Clinical Infectious Diseases

Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial --Manuscript Draft--

Manuscript Number:	CID-96966R1
Full Title:	Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an
	experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial
Short Title:	Clofazimine trial for cryptosporidiosis
Article Type:	Major Article
Corresponding Author:	Pui-Ying Iroh Tam, MD Malawi-Liverpool Wellcome Trust Clinical Research Programme Blantyre, MALAWI
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Malawi-Liverpool Wellcome Trust Clinical Research Programme
Corresponding Author's Secondary Institution:	
First Author:	Pui-Ying Iroh Tam, MD
First Author Secondary Information:	
Order of Authors:	Pui-Ying Iroh Tam, MD
	Sam LM Arnold
	Lynn K Barrett
	Crystal R Chen
	Thomas M Conrad
	Elaine Douglas
	Melita A Gordon
	Donnie Hebert
	Marc Henrion
	David Hermann
	Brynn Hollingsworth
	Eric Houpt
	Khuzwayo C Jere
	Robert Lindblad
	Melissa S Love
	Lumbani Makhaza
	Case W McNamara
	Wilfred Nedi
	James Nyirenda
	Darwin J Operario
	Jacob Phulusa
	Gerald V Quinnan, Jr.

	Leigh A Sawyer
	Herbert Thole
	Neema Toto
	Alex Winter
	Wesley C Van Voorhis
Order of Authors Secondary Information:	
Manuscript Region of Origin:	MALAWI
Abstract:	 Background: We evaluated efficacy, pharmacokinetics (PK), and safety of clofazimine (CFZ) in HIV-infected patients with cryptosporidiosis. Methods: We performed a randomized, double-blind, placebo-controlled study. Primary outcomes in Part A were reduction in Cryptosporidium shedding, safety, and PK. Primary analysis was according to protocol (ATP). Part B of the study compared CFZ PK in matched HIV-infected individuals without cryptosporidiosis. Results: Twenty Part A and 10 Part B participants completed the study ATP. Almost all Part A participants had high viral loads and low CD4 counts, consistent with failure of antiretroviral (ARV) therapy. At study entry, the Part A CFZ group had higher Cryptosporidium shedding, total stool weight, and more diarrheal episodes compared to the placebo group. Over the inpatient period, compared to those who received placebo, the CFZ group Cryptosporidium shedding increased by 2.17 log 2 Cryptosporidium per gram stool (95% upper confidence limit: 3.82), total stool weight decreased by 45.3 g (p=0.37), and number of diarrheal episodes increased by 2.32 (p=0.87). The most frequent solicited adverse effects were diarrhea, abdominal pain, and malaise. Three CFZ and 1 placebo subjects died during the study. Plasma levels of CFZ in participants with cryptosporidiosis were 2-fold lower than Part B controls. Conclusion: Our findings do not support the efficacy of CFZ for the treatment of cryptosporidiosis in a severely immunocompromised HIV population. However, this trial demonstrates a pathway to assess the therapeutic potential of drugs for cryptosporidiosis treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidiosis treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidiosis treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidium infection, may identify those failing ARV therapy.
Response to Reviewers:	 William A. Petri, MD Associate Editor, Clinical Infectious Diseases 9 March 2020 Dear Dr. Petri, Thank you for considering our original study titled: "Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an experimental medicine, randomised, double-blind, placebo-controlled phase 2a trial" for publication in Clinical Infectious Diseases. We also thank the reviewers for their thoughtful comments, and believe the revised manuscript has been improved as a result. Below we have listed our response to reviewer comments:
	Reviewer #1: Drugs to treat Cryptosporidiosis in severely immunocompromised patients, particularly those with HIV/AIDS, are not available and are urgently needed. This study was an attempt to see whether an existing drug, Clofazamine (CFZ), which has given very promising results in animal models, would be effective in this population. There are clearly issues with this trial. Recruitment proved unexpectedly difficult, which resulted in smaller treatment and control groups than the authors wanted, although they reached the sample size (10 in each group) that they calculated would have sufficient power to give an 80% chance of detecting a significant difference between the groups. And, despite randomisation, the two groups turned out to be very different in many important parameters.

I have one small change that I would like to see in the manuscript. On page 4 of the Supplementary appendix (1.6) we are told that calf data suggested that 10 persons in each arm would give adequate power to this trial. We are not given a reference to the calf data; I think we should see that and the numerical data that went into the power calculation.

Author response: The calf data showing partial, limited efficacy of CFZ is in the process of being written up. Therefore, in the Supplementary Appendix we have clarified this as 'unpublished data, Michael Riggs, University of Arizona' (Supplementary Appendix, p4).

The lack of benefit from CFZ will be disappointing to many and the problems with this trial suggest that it won't be the last word on the subject, but the apparent dis-benefit of the drug on parasite excretion in the treatment group (although non-significant) will increase confidence in the author's conclusions.

Author response: Thank you, we agree.

Reviewer #2: This is a well-written manuscript reflecting a carefully performed study in an extremely ill patient population comparing clofazamine to placebo in HIV-associated cryptosporidial diarrheal disease. Unfortunately, by chance apparently, the randomization did not produce groups that were comparable in a number of important metrics- most notably CD4 count, symptom severity and number of co-pathogens that could cause diarrhea. The authors present data that attempt to make a conclusive case that clofazimine was not efficacious - for example the trajectories of diarrhea severity, stool weight and consistency as well as organism burden over time. These are fairly convincing that clofazamine had no efficacy but because the clofazamine arm was sicker at baseline it is difficult to be completely convinced that this study is conclusive.

The authors could possibly bolster the argument that there was no efficacy of clofazamine despite the poorer baseline status of the clofazamine arm. For example, were the stool co-pathogens treated and if so, was there followup testing to document clearance of these pathogens or any time between the treatment of co-pathogens and the beginning of the study? It would be reassuring that the poor outcomes in the CFZ group were not attributable to these infections rather than lack of efficacy of clofazamine.

Author response: Subjects hospitalized with symptomatic diarrhea were managed by the clinical team and treated with ciprofloxacin, which is the standard of care. The stool TaqMan assay results were not performed in real-time and therefore results were not available until after conclusion of the study. We clarified this in the discussion (p15). Also it should be noted that the primary outcome was a change in cryptosporidium excretion, and not change in diarrhea. We have clarified this in the discussion also (p15).

I think it is important to detail the inclusion criteria in the primary manuscript rather than the supplementary materials- for example, the reader should be aware that part A participants were already on antiretroviral therapy and only needed to have diarrhea for 3 days to qualify. Also that part B participants were matched by age, gender and weight but not HIV disease stage.

Author response: We have included eligibility criteria in the primary manuscript (p5). The Part B matching information is listed on p6 L126.

For clarity: Line 209- please clarify if these differences between the groups were statistically significant.

Author response: Since we used a randomized study design, which is the gold standard to ensure equal distribution between groups, we did not conduct statistical analysis to compare differences. In addition, the group sizes are really too small to infer statistical significance. We expect that if the trial had continued to recruit subjects, the resulting groups would be large enough that such differences as what we observed

would be negligible.

The fatalities- it would be helpful to briefly describe these in the main manuscript- it appears that none were felt by the DSMB to be related to the study drug but rather due to the severe underlying illnesses these patients all had. Describing them as "AEs with fatal outcome" implies they were from the trial- that may be required language that I'm unaware of.

Author response: We have briefly summarized these fatalities in the main manuscript (p11).

The Tables should have some indication of which of the characteristics were significantly different between the groups- in footnotes or bolded values for example.

Author response: Since we used a randomized study design, which is the gold standard to ensure equal distribution between study groups, we did not conduct statistical analysis to compare differences. Furthermore, the group sizes are really too small to infer statistical significance. Therefore, we presented the data as collected.

Figures: Would spell out Change from Baseline

Author response: Due to Figure size limitations we did not spell out Change from Baseline on the actual figure, but the abbreviation is spelt out in the figure legend (p18-19).

Line 300: I'm not sure I understand this paragraph- why would you screen for diarrhea to predict people at risk for TB and ARV failure?

Author response: Malawi is a resource-limited setting where HIV viral loads and CD4 counts are not routinely done. Therefore, care is usually provided based on clinical presentation. Based on our findings in the study population, we suggest using presence of diarrhea as a screening proxy for HIV-infected immunosuppressed individuals at higher risk for TB and ARV failure. We have clarified this in the Supplementary Appendix (Supplementary p3).

Line 316: This is the first we learn that the authors believe that Cryptosporidium was not driving diarrhea in up to 7 of the participants- which group did these participants fall into? How does that effect their assertion that CFZ was not efficacious? Line 320 and 321-do the authors believe that cryptosporidium was not responsible for the diarrhea in those who did not meet the cutoffs?

Author response: On L216-217 we stated that the CFZ group has "more pathogens detected at higher quantities (67% v. 30%), and clarified in the same paragraph (L330-334) the issue of GEMS diarrheagenic amounts. We have re-organized the paragraph so that the information is clearer (p10). However, please note the primary efficacy outcome was reduction in cryptosporidium shedding and not diarrhea resolution. We knew that it was likely that those infected with cryptosporidium would be also infected with other pathogens, and this might reduce the likelihood of efficacy in resolving diarrhea. But the results were very clear, cryptosporidium shedding was not reduced by clofazimine. We clarified this in the discussion (p15).

Line 326- This could be expressed more clearly- are the authors saying that the organism is exposed to the intraluminal CFZ and that efficacy may not be measured by plasma levels or that the organism itself is impairing absorption of the drug?

Author response: We have clarified the sentence to state that the parasite may not be well-exposed to intraluminal CFZ as it is located in a vacuole under the epithelial plasma membrane and faces in towards the gut lumen (p15).

Table 2- would put the Number of subjects somewhere in the table

Author response: We include the number of subjects in the top row of the table (p32).

Reviewer #3: This report details the use of clofazimine for the treatment of

cryptosporidiosis in persons with HIV. It was a two-part study with 20 persons enrolled in a blinded, placebo-controlled RCT. Individuals randomized to active treatment with clofazimine worsened during the trial with a > 2 log (100-fold) increase in parasite excretion. 3 of 10 persons treated with CFZ died compared to 1 of 10 placebo treated individuals. In the second part of the report, the authors report the pharmacokinetics of CFZ in persons with HIV but without cryptosporidiosis. The report is well written.

Cryptosporidiosis in persons with HIV and low CD4 counts is often a lethal disease. No direct, primary therapy has been shown to be effective in persons with HIV. Nitazoxanide is of limited efficacy in persons without HIV, and of no proven benefit in persons with HIV. The core of treatment of cryptosporidiosis in persons with advanced HIV is prevention of death from dehydration and electrolyte disturbances while immune reconstitution is attempted with antiviral therapy. Many reports from the advent of the HIV pandemic described the extremely short life span of persons with untreated cryptosporidiosis, often less than 2 weeks from the time of presentation.

Human subjects approval after IRB review was granted, and no ethical issues are apparent. Many SAEs, including death, occurred in this population, and one person who was treated with CFZ was reported by the site to have a medication-related SAE. However, this was not upheld in review by the monitoring committee.

Dosing of clofazimine for the clinical trial was based upon the 'maximum given in clinical practice' of 100 mgs thrice daily to adults > 50 kgs, or half that dose if < 50 kgs. In the second part of the report, participants were matched to the active arm of the first part of the trial based upon age, gender, and weight. Quantitative PCR was used to assess excretion of the parasite, using first-passed-stool of the morning. In addition, all stools were collected during an 8-hour periods during the 5 days of inpatient treatment. The spectrum of Cryptosporidium species detected in participants included C. parvum, C. hominis, C. meleagridis, the unusual species C. viatorum, and 3 of unknown species.

Between 18 December 2017 and 14 February 2019, 5,790 persons were assessed for eligibility. 494 were prescreened for Cryptosporidium in feces. 67 were positive and 22 were randomized to CFZ or placebo. Although 12 were randomized to CFZ, only 10 completed treatment, and 1 more person withdrew from the study during the outpatient phase. Despite randomization, the active CFZ group was more male, had a lower BMI, and indications of more serious infection with greater stool output weight, more enteropathogens detected, and more advanced HIV (CD4 mean was ~ 25 compared to ~ 170 in the placebo group). Of importance, both the placebo and the active treatment groups had high HIV viral loads indicating that their HIV antiviral therapy was not effective.

Author response: We agree, we made these points in the body of the paper and have now added these points to the abstract (p3-4).

In the CFZ and placebo groups, there was no significant change in stool weight, frequency, consistency, or diarrhea grade during observation. In contrast, in the CFZ group, CR shedding increased by two orders of magnitude (when measured per gram) or in total calculated shedding (one order of magnitude). The graphs provided in the manuscript are

Persons with cryptosporidiosis (Part A) had serum levels of CFZ that were about half of those in persons without cryptosporidiosis (Part B) treated in the second phase of the report.

The authors report that plasma levels of HIV drugs in Part A subjects were detected at "similar" levels to Part B subjects suggesting they were compliant with their first-line ARV therapy, and that ARV resistance "might be driving HIV treatment failure." This suggests that the research team did not consider detecting, and addressing, ARV resistance in the study protocol.

Author response: In planning this single center study, our preliminary data to inform the design of the clinical trial did not include lab diagnostics, since standard lab tests such as full blood count and comprehensive metabolic profiles are not always available nor routinely done for patients hospitalized with diarrhea in Malawi, a setting with limited resources. HIV care in Malawi, as evidenced by national guidelines, and clinical care in

general, is guided by clinical presentation rather than by laboratory values. Therefore, the research team was not aware of the extent of laboratory abnormalities that were subsequently detected, including ARV resistance, among this patient population. When HIV viral load results eventually became available, these results were reviewed by a clinician and subjects were contacted and referred to HIV clinic to switch to second-line ARV regimens. This is now stated in the discussion (p14).

This reviewer strongly objects to the data on HIV treatment and resistance not being more forwardly placed in this report. First, HIV viral loads in the active treatment, and placebo, groups were extremely high. Mean viral loads in the CFZ group were 2.4 x 105 and 6.8 x 105 in the placebo arm. This is prima facie evidence that the antiviral treatment the participants were taking were not active. The core of treatment of cryptosporidiosis in persons with HIV is the prevention of death while immune reconstitution with antivirals is put in place. The authors do not state if a clinician reviewed the CD4 count, and viral load data, and made the (elementary) assessment that their treatment for HIV had failed. The authors do not state if the presence of a life-threatening opportunistic infection prompted a review of the participant's medical therapy and a change in their HIV antivirals because of presumptive resistance. While this study was conducted in a resource-challenged developing country, these basic assessments of HIV treatment adequacy were available and easily interpretable.

Author response: We agree with the reviewer that this is an important point of the paper, and we have tried hard in the revision to bring out this point. To bring it forward even more, we have added these issues to the abstract (p3-4). As stated above, one of the challenges of conducting a clinical trial such as this in a low-resource setting is that the full extent of health status of these patients did not become apparent until diagnostic testing was provided as a part of this trial. The research team did review all laboratory results, including CD4 count and viral load, and followed up with subjects in person to communicate these results to them and also to refer them to HIV clinic if warranted. We have revised the discussion to address these concerns (p14).

This report clarifies that clofazimine, at the doses administered, achieved a serum level in persons with ineffective antiviral therapy that was half that of persons with well-controlled HIV. It clarifies that clofazimine had no evident positive effect in persons with essentially untreated HIV. The mean viral load for participants in the Part B portion of the study was 2.6 x 102, a thousandth that of the persons who received clofazimine in the Part A portion of the study. Three-fold differences in viral loads are considered of clinical significance.

Key questions about this study are entangled around the inadequacy of treatment for HIV. It is possible that clofazimine, when administered to persons whose HIV is well treated (as demonstrated by a low viral load), might have a therapeutic effect. The fact that serum levels in persons with well-suppressed HIV were twice as high suggests that in the setting of Cryptosporidium infection, the drug was not as well absorbed. This would not be surprising given the architectural and functional changes seen in persons with active cryptosporidiosis.

Author response: We have added these points in the discussion (p16).

The authors note that the parasite replicates within a parasitophorous vacuole which may be difficult to drive CFZ into. It is no doubt all the more difficult to achieve CFZ levels in such a location in the range desired when baseline absorption is poor. An intravenous form of clofazimine was described in the past and the authors do not discuss whether or not such a formulation would have been a better choice in this pilot study. It

could be argued that in this clinical setting, oral and not iv therapy is appropriate to study, but this reviewer believes the authors must address this issue.

Author response: Intravenous CFZ was not a formulation offered by our supplier and therefore was not considered for this trial. In addition, an intravenous preparation of CFZ would not be available to repurpose for use in outpatients infected with cryptosporidium. We have included these points in the discussion (p16).

We thank you for your consideration.
Yours sincerely,
Pui-Ying Iroh Tam, MD, FAAP, FPIDS, FIDSA Site Principal Investigator, CRYPTOFAZ
Head, Paediatrics and Child Health Research Group, Malawi-Liverpool Wellcome Trust

William A. Petri, MD Associate Editor, *Clinical Infectious Diseases*

5 March 2020

Dear Dr. Petri,

Thank you for considering our original study titled: "Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an experimental medicine, randomised, double-blind, placebo-controlled phase 2a trial" for publication in Clinical Infectious Diseases. We also thank the reviewers for their thoughtful comments, and believe the revised manuscript has been improved as a result. Below we have listed our response to reviewer comments:

Reviewer #1: Drugs to treat Cryptosporidiosis in severely immunocompromised patients, particularly those with HIV/AIDS, are not available and are urgently needed. This study was an attempt to see whether an existing drug, Clofazamine (CFZ), which has given very promising results in animal models, would be effective in this population.

There are clearly issues with this trial. Recruitment proved unexpectedly difficult, which resulted in smaller treatment and control groups than the authors wanted, although they reached the sample size (10 in each group) that they calculated would have sufficient power to give an 80% chance of detecting a significant difference between the groups. And, despite randomisation, the two groups turned out to be very different in many important parameters.

I have one small change that I would like to see in the manuscript. On page 4 of the Supplementary appendix (1.6) we are told that calf data suggested that 10 persons in each arm would give adequate power to this trial. We are not given a reference to the calf data; I think we should see that and the numerical data that went into the power calculation.

Author response: The calf data showing partial, limited efficacy of CFZ is in the process of being written up. Therefore, in the Supplementary Appendix we have clarified this as 'unpublished data, Michael Riggs, University of Arizona' (Supplementary Appendix, p4).

The lack of benefit from CFZ will be disappointing to many and the problems with this trial suggest that it won't be the last word on the subject, but the apparent dis-benefit of the drug on parasite excretion in the treatment group (although non-significant) will increase confidence in the author's conclusions.

Author response: Thank you, we agree.

Reviewer #2: This is a well-written manuscript reflecting a carefully performed study in an extremely ill patient population comparing clofazamine to placebo in HIV-associated cryptosporidial diarrheal disease. Unfortunately, by chance apparently, the randomization did not produce groups that were comparable in a number of important metrics- most notably CD4 count, symptom severity and number of co-pathogens that could cause diarrhea. The

authors present data that attempt to make a conclusive case that clofazimine was not efficacious - for example the trajectories of diarrhea severity, stool weight and consistency as well as organism burden over time. These are fairly convincing that clofazamine had no efficacy but because the clofazamine arm was sicker at baseline it is difficult to be completely convinced that this study is conclusive.

The authors could possibly bolster the argument that there was no efficacy of clofazamine despite the poorer baseline status of the clofazamine arm. For example, were the stool copathogens treated and if so, was there followup testing to document clearance of these pathogens or any time between the treatment of co-pathogens and the beginning of the study? It would be reassuring that the poor outcomes in the CFZ group were not attributable to these infections rather than lack of efficacy of clofazamine.

Author response: Subjects hospitalized with symptomatic diarrhea were managed by the clinical team and treated with ciprofloxacin, which is the standard of care. The stool TaqMan assay results were not performed in real-time and therefore results were not available until after conclusion of the study. We clarified this in the discussion (p15). Also it should be noted that the primary outcome was a change in cryptosporidium excretion, and not change in diarrhea. We have clarified this in the discussion also (p15).

I think it is important to detail the inclusion criteria in the primary manuscript rather than the supplementary materials- for example, the reader should be aware that part A participants were already on antiretroviral therapy and only needed to have diarrhea for 3 days to qualify. Also that part B participants were matched by age, gender and weight but not HIV disease stage.

Author response: We have included eligibility criteria in the primary manuscript (p5). The Part B matching information is listed on p6 L126.

For clarity:

Line 209- please clarify if these differences between the groups were statistically significant.

Author response: Since we used a randomized study design, which is the gold standard to ensure equal distribution between groups, we did not conduct statistical analysis to compare differences. In addition, the group sizes are really too small to infer statistical significance. We expect that if the trial had continued to recruit subjects, the resulting groups would be large enough that such differences as what we observed would be negligible.

The fatalities- it would be helpful to briefly describe these in the main manuscript- it appears that none were felt by the DSMB to be related to the study drug but rather due to the severe underlying illnesses these patients all had. Describing them as "AEs with fatal outcome" implies they were from the trial- that may be required language that I'm unaware of. **Author response:** We have briefly summarized these fatalities in the main manuscript (p11).

The Tables should have some indication of which of the characteristics were significantly different between the groups- in footnotes or bolded values for example.

Author response: Since we used a randomized study design, which is the gold standard to ensure equal distribution between study groups, we did not conduct statistical analysis to compare differences. Furthermore, the group sizes are really too small to infer statistical significance. Therefore, we presented the data as collected.

Figures: Would spell out Change from Baseline

Author response: Due to Figure size limitations we did not spell out Change from Baseline on the actual figure, but the abbreviation is spelt out in the figure legend (p18-19).

Line 300: I'm not sure I understand this paragraph- why would you screen for diarrhea to predict people at risk for TB and ARV failure?

Author response: Malawi is a resource-limited setting where HIV viral loads and CD4 counts are not routinely done. Therefore, care is usually provided based on clinical presentation. Based on our findings in the study population, we suggest using presence of diarrhea as a screening proxy for HIV-infected immunosuppressed individuals at higher risk for TB and ARV failure. We have clarified this in the Supplementary Appendix (Supplementary p3).

Line 316: This is the first we learn that the authors believe that Cryptosporidium was not driving diarrhea in up to 7 of the participants- which group did these participants fall into? How does that effect their assertion that CFZ was not efficacious? Line 320 and 321-do the authors believe that cryptosporidium was not responsible for the diarrhea in those who did not meet the cutoffs?

Author response: On L216-217 we stated that the CFZ group has "more pathogens detected at higher quantities (67% v. 30%), and clarified in the same paragraph (L330-334) the issue of GEMS diarrheagenic amounts. We have re-organized the paragraph so that the information is clearer (p10). However, please note the primary efficacy outcome was reduction in cryptosporidium shedding and not diarrhea resolution. We knew that it was likely that those infected with cryptosporidium would be also infected with other pathogens, and this might reduce the likelihood of efficacy in resolving diarrhea. But the results were very clear, cryptosporidium shedding was not reduced by clofazimine. We clarified this in the discussion (p15).

Line 326- This could be expressed more clearly- are the authors saying that the organism is

exposed to the intraluminal CFZ and that efficacy may not be measured by plasma levels or that the organism itself is impairing absorption of the drug?

