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Abstract Nowadays classification models have been widely adopted in health-
care, aiming at supporting practitioners for disease diagnosis and human error
reduction. The challenge is utilising effective methods to mine real-world data
in the medical domain, as many different models have been proposed with
varying results. A large number of researchers focus on the diversity problem
of real-time data sets in classification models. Some previous works developed
methods comprising of homogeneous graphs for knowledge representation and
then knowledge discovery. However, such approaches are weak in discovering
different relationships among elements. In this paper, we propose an innova-
tive classification model for knowledge discovery from patients’ personal health
repositories. The model discovers medical domain knowledge from the massive
data in the National Health and Nutrition Examination Survey (NHANES).
The knowledge is conceptualised in a heterogeneous knowledge graph. On the
basis of the model, an innovative method is developed to help uncover poten-
tial diseases suffered by people and, furthermore, to classify patients’ health
risk. The proposed model is evaluated by comparison to a baseline model also
built on the NHANES data set in an empirical experiment. The performance
of proposed model is promising. The paper makes significant contributions to
the advancement of knowledge in data mining with an innovative classification
model specifically crafted for domain-based data. In addition, by accessing the
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patterns of various observations, the research contributes to the work of prac-
titioners by providing a multifaceted understanding of individual and public
health.

Keywords Health Knowledge Graph · Classification · Healthcare · Electronic
health data

1 Introduction

Improving the quality of healthcare has been one of the constant motivations
to advance science and technology. The United States invested $414.3 billion
in 2011 to improve the quality of healthcare systems [1]. In 2015, the United
States government decided to enhance precise medicine by utilising increas-
ingly large amounts of available health data [2]. The Australian government
also launched a program recently to improve healthcare services with a ten-
year plan commencing in 2015. In addition, $40 million over three years has
been invested by the Australian government for indigenous primary health-
care [3], aiming at measuring and identifying effective techniques to be used in
healthcare services. However, there are many challenges in developing effective
models for healthcare applications. The challenges are further complicated by
the volume and complexity of real data, especially in the Big Data era nowa-
days. Therefore, further research is in urgent demand for knowledge acquisi-
tion as well as knowledge utilisation in practical applications for healthcare
services.

Knowledge discovery and knowledge management have played a very im-
portant role in healthcare services. Data mining techniques have been used to
facilitate treatment evaluation and to help manage the practitioner-patient re-
lationship. Much work has been done in disease risk assessment, with a focus on
supporting medical practitioners to make safe and effective clinical decisions.
Massive medical data sets contain wealthy domain knowledge that can help
physicians in decision-making. Some previous research, based on the study of
semantic knowledge underlying from medical corpus, has been undertaken to
improve the assessment and management of disease [4, 5]. These studies have
helped to improve accuracy in disease assessment and reduce errors in disease
treatment. However, the diversity and complexity of terms and concepts in
documents have limited the effect of study and become a significant barrier to
knowledge acquisition from medical corpus.

Much effort has then been invested, trying to overcome the barrier and
efficiently acquire domain knowledge underlying from medical corpus. Lee et
al. [6] proposed a new approach to generate detailed hypotheses based on
existing concepts while simultaneously using syntactic relations to support
semantic representations. Some works, such as the health prediction model in-
troduced by Chen et al [38], represent concepts detected from documents in a
graph form. Ni et al. [8] proposed a new method to measure similarity among
concepts. The approach represents concepts as continuous vectors, which are
utilised to accumulate similar pairwise arrangements among pairs of concepts.
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The study made the improvement of measuring semantics among documents
successfully. Similarly, to guarantee the semantic measure of similarity between
medical terms, Karpagam et al. [9] introduced a new method to combine differ-
ent disease concepts and biomedical resources to construct a disease ontology
automatically. The adoption of knowledge engineering techniques for medi-
cal domain knowledge discovery has become a promising paradigm, attracting
more and more attention of the related research community.

The increasing volume of medical data is also helpful for medical profes-
sionals who wish to improve the quality of healthcare services. In relation to
medical diagnosis, some researchers have developed predictive models to as-
sess clinical risks [10,11] and to predict diseases [12,13]. However, when trying
to apply these models to practice on real world data, some issues stand still.
Most of data sets lack labels, whereas labelling data manually is extremely time
consuming and financially expensive. The lack of features for representing all
types of linked data is also an issue and putting negative effect on discovered
knowledge. The real data sets are also complex in data structure and usually
include multiple, heterogenous types of data. As a result, the current health-
care systems adopting data mining and machine learning techniques need to
be improved for better usability of real world data.

Heterogeneous knowledge graph has then been adopted by many works
while trying to mine massive, complex data for healthcare systems. Ming et
al. [14] proposed a new algorithm to predict the label for each object by sep-
arating the different types of links and objects, which can be applied on the
heterogeneous graph. The approach shows a significant improvement in the
task of classification problem. Following some successful attempts, there has
been an increasing number of works on classification adopting heterogeneous
graph to represent data and knowledge [7, 15–17]. Aiming at diagnosing dis-
ease, Chen et al. [38] proposed an algorithm, namely, a semi-supervised het-
erogeneous graph on health (SHG-Health), to predict the risk of mortality and
morbidity of patients based on health examination data. The model attempts
to discover knowledge from the heterogeneous graph built based on semantic
relations existing in data. Their work has had a huge step up in mining health
examination data for health risk prediction.

In this paper, a heterogeneous health knowledge graph is proposed to help
knowledge discovery in health examination data. A real world data set, the Na-
tional Health and Nutrition Examination Survey (NHANES) 1 is used in the
study. The knowledge graph is constructed by a set of medical domain knowl-
edge generated using healthcare categorization and a set of other knowledge
discovered from the NHANES data set, which is a group of latent concepts
decoded using Pearson Correlation. On the basis of the heterogeneous knowl-
edge graph, we proposed a classification model to assess people’s potential risk
in having diseases. Empirical experiments have shown a promising result when
compared the proposed model with Chen et al.’s work [38]. The contribution
of our work can be highlighted as follows:

1 https://www.cdc.gov/nchs/nhanes/index.htm
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– An innovative heterogeneous knowledge graph is introduced, which is learned
from a real world health examination data set.

