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Abstract: In a system of quark matter we study the chi-
ral phase transition, the behavior of the chiral and quark
number susceptibility and the CEP at �nite temperature
and chemical potential. This is donewithin the framework
of two-�avor Nambu and Jona-Lasiniomodel.We have cal-
culated the chiral quark condensate and thequarknumber
density and, with this, we have found the phase transition
type. With these quantities we have determined the phase
diagram for QCD and the CEP.
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1 Introduction
One of the main purposes of the experiments of relativis-
tic heavy-ion collisions at LargeHadronCollider (LHC) and
Relativistic Heavy Ion Collider (RHIC) is the observation of
restoration of chiral symmetry at �nite temperature and at
�nite density [1, 2]. This has led to an increasing interest
in the study of strongly interacting matter subject to ex-
treme conditions of temperature and density [3, 4]. In this
work we study the structure of the chiral phase diagram
of QuantumChromodynamics (QCD) in order to determine
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the critical end point (CEP) and to describe the behavior
of the quark condensate and the chiral and quark number
susceptibilities.

Strongly interacting particles is one of the contem-
porary research topics in theoretical and experimental
physics, due in part to the possibility of conducting experi-
ments in order to test the theoretical results obtained from
di�erent models [5, 6]. Several experiments currently in
progress at the RHIC and LHC [7, 8] stimulate the interest
in this subject.

QCD is generally accepted to be the fundamental the-
ory that describes strong interactions [9, 10]. In the limit of
massless quarks, the chiral symmetry determines the char-
acteristics of the phase diagram of QCD [11, 12]. One of the
most important features of QCD is the spontaneous chiral
symmetry breaking (SCSB) [13, 14]. Through the SCSB we
analyze the behavior of the quark condensate as a func-
tion of the temperature (T) and the chemical potential (µ)
in order to determine the phase diagram in the T-µ plane.

The most powerful tool to study the QCD phase dia-
gram at �nite temperature is the lattice QCD simulation
[15, 16]. With this technique it is possible to analyze the
QCD phase diagram of strongly interacting matter under
extreme conditions of density and temperature [6, 11]. One
of the limitations of this method is the sign problem, that
is, the Pauli blocking, due to the fact that the lattice simu-
lation fails to apply for �nite chemical potential [13].

The usual way to study the (partial) restoration of chi-
ral symmetry in QCD is considering a system of quarks de-
scribed by an e�ective theory model [17]. In this paper we
follow the Nambu and Jona-lasinio (NJL) model applied to
quarks as degrees of freedom at �nite temperature and at
�nite chemical potential.

The study of phase transition in QCD requires the de�-
nition of order parameters. These order parameters are re-
latedwith the twomain characteristics of theQCD: the chi-
ral symmetry breaking and con�nement. The order param-
eter related to the chiral symmetry is the quark conden-
sate, where 〈q̄q〉 = 0 for the chiral symmetric phase and
〈q̄q〉 = ̸ 0 for the phasewhere the chiral symmetry has been
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broken. With regard to con�nement, we �nd two di�er-
ent phases: the hadronic matter phase, which is observed
at low temperatures and densities, and the quark-gluon
plasma state, which occurs at high temperatures and/or
densities [13, 16].

It is necessary to understand the properties of the QCD
vacuum in order to study these phases [18, 19]. The QCD
ground state is characterized by the quark condensate
[20], which is the consequence of the SCSB.

In the presentworkwe study the chiral phase, particu-
larly the CEP, which is the point where a change in the na-
ture of the phase transition occurs. Following the critical
line in the QCD phase diagram from high to low tempera-
ture, at �rst a second order phase transition is present at
the chiral limit (crossover occurs instead for a bare mass
m > 0). We �nd the point (CEP) in the critical line, from
which a �rst-order phase transition occurs.

We investigate the quark number susceptibility in or-
der to locate the CEP in a system of quarks at �nite tem-
perature and chemical potential. Once the position of the
CEP is found, there is enough information to determine the
phase transition type present under speci�c conditions of
T and µ [21, 22].

The most important contribution of this work is the
determination of the location of the CEP in the T-µ plane
through the use of the scalar (chiral) susceptibility and
the quark number susceptibility. The criterion to judge the
phase transition type is determined through the analysis
of the scalar and quark number susceptibilities.

