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Abstract: Design of novel multisegmented magnetic nanowires can pave the way for the next
generation of data storage media and logical devices, magnonic crystals, or in magneto-plasmonics,
among other energy conversion, recovery, and storage technological applications. In this work,
we present a detailed study on the synthesis, morphology, structural, and magnetic properties of
Ni, Co, and Ni-Co alloy and multisegmented Ni/Co nanowires modulated in composition, which
were grown by template-assisted electrodeposition employing nanoporous anodic aluminum oxide
as patterned templates. X-ray diffraction, and scanning and high-resolution transmission electron
microscopies allowed for the structural, morphological, and compositional investigations of a few
micrometers long and approximately 40 nm in diameter of pure Ni and Co single elements, together
with multisegmented Ni/Co and alloyed Ni-Co nanowires. The vibrating sample magnetometry
technique enabled us to extract the main characteristic magnetic parameters for these samples,
thereby evaluating their different anisotropic magnetic behaviors and discuss them based on
their morphological and structural features. These novel functional magnetic nanomaterials can
serve as potential candidates for multibit magnetic systems in ultra-high-density magnetic data
storage applications.

Keywords: nanoporous alumina template; electrodeposition; crystalline structure; magnetic
anisotropy; nanowire

1. Introduction

Metallic or metal oxide nanowires (NWs) and nanotubes are 1D nanomaterials that have
attracted great attention among the scientific community during previous decades because of their
unique features and peculiar physicochemical properties, which have become appealing for a wide
range of technological applications, including nanoelectronics [1–3], magneto-optoelectronics [4,5],
semiconducting plasmonics, and magneto-plasmonics [6–8], and soft wearable electronic systems [9],
among many others. This kind of 1D nanomaterial offers particular advantages due to its intrinsic high
aspect ratio, peculiar microstructural characteristics, together with outstanding mechanical, electrical,
magnetic, and optical properties, which enable their integration in novel energy conversion devices
and data storage media, future stretchable electronic systems, sensors, and micro-nanodevices [10–12].
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Nowadays, there are two principal emerging strategies for the synthesis of 1D nanomaterials,
mainly based on free-templated [13,14] or template-assisted methods [15]. Among the solid
template-based growth methods, the template-assisted electrochemical deposition of single metals
and their alloys is one of the most efficient and versatile growing technique popularly employed
for the synthesis of 1D nanomaterials embedded inside the pores of polymeric or anodic aluminum
oxide (AAO) membranes [16–19]. The synthesis of nanomaterials through the template-assisted
electrodeposition method by employing nanoporous alumina membranes (NAMs) as patterned
templates, is a commonly used technique for the growing of metallic and magnetic nanostructures
inside the pores of anodic alumina with a wire shape geometry and in the nanometer scale
range (typically between 20 to 200 nm in diameter size) [20,21]. In comparison with track-etched
polycarbonate membranes, which usually exhibit crossed nanopores, the anodic alumina templates
provide hexagonal close-packed arrangement of parallel aligned nanopores in a honeycomb
spatial structure having a well-defined cylindrical shape, in which can be embedded the
electrochemically-grown magnetic NWs by replicating the same dimensions than the former pore sizes.

Most recently, an upgrade of this synthesis method consists in the fabrication of multisegmented
nanowires embedded into the pores of these NAMs by changing the sample composition from
one layer to the other [22–24], or by varying the diameter size of each nanowire segment [25–29].
These synthesis methods are novel strategies of rising interest for the development of nanomaterials
with fine-tuned magnetic anisotropy in a controlled way [30], which plays a pivotal role in determining
the magnetic properties and, therefore, allowing for the ability of tailoring the relative orientation
of magnetization between each magnetic segment, in order for these multicomponent nanowires to
trigger new applications, as in multibit magnetic recording media [31,32].