– A classification model is proposed to predict patients’ health risk using the
heterogeneous knowledge graph

– A methodological contribution is delivered by the conduction of empirical
experiments for evaluation of proposed models.

– The experimental results provided an evidence to support the superior of
evidence-based medicine to experience-based medicine.

The study is a successful exploration of alternative mechanisms of mining
medical and health data for evidence-based decision-making support.

The remainder of this paper is organised as follows. In Section 2, we review
the existing work that share the same interest or on the similar research track.
The research problem is then formally defined in Section 3. The proposed
method is presented in Section 4, including building the health knowledge
graph and adopting the knowledge graph for health risk prediction. Section 5
presents the experiment design for evaluation of the proposed classification
model using health knowledge graph, and the related experimental results are
reported and discussed in Section 6. Finally, Section 7 makes the conclusions.

2 Related Work

Data mining is used not only to discover latent relationships among data but
also to help reveal intelligible information of users [18–20]. Data mining tech-
niques support intelligent data preprocessing that automatically selects the re-
quired data and eliminates the undesired data, as typical works done in [21,22].
It also uses domain knowledge and automates the knowledge discovery process
and leads decision-makers to a better understanding and utilization of exist-
ing knowledge in data. It is very likely that data mining could become a core
technology for the practice of evidence-based medicine [23]. Since the use of
computers has become extensive in the healthcare industry, data mining has
also become an important modality in all fields of health sciences. The goal of
research on health information is to combine computer science and informa-
tion technology to improve the quality of care [24]. According to Melville et
al. [25] and Holzinger [26], researchers use data mining as an important tool
for analyzing big data to improve healthcare services. In addition, using data
mining techniques, healthcare professionals can predict health insurance fraud,
healthcare costs, disease prognosis, disease diagnosis and disease epidemiology
and accurately estimate the length of stay (LOS) in a hospital [23].

Health status measurement prognostication has appeared as one of the
most difficult challenges that health practitioners are facing. Scoring systems
play an important role in minimizing errors caused by fatigue. In addition,
these systems are widely used to support health practitioners in improving
health knowledge and clinical decisions. In the area of myelodysplasia syn-
dromes, different scoring systems were introduced. For example, the inter-
national prognostic scoring system (IPSS), which was introduced by Green-
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berg [27], focused mainly on the improvement in analyzing the specific impact
of marrow blast percentage and depth of cytopenias.

The Simplified Acute Physiology Score (SAPS) II scoring system, intro-
duced by Le Gall [28], helped physicians to make better clinical decisions by
quantifying the severity of illness in the Intensive care unit area. The system
introduced a method to convert the score to the possibility of a patient’s mor-
tality in the hospital. In line with SAPS II, the Acute Physiology and Chronic
Health Evaluation (APACHE) II scoring system [29] was introduced, focusing
on the systematic application of clinical judgments about the relative impor-
tance of derangement. The researchers have tried not only to introduce new
scoring systems but also to compare the advantages and efficiency levels among
the existing scoring systems, resulting in a better form of scoring systems to
physicians. For example, Keegan et al. [30] have discussed the performance
of four scoring systems including APACHE III, APACHE IV, SAPS III and
Mortality Probability Model (MPM) III. The research showed that APACHE
III and APACHE IV had no significant difference in distinguishing capability
and they both performed better compared with SAPS III and (MPM) III.
Moreover, the research also revealed that the complex models worked better
than the simple models, and the efficiency level of these models depended on
the number of variables.

Different studies have been conducted by using classification techniques to
support health practitioners in health risk prediction. Yeh et al. [31] aimed
to apply classification to build an optimum cerebrovascular disease predictive
model. In the research, three attribute input modes, T1, T2, and T3 were built,
with a main focus on building efficient classification models. Alternatively,
Neuvirth et al. [32] conducted research applying state-of-the-art methods to
predict the health status of patients and identify potential risks. The adopted
methods included logistic regression (LR) and k-nearest neighbour (KNN).

Following the similar path, a novel machine learning approach was pro-
posed by Nguyen et al. [33]. The approach adopted soft labels in training pro-
cess in order to refine the binary classifiers and to achieve efficient classification
result. Aiming at solving the problem of label uncertainty (label noise) in bi-
nary classification, Yang et al. [34] introduced a new method, which is focused
on using uncertain information to improve the performance of retraining-based
models. The results showed that the new method is efficient and can be used
to reduce human labelling errors in different applications.

The graph-based method has brought more advantages for discovering the
intrinsic characteristics of data. The vertices and edges of a graph are taken
up to model data points and their relationships, respectively [35]. Researchers
have conducted different studies aiming to reduce the errors of the graph-
based method. A study showed that data mining performance was improved
significantly when the data was represented in a heterogeneous graph. Conse-
quently, more meaningful knowledge was discovered [15,36]. In 2010, Ming et
al. [14] conducted a study by using a classification method, namely GNetMine,
for heterogeneous networks. GNetMine used only one common classification
criteria for all of the objects in the network. The common classification crite-
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ria, however, has become one of the weaknesses of the method. Alternatively,
Wang et al. [7] argued that different types of objects in the network require
different criteria of classification and introduced a new method to adopt meta
paths to help mining heterogeneous graphs.