A discontinuity in the e�ective quark mass (as a func-
tion of T and µ) at the phase transition (the critical line in
the QCD phase diagram) indicates that a �rst order phase
transition takes place. On the other hand, a continuous be-
havior of the e�ective mass at the critical line of the phase
diagram indicates that a second order phase transition (in
the chiral limit) or a crossover (for m > 0) occurs. The val-
ues of T and µ in the phase diagram where a crossover, a
�rst order phase transition or a second order phase tran-
sition takes place, can be obtained by studying the diver-
gence in the susceptibilities [23].

2 Formalism
In 1961, the NJL model was originally developed for the
study of interacting nucleons [17]. This is a pioneer chiral
model for massless fermions where these particles acquire
mass through the spontaneous chiral symmetry breaking.
Initially, it consisted of an isospin-doublet built of nucle-
ons, and later it was extended to describe the interaction

between quarks as degrees of freedom [24]. In this work,
we apply the NJL model to study the chiral dynamical be-
havior of a system consisting of two kind of light quarks
at �nite temperature and chemical potential. Our starting
point for this investigation is the Lagrangian density [25],
which is invariant under global chiral SUL(2)⊗ SUR(2) ro-
tations at the massless limit, and is given by

LNJL = ψ̄(i /∂ − m̂)ψ + g
[

(ψ̄ψ)2 + (ψ̄iγ5τaψ)2
]

(2.1)

where the column vector ψ = (u, d) represents the
quark �elds with Nf �avors and Nc colors, m̂ is the bare
quark mass matrix m̂ = diag(mu ,md), g is the e�ective
coupling constant and τa are the Pauli matrices. We set
m = mu = md in this paper.

According to the Fierz transformation, which formu-
lates how thedirect and exchange terms are related to each
other, the part of the Lagrangian, equation (2.1), which
contains the four-point interaction terms (LIF) is equiva-
lent to [6, 20]

LIF = g
8Nc

[2(ψ̄ψ)2 + 2(ψ̄iγ5τaψ)2 − 2(ψ̄τaψ)2

− 2(ψ̄iγ5ψ)2 − 4(ψ̄γµψ)2 − 4(ψ̄iγµγ5ψ)2

+ (ψ̄σµνψ)2 − (ψ̄σµντaψ)2]

(2.2)

and it leads to the following Lagrangian [26]

L = ψ̄(i /∂ − m)ψ + µ̂ψ̄γ0ψ + Gs(ψ̄ψ)2 − Gv(ψ̄γµψ)2 (2.3)

where Gs =
(

1 + 1
4Nc

)
g and Gv = g/2Nc are the scalar and

vector couplings, respectively and µ̂ is the chemical poten-
tial matrix µ̂ = diag(µu , µd). We consider here only the
scalar-scalar channel. A term has been introduced in the
Hamiltonian density (H) connected via a Legendre trans-
formation to Lagrangian density, equation (2.1),H→ H −
µ̂N, where N = ψ̄γ0ψ = ψ†ψ is the quark number den-
sity operator. Only the simple physical case µ = µu = µd is
considered in this paper.

The NJL model is non-renormalizable due to the four-
point interaction and therefore a certain regularization
scheme is required to isolate divergences. We work in the
3D cut-o� scheme, introducing the cut-o� scale, a usual
parameter in e�ective non-renormalizable models [27].

Using the mean-�eld approximation [3]

(ψ̄Γψ)2 −→ 2〈ψ̄Γψ〉ψ̄Γψ − 〈ψ̄Γψ〉2 (2.4)

where Γ can be any one of the 4×4 matrices such as I, γ5,
γµ, γ5γµ, we we take 〈ψ̄ψ〉 and 〈ψ̄γ0ψ〉 as mean �elds in
the vacuum at �nite temperature and density. After this,
the Lagrangian in equation (2.3), is simpli�ed to

LMF = ψ̄(i /∂ −M + µrγ0)ψ − (M − m)2

4Gs
+ (µ − µr)2

4Gv
(2.5)
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where M is the e�ective quark mass de�ned as

M = m − 2Gs〈ψ̄ψ〉 (2.6)

and µr is the renormalized quark chemical potential

µr = µ − 2Gv〈ψ†ψ〉 (2.7)

