
energies

Article

Combined ANFIS–Wavelet Technique to Improve the
Estimation Accuracy of the Power Output of
Neighboring PV Systems during Cloud Events

Hasanain A. H. Al-Hilfi 1,2 , Ahmed Abu-Siada 1,* and Farhad Shahnia 3

1 School of Electrical Engineering and Computing, Curtin University, Perth 6102, Australia;
h.al-hilfi@postgrad.curtin.edu.au

2 Computer Center, Basrah University, Basrah 61028, Iraq
3 School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Australia;

F.Shahnia@murdoch.edu.au
* Correspondence: A.AbuSiada@curtin.edu.au

Received: 21 February 2020; Accepted: 26 March 2020; Published: 1 April 2020
����������
�������

Abstract: The short-term variability of photovoltaic (PV) system-generated power due to ambient
conditions, such as passing clouds, represents a key challenge for network planners and operators.
Such variability can be reduced using a geographical smoothing technique based on installing multiple
PV systems over certain locations at distances of meters to kilometers. To accurately estimate the PV
system’s generated power during cloud events, a variability reduction index (VRI), which is a function
of several parameters, should be calculated precisely. In this paper, the Wavelet Transform Technique
(WTT) along with Adaptive Neuro Fuzzy Inference System (ANFIS) are used to develop new models
to estimate the PV system’s power output during cloud events. In this context, irradiance data
collected from one PV system along with other parameters, including ambient conditions, were used
to develop the proposed models. Ultimately, the models were validated through their application on
a 0.7 km2 PV plant with 16 rooftop PV systems in Brisbane, Australia.

Keywords: photovoltaic system; geographic smoothing; variability reduction index; ANFIS;
wavelet transform

1. Introduction

Global warming due to greenhouse gas emissions produced by conventional fossil fuel-based
power plants has urged all nations to invest in renewable energy, such as photovoltaic (PV) systems
and wind energy [1]. According to [2], the generated electricity in Australia is divided into 79% fossil
fuel-based generation whereas 21% is generated from renewable energy resources. Renewable energy
continues to grow rapidly in Australia, which is planned to reach 50% of the overall domestic electricity
production in 2024 and 100% in the year 2032 [3]. Although there are several advantages in using PV
systems, including easy implementation in both residential and commercial sites along with their low
cost and reliable operation, it still comprises some issues owing to its intermittent nature. Due to the
ambient conditions, PV-generated power is not constant and it varies with short- (cloud movements)
and long-term (irradiance daily and seasonal) variations. Long-term variability can be easily planned
for based on the well-known daily and seasonal solar irradiance in various geographical areas. On the
other hand, short-term irradiance fluctuation due to the unexpected passing of clouds of unknown
size, direction and speed, may result in frequency instability due to the reduction in the generated
power [4–6]. Estimating such power is one of the main challenges faced by network operators to
prevent frequency instability due to such short-term power reduction, which is why many adopt a
suitable backup energy storage system. According to utilities guidelines, the PV system’s power output
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reduction should not be more than 10% of the PV system’s capacity over a minute [7]. Adopting an
energy storage system to meet this requirement may be an expensive option for large PV plants [7,8].
Another cost-effective solution is through allocating the PV systems over a large geographical area.
The robustness of this solution is shown in Figure 1, which reveals that the irradiance is getting
smoother by increasing the number of PV systems over a geographical area with a separation distance
of 20 km to 450 km [7].
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Figure 1. Average of the solar irradiance variability captured by 1, 5 and 23 photovoltaic (PV) system 
sites [7]. 
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and standard deviation are employed in [9–14] while [15–17] utilized the variability score and 
variability index as mathematical metrics to calculate the power output variability of PV systems. 
Other studies introduced different metrics to investigate the power output variability, such as the 
Multifractal Detrended Fluctuation Analysis (MFDFA), which is a time series modeling method 
especially used for extreme ambient events [18]. Similarly, [19] adopted the Fourier analysis method 
to characterize the variability using power spectral density. In such studies, data used to calculate the 
PV system’s power variability are obtained using generated synthetic PV system data based on real 
measurements as presented in [1,20]. Few studies have been introduced to estimate the power output 
variability using the Wavelet Transform Technique based on measured data of only one PV sensor 
and by considering the PV system’s locations, cloud speed and irradiance time series [21–23]. Table 
1 summarizes various methods presented in the literature along with the key finding of each study.  