The controlled design of multisegmented NWs by assembling several layers having different
alloy compositions, followed in the former case, is usually achieved by employing two different
experimental approaches, the first being through a sequential electrodeposition process, where the
composition of each segment is varied by changing the working electrode between different electrolytes;
while the second one consists of tuning the composition of each segment by properly swapping the
electrodeposition potential or current density, but using a single electrolytic bath [22,33,34]. The first
method allows for minimizing the co-deposition phenomenon that is present when different metallic
ions can be electrodeposited at similar values of the deposition potential within each segment at the
same time. Therefore, a purer chemical composition in each segment of the NW can be achieved in
this way [31,35,36]. This synthesis procedure of subsequent segmented magnetic NWs can also lead to
poor adhesion between layers with different chemical compositions, or uneven morphological growth,
due to changes in the crystalline structure of the respective segments [37] but, at the same time, the
assembling building blocks of consecutive segments of the NW having different material composition
with a well-defined interface layer at the junctions, which can act as a pinning center for the magnetic
domain wall’s displacement along the wire length. This fact allows for the magnetization confinement
in each NW segment and gives rise to NW arrays with a magnetic multi-domain structure [29,31,35].

In this work we report on a detailed comparative study about the synthesis, microstructure,
and magnetic properties of hexagonally-ordered arrangements of soft and hard ferromagnetic NWs
made of pure Ni and Co single elements, respectively, together with Ni-Co alloy and multisegmented
soft-ferromagnetic and hard-ferromagnetic Ni/Co NWs arrays that were electrochemical grown by
template-assisted deposition inside the cylindrical pores of NAMs from two different electrolytes.
The observed structural properties were studied and characterized by X-ray diffraction (XRD) and
high-resolution transmission electron microscopy (HR-TEM) techniques. The composition of both,
multisegmented NWs in the arrangement and isolated NWs after releasing them by chemical etching
from the alumina template, were obtained by EDX with SEM and TEM, respectively. The main
magnetic properties for all of the synthesized samples were determined from the measurements
of their corresponding hysteresis loops carried out by vibrating sample magnetometry (VSM).
The magnetic behavior of each sample was correlated with the magnetic anisotropy coming from the
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different crystallographic features exhibited by the Ni and Co segments of the NW, together with
the additional influence of inter-nanowires magnetostatic interaction among the NWs in the array
and the intra-nanowires’ dipolar interaction between each segment of the multisegmented NWs,
respectively. The obtained results demonstrate that the effective magnetic anisotropy developed
in multisegmented Ni/Co NWs is a direct superposition from their Ni and Co former segments,
but rather different from the more complex magnetic behavior resulting from the Ni50Co50 alloyed
NWs. These peculiar multisegmented nanowire arrangements that consist of layered materials
with different chemical compositions provide to these novel nanoarchitectures with new on-board
multifunctional applications.

2. Experimental Details

2.1. Synthesis of Nanoporous Anodic Alumina Membranes

The starting AAO templates were prepared under mild-anodization conditions by following
a two-step anodization process [38,39] in oxalic acid electrolytes. The starting high purity Al
foils (99.999%, Goodfellow, Huntingdon, England), were first previously cleaned by sonication in
isopropanol and ethanol, and subsequently electropolished to smooth the surface in a vigorously
stirred mixture of perchloric and ethanol (1:3 vol.) for 5 min at 5 ◦C and at the applied voltage of 20 V.
After following this sequential pre-treatment until reaching a mirrored polishing, the substrates were
cleaned with distilled water (18.2 MΩ/cm). The first anodization process was performed in 0.3 M
oxalic acid aqueous electrolyte, vigorously stirred in order to ensure the concentration and temperature
homogeneity of the bulk electrolyte, at certain temperature ranging between 1–3 ◦C. The value of
the anodization voltage applied between the sample and the Pt counter electrode, was kept constant
at 40 V during 24 h. After the first anodization step, the porous alumina layer was removed by wet
chemical etching in a mixture of phosphoric and chromic acids at 35 ◦C for 8 h.

The second anodization step was performed under the same conditions and with the same
operation times (24 h), in order to adjust the final thickness of AAO to around 43.2 µm. This step
results in the growth of a highly-ordered NAM on top of the starting Al substrate. Afterwards, each
of the NAM templates were immersed in 5 wt% phosphoric acid at 30 ◦C to widen the diameter of
the pores. The corresponding operation time was 15 min. The remaining Al substrate was partially
removed under chemical etching in an aqueous mixture of HCl and CuCl2, by exposing an area of
around 1 cm2 of the NAM template’s backside. The alumina barrier layer at the bottom of the pores
was removed by exposing it to 5 wt% H3PO4 at room temperature for 2 h, thus resulting in a two-side
opened NAM, as schematically shown in Figure 1a.

