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Abstract 1 

Aims: Perioperative neurocognitive disorders (PND) are associated with cognitive 2 

impairment in the preoperative or postoperative period, and neuroinflammation is 3 

thought to be the most important mechanisms especially during the postoperative 4 

period. The GABAergic system is easily disrupted by neuroinflammation. This study 5 

investigated the impact of the GABAergic system on PND after anesthesia and surgery. 6 

Methods: An animal model of laparotomy with inhalation anesthesia in 16-month old 7 

mice was addressed. Effects of the GABAergic system were assessed using biochemical 8 

analysis. Pharmacological blocking of α5GABAARs or P38 mitogen-activated protein 9 

kinase (MAPK) was applied to investigate the effect of the GABAergic system.  10 

Results: After laparotomy, the hippocampus-dependent memory and long-term 11 

potentiation were impaired, the levels of IL-6, IL-1β and TNF-α upregulated in the 12 

hippocampus, the concentration of GABA decreased, and the protein levels of the 13 

surface α5GABAARs up-regulated. Pharmacological blocking of α5GABAARs with 14 

L655,708 alleviated laparotomy induced cognitive deficits. A further study found that 15 

the P38 MAPK signaling pathway was involved and pharmacological blocking with 16 

SB203,580 alleviated memory dysfunction. 17 

Conclusions: Anesthesia and surgery caused neuroinflammation in the hippocampus, 18 

which consequently disrupted the GABAergic system, increased the expressions of 19 

surface α5GABAARs especially through the P38 MAPK signaling pathway, and 20 

eventually led to hippocampus-dependent memory dysfunctions. 21 

Keywords 22 

neuroinflammation, perioperative neurocognitive disorders, GABAergic system, 23 

α5GABAA receptors, mitogen-activated protein kinase 24 
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1. Introduction 1 

Perioperative neurocognitive disorders (PND), a general term for cognitive 2 

impairment identified during the preoperative or postoperative period, are known to 3 

negatively affect multiple cognitive domains such as memory, attention, and 4 

concentration after anesthesia and surgery1-3. At the point of discharge, the incidence of 5 

PND is 25% to 40% among the elderly4 and significantly affects patients’ outcomes and 6 

increases mortality, especially in aging patients5. 7 

Neuroinflammation is a common factor contributing to cognitive deficits especially 8 

the hippocampus-dependent memory impairment after anesthesia and surgery5-9. 9 

Neuroinflammation is also a dynamic, multi-stage physiological response, mainly 10 

manifesting as the activation of natural immune cells in the central nervous system, 11 

accompanied by the release of a variety of pro-inflammatory factors that ultimately lead 12 

to changes of homeostasis in the central microenvironment10. However, the exact 13 

mechanism underlying how neuroinflammation causes memory deficits is not well 14 

understood and there are no treatments that are available to effectively reverse or 15 

prevent memory deficits after anesthesia and surgery11. Therefore, it is necessary to 16 

explore the down-stream mediators of neuroinflammation that induce memory deficits. 17 

Changes in multiple neurotransmitter receptors have been demonstrated to be 18 

associated with memory deficits12,13. The GABAergic system also participates in the 19 

processes of learning, memory, and synaptic plasticity14. GABA type A receptors 20 

(GABAARs) comprise different subunits, and different combinations of GABAARs 21 

have shown different localization and distinct physiological and pharmacological 22 

characteristics15. In particular, the α5-subunit-containing subtype of GABAARs 23 

(α5GABAARs), which makes up 20-25% of the hippocampal GABAARs15, are 24 

specifically localized to extrasynaptic regions of hippocampal pyramidal neurons and 25 

are mainly involved in mediating tonic inhibition, as well as being implicated in 26 

processing memory16,17. Furthermore, the increase of α5GABAARs activity causes 27 

profound memory blockade. Parallelly, a reduction in the expression or functions of the 28 

α5GABAARs improves certain memory performance14,18. Here we hypothesized that 29 

anesthesia and surgery will cause neuroinflammation in the hippocampus, targeting the 30 

GABAergic system, especially the α5GABAARs pathway, affecting LTP and resulting 31 

in hippocampus-dependent memory deficits. 32 

 33 

2. Materials and methods 34 

2.1 Animals 35 

A total of 183 female c57BL/6J mice (16-month old) were purchased from the 36 

Experimental Animal Center of Tongji Medical College, Huazhong University of 37 

Science and Technology. All animals were housed five per cage in maintained 38 

temperature of 22±1°C with a 12hour light/dark cycle with free access to food and water. 39 