Although several models have been introduced to estimate the power output for a group of PV 
systems distributed within meters to kilometers, the estimation error calculated so far ranges between 
8% to 20%, which reveals the relatively poor accuracy of such techniques [23]. As such, developing a 
new model with a higher estimation accuracy would be a significant contribution to this area of 
research. Such a high estimation accuracy model can be employed in power networks of high PV 
system penetration for better reliability, control and asset management, which is the main aim of this 
paper. In this paper, a combined WTT and Adaptive Neuro Fuzzy Inference System (ANFIS)-based 
technique with a higher estimation accuracy than existing models are presented. The proposed 
technique is employed to estimate the power output of a group of rooftop PV systems distributed 
over 0.7 km2 area during variability events. The robustness of the proposed technique is validated 
through its application on real data collected from several PV systems distributed within a few 
hundred meters to 1 km distance.  

In the remaining sections of this paper, brief reviews on the VRI, WTT and ANFIS are presented 
in Section 2. The proposed model methodology is presented in Section 3. Results and discussions are 
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Geographic smoothing or the variability reduction index (VRI) is discussed in several studies in
the literature. In such studies, different methods and metrics are presented to estimate and analyze the
short-term variability in the PV system’s power output. For instance, the correlation coefficient and
standard deviation are employed in [9–14] while [15–17] utilized the variability score and variability
index as mathematical metrics to calculate the power output variability of PV systems. Other studies
introduced different metrics to investigate the power output variability, such as the Multifractal
Detrended Fluctuation Analysis (MFDFA), which is a time series modeling method especially used for
extreme ambient events [18]. Similarly, [19] adopted the Fourier analysis method to characterize the
variability using power spectral density. In such studies, data used to calculate the PV system’s power
variability are obtained using generated synthetic PV system data based on real measurements as
presented in [1,20]. Few studies have been introduced to estimate the power output variability using
the Wavelet Transform Technique based on measured data of only one PV sensor and by considering
the PV system’s locations, cloud speed and irradiance time series [21–23]. Table 1 summarizes various
methods presented in the literature along with the key finding of each study.

Although several models have been introduced to estimate the power output for a group of PV
systems distributed within meters to kilometers, the estimation error calculated so far ranges between
8% to 20%, which reveals the relatively poor accuracy of such techniques [23]. As such, developing
a new model with a higher estimation accuracy would be a significant contribution to this area of
research. Such a high estimation accuracy model can be employed in power networks of high PV
system penetration for better reliability, control and asset management, which is the main aim of this
paper. In this paper, a combined WTT and Adaptive Neuro Fuzzy Inference System (ANFIS)-based
technique with a higher estimation accuracy than existing models are presented. The proposed
technique is employed to estimate the power output of a group of rooftop PV systems distributed over
0.7 km2 area during variability events. The robustness of the proposed technique is validated through
its application on real data collected from several PV systems distributed within a few hundred meters
to 1 km distance.

In the remaining sections of this paper, brief reviews on the VRI, WTT and ANFIS are presented
in Section 2. The proposed model methodology is presented in Section 3. Results and discussions are
presented in Section 4. Section 5 presents a sensitivity analysis of the parameters used in the developed
model followed by the main conclusions.
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2. Variability and Correlation Coefficient

The VRI represents the ratio of the power variance of one PV system to the entire PV plant at a
specific time scale [23] and is mathematically expressed as

VRI =
Nsyst

2

(ρn,m)
overall

(1)

The correlation coefficient in Equation (1) is a measure of the relationship of two random
variables [24]. A number of correlation models are presented in the literature [23,25–28] of which
Pearson’s is considered as one of the popular correlation models [25]. Reference [26] presented an
empirical correlation coefficient (ρHf

m,n, indicated by the Hoff model in the course of this study) that
considers the timescale (T) and the distance (dm,n) between two PV systems’ location as below:

ρHf
m,n =

Vclo × T
dm,n + Vclo × T

(2)

Perez [27] and Lave [23] (ρPz
m,n and ρLv

m,n refer to the Perez and Lave models in the rest of this paper)
have also introduced empirical exponential models as in Equations (3) and (4), respectively.