Author response: We have clarified the sentence to state that the parasite may not be well-exposed to intraluminal CFZ as it is located in a vacuole under the epithelial plasma membrane and faces in towards the gut lumen (p15).

Table 2- would put the Number of subjects somewhere in the table

Author response: We include the number of subjects in the top row of the table (p32).

Reviewer #3: This report details the use of clofazimine for the treatment of cryptosporidiosis in persons with HIV. It was a two-part study with 20 persons enrolled in a blinded, placebocontrolled RCT. Individuals randomized to active treatment with clofazimine worsened during the trial with a > 2 log (100-fold) increase in parasite excretion. 3 of 10 persons treated with CFZ died compared to 1 of 10 placebo treated individuals. In the second part of the report, the authors report the pharmacokinetics of CFZ in persons with HIV but without cryptosporidiosis. The report is well written.

Cryptosporidiosis in persons with HIV and low CD4 counts is often a lethal disease. No direct, primary therapy has been shown to be effective in persons with HIV. Nitazoxanide is of limited efficacy in persons without HIV, and of no proven benefit in persons with HIV. The core of treatment of cryptosporidiosis in persons with advanced HIV is prevention of death from dehydration and electrolyte disturbances while immune reconstitution is attempted with antiviral therapy. Many reports from the advent of the HIV pandemic described the extremely short life span of persons with untreated cryptosporidiosis, often less than 2 weeks from the time of presentation.

Human subjects approval after IRB review was granted, and no ethical issues are apparent. Many SAEs, including death, occurred in this population, and one person who was treated with CFZ was reported by the site to have a medication-related SAE. However, this was not upheld in review by the monitoring committee.

Dosing of clofazimine for the clinical trial was based upon the 'maximum given in clinical practice' of 100 mgs thrice daily to adults > 50 kgs, or half that dose if < 50 kgs. In the second part of the report, participants were matched to the active arm of the first part of the trial based upon age, gender, and weight. Quantitative PCR was used to assess excretion of the parasite, using first-passed-stool of the morning. In addition, all stools were collected during an 8-hour periods during the 5 days of inpatient treatment. The spectrum of Cryptosporidium species detected in participants included C. parvum, C. hominis, C. meleagridis, the unusual species C. viatorum, and 3 of unknown species.

Between 18 December 2017 and 14 February 2019, 5,790 persons were assessed for eligibility. 494 were prescreened for Cryptosporidium in feces. 67 were positive and 22 were randomized to CFZ or placebo. Although 12 were randomized to CFZ, only 10 completed treatment, and 1 more person withdrew from the study during the outpatient phase. Despite randomization, the active CFZ group was more male, had a lower BMI, and indications of more serious infection with greater stool output weight, more enteropathogens detected, and more advanced HIV (CD4 mean was ~ 25 compared to ~ 170 in the placebo group). Of importance, both the placebo and the active treatment groups had high HIV viral loads indicating that their HIV antiviral therapy was not effective.

Author response: We agree, we made these points in the body of the paper and have now added these points to the abstract (p3-4).

In the CFZ and placebo groups, there was no significant change in stool weight, frequency, consistency, or diarrhea grade during observation. In contrast, in the CFZ group, CR shedding increased by two orders of magnitude (when measured per gram) or in total calculated shedding (one order of magnitude). The graphs provided in the manuscript are Persons with cryptosporidiosis (Part A) had serum levels of CFZ that were about half of those in persons without cryptosporidiosis (Part B) treated in the second phase of the report. The authors report that plasma levels of HIV drugs in Part A subjects were detected at "similar" levels to Part B subjects suggesting they were compliant with their first-line ARV therapy, and that ARV resistance "might be driving HIV treatment failure." This suggests that the research team did not consider detecting, and addressing, ARV resistance in the study protocol.

Author response: In planning this single center study, our preliminary data to inform the design of the clinical trial did not include lab diagnostics, since standard lab tests such as full blood count and comprehensive metabolic profiles are not always available nor routinely done for patients hospitalized with diarrhea in Malawi, a setting with limited resources. HIV care in Malawi, as evidenced by national guidelines, and clinical care in general, is guided by clinical presentation rather than by laboratory values. Therefore, the research team was not aware of the extent of laboratory abnormalities that were subsequently detected, including ARV resistance, among this patient population. When HIV viral load results eventually became available, these results were reviewed by a clinician and subjects were contacted and referred to HIV clinic to switch to second-line ARV regimens. This is now stated in the discussion (p14).

This reviewer strongly objects to the data on HIV treatment and resistance not being more forwardly placed in this report. First, HIV viral loads in the active treatment, and placebo, groups were extremely high. Mean viral loads in the CFZ group were 2.4 x 105 and 6.8 x 105 in the placebo arm. This is prima facie evidence that the antiviral treatment the participants were taking were not active. The core of treatment of cryptosporidiosis in persons with HIV is the prevention of death while immune reconstitution with antivirals is put in place. The authors do not state if a clinician reviewed the CD4 count, and viral load data, and made the (elementary) assessment that their treatment for HIV had failed. The authors do not state if the presence of a life-threatening opportunistic infection prompted a review of the participant's medical therapy and a change in their HIV antivirals because of presumptive resistance. While this study was conducted in a resource-challenged developing country, these basic assessments of HIV treatment adequacy were available and easily interpretable. **Author response:** We agree with the reviewer that this is an important point of the paper, and we have tried hard in the revision to bring out this point. To bring it forward even more, we have added these issues to the abstract (p3-4). As stated above, one of the challenges of conducting a clinical trial such as this in a low-resource setting is that the full extent of health status of these patients did not become apparent until diagnostic testing was provided as a part of this trial. The research team did review all laboratory results, including CD4 count and viral load, and followed up with subjects in person to communicate these results to them and also to refer them to HIV clinic if warranted. We have revised the discussion to address these concerns (p14).

This report clarifies that clofazimine, at the doses administered, achieved a serum level in persons with ineffective antiviral therapy that was half that of persons with well-controlled HIV. It clarifies that clofazimine had no evident positive effect in persons with essentially untreated HIV. The mean viral load for participants in the Part B portion of the study was 2.6 x 102, a thousandth that of the persons who received clofazimine in the Part A portion of the study. Three-fold differences in viral loads are considered of clinical significance.

Key questions about this study are entangled around the inadequacy of treatment for HIV. It is possible that clofazimine, when administered to persons whose HIV is well treated (as demonstrated by a low viral load), might have a therapeutic effect. The fact that serum levels in persons with well-suppressed HIV were twice as high suggests that in the setting of Cryptosporidium infection, the drug was not as well absorbed. This would not be surprising given the architectural and functional changes seen in persons with active cryptosporidiosis.

Author response: We have added these points in the discussion (p16).

The authors note that the parasite replicates within a parasitophorous vacuole which may be difficult to drive CFZ into. It is no doubt all the more difficult to achieve CFZ levels in such a location in the range desired when baseline absorption is poor. An intravenous form of clofazimine was described in the past and the authors do not discuss whether or not such a formulation would have been a better choice in this pilot study. It could be argued that in this clinical setting, oral and not iv therapy is appropriate to study, but this reviewer believes the authors must address this issue.

Author response: Intravenous CFZ was not a formulation offered by our supplier and therefore was not considered for this trial. In addition, an intravenous preparation of CFZ would not be available to repurpose for use in outpatients infected with cryptosporidium. We have included these points in the discussion (p16).

We thank you for your consideration.

Yours sincerely,

We Com Proget

Pui-Ying Iroh Tam, MD, FAAP, FPIDS, FIDSA Site Principal Investigator, CRYPTOFAZ Head, Paediatrics and Child Health Research Group, Malawi-Liverpool Wellcome Trust

1	Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an
2	experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial
3	
4	PY Iroh Tam, ^{1,2} SLM Arnold, ³ LK Barrett, ³ CR Chen, ⁴ TM Conrad, ⁴ E Douglas, ³ MA Gordon, ^{1,5}
5	D Hebert, ⁴ M Henrion, ^{1,2} D Hermann, ⁶ B Hollingsworth, ⁴ E Houpt, ⁷ KC Jere, ^{1,5} R Lindblad, ⁴ MS
6	Love, ⁸ L Makhaza, ¹ CW McNamara, ⁸ W Nedi, ¹ J Nyirenda, ¹ DJ Operario, ⁷ J Phulusa, ¹ GV
7	Quinnan Jr, ⁴ LA Sawyer, ⁴ H Thole, ¹ N Toto, ² A Winter, ⁴ WC Van Voorhis, ³
8	
9	¹ Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
10	² Liverpool School of Tropical Medicine, Liverpool, UK
11	³ University of Washington, Seattle, WA, USA
12	⁴ Emmes, Rockville, MD, USA
13	⁵ University of Liverpool, Liverpool, UK
14	⁶ Bill & Melinda Gates Foundation, Seattle, WA, USA
15	⁷ University of Virginia, Charlottesville, VA, USA
16	⁸ Calibr, La Jolla, CA, USA
17	
18	Brief title: Clofazimine trial for cryptosporidiosis
19	
20	Corresponding author: Pui-Ying Iroh Tam; Paediatrics and Child Health Research Group,
21	Malawi-Liverpool Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri,
22	Blantyre 3, Malawi; irohtam@mlw.mw; +265 1876444
23	Alternate corresponding author: Wesley Van Voorhis: <u>wvanvoorhis@medicine.washington.edu</u>

24	Key	points

25	We evaluated clofazimine for treatment of adult HIV subjects with cryptosporidiosis.
26	Clofazimine was well tolerated, but did not reduce Cryptosporidium excretion or diarrhea
27	compared with subjects treated with placebo. This trial forms a blueprint for future
28	cryptosporidiosis therapeutic trials.
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 <u>Abstract</u>

Background: We evaluated efficacy, pharmacokinetics (PK), and safety of clofazimine (CFZ) in
HIV-infected patients with cryptosporidiosis.

50

51 Methods: We performed a randomized, double-blind, placebo-controlled study. Primary

52 outcomes in Part A were reduction in Cryptosporidium shedding, safety, and PK. Primary

53 analysis was according to protocol (ATP). Part B of the study compared CFZ PK in matched

54 HIV-infected individuals without cryptosporidiosis.

55

56 Results: Twenty Part A and 10 Part B participants completed the study ATP. Almost all Part A 57 participants had high viral loads and low CD4 counts, consistent with failure of antiretroviral 58 (ARV) therapy. At study entry, the Part A CFZ group had higher *Cryptosporidium* shedding, 59 total stool weight, and more diarrheal episodes compared to the placebo group. Over the 60 inpatient period, compared to those who received placebo, the CFZ group *Cryptosporidium* 61 shedding increased by 2.17 log₂ Cryptosporidium per gram stool (95% upper confidence limit: 62 3.82), total stool weight decreased by 45.3 g (p=0.37), and number of diarrheal episodes 63 increased by 2.32 (p=0.87). The most frequent solicited adverse effects were diarrhea, abdominal 64 pain, and malaise. Three CFZ and 1 placebo subjects died during the study. Plasma levels of 65 CFZ in participants with cryptosporidiosis were 2-fold lower than Part B controls. 66 67 Conclusion: Our findings do not support the efficacy of CFZ for the treatment of 68 cryptosporidiosis in a severely immunocompromised HIV population. However, this trial

69 demonstrates a pathway to assess the therapeutic potential of drugs for cryptosporidiosis

70	treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidium infection,
71	may identify those failing ARV therapy.
72	
73	
74	
75	250 words
76	
77	Keywords: Cryptosporidium, diarrhea, HIV, therapeutic, trial
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93 <u>Introduction</u>

94	Cryptosporidium infection and diarrhea (cryptosporidiosis) is a life-threatening infection in
95	persons with HIV and also in young children in the developing world [1]. In children,
96	cryptosporidiosis causes severe diarrhea [2], malabsorption and intestinal injury [3], excess
97	mortality [2, 4], stunting and is associated with malnutrition [5]. There is a huge unmet need for
98	Cryptosporidium drugs [6]: only nitazoxanide is licensed for treatment of cryptosporidiosis, but
99	it has not shown any benefits as a treatment for HIV-infected and immunocompromised patients
100	with cryptosporidiosis compared to placebo [7-9].
101	
102	Clofazimine (CFZ), used for treatment of leprosy for more than 50 years, and currently part of
103	treatment for multi-drug resistant TB, has recently been described as effective against
104	Cryptosporidium in vitro [10]. The efficacy and pharmacokinetics (PK) of CFZ in HIV-infected
105	patients with cryptosporidiosis are not known. We developed an experimental medicine study
106	design to evaluate the safety, tolerability, PK and efficacy of CFZ in HIV-infected adults with
107	cryptosporidiosis.
108	
109	Methods
110	
111	Study design and participants
112	The study was a single center, randomized, double-blind, placebo-controlled Phase 2a two-part

113 study at Queen Elizabeth Central Hospital in Blantyre, Malawi. Participants were eligible for

114 Part A if they were HIV-infected, aged 18-65 years, weight over 35.4 kg, on antiretrovirals

115 (ARV) for at least 1 month, and with diarrhea duration of minimum 14 days. Participants for Part

116	B were HIV-infected without diarrhea or <i>Cryptosporidium</i> , and met none of the exclusion
117	criteria. Full criteria are listed in the Supplementary Appendix. The study protocol was approved
118	by the relevant regulatory and ethics committees before study initiation [11]. Participants
119	provided written informed consent.
120	
121	Study treatment and procedures
122	Part A participants were randomized 1:1 to receive either five days of oral CFZ or placebo,
123	respectively (Figure 1). The dosage of CFZ administered was the maximum given in clinical
124	practice, 100 mg three times daily if \geq 50 kg or 50 mg three times daily for subjects <50 kg [12].
125	Participants for Part B were matched 1:1 to the first ten Part A subjects based on age (± 5 years),
126	gender, and weight (\geq or <50 kg; Supplementary Appendix).
127	
128	We used a rapid diagnostic test (RDT) for Cryptosporidium screening (prototype
129	immunochromatographic test strip for detecting Cryptosporidium, TechLabs Inc., Blacksburg,
130	VA, USA) and an ELISA stool test (CRYPTOSPORIDIUM II TM , TechLabs Inc.) for assessing
131	Cryptosporidium shedding in serial stools during the trial. All Cryptosporidium shedding was
132	confirmed and measured by qPCR, with a positive result being a cycle threshold (Ct) <35. The
133	first collected stool of the day was obtained throughout the dosing and follow-up periods, for
134	testing of the Cryptosporidium ELISA signal, as well as for measurement of Cryptosporidium
135	shedding by qPCR. In addition, all stools were collected and pooled in 8-hour intervals during
136	the inpatient phase of the study, Days -1 to 5 of dosing. Thus, total Cryptosporidium stool
137	excretion was measured by qPCR during this time.

139	Stool enteropathogens present at baseline in addition to Cryptosporidium were detected using
140	qPCR in a TaqMan Array Card (TAC, Thermo Fisher, Waltham, MA, USA) using a custom
141	design developed at the Houpt Laboratory (Charlottesville, VA, USA; Supplementary Appendix)
142	[13]. Measurements of anti-retroviral (ARV) levels in plasma and alteration after administration
143	of CFZ were evaluated in the Van Voorhis/Arnold Laboratories (Seattle, WA, USA).
144	Measurement of CFZ concentration in plasma and stool were performed at Q ₂ Solutions (Ithaca,
145	NY, USA).
146	
147	After the 5-day inpatient study drug dosing, with daily clinical examination and laboratory
148	sampling, all participants entered a 2 month follow-up period that included a visit 19-24 days
149	post last dose, and a final visit 41-55 days post last dose. During each visit and with weekly
150	phone calls, participants were monitored for safety and symptoms. Safety labs were repeated if
151	there were any abnormalities previously. If participants could not be reached by phone, home
152	visits were made.
153	
154	Outcomes
155	There were two primary endpoints for Part A: the first was efficacy, assessed as reduction in the

156 (log) number of *Cryptosporidium* shed in the first collected stool of each study dosing day of

157 CFZ vs. placebo recipients in subjects treated according to protocol (ATP). The second primary

158 endpoint was safety, including frequency and severity of solicited and unsolicited adverse events

159 (AEs), serious adverse events (SAEs), adverse events of special interest and suspected,

160 unexpected serious adverse reactions. Part B had two primary endpoints (CFZ in plasma, and

total daily amount of CFZ eliminated in stool) to meet a single primary PK objective. Secondary

162	endpoints were the reduction in the (log ₂) number of <i>Cryptosporidium</i> shed in stool compared to
163	controls in the intention-to-treat (ITT) population, reduction in total daily Cryptosporidium
164	shedding in those treated ATP, and as compared to controls in the ITT population, and reduction
165	in severity of diarrhea over the study dosing period compared to controls.
166	
167	An independent data safety monitoring board (DSMB) was involved in regular review of blinded
168	safety data to monitor risks and benefits and to assess any potential safety issues arising during
169	the study. Trial site monitoring of participant safety was carried out by the sponsor medical
170	monitor, an independent local safety monitor, the contract research organization medical
171	monitor, and overseen by the chief investigator (WVV). This study is registered with
172	ClinicalTrials.gov, number NCT03341767.
173	
174	Statistical analyses
	<u>Statistical analyses</u> As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects
174	- -
174 175	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects
174 175 176	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic
174 175 176 177	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was
174 175 176 177 178	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was
174 175 176 177 178 179	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis (Supplementary Appendix).
174 175 176 177 178 179 180	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis (Supplementary Appendix). The primary ATP analysis was performed using the randomized population who received at least
174 175 176 177 178 179 180 181	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis (Supplementary Appendix). The primary ATP analysis was performed using the randomized population who received at least 80% of scheduled doses, completed daily assessments of fecal shedding, and had no major
174 175 176 177 178 179 180 181 182	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP; this sample size was predicted to detect a therapeutic difference based on animal data from molecular endpoints. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis (Supplementary Appendix). The primary ATP analysis was performed using the randomized population who received at least 80% of scheduled doses, completed daily assessments of fecal shedding, and had no major protocol deviations. When missing data for the primary endpoint (log number of

186	The safety population consisted of all subjects that received at least one dose of study drug. The
187	PK population consisted of all subjects who had at least one measurable PK concentration
188	(Supplementary Appendix).
189	
190	Due to the exploratory nature of the trial, no adjustments due to multiple testing were made; all
191	statistical tests were performed with a one-sided alpha of 0.05. Statistical analyses were
192	conducted using SAS version 9.3.
193	
194	Results
195	Between 18 December 2017 and 14 February 2019, 5,790 adults were approached to assess
196	eligibility. For randomization to CFZ vs. placebo (Part A), 494 were prescreened for
197	Cryptosporidium presence in stool via RDT and qPCR, 67 participants were Cryptosporidium
198	PCR-positive in stool and screened, and 22 were randomized (12 to CFZ and 10 to placebo, ITT
199	group; Figure 1). Twenty subjects completed inpatient dosing ATP. There was one voluntary
200	withdrawal (CFZ group) during the outpatient phase. There was no loss to follow-up.
201	
202	The RDT and ELISA stool test had low sensitivity (41% for both) to identify participants and
203	follow the presence/absence of Cryptosporidium over time, compared with qPCR. The
204	Cryptosporidium spp. identified were C. parvum (11/22, 50%), C. meleagridis (4/22, 18%), C.
205	hominis (3/22, 14%), C. viatorum (1/22, 5%) and 3 unknowns. Coinfection of stool with multiple
206	diarrhea enteropathogens was common, with a median of 4 co-pathogens (excluding
207	Cryptosporidium) per subject (range 1-8). The most frequently identified co-pathogen was

208	enteroaggregative E. coli (64%), followed by Shigella toxin-positive enterotoxigenic E. coli
209	(41%) and Shigella/enteroinvasive E. coli (23%). The baseline characteristics of participants are
210	listed in Table 1. Despite randomization, compared to the placebo group the CFZ group had by
211	chance: more males (67% vs. 20%), lower body mass index (16.3 \pm 1.7 vs. 18.0 \pm 3.1 kg/m ²),
212	increased diarrhea output total stool weight (320.3±214.6 vs. 245.8±299.4 g), more pathogens
213	detected at a diarrheagenic amount per Global Enteric Multicenter Study (GEMS) criteria (67%
214	vs. 30%) [14], more advanced HIV immunosuppression (CD4 counts 25.3±24.4 vs. 170.4±321.7
215	cells/ μ L), and higher prevalence of <i>C. parvum</i> detected (58% vs. 40%).
216	
217	Findings were similar for both ATP and ITT populations (Supplementary Table 1), and the ATP
218	efficacy results are reported here. Stool Cryptosporidium excretion was persistent among Part A
219	subjects throughout observation (Supplementary Figures 1 and 2), even at 41-55 days after the
220	last dose. There was no significant difference in Cryptosporidium shedding in the CFZ group
221	compared to placebo (Figures 2A-B). There was a trend towards increased change-from-baseline
222	in Cryptosporidium shedding in the first stool of the day in the CFZ-treated group vs. placebo,
223	with a difference in means of 2.17 log ₂ Cryptosporidium per gram ([95% upper confidence limit
224	(CL): 3.82]), and in total Cryptosporidium shedding with a difference of means of 1.02 log ₂
225	Cryptosporidium ([95% upper CL: 2.50]); the opposite result expected if CFZ was efficacious.
226	There was no significant change in diarrhea in the CFZ group compared to placebo, whether
227	measured by total stool weight change-from-baseline, number of diarrheal episodes, stool
228	consistency grade, or severity diarrhea grade (Figures 2C-F).
229	

230 For the PK of CFZ in HIV-infected subjects without diarrhea or Cryptosporidium (Part B), 92

231 were prescreened, 18 were screened, and 11 received CFZ, with one voluntary withdrawal during

the inpatient phase. Part A subjects had about 2-fold less plasma exposure of CFZ than Part B

subjects on day 5 (ratio AUC₀₋₂₄: 0.607), and on day 1 of the inpatient dosing (ratio AUC₀₋₂₄:

234 0.478; Table 2, Figure 3; stool PK profiles are listed in Supplementary Appendix and

235 Supplementary Figure 3).

236

237 For safety, solicited AEs (Table 3) - expected in persons with diarrhea - were experienced by all 238 subjects in both CFZ and placebo groups. There were higher numbers of solicited AEs 239 experienced in the CFZ group for diarrhea (9 (75%) vs. 4 (40%) in placebo), abdominal pain (8 240 (67%) vs. 7 (70%) in placebo), and malaise (6 (50%) vs. 3 (30%) in placebo), and more severe 241 solicited AEs in the CFZ group (2(17%)) than the placebo group (0(0%)); Supplementary 242 Figures 4 and 5). No Part B subject experienced any solicited AE. The number of unsolicited 243 AEs (Supplementary Table 2) was highest in the CFZ group (13 vs. 12 in placebo and 3 in Part 244 B); the number of subjects who experienced AEs with fatal outcome was also higher in the CFZ 245 group (3 (25%) vs. 1 (10%) in placebo and none in Part B). None of the fatalities were judged by 246 the study medical monitors and DSMB to be CFZ-related (Supplementary Appendix). 247

248 Discussion

This is the first randomized, double-blind, placebo-controlled Phase 2a trial to evaluate CFZ for treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on *Cryptosporidium* shedding of the parasite, or on diarrheal episodes, stool weight, and consistency, compared to placebo. Evaluation of *Cryptosporidium* shedding in the

first stool of the day provided similar data to total daily *Cryptosporidium* shedding. The drug is
generally well-tolerated. Four patients died, three of whom received CFZ and the fourth placebo.
This rate of death was consistent with our a priori estimates and each case was reviewed by the
independent DSMB. CFZ achieved 2-fold less plasma exposure among Part A subjects with
diarrhea vs. Part B subjects without diarrhea.

