
contain deep information on PD, the authors did not elabo-
rate on the effects of PD-specific variants.

Enhancer × promoter interaction maps are not available 
for many cell types. Computational approaches associating 
accessibility of GREs based on functional genomics data 
and gene expression are currently being developed to pro-
vide GRE to target gene predictions. Importantly, these tools 
do not rely on prior assumptions as to which genes might 
be regulated by a GRE. Also, sets of GREs controlling the 
expression of a particular gene can be identified. Using such 
approaches, enhancer × target gene networks can be built, 
from which non-coding variants from GWAS involved in 
the regulation of disease-associated genes were identified 
(Shooshtari et al. 2017; Cao et al. 2017).

The work presented above is mainly focused on the 
identification of individual candidate variants, contribut-
ing to the expression of individual target genes. However, 
higher-level effects on gene regulatory networks might 

also contribute to the development of disease. As previ-
ous work showed, non-coding variants are accumulating in 
hubs of gene regulation. Understanding how deregulation 
of these hubs and their associated gene regulatory net-
works can contribute to disease phenotypes requires prior 
knowledge on the healthy state of these networks. Using 
information on gene expression and enhancer elements 
these networks can be computed (Saint-André et al. 2016; 
Gérard et al. 2019). It is conceivable that non-coding vari-
ants can disturb these networks, and, to some extent, be 
responsible for the aberrant gene expression observed in 
the disease state (Gao et al. 2018). Functional validation 
of sets of non-coding variants would require combinatorial 
activation or repression; the means to do so are currently 
being developed and discussed below.

Systems biology approaches

Systems biology approaches aim to integrate datasets from 
different sources on a network level. Especially in case of 
complex diseases such as PD, with the very broad range of 
symptoms and implicated tissues, a systems-level approach 
can contribute to a more generalized view of the patho-
logical changes. The concepts and necessary tools are 
reviewed elsewhere (Parikshak et al. 2015; Glaab 2018). 
For example, using gene set enrichment analysis and 
topological pathway models, disease-associated changes 
on cellular pathways can be identified. For PD this was 
done based on transcriptome data of substantia nigra tis-
sue, in which significant PD-associated changes in several 
pathways were found (Zheng et al. 2010). Network-based 
pathway enrichment analysis on human transcriptome 
datasets was used to identify shared pathways between 
PD and ageing (Glaab and Schneider 2015). Genes previ-
ously known to play a role in DA neuron development and 
PD (e.g. NR4A2) were found to be differentially expressed 
in both ageing and PD. A likely shared role of underlying 
gene regulatory processes was proposed. Expanding on 
this work, gene expression network modules were used to 
define cell type-specific signaling modules active at neu-
ronal synapses. In these STMN2 was identified as the top 
regulated gene and subsequently shown to be important for 
endocytosis in mouse DA neurons. A knockout of STMN2 
resulted in reduced numbers of DA neurons in mice (Wang 
et al. 2019b).

Due to the complexity of the datasets, the resulting net-
works and models can be difficult to interpret. Machine 
learning approaches recognize patterns in data that can 
serve to classify distinct groups. Recent work has intro-
duced a genome essentiality score through the integra-
tion of a wide range of datasets covering 3D genome 
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organization and enhancer annotation. This score was 
then shown to serve as a strong indicator of the relevance 
of individual deletions in enhancer elements (Wells et al. 
2019).

Functional genomics datasets have helped to understand 
complex diseases and point at players at critical network 
locations. The integration with clinical phenotypes and 
additional deep phenotyping data on a systems level will, 
however, be needed to fully understand how disease phe-
notypes develop and how they can potentially be detected 
even before clinical manifestation.

Validation of disease‑associated variants

Due to the large numbers of non-coding variants that can 
be associated with diseases and the laborious process 
involved in functional testing, candidates need to be prior-
itized. The integration of functional genomics data allows 
to exclude many variants that are not located in putative 
GREs. Cell type-resolved data can provide further insight 
in which cell types variants likely act in. However, without 
experimental validation in vivo or in vitro, these predic-
tions are of limited use. Variants with predicted effects 
only in a certain cell type would require testing in appro-
priate cell culture or animal models. For coding variants, 
functional readouts are rather straightforward: Transcript 
and protein abundance as well as protein function can be 
measured. This is not the case for non-coding variants, 
where, owing to the variability of potential roles, no single 
application exists with which effects could be assessed.