Heterogeneous information graphs have also been widely utilised in health-
care data mining, aiming at discovering meaningful medical knowledge and
improving disease diagnosis. Hwang et al. [37] introduced a heterogeneous la-
bel propagation algorithm and adopted graph-based semi-supervised learning
to discover patterns in disease genes. The study is based on homo-subnetworks
where links are set up from the same type of objects to build up a heteroge-
neous disease-gene graph. Recently, Chen et al. [38] proposed an algorithm,
namely semi-supervised heterogeneous graph on the health (SHG-Health), to
predict high-risk disease from unlabelled data. The study made a significant
contribution to healthcare data mining using heterogeneous information graph.

Data mining has made many significant contributions to discover and ac-
quire new knowledge in various domains [19,20]. The fact is particularly clear
in healthcare domain, in which the services have been significantly improved
due to the adoption of innovative data mining techniques and tools [23–26].
Specifically, many graph-based approaches have been used to assist decision
making in disease diagnosis, in addition to traditional means [7,14,15,35–38]).
However, the majority of these approaches rely on labelled data to develop
prediction algorithms, which leaves unlabeled data a fertile resource to be
explored for further advancement of healthcare services. The advantages of
graph-based techniques have not been universally applied in classification for
health risk predictions [31–34]. In addition, the Pearson Correlation coefficient
is related to the effect size of the relationship between two variables, used by
Ha et al. to improve their model in identifying the relationship between dis-
eases [39]. By a combination of these advantages for data mining in healthcare
domain, the study presented in the paper aims to improve the understand-
ing of semantics in healthcare data and adopts the semantic knowledge in an
innovative classification model for health risk prediction.

3 Research Problem

The work is focused on patients’ health risk assessment using data mining and
machine learning techniques to analyse healthcare data. Our human brains
have limits; medical knowledge is evolving. Healthcare practitioners may find
it difficult to avoid human errors when they simply rely on their experience.
Decisions made on the basis of past experience may lead to negligence of
critical cases. In contrast, data mining in healthcare can help cover potentially
overlooked areas because it does not have the aforementioned limitations. Data
mining allows researchers to work with data collected from a huge number of
patients. As a result, data mining can provide high-quality evidence covering
the maximum number of possibilities to support decision-making by knowledge
discovery in healthcare data.
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Data analysis will help practitioners predict health risk of patients using
a binary classification model. Furthermore, classification techniques not only
are able to help practitioners categorise patients into broad groups such as
healthy or unhealthy, but may also provide them with suggestions on what
kind of diseases they are suffering from. The work presented in this paper is an
attempt to answer the problem by utilising data mining and machine learning
techniques. As an ultimate goal, the research aims to provide decision-making
support based on evidence instead of experience, to healthcare practitioners,
and to help reduce human errors.

There are several concepts and notations that need to be introduced before
formally defining the research problem.

Definition 1 [Electronic Health Records]
The Electronic Health Records are a 3-tuple R := 〈P,A,MA

P 〉, where

– P = {p1, p2, . . . , pm} is a set of patients and |P| = m;
– A = {a1, a2, . . . , an} is a set of attributes and |A| = n. Each attribute has

a label label(a) that marks the semantic meaning of a;
– MA

P is a matrix constructed by P × A with values taken from a survey
with questions defined by A for patients P. �

Definition 2 [Patient Health Profile]
The health profile HP(p) of a patient p ∈ P is defined as a vector −→p =
{〈a1, w1〉, 〈a2, w2〉, . . . , 〈an, wn〉}, where a ∈ A and w is the value of attribute
a on patient p. �

Definition 3 [Research Problem]
Let P = {pi ∈ P, i = 1, . . . , ı} be a set of patients; S = {s1, . . . , sK} be a set
of classes, where each s is a disease and K is the number of classes. Given a
training set of patients Pt = {pj , j = ı+ 1, . . . ,m} and their respective health
profiles HP(pj), with ykj = {0, 1}, k = 1, . . . ,K provided for describing the
likelihood of pj belonging to class sk, the research problem is to learn a binary
prediction function f(yk|p) and use it to classify pi ∈ P into {sk} ⊂ S for
prediction of the patients’ health risk in terms of the set of diseases defined in
S. �

4 Health Knowledge Graph for Health Risk Classification

In this study, the National Health and Nutrition Examination Survey (NHANES)
dataset is studied. NHANES is a survey conducted in the United States. The
survey covers extensive topics in health and nutritional on about 10,000 people
including adults and children. Thousands of questions are asked or ticked in
interviews and physical examinations, resulting a total of 2585 attributes (data
types) in the dataset. Eventually, the dataset contains the profile, history and
health status of a large number of patients. However, in the study we focus on
only adults and their health related issues, and exclude those survey data on
children and those related to food and nutrition, for the sake of complexity.



8 Xiaohui Tao et al.

Table 1 NHANES attributes by Categories

Type Category Attribute description

Patient

Profile

Demograph-

ics

age, marital status, gender, education level, residential

suburb, annual income, weight, people according to age

groups, total number of people in the family/household,

language used in interview

Habit
consumption behavior, diet behavior and nutrition, phys-

ical activities, smoking, alcohol use, drug use

Question-

naire

Mental

Health

questions regarding sleep disorders, depression, cognitive

problems

Current

Health Status

diabetes, diagnosis of hepatitis B or hepatitis C kid-

ney disease, sexual behaviour, osteoporosis, cardiovascu-

lar disease, dermatology, disability, immunization, oral

health

Health

Conditions

asthma, childhood and adult, anaemia, psoriasis, heart,

diseases, arthritis, blood transfusions

Family

History of

Disease

asthma, diabetes, heart attack/angina

Examina-

tions
Physical

weight, height, recumbent length, body mass, circumfer-

ence muscle strength, blood pressure

External femur, neck, head circumference, leg, arm

Other

trochal term, abdominal diameter, teeth, gum disease,

oral hygiene, impression of soft tissue condition, den-

ture/partial, denture/plates

Lab Tests Biochemical
albumin, cholesterol, glycol haemoglobin, insulin, glucose,

vitamin B12

Blood
blood metal weights, blood lead, blood cadmium, blood

mercury, blood selenium, blood manganese

Urine
urinary arsenic, urinary creatinine, sugar, iodine, mer-

cury, metal, urine pregnancy, trichomonas

Other
toxocara, hepatitis, HIV antibody, human papilloma

virus, nitrate, thiocyanate

Table 1 presents the information of different categories and attributes in the
dataset.