The equation (2.6) is the well-knownNJL gap equation
for the dynamical fermion mass M which is related to the
quark condensate. The scalar density may be expressed in
terms of the quark propagator as

〈ψ̄ψ〉 = −iTrS(0) = −iTr
∫

d4p
(2π)4

/p + M
p2 −M2 (2.8)

Similarly, the quark number density is given by

〈ψ†ψ〉 = −iTr
∫

d4p
(2π)4

γ0(/p + M)
p2 −M2 (2.9)

where the symbol Tr stands for the trace over color-, �avor-
and Dirac-indices. In order to describe the system at non
vanishing temperature T and chemical potential µ, mo-
mentum integrals are carried out in the imaginary time for-
malism

i
∫

d4p
(2π)4 f (p0, ~p) −→ −T

+∞∑
n=−∞

∫
d3~p

(2π)3 f (iωn + µr , ~p)

(2.10)
The quark propagator is then de�ned at discrete imag-

inary energies iωn + µr, where ωn = (2n + 1)πT, are the
Matsubara frequencies for fermions. After performing the
Matsubara sums, integrating over angular components in
equations (2.8) and (2.9), and substituting into equations
(2.6) and (2.7), respectively, we obtain

M(T, µ) = m + 2GsNfNc
π2

Λ∫
0

p2 dpME
(

1 − f + − f −
)

(2.11)

µr(T, µ) = µ + GvNfNc
π2

Λ∫
0

p2 dp
(
f + − f −

)
(2.12)

with
f ±(T, µr) = 1

e(E±µr)/T + 1
(2.13)

where E =
√
~p 2 + M2 is thequark energy, f (±) are theFermi

occupation number of quarks (+) and anti-quark (-) and Λ
is a momentum cut-o�.

The scalar and the quark number susceptibilities are
of particular interest in this work. It is known that varia-
tions of conserved charges are susceptible evidences of the
thermal state of themedium aswell as its critical behavior.
The scalar susceptibility χs = ∂M

∂m , is generally de�ned as

the response of the constituent quark mass to changes of
the bare quark mass [22]. It is related to the order parame-
ter 〈q̄q〉 by

χs = 1
1 − 2GsNcNf

π2
∂
∂M
∫ Λ

0 p2 dpME
[
1 − f (+) − f (−)] (2.14)

In order to measure the �rst order response of quark
number density to a change of the quark chemical po-
tential, we consider the quark number susceptibility χq
[28, 29], which is de�ned as

χq = ∂〈ψ†ψ〉
∂µr

(2.15)

From this information and the divergences present in
the susceptibilities, we determine the location and char-
acteristics of the chiral phase transition for a system of
quarks with parameters T and µ. Then, we obtain the
phase diagram for the constituent quark mass M, as well
as the critical behavior and the position of the CEP.

3 Results
The results for the e�ective quark mass as a function of
temperature and chemical potential, from the gap equa-
tion (2.6) were obtained form = 0 andm = 3.5 MeV. These
particular values were chosen because of their relevance
in the expected results. The chiral limit is considered for
m = 0 MeV, which leads to the total restoration of the chi-
ral symmetry and to a second order phase transition for
T > TCEP at the critical line in the phase diagram. In con-
trast, for a �nite quark bare mass, the results yield a par-
tial restoration of the chiral symmetry and to a crossover
between phases for T > TCEP at the critical line. This can
be observed in Figure 1, where only for a �nitem, the e�ec-
tive mass, M, is greater than 0 above the critical tempera-
ture. The value for m = 3.5 MeV was selected in order to
represent the light u and d quarks behavior, since the ap-
proximation m = mu = md was considered in this paper.