All procedures were in accordance with the Guidelines of the National Institutes of 40 

Health Guide for the Care and Use of Laboratory Animals. 41 

2.2 Groups and Laparotomy surgery 42 

The laparotomy model was established as previously described with minor 43 

improvements3. Mice were inducted with 3% isoflurane and maintained with 1.3% 44 
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isoflurane. Then an incision about 1.0cm was made at the site 0.5cm below the right 1 

rib. The small intestine of about 10cm was exposed onto a sterile gauze for 15min and 2 

then returned back into the abdominal cavity. The muscle and skin were closed with 4-3 

0 sutures, respectively. Lidocaine cream was applied at the incision site to reduce 4 

postoperative pain. For the anesthesia group, mice only received anesthesia as described 5 

above while for the control group, mice were given oxygen in the induction box with 6 

free movement. 7 

2.3 Novel object recognition test (NORT) 8 

  The operator was blinded to the experiment and handled the mice for 1 minute a day, 9 

for a total of 6 days before the test. Then mice were put into the box to accommodate 10 

to the condition for 5 minutes. In the training stage, two identical rectangular blocks 11 

were placed on the same side of the box, and the mice were allowed to explore for 5 12 

minutes. Exploratory behaviors included sniffing, licking, and climbing on pieces of 13 

wood. In the testing stage, a rectangular block was replaced by a cylinder, and mice 14 

were placed into the box to explore for another 5 minutes. The learning and memory 15 

ability were evaluated by the discrimination ratio which is represented by C/(A+C), 16 

where C is the time spent exploring the novel object, A is the time spent exploring the 17 

familiar object, and A+C is the total time spent exploring the two objects. In addition, 18 

the mice were screened when the total exploring time was less than 5s or they explored 19 

only one of the objects during the training phase. 20 

2.4 Fear condition test (FCT) 21 

  Fear condition tests were performed as previously reported3. Briefly, after mice 22 

accommodated to the condition, one tone-foot-shock pairing was given (tone, 30s, 23 

70dB, 1kHz; foot-shock, 2s, 0.5mA, a 30s interval after the shock). Then they were 24 

given another shock pairing (three pairings in total). 24 hours after the training session, 25 

the mice were put back into the same test chamber to assess the contextual fear 26 

conditioning. Two hours later, the tone fear conditioning was assessed. Mice were 27 

placed into a novel chamber that changed the environment and the same tone was 28 

delivered for 3 minutes. Freezing behavior was defined as the absence of all visible 29 

movement except for respiration.  30 

2.5 Nuclear magnetic resonance (NMR) 31 

Brain tissues for NMR analysis were performed as previously conducted19 and 32 

briefly described as following. In order to avoid the impact of post-mortem changes, 33 

mice were deeply anesthetized with 4% isoflurane and then microwaved using a 34 

domestic microwave oven (0.75kw, 15s). After that, brain tissue was taken, weighed 35 

and quickly frozen to -80°C. 36 

HCl/methanol (200μL, 0.1M) and 60% ethanol (vol/vol, 400μL) were added into the 37 

EP tubes and homogenized with Tissuelyser for 90s at a frequency of 20Hz (Tissuelyser38 

Ⅱ, QIAGEN, Germany). The mixture was centrifuged for 15 minutes at 12,000r and 39 

the supernatant was collected into a 5ml EP tube. The substance was extracted twice 40 

with 800μL 60% ethanol. All the supernatants were collected and desiccated with the 41 

centrifugal drying apparatus (Thermo Scientific 2010, Germany), and the dried product 42 

was collected for further NMR studies. 43 

The phosphate buffer solution [PBS, pH = 7.2, 60μL, 120mg/L 3-(Trimethylsilyl) 44 
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propionic-2, 2, 3, 3, d4 acid sodium salt (TSP, 269913-1G, Sigma-Aldrich) in D2O] and 1 

the double distilled water (540μL) were added into the 5ml EP tubes to dissolve the 2 

dried product and TSP was set as the internal standard. The solution was shaken evenly 3 

with a high-speed vortex until the precipitates were dissolved, and the mixture 4 

centrifuged at 12,000r for 10 minutes. The supernatant (530μL) was then collected and 5 

transferred to a 5 mm NMR tube for 1H NMR analysis. 6 

NMR spectra testing were performed at 298 K on a BrukerAvance III 600 MHz NMR 7 

spectrometer equipped with an inverse cryogenic probe (BrukerBiospin, Germany). 8 