4.1 Health Knowledge Graph

4.1.1 Health Knowledge Discovery from Data

The Pearson correlation coefficient has been commonly used in healthcare re-
lated researches to investigate the relationship between diseases [41–45]. The
method identifies strong connection between factors and helps obtain optimum
result in data mining and machine learning. Ha et. al used the Pearson cor-
relation coefficient to identify the relationship between high-risk diseases and
adult diseases to predict the prognosis of high risk patients [39]. Their model
has achieved 78.3% accuracy compared to other classification models. Many
such works have demonstrated the important effect of the Pearson correlation
coefficient in healthcare and medical domain data mining.
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The Pearson correlation coefficient is also adopted in our work to identify
potential connection of different types of data in the dataset. The coefficient
value indicates the strength of the relationship between data. Transforming
each data type to a node and the connections linking these data to edges
where the coefficient values indicating the strength of the links, a heteroge-
neous information graph can be constructed and used to help discover patterns
underlying from data.

Table 2 Sample Pearson Correlation coefficient results, where the emphasised values indi-
cate strong connection of attributes.

a1 a2 a3 a4 a5 a6 a7 a8 a9
a1 1 0.264 0.415 0.321 -0.032 0.039 0.041 0 0.050
a2 0.264 1 0.292 0.401 -0.019 0.004 0.005 0 0.021
a3 0.415 0.292 1 0.416 -0.020 0.047 0.049 0 0.021
a4 0.320 0.401 0.416 1 -0.049 -0.001 0 0 0.005
a5 -0.032 -0.019 -0.020 -0.049 1 -0.054 -0.066 0 0.045
a6 0.039 0.004 0.047 -0.001 -.0.054 1 0.981 0 0.240
a7 0.041 0.005 0.049 0 -0.066 0.981 1 0 0.245
a8 0 0 0 0 0 0 0 0 0
a9 0.050 0.021 0.01 0.005 0.045 0.240 0.245 0 1

To identify the links between data and measure their strengths, the follow-
ing Pearson correlation formula is exploited [40].

υ =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
(1)

where x and y are two random elements in A. The value of the Pearson cor-
relation coefficient υ reveals how one data affects the other and distinguishes
the correlation between different data. With the values, those data with strong
connection are clustered in a common class.

As defined in Definition 1, MA
P is a matrix constructed by A × P. Thus,

given an attribute a ∈ A, a function that returns all a’s corresponding values
in patients’ health profiles can be defined:

Ω(ai) = {wi|〈ai, wi〉 ∈ −→p , ∀p ∈ P} (2)

Let CR be a set of knowledge specifying the classes revealed by correlation
of the data in R, the Electronic Health Records; c be a concept in health
domain and c ∈ CR; θ be a threshold determining if two attributes are strongly
related or not. Algorithm 1 presents how the knowledge is discovered from the
healthcare data set.

The health knowledge, C, discovered by mining health data R, is a set of
health concepts as defined below:

Definition 4 [Latent Health Knowledge]
Latent health knowledge, denoted by C, is a set of health concepts, in which
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Algorithm 1: Knowledge Discovery from Health Data

input : R = {P,A,MA
P};

output: CR;
1 Let CR = ∅, isInc = false;
2 foreach ai ∈ A do
3 ωi ← Ω(ai);
4 foreach aj ∈ A, ai 6= aj do
5 ωj ← Ω(aj);
6 υi,j ← pearsonCorrelation(ωi, ωj);
7 if υi,j ≥ θ then
8 foreach c ∈ CR do
9 if (ai ∈ c) ∧ (aj /∈ c) ∧ (isInc = false) then

10 c = c ∪ {〈(ai, aj), υi,j〉};
11 isInc = true;

12 end
13 else if (aj ∈ c) ∧ (ai /∈ c) ∧ (isInc = false) then
14 c = c ∪ {〈(ai, aj), υi,j〉};
15 isInc = true;

16 end

17 end
18 if isInc = false then
19 c = {〈(ai, aj), υi,j〉};
20 CR = CR ∪ {c};
21 end
22 isInc = false;

23 end

24 end

25 end
26 return CR;

each element is c := 〈MA
A,
−→
MA

A〉 ∈ C, where MA
A is a matric A × A, A ⊂ A.

For each pair (ai, aj) ∈ MA
A, the value of υ(i, j) ∈

−→
MA

A indicates the strength
level of correlation between ai and aj . �

Table 2 shows a couple of health concepts discovered by Algorithm 1. A con-
cept comprises of attributes a1 (MCQ160D), a2 (MCQ160B), a3 (MCQ160C)
and a4 (MCQ160E). They are strongly connected one another and thus, clus-
tered in a common concept. (In fact, these attributes are commonly related
to heart issues.) Another concept consists of a6 (LBXBPB), a7 (LBDBPBSI)
and a9 (LBXBCD). These attributes also have strong relationship and been
clustered – they are actually all about blood. Attributes a5 (WTSH2YR) and
a8 (LBDBPBLC), however, have no relationship with others listed on the table
and are excluded from the “heart” and “blood” concepts. (They may belong
to other classes that are not shown on the table due to the limit of space here).