Model systems

The work reviewed above highlights the highly cell type-
specific engagement of GREs. In addition, the genetic 
background in which non-coding variants are acting is 
expected to influence its effect. Therefore, the functional 
characterization of potential disease-associated variants 
should be performed in genetically defined experimental 
systems that ideally recapitulate the genetic background in 
which they were identified. The advent of patient-derived 
induced pluripotent stem cells (iPSC) has made this pos-
sible (Meissner et al. 2007; Takahashi et al. 2007) and 
protocols to differentiate e.g. DA neurons from iPSCs have 
been described (Kriks et al. 2011; Reinhardt et al. 2013). 
During reprogramming of somatic patient cells to iPSCs, 
most DNA and histone modifications are erased and reset 
to a pluripotent status. This is an essential aspect of suc-
cessful reprogramming (Grzybek et  al. 2017). During 
differentiation from iPSC to certain lineages in vitro, the 
majority of the GRE that are part of the nature aspect of 

epigenetics will be re-established. Work in mice has shown 
that midbrain-specific DA neurons derived from iPSC 
show a methylation profile similar to primary DA neurons 
isolated from midbrain tissue of the same mouse line. This 
indicates that iPSC-derived neurons can serve as a suitable 
model to investigate most of the physiologically relevant 
GREs in vitro (Roessler et al. 2014). DNA methylation 
profiles for DA neuron cultures derived from human iPSC 
lines have been generated (Fernández-Santiago et al. 2015, 
2019). While specific DNAm patterns unique to PD where 
identified in DA neuron cultures, there is to date no study 
that compared methylation profiles in matching sample 
pairs of human neurons derived from both iPSCs and the 
brain. This again highlights the need for well-planned 
cohort studies where clinical data, genome sequence and 
functional annotations as well as biospecimens should be 
available for deep phenotyping and disease modeling.

Animal models are also used to validate the functional 
consequences of deletion or insertion of candidate GREs. In 
mice, an IGF2 locus enhancer element interacting with the 
TH locus was shown through deletion to be required for TH 
expression (Pai et al. 2019). Other work used an enhancer 
element reporter strategy in mouse and zebrafish to iden-
tify DA neuron-specific candidate GREs at the SCNA locus, 
containing common PD-associated non-coding variants 
(McClymont et al. 2018).

Tools to test non‑coding variants

Classical approaches to assess genomic regions ability to 
control gene expression are reporter assays with minimal 
promoter elements driving expression of a reporter gene 
(Barakat et  al. 2018). These allow the interrogation of 
many different elements and a proxy quantification of gene 
regulatory function. In addition to promoter elements, also 
individual enhancers harbor transcriptional initiation sites 
and can be cloned adjacent to specific reporter sequences, 
allowing to test their functionality in any cell type of inter-
est. Although such assays lack the native chromatin con-
text and long-distance looping interactions, they have been 
successfully applied for massive parallel high-throughput 
screening of millions of putative enhancer sequences in dif-
ferent human cell types (van Arensbergen et al. 2017). The 
same methodology has also been applied for in vivo testing 
of human enhancer sequences carrying known SNVs and 
has allowed validation of the impact of tens of thousands 
of SNVs on gene expression (van Arensbergen et al. 2019).

While reporter assays allow high-throughput analysis, 
experiments in the native chromatin context are needed for 
detailed understanding and validation of individual variants. 
In recent years, clustered regularly interspaced short palin-
dromic repeats (CRISPR)/Cas9 systems have been widely 
employed for targeted gene editing. Through guide RNAs 
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(gRNAs), the Cas9 protein can be targeted with high speci-
ficity to a distinct locus on the genome (Adli 2018). Gene 
editing using CRISPR/Cas9 technology now serves as a gold 
standard to investigate the effects of specific non-coding 
variants (Soldner et al. 2016; Guo et al. 2017). Importantly, 
genome editing allows to investigate the effects of individual 
variants in a defined genetic background.