2.2. Surface Functionalization by Atomic Layer Deposition, Au Sputtering and Electrodeposition

The so-obtained NAM templates were further modified by conformal coating their surface and
inner pore walls with a thin SiO2 layer around 4 nm in thickness by means of atomic layer deposition
(ALD), as schematically shown in Figure 1b. The SiO2 coating reduces both the pore diameter and
porosity of the AAO, but it also seems to affect the electric fixed charge on the membranes surface [40].
Conformal atomic layer deposition of SiO2 coating on the AAO samples was performed in an ALD
Savannah 100 thermal reactor from Cambridge Nanotech (Ultratech CNT, Whaltham, MA, USA),
with high purity Ar as the carrier gas. The precursors employed were 3-aminopropyltriethoxysilane
(100 ◦C, 2 s pulse), water (20 ◦C, 0.5 s pulse), and ozone (room temperature, 2 s pulse). The substrate
temperature during the deposition procedure was fixed to 180 ◦C. The silica deposition was performed
in stop-mode (45 s exposure time, 60 s pump time) to ensure homogeneous coating along the inner
channels of the NAM templates [40,41], and the number of deposition cycles was set to 90.

Afterwards, the backside of the NAM templates was gold-coated by means of sputtering and
further electrodeposition of a continuous gold layer, which serves as working electrode in the
subsequent multisegmented Ni/Co electrodeposition process, as indicated in Figure 1c,d, respectively.
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Figure 1. Sketch of the different steps employed for the template-assisted fabrication of segmented
nanowire arrays: (a) the starting nanoporous AAO template, (b) SiO2 surface functionalization of
the NAM by atomic layer deposition (ALD), (c) SiO2 coated NAM template with gold nanocontacts,
(d) sequential electrodeposition of Ni and Co in a three-electrode setup, and (e) multisegmented Ni/Co
NWs array embedded inside the SiO2 coated pores of the NAM template.

2.3. Electrodeposition of Magnetic Nanowires and Their Morphological, Structural, and Magnetic Characterization

The functionalized NAM is then used as a template for the electrochemical growth of single
element of Ni or Co nanowires, together with multisegmented Ni/Co and Ni50Co50 alloyed (Ni-Co)
NWs arrays, as schematically shown in Figure 1e. Nickel and cobalt sulfate and chloride salts were
used to produce Watts-type electrolytic solutions that were employed for electrodeposition of metals
inside the nanopores of the NAM template [42]. The pH of the electrolytes was adjusted between
4–4.5 with the addition of 1 M NaOH solution and the electrodeposition temperature was fixed to
35 ◦C. This process was performed employing the potentiostatic mode at −1.2 V in a three-electrode
electrochemical cell equipped with an Ag/AgCl reference electrode, an insoluble Pt mesh counter
electrode, and the gold-SiO2 coated NAM template acting as the working electrode displayed in
Figure 1c. The duration of the potentiostatic deposition pulses was adjusted to 480 s for the growing of
single element Ni NWs, 328 s for the pure Co NWs, 50 s of Ni and 35 s of Co for the multisegmented
Ni/Co NWs arrays, and 328 s for the Ni-Co alloyed NWs, therefore resulting in an alloy of Ni50Co50,
accordingly, with the estimated deposition rate for each metal or alloy, respectively. For the particular
case of multisegmented Ni/Co NWs, a two-electrolytic bath electrochemical deposition was carried
out, whereupon after the electrodeposition of each single element segment, we rinsed the deposition
cell with distilled water and ethanol, and then we dried it before starting a new electrodeposition
process for another segment with the second electrolyte.

The morphology, chemical composition, and microstructure of the samples were studied by
scanning electron microscopy (SEM, JEOL 6610LV, JEOL Ltd., Tokyo, Japan), energy dispersive X-ray
microanalysis (EDX), high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2100,
JEOL Ltd., Tokyo, Japan), and X-ray diffraction (XRD), respectively. XRD patterns were collected in a
Bragg-Brentano geometry on a PANalytical X’Pert Pro MPD diffractometer (PANalytical B.V. Almelo,
The Netherlands) equipped with a “Johansson” Ge(111) primary monochromator (producing strictly
monochromatic Cu Kα1 radiation) and a PIXcel detector based on Mediapix2 technology. The angular
range was selected between 35◦ to 105◦, employing a counting time of 150–450 s depending on sample
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composition. The MAUD (Material Analysis Using Diffraction, Luca Lutterotti, Trento, Italy) [43–46],
program was used for the fitting of entire XRD curves using the Rietveld method in order to determine
the weight ratio of the crystalline phases present in the samples and their lattice parameters.