4.1.2 Knowledge Acquisition in Health Domain

Domain knowledge has been widely used in data mining to help improve the
performance of systems in specific domains. Xu et al. [46] built a model to
automatically discover patterns specifying semantically similar relationships



Mining Health Knowledge Graph for Health Risk Prediction 11

among diseases, with an aim at helping systems to access to a deeper under-
standing of diseases. Ni et al. [47] proposed an innovative method to measure
similarity among concepts. Representing concepts as continuous vectors, the
method accumulated pairwise similarity among pairs of concepts to measure
the semantic knowledge in documents. Some other works constructed and used
semantic knowledge graph to improve efficiency and (or) effectiveness in med-
ical data analytic and data mining [48,49]. Being enlightened by their success,
semantic knowledge is also adopted in our work to help discover underlying
patterns from the data. A categorization in health domain is constructed based
on a study of the semantic meanings of the attributes in the dataset.

Table 3 Semantic Categories

Class Description
Kidney Conditions All the attributes related to kidney disease.

Hepatitis

All types of hepatitis such as A, B, and C. In addi-
tion, some questions will be asked related to hepatitis,
for example, “Have you ever received Hepatitis A vac-
cine?”

Diabetes Urine or blood lab test.

Blood Pressure and
Cholesterol

All the lab tests relating to blood.

Heart disease

Questions such as “Has a doctor ever told you that you
had a heart attack, coronary heart disease, or conges-
tive heart failure?” In addition, the doctor may ask
about angina (angina pectoris).

Respiratory Disease
Attributes of respiratory disease, e.g., asthma, emphy-
sema, thyroid problem, chronic bronchitis.

Profile
Personal demographics such as age, weight, and gen-
der.

Others
Miscellanea attributes or attributes where ground
truth can not be obtained.

Table 3 presents some semantic concepts with their narratives to describe
the containing sub-concepts. The semantic knowledge provides a different un-
derstanding to the same data in NHANES, in addition to the health knowledge
discovered by Algorithm 1 in Section 4.1.1.

The domain health knowledge, S, acquired by categorizing the attribute
labels in the health dataset R, is a set of semantic health concepts, which is
defined as:

Definition 5 [Domain Health Knowledge]
Domain Health Knowledge, denoted by S, is a set of health concepts and their
containing sub-concepts with semantic relations specified by domain experts.
In the domain health knowledge

– s is a concept containing a set of sub-concepts, s = {s′1, s′2, . . . , s′n}.
– s′ is a sub-concept encoded from the label of an attribute, s′a ← label(a),
a ∈ A.
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– rel(x, y) is a Boolean function determining the existence of a relation be-
tween x and y, where (x = s ∨ s′) and (y = s ∨ s′).

– ct(s← s′) indicates a “containment’ relationship existing between s and s′

if rel(s, s′) = 1.
– rt(s′ + i↔ s′j) indicates a “related-to” relationship existing between s′i and
s′j if rel(s′i, s

′
j) = 1 and ct(s← s′i) ∧ ct(s← s′j). �

From the definition, one may see that in the domain health knowledge, sub-
concepts under the same concept are all related to each other, as specified
by domain experts. However, such specification is not applied to the concept
level. In next section, we will discuss how the relationship on the concept level
is discovered using the acquired latent knowledge in Section 4.1.1.

4.1.3 Health Knowledge Graph Construction

With the knowledge discovered from the NHANES survey data and semantic
knowledge acquired in health domain, we can construct a knowledge graph.
The formal definition of the knowledge graph is as following:

Definition 6 [Health Knowledge Graph]
The health knowledge graph is a 2-tuple, G :=< V,E > with an object mapping
function ϕ : V → A and a link type mapping function ψ : E → R, where

– V is a set of vertices, in which each element v is a concept s or sub-concept
s′ in A : ϕ(v) ∈ A, A = C ∪ S;

– E is a set of edges, in which each element is a semantic relation r in the
relation type set R : ψ(e) ∈ R, where R = {rt, ct}. �

Figure 1 illustrates a subgraph of the health knowledge graph constructed
in the work. Three different health concepts are illustrated; vertice H for
Heart Disease, P for Patient Profile and K for Kidney Condition. At the sub-
concept level, vertices hs, ps and ks are shown. Concepts and sub-concepts
are linked by semantic relations, where a solid line refers to related-to and a
dash line refers to containment. As illustrated, Heart Disease (H) contains
hs, Patient Profile (P ) contains ps and Kidney Condition (K) contains ks. As
revealed, p1 (“age”) is almost related to all sub-concept vertices in the figure
because people from all ages could get a heart / kidney disease. p2 (“height”)
is related to p1 (“age”) and p3 (“weight”), however, not any sub-concepts in
Heart Disease (H) or Kidney Condition (K). Also, p3 plays an important
aspect causing “heart attack” (h1) and “weak kidney” (k2). Simply from this
simplified knowledge subgraph, one may see that Patient Profile (P ) is related
to both Heart Disease (H) and Kidney Condition (K). However, there are
seems no connection between Heart Disease (H) and Kidney Condition (K)
– they are independent to each other.
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Fig. 1 A sample subgraph of the health knowledge graph

4.2 Health Knowledge Graph-based Classification

On the basis of the health knowledge graph, a function can be learned from the
training data that formalises the profile of a patient for her state of healthiness
or unhealthiness regarding a disease x:

f(x) =

k∑
i=1

vi × ρ(x, vi)× α+

k∑
j=1

vj × ρ(x, vi)× β (3)

where ϕ(x) = ϕ(vi) and ϕ(x) 6= ϕ(vj).
Based on f(x), a patient’s health status can be modelled as follows:

y(x) =

{
1, if f(x) ≥ θ
0, otherwise

(4)

where θ is a threshold determining the boundary of healthiness and un-
healthiness for the patient. When checking against multiple diseases x ∈ X ,
an overall model is defined adopting Eq. 4:

y(X ) = Πk
n=1y(xn),where x ∈ X , |X | = k (5)

In Eq. 3, α and β are two coefficients adopted to clarify the contribution
of latent health knowledge and domain health knowledge in the classification
model, where α + β = 1. When α approximates 1 (β approximates 0), the
model favourites domain health knowledge and omits latent health knowledge;
when β approximates 1 (α approximates 0), latent health knowledge takes place
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and domain health knowledge is faded; when α and β are of the same value
(α = 0.5 and β = 0.5), latent health knowledge and domain health knowledge
are equally considered in the classification model.