ρPz
m,n = exp

(
−

1.07dm,n

Vclo × T

)
(3)

ρLv
m,n = exp

(
−dm,n

0.5 Vclo × T

)
(4)

Reference [28] presented another mathematical model (referred to ACM model) by considering
the cloud direction and size as in Equation (5).

ρACM
m,n =

2× 0.5(2−b1) − 0.5(2−b2) − 0.5(2−b3)

2×
(
0.5− 0.5(2−b4)

) (5)

where b1 to b2 are normalized parameters considering Vclo, dm,n and cloud direction.
In addition, Reference [29] presented a VRI technique (referred to the VRI–GEP model in the rest

of this study) by using the maximum values of the existing VRI models [7] and a genetic algorithm
technique called Gene Expression Programming (GEP).

Table 1. Various estimation methods published in the literature.

Reference Investigated System Method Findings

[9]
4 PV systems, Spain and

Portugal with 200 to 500 km2

and 1 and 5 min resolution.

Standard deviation,
Hierarchical clustering

method.

Classified the variability into
low pressure, transient, local

and high-pressure modes

[10]
24 PV systems, Canada,
Germany and USA with

0.1–1 s resolution
Standard deviation

1-s resolution is a marking
point. Less resolution is
difficult to manage and

control

[11] 99 PV systems, UK, 10 km
distance and 1-s resolution

Average data and standard
deviation

Distinguished three cases,
clear, overcast and partly

cloudy sky conditions.

[12]
16 PV systems Canada, few

meters, 1500 km distance 1-h
resolution

Correlation model, standard
deviation and energy
simulation program.

Increasing the area mitigates
the power output variability.
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Table 1. Cont.

Reference Investigated System Method Findings

[13] 89 PV systems, UK, 2 to 50
km distance 1-h resolution.

Standard deviation to
calculate the variability

Aggregated PV systems can
mitigate the variability

[14] 20 PV systems in the USA,
with 1-h time resolution.

Standard deviation and
probability density function.

Model to calculate the
variability using a clear-sky

index.

[15]
9 PV systems, USA, 100 km2

area, 1–30-s and 1-h
resolution.

variability score and
cumulative distribution

function

New model to calculate the
high frequencies of power

variability

[16]

2 PV systems, Canada, with
41 sensors, distance of 400
km and 10-ms data time

resolution.

Employed variability score
and variability index.

Classified daily irradiance
into 4 classes: clear, overcast,

low and high frequencies
solar variability.

[17]
10 PV systems in USA, with

hundreds of km distance
and 30-s time resolution

Variability score method

Variability score is a useful
estimation metric. However,
it is a poor predictor for PV

tracking systems.

[18]

20 PV systems in Hawaii, 1
PV system in Spain, 1 PV
system in Algeria, 1 PV

system in Germany.

Correlation and the
multifractal detrended

fluctuation analysis. The
study focused on temporal

variability.

Variability is not stationary
in which it was the highest
in Hawaii and the lowest in

Algeria.

[19] 50 PV systems, India, 400 km
distance, 1-min resolution.

Fourier transform analysis
and correlation coefficient.

Good smoothing in
short-time events.

Improvement for more
added PV systems.

[1,20]
3 PV systems, Hong Kong,
14 to 18km distance and

1-min resolution.
Using system advisor model

An improved model to
generate spatial synthetic PV

data

[21]
99 PV systems, Germany, 10

to 12 km distance, 1-s.
resolution.

Discrete wavelet transform
model

Distinguished three
conditions, clear, partly

cloudy and overcast.

[22] One PV plant, USA, 60 km.
1-s resolution Discrete wavelet technique Variability is higher at the

end of the feeder.

[23]
550 PV systems, Japan and

Nevada, 1–6 km2

respectively, 1-s resolution.

Discrete wavelet transform
model and variability

reduction index.

Estimation of the power
output with errors of 8%

to 20%.

Thus, the VRI in Equation (1) can be calculated using any of the correlation coefficients presented
in Equations (2) through (5) as below:

VRIx =
Nsyst

2

(ρn,m)
overall

(6)

where x refers to one of these four models.