Novel developments include catalytically inactive or 
“dead” versions of Cas9. These are no longer able to intro-
duce DNA strand breaks but can still be targeted to spe-
cific loci using gRNAs. CRISPR activator (CRISPRa) or 
inhibitor (CRISPRi) versions of dCas9 have been gener-
ated by fusion with repressor or activator domains (such as 
KRAB or VP64 respectively) allowing to assess the func-
tion of putative GREs in selected loci (Pulecio et al. 2017). 
Both classical Cas9 knockin/knockout as well as CRISPRa 
and CRISPRi are already used in targeted applications and 
in screening approaches where large genomic regions are 
interrogated for putative enhancer elements (Fulco et al. 
2016; Gasperini et al. 2020). A database for CRISPR/Cas9 
screens has been established (Rauscher et al. 2017). Ide-
ally, in the future genome-wide annotation of all GREs and 
their targets in a cell type-resolved manner will be avail-
able for future systems-level analysis. Work in parallel uses 
saturation mutagenesis in disease-associated regulatory ele-
ments to identify positions where single nucleotide variation 
has strong impacts on function (Kircher et al. 2019). Their 
results suggested that current tools that predict non-coding 
variant impact have poor predictive value.

With a suitable functional readout (such as cell survival, 
growth rates or gene expression) gRNA libraries targeting 
all known transcription start sites (TSS) can be screened on 
a genome-wide level. These screens are superior to siRNA 
screens with respect to knockdown efficiencies and already 
provide insights into the effects of individual gene expres-
sion on certain phenotypes. A CRISPR knockout screen 
in a PARKIN-GFP reporter cell line identified novel tran-
scriptional regulators (repressors) of PARKIN (Potting et al. 
2017). As it was not the scope of this particular study, no 
information on the regulatory elements involved was pro-
vided. Similar approaches could be applied to other disease-
associated mechanisms, pathways or phenotypes in vitro 
(Callif et al. 2017). While CRISPR/Cas9 methods do not 
provide single-nucleotide resolution, they hold the promise 
of combinatorial testing of regulatory elements—allow-
ing to probe sets of disease-associated candidate regions in 
concert.

Outlook

Recent years have seen increasing interest in the non-cod-
ing genome and its contribution to the regulation of gene 
expression. It is becoming clear that genetic variation in 
these parts of the genome can contribute to disease risk 
and variability of observed disease phenotypes. With the 
emerging availability of high throughput genotyping data 
first light will be shed into the yet missing heritability 
of complex diseases like PD. This will allow to translate 
the complex genetic architecture of this common neuro-
degenerative disorder into stratified treatment strategies. 
The integration of multi-omic datasets with clinical data 
will allow to better understand the complex interplay of 
genetic variation, genetic background, and environmental 
factors resulting in disease-associated deregulation of gene 
expression, disease pathways and phenotype.

In an initial step, increased sample sizes of GWAS and 
next-generation sequencing datasets will provide sufficient 
resolution to common and rare (non-coding) variants con-
tributing to diseases. Already now, single cell-resolved 
datasets on gene expression and functional genomics make 
it possible to identify cell type-specific molecular path-
ways with a higher burden of disease-associated variants 
and to point at particular cell types with increased overall 
variant burden. In the case of PD, the inclusion of datasets 
covering DA neurons and other cell types, from affected 
tissues like the substantia nigra, will answer whether there 
are specific cell types in PD with increased risk variant 
burden contribution to disease etiology. Recent studies 
already hint at the important role of non-coding variants 
in shaping individual gene expression and disease risk. 
The identification of cell type-resolved gene regulatory 
networks and how they are perturbed in the disease state 
will be a crucial next step to achieve. Through the devel-
opment of computational models that can integrate this 
information, the effects of sets of non-coding risk variants 
on such a network could be identified. This would pro-
vide additional information for the genetic stratification of 
patients, to better select individuals that can benefit from 
certain treatment options and to identify candidates for 
precision medicine clinical trials.

To tackle the complexity of the disease, future work 
in PD will also have to integrate additional layers, such 
as microbiome, metabolome and exposome at a systems 
level.
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