All magnetic measurements were performed at room temperature (RT) in a vibrating-sample
magnetometer (VSM, Versalab-QD, LOT-QuantumDesign GmbH, Darmstadt, Germany), in the
magnetic field range between±3 Tesla (T), applied along both the parallel and perpendicular directions
to the NWs longitudinal axis.

3. Results and Discussion

3.1. Morphological and Structural Characterizations by SEM and TEM

The highly-ordered nanopore distribution of the SiO2-coated anodic alumina membranes,
employed as templates for the fabrication of Ni, Co, their Ni-Co equiatomic alloy, and the
multisegmented Ni/Co NWs arrays employed in this work, can be observed in the SEM top view image
displayed in Figure 2a. The parallel aligned nanopores have a well-defined mean diameter of around
43 ± 4 nm, an interpore distance of about 105 nm, and follow a hexagonal close-packed geometry.
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in the growth of segmented NWs, formed by alternating the Ni and Co segments of roughly 2–2.5 

Figure 2. (a) SEM top view of a typical NAM employed as template for the fabrication of
multisegmented Ni/Co NWs arrays. (b) SEM cross-section of multisegmented Ni/Co NWs embedded
in the NAM template. The line scans superimposed on the image represent the variation of Co and Ni
content along the membrane thickness. (c) SEM cross-section image of Ni-Co alloyed NWs that are
embedded in a NAM template. (d) EDX spectrum recorded from the cross-section image shown in (c).

Figure 2b shows the SEM cross-section image of a typical NAM after being electrochemically
filled with an alternating sequence of Ni and Co deposits. The sequential deposition process results in
the growth of segmented NWs, formed by alternating the Ni and Co segments of roughly 2–2.5 µm in
length, giving rise to a nanowire total length of around 18.6 µm, corresponding to eight segments with
different chemical composition. The modulation in the composition of each segment can be clearly
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observed in the EDX line scans superimposed in Figure 2b, which indicate the periodically fluctuating
amount of Ni and Co corresponding to each segment of the multisegmented Ni/Co magnetic NWs
array. Figure 2c shows a SEM cross section image of Ni-Co alloyed NWs with around 40 nm in diameter
that are embedded in the pores of the NAM template, while Figure 2d shows the corresponding EDX
spectrum obtained from the region shown in Figure 2c, and that reveals an approximate composition
of Ni50Co50.

In order to obtain more information about the microstructure of the segmented Ni/Co NWs, they
were studied by HR-TEM, after selective chemical dissolution of the nanoporous alumina template
as described in detail elsewhere [42,47]. Figure 3a shows a low magnification STEM image, whereas
Figure 3b shows the EDX elemental map of chemical composition distribution of the same NWs
area carried out under high angle annular dark field-scanning transmission electron microscopy
(HAADF-STEM) mode.
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Figure 3. (a) HR-TEM characterization of multisegmented Ni/Co NWs after releasing them from
the NAM template. (b) Low-magnification STEM image of multisegmented Ni/Co NWs and
corresponding EDX element distribution map. The bar scales of these two upper figures represent
3 microns, respectively. (c,d) High-magnification HR-TEM images of segmented Ni/Co isolated NWs.

The elemental composition mappings of the Ni/Co NWs, confirmed their multisegmented
structure with alternating segments of metallic nickel and cobalt, respectively. The Ni segments have
a length of approximately 2.5 µm, while the Co ones are slightly shorter, having around of 2 µm in
length. Figure 3c,d display higher magnification HR-TEM images, showing that the Ni/Co NWs
are rather homogeneous in diameter despite their multisegmented structure, displaying a metallic
core with diameters of around 42 nm, in good agreement with the expected value obtained from pore
diameter measurements performed by SEM in the top view of the anodic alumina template shown
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in Figure 2a. The inner metallic core is surrounded by an amorphous, electron transparent region of
around 4 nm in thickness that corresponds to the SiO2 shell.