Aiming at finding the best values of α, β and θ, Algorithm 2 is adopted
and presented as follow. The algorithm attempts to reach the best combina-
tion of α, β and θ through a convergence process for optimisation. Starting
with θ = 0.1, it firstly finds out the values of α and β that make the best
performance of the model. Then, upon the found α and β values, the algo-
rithm retests the model with different scales of θ and chooses the value with
the greatest performance improvement. The process repeats until at a point
that no more improvement could be seen, and the combination of α, β and θ
is then determined.

Algorithm 2: Optimisation Algorithm
1: set θ = 0.1;

for each α ∈ {0, 0.1, . . . , 1} where β ∈ {1, 0.9, . . . , 0}
– Calculate weight value for Eq.(3)
– Select the best α and β

2: set the best α and β
for θ = 0.1, 0.2, ..., 0.9

– Calculate the value for Eq.(3)
– Select the best θ

3: repeat step 1 for the best θ
4: repeat step 2 for the best α and β
5: repeat step 3 and 4 until convergence
6: return θ, α and β

5 Empirical Experiments for Evaluation

5.1 Experiment Design

In experiments the survey data set of NHANES was used to evaluate the
proposed model and 5-fold method was employed to assure the reliability of
evaluation result. The entire set of patient profiles in the NHANES dataset was
randomly divided into five subsets, and the same experiment was conducted
five rounds. In each round, one subset would be used as the testing set and
the other four as the training set to construct the health knowledge graph and
training the model. In the next round, another subset would be the testing set
and the remaining four as the training set, and so on and son, until all five
subsets were used once as the testing in a round. The final performance of the
experimental models would then be the mean of the performance recorded in
all five rounds.
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Fig. 2 Experimental Dataflow

The dataflow in experiment design is illustrated in Fig. 2. After the division
of the NHANES dataset and formation of the training and testing sets, the
training set data was used to mine latent health knowledge and domain health
knowledge, construct the health knowledge graph, and train the classification
model.The testing dataset would then be used to test the health knowledge
graph-based classification model. Finally, the results were compared to the
baseline model for evaluation.

5.2 Dataset

In the experiments 13 diseases were studied, as listed in Table 4. The group
of patients with self-diagnosis of the diseases formed the ground truth in the
testing set to evaluate the classification results produced by the experimental
models. Amount the entire dataset, 4626 of 9770 participants confessed suffer-
ing from one or more diseases and were identified unhealthy. The remaining
participants were considered healthy.

The data set has been prepared using data pre-processing techniques be-
fore the experiments took place. The raw dataset was highly sparse with a
considerable amount of missing data. Figure 3 reports the ratio of missing
data in the NHANES dataset. We chose only those attributes with substan-
tial availability of data for the experiments. As a result, 318 out of 2585 at-
tributes were considered in the experiments. The raw data in the dataset was
also of heterogenous types, such as textual data, Boolean data, numeric data
and ordinal data collected from personal demographics, observations, labo-
ratory tests, and diagnostic reports. Data transformation and normalisation
techniques were adopted to pre-process the data and made them ready for
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Table 4 Studied diseases

Code Diseases
MCQ160A Arthritis
MCQ160L Liver condition
HEQ030 Hepatitis C
MCQ160B Congestive heart failure
MCQ160C Coronary heart disease
MCQ160D Angina, also called angina pectoris
MCQ160E Heart attack
MCQ160G Emphysema
MCQ160O COPD
DIQ010 Diabetes or sugar diabetes
KIQ022 Weak or failing kidneys
BPQ080 High cholesterol
BPQ020 High blood pressure

Table 5 Statistics of the dataset

Description Number

Participants 9770
Attributes 2858
Diseases 30

Healthy case 5144
Unhealthy case 4626

Fig. 3 The percentage of missing data

experiments. Table 5 presents the statistical information of the dataset after
data pre-processing.

K-fold (K = 5) validation approach was adopted to help ensure the reli-
ability of evaluation results. The NHANES dataset was randomly separated
into five subsets. In each experimental run, one of the five subsets would be
used for training and the other four for testing. Thirteen diseases, as shown
on Table 4, were studied in experiments. The average performance of all five
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runs over the tests of 13 diseases then counted as the final performance of the
experimental models including the proposed one and the baseline.

5.3 Baseline Model

The proposed model was evaluated by comparing with the baseline model
introduced by Chen et al [38]. The baseline model adopted the semi-supervised
learning algorithm to solve the classification problem with consideration of
the relationship between different health examination data. Chen et al. used
a general health examination (GHE) dataset collected for a group of 102,258
people living in Taipei, Taiwan from 2005 to 2010. The work categorised the
230 attributes in the dataset into three types: physical test, mental assessment,
and patient profile. A heterogeneous graph was constructed with four different
types of nodes: Record, Physical Test, Mental Assessment, and Profile. The
Chen et al ’s model was rebuilt using the NHANES dataset and compared with
our proposed model in the same experimental environment, as illustrated in
Fig. 2.

6 Results and Discussions

6.1 Experimental Results

The experimental models’ performance was measured by the metrics of pre-
cision, recall, MAP and F1-measure. These are modern schemes commonly
used by the community for evaluation of classification models [50, 51]. They
are defined as follows:

Percision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP is true positive (Subject x is correctly labeled as belonging to dis-
ease y”), TN as true negative (“Subject x is correctly labeled as not belonging
to disease y”), FN is false negative (“Subject x is incorrectly labeled as not
belonging to disease y”), and FP is false positive (“Subject x is incorrectly
labeled as belonging to disease y”).