258

The trial did show that HIV-infected adults with ≥ 3 days of diarrhea consistently excreted *Cryptosporidium* in their stools, even when assayed up to 60 days after enrollment. This demonstrates that this population would be appropriate to study the antiparasitic benefit of anti-*Cryptosporidium* drugs that do not depend on the immune response.

263

264 The trial did not show a reduction in *Cryptosporidium* excretion in this population treated with 265 CFZ vs. placebo. This was the case whether one compared the *Cryptosporidium* excretion by 266 qPCR as determined by the concentration in the first stool of the day, or by determining the total 267 *Cryptosporidium* excreted per day. In fact, there was a non-significant trend towards slightly 268 increased *Cryptosporidium* shedding in the CFZ group vs. the placebo, which was most evident 269 at day 2 of study drug dosing. The trend towards increased shedding may reflect the more ill 270 status of the CFZ subjects at baseline, as documented in their enrollment labs and health status. 271 With a median HIV CD4 count of 23.5 cells/mm³ (IQR 11.75, 43.75) and viral load of 168,097.5 272 copies/mL (IQR 94,044, 643,812.3), the mortality rate of 18% in the trial likely reflects 273 advanced disease in our Part A cohort as a whole.

274

275 Within our cohort, compared to placebo, the CFZ group had more deaths, SAEs, and severe 276 solicited AEs. All subjects with cryptosporidiosis reported the solicited AEs expected with CFZ, 277 such as diarrhea, abdominal pain, malaise and nausea. However, these solicited AEs were 278 present at baseline in Part A subjects, as might be expected in this population with 279 cryptosporidiosis, and were universal in both treatment groups. There tended to be less solicited 280 AEs over time, which correlated with less severity in diarrhea during the hospital phase, and the 281 severity of AEs tended to decrease over time. None of the Part B subjects exposed to the same 282 dose of CFZ reported solicited AEs, and only 3 Part B subjects reported unsolicited AEs, and 283 these were generally mild.

284

285 A previous clinical trial for cryptosporidiosis treatment identified multiple safety concerns 286 related to the health status of participants. This Phase 1-2 trial of miltefosine to treat HIV-related 287 cryptosporidiosis in Zambian adults with chronic diarrhea was terminated early due to high 288 mortality, lack of efficacy and development of SAEs that were attributed to the extreme 289 metabolic abnormalities already present in patients enrolled in the trial [15]. In our trial, subjects 290 with cryptosporidiosis also presented with electrolyte abnormalities, most commonly 291 hypokalemia that required correction, and some required corrective treatment through the trial. In 292 addition, there was also a very high incidence of active TB in the HIV-infected screening 293 population. Screening by chest x-ray was inadequate likely because dehydrated subjects often do 294 not have an infiltrate until rehydrated. Screening of sputum by GeneXpert or gram stain also was 295 inadequate due to inability of dehydrated subjects to produce sputum. All deaths in our study 296 were reported prior to instituting urine LAM screening at baseline. Once urine LAM screening

was instituted [16], 43% of our otherwise eligible subjects subsequently tested positive by urineLAM and were excluded.

299

318

300 Part A participants were extremely immunosuppressed. Most had CD4 counts <25 cells/µL and 301 high HIV viral loads. Plasma levels of HIV medicines were detected at similar levels to Part B 302 subjects (unpublished data), suggesting that these Part A subjects were compliant with first-line 303 ARV therapy and that ARV resistance might be driving HIV treatment failure. Therefore, 304 screening for diarrhea in this population, and especially for *Cryptosporidium*, delineated those 305 more at risk for TB and ARV failure. 306 307 The predominant *Cryptosporidium* species was *C. parvum* subtype family IIc anthroponotic 308 (10/11, 91% of those with C. parvum). This was unexpected, given that the majority of 309 Cryptosporidium species identified in the pediatric GEMS and adult studies were C. hominis [17-310 20]. However, a high prevalence of C. parvum has been noted in HIV/AIDS patients in Ethiopia, 311 where 92/140 (66%) of HIV/AIDS patients were positive by PCR-RFLP [21]. As C. parvum has 312 been associated with prolonged diarrhea in HIV-positive persons more frequently than C. 313 *hominis* [17] the trial inclusion criteria may have selected for this species. 314 315 Multiple copathogens were observed in stool, which may have contributed to the diarrhea [3], 316 but patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of 317 care. Cryptosporidium may have driven the diarrhea in at least 15 of 22 subjects in this trial, as it

319 quantity shed in stool. After applying GEMS cutoffs, which use C_t counts to determine clinically

was the pathogen with the lowest C_t value, and may have been the pathogen in the greatest

relevant diarrhea [14], only 7 *Cryptosporidium* samples met diarrheagenic cutoffs, and only 11 samples met diarrheagenic pathogen criteria. As GEMS data were based on children, the lack of correlation between C_t value and clinical diarrhea likely reflects the differences seen in an adult population with severe HIV immunosuppression with prolonged diarrhea.

324

325 Our PK data suggests that diarrhea and/or *Cryptosporidium* infection negatively impacts CFZ 326 plasma exposure. Since efficacy is likely driven by CFZ levels in the parasite, which may not be 327 well-exposed to intraluminal CFZ as it is located in a vacuole under the epithelial plasma 328 membrane, and faces in towards the gut lumen [22], plasma levels may not reflect efficacy as it 329 would for systemic infections. The fact that serum CFZ levels in persons with well-suppressed 330 HIV were twice as high suggests that in the setting of *Cryptosporidium* infection, the drug was 331 not well absorbed. We propose that lower levels of CFZ likely exist in the epithelium layer in the 332 Part A subjects, as passage through the gastrointestinal epithelium is required for access to the 333 plasma. These lower levels may have contributed to the failure of efficacy against 334 *Cryptosporidium.* However, we used the maximum dosage of CFZ that is accepted as safe in this 335 trial [12], therefore increasing the dosage to improve efficacy may not be feasible. An 336 intravenous form of clofazimine, described in the past [23], may have provided better systemic 337 delivery of the drug; however, this was not a formulation available at the time of the trial. 338 339 One of the limitations of the study was the small sample size. This led to slightly uneven

randomization (12 vs. 10) based on block size. Also, imbalances in the baseline characteristics

341 were noted in the Part A subjects CFZ vs. placebo groups, with the CFZ group being more ill at

baseline. One possible confounder was the presence of multiple co-pathogens in the stool, whichcould have influenced diarrhea resolution.

344

345 For the conduct of future human experimental trials of cryptosporidiosis in this population, this 346 study suggests that: 1) the screening population should be evaluated for TB detection, through 347 urine LAM, and for electrolyte disturbances, particularly hypokalemia; 2) use of stool RDT in 348 screening and ELISA tests on serial stools is not as sensitive as qPCR, and that we need only use 349 qPCR to enroll and follow participants for *Cryptosporidium* excretion over time; 3) following 350 serial *Cryptosporidium* shedding by qPCR of the first stool of the day, rather than total stool 351 collection, is probably sufficient to assess efficacy; 4) given the ill status of enrolled subjects, an 352 inpatient trial is merited and AEs and deaths may complicate safety evaluation of new study 353 drugs; and 5) future trials would need to be multisite given the slow recruitment rate. There was, 354 until this trial, few placebo-controlled trials in adults [24-26] and limited data on how to test the 355 drugs in Phase 2a. This trial shows that HIV-infected adults with cryptosporidiosis excrete the 356 parasite consistently and thus the effects of treatment on excretion would be a feasible way to 357 monitor for efficacy in *Cryptosporidium* therapy.

358

In conclusion, this is the first controlled clinical trial to assess the safety, efficacy, and PK of CFZ for treatment of cryptosporidiosis. Although CFZ does not show promise as a novel therapeutic for *Cryptosporidium* infection, future human studies can use an approach based on lessons learned in this trial to assess the therapeutic potential of drugs for treatment of cryptosporidiosis.

- 365 Word count (3,149)
- 366
- 367 **Table 1.** Baseline characteristics of participants
- 368 **Table 2.** Comparison of pharmacokinetic parameters in Part A and B subjects
- 369 **Table 3.** Summary of adverse events
- 370
- 371 Figure legends
- 372 Figure 1. Part A trial profile
- 373 ATP, according to protocol; ITT, intention to treat
- ^aSubject died after completing visit.
- ^bOne subject withdrew during inpatient phase but provided final blood draw.
- **Figure 2.** Treatment response in the according to protocol group:
- A) Mean change from baseline (CFB) in log number of cryptosporidium shed in first
- 378 collected stool over time
- B) Mean CFB in total daily cryptosporidium shedding over time
- 380 C) Mean CFB in total stool weight over time
- 381 D) Mean number of diarrheal episodes over time
- E) Proportion of most severe stool consistency grade by time
- 383 F) Proportion of most severe diarrhea grade by time
- **Figure 3.** Mean plasma concentration of CFZ in plasma by time
- 385
- 386 <u>Supplementary Appendix</u>
- 387 Supplementary Methods

388	1.1 Study design
389	1.2 Participants
390	1.3 Randomization and masking
391	1.4 Procedures
392	1.5 Outcomes
393	1.6 Statistical analyses
394	1.7 Role of the funding source
395	Supplementary Results
396	2.1 Stool PK profiles
397	2.2 Fatal outcomes
398	Supplementary Table 1. Efficacy of clofazimine compared to placebo in the according to
399	protocol (ATP) and intention-to-treat (ITT) populations
400	Supplementary Table 2. Total number of unsolicited adverse events
401	Supplementary Figure 1. Treatment response in the ITT group:
402	A) Mean change from baseline (CFB) in log ₂ number of cryptosporidium shed in first
403	collected stool over time
404	B) Mean CFB in total daily cryptosporidium shedding over time
405	C) Mean total daily cryptosporidium shedding over time
406	D) Mean CFB in total stool weight over time
407	E) Mean number of diarrheal episodes over time
408	F) Proportion of most severe stool consistency grade by time
409	G) Proportion of most severe diarrhea grade by time

- 411 daily stooling
- **Supplementary Figure 3.** Mean amount of CFZ in stool by timepoint
- **Supplementary Figure 4.** Maximum severity of solicited symptoms
- **Supplementary Figure 5.** Frequency of adverse events by organ class and: A) Severity B)
- 415 Relationship to treatment

433 <u>Funding</u>

434 The work was supported by the Bill & Melinda Gates Foundation (OPP1172544).

435

436 Declaration of interests

437 PI, KJ, ML, CM and WVV have received grants from Bill & Melinda Gates Foundation (BMGF)

438 outside of the submitted work. ML and CM have received a supplemental grant from BMGF for

439 preclinical and early clinical development of CFZ as a treatment for cryptosporidiosis

440 (OPP1156296). KJ is a Wellcome International Training Fellow (Grant number 201945/Z/16/Z)

441 and has received investigator-initiated grant support from GlaxoSmithKline Biologicals group of

442 companies. DHn is a current employee of BMGF. WVV has patents issued for bumped kinase

443 inhibitors (BKIs) for the therapeutic treatment of cryptosporidiosis diarrhoea and is a founder

444 and has stock of ParaTheraTech LLC, a company that is developing BKIs for animal health

indications. All other authors declare no competing interests.

446

447 <u>Acknowledgements</u>

448 We thank the subjects who participated in this study. We thank the Cryptofaz study team 449 members, including administrative, clinical, laboratory, pharmacy, data and ancillary staff in 450 Malawi and LSTM, the Emmes CC-ID8 team in Maryland, USA and their site monitor team in 451 India (Pankaj Dua, Anand Singh, Abhishek Kumar). We thank the QECH management and 452 Blantyre district health office for granting us permission to use their health facilities; medical 453 monitors (Frederick Buckner and Jamie Rylance); the Data Safety Monitoring Board (Steven 454 Reynolds [chair], David Boulware, Jane Mallewa, David Lalloo, and Maia Lesosky); Bill and 455 Melinda Gates Program Officers for valuable discussions and advice; Brigitte Denis and George

456	Selemani for MLW laboratory support; Clemens Masesa for MLW data management support;
457	Sarah Burke and Q2 Solutions for determining clofazimine levels in plasma and stool; Leonardo
458	Sahelijo for facilitating the site initiation visit; Joel Herbein and TechLabs for donating rapid
459	diagnostic and ELISA tests for Cryptosporidium testing; James Platts-Mills and Jie Liu for
460	assistance with TAC studies in Houpt Lab; and, Claire Colson, Janice Yu, and Mikasa Morf for
461	University of Washington administrative support.
462	
463	Novartis provided both the clofazimine and placebo. TechLabs provided Cryptosporidium rapid
464	diagnostic and ELISA tests.
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	

480	1.	Platts-Mills JA, Babji S, Bodhidatta L, et al. Pathogen-specific burdens of community
481		diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob
482		Health 2015 ; 3(9): e564-75.
483	2.	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal
484		disease in infants and young children in developing countries (the Global Enteric
485		Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382(9888):
486		209-22.
487	3.	Goodgame RW, Kimball K, Ou CN, et al. Intestinal function and injury in acquired
488		immunodeficiency syndrome-related cryptosporidiosis. Gastroenterology 1995; 108(4):
489		1075-82.
490	4.	Molbak K, Hojlyng N, Gottschau A, et al. Cryptosporidiosis in infancy and childhood
491		mortality in Guinea Bissau, west Africa. BMJ 1993; 307(6901): 417-20.
492	5.	Korpe PS, Haque R, Gilchrist C, et al. Natural History of Cryptosporidiosis in a
493		Longitudinal Study of Slum-Dwelling Bangladeshi Children: Association with Severe
494		Malnutrition. PLoS Negl Trop Dis 2016; 10(5): e0004564.
495	6.	Striepen B. Parasitic infections: Time to tackle cryptosporidiosis. Nature 2013;
496		503(7475): 189-91.
497	7.	Amadi B, Mwiya M, Musuku J, et al. Effect of nitazoxanide on morbidity and mortality
498		in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 2002;
499		360(9343): 1375-80.

- Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide
 is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised
 controlled trial. BMC Infect Dis 2009; 9: 195.
- 503 9. Zulu I, Kelly P, Njobvu L, et al. Nitazoxanide for persistent diarrhoea in Zambian
 504 acquired immune deficiency syndrome patients: a randomized-controlled trial. Aliment
- 505 Pharmacol Ther **2005**; 21(6): 757-63.
- Love MS, Beasley FC, Jumani RS, et al. A high-throughput phenotypic screen identifies
 clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 2017;
 11(2): e0005373.
- 509 11. Nachipo P, Hermann D, Quinnan G, Gordon MA, Van Voorhis WC, Iroh Tam PY.
- Evaluating the safety, tolerability, pharmacokinetics and efficacy of clofazimine in
 cryptosporidiosis (CRYPTOFAZ): study protocol for a randomized controlled trial. Trials
 2018; 19(1): 456.
- 513 12. Yawalkar SJ. Lamprene (clofazimine) in leprosy. Leprosy review 1979; 50(2): 135-44.
- 514 13. Liu J, Kabir F, Manneh J, et al. Development and assessment of molecular diagnostic
- 515 tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet
 516 Infect Dis 2014; 14(8): 716-24.
- Liu J, Platts-Mills JA, Juma J, et al. Use of quantitative molecular diagnostic methods to
 identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study.
 Lancet 2016; 388(10051): 1291-301.
- 520 15. Sinkala E, Katubulushi M, Sianongo S, Obwaller A, Kelly P. In a trial of the use of
- 521 miltefosine to treat HIV-related cryptosporidiosis in Zambian adults, extreme metabolic
- 522 disturbances contribute to high mortality. Ann Trop Med Parasitol **2011**; 105(2): 129-34.

523	16.	Gupta-Wright A, Corbett EL, van Oosterhout JJ, et al. Rapid urine-based screening for
524		tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a
525		pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet
526		2018 ; 392(10144): 292-301.
527	17.	Cama VA, Ross JM, Crawford S, et al. Differences in clinical manifestations among
528		Cryptosporidium species and subtypes in HIV-infected persons. J Infect Dis 2007;
529		196(5): 684-91.
530	18.	Hunter PR, Hughes S, Woodhouse S, et al. Health sequelae of human cryptosporidiosis in
531		immunocompetent patients. Clin Infect Dis 2004; 39(4): 504-10.
532	19.	Sannella AR, Suputtamongkol Y, Wongsawat E, Caccio SM. A retrospective molecular
533		study of Cryptosporidium species and genotypes in HIV-infected patients from Thailand.
534		Parasit Vectors 2019 ; 12(1): 91.
535	20.	Sow SO, Muhsen K, Nasrin D, et al. The Burden of Cryptosporidium Diarrheal Disease
536		among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-
537		Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study
538		(GEMS). PLoS Negl Trop Dis 2016 ; 10(5): e0004729.
539	21.	Adamu H, Petros B, Zhang G, et al. Distribution and clinical manifestations of
540		Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Negl
541		Trop Dis 2014 ; 8(4): e2831.
542	22.	Checkley W, White AC, Jr., Jaganath D, et al. A review of the global burden, novel
543		diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis
544		2015 ; 15(1): 85-94.

545	23.	Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for
546		intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium
547		avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
548	24.	Hewitt RG, Yiannoutsos CT, Higgs ES, et al. Paromomycin: no more effective than
549		placebo for treatment of cryptosporidiosis in patients with advanced human
550		immunodeficiency virus infection. AIDS Clinical Trial Group. Clin Infect Dis 2000;
551		31(4): 1084-92.
552	25.	Rossignol JF, Ayoub A, Ayers MS. Treatment of diarrhea caused by Cryptosporidium
553		parvum: a prospective randomized, double-blind, placebo-controlled study of
554		Nitazoxanide. J Infect Dis 2001; 184(1): 103-6.
555	26.	White AC, Jr., Chappell CL, Hayat CS, Kimball KT, Flanigan TP, Goodgame RW.
556		Paromomycin for cryptosporidiosis in AIDS: a prospective, double-blind trial. J Infect
557		Dis 1994 ; 170(2): 419-24.
558	27.	Holdiness MR. Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet
559		1989 ; 16(2): 74-85.
560		
561		
562		
563		
564		
565		
566		

Table 1. Baseline characteristics of participants

Characteristic	Part A CFZ group	Part A placebo	Part B CFZ
	(n=12)	group (n=10)	group (n=11)
Age, years	39.8 (±7.8)	39.1 (±12.0)	44.1 (±9.6)
Male sex (%)	8 (67%)	2 (20%)	7 (64%)
BMI, kg/m ²	16.3 (±1.7)	18.0 (±3.1)	18.9 (±1.4)
Pulse rate, beats/min	90.9 (±12.4)	95.9 (±14.9)	78.1 (±6.7)
Systolic blood pressure, mmHg	99.3 (±15.0)	106.4 (±16.5)	116.5 (±11.8)
Diastolic blood pressure, mmHg	68,3 (±10.1)	71.2 (±8.8)	75.7 (±12.3)
Hemoglobin, g/dL	10.6 (±2.2)	10.8 (±2.8)	14.0 (±1.3)
Hematocrit, %	32.3 (±6.5)	32.6 (±8.7)	42.3 (±3.6)
White blood cells, 10 ⁹ /L	2.9 (±1.4)	3.8 (±2.8)	5.0 (±1.7)
Neutrophils, 10 ⁹ /L	1.6 (±0.9)	2.1 (±2.1)	2.5 (±1.2)
Lymphocytes, 10 ⁹ /L	0.8 (±0.5)	1.1 (±0.7)	2.0 (±0.8)
CD4 absolute, cells/µL			
Mean (±SD)	25.3 (±24.4)	170.4 (±321.7)	422.0 (±231.3)
Median (IQR)	23.0 (8.0, 32.0)	22.5 (17.0, 86.0)	361.0
			(216.0, 634.0)
HIV viral load, copies/µL	241,981.5	679,025.13	257.5 (±805.7)
	(±262,806.03)	(±929,116.49)	

ARV duration, days	1424 (±1547.6)	2011 (±1409.3)	1265 (±1810.3)
Blood urea nitrogen,	4.9 (±2.5)	3.9 (±1.1)	3.8 (±1.0)
mmol/L			
Creatinine, µmol/L	82.0 (±37.2)	56.0 (±15.9)	65.4 (±14.0)
Alanine aminotransferase,	34.0 (±20.3)	40.3 (±19.5)	38.9 (±21.4)
IU/L			
Aspartate aminotransferase,	50.6 (±16.4)	63.0 (±30.4)	50.7 (±18.3)
IU/L			
Electrocardiogram (ECG)			
Normal (%)	11 (92%)	10 (100%)	11 (100%)
Abnormal, not clinically	1 (8%)	0 (0%)	0 (0%)
significant (%)			
QTc interval, ms	421.7 (±14.2)	418.3 (±17.0)	409.7 (±21.6)
Cryptosporidium spp. (%)			
C. parvum	7 (58%)	4 (40%)	N/A
C. hominis	2 (17%)	1 (10%)	N/A
C. meleagridis	1 (8%)	3 (30%)	N/A
C. viatorum	1 (8%)	0 (0%)	N/A
Unknown ^a	1 (8%)	2 (20%)	N/A
Co-pathogens detected at	8 (67%)	3 (30%)	N/A
diarrheagenic amount [14]			
(%)			

Diarrhea duration, ^b days	17 (±7.6)	34 (±57)	N/A
Stool ELISA positivity	7 (58%)	2 (20%)	N/A
(D1, %)			
Log number of	13.9 (±2.7)	15.0 (±2.2)	N/A
cryptosporidium shed in			
first collected stool of day,			
Cryptosporidium per gram			
stool (D-1)			
Total daily cryptosporidium	22.3 (±2.9)	22.1 (±3.2)	N/A
shedding, Cryptosporidium			
per gram stool (D-1)			
Total stool weight, g (D-1)	320.3 (±214.6)	245.8 (±299.4)	N/A
Most severe diarrhea	9 (75%)	3 (30%)	N/A
severity grade ^c (mild)			
Stool consistency severity	9 (75%)	6 (67%)	N/A
grade ≥3 (D-1, %)			
Number of diarrheal	1.3 (±1.1)	0.8 (±1.3)	N/A
episodes, ^c D1			

- 569 ARV, antiretroviral therapy; BMI, body mass index; D, day; IQR, interquartile range; SD,
- 570 standard deviation
- 571 All values are mean (\pm SD) unless otherwise listed.
- ^aFailed to amplify on sequencing of 18s and gp60.