Figure 4 presents two selected area electron diffraction (SAED) polycrystalline-like patterns
(Figure 4b,d) of two different segments of a Ni/Co NW, as shown in Figure 4a,b. The studied segment
of Figure 4a presents a SAED pattern with diffraction spots that can be associated with the face-centered
cubic structure of metallic nickel (JCPDS 4-850). On the other hand, the segment analyzed in Figure 4b
displays a SAED pattern that can be indexed to hexagonal close-packed cobalt (JCPDS 5-727). However,
some observed spots could be also ascribed to a nickel (JCPDS 4-850) or cobalt phase (JCPDS 15-806).
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Figure 4. (a,c) show the selected TEM images of two isolated ferromagnetic NWs made of subsequent
Co and Ni segments. (b,d) display the SAED analysis of the nanowire regions indicated in (a,c),
corresponding to Ni and Co segments, respectively.

3.2. XRD Analysis

Figure 5a depicts the XRD pattern of the pure Co NWs. The diffraction peaks observed at 2θ
values of 41.66◦, 44.43◦, 47.40◦, 75.86◦, 84.12◦, 90.55◦, 92.40◦, and 94.43◦ can be indexed to (100), (002),
(101), (110), (103), (200), (112), and (201) crystallographic planes of the hexagonal close-packed (hcp)
cobalt phase (JCPDS 05-0727), respectively. The obtained lattice parameters were a = 2.4999 ± 0.0001Å
and c = 4.0791 ± 0.0009 Å, which are very close values to the bulk ones (a = 2.505 ± 0.0002Å and
c = 4.060 ± 0.0002 Å, JCPDS 05-0727). Interestingly, the relative intensity of several of these peaks was
dramatically different than the expected ones for a polycrystalline sample (Figure 1a). For instance,
the (100) peak is the most intense peak whereas the (101) reflection appears as a very inhibited peak.
These results suggest that the cobalt NWs exhibit a growth texture in the <100> direction and a clear
inhibition in the <101> growth direction, probably due to the favoring growth of determined crystal
directions under the control of the confined growth into the pores of the alumina membrane template.
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The mean coherent lengths, Lhkl, estimated from the position and full width at half maximum
(FWHM) of these peaks are presented in Table 1. Also, the relative intensities of these peaks and the
expected relative intensities according to the JCPDS 05-0727 file are shown in the same table.

Table 1. Mean coherent lengths and relative peak intensities of the diffraction peaks corresponding to
the Co phase. Also, the relative intensities according to the JCPDS 05-0727 file have been added for
comparison proposes.

Diffraction Peak Lhkl (nm) Sample
Relative Intensity (%)

Bulk
Relative Intensity (%)

(100) 25 100 20
(002) 21 14 60
(101) - 2 100
(110) 21 16 80
(103) - - 80
(200) 20 3 20
(112) 17 4 80
(201) 16 4 60
(004) - - 20

Figure 5b depicts the XRD pattern of pure Ni NWs. A very intense and sharp diffraction peak
is observed at 76.50◦. Moreover, three very weak peaks are also observed at 44.50◦, 51.85◦, and
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98.43◦, respectively. These peaks are associated to the (220), (111), (200), and (222) planes of the
fcc nickel phase (JCPDS 04-0850), respectively, and the estimated value of the lattice parameter was
a = 3.525 ± 0.001 Å. From this diffraction pattern, it is clearly revealed that this sample exhibits a
strong crystalline preference to <110> texture. In fact, the mean coherent lengths perpendicular to
this direction, L220 = 116 nm, was around one or two orders of magnitude higher than the others
(L111 = 29 nm, L200 = 6 nm and L311 = 16 nm), confirming the tendency to grow along the <110>
direction. The corresponding mean coherent lengths and peak intensities estimated from the diffraction
patterns for Ni crystal phase, are presented in Table 2.

Table 2. Mean coherent lengths and relative peak intensities of the diffraction peaks corresponding to
the Ni phase. Additionally, the expected relative intensities according to the bulk fcc for Ni (JCPDS
04-0850) have been added for comparison purposes.