Precision, also called positive predictive value, is the probability that sub-
jects being labeled as belonging to a disease truly have the disease. It is calcu-
lated by dividing the number of subjects being correctly labeled as belonging
to a disease by the total number of subjects labeled as belonging to the disease.
Precision is the ability of a model to predict unhealthy patients. The MAP
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is a discriminating choice and recommended for general-purpose classification
evaluation. The average precision for each disease is the mean of the preci-
sion obtained after each subject is labeled. The MAP for the 13 experimental
diseases is then the mean of the average precision scores of the model in the
experiments. Table 6 presents the MAP experimental results. The proposed
model outperformed the baseline model with a ratio of 0.501919 vs. 0.160543.

Recall (also known as sensitivity) is the fraction that the total amount of
subjects with a disease that were actually labelled with the disease by the
model. It is calculated by dividing the number of subjects being correctly
labeled as belonging to a disease by the total number of subjects actually
belonging to the disease. Table 6 also presents the recall experimental results,
where the proposed model outperformed the baseline model with a ratio of
0.602327 vs. 0.458472.

Accuracy measures the probability that subjects being labeled as belonging
to a disease truly have the disease and those being excluded truly do not have
the disease. It is calculated by dividing the number of subjects being correctly
labeled as belonging to a disease and being correctly excluded by the total
number of subjects. The accuracy result is also reported in Table 6, where the
proposed model once again outperformed the baseline model by 0.855432 vs.
0.715782.

Table 6 Experimental Results, where the emphasised values indicate the superior perfor-
mance in comparison.

Proposed model Baseline model %Change p-value
macro-FM 0.547558 0.237811 130.25% -
micro-FM 0.490876 0.215951 127.31% 7.10819E-06

MAP 0.501919 0.160543 212.64% 9.97228E-06
Recall 0.602327 0.458472 31.38% 0.055774252

Accuracy 0.855432 0.715782 19.51% 0.053712282

Table 6 also presents the average macro−F1 and micro−F1 Measure re-
sults. The F1 Measure is calculated by the following equation, where precision
and recall are evenly weighted.:

F1 −measure =
2×Recall × Precision
Recall + Precision

(9)

For each topic, the macro− F1 Measure averages the precision and recall
and then calculates F1 Measure, whereas the micro − F1 Measure calculates
the F1 Measure for each disease and then averages the F1 Measure values.
The greater F1 values indicate the better performance. As evidenced by the
average macro − F1 and micro − F1 Measure results shown in Table 6, the
proposed model also outperformed the based line model significantly.

Aiming at clarifying the significance of improvement achieved by the pro-
posed model comparing with the baseline model, the percentage change in
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performance is used. It is calculated by the following formula, where N is the
number of diseases being observed in the experiments:

%Chg =
1

N
×

N∑
i=1

result(proposed model)− result(baseline model)
result(baseline model)

× 100%

(10)

Apparently, a larger %Chg value indicates more significant improvement
achieved by the proposed model. Table 6 presents the average %Chg results
achieved in experiments. As shown, the proposed model achieved significant
improvements over the baseline model, especially inmacro−F1,micro−F1 and
MAP performance (marked a 130.25%, 127.31% and 212.64% improvements,
respectively).

The statistical analysis using Student’s Paired T-Test is also conducted,
aiming at evaluating the reliability of the experimental results. The typical
null hypothesis is that no difference exists in comparing two models. When
two tests produce highly different significance levels (p-value <0.05), the null
hypothesis is rejected, and the significant difference between two models can
be proven. The T-Test results are also presented in Table 6. The p-values of
micro−F1 and MAP results (7.10819E-06 and 9.97228E-06, respectively) sug-
gest that the proposed model has achieved significant improvement from the
baseline model with strong rejection of null hypothesis. However, when looking
at Recall and Accuracy results, the p-values are 0.055774252 and 0.053712282,
respectively, which fail to prove the significant difference between the two mod-
els. Thus, we do not claim solid improvements made by the proposed model
upon the baseline model in terms of Recall and Accuracy, though the experi-
mental results do mark an improvement of 31.38% and 19.51%, respectively.

The detailed experimental results are reported in Table 7, where those
highlighted values indicate a winning performance.

Table 7 Detailed experimental results, where the emphasised values indicate the superior
performance in comparison.

Disease
Proposed model Baseline model

Precision Recall Accuracy F-Measure Precision Recall Accuracy F-Measure

MCQ160A 0.5150917 0.7341648 0.7435944 0.6008581 0.3393220 0.6666039 0.5692616 0.4479808
MCQ160L 0.5895673 0.2532995 0.9622910 0.3529481 0.0928463 0.3437446 0.8360992 0.1460152
HEQ030 0.5900766 0.6274898 0.9925117 0.5920470 0.0098732 0.7355117 0.3447641 0.0194795
MCQ160B 0.2580697 0.6383047 0.7591656 0.3230750 0.1369621 0.2317645 0.9312353 0.1669016
MCQ160C 0.4652233 0.6137309 0.9560407 0.5282253 0.1186306 0.2935766 0.8838613 0.1684571
MCQ160D 0.3291395 0.5328138 0.9637438 0.3969341 0.1224900 0.1474649 0.9554233 0.1282076
MCQ160E 0.4093152 0.6199377 0.9492445 0.4920899 0.1298166 0.2493632 0.9040603 0.1680419
MCQ160G 0.3242203 0.8270022 0.7841556 0.4301281 0.1255108 0.1116703 0.9714428 0.1127171
MCQ160O 0.6661976 0.4533013 0.7866677 0.3708528 0.1391473 0.1810321 0.9320458 0.1475347
DIQ010 0.8007352 0.5923290 0.9570907 0.6779868 0.0881521 0.8582088 0.3056847 0.1598454
KIQ022 0.3991807 0.4302477 0.7816202 0.3010129 0.0988250 0.2332426 0.9069764 0.1362434
BPQ020 0.6663636 0.7900869 0.7955450 0.7223416 0.3675907 0.9199538 0.4399168 0.5249895
BPQ080 0.5117703 0.7175411 0.6889465 0.5928886 0.3178855 0.9880023 0.3243942 0.4809434