573	^b Subjects with diarrhea duration entries '>2 weeks' were treated as 21 days for calculations of
574	summary statistics.
575	^c Observed over the first 24-hour dosing interval after the first study dose.
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	

PK parameter		Part A (n=12)		Part B (n=11)	
		Mean (±SD)	% CV	Mean (±SD)	% CV
Day 1	C _{min} (ng/mL)	35.83 (±37.28)	323	74.74 (±24.51)	46
	C _{max} (ng/mL)	97.55 (±117.9)	195	193.3 (±93.50)	58
	T _{max} (h)	19.73 (±5.67)	-	14.776 (±7.537)	-
	AUC ₀₋₂₄ (ng.h/mL)	1364.0 (±1754.0)	219	2851.0 (±1256.0)	50
Day 5	C _{min} (ng/mL)	258.8 (±353.1)	187	455.8 (±221.5)	47
	C _{max} (ng/mL)	280.7 (±355.2)	173	514.1 (±202.0)	39
	T _{max} (h)	9.679 (±10.81)	-	6.683 (±3.765)	-
	AUC ₀₋₂₄ (ng.h/mL)	6863.0 (±8552.0)	172	11298.0 (±5580.0)	59
Summary	$t_{1/2}$ (h) ^a	336.5 (±84.71)	25	535.5 (±4.950)	1
	R _{AUC}	5.905 (±3.516)	57	4.111 (±1.579)	50

Table 2. Comparison of pharmacokinetic parameters in Part A and B subjects

597 AUC, area under the curve; Cmax, peak plasma concentration; Cmin, trough plasma

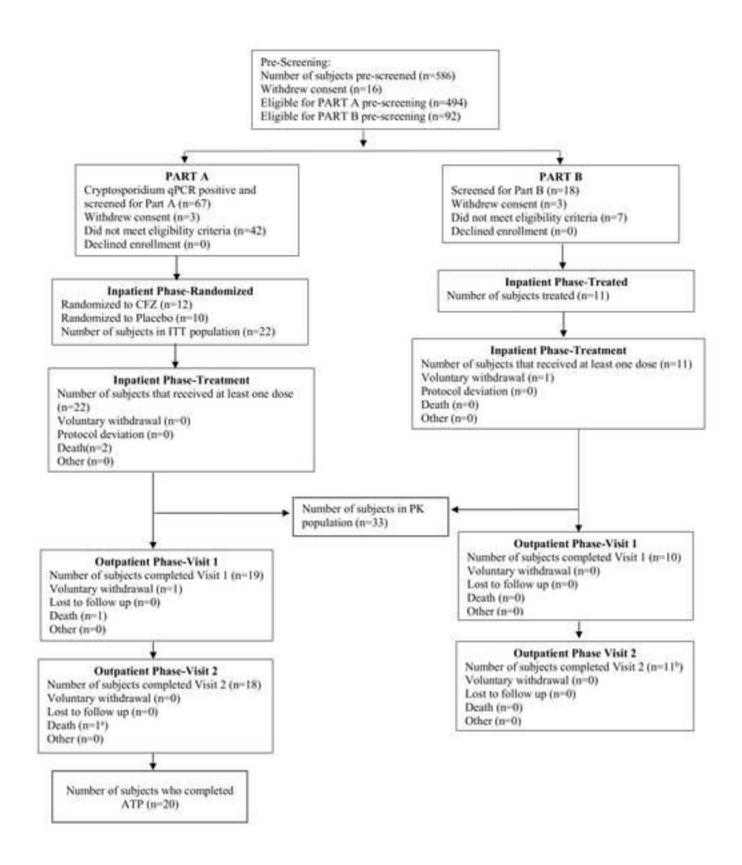
598 concentration; CV, coefficient of variation; R_{AUC}, accumulation ratio for AUC₀₋₂₄ for Day 5 to

599 Day 1; SD, standard deviation; Tmax, time to reach Cmax; $t_{1/2}$, elimination half-life

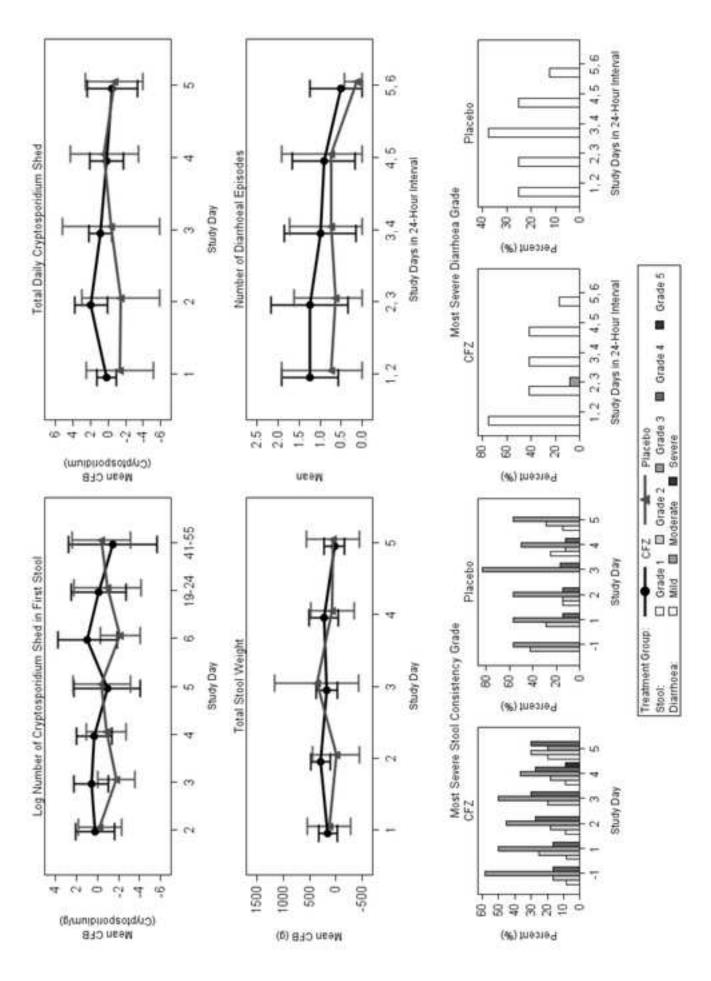
⁶⁰⁰ ^aElimination half-life of clofazimine was previously found to be up to 70 days upon repeat dose

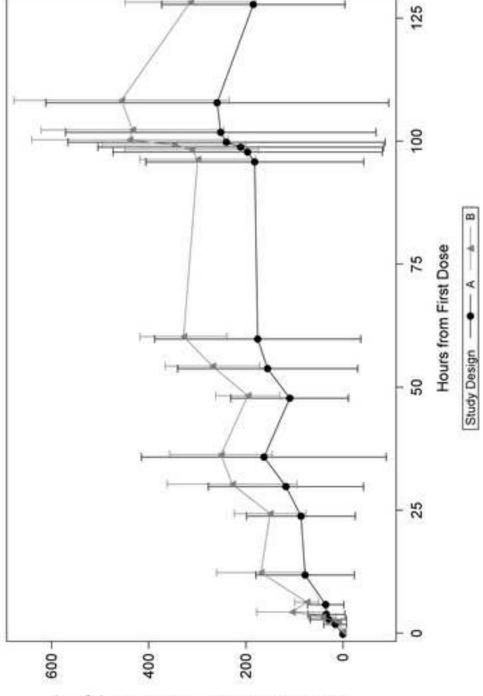
administration [27]; therefore the relatively short plasma sampling schedule in this study may not

602 be accurately capture the $t_{1/2}$ parameter in these populations.


603

- 604
- 605
- 606


Table 3. Summary of adverse events


		Part A – CFZ	Part A –	Part B (n=11)
		(n=12)	placebo (n=10)	
Any solicited	Any severity	12 (100%)	10 (100%)	0 (0%)
adverse event	Max severity	2 (17%)	0 (0%)	0 (0%)
Abdominal pain	Any severity	8 (67%)	7 (70%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0 (0%)
Vomiting	Any severity	4 (33%)	4 (40%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0 (0%)
Diarrhea	Any severity	9 (75%)	4 (40%)	0 (0%)
	Max severity	0 (0%)	0 (0%)	0 (0%)
Anorexia	Any severity	4 (33%)	3 (30%)	0 (0%)
	Max severity	0 (0%)	0 (0%)	0 (0%)
Skin	Any severity	0 (0%)	0 (0%)	0 (0%)
discoloration				
Nausea	Any severity	5 (42%)	5 (50%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0 (0%)
Malaise	Any severity	6 (50%)	3 (30%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0(0%)
Urgency of	Any severity	5 (42%)	4 (40%)	0 (0%)
defecation	Max severity	0 (0%)	0 (0%)	0 (0%)
Any adverse ever	nts with fatal	3 (25%)	1 (10%)	0 (0%)
outcome				

Number of unsolicited adverse	13	12	3
events			
Subjects with at least one	6 (50%)	4 (40%)	3 (27%)
unsolicited adverse event			
Subjects with a serious adverse	5 (42%)	2 (20%)	0 (0%)
event			
Any unsolicited adverse event	2 (17%)	0 (0%)	3 (27%)
related to study drug			
Any unsolicited adverse event	0 (0%)	1 (10%)	0 (0%)
leading to discontinuation of study			
drug			

Click here to access/download;Figure (.tif and .eps files only);Figure 2_CFZ efficacy ATP_03Oct19.tiff

Supplementary Appendix

Table of contents

1. Methods

- 1.1 Study design
- 1.2 Participants
- 1.3 Randomization and masking
- 1.4 Procedures
- 1.5 Outcomes
- 1.6 Statistical analyses
- 1.7 Role of the funding source
- 2. Results
 - 2.1 Stool PK profile
 - 2.2 Fatal outcomes
- 3. References
- 4. **Supplementary Table 1.** Efficacy of clofazimine compared to placebo in the according to protocol (ATP) and intention-to-treat (ITT) populations
- 5. Supplementary Table 2. Total number of unsolicited adverse events
- 6. Supplementary Figure 1. Treatment response in the intention-to-treat group:
 - A. Mean change from baseline (CFB) in log₂ number of cryptosporidium shed in first collected stool over time
 - B. Mean change from baseline (CFB) in total daily cryptosporidium shedding over time
 - C. Mean total daily cryptosporidium shedding over time
 - D. Mean change from baseline (CFB) in total stool weight over time
 - E. Mean number of diarrheal episodes over time
 - F. Proportion of most severe stool consistency grade by time
 - G. Proportion of most severe diarrhea grade by time
- 7. Supplementary Figure 2. Stool cryptosporidium shedding in:
 - A. First stool of the day
 - B. Total daily stooling
- 8. Supplementary Figure 3. Mean amount of CFZ in stool by timepoint
- 9. Supplementary Figure 4. Maximum severity of solicited symptoms
- 10. Supplementary Figure 5. Frequency of adverse events by organ class and:
 - A. Severity
 - B. Relationship to treatment

1. Methods

1.1 Study design

The study was a single center, randomized, double-blind, placebo-controlled Phase 2a twopart study at Queen Elizabeth Central Hospital in Blantyre, Malawi. Subjects were screened at this government, tertiary-level hospital, which serves the Southern region of the country, and were also referred from surrounding health centers within the Blantyre district. The study protocol and relevant supporting materials were approved by the National Health Sciences Research Committee (NHSRC) and the Pharmacy, Medicines, and Poisons Board in Malawi, and the Liverpool School of Tropical Medicine research ethics committee before study initiation.¹ Participants provided written informed consent. The NHSRC set participant compensation levels were used.

1.2 Participants

Participants were eligible for Part A if they met the following inclusion criteria: HIVinfected, aged 18-65 years, weight over 35.4 kg, on antiretrovirals (ARV) for at least 1 month, and with diarrhea duration of minimum 14 days. We estimated a priori a death rate in the HIV population in Malawi to be approximately 15%. Recruitment commenced on 18 December, 2017. On 6 April, 2018 after five subjects were randomized, eligibility criteria were amended to include participants with diarrhea duration of a minimum of 3 days and who have been on ARV for a minimum two weeks. Criteria were amended due to slow recruitment. Exclusion criteria included fever; evidence of active tuberculosis (by chest x-ray, sputum positive for TB by GeneXpert or Acid Fast Bacilli, and after 13 subjects were randomized, positive urine lipoarabinomannan (LAM)); history of allergy or hypersensitivity to CFZ; significant cardiac arrhythmia or ECG abnormalities; history of additional risk factors for Torsade de Pointes; family history of long QT syndrome; use of concomitant medications that markedly prolong the QT interval; pregnant and lactating women; use of systemic corticosteroids or anti-Cryptosporidial treatments within the preceding 28 days; and subjects with clinically significant laboratory value abnormalities at screening (hemoglobin <5 g/dL, serum potassium <3.0 mEq/L, and aspartate aminotransferase (AST) or alanine transaminase (ALT) \geq 3 times upper limit of normal).

Participants for Part B were HIV-infected without diarrhea or *Cryptosporidium*, met none of the exclusion criteria, and were matched 1:1 to the first ten Part A subjects based on age (± 5 years), gender, and weight (\geq or <50 kg).

1.3 Randomization and masking

We used a computer-generated randomization schedule where Part A group assignments of CFZ (Lamprene[®], Novartis, Switzerland) and placebo were allocated in a 1:1 ratio, respectively, using a permuted block design with block size 4. Randomization was done by a contracted third-party contract research organization (CRO, Emmes, Rockville, MD, USA) that were involved in oversight but not the day-to-day clinical management of the study. The study drug and placebo were identical in appearance. Only the Emmes statisticians conducting the analysis and the pharmacists who prepared the pill packs were unmasked. The investigators, participants, and study site personnel involved in treating and assessing participants were masked to treatment allocation until the data was locked to further changes.

1.4 Procedures

Enrolled participants received five days of oral CFZ 50 mg three times daily for subjects <50 kg, or 100 mg three times daily if \geq 50 kg, or placebo, respectively. Each dose was given half an hour after consumption of a fortified peanut-based paste (Plumpy Nut[®], Nutriset, France). Participants were hospitalized for the five days of the study drug administration and returned on site for two follow-up visits. Laboratory testing was primarily carried out on-site at the Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) laboratories. We used a rapid diagnostic test (RDT) for Cryptosporidium screening (prototype immunochromatographic test strip for detecting Cryptosporidium, TechLabs Inc., Blacksburg, VA, USA) and an ELISA stool test (CRYPTOSPORIDIUM IITM, TechLabs Inc.) for quantifying Cryptosporidium shedding in serial stools during the trial. All Cryptosporidium shedding was confirmed and measured by qPCR, with a positive result being a cycle threshold (Ct) <35. The first collected stool of the day was obtained throughout the dosing and follow-up periods, for testing of the Cryptosporidium ELISA signal, as well as for measurement of Cryptosporidium shedding by qPCR. In addition, all stools were collected and pooled in 8-hour intervals during the inpatient phase of the study, Days -1 to 5 of dosing. Thus, total Cryptosporidium stool excretion was measured by qPCR during this time.

Stool enteropathogens present at baseline in addition to *Cryptosporidium* were detected using qPCR in a TaqMan Array Card (TAC, Thermo Fisher, Waltham, MA, USA) using a custom design developed at the Houpt Laboratory (Charlottesville, VA, USA).² TAC assays were performed at MLW, and also included previously published qPCR assays that distinguished C. hominis and C. parvum.³ Further characterization of Cryptosporidium from baseline samples was achieved using Sanger sequencing targeting the 18S⁴ and gp60 genes⁵ performed at the Houpt Laboratory. The primer pairings originally described in Glaberman et al.⁵ for the amplification of gp60 prior to Sanger sequencing were modified such that 5'-ATAGTCTCCGCTGTATTC-3' was paired with 5'-GGAAGGAACGATGTATCT-3' for the primary amplification and 5'-TCCGCTGTATTCTCAGCC-3' was paired with 5'-GCAGAGGAACCAGCATC-3' for the secondary nested amplification. Measurements of ARV levels in plasma and alteration after administration of CFZ were evaluated in the Van Voorhis/Arnold Laboratories (Seattle, WA, USA). Measurement of CFZ concentration in plasma and stool were performed at Q₂ Solutions (Ithaca, NY, USA) using liquid chromatography-tandem mass spectrometry (LC/MS/MS), which were validated for quantification of CFZ within the range of 1.0-1000 ng/mL in human plasma.

After study drug dosing, all participants entered a follow-up period of two months that included a follow-up visit within 19-24 days post last dose, and a final visit 41-55 days post last dose. During each follow-up visit and with weekly phone calls, participants were monitored for safety and symptoms. Blood and stool specimens were collected at each visit, and safety labs were repeated if there were any abnormalities previously. If participants could not be reached by phone, home visits were made.

In a resource-limited setting such as Malawi, laboratory investigations are not always available and therefore clinical care is primarily reliant on clinical presentation and symptoms. As part of the clinical care, laboratory results were reviewed by a clinician and subjects were referred for additional care as needed.

1.5 Outcomes

There were two primary endpoints for Part A, though formal statistical testing was only utilized for the primary efficacy endpoint. The first primary endpoint was efficacy, assessed

as reduction in the (log) number of *Cryptosporidium* shed in the first collected stool of each study dosing day of CFZ vs. placebo recipients in subjects treated according to protocol (ATP). The second primary endpoint was safety, based on safety assessments collected throughout dosing and follow-up periods, and consisted of frequency and severity of solicited and unsolicited adverse events (AEs) through study product administration, including serious adverse events (SAEs), adverse events of special interest (AESIs) and suspected, unexpected serious adverse reactions (SUSARs). Part B had two primary endpoints (CFZ in plasma, and total daily amount of CFZ eliminated in stool) to meet a single primary PK objective.

Secondary endpoints were the reduction in the (log₂) number of *Cryptosporidium* shed in stool compared to controls in the intention-to-treat (ITT) population, reduction in total daily *Cryptosporidium* shedding in those treated ATP, and as compared to controls in the ITT population, and reduction in severity of diarrhea over the study dosing period compared to controls.

1.6 Statistical analyses

Calf data on fecal shedding over time <u>(unpublished data, Michael Riggs, University of</u> <u>Arizona)</u> suggested that 10 individuals treated in each arm would be sufficient to give a >80% chance of seeing a difference with an efficacious drug-. We were uncertain about the relevance of the animal data to the HIV subjects, and whether they would have consistent shedding over the period of treatment. Thus, we arbitrarily increased the sample size to 28 per group.

As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis.

Efficacy endpoints for Part A were summarized descriptively, and continuous efficacy variables were summarized at baseline and in terms of change from baseline at each day following study drug administration. The primary ATP analysis was performed using the randomized population who received at least 80% of scheduled doses, completed daily assessments of fecal shedding, and had no major protocol deviations. When missing data for the primary endpoint (log number of Cryptosporidium shed per gram stool) was not attributable to non-detectable Cryptosporidium (i.e. no stooling), multiple imputation was utilized. The fully conditional specification (FCS) method for arbitrary longitudinal missing data patterns was used to perform multiple imputation of the missing primary efficacy variable as well as any missing covariates. Mixed ANCOVA models for repeated measures were used to model and analyze the difference, between treatment groups, in the change from baseline in continuous endpoints over the inpatient period, and generally included baseline response, day, and treatment group as covariates. Gender and age were also included as covariates in models for the log number of cryptosporidium shed in the first collected stool (analyzed in the ATP and ITT populations). The day by treatment interaction term was considered for inclusion in models if statistically significant, and if included, the difference in efficacy measures in the last inpatient day was reported. Proportional odds models were used for the analysis of categorical endpoints (e.g., stool consistency and diarrhea severity). Upper 95% confidence intervals (CI) and p-values were derived from each model.

The safety population consisted of all subjects that received at least one dose of study drug. All safety analyses were descriptive. Ten subjects enrolled in Part B were matched to the first 10 subjects who completed Part A ATP, to develop a comparative description of the absorption and excretion of the drug in the two groups. The PK population consisted of all subjects who had at least one measurable PK concentration. Plasma and stool drug concentrations were plotted at each timepoint for matched Part A and Part B subjects together, on linear scale. PK parameters were estimated through a non-compartmental analysis using Phoenix WinNonlin version 8.0 or later (Pharsight Corporation, Cary, NC, USA). The paired t-test was used to assess differences between groups for each PK parameter on days 1 and 5 (C_{min}, C_{max}, and AUC₀₋₂₄), and reported the geometric mean ratio between groups. We reported the Hodges-Lehmann estimator (pseudomedian) for the difference in each parameter between Part A and Part B subjects. P-values and 95% CI for each of the above tests were calculated.

Due to the exploratory nature of the trial, no adjustments due to multiple testing were made; all statistical tests were performed with a one-sided alpha of 0.05. Statistical analyses were conducted using SAS version 9.3.

To maximize the safety and integrity of the study, an independent data safety monitoring board (DSMB) was involved in regular review of blinded safety data to monitor risks and benefits and to assess any potential safety issues arising during the study. Trial site monitoring of participant safety was carried out by the sponsor medical monitor, an independent local safety monitor, the CRO medical monitor, and overseen by the chief investigator (WVV). This study is registered with ClinicalTrials.gov, number NCT03341767.

1.7 Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The first and last authors (PI, WVV) and the funders had full access to all the data in the study, following data lock. The first and last authors were responsible for the decision to submit for publication.

2. Results

2.1 Stool PK profiles

The total observed daily amount of CFZ eliminated in the feces on days 2 and 5 was not significantly different between Part A and B subjects (Supplementary Figure 3). Less than 2% of the cumulative CFZ doses was recovered in stool in both groups over the five days of stool collection.

2.2 Fatal outcomes

Two CFZ-treated subjects developed a fatal sepsis-like syndrome on day 5 of dosing. The first, judged to be unrelated to study drug, developed severe fatigue on the morning of the last dosing day with documented hypotension and was judged to have sepsis, received ceftriaxone and intravenous fluids, but rapidly died despite therapy. The second fatal case occurred in a subject who developed abdominal pains a day after receipt of CFZ, resolved when CFZ was stopped, then recurred when CFZ was restarted. An abdominal ultrasound demonstrated biliary stones, but a surgical consult could not be organized before the subject died of sepsis-like syndrome. The site judged the death to be related to CFZ administration, although the study medical monitors and DSMB judged this fatal SAE to be unrelated. The third CFZ-treated subject that died presented to the hospital with profound hypotension and diarrhea on day 18 after receipt of study drug. The patient did not respond to fluid resuscitation in the emergency suite and expired quickly after arrival. Death was attributed to the effects of chronic diarrhea, AIDS, and delayed presentation. The fatal SAE in the placebo group

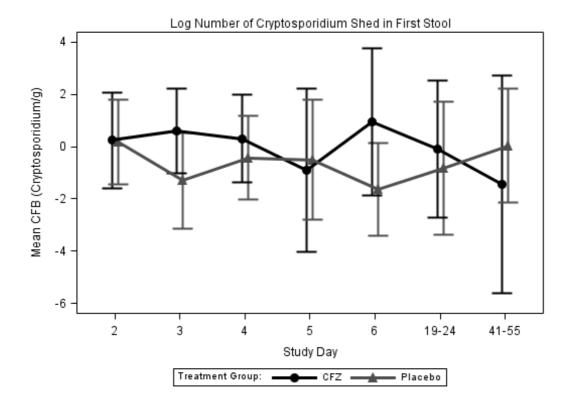
occurred 47 days after study drug administration, in a subject who had been diagnosed with pulmonary and extrapulmonary TB after randomization with rehydration. The latter two deaths were judged not to be related to treatment. No autopsies were conducted in any of the deaths so exact causes of death could not be ascribed.