Diffraction Peak Lhkl (nm) Sample
Relative Intensity (%)

Bulk
Relative Intensity (%)

(111) 29 ~1 100
(200) 6 ~1 42
(220) 116 100 21
(311) 16 <1 20
(222) - - 7

Figure 5c presents the XRD pattern corresponding to the sample of Ni-Co alloyed nanowires.
In this pattern, the diffraction peaks corresponding to both, the hcp and fcc phases of Ni-Co NWs are
observed. Data about the mean coherent lengths and relative peak intensities extracted from them are
collected in Table 3. The calculated lattice parameters were a = 3.5358 ± 0.0005 Å, for the fcc phase,
and a = 2.4966 ± 0.0004 Å and c = 4.077 ± 0.0003 Å for the hcp phase. The estimated weight ratios of
the two crystalline phases were 95.6% ± 0.2% and 4.4% ± 0.6% for the fcc and hcp phases, respectively.
It is important to note that the growth in the <101> direction of the hcp crystal phase is inhibited in a
similar way than in pure Co NWs. On the other hand, the sharp peak at 44.33◦ indicates a preference
to growth in the fcc <111> and/or in the hcp <002> directions.

Table 3. Mean coherent lengths and relative peak intensities of the diffraction peaks corresponding to
the Ni and Co phases for the Ni-Co alloyed NWs.

Diffraction Peak Lhkl (nm) Sample
Relative Intensity (%)

Bulk
Relative Intensity (%)

(100)hcp 36 18 20
(111)fcc/(002)hcp 43 100 100/60

(101)hcp - 4 100
(200)fcc 20 8 42

(220)fcc/(110)hcp 37 13 21/80
(103)hcp - 4 80

(311)fcc/(112)hcp 30 14 20/80
(222)fcc - 4 7

Figure 5d presents the XRD pattern of the array with multisegmented Ni/Co NWs. This pattern
confirms the presence of two crystalline phases whose diffraction peaks can be indexed to the hcp
cobalt phase (JCPDS 05-0727) and the fcc nickel phase (JCPDS 04-0850), with the lattice parameters a
= 3.529 ± 0.0001 Å for fcc, and a = 2.4966 ± 0.0004 Å and c = 4.077 ± 0.0003 Å for hcp phases, and
having weight ratios of 80.9% ± 0.6% and 19.1% ± 0.6%, respectively. Table 4 collects the data of mean
coherent lengths and relative peak intensities of the diffraction peaks corresponding to the Ni and Co
crystal phases of this sample.



Crystals 2017, 7, 66 10 of 16

Table 4. Mean coherent lengths and relative peak intensities of the diffraction peaks corresponding to
the Ni and Co phases for the multisegmented Ni/Co NWs.

Diffraction Peak Lhkl (nm) Sample
Relative Intensity (%)

Bulk
Relative Intensity (%)

(100)hcp 20 15 20
(111)fcc/(002)hcp 42 100 100/60

(101)hcp 15 4 100
(200)fcc 15 9 42
(110)hcp 81 80
(103)hcp - - 80
(311)fcc - 9 20
(112)hcp - 64 80
(222)fcc - 4 7

3.3. Magnetic Properties

The room temperature hysteresis loops collected for all samples are shown in Figure 6, showing
the magnetization versus magnetic field loops applied in parallel and perpendicularly to the NWs
longitudinal axis for Ni, Co, multisegmented Ni/Co, and Ni-Co alloy NWs, respectively.

First, focusing only on the single element composition NWs (Ni and Co), the parallel applied
magnetic field configuration exhibits a squared hysteresis loop, as predicted for an infinitely long
cylinder with strongly defined uniaxial anisotropy [48], with similar coercive fields (Hc) and a
remanence magnetization (mr = Mr/Ms) of 0.86 and 0.30 for Ni and Co, respectively. Table 5 summarizes
the mentioned magnetic parameters of all the studied samples.