3. Proposed Technique

The proposed technique is a combination of the WTT and the Adaptive Neuro-Fuzzy Inference
System (ANFIS). Wavelet Transform is a signal processing technique that transforms periodic and
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non-periodic time-series signals into the time-frequency domain [7]. Continuous Wavelet Transform
(CWT) is used for a continuous time-series signals and is expressed as

CWT(a, f ) =
1
√
|a|

∫
∞

−∞

ψ

(
t− f

a

)
× y(t) dt (7)

Because the irradiance time-series signal is discrete [23], Discrete Wavelet Transform (DWT) as in
Equation (8) is more suitable for the analysis in this paper.

DWT mode− j( j, c) =
1

√

Tmode− j

∑
∞

k=1
ψ

[
k− c× Tmode− j

Tmode− j

]
× y[k] (8)

where y[k] is the discrete time-series signal of the PV power output, and a and c are scale and shift
factors; respectively. The mother wavelet function could be one of Harr, Mexican Hat, Symlets, Coiflets,
Biorthogonal, Meyer, Morlet and Daubechies [7]. The decomposed signals resulted from the DWT
process can be divided into high-frequency (HF) and low-frequency (LF) modes. In this paper, a new
technique based on ANFIS is proposed to capture the DWT features and model them [30].

Traditional mathematical modeling methods are inappropriate tools for dealing with stochastic
and uncertain data, such as solar irradiance. An example of a more accurate modeling approach based
on the integration of Artificial Neural Network (ANN) and Fuzzy Control System (FCS) is ANFIS,
considered a powerful technique that can map the relationship between a set of input and output
variables [31]. ANFIS combines the features of ANN and FCS and can function in a noisy, uncertain and
indefinite environment. In this technique, the ANN provides the FCS with learning capabilities, while
the FCS provides ANN with an organized structure with well-established fuzzy rules, reasoning and
thinking [32]. The two learning algorithms adopted in the ANFIS technique are the back-propagation
and hybrid approaches that act to reduce the error between real and estimated data [33].

To build a model that aims at improving the estimation accuracy of the power output of several
rooftop PV systems using ANFIS, it is important to identify the input parameters that influence the
power output variability, such as ambient temperature (Tem), humidity (Hu), PV plant area (Apv),
the PV system site’s power capacity (Pcap), cloud speed (Vclo) as well as the solar irradiance (IPOA).
Some of these parameters are collected using a PV pyranometer located close to the PV system while
other parameters are obtained based on the PV system’s properties. In the developed model, the input
data are divided into three categories as below.

1. PV system properties data: The developed model considers the PV areas (Apv), which is divided
into 6 sub-areas with specific power capacity (Pcap) for each area ((Apv

1 , Pcap
1 ), (Apv

2 , Pcap
2 ),

(Apv
3 , Pcap

3 ), (Apv
4 , Pcap

4 ), (Apv
5 , Pcap

5 ), (Apv
6 , Pcap

6 )). In which (Apv
6 ) represents the entire PV plant

area while Apv and Pcap are used to calculate the power density per unit area (Dcap
A = Pcap/Apv).

This division facilitates the application of the proposed model on various PV plants of different
areas and capacities. The division is selected based on various parameters, such as the number of
PV systems, their capacities and the area layout in which the PV systems are spread. The aim of
this division is to improve the model’s accuracy in estimating the generated power by each small
area. The value of Vclo can be calculated using the method described in [7,24,34].

2. PV sensor data: This includes Tem and, Hu that can be directly collected from the pyranometer
sensor installed in the PV system site.

3. DWT data: obtained using wavelet timescales (modes) analysis.

When the pyranometer is installed in the same tilt and orientation as the PV system, the output
irradiance of the PV sensor will be a plane of the array (IPOA) [23]. Let IPOA[k] denote the output of the
pyranometer, in which k is a time index.