Mean 0.5019193 0.6023269 0.8554321 0.4908760 0.1605425 0.4584722 0.7157820 0.2159506
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Based on the experimental results, one can conclude that the proposed
model is significantly better than the baseline models. These evaluation results
are promising and reliable.

6.2 Discussions

The overall performance of the proposed model is better than that of the base-
line model. This result suggests that the proposed model has higher capability
of handling sparse data comparing with the baseline model. The training data
set is sparse and non-balanced (which reflect the unreliable experimental per-
formance comparison of two models in recall and accuracy). The proposed
model achieved promising results though dealing with such sparse data. How-
ever, the baseline model was recorded with relatively lower performance, espe-
cially in MAP and F1 measure results. The adoption of semantic and domain
knowledge has made a significant impact to the success of the proposed model.
The data was categorised into different categories based on the semantic and
domain knowledge. The use of the Pearson correlation coefficient has also
brought the proposed model an ability of recognising the patterns underlying
from data. With all such advantages, the proposed model was leveraged and
eventually outperformed the baseline significantly in overall.

Different values assigned to the coefficient (γ) in Pearson correlation would
lead to different performance of the model. An overly-high γ value would result
in meaningful information being missed in analysis. In contrast, if γ is too
small, noisy data would be included and result in ambiguous analysis result.
A set of empirical experiments were conducted, aiming at identifying the best
value of γ in order to effectively determine if two sets of data are correlated.
In the experiments, we tested the values from 0 to 1 at intervals of 0.1 for γ
exhaustively. Suggested by the experimental result, γ = 0.3 gave the model
the best and most stable performance, and thus was adopted.

Table 8 Sample comparison of latent health knowledge and domain health knowledge in
Experiments (BPQ080)

Threshold Latent Domain Best performance
Round (θ) (α) (β) Precision Recall Accuracy F-measure

1 0.366 1 0 0.573850 0.568345 0.722309 0.571084
2 0.15 0.5 0.5 0.487437 0.738579 0.687070 0.587286
3 0.083 0.7 0.3 0.534454 0.751773 0.707055 0.624754
4 0.156 0.5 0.5 0.458333 0.759591 0.645983 0.571704
5 0.084 0.7 0.3 0.504777 0.769417 0.682316 0.609615

The coefficients of α and β in Eq. 3 were designed with an aim at lever-
aging the overall performance of the model by giving different considerations
to the latent health knowledge and domain health knowledge. Thus, the finally
determined values of α and β also reveal the importance of the latent health
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knowledge and domain health knowledge to the model. During the experi-
ments, it was found out that, when giving the latent health knowledge more
consideration than the domain health knowledge (α holds a larger value than
β), the proposed model would be powered with higher performance. Table 8
presents the experimental results on BPQ080 High cholesterol, one of the dis-
eases studied in the experiments, with different values setting for α, β and θ
going through five rounds of K-fold. In three of five rounds, the latent health
knowledge has presented a stronger influence than that of the domain health
knowledge ( in the second and fourth rounds they were tied). In the first round,
the case is even extreme and the domain health knowledge appeared with no
helps. Similar observation is also confirmed by experimental results on other
diseases. Over all 13 studied diseases gone through five rounds each, on av-
erage α marks a value of 0.646154, which is much higher than 0.292308, the
average value of β. Such an empirical result suggests that the latent health
knowledge has played a more important role than domain health knowledge in
the proposed model. This a true and encouraging evidence for the superior
claim of “evidence-based medicine” to “experience-based medicine”.

7 Conclusions and Future Work

In the recent years much effort has been invested in transforming healthcare
services from traditional experience-basis to evidence basis [1–3]. Along the
journey, data mining and machine learning techniques have played an impor-
tant role because the evidence in fact refers to the latent knowledge discovered
from massive data collected from daily operations of healthcare services. Data
mining, machine learning and knowledge engineering / management have pro-
vided technical foundation to the transformation of healthcare services, and
more advanced techniques in these areas are in great demand, aiming at fur-
ther improving the quality of healthcare services.

Answering the call, we constructed a health knowledge graph in this paper
using the National Health and Nutrition Examination Survey (NHANES), a
health examination data set. Adopting the knowledge graph, a classification
model was also introduced to predict potential health risk for patients. The
Pearson correlation coefficient was used to discover the correlation between
data attributes. Health domain knowledge contained in the categorization of
diseases was also adopted in the model to help build up the knowledge graph.
Aiming at evaluating the proposed classification model, empirical experiments
were performed, in which the proposed model was compared with a baseline
model implemented for a stat-of-the-art model introduced by Chen et al [38].
The experimental results showed that the proposed model outperformed the
baseline model significantly in MAP and F1 measure.

Two semantic relations, “containment” and “related-to”, have been de-
fined in Definition 5. However, distinguishing the difference in two semantic
relations is not being taken as an advantage in the usage of health knowledge
graph. The current design has introduced an exciting potential to our future
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work - to explore the influence of different semantic relations to the model and
further improve the model’s performance in due course. We will also endeav-
our to enrich the health knowledge graph using natural language processing
and text mining techniques on the MEDLINE corpus, and try to expend the
contributions to medical decision-support for treatment plans.
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