In both cases an anisotropic magnetic behavior is present, with a well-defined easy magnetization
axis (EA) parallel to the nanowires longitudinal direction, evidencing the dominant role of shape
anisotropy. The small tilting of the loops that is more evident for the Co NWs (larger saturation
magnetization), is attributed to the inter-nanowire magnetostatic interactions [49–52] and explains
the lower value of mr for Co NWs. In contrast, in the perpendicular configuration one detects narrow
hysteresis loops with small HC and remanence magnetization, as theoretically expected [48].
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Figure 6. Room temperature magnetic hysteresis curves, M(H), for (a) Ni, (b) Co, (c) multisegmented
Ni/Co, and (d) Ni-Co alloy NWs, in both parallel and perpendicular directions with respect to the
longitudinal axis of the NWs, together with the anisotropy field distribution (AFD) curves calculated
according to [53].
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Table 5. Magnetic parameters of the NW samples obtained from the room temperature M(H)
measurements depicted in Figure 6.

H (Oe); m Ni Co Ni/Co Ni-Co

Hc (//) 1098 971 930 337
Hc (⊥) 103 205 216 231
mr (//) 0.86 0.30 0.40 0.13
mr (⊥) 0.04 0.04 0.06 0.29

Han 3064 6532 3076/6348 896/4154

Additional and relevant information can be obtained from the anisotropy field distribution (AFD)
curves calculated for each sample and illustrated in Figure 7. The AFD curves have been obtained
from the numerical derivative of the descent branch, from positive saturation of the magnetization
down to the remanence, of the perpendicular hysteresis loop of NWs arrays, according to [42,47,53,54].
This method provides a simple approach to determine the most prevalent value of the anisotropy field
(Han) of a magnetic system. Overall, one observes a single AFD curve for Ni and Co NWs and two
AFD curves for the NW arrays modulated in composition. The anisotropy field, extracted from the
maximum value of the AFD curves, is clearly larger for Co (Han ~6532 Oe) than Ni (Han ~3064 Oe)
array of NWs, (see Table 5). In the case of the NW arrays modulated in composition, one is able to
determine two Han fields corresponding to the two observed AFD curves. The mutisegmented Ni/Co
NW arrays show two Han field values (Han (Ni) ~3076 Oe; Han (Co) ~6348 Oe) that perfectly match
with each Han field value of the single composed Ni and Co NWs, respectively, indicating that its
magnetic behavior can be considered as a superposition of the individual magnetic behaviors of each
Ni and Co NWs. This fact can be clearly observed from the AFD curves of all the studied samples, as
illustrated in Figure 7. However, the alloyed Ni-Co NW array display one Han field value (~896 Oe)
that is smaller than the previously mentioned Han field values, and another one (~4154 Oe) that is in
between them (as indicated in Table 5). Additionally, the M(H) behavior becomes less anisotropic with
Hc (//)~Hc (⊥) and mr (//)~mr (⊥), resembling the magnetic behavior of spherical nanoparticles, but
still with a considerable coercivity.
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In the studied arrays of NWs, the effect of geometrical parameters, like NW diameter,
center-to-center distance, and length, over the magnetic properties is the same for all the samples since
they did not change significantly from sample to sample. Therefore, only the changes introduced by
the modulation in the composition of the NWs should be responsible for the observed differences
between their magnetic behaviors. In addition to the intra-wire (i.e., shape anisotropy) and inter-wire
magnetostatic effect, contributions to the corresponding magnetic anisotropy, the magnetocrystalline
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anisotropy that favors the alignment of the magnetization along preferential crystallographic directions
(depending on the symmetry of the crystal and the sign of the constants), can also play a role on the
magnetic behavior of the studied systems, despite the polycrystalline nature, although textured, of our
samples. The XRD spectra of our samples show extremely intense peaks compared to the patterns of a
standard polycrystalline powder (JCPDS sheets). These peaks with enhanced intensities are indicating
growth preferences in the material. Since the samples are NWs, this preferential direction (texture) can
be associated to the long axis of the NW. The crystal size in this direction is tens of nm and not microns
for all of the samples, indicating the polycrystalline nature of the NWs.