To improve the ANFIS accuracy to estimate the power output, the time series (IPOA) for each day
is divided into five sub-time series. This procedure enables the proposed technique to correlate the
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input and output variables at a specific period of the day more precisely due to the dynamic change of
weather conditions over the day. For each sub-time series, the module power output can be calculated
by [7]:

Pmdu−in
POA [k] = 0.12 ApvIPOA[k] ×

[
1− 0.004

(
Tem[k] +

0.32 βm × IPOA[k]
8.91 + 2 Vclo

− 25
)]

(9)

The average of the total power output of the PV plant (Pmdu−out
Eq [k]) is calculated by assuming

each module is providing the same share of the overall power. Then, Pmdu−in
POA [k] and Pmdu−out

Eq [k]

are normalized by dividing each by Pclr
POA[k] (power output in a clear sky condition), which can be

calculated by replacing IPOA[k] in Equation (9) by IPOA
clr [7],

IPOA
clr = Id

clr + Is
clr + Ig

clr (10)

The parameters in Equation (10) are calculated based on the data at the CAMS McClear website [35].
Then, Equations (11) and (12) can be derived:

PPOA−in
nr [k] =

Pmdu−in
POA [k]

PPOA
clr [k]

(11)

PPOA−out
nr [k] =

Pmdu−out
Eq [k] ]

PPOA
clr [k]

(12)

Using Equation (8), PPOA−in
nr [k] and PPOA−out

nr [k] can be decomposed into three timescale
functions. Thus, DWT analysis of Pnrm

POA−in[k] yields three high-frequency modes (PHF−in
mode− j[k]) and three

low-frequency modes (PLF−in
mode− j[k]). In the same way, Pnrm

POA−out[k] is analyzed into three high-frequency

(PHF−out
mode− j[k]) and low-frequency (PLF−out

mode− j[k]) modes. It is to be noted that from the inverse wavelet
transform, the first and second low-frequency modes can be ignored as they have no impact on the
inverse wavelet process as explained in Equation (13) below [36].

PEq−ANFIS
nr−out = inv(PHF−ANFIS

mode−1 [k]) + inv(PHF−ANFIS
mode−2 [k] + inv(PHF−ANFIS

mode−3 [k] + inv
(
PLF−ANFIS

mode−3 [k]
)

(13)

PHF−in
mode− j[k] and PLF−in

mode− j[k] along with the parameters mentioned in points 1 and 2 above will be

the ANFIS input parameters, whereas PHF−out
mode− j[k] and PLF−out

mode− j[k] are the outputs, as shown in Table 2.
In Table 2, the first and second columns represent the input and outputs of the ANFIS technique while
the third column represents the ANFIS models after the training stages.

Table 2. Adaptive Neuro Fuzzy Inference System (ANFIS) input and output data and models after the
training stage.

Input Parameters Output ANFIS Models after Training

Dcap
A (could be for Apv

1 , Apv
2 ,

Apv
3 , Apv

4 , Apv
5 or Apv

6 ),
VcloTem[k], Hu[k]

PHF−in
mode−1[k] PHF−out

mode−1[k] PHF−ANFIS
mode−1 [k]

PHF−in
mode−2[k] PHF−out

mode−2[k] PHF−ANFIS
mode−2 [k]

PHF−in
mode−3[k] PHF−out

mode−3[k] PHF−ANFIS
mode−3 [k]

PLF−in
mode−3[k] PLF−out

mode−3[k] PLF−ANFIS
mode−3 [k]

The results of the ANFIS modeling process comprise four ANFIS models, each one represents
the ANFIS–DWT model at a certain wavelet mode. For example, PHF−ANFIS

mode−1 [k], PHF−ANFIS
mode−2 [k] and

PHF−ANFIS
mode−3 [k] represent the equivalent wavelet analysis of mode-1, mode-2 and mode-3 for the

high-frequency signals, respectively, while PLF−ANFIS
mode−3 [k] represents the equivalent wavelet analysis of

mode-3 for a low-pass signal as shown in Table 2.
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Then, by applying the inverse DWT as in Equation (13), the estimation of the equivalent normalized
power output of several rooftop PV systems distributed within a certain area is evaluated.