The 1H NMR spectra were acquired with a standard WATERGATE pulse sequence, 9 

and processed in the commercial software TOPSPIN and NMRSpec, as well as a home-10 

made tool based on a MATLAB code. 11 

2.6 MSD multi-spot assay  12 

  The hippocampus was homogenized and centrifuged at 12,000r for 15 minutes at 13 

4°C. The supernatants were collected and the levels of IL-6, IL-1β and TNF-α were 14 

detected using commercially available proinflammatory panel 1 (mouse) kits (Meso 15 

Scale Discovery (MSD®, Gaithersburg, MD, USA))20. The procedures were performed 16 

according to the manufacturer’s instructions, and the concentrations of IL-6, IL-1β and 17 

TNF-α are presented as pg/ml8. 18 

2.7 Electrophysiology in vitro 19 

Mice were deeply anesthetized with pentobarbital sodium (50mg/kg, i.p.) and then 20 

decapitated. The brain was quickly removed and placed into an ice-cold oxygenated 21 

(95% O2 and 5% CO2) high-sucrose solution that contained (in mM): 213sucrose, 3KCl, 22 

1NaH2PO4, 0.5CaCl2, 5MgCl2, 26NaHCO3 and 10glucose. Hippocampal slices (300-23 

320μm) were prepared as described previously 21-23. The slices were transferred to a 24 

holding chamber containing ACSF consisting of (in mM): 124NaCl, 26NaHCO3, 3KCl, 25 

1.2MgCl2·6H2O, 1.25NaH2PO4·2H2O, 10C6H12O6 and 2CaCl2 at PH 7.4, 305mOsm. 26 

The slices were allowed to recover at 31.5°C for 30 minutes and then at room 27 

temperature (RT) for at least 1 hour. 28 

Acute slices were transferred to the recording chamber, and the long-term 29 

potentiation (LTP) of evoked field postsynaptic potentials (fPSPs) was recorded from 30 

the stratum radiatum in CA1 following electrical stimulation of the Schaffer collateral 31 

pathway. After the stable baseline of at least 30 minutes, high-frequency stimulation 32 

(HFS, 100Hz, 50 pulse, four trains at 20s interval) was used to induce LTP and then 33 

recorded for another 60 minutes. 34 

2.8 Western blot 35 

  Hippocampal protein samples were prepared as previously described24 and were 36 

separated using 10% SDS-PAGE and subsequently transferred to polyvinylidene 37 

fluoride membranes (Millipore, Billerica, MA, USA) for electroblotting. The 38 

membranes were blocked with 5% BSA in TBST (0.1%) for 2 hours at RT, incubated 39 

with primary antibody overnight at 4°C, and then incubated with horseradish 40 

peroxidase (HRP)-conjugated secondary antibodies for 2 hours at RT. The antibodies 41 

used in this study include rabbit anti-α5GABAA receptors , anti-GAT-3 (1:500-1000, 42 

Alomone labs, Germany), rabbit anti-GAD65 (1:1000, Abcam, Cambridge, UK), rabbit 43 

anti-P38, p-P38, ERK1/2, p-ERK1/2, JNK1/2, p-JNK1/2 (1:1000-2000, Cell Signaling 44 
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Technology, MA, USA), mouse anti-GAPDH HRP-conjugated goat-anti-mouse IgG or 1 

anti-rabbit IgG(1:1000-5000, Promoter, Wuhan, China). The protein bands were 2 

visualized using chemiluminescence (Pierce ECL Western Blotting Substrate, Thermo 3 

Scientific) and measured using a computerized image analysis system (ChemiDoc 4 

XRS+, BIO-RAD, CA, USA). 5 

2.9 Immunofluorescence  6 

   Brain slices for immunofluorescence were prepared as previously reported24. The 7 

sections were blocked with 10% donkey serum and 0.3% Triton 1 hour at RT. Then the 8 

sections were incubated overnight at 4°C with mouse anti-Iba1 antibody (1:300, Wako, 9 