3. References

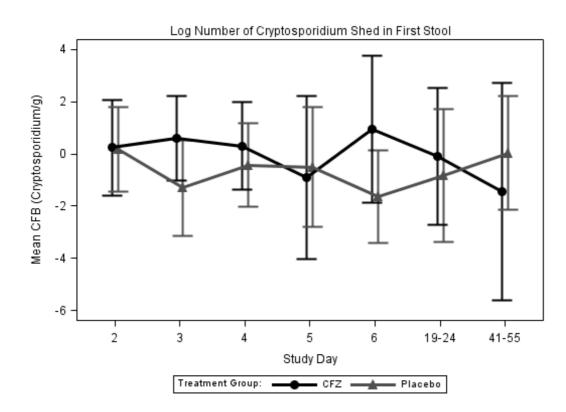
- 1. Nachipo P, Hermann D, Quinnan G, Gordon MA, Van Voorhis WC, Iroh Tam PY. Evaluating the safety, tolerability, pharmacokinetics and efficacy of clofazimine in cryptosporidiosis (CRYPTOFAZ): study protocol for a randomized controlled trial. *Trials* 2018; **19**(1): 456.
- 2. Liu J, Kabir F, Manneh J, et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. *Lancet Infect Dis* 2014; **14**(8): 716-24.
- 3. Hadfield SJ, Robinson G, Elwin K, Chalmers RM. Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. *J Clin Microbiol* 2011; **49**(3): 918-24.
- 4. Sow SO, Muhsen K, Nasrin D, et al. The Burden of Cryptosporidium Diarrheal Disease among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study (GEMS). *PLoS Negl Trop Dis* 2016; **10**(5): e0004729.
- 5. Glaberman S, Moore JE, Lowery CJ, et al. Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland. *Emerg Infect Dis* 2002; **8**(6): 631-3.

Supplementary Table 1. Efficacy of clofazimine compared to placebo in the according to protocol (ATP) and intention-to-treat (ITT) populations

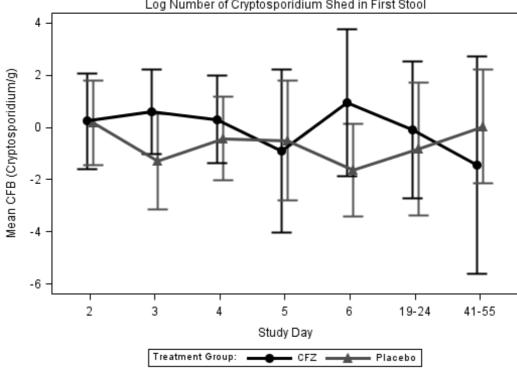
Outcomes	Difference in	95% upper	P-
	means	confidence	value
		limit	
Parasitologic			
Change from baseline in log ₂ number of	2.17	3.82	0.984
cryptosporidium shed in first collected stool (log ₂			
Cryptosporidium per gram), ATP			
Change from baseline in log ₂ number of	1.73	3.13	0.977
cryptosporidium shed in first collected stool (log ₂			
Cryptosporidium per gram), ITT			
Change from baseline in total daily	1.02	2.50	0.877
cryptosporidium shedding (log ₂ Cryptosporidium),			
ATP			
Change from baseline in total daily	0.16	1.69	0.569
cryptosporidium shedding (log ₂ Cryptosporidium),			
ITT			
Diarrheal	1	1	
Change from baseline in total stool weight at Day	132.05	314.48	0.888
5 (g), ATP			
Change from baseline in total stool weight at Day	-45.30	179.88	0.366
5 (g), ITT			
Number of diarrheal episodes, ATP	1.92	5.73	0.802
Number of diarrheal episodes, ITT	2.32	5.74	0.871
Characteristics	Odds ratio		
Most severe stool consistency grade, ATP	0.66	10.39	0.401
Most severe stool consistency grade, ITT	1.85	26.26	0.651
Most severe diarrhea grade, ATP	5.33	29.28	0.947
Most severe diarrhea grade, ITT	4.87	23.85	0.950


		Part A – CFZ (n=12)	Part A – placebo (n=10)	Part B (n=11)
MedDRA® system organ	MedDRA® preferred	No. of	No. of	No. of
class	term	events	events	events
Any system organ class	Any preferred term	13	12	3
Blood and lymphatic system disorders	Anemia	0	3	0
Gastrointestinal disorders	Any preferred term	4	0	0
	Abdominal pain	1	0	0
	Anal fissure	1	0	0
	Diarrhea	2	0	0
General disorders and administration site conditions	Pyrexia	0	1	0
Infections and infestations	Any preferred term	4	6	0
	Extrapulmonary tuberculosis	0	1	0
	Gastroenteritis	1	1	0
	Lower respiratory tract infection	1	0	0
	Esophageal candidiasis	0	1	0
	Oral candidiasis	0	1	0
	Pneumonia	0	1	0
	Pulmonary tuberculosis	0	1	0
	Sepsis	1	0	0
	Septic shock	1	0	0
Investigations	Any preferred term	1	0	3
	Alanine aminotransferase increased	0	0	2
	Neutrophil count decreased	0	0	1
	White blood cell count decreased	1	0	0
Metabolism and nutrition disorders	Hypokalemia	1	1	0
Skin and subcutaneous tissue disorders	Decubitus ulcer	1	0	0
Vascular disorders	Any preferred term	2	1	0

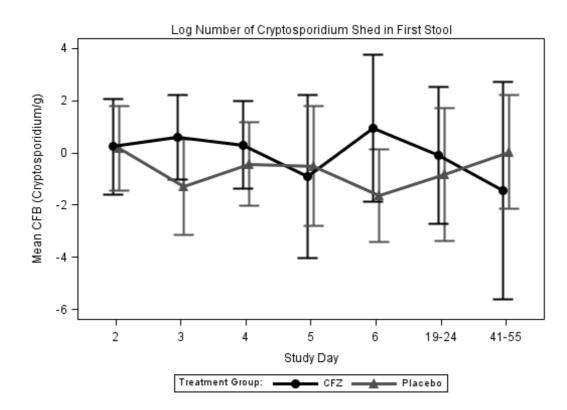
Hypotension	1	1	0
Hypovolemic shock	1	0	0


CFZ, clofazimine; MedDRA®, medical dictionary for regulatory activities

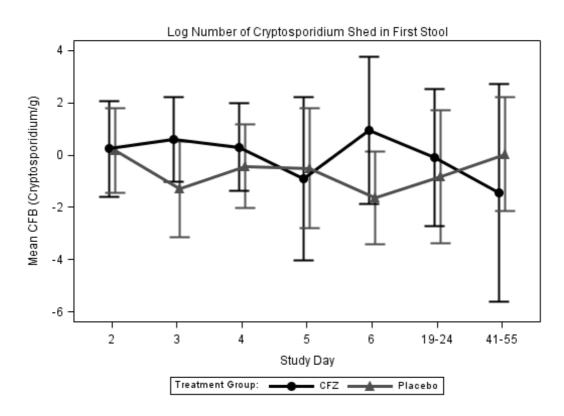
Supplementary Figure 1. Treatment response in the intention-to-treat group:


A) Mean change from baseline (CFB) in log₂ number of cryptosporidium shed in first collected stool over time

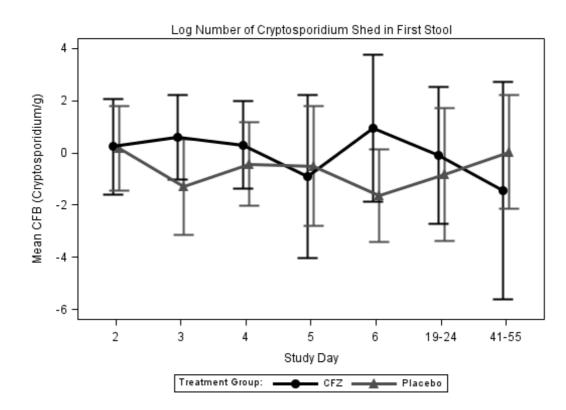
B) Mean CFB in total daily cryptosporidium shedding over time

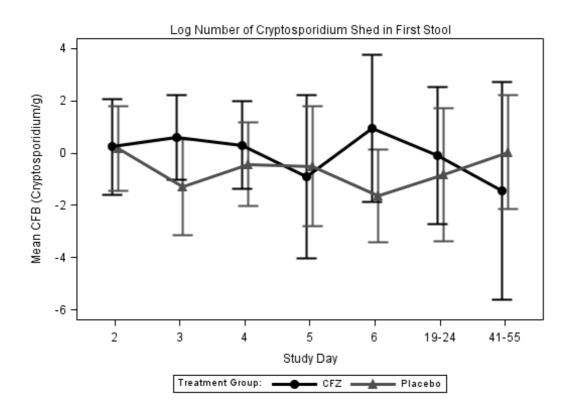


C) Mean total daily cryptosporidium shedding over time

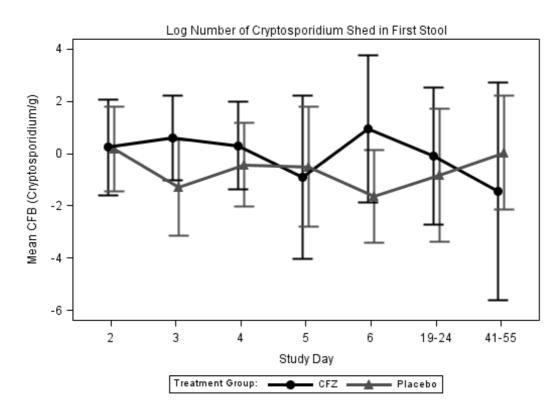


Log Number of Cryptosporidium Shed in First Stool

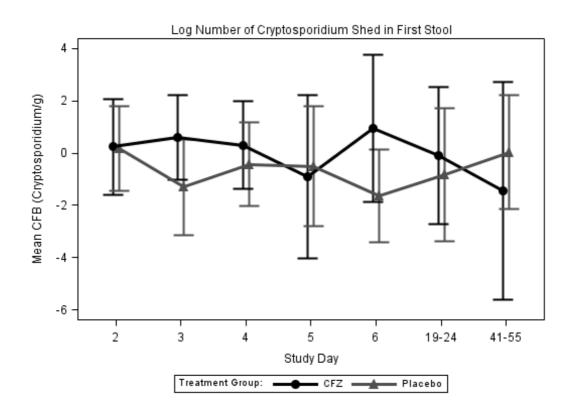

D) Mean CFB in total stool weight over time


E) Mean number of diarrheal episodes over time

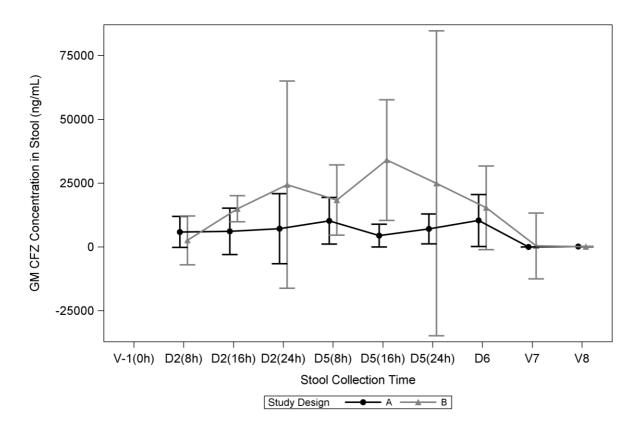
F) Proportion of most severe stool consistency grade by time

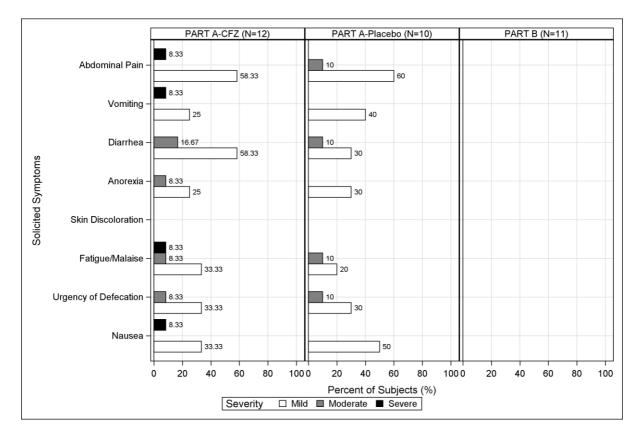


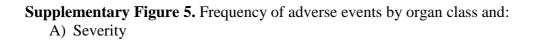
G) Proportion of most severe diarrhea grade by time

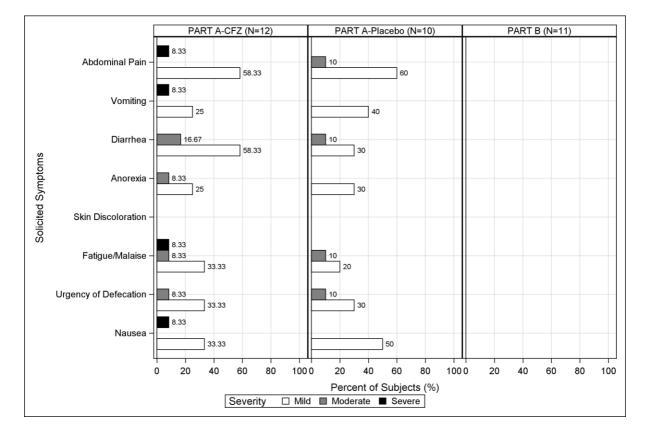


Supplementary Figure 2. Stool cryptosporidium shedding in:

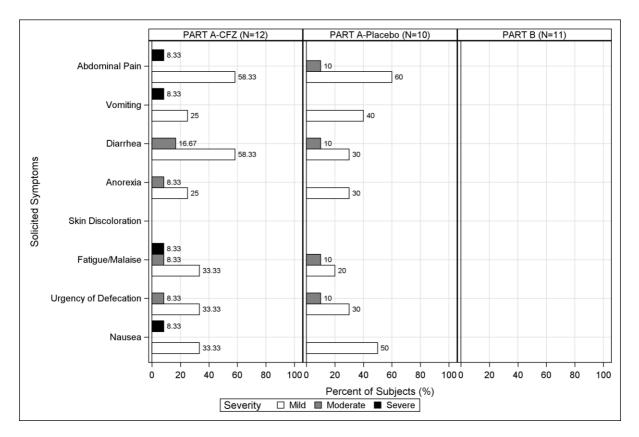

A) First stool of the day


B) Total daily stooling


Supplementary Figure 3. Mean amount of CFZ in stool by timepoint



CFZ, clofazimine; D, day; GM, geometric mean; V, study visit



Supplementary Figure 4. Maximum severity of solicited symptoms

B) Relationship to treatment

Supplementary Appendix

Table of contents

1. Methods

- 1.1 Study design
- 1.2 Participants
- 1.3 Randomization and masking
- 1.4 Procedures
- 1.5 Outcomes
- 1.6 Statistical analyses
- 1.7 Role of the funding source
- 2. Results
 - 2.1 Stool PK profile
 - 2.2 Fatal outcomes
- 3. References
- 4. **Supplementary Table 1.** Efficacy of clofazimine compared to placebo in the according to protocol (ATP) and intention-to-treat (ITT) populations
- 5. Supplementary Table 2. Total number of unsolicited adverse events
- 6. Supplementary Figure 1. Treatment response in the intention-to-treat group:
 - A. Mean change from baseline (CFB) in log₂ number of cryptosporidium shed in first collected stool over time
 - B. Mean change from baseline (CFB) in total daily cryptosporidium shedding over time
 - C. Mean total daily cryptosporidium shedding over time
 - D. Mean change from baseline (CFB) in total stool weight over time
 - E. Mean number of diarrheal episodes over time
 - F. Proportion of most severe stool consistency grade by time
 - G. Proportion of most severe diarrhea grade by time
- 7. Supplementary Figure 2. Stool cryptosporidium shedding in:
 - A. First stool of the day
 - B. Total daily stooling
- 8. Supplementary Figure 3. Mean amount of CFZ in stool by timepoint
- 9. Supplementary Figure 4. Maximum severity of solicited symptoms
- 10. Supplementary Figure 5. Frequency of adverse events by organ class and:
 - A. Severity
 - B. Relationship to treatment

1. Methods

1.1 Study design

The study was a single center, randomized, double-blind, placebo-controlled Phase 2a twopart study at Queen Elizabeth Central Hospital in Blantyre, Malawi. Subjects were screened at this government, tertiary-level hospital, which serves the Southern region of the country, and were also referred from surrounding health centers within the Blantyre district. The study protocol and relevant supporting materials were approved by the National Health Sciences Research Committee (NHSRC) and the Pharmacy, Medicines, and Poisons Board in Malawi, and the Liverpool School of Tropical Medicine research ethics committee before study initiation.¹ Participants provided written informed consent. The NHSRC set participant compensation levels were used.

1.2 Participants

Participants were eligible for Part A if they met the following inclusion criteria: HIVinfected, aged 18-65 years, weight over 35.4 kg, on antiretrovirals (ARV) for at least 1 month, and with diarrhea duration of minimum 14 days. We estimated a priori a death rate in the HIV population in Malawi to be approximately 15%. Recruitment commenced on 18 December, 2017. On 6 April, 2018 after five subjects were randomized, eligibility criteria were amended to include participants with diarrhea duration of a minimum of 3 days and who have been on ARV for a minimum two weeks. Criteria were amended due to slow recruitment. Exclusion criteria included fever: evidence of active tuberculosis (by chest x-ray, sputum positive for TB by GeneXpert or Acid Fast Bacilli, and after 13 subjects were randomized, positive urine lipoarabinomannan (LAM)); history of allergy or hypersensitivity to CFZ; significant cardiac arrhythmia or ECG abnormalities; history of additional risk factors for Torsade de Pointes; family history of long QT syndrome; use of concomitant medications that markedly prolong the QT interval; pregnant and lactating women; use of systemic corticosteroids or anti-Cryptosporidial treatments within the preceding 28 days; and subjects with clinically significant laboratory value abnormalities at screening (hemoglobin <5 g/dL, serum potassium <3.0 mEq/L, and aspartate aminotransferase (AST) or alanine transaminase (ALT) \geq 3 times upper limit of normal).

Participants for Part B were HIV-infected without diarrhea or *Cryptosporidium*, met none of the exclusion criteria, and were matched 1:1 to the first ten Part A subjects based on age (± 5 years), gender, and weight (\geq or <50 kg).

1.3 Randomization and masking

We used a computer-generated randomization schedule where Part A group assignments of CFZ (Lamprene[®], Novartis, Switzerland) and placebo were allocated in a 1:1 ratio, respectively, using a permuted block design with block size 4. Randomization was done by a contracted third-party contract research organization (CRO, Emmes, Rockville, MD, USA) that were involved in oversight but not the day-to-day clinical management of the study. The study drug and placebo were identical in appearance. Only the Emmes statisticians conducting the analysis and the pharmacists who prepared the pill packs were unmasked. The investigators, participants, and study site personnel involved in treating and assessing participants were masked to treatment allocation until the data was locked to further changes.

1.4 Procedures

Enrolled participants received five days of oral CFZ 50 mg three times daily for subjects <50 kg, or 100 mg three times daily if \geq 50 kg, or placebo, respectively. Each dose was given half

an hour after consumption of a fortified peanut-based paste (Plumpy Nut[®], Nutriset, France). Participants were hospitalized for the five days of the study drug administration and returned on site for two follow-up visits. Laboratory testing was primarily carried out on-site at the Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) laboratories. We used a rapid diagnostic test (RDT) for *Cryptosporidium* screening (prototype immunochromatographic test strip for detecting *Cryptosporidium*, TechLabs Inc., Blacksburg, VA, USA) and an ELISA stool test (CRYPTOSPORIDIUM IITM, TechLabs Inc.) for quantifying *Cryptosporidium* shedding in serial stools during the trial. All *Cryptosporidium* shedding was confirmed and measured by qPCR, with a positive result being a cycle threshold (Ct) <35. The first collected stool of the day was obtained throughout the dosing and follow-up periods, for testing of the *Cryptosporidium* ELISA signal, as well as for measurement of *Cryptosporidium* shedding by qPCR. In addition, all stools were collected and pooled in 8-hour intervals during the inpatient phase of the study, Days -1 to 5 of dosing. Thus, total *Cryptosporidium* stool excretion was measured by qPCR during this time.

Stool enteropathogens present at baseline in addition to Cryptosporidium were detected using qPCR in a TaqMan Array Card (TAC, Thermo Fisher, Waltham, MA, USA) using a custom design developed at the Houpt Laboratory (Charlottesville, VA, USA).² TAC assays were performed at MLW, and also included previously published qPCR assays that distinguished C. hominis and C. parvum.³ Further characterization of Cryptosporidium from baseline samples was achieved using Sanger sequencing targeting the 18S⁴ and gp60 genes⁵ performed at the Houpt Laboratory. The primer pairings originally described in Glaberman et al.⁵ for the amplification of gp60 prior to Sanger sequencing were modified such that 5'-ATAGTCTCCGCTGTATTC-3' was paired with 5'-GGAAGGAACGATGTATCT-3' for the primary amplification and 5'-TCCGCTGTATTCTCAGCC-3' was paired with 5'-GCAGAGGAACCAGCATC-3' for the secondary nested amplification. Measurements of ARV levels in plasma and alteration after administration of CFZ were evaluated in the Van Voorhis/Arnold Laboratories (Seattle, WA, USA). Measurement of CFZ concentration in plasma and stool were performed at Q₂ Solutions (Ithaca, NY, USA) using liquid chromatography-tandem mass spectrometry (LC/MS/MS), which were validated for quantification of CFZ within the range of 1.0-1000 ng/mL in human plasma.

After study drug dosing, all participants entered a follow-up period of two months that included a follow-up visit within 19-24 days post last dose, and a final visit 41-55 days post last dose. During each follow-up visit and with weekly phone calls, participants were monitored for safety and symptoms. Blood and stool specimens were collected at each visit, and safety labs were repeated if there were any abnormalities previously. If participants could not be reached by phone, home visits were made.

In a resource-limited setting such as Malawi, laboratory investigations are not always available and therefore clinical care is primarily reliant on clinical presentation and symptoms. As part of the clinical care, laboratory results were reviewed by a clinician and subjects were referred for additional care as needed.

1.5 Outcomes

There were two primary endpoints for Part A, though formal statistical testing was only utilized for the primary efficacy endpoint. The first primary endpoint was efficacy, assessed as reduction in the (log) number of *Cryptosporidium* shed in the first collected stool of each study dosing day of CFZ vs. placebo recipients in subjects treated according to protocol

(ATP). The second primary endpoint was safety, based on safety assessments collected throughout dosing and follow-up periods, and consisted of frequency and severity of solicited and unsolicited adverse events (AEs) through study product administration, including serious adverse events (SAEs), adverse events of special interest (AESIs) and suspected, unexpected serious adverse reactions (SUSARs). Part B had two primary endpoints (CFZ in plasma, and total daily amount of CFZ eliminated in stool) to meet a single primary PK objective.