By multiplying the results of Equation (13) by PPOA
clr [k] and the number of PV modules (Nmod),

the equivalent power output seen by the entire PV plant can be estimated as follows:

PEq−ANFIS
out = PEq−ANFIS

nr−out × PPOA
clr [k] ×Nmod (14)

Figure 2 illustrates the flowchart of the main steps of the ANFIS–DWT technique proposed in
this paper.
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Because variability is the main concern by power operators and planners, the variability power
index (Vpi) has been introduced as a mathematical tool to show the amount of the power fluctuation at

each DWT mode. First, PEq−ANFIS
nr−out is analyzed into six timescales, namely 2, 4, 8, 16, 32 and 64 min,

using the DWT method. To calculate the power at each timescale, the wavelet periodogram has been
used as below [37]:

Iw[k] =

∣∣∣∣PHF−ANFIS
mode− j [k]

∣∣∣∣2
Tmode− j

(15)

then,

Vpi
(
Tmode−j

)
=

∫ TL
0 Iw[k]dk

TL
(16)

According to [37], the variability reduction index (VRI) can be by calculated using Equation (17):

VRI =
Vpi

(
Tmode− j

)
py

Vpi
(
Tmode− j

)
ave

(17)

4. Performance Evaluation of the Proposed Technique

Data of 445 days in the years 2016 and 2017 with different amounts of variabilities, where days
with a completely clear sky were eliminated, were used to develop the proposed model. Data were
collected from PV rooftop systems with a 2.14 MW power capacity that were distributed within 0.7 km2

at the University of Queensland, Brisbane, Australia. The PV site is located at 153◦29′44” east longitude
and 27◦00′30” south latitude. All PV systems faced the north at an inclination angle of 30◦ to produce
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maximum possible power. Brisbane city weather is described as humid and warm all through the
year. The temperature in summer and winter ranges between 21 to 35 ◦C, and 11 to 21 ◦C, respectively,
while it is 15 to 25 ◦C in autumn and spring. In summer, Brisbane’s sky exhibits several passing clouds
events, more than in winter [38].

The varied weather over the four seasons for Brisbane city and the PV systems being distributed
around the University of Queensland makes it a suitable site for this study. PV sensor data were
collected from the PV located at Site 7 in Figure 3.Energies 2020, 13, x FOR PEER REVIEW 8 of 15 
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4.1. Simulation Results

The collected data of the 445 days comprise small, middle and large variability. For ANFIS
training and testing data, 330 days were used and the rest of the data were used in the validation stage.
To improve the ANFIS performance during the training stage, each day was divided into five sub-time
series, with the first sub-time series assumed to start at 7:00 a.m. and ending at 8:59 a.m.; the second
sub-time series was from 9:00 a.m. to 10:59 a.m.; the third sub-time series was from 11:00 a.m. to
12:59 p.m.; the fourth sub-time series was from 1:00 p.m. to 2:59 pm; and the fifth sub-time series was
from 3:00 p.m. to 5:00 p.m.. The sunrise and sunset times have been taken into account in this division.
The PV plant was also divided into six small areas, namely the whole PV plant (Apv

6 ), Apv
1 = 0.227 km2

with 1.82 MW, Apv
2 = 0.37 km2 with 1.9 MW, Apv

3 = 0.17 km2 with 0.606 MW, Apv
4 = 0.162 km2 with

1 MW, Apv
5 = 0.275 km2 with 1.82 MW and Apv

6 = 0.7 km2 with 2.14 MW.
Following the methodology steps in Figure 2 and by using the input and output data in Table 2,

the ANFIS model can be built and trained. Since the back-propagation algorithm is relatively slow [36],
the hybrid-learning algorithm was adopted to train the proposed ANFIS model.

Figure 4 shows the error in estimating the power output when different MFs are employed.
Results show that the gaussmf membership function is more accurate than other types after 100 epochs
training modes and hence it was employed in the ANFIS model.

Figure 5 shows the Root Mean Square Error (RMSE) for the last epoch at each ANFIS model and
at each sub-time series. Four ANFIS models were developed as shown in Table 2, third column.
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The model was validated using the remaining 115 days. Four signals (PHF−ANFIS
mode−1 [k], PHF−ANFIS

mode−2 [k],
PHF−ANFIS

mode−3 [k] and PHF−ANFIS
mode−3 [k]) represent the results and by applying Equations (13) and (14), the