For the pure Co NW sample, the peak (100) associated to the hcp phase has a much higher
intensity than expected for a polycrystalline powder, illustrating that the <100> direction is the
preferred direction of growth that should be parallel to the long axis of the NW. For the Ni sample,
the NWs are crystallized in the fcc phase and are strongly textured along the <110> direction, being
the preferential direction of growth (long axis). In the multisegmented Ni/Co NWs, we have XRD
peaks corresponding to two phases: fcc and hcp. It is observed that the peak around 44◦ is extremely
intense, indicating that the sample is also textured. This peak could correspond to the planes (111)
and/or (002) of the Ni fcc and Co hcp phases, respectively. The peak (110) of the hcp phase of Co is
also highlighted. It is important to note that, in either case, we have a different texture than in the hcp
and fcc phases of the single Co and Ni NWs, respectively, which can be ascribed to the competition
between the formation of both crystal phases that can be influenced by epitaxial growth, due to
the possible seed layer effect present on a multilayer system. Hence, the growth directions <111>,
<001>, and <110> should be along the longitudinal axis of the Ni/Co NWs. The Ni-Co alloyed NWs
show a similar texture to the multisegmented Ni/Co ones, but also different from the single Co and
Ni NWs, which may be ascribed to a competition between the fcc and hcp crystal phases during
the growing process, exhibiting a large peak intensity at around 44◦ corresponding to the <111> fcc
and/or <001> hcp directions. This is the only sample in which Hc (//) is not much larger than Hc
(⊥), indicating that the magnetocrystalline anisotropy is competing with the shape anisotropy. For Co,
the <001> hcp crystallographic direction coincides with the magnetization EA while the <111> fcc
direction corresponds to a hard magnetization axis. In the case of Ni, the <111> fcc direction is the
magnetocrystalline axis of the easy magnetization. Therefore, the magnetic behavior of the M(H)
hysteresis curves suggest that Ni-Co alloy NWs arrays are mainly crystallized in the fcc phase with
<111> texture. The effective anisotropy of the single Ni and Co NW arrays are clearly dominated
by the shape anisotropy since the <110> fcc and <100> hcp are crystallographic directions of hard
magnetization. For the multisegmented Ni/Co NW arrays, we found a preferential <111> fcc (for
Ni) and <001> hcp (for Co) crystallographic directions of easy magnetization axis aligned with the
longitudinal EA of the NW defined by the shape anisotropy, meaning that both anisotropies contribute
to a magnetization EA along the axial direction of the NW.

4. Conclusions

Segmented Ni/Co NWs arrays made of successive alternating layers with pure Ni and Co
elements have been synthesized by template-assisted electrodeposition in nanoporous alumina
membranes employed as patterned templates. For comparison, pure Ni and Co NWs, together
with equally-mixed Ni50Co50 alloy NWs were also fabricated by following a similar procedure.
The NWs dimensions are, in all cases, around of 45 nm in diameter, 12–18 microns in length and the
inter-nanowire distance in the arrangement was about 105 nm, resulting for the particular case of
Ni/Co NWs in Ni segments having 2.5 µm in length, but shorter Co segments of 2 µm length. A thin
SiO2 cover layer of a few nanometers has also been previously deposited by ALD inside the pores of
the NAMs, in order to protect the NWs from corrosion and give them more mechanical robustness
when releasing from the alumina template. The preferential crystalline growth directions are parallel
to the NWs axis for all studied samples, being along <100>hcp for Co and <110>fcc for Ni NWs, while
there is a strong magnetocrystalline competition between <111>fcc and <001>hcp for the Ni-Co alloy
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NWs, and similar behavior can be also observed for the <111>fcc and/or <001>hcp and <110>hcp
crystalline phases for the case of multisegmented Ni/Co NWs. From magnetic hysteresis loops it
can be observed that the easy magnetization axis of multisegmented Ni/Co NWs lies parallel to the
NWs length, indicating the strong role played by the shape anisotropy due to the high aspect ratio
exhibited by these samples. The magnetic measurements also allow appreciation of the influence of
magnetostatic dipolar interaction from both the inter-wires in the arrangement and the intra-nanowires
interaction due to the layered structure of multisegmented Ni/Co NWs. AFD curves calculated for the
Ni, Co, and multisegmented Ni/Co NWs arrays allow distinguishing the strong competition between
the two magnetic phases, the softer-ferromagnetic characteristic of Ni, and the harder ferromagnetic
characteristic for Co, which are present at the same time in the segmented structure displayed by
Ni/Co NWs arrays, which determines the global magnetic behavior of this sample. These peculiar
multisegmented NWs arrangements formed by layered materials with different chemical compositions,
render to these novel nanoarchitectures with new on-board multifunctional applications, as in multibit
systems for ultra-high-density magnetic data storage media.
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