Secondary endpoints were the reduction in the (log₂) number of *Cryptosporidium* shed in stool compared to controls in the intention-to-treat (ITT) population, reduction in total daily *Cryptosporidium* shedding in those treated ATP, and as compared to controls in the ITT population, and reduction in severity of diarrhea over the study dosing period compared to controls.

1.6 Statistical analyses

Calf data on fecal shedding over time (unpublished data, Michael Riggs, University of Arizona) suggested that 10 individuals treated in each arm would be sufficient to give a >80% chance of seeing a difference with an efficacious drug. We were uncertain about the relevance of the animal data to the HIV subjects, and whether they would have consistent shedding over the period of treatment. Thus, we arbitrarily increased the sample size to 28 per group.

As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects were randomized and treated ATP. Due to slow enrollment, it was decided to convert the interim analysis to a final analysis.

Efficacy endpoints for Part A were summarized descriptively, and continuous efficacy variables were summarized at baseline and in terms of change from baseline at each day following study drug administration. The primary ATP analysis was performed using the randomized population who received at least 80% of scheduled doses, completed daily assessments of fecal shedding, and had no major protocol deviations. When missing data for the primary endpoint (log number of Cryptosporidium shed per gram stool) was not attributable to non-detectable Cryptosporidium (i.e. no stooling), multiple imputation was utilized. The fully conditional specification (FCS) method for arbitrary longitudinal missing data patterns was used to perform multiple imputation of the missing primary efficacy variable as well as any missing covariates. Mixed ANCOVA models for repeated measures were used to model and analyze the difference, between treatment groups, in the change from baseline in continuous endpoints over the inpatient period, and generally included baseline response, day, and treatment group as covariates. Gender and age were also included as covariates in models for the log number of cryptosporidium shed in the first collected stool (analyzed in the ATP and ITT populations). The day by treatment interaction term was considered for inclusion in models if statistically significant, and if included, the difference in efficacy measures in the last inpatient day was reported. Proportional odds models were used for the analysis of categorical endpoints (e.g., stool consistency and diarrhea severity). Upper 95% confidence intervals (CI) and p-values were derived from each model.

The safety population consisted of all subjects that received at least one dose of study drug. All safety analyses were descriptive. Ten subjects enrolled in Part B were matched to the first 10 subjects who completed Part A ATP, to develop a comparative description of the absorption and excretion of the drug in the two groups. The PK population consisted of all subjects who had at least one measurable PK concentration. Plasma and stool drug concentrations were plotted at each timepoint for matched Part A and Part B subjects together, on linear scale. PK parameters were estimated through a non-compartmental analysis using Phoenix WinNonlin version 8.0 or later (Pharsight Corporation, Cary, NC, USA). The paired t-test was used to assess differences between groups for each PK parameter on days 1 and 5 (C_{min} , C_{max} , and AUC₀₋₂₄), and reported the geometric mean ratio between groups. We reported the Hodges-Lehmann estimator (pseudomedian) for the difference in each parameter between Part A and Part B subjects. P-values and 95% CI for each of the above tests were calculated.

Due to the exploratory nature of the trial, no adjustments due to multiple testing were made; all statistical tests were performed with a one-sided alpha of 0.05. Statistical analyses were conducted using SAS version 9.3.

To maximize the safety and integrity of the study, an independent data safety monitoring board (DSMB) was involved in regular review of blinded safety data to monitor risks and benefits and to assess any potential safety issues arising during the study. Trial site monitoring of participant safety was carried out by the sponsor medical monitor, an independent local safety monitor, the CRO medical monitor, and overseen by the chief investigator (WVV). This study is registered with ClinicalTrials.gov, number NCT03341767.

1.7 Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The first and last authors (PI, WVV) and the funders had full access to all the data in the study, following data lock. The first and last authors were responsible for the decision to submit for publication.

2. Results

2.1 Stool PK profiles

The total observed daily amount of CFZ eliminated in the feces on days 2 and 5 was not significantly different between Part A and B subjects (Supplementary Figure 3). Less than 2% of the cumulative CFZ doses was recovered in stool in both groups over the five days of stool collection.

2.2 Fatal outcomes

Two CFZ-treated subjects developed a fatal sepsis-like syndrome on day 5 of dosing. The first, judged to be unrelated to study drug, developed severe fatigue on the morning of the last dosing day with documented hypotension and was judged to have sepsis, received ceftriaxone and intravenous fluids, but rapidly died despite therapy. The second fatal case occurred in a subject who developed abdominal pains a day after receipt of CFZ, resolved when CFZ was stopped, then recurred when CFZ was restarted. An abdominal ultrasound demonstrated biliary stones, but a surgical consult could not be organized before the subject died of sepsis-like syndrome. The site judged the death to be related to CFZ administration, although the study medical monitors and DSMB judged this fatal SAE to be unrelated. The third CFZ-treated subject that died presented to the hospital with profound hypotension and diarrhea on day 18 after receipt of study drug. The patient did not respond to fluid resuscitation in the emergency suite and expired quickly after arrival. Death was attributed to the effects of chronic diarrhea, AIDS, and delayed presentation. The fatal SAE in the placebo group occurred 47 days after study drug administration, in a subject who had been diagnosed with pulmonary and extrapulmonary TB after randomization with rehydration. The latter two

deaths were judged not to be related to treatment. No autopsies were conducted in any of the deaths so exact causes of death could not be ascribed.

3. References

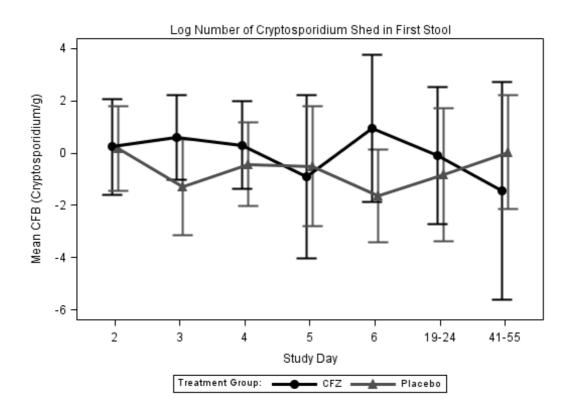
- 1. Nachipo P, Hermann D, Quinnan G, Gordon MA, Van Voorhis WC, Iroh Tam PY. Evaluating the safety, tolerability, pharmacokinetics and efficacy of clofazimine in cryptosporidiosis (CRYPTOFAZ): study protocol for a randomized controlled trial. *Trials* 2018; **19**(1): 456.
- 2. Liu J, Kabir F, Manneh J, et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. *Lancet Infect Dis* 2014; **14**(8): 716-24.
- 3. Hadfield SJ, Robinson G, Elwin K, Chalmers RM. Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. *J Clin Microbiol* 2011; **49**(3): 918-24.
- 4. Sow SO, Muhsen K, Nasrin D, et al. The Burden of Cryptosporidium Diarrheal Disease among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study (GEMS). *PLoS Negl Trop Dis* 2016; **10**(5): e0004729.
- 5. Glaberman S, Moore JE, Lowery CJ, et al. Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland. *Emerg Infect Dis* 2002; **8**(6): 631-3.

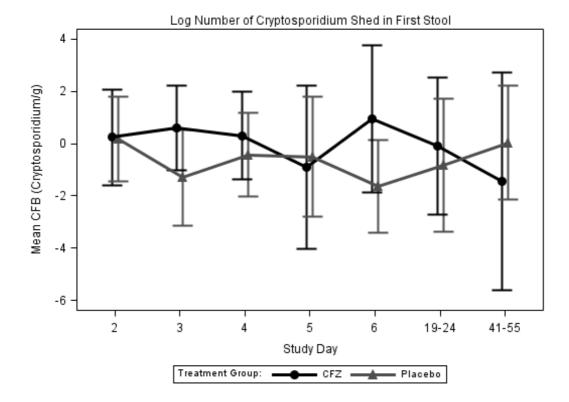
Supplementary Table 1. Efficacy of clofazimine compared to placebo in the according to protocol (ATP) and intention-to-treat (ITT) populations

Outcomes	Difference in	95% upper	P-
	means	confidence	value
		limit	
Parasitologic			
Change from baseline in log ₂ number of	2.17	3.82	0.984
cryptosporidium shed in first collected stool (log ₂			
Cryptosporidium per gram), ATP			
Change from baseline in log ₂ number of	1.73	3.13	0.977
cryptosporidium shed in first collected stool (log ₂			
Cryptosporidium per gram), ITT			
Change from baseline in total daily	1.02	2.50	0.877
cryptosporidium shedding (log ₂ Cryptosporidium),			
ATP			
Change from baseline in total daily	0.16	1.69	0.569
cryptosporidium shedding (log ₂ Cryptosporidium),			
ITT			
Diarrheal		r	
Change from baseline in total stool weight at Day	132.05	314.48	0.888
5 (g), ATP			
Change from baseline in total stool weight at Day	-45.30	179.88	0.366
5 (g), ITT			
Number of diarrheal episodes, ATP	1.92	5.73	0.802
Number of diarrheal episodes, ITT	2.32	5.74	0.871
Characteristics	Odds ratio		
Most severe stool consistency grade, ATP	0.66	10.39	0.401
Most severe stool consistency grade, ITT	1.85	26.26	0.651
Most severe diarrhea grade, ATP	5.33	29.28	0.947
Most severe diarrhea grade, ITT	4.87	23.85	0.950

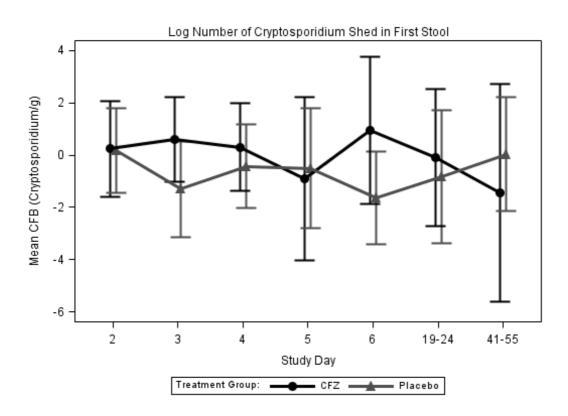

		Part A –	Part A –	Part B
		CFZ	placebo	(n=11)
		(n=12)	(n=10)	(
MedDRA® system organ	MedDRA® preferred	No. of	No. of	No. of
class	term	events	events	events
Any system organ class	Any preferred term	13	12	3
Blood and lymphatic	Anemia	0	3	0
system disorders	7 monnu	U U	5	U U
Gastrointestinal disorders	Any preferred term	4	0	0
	Abdominal pain	1	0	0
	Anal fissure	1	0	0
	Diarrhea	2	0	0
General disorders and	Pyrexia	0	1	0
administration site	1 yroxiu	U U	1	U U
conditions				
Infections and infestations	Any preferred term	4	6	0
	Extrapulmonary	0	1	0
	tuberculosis	Ũ		Ũ
	Gastroenteritis	1	1	0
	Lower respiratory tract	1	0	0
	infection		-	-
	Esophageal	0	1	0
	candidiasis			
	Oral candidiasis	0	1	0
	Pneumonia	0	1	0
	Pulmonary	0	1	0
	tuberculosis			
	Sepsis	1	0	0
	Septic shock	1	0	0
Investigations	Any preferred term	1	0	3
	Alanine	0	0	2
	aminotransferase			
	increased			
	Neutrophil count	0	0	1
	decreased			
	White blood cell count	1	0	0
	decreased			
Metabolism and nutrition disorders	Hypokalemia	1	1	0
Skin and subcutaneous	Decubitus ulcer	1	0	0
tissue disorders			-	-
Vascular disorders	Any preferred term	2	1	0
	Hypotension	1	1	0
	Hypovolemic shock	1	0	0
CEZ alofazimina, MadDR	• 1	<u> </u>	, v	0

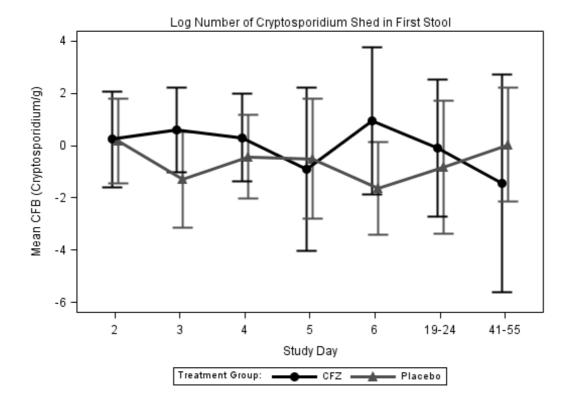
Supplementary Table 2. Total number of unsolicited adverse events


CFZ, clofazimine; MedDRA®, medical dictionary for regulatory activities

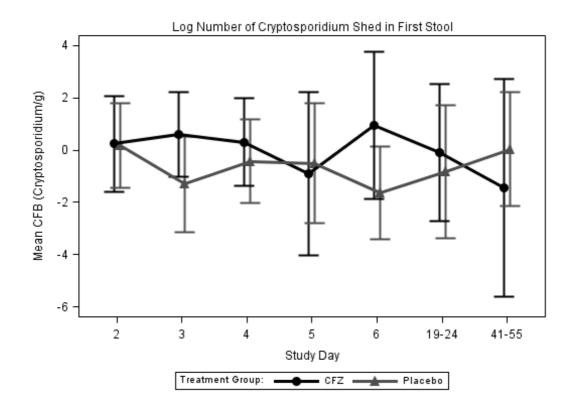

Supplementary Figure 1. Treatment response in the intention-to-treat group:

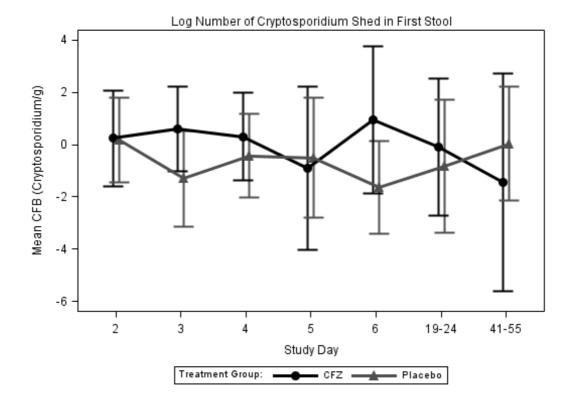
A) Mean change from baseline (CFB) in log₂ number of cryptosporidium shed in first collected stool over time


B) Mean CFB in total daily cryptosporidium shedding over time



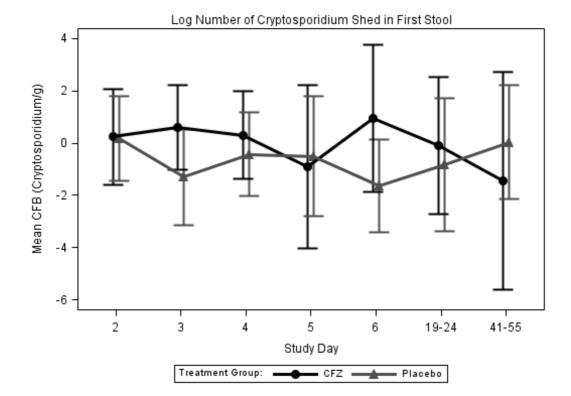
C) Mean total daily cryptosporidium shedding over time

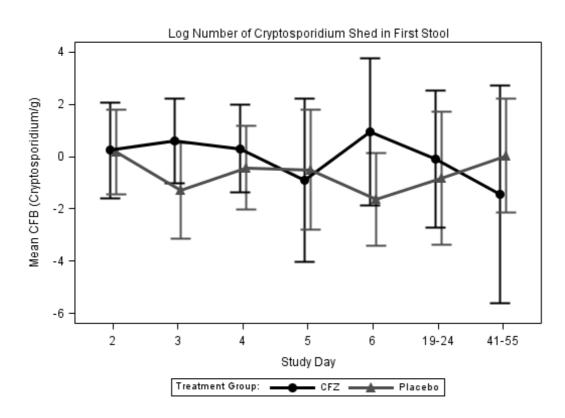

D) Mean CFB in total stool weight over time

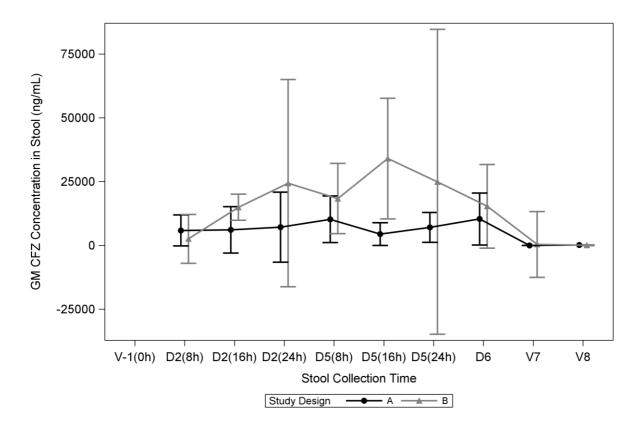


E) Mean number of diarrheal episodes over time

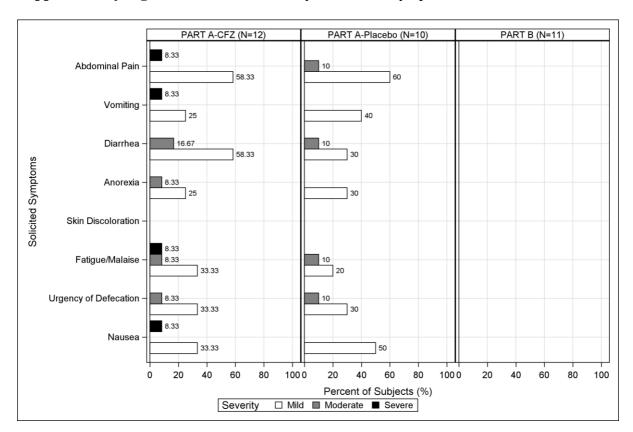
F) Proportion of most severe stool consistency grade by time



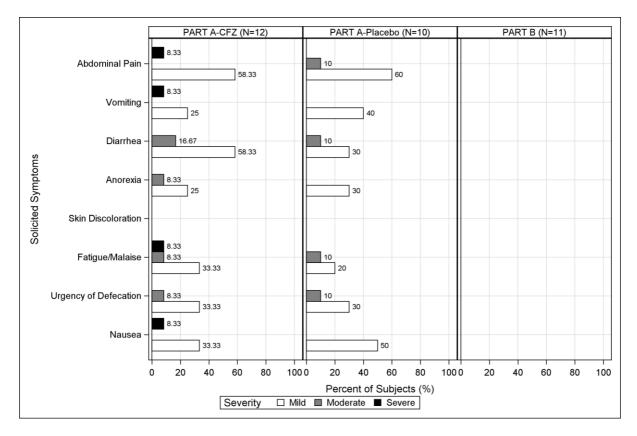

G) Proportion of most severe diarrhea grade by time

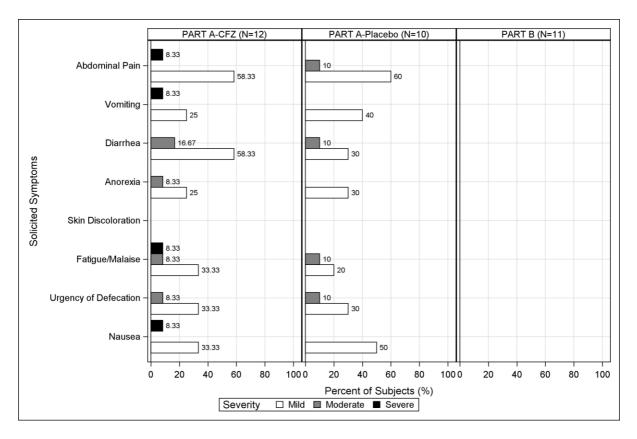

Supplementary Figure 2. Stool cryptosporidium shedding in:

A) First stool of the day


B) Total daily stooling

Supplementary Figure 3. Mean amount of CFZ in stool by timepoint


CFZ, clofazimine; D, day; GM, geometric mean; V, study visit


Supplementary Figure 4. Maximum severity of solicited symptoms

Supplementary Figure 5. Frequency of adverse events by organ class and:

A) Severity

B) Relationship to treatment

1	Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an
2	experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial
3	
4	PY Iroh Tam, ^{1,2} SLM Arnold, ³ LK Barrett, ³ CR Chen, ⁴ TM Conrad, ⁴ E Douglas, ³ MA Gordon,
5	^{1,5} D Hebert, ⁴ M Henrion, ^{1,2} D Hermann, ⁶ B Hollingsworth, ⁴ E Houpt, ⁷ KC Jere, ^{1,5} R Lindblad, ⁴
6	MS Love, ⁸ L Makhaza, ¹ CW McNamara, ⁸ W Nedi, ¹ J Nyirenda, ¹ DJ Operario, ⁷ J Phulusa, ¹ GV
7	Quinnan Jr, ⁴ LA Sawyer, ⁴ H Thole, ¹ N Toto, ² A Winter, ⁴ WC Van Voorhis, ³
8	
9	¹ Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
10	² Liverpool School of Tropical Medicine, Liverpool, UK
11	³ University of Washington, Seattle, WA, USA
12	⁴ Emmes, Rockville, MD, USA
13	⁵ University of Liverpool, Liverpool, UK
14	⁶ Bill & Melinda Gates Foundation, Seattle, WA, USA
15	⁷ University of Virginia, Charlottesville, VA, USA
16	⁸ Calibr, La Jolla, CA, USA
17	
18	Brief title: Clofazimine trial for cryptosporidiosis
19	
20	Corresponding author: Pui-Ying Iroh Tam; Paediatrics and Child Health Research Group,
21	Malawi-Liverpool Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri,
22	Blantyre 3, Malawi; irohtam@mlw.mw; +265 1876444
23	Alternate corresponding author: Wesley Van Voorhis: <u>wvanvoorhis@medicine.washington.edu</u>

24	Key points
25	We evaluated clofazimine for treatment of adult HIV subjects with cryptosporidiosis.
26	Clofazimine was well tolerated, but did not reduce Cryptosporidium excretion or diarrhea
27	compared with subjects treated with placebo. This trial forms a blueprint for future
28	cryptosporidiosis therapeutic trials.
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 <u>Abstract</u>

48	Background: We evaluated efficacy, pharmacokinetics (PK), and safety of clofazimine (CFZ) in
49	HIV-infected patients with cryptosporidiosis, a life-threatening infection without effective
50	treatment for this population.
51	
52	Methods: We performed a randomized, double-blind, placebo-controlled study. Primary
53	outcomes in Part A were reduction in Cryptosporidium shedding, safety, and PK. Primary
54	analysis was according to protocol (ATP)-with intention-to-treat as secondary analysis. Part B of
55	the study compared the CFZ PK of CFZ in matched HIV-infected individuals without
56	cryptosporidiosis (Clinicaltrials.gov #NCT03341767) .
57	
58	Results: Twenty Part A and 10 Part B participants completed the study ATP. Almost all Part A
59	participants had high viral loads and low CD4 counts, consistent with failure of antiretroviral
60	(ARV) therapy. At study entry, the Part A CFZ group had higher Cryptosporidium shedding,
61	total stool weight, and more diarrheal episodes compared to the placebo group. Over the
62	inpatient period, compared to those who received placebo, the CFZ group Cryptosporidium
63	shedding increased by 2.17 log ₂ Cryptosporidium per gram stool (95% upper confidence limit:
64	3.82), total stool weight decreased by 45.3 g (p=0.37), and number of diarrheal episodes
65	increased by 2.32 (p=0.87). The most frequent solicited adverse effects were diarrhea- $\frac{(9/12, -1)}{(12, -1)}$
66	75%), abdominal pain (8/12, 67%), and malaise (6/12, 50%). Three CFZ and 1 placebo subjects
67	died during the study. Plasma levels of CFZ in participants with cryptosporidiosis were 2-fold
68	lower than Part B controls. Part A subjects continued shedding Cryptosporidium up to 60 days
69	after screening.
1	

70	
71	Conclusion: Our findings do not support the efficacy of CFZ for the treatment of
72	cryptosporidiosis in a severely immunocompromised HIV population. However, this trial
73	demonstrates a pathway to assess the therapeutic potential of drugs for cryptosporidiosis
74	treatment. Screening persons with HIV for diarrhea, and especially Cryptosporidium infection,
75	may identify those failing ARV therapy.
76	
77	
78	
79	250 words
80	
81	Keywords: Cryptosporidium, diarrhea, HIV, therapeutic, trial
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93		
94		
95		
96		
97	Introduction	
98	Cryptosporidium infection and diarrhea (cryptosporidiosis) is a life-threatening infection in	
99	persons with HIV and also in young children in the developing world [1]. In children,	
100	cryptosporidiosis causes severe diarrhea [2], malabsorption and intestinal injury [3], excess	
101	mortality [2, 4], stunting and is associated with malnutrition [5]. To date, only nitazoxanide is	
102	licensed for treatment of cryptosporidiosis, but it has not shown any benefits as a treatment for	
103	HIV-infected and immunocompromised patients with cryptosporidiosis compared to placebo [6-	
104	8]. Therefore, tThere is a huge unmet need for Cryptosporidium drugs [6]: only nitazoxanide is	
105	licensed for treatment of cryptosporidiosis, but it has not shown any benefits as a treatment for	
106	HIV-infected and immunocompromised patients with cryptosporidiosis compared to placebo [7-	
107	9] _z ,	
108		
109	Clofazimine (CFZ), used for treatment of leprosy for more than 50 years, and currently part of	
110	treatment for multi-drug resistant TB, has recently been described as effective against	Formatted: Font: Not Italic
111	Cryptosporidium in vitro., and was able to eliminate <i>C. parvum</i> in a mouse model [10]. CFZ has	
112	been in use for treatment of leprosy for more than 50 years, and is also used as part of a WHO	
113	regimen to treat multi-drug resistant Mycobacterium tuberculosis. The efficacy and	
 114	pharmacokinetics (PK) of CFZ in HIV-infected patients with cryptosporidiosis are not known.	