Japan). After washing with PBS, the sections were incubated with Alexa Fluor 488-10 

labeled donkey anti-rabbit secondary antibody (1:200, Invitrogen, Carlsbad, CA) at 11 

37°C for 2 hours. Images were captured using a laser scanning confocal microscope 12 

(FV1000, Olympus, Tokyo, Japan). 13 

2.10 Quantitative Real-Time PCR (RT-PCR) 14 

   Total RNA and cDNA from the hippocampus were prepared as outlined before3. 15 

Quantitative real-time PCR was performed on the ABI7900 (Illumina, USA) with 16 

SYBR Green Master Mix kit (TAKARA, Japan). The conditions for the PCR reaction 17 

were as following: Incubated at 50°C for 2 minutes and then at 95°C for 10 minutes 18 

and then followed by 40 cycles at 95°C for 30s and 60°C for 30s. The sequences of 19 

specific primers are summarized in table1. 20 

2.11 Statistical analysis 21 

All results are presented as mean ± SEM. An unpaired Student’s T-test was used to 22 

compare two groups. For three groups, One-way ANOVA followed by Bonferroni post 23 

hoc test was applied. Two-way ANOVA was used to analyze NORT and FCT after using 24 

L655,708 or SB203,580. GraphPad Prism 7.0 was used for all analyses and p<0.05 was 25 

considered statistically significant in this study. 26 

 27 

3. Results 28 

3.1 Hippocampus-dependent memory and LTP were impaired after anesthesia and 29 

surgery in aged mice. 30 

In the NORT, no difference was found in the total time spent on identical objects 31 

among the three groups during the training stage (F(2,30)=1.07, p=0.35; Figure1B). In 32 

the testing phase, mice spent more time on the novel object than on the familiar object 33 

in the control and anesthesia treated groups (F(2,40)=147.7, p<0.001; Figure1C). 34 

However, the time spent on the novel and familiar objects did not differ in the 35 

laparotomy mice. Further analysis of the discrimination ratio revealed that there was a 36 

distinct difference among the three groups. And the discrimination ratio in the control 37 

and anesthesia groups was greater than that in the laparotomy group (F(2,30)=32.21, 38 

p<0.001; Figure1D). In the FCT, no statistical difference was found in tone freezing 39 

time which was the hippocampus-independent memory (F(2,30)=1.29, p=0.29; Figure1E). 40 

However, there was a significant difference in the context freezing time among the three 41 

groups (F(2,30)=15.97, p<0.01; Figure1F). In this study, mice in the laparotomy group 42 

spent less freezing time than those in the control group, and there was no difference 43 

between the control and anesthesia groups (Figure1F). Next, we assessed whether the 44 
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hippocampal LTP was impaired after laparotomy. There was a remarkable increase in 1 

the amplitude of fPSP (% of baseline) in the control and anesthesia slices after HFS 2 

(F(2,18)=54.46, p<0.001; Figure1G). The amplitude was increased from 103.8%±2.6% 3 

to 164.1%±15.2% in slices from the control mice and 100%±0.7% to 156.5%±7.8% in 4 

the anesthesia slices. In contrast, LTP was impaired and increased slightly from 5 

103%±2.4% to 103.3%±11.7% in the laparotomy slices (Figure1G). These results 6 

demonstrate that deficits of hippocampus-dependent memory and impairment of LTP 7 

were caused by anesthesia and surgery rather than by anesthesia alone. 8 

3.2 Hippocampal neuroinflammation was observed after anesthesia and surgery 9 

in aged mice.  10 

Compared with the control and anesthesia mice, the morphology of microglia in the 11 

laparotomy mice was clearly changed and manifested mainly as hypertrophy in the cell 12 

body in the CA1, CA3 and DG regions of the hippocampus (Figure2A). Next, we 13 

examined cytokine expressions of IL-1β, IL-6 and TNF-α in the hippocampus. The 14 

MSD results showed that IL-1β and IL-6 were obviously up-regulated (F(2,6)=7.05, 15 

p=0.03; Figure2B; F(2,6)=13.42, p=0.006; Figure2C) in the laparotomy group, but the 16 

expression of TNF-α was increased both in the anesthesia and laparotomy groups 17 