estimated PV system power power output can be obtained. Figure 6 depicts the error in the estimated
power of the developed model for 115 days using Mean Absolute Error (MAE) and RMSE in comparison
with other methods mentioned in Section 2, such as the Hoff, Perez, Lave and VRI–GEP models. Table 3
summaries the results of Figure 6 by using the average values of the MEA and RMSE for each method
mentioned in the introduction section along with the proposed technique in this paper. This table
also illustrates the minimum and maximum improvement values attained by the proposed technique
when compared with the existing models in the literature. It can be seen from these results that the
proposed method is more accurate than other models published in the literature. Considering the
MAE, the minimum improvements attained by the proposed technique for the five sub-time series
are 11.44, 8.87, 7.46, 9.03 and 10.41, respectively, whereas the maximum improvements for the same
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sub-time series are 36.89, 28.6, 24.06, 28.81 and 33.07, respectively. Similarly, results reveal a very similar
tendency in the enhancement attained by the proposed technique when the RMSE metric is considered.

Table 3. MAE (%) and RMSE (%) average value comparison for different variability reduction index
(VRI) models, including the proposed model in this paper.

7:00–8:59 a.m. 9:00–10:59 a.m. 11:00–12:59 p.m. 1:00–2:59 p.m. 3:00–5:00 p.m.
Models MAE RMES MAE RMES MAE RMES MAE RMES MAE RMES

Hoff 10.05 12.11 12.18 15.48 13.96 15.75 12.32 14.62 9.78 12.58
Perez 9.5 15.80 11.64 14.94 13.43 15.22 11.76 14.08 9.26 12.04
Lave 8.8 10.86 10.92 14.23 12.71 14.50 11.04 13.36 8.72 11.40

VRI-GEP 8.18 10.24 10.31 13.61 12.10 13.88 10.43 12.75 8.12 10.78
DWT-ANFIS 7.34 9.52 9.47 12.77 11.25 13.04 9.56 11.91 7.35 10.01

Minimum
improvement (%) 11.44 7.641 8.87 6.58 7.46 6.44 9.03 7.05 10.41 7.84

Maximum
improvemen (%) 36.89 27.26 28.6 21.20 24.06 20.76 28.81 22.74 33.07 25.83

To calculate the VRI parameter, the power output was analyzed from six wavelet modes using
Equation (8), and then the wavelet periodograms factor in Equation (15) was employed at each wavelet
mode. Using Equation (16), the amount of power involved in the variability Vpi

(
Tmode−i

)
at each mode

and each sub-time series can be evaluated. Figure 7 shows an example for one day, December 3, 2017,
that was chosen to explain this step. The blue line in Figure 7 represents Vpi

(
Tmode−i

)
for one PV system

(No. 7), while the black and red lines represent Vpi
(
Tmode−i

)
for the actual and predicted power output

for 16 PV systems, respectively. From these plots, the distance between the blue line (one PV system)
and black and red lines (16 PV systems) characterizes the geographic smoothing or the VRI value.
The VRI can be calculated using Equation (17) as shown in Figure 8. These figures attest that VRI
can be changed during the day. For example, the value of the VRI at Mode 1 is 8.2 at sub-time series
7:00–8:59 a.m., while it is 6.2, 7, 7, 7.5 at sub-time series 9:00–10:59 a.m., 11:00–12:59 p.m., 1:00–2:59 p.m.
and 3:00–5:00 p.m., respectively. This is attributed to the change in the ambient parameters affecting
the VRI, such as Vclo, Tem, and Hu during the daytime.
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4.2. Discussion

The estimation improvement strategy adopted in this study is based on dividing the time series
data into several sub-time series (five sub-times series in this study) along with employing the Wavelet
Transform Technique. ANFIS is employed to accurately map the relationship between the input and
output data set.

Dividing the time series data into five segments helps the ANFIS algorithm map the correlation
between the input and output data rapidly and precisely due to the fact that, within each selected
period, the environmental conditions such as tempreture, zenith angle and power output would not
change much. Likewise, the division conducted by the Wavelet Transform method on each sub-time
series into low- and high-frequency bands reduces the ANFIS confusion during the training process to
map the relationship between the input and output data.

Results of the proposed technique in this paper reveal its high accuracy when compared with other
estimation models published in the literature. Results in Figure 6 and Table 3 also show a comparison
of the model proposed in this paper and our recent VRI–GEP technique [29]. It can be observed
that both the GEP and ANFIS techniques provide more accurate results than other techniques in the
literature [39,40]. Reference [29] employed the GEP technique to develop a VRI model whereas in this
paper, the ANFIS–DWT model is used to estimate the power output directly without calculating the VRI
as per the strategy of all existing models in the literature. This reduces the calculation complexity and
improves the estimation accuracy. Results show that the ANFIS model proposed in this paper attains
a minimum and maximum improvement of 6.44% and 11.44% when compared with the VRI–GEP
model by considering the MAE metric.

