
Towards Usable Protection Against Honeypots
Christof Ferreira Torres1, Mathis Baden2, Radu State1

1SnT, University of Luxembourg, Luxembourg
{christof.torres,radu.state}@uni.lu

2Telindus, Luxembourg
mathis.baden@telindus.lu

Abstract—The Ethereum blockchain enables the execution of
so-called smart contracts. These are programs that facilitate the
automated transfer of funds according to a given business logic
without the participants requiring to trust one another. However,
recently attackers started using smart contracts to lure users into
traps by deploying contracts that pretend to give away funds but
in fact contain hidden traps. This new type of scam is commonly
referred to as honeypots. In this paper, we propose a system
that aims to protect users from falling into these traps. The
system consists of a plugin for MetaMask and a back-end service
that continuously scans the Ethereum blockchain for honeypots.
Whenever a user is about to perform a transaction through
MetaMask, our plugin sends a request to the back-end and warns
the user if the target contract is a honeypot.

Index Terms—Ethereum, Smart Contracts, Honeypots, Scams

I. INTRODUCTION

Smart contracts are programs that are executed across
a decentralized network of distrusting nodes. Ethereum [4]
is currently the most prominent blockchain implementation
enabling the execution of Turing-complete smart contracts.
Smart contracts are usually written using a dedicated high-
level smart contract programming language (e.g. Solidity) and
afterwards compiled into bytecode. The bytecode is then stored
on the blockchain and dictates the execution of transactions
that are submitted to the contract.

The major advantage of smart contracts compared to tra-
ditional programs, is that they allow to carry out complex
transactions among anonymous distrusting parties without the
need for a central authority. However, recently attackers started
using smart contracts to lure Ethereum users into traps by
deploying contracts that pretend to give away funds but in
fact contain hidden traps. The community began referring to
this type of contracts as honeypots.

Honeypots are smart contracts that appear to have a flaw in
their design, which allows anyone to drain the funds contained
in the contract. However, the ability to retrieve the funds is
always bound to a condition that requires a user to transfer a
minimum amount of funds in advance to the contract. Then,
when a user tries to retrieve the funds, a yet unknown trapdoor
unfolds, which prevents the draining of funds to succeed.

In our previous work [3], we proposed HONEYBADGER, a
tool that leverages symbolic execution in order to detect smart
contract honeypots. A large-scale analysis on more than 2
million smart contracts revealed that more than 600 honeypots
are currently deployed on the Ethereum blockchain. Moreover,

a thorough analysis on a subset of the identified honeypots,
showed that 240 users already became victims of honeypots
and that attackers already made more than $90,000 profit.

In this work, we introduce a system that makes use of our
previous work in order to automatically scan the Ethereum
blockchain for newly deployed honeypots and use this infor-
mation to warn users when they are about to send their funds
to a honeypot. The remainder of this paper is organized as
follows. Section II discusses preliminary background on hon-
eypots. The design and architecture of our system is explained
in Section III. The implementations details are described in
Section IV. Finally, we conclude our work in Section V.

II. BACKGROUND

Honeypots generally operate in three phases. In the first
phase, the honeypot creator deploys a seemingly vulnerable
contract and places a bait into the contract in the form of
funds. In the second phase, a victim finds the vulnerable
contract and attempts to claim the bait by transferring the
required amount of funds. However, the subsequent attempt
of claiming the bait fails and ultimately results in the victim’s
previously transferred funds being trapped. In the third phase,
the honeypot creator withdraws his bait and the funds that the
victim lost, through a backdoor in the contract.

In [3], we proposed a taxonomy of honeypots based
on the level on which they operate: execution environment
(e.g. Ethereum Virtual Machine), compiler (e.g. Solidity com-
piler1) and third-party content provider (e.g. Etherscan2). The
first class of honeypots deceives users by making use of
unknown or unusual behaviour of the smart contract execu-
tion environment. The second class relates to honeypots that
deceives users by making use of bugs that are introduced by
faulty compilers. The final and third class takes advantage
of the improper display of information by third-party content
providers such as blockchain explorers.

III. SYSTEM ARCHITECTURE

Figure 1 illustrates our system architecture, which consists
of two main parts: a front-end and a back-end. The front-
end embodies the part through which the user interacts with
our system. Whenever a user wants to interact with a smart
contract, he or she does this thorough the graphical user
interface of a wallet. The front-end consists of a modified

1https://github.com/ethereum/solidity
2https://etherscan.io/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/322375847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Illustration of our system architecture.

wallet that sends a request to the back-end to check if the
contract is a honeypot or not. Depending on the back-end’s
response, the wallet either displays a warning message or an
approval message, prior to a user sending a transaction.

The back-end consists of two main components: a crawler
and an HTTP server. The crawler continuously monitors the
Ethereum blockchain for newly deployed smart contracts.
For every newly deployed contract, the crawler retrieves the
contract’s bytecode and starts an instance of HONEYBADGER,
which analyzes the bytecode and reports back if the contract
is a honeypot or not. The crawler then stores the results of
the analysis into a database. Finally, the HTTP server handles
the requests coming from the front-end and responds with
information about the contract, which is retrieved from the
crawler’s database.

IV. IMPLEMENTATION

We use MetaMask for our front-end, since it is open source
and a popular cryptocurrency wallet that runs on different
browsers and mobile devices. Moreover, MetaMask recently
launched a Beta version that permits to write plugins that
extend the capabilities of MetaMask3. We created a fork of
the original Beta version in order to improve the appearance
of messages, by making them more appealing to the user (see
Figure 2). We implemented our plugin in JavaScript and named
it HONEYPOT AUDITOR. The plugin listens to events that are
triggered when a user wants to send a transaction, and then
sends a request to our HTTP server. Both, the HTTP server
and the crawler have been implemented in Python. We used
Flask, a popular out-of-the-box HTTP server implementation
in Python and implemented a RESTful API that receives a
contract address as input and returns details about the honeypot
analysis as JSON. The crawler uses the web3 library to connect
to a local Ethereum node and starts multiple instances of
HONEYBADGER in parallel through processes. Finally, we
used MongoDB as our database.

V. CONCLUSION

In this work, we present a novel solution to protect users
from smart contract honeypots. We propose a plugin called
HONEYPOT AUDITOR, which users can install in order to

3https://github.com/MetaMask/metamask-snaps-beta

(a) Approval (b) Warning

Fig. 2: HONEYPOT AUDITOR messages in MetaMask.

extend their MetaMask wallet with the capability of detecting
honeypots. Whenever a user is about to send funds to a
smart contract, the plugin makes a request to our back-end to
check if the contract address has been flagged as a honeypot.
Afterwards, the plugin displays a message that warns the user
if he or she is about to send funds to a honeypot. Future work
includes the extension of our solution towards the detection of
new types of honeypots [1], [2], by making use of machine
learning techniques.

ACKNOWLEDGMENTS

This work is partly supported by the Luxembourg National
Research Fund (FNR) under grant 13192291.

REFERENCES

[1] R. Camino, C. F. Torres, and R. State, “A Data Science Approach for
Honeypot Detection in Ethereum,” arXiv preprint:1910.01449, 2019.

[2] B. Mueller and D. Luca, “The Ether Wars: Exploits, counter-exploits and
honeypots on Ethereum,” August 2019.

[3] C. F. Torres, M. Steichen, and R. State, “The Art of The Scam:
Demystifying Honeypots in Ethereum Smart Contracts,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1591–1607.

[4] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