(F(2,6)=12.7, p=0.007; Figure2D). These results demonstrate that anesthesia and surgery 18 

could cause severe inflammatory response in the hippocampus. 19 

3.3 Hippocampal GABAergic system was disrupted and surface α5GABAARs 20 

were selectively involved after anesthesia and surgery in aged mice. 21 

Next, we examined the changes in levels of neurotransmitters after anesthesia and 22 

surgery in the hippocampus and used absolute concentrations to compare the 23 

differences among the three groups. The NMR results showed no difference in the 24 

levels of glutamate among the three groups (F(2,24)=0.11, p=0.90; Figure3A), while the 25 

levels of GABA were clearly decreased in the laparotomy group (F(2,24)=4.43, p=0.02; 26 

Figure3B). The raw data of the average and deviation of these two transmitters are 27 

presented (Figure3C). Next, we examined the transcription levels of α5, α1 and β3 28 

subunits, at 1 day, 3 days, 7 days and 10 days after laparotomy using quantitative RT-29 

PCR. There was no significant difference at any time point of α1 (F(8,18)=1.49, p=0.23; 30 

Figure3D) and β3 (F(8,18)=2.05, p=0.09; Figure3E) subunits levels. While the α5 subunit 31 

level was increased at 1 day and continued to increase at 3 days, 7 days and 10 days 32 

after laparotomy (F(8,18)=13.85, p<0.0001; Figure3F). Then, we detected the protein 33 

levels of GAT-3, GAD65 and surface α5GABAARs using western blot. The results 34 

showed that the expressions of GAT-3 and GAD65 were evidently decreased after 35 

laparotomy (F(2,9)=10.82, p=0.004; Figure3G; F(2,9)=11.73, p=0.003; Figure3H), which 36 

signified that the synthesis of GABA was reduced. At the same time, the levels of 37 

surface α5GABAARs were upregulated in the laparotomy mice (F(2,12)=6.56, p=0.01; 38 

Figure3I). These results demonstrate that anesthesia and surgery could disrupt the 39 

GABAergic system in the hippocampus and selectively increase expressions of surface 40 

α5GABAARs. 41 

3.4 Pharmacological blockade of α5GABAARs with L655,708 could reverse 42 

anesthesia and surgery induced hippocampus-dependent memory deficits in aged 43 

mice. 44 
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To further investigate the role of α5GABAARs after anesthesia and surgery in 1 

inducing learning and memory deficits, the specific inverse agonist L655,708 was used 2 

to reduce the affinity for GABA by acting upon the α5GABAARs. In the NORT, no 3 

significant difference was found in the total time spent on identical sample objects 4 

during the training stage after using L655,708 (F(2,14)=0.003, p=0.99; Figure4B). 5 

However, the time spent exploring the novel object and the discrimination ratio were 6 

prominently increased in the laparotomy group after administering L655,708 7 

(F(6,42)=14.34, p<0.001; Figure4C; F(2,14)=8.06, p=0.005; Figure4D). In the FCT, no 8 

difference was found in the freezing time to the tone (F(2,14)=0.03, p=0.97; Figure4E). 9 

The percentage of context freezing time was increased in the laparotomy mice after 10 

administering L655,708 (F(2,14)=29.82, p<0.001; Figure4F). In addition, the amplitude 11 

of fPSPs in the laparotomy mice was increased from 103.8%±4.3% to 146.4%±4.9% 12 

after the application of L655,708 (t=6.47, p<0.001; Figure4I), and there was no 13 

difference between the control and anesthesia groups (t=0.11, p=0.92; Figure4G; t=1.02, 14 

p=0.33; Figure4H). These results indicate that blocking α5GABAARs with L655,708 15 

could reverse anesthesia and surgery induced hippocampus-dependent memory deficits. 16 

3.5 P38 MAPK signaling pathway was specifically activated after anesthesia and 17 

surgery in aged mice. 18 

To explore the potential signaling pathway of the cellular response to inflammatory 19 

stimuli, the expressions of MAPK signaling pathways including P38, p-P38, JNK1/2, 20 

p-JNK1/2, ERK1/2 and p-ERK1/2 proteins were evaluated using western blot. The 21 

expression of p-P38 was obviously up-regulated in the laparotomy group (F(2,9)=1.45, 22 

p=0.28; Figure5C). No statistical difference was observed in the expression of P38, 23 

ERK1/2, p-ERK1/2, JNK1/2 and p-JNK1/2 (F(2,9)=2.83, p=0.12; Figure5A; F(2,9)=0.03, 24 

p=0.97; figure5B). These results indicate that the P38 MAPK signaling pathway was 25 

specially activated in the hippocampus after anesthesia and surgery in aged mice. 26 