115	We developed an experimental medicine study design to evaluate the safety, tolerability, PK and
116	efficacy of CFZ in HIV-infected adults with cryptosporidiosis.
117	
118	Methods
119	
120	Study design and participants
121	The study was a single center, randomized, double-blind, placebo-controlled Phase 2a two-part
122	study at Queen Elizabeth Central Hospital in Blantyre, Malawi. Participants were eligible for
123	Part A if they were HIV-infected, aged 18-65 years, weight over 35.4 kg, on antiretrovirals
124	(ARV) for at least 1 month, and with diarrhea duration of minimum 14 days. Participants for Part
125	B were HIV-infected without diarrhea or Cryptosporidium, and met none of the exclusion
126	criteria. Full inclusion and exclusion criteria for Part A and B participants are listed in the
127	Supplementary Appendix. The study protocol and relevant supporting materials werewas
128	approved by the relevant regulatory and ethics committees before study initiation [11].
129	Participants provided written informed consent.
130	
131	Study treatment and procedures
132	Part A participants were randomized 1:1 to receive either five days of oral CFZ or placebo,
133	respectively (Figure 1). The dosage of CFZ administered was the maximum given in clinical
134	practice, 100 mg three times daily if \geq 50 kg or 50 mg three times daily for subjects <50 kg [12].
135	Participants for Part B were matched 1:1 to the first ten Part A subjects based on age (±5 years),
136	gender, and weight (\geq or $<$ 50 kg; Supplementary Appendix).

138	We used a rapid diagnostic test (RDT) for Cryptosporidium screening (prototype
139	immunochromatographic test strip for detecting Cryptosporidium, TechLabs Inc., Blacksburg,
140	VA, USA) and an ELISA stool test (CRYPTOSPORIDIUM IITM, TechLabs Inc.) for assessing
141	Cryptosporidium shedding in serial stools during the trial. All Cryptosporidium shedding was
142	confirmed and measured by qPCR, with a positive result being a cycle threshold (Ct) <35 . The
143	first collected stool of the day was obtained throughout the dosing and follow-up periods, for
144	testing of the Cryptosporidium ELISA signal, as well as for measurement of Cryptosporidium
145	shedding by qPCR. In addition, all stools were collected and pooled in 8-hour intervals during
146	the inpatient phase of the study, Days -1 to 5 of dosing. Thus, total Cryptosporidium stool
147	excretion was measured by qPCR during this time.
148	
149	Stool enteropathogens present at baseline in addition to Cryptosporidium were detected using
150	qPCR in a TaqMan Array Card (TAC, Thermo Fisher, Waltham, MA, USA) using a custom
151	design developed at the Houpt Laboratory (Charlottesville, VA, USA; Supplementary Appendix)
152	[13]. Measurements of anti-retroviral (ARV) levels in plasma and alteration after administration
153	of CFZ were evaluated in the Van Voorhis/Arnold Laboratories (Seattle, WA, USA).
154	Measurement of CFZ concentration in plasma and stool were performed at Q_2 Solutions (Ithaca,
155	NY, USA).
156	
157	After the 5-day inpatient study drug dosing, with daily clinical examination and laboratory
158	sampling, all participants entered a two-2 month follow-up period that included a visit 19-24
159	days post last dose, and a final visit 41-55 days post last dose. During each visit and with weekly

phone calls, participants were monitored for safety and symptoms. Safety labs were repeated if

there were any abnormalities previously. If participants could not be reached by phone, homevisits were made.

- 163
- 164 Outcomes

165 There were two primary endpoints for Part A: the first was efficacy, assessed as reduction in the 166 (log) number of Cryptosporidium shed in the first collected stool of each study dosing day of 167 CFZ vs. placebo recipients in subjects treated according to protocol (ATP). The second primary 168 endpoint was safety, and consisted of including frequency and severity of solicited and 169 unsolicited adverse events (AEs), including serious adverse events (SAEs), adverse events of 170 special interest and suspected, unexpected serious adverse reactions. Part B had two primary 171 endpoints (CFZ in plasma, and total daily amount of CFZ eliminated in stool) to meet a single 172 primary PK objective. Secondary endpoints were the reduction in the (log2) number of 173 Cryptosporidium shed in stool compared to controls in the intention-to-treat (ITT) population, 174 reduction in total daily Cryptosporidium shedding in those treated ATP, and as compared to 175 controls in the ITT population, and reduction in severity of diarrhea over the study dosing period 176 compared to controls. 177 178 An independent data safety monitoring board (DSMB) was involved in regular review of blinded 179 safety data to monitor risks and benefits and to assess any potential safety issues arising during 180 the study. Trial site monitoring of participant safety was carried out by the sponsor medical 181 monitor, an independent local safety monitor, the contract research organization medical 182 monitor, and overseen by the chief investigator (WVV). This study is registered with

183 ClinicalTrials.gov, number NCT03341767.

1	8	4

185	Statistical analyses
186	As the Phase 2a study was exploratory, we initially planned an interim analysis after 20 subjects
187	were randomized and treated ATP; this sample size was predicted to detect a therapeutic
188	difference based on animal data from molecular endpoints. Due to slow enrollment, it was
189	decided to convert the interim analysis to a final analysis (Supplementary Appendix).
190	
191	The primary ATP analysis was performed using the randomized population who received at least
192	80% of scheduled doses, completed daily assessments of fecal shedding, and had no major
193	protocol deviations. When missing data for the primary endpoint (log number of
194	Cryptosporidium shed per gram stool) was not attributable to non-detectable Cryptosporidium
195	(i.e. no stooling), multiple imputation was utilized (Supplementary Appendix).
196	
197	The safety population consisted of all subjects that received at least one dose of study drug. The
198	PK population consisted of all subjects who had at least one measurable PK concentration
199	(Supplementary Appendix).
200	
201	Due to the exploratory nature of the trial, no adjustments due to multiple testing were made; all
202	statistical tests were performed with a one-sided alpha of 0.05. Statistical analyses were
203	conducted using SAS version 9.3.
204	

205 <u>Results</u>

206	In the Blantyre District of Malawi, bBetween 18 December 2017 and 14 February 2019, 5,790
207	adults were approached to assess eligibility. For randomization to CFZ vs. placebo (Part A), 494
208	were prescreened for Cryptospodiridium presence in stool via RDT and qPCR, 67 participants
209	were Cryptosporidium PCR-positive in stool and screened, and 22 were randomized (12 to CFZ
210	and 10 to placebo, ITT group; Figure 1). Twenty subjects completed inpatient dosing ATP.
211	There was one voluntary withdrawal (CFZ group) during the outpatient phase. There was no loss
212	to follow-up.
213	
214	The RDT and ELISA stool test had low sensitivity (41% for both) to identify participants and
215	follow the presence/absence of Cryptosporidium over time, compared with qPCR. The
216	Cryptosporidium spp. identified were C. parvum (11/22, 50%), C. meleagridis (4/22, 18%), C.
217	hominis (3/22, 14%), C. viatorum (1/22, 5%) and 3 unknowns. Coinfection of stool with multiple
218	diarrhea enteropathogens was common, with a median of 4 co-pathogens (excluding
219	Cryptosporidium) per subject (range 1-8). The most frequently identified co-pathogen was
220	enteroaggregative E. coli (64%), followed by Shigella toxin-positive enterotoxigenic E. coli
221	(41%) and Shigella/enteroinvasive E. coli (23%). The baseline characteristics of participants are
222	listed in Table 1. Despite randomization, compared to the placebo group the CFZ group had by
223	chance: more males (67% vs. 20%), lower body mass index (16.3 \pm 1.7 vs. 18.0 \pm 3.1 kg/m ²),
224	increased diarrhea output total stool weight (320.3±214.6 vs. 245.8±299.4 g), more pathogens
225	detected at higher quantities a diarrheagenic amount per Global Enteric Multicenter Study
226	(GEMS) criteria (67% vs. 30%) [14], more advanced HIV immunosuppression (CD4 counts
l 227	25.3 ± 24.4 vs. 170.4 ± 321.7 cells/µL), and higher prevalence of <i>C. parvum</i> detected (58% vs.
228	40%).

230	Findings were similar for both ATP and ITT populations (Supplementary Table 1), and the ATP
231	efficacy results are reported here. Stool Cryptosporidium excretion was persistent among Part A
232	subjects throughout observation (Supplementary Figures 1 and 2), even at 41-55 days after the
233	last dose. There was no significant difference in Cryptosporidium shedding in the CFZ group
234	compared to placebo (Figures 2A-B). There was a trend towards increased change-from-baseline
235	in Cryptosporidium shedding in the first stool of the day in the CFZ-treated group vs. placebo,
236	with a difference in means of 2.17 log ₂ Cryptosporidium per gram ([95% upper confidence limit
237	(CL): 3.82]), and in total Cryptosporidium shedding with a difference of means of $1.02 \log_2$
238	Cryptosporidium ([95% upper CL: 2.50]); the opposite result expected if CFZ was efficacious.
239	There was no significant change in diarrhea in the CFZ group compared to placebo, whether
240	measured by total stool weight change-from-baseline, number of diarrheal episodes, stool
241	consistency grade, or severity diarrhea grade (Figures 2C-F).
242	
243	For the PK of CFZ in HIV-infected subjects without diarrhea or Cryptosporidium (Part B), 92
244	were prescreened, 18 were screened, and 11 received CFZ, with one voluntary withdrawal during
245	the inpatient phase. Part A subjects had about 2-fold less plasma exposure of CFZ than Part B
246	subjects on day 5 (ratio AUC ₀₋₂₄ : 0.607), and on day 1 of the inpatient dosing (ratio AUC ₀₋₂₄ :
247	0.478; Table 2, Figure 3; stool PK profiles are listed in Supplementary Appendix and
248	Supplementary Figure 3).

229

For safety, solicited AEs (Table 3) - expected in persons with diarrhea - were experienced by all
subjects in both CFZ and placebo groups. There were higher numbers of solicited AEs

252	experienced in the CFZ group for diarrhea (9 (75%) vs. 4 (40%) in placebo), abdominal pain (8
253	(67%) vs. 7 (70%) in placebo), and malaise (6 (50%) vs. 3 (30%) in placebo), and more severe
254	solicited AEs in the CFZ group (2 (17%)) than the placebo group (0 (0%); Supplementary
255	Figures 4 and 5)No Part B subject experienced any solicited AE. The number of unsolicited
1 256	AEs (Supplementary Table 2) was highest in the CFZ group (13 vs. 12 in placebo and 3 in Part
257	B); the number of subjects who experienced AEs with fatal outcome was also higher in the CFZ
258	group (3 (25%) vs. 1 (10%) in placebo and none in Part B; Supplementary Appendix). None of
259	the fatalities were judged by the study medical monitors and DSMB to be CFZ-related
260	(Supplementary Appendix).
261	
262	Discussion
263	This is the first randomized, double-blind, placebo-controlled Phase 2a trial to evaluate CFZ for
263 264	This is the first randomized, double-blind, placebo-controlled Phase 2a trial to evaluate CFZ for treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no
264	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no
264 265	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on <i>Cryptosporidium</i> shedding of the parasite, or on diarrheal episodes, stool
264 265 266	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on <i>Cryptosporidium</i> shedding of the parasite, or on diarrheal episodes, stool weight, and consistency, compared to placebo. Evaluation of <i>Cryptosporidium</i> shedding in the
264 265 266 267	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on <i>Cryptosporidium</i> shedding of the parasite, or on diarrheal episodes, stool weight, and consistency, compared to placebo. Evaluation of <i>Cryptosporidium</i> shedding in the first stool of the day provided similar data to total daily <i>Cryptosporidium</i> shedding. The drug is
264 265 266 267 268	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on <i>Cryptosporidium</i> shedding of the parasite, or on diarrheal episodes, stool weight, and consistency, compared to placebo. Evaluation of <i>Cryptosporidium</i> shedding in the first stool of the day provided similar data to total daily <i>Cryptosporidium</i> shedding. The drug is generally well-tolerated. Four patients died, three of whom received CFZ and the fourth placebo.
264 265 266 267 268 269	treatment of cryptosporidiosis in HIV-infected adults. The trial demonstrated that CFZ had no significant impact on <i>Cryptosporidium</i> shedding of the parasite, or on diarrheal episodes, stool weight, and consistency, compared to placebo. Evaluation of <i>Cryptosporidium</i> shedding in the first stool of the day provided similar data to total daily <i>Cryptosporidium</i> shedding. The drug is generally well-tolerated. Four patients died, three of whom received CFZ and the fourth placebo. This rate of death was consistent with our a priori estimates and each case was reviewed by the

- 273 The trial did show that HIV-infected adults with \geq 3 days of diarrhea consistently excreted
- 274 Cryptosporidium in their stools, even when assayed up to 60 days after enrollment. This

276	Cryptosporidium drugs that do not depend on the immune response.
277	
278	The trial did not show a reduction in Cryptosporidium excretion in this population treated with
279	CFZ vs. placebo. This was the case whether one compared the Cryptosporidium excretion by
280	qPCR as determined by the concentration in the first stool of the day, or by determining the total
281	Cryptosporidium excreted per day. In fact, there was a non-significant trend towards slightly
282	increased Cryptosporidium shedding in the CFZ group vs. the placebo, which was most evident
283	at day 2 of study drug dosing. The trend towards increased shedding may reflect the more ill
284	status of the CFZ subjects at baseline, as documented in their enrollment labs and health status.
285	With a median HIV CD4 count of 23.5 cells/mm ³ (IQR 11.75, 43.75) and viral load of 168,097.5
286	copies/mL (IQR 94,044, 643,812.3), the mortality rate of 18% in the trial likely reflects
287	advanced disease in our Part A cohort as a whole.
288	
289	Within our cohort, compared to placebo, the CFZ group had more deaths, SAEs, and severe
290	solicited AEs. All subjects with cryptosporidiosis reported the solicited AEs expected with CFZ,
291	such as diarrhea, abdominal pain, malaise and nausea. However, these solicited AEs were
292	present at baseline in Part A subjects, as might be expected in this population with
293	cryptosporidiosis, and solicited AEs-were universal in both treatment groups. There tended to be
1 294	less solicited AEs over time, which correlated with less severity in diarrhea during the hospital
295	phase, and the severity of AEs tended to decrease over time. None of the Part B HIV-infected
296	subjects without cryptosporidiosis exposed to the same dose of CFZ reported solicited AEs, and
l 297	only 3 Part B subjects reported unsolicited AEs, and these were generally mild.

demonstrates that this population would be appropriate to study the antiparasitic benefit of anti-

299	A previous clinical trial for cryptosporidiosis treatment identified multiple safety concerns		
300	related to the health status of participants. This Phase 1-2 trial of miltefosine to treat HIV-related		
301	cryptosporidiosis in Zambian adults with chronic diarrhea was terminated early due to high		
302	mortality, lack of efficacy and development of SAEs that were attributed to the extreme		
303	metabolic abnormalities already present in patients enrolled in the trial [15]. In our trial, subjects		
304	with cryptosporidiosis also presented with electrolyte abnormalities, most commonly		
305	hypokalemia that required correction, and for some subjects required corrective treatment		
306	continued through the trial. In addition, there was also a very high incidence of active TB in the		
307	HIV-infected screening population. Screening by chest x-ray was inadequate likely because		
308	dehydrated subjects often do not have an infiltrate until rehydrated. Screening of sputum by		
309	GeneXpert or gram stain also was inadequate due to inability of dehydrated subjects to produce		
810	sputum. Urine LAM screening was instituted based on findings from other studies describing		
311	urine LAM as a predictor of disseminated TB and mortality in HIV-infected adults with low		
312	CD4 counts [16]. All deaths in our study were reported prior to instituting urine LAM screening		
313	at baseline. Once urine LAM screening was instituted [16], Notably, 43% of our otherwise	 Formatted: Font: Times New Roman	
314	eligible subjects subsequently tested positive by urine LAM and were excluded.		
315			
316	Part A participants were extremely immunosuppressed. Most had CD4 counts <25 cells/ μ L and		
317	high HIV viral loads. Plasma levels of HIV medicines were detected at similar levels to Part B		
318	subjects (unpublished data), suggesting that these Part A subjects were compliant with first-line		
319	ARV therapy and that ARV resistance might be driving HIV treatment failure. Therefore,		

320	screening for diarrhea in this population, and especially for Cryptosporidium, delineated those
321	more at risk for TB and ARV failure.

323	The predominant Cryptosporidium species was C. parvum subtype family IIc anthroponotic
324	(10/11, 91% of those with C. parvum). This was unexpected, given that the majority of
325	Cryptosporidium species identified in the pediatric Global Enteric Multicenter Study (GEMS)
326	and adult studies were C. hominis [17-20]. However, a high prevalence of C. parvum has been
327	noted in HIV/AIDS patients in Ethiopia, where 92/140 (66%) of HIV/AIDS patients were
328	positive by PCR-RFLP [21]. As C. parvum has been observed to be associated with prolonged
329	diarrhea in HIV-positive persons more frequently than C. hominis [17] the trial inclusion criteria
330	may have selected for this species.
331	
332	Multiple copathogens were observed in stool, which may have contributed to the diarrhea [3],
333	but Cryptosporidium may have driven the diarrhea in at least 15 of 22 subjects in this
	JI J
334	trial-patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of
334 335	
	trial.patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of
335	trial.patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of care. In these 15 subjects, <i>Cryptosporidium</i> may have driven the diarrhea in at least 15 of 22
335 336	trial.patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of care. In these 15 subjects, <i>Cryptosporidium</i> may have driven the diarrhea in at least 15 of 22 subjects in this trial, as it <i>Cryptosporidium</i> was the pathogen with the lowest Ct value, and may
335 336 337	trial.patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of care. In these 15 subjects, <i>Cryptosporidium</i> may have driven the diarrhea in at least 15 of 22 subjects in this trial, as it <i>Cryptosporidium</i> was the pathogen with the lowest Ct value, and may have been the pathogen in the greatest quantity shed in stool. After applying GEMS cutoffs.
335 336 337 338	trial-patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of care. In these 15 subjects, <i>Cryptosporidium</i> may have driven the diarrhea in at least 15 of 22 subjects in this trial, as it <i>Cryptosporidium</i> was the pathogen with the lowest C_t value, and may have been the pathogen in the greatest quantity shed in stool. After applying GEMS cutoffs, which are based onuse C_t counts to determine clinically relevant diarrhea [14], only 7
335 336 337 338 339	trial-patients with symptomatic diarrhea were routinely treated with ciprofloxacin as standard of care. In these 15 subjects, <i>Cryptosporidium</i> may have driven the diarrhea in at least 15 of 22 subjects in this trial, as it <i>Cryptosporidium</i> was the pathogen with the lowest C_t value, and may have been the pathogen in the greatest quantity shed in stool. After applying GEMS cutoffs, which are based onuse C_t counts to determine clinically relevant diarrhea [14], only 7 <i>Cryptosporidium</i> samples met diarrheagenic cutoffs, and only 11 samples met diarrheagenic

343		
344	Our PK data suggests that diarrhea and/or Cryptosporidium infection negatively impacts CFZ	
345	plasma exposure. Since efficacy is likely driven by CFZ levels in the parasite, which may not be	
346	well-exposed to intraluminal CFZ as it is located in a vacuole under the epithelial plasma	
 347	membrane, and faces in towards the gut lumen [22], plasma levels may not reflect efficacy as it	Field Code Changed
348	would for systemic infections. The fact that serum CFZ levels in persons with well-suppressed	
349	HIV were twice as high suggests that in the setting of Cryptosporidium infection, the drug was	
350	not well absorbed. We propose that lower levels of CFZ likely exist in the epithelium layer in the	
351	Part A subjects, as passage through the gastrointestinal epithelium is required for access to the	
352	plasma. These lower levels may have contributed to the failure of efficacy against	
353	Cryptosporidium. However, we used the maximum dosage of CFZ that is accepted as safe in this	
354	trial [12], therefore increasing the dosage to improve efficacy may not be feasible. An	Formatted: Font: (Default) Times New Roman, 12 pt
355	intravenous form of clofazimine, described in the past [23], may have provided better systemic	Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
356	delivery of the drug; however, this was not a formulation available at the time of the trial.	Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
l 357		Formatted: Font: (Default) Times New Roman, 12 pt
358	One of the limitations of the study was the small sample size. This led to slightly uneven	
359	randomization (12 vs. 10) based on block size. Also, imbalances in the baseline characteristics	
360	were noted in the Part A subjects CFZ vs. placebo groups, with the CFZ group being more ill at	
361	baseline. One possible confounder was the presence of multiple co-pathogens in the stool, which	
362	could have influenced diarrhea resolution.	
363		
364	This trial provides important information for testing the efficacy of anti-Cryptosporidium	
365	therapeutics. There is a huge unmet need for Cryptosporidium drugs for young children and	