As commented in Section 2, since theNJLmodel is per-
turbatively nonrenormalizable, a regularization scheme
must be selected in order to regulate the divergent quanti-
ties. Regularization must take into account the physically
expected properties and maintain the symmetries consid-
ered in the model. For the NJL model, from the minimiza-
tion of the total energy, the gap equationmust be obtained,
and the appearance of a Goldstone boson, due to symme-
try requirements, needs to be considered [20]. The scheme
selected in this study was the 3D cut-o� scheme (through
the use of imaginary time formalism). Within this scheme,
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Table 1: Results obtained for di�erent bare masses (data shown in
[GeV])

m M Tc µc TCEP µCEP

0.0000 0.3129 0.1899 0.3380 0.0715 0.2877
0.0035 0.3228 0.2034 0.3436 0.0469 0.3212

the NJLmodel requires 2 parameters to be determined: the
coupling strength, Gs, and the momentum cut-o� value,
Λ. These parameters are ordinarily set by selecting physi-
cal quantities (namely, the constant pion decay fπ and the
quark condensate density, 〈ψ̄ψ〉, whose values have been
measured experimentally) in the QCD vacuum. By solving
the gap equation, considering the values fπ = 93 MeV and
〈ψ̄ψ〉 = −(250MeV)3, the parameters Gs and Λ can be ob-
tained. For the 3D cut-o� scheme, the parameter values
considered were Λ = 0.653 [GeV] and GsΛ2 = 2.14 [20].

From the results obtained for the e�ective quark mass
in each case, the chiral (scalar) susceptibility and quark
number susceptibility were also computed. Finally, from
these results, the quark phase diagram, critical temper-
ature (Tc), critical chemical potential (µc) and the CEP
were obtained for the two values considered for the bare
masses. The numerical solutionswere obtained usingMat-
lab 2015a©. The results obtained are shown in Table 1.

In the upper panel of Figure 1, we plot the phase dia-
gram of QCD for the two-�avor NJL model in the T-µ plane
for the cases of m = 0 and m = 3.5 MeV. For the chiral
limit, the critical temperature is found to be Tc ≈ 190 MeV
and the critical chemical potential µc ≈ 338 MeV, and for
m = 3.5 MeV, Tc ≈ 203 MeV and µc ≈ 343 MeV. Figure 1
also displays the location of the tri-critical point (TCP), at
TTCP = 71.5 MeV and µTCP = 287.7 MeV, and the CEP, at
TCEP = 46.9 MeV and µCEP = 321.2 MeV. The behavior of
the e�ective quark mass as a function of temperature at µ
= 0 for m = 0 and m = 3.5 MeV is presented in the lower
panel of Figure 1. The e�ective quark mass presents small
variations for the lower values of temperature, with an in-
creasing rate of change as the temperature increases, until
the e�ective mass value drops to 0 (at Tc in the chiral limit
and asymptotically for m > 0)

As indicated in Section 2, the chiral susceptibility χs is
the response of the e�ective quark mass to the changes of
the bare mass. The results for χs are displayed in Figure 2,
where it is observed that χs is divergent only in the TCP (in
the chiral limit) or the CEP (for massive quarks), and is �-
nite elsewhere. In the upper panel (chiral limit), it is found
that for T < TTCP, χs is discontinuous and, for T > TTCP,
χs is continuous at the transition chemical potential, in-
dicating the existence of a �rst-order phase transition for
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Figure 1: The upper �gure shows the T-µ phase diagram for the
cases of chiral limit and m = 3.5 MeV. The red points indicate the
TCP and the CEP respectively. The lower �gure represents the e�ec-
tive quark mass vs temperature at µ = 0 with m = 0 and for the case
of nonzero m = 3.5 MeV.

T < TTCP and the existence of a second-order phase tran-
sition for T > TTCP. In the lower panel, it is found that
for T > TCEP, χs is a smooth continuous function at the
transition chemical potential, indicating the existence of
a crossover region for T > TCEP. The CEP reported in this
paper was obtained from the analysis of the chiral suscep-
tibility.

In Figure 3 (upper panel) the quark number suscep-
tibility is presented as a function of the chemical poten-
tial for m = 0 and T > TCEP (91.6 MeV), T = TCEP (71.5
MeV), and T < TCEP (51.4MeV). Also Figure 3 (lower panel)
shows the quark number susceptibility as a function of the
chemical potential form = 3.5 MeV and T > TCEP (67 MeV),
T = TCEP (46.9 MeV), and T < TCEP (26.8 MeV).