3.6 Pharmacological blockade of the P38 MAPK signaling pathway with 27 

SB203,580 could reverse anesthesia and surgery induced hippocampus-dependent 28 

memory deficits in aged mice. 29 

SB203,580 is the selective inhibitor of the P38 MAPK signaling pathway. Therefore, 30 

we used SB203,580 to further investigate the role of the P38 MAPK signaling pathway 31 

in inducing learning and memory deficits after anesthesia and surgery. In the NORT, no 32 

difference was found in the total time spent exploring identical sample objects among 33 

the three groups after using SB203,580 (F(2,14)=0.01, p=0.99C; Figure6B). However, 34 

the time spent at the novel object and the discrimination ratio were prominently 35 

increased in the laparotomy group after administering SB203,580 (F(6,42)=28.08, 36 

p<0.001; Figure6C; F(2,14)=166, p<0.001; Figure6D). In the FCT, no statistical 37 

difference was found in the freezing time to the tone (F(2,14)=0.09, p=0.91; Figure6E), 38 

while the percentage of context freezing time was increased in the laparotomy group 39 

after administering SB203,580 (F(2,14)=6.03, p=0.01; Figure6F). At the same time, a 40 

qualitative decrease in p-P38 and surface α5GABAARs expressions was observed in 41 

the laparotomy mice after using SB203,580 (F(2,6)=10.38, p=0.01; Figure6I; F(2,6)=35.4, 42 

p=0.005; Figure6J), but there was no difference shown in the expressions of p-ERK1/2 43 

and p-JNK1/2 (F(2,6)=1.11, p=0.39; Figure6G; F(2,6)=3.87, p=0.08 Figure6H). In 44 
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hippocampal slices, the amplitude of fPSPs in the laparotomy mice was increased from 1 

100.7%±2.4% to 147.1%±3.1% after the application of SB203,580 (t=11.79, p<0.0001; 2 

Figure6M), yet there was no difference between the control and anesthesia groups 3 

(t=0.32, p=0.75; Figure6K; t=0.01, p=0.99; Figure6L). These results illustrate that 4 

blocking the P38 MAPK signaling pathway could reverse anesthesia and surgery 5 

induced hippocampus-dependent memory deficits possibly by preventing the 6 

trafficking of α5GABAARs. 7 

 8 

4. Discussion 9 

PND are mainly experienced as memory deficits by elderly people which seriously 10 

affects their quality of life, but the pathophysiology of the dysfunction remains unclear. 11 

In the current study, we found that anesthesia and surgery caused robust 12 

neuroinflammation in the hippocampus, which in turn disrupted the GABAergic system, 13 

especially by targeting surface α5GABAARs traffic through activating the P38 MAPK 14 

signaling pathway which eventually led to hippocampus-dependent memory deficits. 15 

Numerous studies have shown that neuroinflammation is the main reason for PND9,25. 16 

Systemic inflammation caused by surgery could induce neuroinflammation, mainly 17 

through destroying the permeability of the blood-brain barrier26-28, hence, promoting 18 

the activation of local microglia. Activated microglia cells subsequently release more 19 

inflammatory cytokines9,25,29-31In our research, the levels of IL-1β, IL-6 and TNF-α in 20 

the hippocampus were up-regulated and microglia clearly activated after anesthesia and 21 

surgery. The results indicate that the hippocampus suffered significant inflammation 22 

after laparotomy under isoflurane anesthesia. However, TNF-α was also increased after 23 

anesthesia without surgery, but no activation of microglia was found in the 24 

hippocampus. It suggests that isoflurane anesthesia alone could not induce harmful 25 

inflammation in the hippocampus, which is in line with Wang et al. and Kawano et al.’s 26 

findings32,33. Callaway et al. and Crosby et al. demonstrated that exposure to 27 

sevoflurane or isoflurane anesthesia alone had no impact on learning and memory in 28 

the rodent34,35. Jennifer et al. also reported that learning task performance showed no 29 

significant changes after exposure to anesthesia alone in adult populations36. In brief, 30 

hippocampal neuroinflammation caused by anesthesia and surgery was much more 31 

serious in aged mice than that caused by anesthesia alone. The degree of severity of 32 

hippocampal neuroinflammation could be closely related to the memory loss after 33 

anesthesia and surgery.   34 

In the central nervous system, the GABAergic system contributes to controlling the 35 

excitability of neuronal networks. However, the functions of the GABAergic system 36 

are easily affected by inflammation, including GABAergic neuronal density, GABA 37 

and its synthetic machinery and GABA receptors. Qiu, et al reported that hippocampal 38 