366	immunocompromised individuals [9]. Despite a growing interest in moving promising pre-
367	elinical drugs into clinical trials there was, until this trial, few placebo controlled trials in adults
368	[24-26] and limited data on how to test the drugs in Phase 2a. This trial shows that HIV-infected
369	adults with Cryptosporidium infection excrete Cryptosporidium consistently and thus the effects
370	of treatment on Cryptosporidium excretion would be a feasible way to monitor for efficacy in
371	Cryptosporidium therapy.

| 372

373	For the conduct of future human experimental trials of cryptosporidiosis in this population, this
374	study suggests that: 1) the screening population should be evaluated for TB detection, through
375	urine LAM, and for electrolyte disturbances, particularly hypokalemia; 2) use of stool RDT in
376	screening and ELISA tests on serial stools is not as sensitive as qPCR, and that we need only use
377	qPCR to enroll and follow participants for Cryptosporidium excretion over time; 3) following
378	serial Cryptosporidium shedding by qPCR of the first stool of the day, rather than total stool
379	collection, is probably sufficient to assess efficacy; 4) given the ill status of enrolled subjects, an
380	inpatient trial is merited and AEs and deaths may complicate safety evaluation of new study
381	drugs; and 5) future trials would need to be multisite given the slow recruitment rate. There was,
382	until this trial, few placebo-controlled trials in adults [24-26] and limited data on how to test the
383	drugs in Phase 2a. This trial shows that HIV-infected adults with cryptosporidiosis excrete the
384	parasite consistently and thus the effects of treatment on excretion would be a feasible way to
385	monitor for efficacy in Cryptosporidium therapy.
1 386	

387 _____

_

17

Formatted: Font: Not Italic

388	In conclusion, CFZ was not effective in this trial at reducing Cryptosporidium excretion nor in	Formatted: Tab stops: 1.51", Left
389	resolving diarrhea in HIV-infected subjects with cryptosporidiosis. The decreased plasma	
390	exposure of CFZ in the Part A vs. Part B subjects may have influenced the efficacy of CFZ on	
391	Cryptosporidium; however, the highest recommended dose of CFZ was used for this trial, and	
392	further studies on safety and perhaps CFZ formulation would be necessary to increase the dose	
393	and exposure. Tthis is the first controlled clinical trial to assess the safety, efficacy, and PK of	
394	CFZ for treatment of cryptosporidiosis, and aAlthough CFZ does not show promise as a novel	
l 395	therapeutic for Cryptosporidium infection, future human studies can use an approach based on	
396	lessons learned in this trial to assess the therapeutic potential of drugs for treatment of	
397	cryptosporidiosis.	
398		
399		
400		
401	Word count (3197<u>3,149</u>)	
402		
403		
404		
405		
406		
407		
408		
409		
410		

411	
412	
413	
414	
415	
416	
l 417	Table 1. Baseline characteristics of participants
418	Table 2. Comparison of pharmacokinetic parameters in Part A and B subjects
419	Table 3. Summary of adverse events
420	
421	Figure legends
422	Figure 1. Part A trial profile
423	ATP, according to protocol; ITT, intention to treat
424	^a Subject died after completing visit.
425	^b One subject withdrew during inpatient phase but provided final blood draw.
426	Figure 2. Treatment response in the according to protocol group:
427	A) Mean change from baseline (CFB) in log number of cryptosporidium shed in first
428	collected stool over time
429	B) Mean CFB in total daily cryptosporidium shedding over time
430	C) Mean CFB in total stool weight over time
431	D) Mean number of diarrheal episodes over time
432	E) Proportion of most severe stool consistency grade by time
433	F) Proportion of most severe diarrhea grade by time

434	Figure 3. Mean plasma concentration of CFZ in plasma by time
435	
436	Supplementary Appendix
437	Supplementary Methods
438	1.1 Study design
439	1.2 Participants
440	1.3 Randomization and masking
441	1.4 Procedures
442	1.5 Outcomes
443	1.6 Statistical analyses
444	1.7 Role of the funding source
445	Supplementary Results
446	2.1 Stool PK profiles
447	2.2 Fatal outcomes
448	Supplementary Table 1. Efficacy of clofazimine compared to placebo in the according to
449	protocol (ATP) and intention-to-treat (ITT) populations
450	Supplementary Table 2. Total number of unsolicited adverse events
451	Supplementary Figure 1. Treatment response in the ITT group:
452	A) Mean change from baseline (CFB) in \log_2 number of cryptosporidium shed in first
453	collected stool over time
454	B) Mean CFB in total daily cryptosporidium shedding over time
455	C) Mean total daily cryptosporidium shedding over time
456	D) Mean CFB in total stool weight over time

457	E) Mean number of diarrheal episodes over time	
458	F) Proportion of most severe stool consistency grade by time	
459	G) Proportion of most severe diarrhea grade by time	
460	Supplementary Figure 2. Stool cryptosporidium shedding in: A) First stool of the day B) Total	
461	daily stooling	
462	Supplementary Figure 3. Mean amount of CFZ in stool by timepoint	
463	Supplementary Figure 4. Maximum severity of solicited symptoms	
464	Supplementary Figure 5. Frequency of adverse events by organ class and: A) Severity B)	
465	Relationship to treatment	
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		

480		
481		
482		
483		
484		
485		
486	Funding	
487	The work was supported by the Bill & Melinda Gates Foundation (OPP1172544).	
488		
489	Declaration of interests	
490	PI, KJ, ML, CM and WVV have received grants from Bill & Melinda Gates Foundation (BMGF)	
491	outside of the submitted work. ML and CM have received a supplemental grant from BMGF for	
492	preclinical and early clinical development of CFZ as a treatment for cryptosporidiosis	
493	(OPP1156296). KJ is a Wellcome International Training Fellow (Grant number 201945/Z/16/Z)	
494	and has received investigator-initiated grant support from GlaxoSmithKline Biologicals group of	
495	companies. DHn is a current employee of BMGF. WVV has patents issued for bumped kinase	
496	inhibitors (BKIs) for the therapeutic treatment of cryptosporidiosis diarrhoea and is a founder	
497	and has stock of ParaTheraTech LLC, a company that is developing BKIs for animal health	
498	indications. All other authors declare no competing interests.	
499		
500	Acknowledgements	
501	We thank the subjects who participated in this study. We thank the Cryptofaz study team	

502 members, including administrative, clinical, laboratory, pharmacy, data and ancillary staff in

503	Malawi and LSTM, the Emmes CC-ID8 team in Maryland, USA and their site monitor team in
504	India (Pankaj Dua, Anand Singh, Abhishek Kumar). We thank the QECH management and
505	Blantyre district health office for granting us permission to use their health facilities; medical
506	monitors (Frederick Buckner and Jamie Rylance); the Data Safety Monitoring Board (Steven
507	Reynolds [chair], David Boulware, Jane Mallewa, David Lalloo, and Maia Lesosky); Bill and
508	Melinda Gates Program Officers for valuable discussions and advice; Brigitte Denis and George
509	Selemani for MLW laboratory support; Clemens Masesa for MLW data management support;
510	Sarah Burke and Q2 Solutions for determining clofazimine levels in plasma and stool; Leonardo
511	Sahelijo for facilitating the site initiation visit; Joel Herbein and TechLabs for donating rapid
512	diagnostic and ELISA tests for Cryptosporidium testing; James Platts-Mills and Jie Liu for
513	assistance with TAC studies in Houpt Lab; and, Claire Colson, Janice Yu, and Mikasa Morf for
514	University of Washington administrative support.
515	
516	Novartis provided both the clofazimine and placebo. TechLabs provided Cryptosporidium rapid
517	diagnostic and ELISA tests.
518	
519	
520	
521	
522	
523	
524	
525	

526					
527					
528					
529					
530					
531					
532	Refere	ences			
533	1.	Platts-Mills JA, Babji S, Bodhidatta L, et al. Pathogen-specific burdens of community		Formatted: Line spacing: Double	
-24		diamhann in deuslaring countries a multiple bigh achart study (MALED). Langet Clab	$\overline{}$	Field Code Changed	
534		diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob		Formatted: Font: Times New Roman	
535		Health 2015 ; 3(9): e564-75.			
536	2.	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal			
537		disease in infants and young children in developing countries (the Global Enteric			
538		Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382(9888):			
539		209-22.			
540	3.	Goodgame RW, Kimball K, Ou CN, et al. Intestinal function and injury in acquired			
541		immunodeficiency syndrome-related cryptosporidiosis. Gastroenterology 1995; 108(4):			
542		1075-82.			
543	4.	Molbak K, Hojlyng N, Gottschau A, et al. Cryptosporidiosis in infancy and childhood			
544		mortality in Guinea Bissau, west Africa. BMJ 1993; 307(6901): 417-20.			
545	5.	Korpe PS, Haque R, Gilchrist C, et al. Natural History of Cryptosporidiosis in a			
546		Longitudinal Study of Slum-Dwelling Bangladeshi Children: Association with Severe			
547		Malnutrition. PLoS Negl Trop Dis 2016; 10(5): e0004564.			

548	6.	Striepen B. Parasitic infections: Time to tackle cryptosporidiosis. Nature 2013 ;
549		503(7475): 189-91.
550	7.	Amadi B, Mwiya M, Musuku J, et al. Effect of nitazoxanide on morbidity and mortality
551		in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 2002;
552		360(9343): 1375-80.
553	8.	Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide
554		is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised
555		controlled trial. BMC Infect Dis 2009 ; 9: 195.
556	9.	Zulu I, Kelly P, Njobvu L, et al. Nitazoxanide for persistent diarrhoea in Zambian
557		acquired immune deficiency syndrome patients: a randomized-controlled trial. Aliment
558		Pharmacol Ther 2005 ; 21(6): 757-63.
559	10.	Love MS, Beasley FC, Jumani RS, et al. A high-throughput phenotypic screen identifies
560		clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 2017;
561		11(2): e0005373.
562	11.	Nachipo P, Hermann D, Quinnan G, Gordon MA, Van Voorhis WC, Iroh Tam PY.
563		Evaluating the safety, tolerability, pharmacokinetics and efficacy of clofazimine in
564		cryptosporidiosis (CRYPTOFAZ): study protocol for a randomized controlled trial. Trials
565		2018 ; 19(1): 456.
566	12.	Yawalkar SJ. Lamprene (clofazimine) in leprosy. Leprosy review 1979; 50(2): 135-44.
567	13.	Liu J, Kabir F, Manneh J, et al. Development and assessment of molecular diagnostic
568		tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet
569		Infect Dis 2014 ; 14(8): 716-24.
1		

570	14.	Liu J, Platts-Mills JA, Juma J, et al. Use of quantitative molecular diagnostic methods to
571		identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study.
572		Lancet 2016 ; 388(10051): 1291-301.
573	15.	Sinkala E, Katubulushi M, Sianongo S, Obwaller A, Kelly P. In a trial of the use of
574		miltefosine to treat HIV-related cryptosporidiosis in Zambian adults, extreme metabolic
575		disturbances contribute to high mortality. Ann Trop Med Parasitol 2011; 105(2): 129-34.
576	16.	Gupta-Wright A, Corbett EL, van Oosterhout JJ, et al. Rapid urine-based screening for
577		tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a
578		pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial. Lancet
579		2018 ; 392(10144): 292-301.
580	17.	Cama VA, Ross JM, Crawford S, et al. Differences in clinical manifestations among
581		Cryptosporidium species and subtypes in HIV-infected persons. J Infect Dis 2007;
582		196(5): 684-91.
583	18.	Hunter PR, Hughes S, Woodhouse S, et al. Health sequelae of human cryptosporidiosis in
584		immunocompetent patients. Clin Infect Dis 2004; 39(4): 504-10.
585	19.	Sannella AR, Suputtamongkol Y, Wongsawat E, Caccio SM. A retrospective molecular
586		study of Cryptosporidium species and genotypes in HIV-infected patients from Thailand.
587		Parasit Vectors 2019 ; 12(1): 91.
588	20.	Sow SO, Muhsen K, Nasrin D, et al. The Burden of Cryptosporidium Diarrheal Disease
589		among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-
590		Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study
591		(GEMS) PLoS Negl Trop Dis 2016 : 10(5): e0004729

592	21.	Adamu H, Petros B, Zhang G, et al. Distribution and clinical manifestations of
593		Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Negl
594		Trop Dis 2014 ; 8(4): e2831.
595	22.	Checkley W, White AC, Jr., Jaganath D, et al. A review of the global burden, novel
596		diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis
597		2015 ; 15(1): 85-94.
598	23.	Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for
599		intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium
600		avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
601	24.	Hewitt RG, Yiannoutsos CT, Higgs ES, et al. Paromomycin: no more effective than
602		placebo for treatment of cryptosporidiosis in patients with advanced human
603		immunodeficiency virus infection. AIDS Clinical Trial Group. Clin Infect Dis 2000;
604		31(4): 1084-92.
605	25.	Rossignol JF, Ayoub A, Ayers MS. Treatment of diarrhea caused by Cryptosporidium
606		parvum: a prospective randomized, double-blind, placebo-controlled study of
607		Nitazoxanide. J Infect Dis 2001; 184(1): 103-6.
608	26.	White AC, Jr., Chappell CL, Hayat CS, Kimball KT, Flanigan TP, Goodgame RW.
609		Paromomycin for cryptosporidiosis in AIDS: a prospective, double-blind trial. J Infect
610		Dis 1994 ; 170(2): 419-24.
611	27.	Holdiness MR. Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet
612		1989 ; 16(2): 74-85.
613		

- .

Table 1. Baseline characteristics of participants

Characteristic	Part A CFZ group	Part A placebo	Part B CFZ
	(n=12)	group (n=10)	group (n=11)
Age, years	39.8 (±7.8)	39.1 (±12.0)	44.1 (±9.6)
Male sex (%)	8 (67%)	2 (20%)	7 (64%)
BMI, kg/m ²	16.3 (±1.7)	18.0 (±3.1)	18.9 (±1.4)
Pulse rate, beats/min	90.9 (±12.4)	95.9 (±14.9)	78.1 (±6.7)
Systolic blood pressure,	99.3 (±15.0)	106.4 (±16.5)	116.5 (±11.8)
mmHg			
Diastolic blood pressure,	68,3 (±10.1)	71.2 (±8.8)	75.7 (±12.3)
mmHg			
Hemoglobin, g/dL	10.6 (±2.2)	10.8 (±2.8)	14.0 (±1.3)

Hematocrit, %	32.3 (±6.5)	32.6 (±8.7)	42.3 (±3.6)
	52.5 (20.5)	52.0 (20.7)	12.5 (20.0)
White blood cells, 10 ⁹ /L	2.9 (±1.4)	3.8 (±2.8)	5.0 (±1.7)
Neutrophils, 10 ⁹ /L	1.6 (±0.9)	2.1 (±2.1)	2.5 (±1.2)
Lymphocytes, 10 ⁹ /L	0.8 (±0.5)	1.1 (±0.7)	2.0 (±0.8)
CD4 absolute, cells/µL			
Mean (±SD)	25.3 (±24.4)	170.4 (±321.7)	422.0 (±231.3)
Median (IQR)	23.0 (8.0, 32.0)	22.5 (17.0, 86.0)	361.0
			(216.0, 634.0)
HIV viral load, copies/µL	241,981.5	679,025.13	257.5 (±805.7)
	(±262,806.03)	(±929,116.49)	
ARV duration, days	<u>1424 (±1547.6)</u>	<u>2011 (±1409.3)</u>	<u>1265 (±1810.3)</u>
Blood urea nitrogen,	4.9 (±2.5)	3.9 (±1.1)	3.8 (±1.0)
mmol/L			
Creatinine, µmol/L	82.0 (±37.2)	56.0 (±15.9)	65.4 (±14.0)
Alanine aminotransferase,	34.0 (±20.3)	40.3 (±19.5)	38.9 (±21.4)
IU/L			
Aspartate aminotransferase,	50.6 (±16.4)	63.0 (±30.4)	50.7 (±18.3)
IU/L			
Electrocardiogram (ECG)			
Normal (%)	11 (92%)	10 (100%)	11 (100%)
Abnormal, not clinically	1 (8%)	0 (0%)	0 (0%)
significant (%)			

QTc interval, ms	421.7 (±14.2)	418.3 (±17.0)	409.7 (±21.6)
Cryptosporidium spp. (%)			
C. parvum	7 (58%)	4 (40%)	N/A
C. hominis	2 (17%)	1 (10%)	N/A
C. meleagridis	1 (8%)	3 (30%)	N/A
C. viatorum	1 (8%)	0 (0%)	N/A
Unknown ^a	1 (8%)	2 (20%)	N/A
Co-pathogens detected at	8 (67%)	3 (30%)	N/A
diarrheagenic amount [14]			
(%)			
Diarrhea duration, ^b days	<u>17 (±7.6)</u>	<u>34 (±57)</u>	<u>N/A</u>
Stool ELISA positivity	7 (58%)	2 (20%)	N/A
(D1, %)			
Log number of	13.9 (±2.7)	15.0 (±2.2)	N/A
cryptosporidium shed in			
first collected stool of day,			
Cryptosporidium per gram			
stool (D-1)			
Total daily cryptosporidium	22.3 (±2.9)	22.1 (±3.2)	N/A
shedding, Cryptosporidium			
per gram stool (D-1)			
Total stool weight, g (D-1)	320.3 (±214.6)	245.8 (±299.4)	N/A

	Most severe diarrhea	9 (75%)	3 (30%)	N/A		
	severity grade ^b grade ^c					
I	(mild)					
	Stool consistency severity	9 (75%)	6 (67%)	N/A		
	grade ≥3 (D-1, %)					
	Number of diarrheal	1.3 (±1.1)	0.8 (±1.3)	N/A		
	episodes, ^b - <u></u> D1					
627	ARV, antiretroviral therapy;	BMI, body mass i	ndex; D, day; IQR, interg	uartile range; SD,		
628	standard deviation					
629	All values are mean (±SD) u	nless otherwise lis	ted.			
630	^a Failed to amplify on sequen	cing of 18s and gp	60.			
631	^b Subjects with diarrhea durat	tion entries '>2 we	eks' were treated as 21 da	nys for calculations of		
632	summary statistics.				Formatted: Not Superscript/ Subscript	
	summary statistics.	nour dosing interva	l after the first study dose		Formatted: Not Superscript/ Subscript Formatted: Superscript	
633		nour dosing interva	l after the first study dose			
633 634		nour dosing interva	l after the first study dose			
633 634 635		nour dosing interva	l after the first study dose			
633 634 635 636		nour dosing interva	l after the first study dose			
633 634 635 636 637		our dosing interva	l after the first study dose			
633 634 635 636 637 638		our dosing interva	l after the first study dose			
633 634 635 636 637 638 639		our dosing interva	l after the first study dose			
 632 633 634 635 636 637 638 639 640 641 		our dosing interva	l after the first study dose			
633 634 635 636 637 638 639 640		our dosing interva	l after the first study dose			

654 Table 2. Comparison of pharmacokinetic parameters in Part A and B subjects

PK parar	neter	Part A <u>(n=12)</u>		Part B <u>(n=11)</u>	
		Mean (±SD)	% CV	Mean (±SD)	% CV
Day 1	C _{min} (ng/mL)	35.83 (±37.28)	323	74.74 (±24.51)	46
	C _{max} (ng/mL)	97.55 (±117.9)	195	193.3 (±93.50)	58
	T _{max} (h)	19.73 (±5.67)	-	14.776 (±7.537)	-
	AUC ₀₋₂₄ (ng.h/mL)	1364.0 (±1754.0)	219	2851.0 (±1256.0)	50
Day 5	C _{min} (ng/mL)	258.8 (±353.1)	187	455.8 (±221.5)	47
	C _{max} (ng/mL)	280.7 (±355.2)	173	514.1 (±202.0)	39
	T _{max} (h)	9.679 (±10.81)	-	6.683 (±3.765)	-
	AUC ₀₋₂₄ (ng.h/mL)	6863.0 (±8552.0)	172	11298.0 (±5580.0)	59

Summary	t _{1/2} (h) ^a	336.5 (±84.71)	25	535.5 (±4.950)	1
	R _{AUC}	5.905 (±3.516)	57	4.111 (±1.579)	50

AUC, area under the curve; Cmax, peak plasma concentration; Cmin, trough plasma 655

656 concentration; CV, coefficient of variation; RAUC, accumulation ratio for AUC0-24 for Day 5 to

657 Day 1; <u>SD</u>, standard deviation; Tmax, time to reach Cmax; t_{1/2}, elimination half-life

658 ^aElimination half-life of clofazimine was previously found to be up to 70 days upon repeat dose

659 administration; [26] [27]; therefore the relatively short plasma sampling schedule in this study

- 660 may not be accurately capture the $t_{1/2}$ parameter in these populations.
- 661
- 662
- 663
- 664

Table 3. Summary of adverse events Part A – CFZ Part A -Part B (n=11) (n=12) placebo (n=10) 12 (100%) 10 (100%) 0 (0%) Any solicited Any severity Max severity 2 (17%) 0 (0%) 0 (0%) adverse event Abdominal pain Any severity 8 (67%) 7 (70%) 0 (0%) Max severity 1 (8%) 0 (0%) 0 (0%) Vomiting Any severity 4 (33%) 4 (40%) 0 (0%) Max severity 1 (8%) 0 (0%) 0 (0%) Diarrhea Any severity 9 (75%) 4 (40%) 0 (0%) 0 (0%) Max severity 0 (0%) 0 (0%)

665

Anorexia	Any severity	4 (33%)	3 (30%)	0 (0%)
	Max severity	0 (0%)	0 (0%)	0 (0%)
Skin	Any severity	0 (0%)	0 (0%)	0 (0%)
discoloration				
Nausea	Any severity	5 (42%)	5 (50%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0 (0%)
Malaise	Any severity	6 (50%)	3 (30%)	0 (0%)
	Max severity	1 (8%)	0 (0%)	0(0%)
Urgency of	Any severity	5 (42%)	4 (40%)	0 (0%)
defecation	Max severity	0 (0%)	0 (0%)	0 (0%)
Any adverse ev	ents with fatal	3 (25%)	1 (10%)	0 (0%)
outcome				
Number of unso	olicited adverse	13	12	3
events				
Subjects with a	least one	6 (50%)	4 (40%)	3 (27%)
unsolicited adve	erse event			
Subjects with a	serious adverse	5 (42%)	2 (20%)	0 (0%)
event				
Any unsolicited	adverse event	2 (17%)	0 (0%)	3 (27%)
related to study	drug			
Any unsolicited	adverse event	0 (0%)	1 (10%)	0 (0%)
leading to disco	ntinuation of study			
drug				
leading to disco		0 (0%)	1 (10%)	0 (0%)

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.