4.3. Sensitivity Analysis

Following the validation of the proposed model’s accuracy in the above section, this section is
aimed at investigating the sensitivity of the parameters used in the proposed model. In this regard,
each parameter was changed in an expected range as listed in Table 4 while maintaining all other
parameters unchanged [41]. The effect of such a change on the power output was analyzed using the
standard deviation (SD) metric. To standardize the model sensitivity analysis, SD is divided by the
average value of the measured parameter. Figure 9 shows the impact of each parameter at different
sub-time series. It can be seen that the input power parameter has a more significant impact than the
ambient temperature while the humidity, cloud speed and the ratio of the PV plant capacity to the
plant area have approximately the same impact. Table 4 illustrates the minimum and maximum values
for each parameter that were considered during the sensitivity analysis.
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Table 4. Minimum and maximum values for each model parameter.

Parameters Minimum Maximum
PPOA−in

nr [k] 1 0
Hu[k] 10 95
Vclo 1 13

Tem[k] 8 36
De 3 8
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5. Conclusions

Using Wavelet-based and ANFIS modeling approaches, new PV system power output estimation
models are presented in this paper. The developed models are employed to estimate the generated
power of a group of PV systems distributed over 0.7 km2 using irradiance data of one PV sensor located
near the PV plant. Parameters such as PV area, capacity, cloud speed, temperature and humidity are
considered as the inputs to the proposed model. Real data collected from a PV plant in Brisbane,
Australia, were used to train the proposed model. Results reveal the high accuracy of the developed
model when compared with the existing estimation models in the literature. Sensitivity analysis of
each parameter reveals that the power output collected from the PV sensor has the largest impact on
estimating the entire PV system’s power output using the developed model. Ambient parameters,
including humidity, cloud speed and the power capacity of the overall PV plant, have similar but less
impactful effects on the estimated power.
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Nomenclature

Hu humidity
Id
clr Incident direct irradiances on PV array (clear sky)

Ig
clr Incident ground-reflected diffuse irradiances (clear sky)

Is
clr Incident sky diffuse irradiances (clear sky)

Iw wavelet periodogram
IPOA Plane of the array irradiance
j Model-level
inv( ) Inverse DWT mode (level)
f Shift factor
k Time sample
Nsyst Number of the PV sites
Nmod Number of PV modules
()overall Entire PV plant
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Pcap PVs plant power capacity
Pmdu−in

POA Pyranometer power equivalent to module power
Pmdu−out

Eq Average output power of the overall PV plant
PPOA

clr Clear sky power model
PPOA−in

nr Normalized Pmdu−in
POA

PPOA−out
nr Normalized Pmdu−out

Eq
Pnr Could be PPOA−in

nr or PPOA−out
nr

PHF−in
mode− j Wavelet high-frequency levels for PPOA−in

nr

PLF−in
mode− j Wavelet low-frequency levels for PPOA−in

nr

PHF−out
mode− j Wavelet high-frequency levels for PPOA−out

nr

PLF−out
mode− j Wavelet low-frequency levels for PPOA−out

nr

PHF−ANFIS
mode− j DWT-ANFIS high-frequency levels

PLF−ANFIS
mode−3 DWT-ANFIS low-frequency levels

PEq−ANFIS
nr−out Estimation of equivalent normalized output power (entire PVs)

PEq−ANFIS
out Equivalent output power seen by the entire PV plant

Tmode− j Timescale
Tem Ambient temperature
TL Length of the time-series signal
x can be Hoff, Perez, Lave or ACM correlation model
Vclo cloud speed
VRI Variability reduction index
Vpi Variability power index
Vpi

(
Tmode− j

)
py Vpi for the pyranometer (or individual PV system)

Vpi
(
Tmode− j

)
ave

Vpi for the overall PV plant
βm Mounting coefficient
ψ Mother wavelet
ρ Correlation coefficient
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