4 Discussion
Chiral and quark number susceptibilities are important
phenomenological observables which hold information
about the changes in the quark chemical potential [30, 31].
In this work we have solved the gap equation for the quark
propagator and we have used the chiral susceptibility to
analyze the solution of the gap equation. With this tool we
have classi�ed the order of the phase transitions. In the
T − µ plane, we observe that for µ = 0, there is a second
order chiral phase transition at a temperature T = Tc. This
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Figure 2: Scalar susceptibility χs as a function of µ. Upper panel:
in the chiral limit for three di�erent temperatures around to the
TCP; Lower panel: with m = 3.5 MeV for three di�erent temperatures
around to the CEP.
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Figure 3: Upper panel: Quark number susceptibility χq as a function
of µ in the chiral limit for di�erent temperatures around to the TCP.
Lower panel: Quark number susceptibility χq as a function of µ with
m = 3.5 MeV for di�erent temperatures around to the CEP.

second order phase transition is consistent with the lat-
tice QCD simulations and several QCD models [15, 16]. On
the other hand, for T = 0, we observe that the chiral sym-
metry restoration, which occurs at a �nite chemical poten-

tial µ = µc, is a transition of �rst order. This result is also
consistent with that obtained in di�erent models of QCD
[23, 32, 33].

Both the scalar susceptibility and quark susceptibil-
ity exhibit a divergence at the CEP. The CEP was obtained
through the analysis of the behavior of these susceptibil-
ities. We have found that the CEP over the critical line
that separates both types of transitions is located at ≈
(46.9,321.2) MeV, as shown in Table 1.

We also observe that, as the quark bare mass is in-
creased, the values of µc and Tc are shifted to higher val-
ues,while theCEP is shifted tohigher values of µ and lower
values of T.

Finally, we compare the results obtained with that of
previous works.

The work presented by Y Lu et al. [6] also follows the
NJLmodel and study the behavior of the susceptibilities in
order to determine the TCP (at the chiral limit) and the CEP
(for the massive quark). In [6], for the massless quark, the
values TTCP ≈ 73 MeV and µTCP ≈ 300 MeV are reported.
These results show resemblance to the ones teported in Ta-
ble 1. For themassive quark, the values TCEP ≈ 32MeVand
µTCP ≈ 347 MeV.

The di�erence with the results obtained for a massive
quark lies mainly in the value selected for the quark bare
mass. We selected a value of m = 3.5 MeV, while in [6] the
value m = 5.5 MeV was used in the analysis. We observe,
however, that the CEP reported in [6] is shifted to higher
values of µ and lower values of T with respect to the values
we report, which is consistent with the behavior observed
in the resultswehave obtained.Another di�erencepresent
when both studies are compared is the values selected for
themomentum cut-o� and the coupling strength.We have
taken the values reported by [20], while in [6] the parame-
ter values are obtained from [34]. In [35], for instance, dif-
ferent values are reported for m = 5.0 MeV.

The work presented by Y Zhao, L Chang, W Yuan and
Y-X Liu [29] follows as well the NJL model and the 3D cut-
o� scheme; this work studies the phase transition of the
quark with respect to µ, setting T = 0. In this work, the
critical chemical potential is reported to be µc = 368 MeV
for the chiral limit and µc = 385 MeV for m = 5.6 MeV.

For the massive quark, the di�erences in the µc with
respect to the resultswe report are, in part, due to the value
selected for the bare mass. Since the quark bare mass con-
sidered in [29] is greater than the one we have chosen, and
the value of µc reported in [29] is shifted to a higher value
with respect to the one we acquired, the results show con-
sistency. In [29], the parameter values are reported to be Λ
= 588 MeV and GsΛ2 = 2.44. This explains the di�erence
observed in µc for the massless quark.
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We observe that the values for the parameters in the
NJL model depend on the value chosen for the quark bare
mass; therefore considering these parameters as constants
is an approximation useful only for small variations in m.
Future work in this subject will include the study of the
variation of the coupling strength and themomentum cut-
o� with respect to the quark bare mass.

5 Conclusions
By using the NJL model in the SU(2) version at �nite tem-
perature and chemical potential we have studied the QCD
chiral phase diagram in the T − µ plane. We have found
a second order chiral phase transition (at the chiral limit)
and a crossover (for m > 0), which persists for increasing
values of the chemical potential, up to a CEP, after which
the chiral transition becomes of �rst order. The values of
CEP are shown above in Table 1.
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edges scholarship support from the National Council for
Science and Technology (CONACYT) under contract No.
290817-UANL. Also F. Flores acknowledges SNI (Conacyt).
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