Parvalbumin interneurons contributed to cognitive dysfunction in aged mice37. Here, 39 

we found that the concentration of GABA in the hippocampus was decreased after 40 

anesthesia and surgery. At the same time, the protein expressions of GAT-3 and 41 

GAD6538 were decreased after anesthesia and surgery. Dysfunction of GAT-3 is related 42 

to several neurological diseases, such as Alzheimer’s disease39. Other studies showed 43 

that GAD65 is associated with GABAergic synaptic transmission and plasticity, and 44 
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that the reduction in GAD65 contributed to neuropsychiatric disorders in mice40. Here 1 

we found that transcription of the α5 subunit and the levels of surface α5GABAARs 2 

were increased after anesthesia and surgery. Sustained increase in α5GABAARs activity 3 

disrupted memory and synaptic plasticity41. Pharmacologically blocking α5GABAARs 4 

with L655,708 reversed anesthesia and surgery and induced hippocampus-dependent 5 

memory deficits and LTP. Inhibition or elimination of α5GABAARs improved the 6 

Morris water maze performance and fear conditioning in mice42. However, Gao et al 7 

suggested that prophylactic use of L655,708 does not prevent isoflurane-induced 8 

memory deficits in aged mice43. One reason could be that they used a different animal 9 

model. They took an animal model which only received inhalation anesthesia, without 10 

surgery whereas in our study, the animal received both inhalation anesthesia and surgery. 11 

The pathophysiology process could therefore, be different between these two animal 12 

models. The other reason could be that L655,708 was administrated prophylactically in 13 

their study, but post anesthesia and surgery in ours. 14 

Upregulation of surface α5GABAARs are primarily associated with activation of the 15 

P38 MAPK signaling pathway, and the signaling pathway is known to be an important 16 

regulator of GABAARs trafficking44. Cytokines, that induce activation of the P38 17 

MAPK signaling pathway, are widely reported in some other inflammation models45.  18 

In our study, we tested three typical pathways of MAPK and found that the protein level 19 

of p-P38 selectively increased. Pharmacological blocking of the P38 MAPK signaling 20 

pathway with SB203,580 reversed anesthesia and surgery induced hippocampus-21 

dependent memory deficits, and reduced the levels of p-P38 and surface α5GABAARs, 22 

which is consistent with results of Orser et al. 23 

There are several limitations in our study. Firstly, we did not explore the changes of 24 

tonic inhibitory currents regulated by α5GABAARs to investigate the effect of 25 

α5GABAARs on postsynaptic functions. Secondly, since the gene knockout technology 26 

can effectively distinguish the functions of different subunits, we could have used 27 

knockout mice to further verify the functions of α5GABAARs. Lastly, some studies 28 

have demonstrated that postoperative pain is also a factor influencing the cognitive 29 

behavior. Post-surgery pain could not be totally avoided in this study and deserves 30 

further investigation. 31 

  In summary, our study revealed that hippocampus-dependent memory was disrupted 32 

by anesthesia and surgery rather than by anesthesia alone. Anesthesia and surgery 33 

caused neuroinflammation in the hippocampus, which consequently disrupted the 34 

GABAergic system, increased the expressions of surface α5GABAARs especially 35 

through activating the P38 MAPK signaling pathway, which eventually led to 36 

dysfunctions of hippocampus-dependent memory. Therefore, our research may provide 37 

a new viewpoint for exploring the mechanisms of PND, while α5GABAARs may serve 38 

as a potential target for preventing or treating PND. 39 
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 31 

Figure legends 32 

Figure1. Behavioral tests and hippocampal LTP in aged mice. (A) Illustration of the 33 

experimental processes. 16-month old female mice were randomly divided into 3 34 

groups (Control, Anesthesia, Laparotomy). Behavioral tests were conducted from 8 35 

days to 11 days after anesthesia or laparotomy. Samples were taken for LTP, MSD and 36 

NMR 7 days after anesthesia or laparotomy. (B-D) In the NORT, the total time spent 37 

with two same objects was similar among the three groups. In the laparotomy group, 38 

the mice spent less time on the novel object and presented lower discrimination ratio 39 

compared with the other two groups. (n=11) (E-F) In the FCT, the mice in the 40 

laparotomy group showed lower freezing time to the context, and there was no 41 

difference in the tone freezing time. (n=11) (G) Hippocampal LTP was impaired in the 42 

laparotomy mice. (n=7) Data are presented as mean ± SEM. **p<0.01, ***p<0.001, 43 

###p<0.001. 44 

 45 

Figure2. The morphology of microglia and the levels of inflammatory cytokines in 46 



15 

 

the hippocampus. (A) Microglia was activated in the CA1, CA3 and DG regions in 1 

the laparotomy mice. The white arrow points to the activated microglia. (B-D) The 2 

levels of IL-1β, IL-6 and TNF-α in the laparotomy mice was up-regulated and TNF-α 3 

was also increased in the anesthesia mice. (n=3) Data are presented as mean ± SEM. 4 

*p<0.05, **p<0.01. 5 

 6 

Figure3. The expressions of neurotransmitters and different subunits of 7 

GABAARs. (A-B) The expression of GABA was decreased in the laparotomy mice and 8 

no difference was found about glutamate. (n=9) (C) The different average spectra of 9 

selected metabolites (GABA and glutamate). (D-F) The mRNA level of α5 subunit was 10 

up-regulated at 1 day and continued to 10 days after laparotomy. No difference was 11 

found about the α1 and β3 subunits. (n=3) (G-I) The expressions of GAT-3 and GAD65 12 

were decreased and the levels of surface α5GABAARs were increased in the laparotomy 13 

mice. (n=4) Data are presented as mean ± SEM. *p<0.05, **p<0.01. 14 

 15 

Figure4. L655,708 could reverse anesthesia and surgery induced learning and 16 

memory deficits in aged mice. (A) The diagram shows the process of the experiment. 17 

The time points of L655,708 (0.5mg/kg, i.p.) or vehicle administered are marked by the 18 

red arrow. Samples were taken at the end of the experiment. (B-D) In the NORT, the 19 

time spent with objects was similar among the three groups, while the time spent with 20 

a novel object and the discrimination ratio were increased in the laparotomy mice after 21 

using L655,708. (n=8) (E-F) In the FCT, there was no difference in the tone freezing 22 

time after using L655,708. However, the freezing scores for memory of context was 23 

increased in the laparotomy mice after using L655,708. (n=8) (G-I) The amplitude of 24 

fPSPs in the laparotomy group was increased after using L655,708, while there was no 25 

difference in the control and anesthesia mice. (n=7) Data are presented as mean ± SEM. 26 

**p<0.01, ***p<0.001, ###p<0.001. 27 

 28 

Figure5. The protein levels of MAPK signaling pathway in the hippocampus. (A-29 

C) The protein level of p-P38 was increased after laparotomy compared to the control 30 

and anesthesia groups, and there was no difference in the expressions of P38, JNK1/2, 31 

p-JNK1/2, ERK1/2 and p-ERK1/2. (n=4) Data are presented as mean ± SEM. **p<0.01. 32 

 33 

Figure6. SB203,580 could reverse anesthesia and surgery induced learning and 34 

memory deficits in aged mice. (A) the diagram shows the process of the experiment. 35 

The time points of SB203,580 (10mg/kg i.p.) or vehicle administered are marked by 36 

the red arrow. Samples were taken at the end of the experiment. (B-D) In the NORT, 37 

the time spent with objects was similar among the three groups, while the time spent 38 

with the novel object and the discrimination ratio were increased in the laparotomy 39 

mice after using SB203,580. (n=8) (E-F) In the FCT, the context freezing time was 40 

increased in the laparotomy mice after using SB203,580, and there was no difference 41 

in the tone freezing time. (n=8) (G-J) The protein levels of p-P38 and surface 42 

α5GABAARs were decreased in the laparotomy mice after using SB203,580, and no 43 

difference was found in the expressions of p-JNK1/2 and p-ERK1/2. (n=4) (K-M) The 44 
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amplitude of fPSPs in the laparotomy mice was increased after using SB203,580, and 1 

there was no difference in the control and anesthesia mice. (n=7). Data are presented as 2 

mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ###p<0.001, ****p<0.0001. 3 
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