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Abstract: Many IoT (Internet of Things) systems run Android systems or Android-like systems.
With the continuous development of machine learning algorithms, the learning-based Android
malware detection system for IoT devices has gradually increased. However, these learning-based
detection models are often vulnerable to adversarial samples. An automated testing framework is
needed to help these learning-based malware detection systems for IoT devices perform security
analysis. The current methods of generating adversarial samples mostly require training parameters
of models and most of the methods are aimed at image data. To solve this problem, we propose a
testing framework for learning-based Android malware detection systems (TLAMD) for IoT Devices.
The key challenge is how to construct a suitable fitness function to generate an effective adversarial
sample without affecting the features of the application. By introducing genetic algorithms and some
technical improvements, our test framework can generate adversarial samples for the IoT Android
application with a success rate of nearly 100% and can perform black-box testing on the system.

Keywords: Internet of Things; malware detection; adversarial samples; machine learning

1. Introduction

Since many IoT (Internet of Things) devices run Android systems or Android-like systems,
with the popularity of IoT devices, Android malware for IoT devices is also increasing. Meanwhile,
machine learning has received extensive attention and has gained tremendous application development
in many fields, such as financial economics, driverless, medical, and network security. Thus, there are
many learning-based Android malware detection systems [1–6].

However, while machine learning brings us great convenience, it also exposes a lot of security
problems [7]. Several papers have studied related Android and IoT security issues [8–13]. Scholars in
the security field are increasingly concerned about the security issues associated with the lack of
fairness and transparency in machine learning algorithms. An attacker can predict certain sensitive
information by observing the model, or recover sensitive data in the data set through existing partial
data. A current attack method is called a poisoning attack. Biggio B and Zhu attempted to attack
the adaptive facial recognition system by a poisoning attack [14–17]. During the model update,
they injected malicious data to offset the central value of the recognition feature in the model, so as
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to achieve the purpose of verifying the attacker’s image. Biggio B and Nelson B also attacked the
supervised learning algorithm SVM [18]. Experiments show that the test error of the model classifier
can be significantly increased during the gradient rise. However, the injected sample data must meet
certain constraints in order to deceive the model, and must be the attacker to control the label of the
injection point. Yang et al. conducted an experiment on poisoning attacks against neural network
learning algorithms [19]. Compared with the direct gradient algorithm, this proposed method can
increase the attack sample generation speed by about 240 times.

In fact, although a poisoning attack can make the model go wrong, the attacker has to work hard
on how to inject malicious data. Another common method can let models get the wrong result in a
short time, that is, adversarial sample attack. Christian Szegedy et al. first proposed the concept of
adversarial samples [20]. By deliberately adding minor changes in the dataset, the perturbed samples
will cause the model to output a false result with high confidence. Adversarial samples can increase
the prediction error of the model, so that the originally correctly classified sample migrates to the other
side of the decision area, thereby being classified into another category.

Existing models are vulnerable to adversarial samples [21–24]. For example, in a malware
recognition system, by adding a small perturbation to the original software sample, the result of the
sample classification can be changed with a high probability, and even the sample can be classified
into an arbitrarily designated label according to the attacker’s idea. This makes adversarial samples
attack a huge hazard to malware recognition systems [25–27].

All of the learning-based Android malware detection systems for IoT devices have the above
problems, so a testing framework is needed to test the robustness of these detection systems. To address
this challenge, we propose TLAMD, a testing framework for learning-based Android malware detection
systems for IoT Devices. When the test results show that the detection system cannot resist the attack
of the adversarial samples, it indicates that this detection system has potential safety hazards, and it
needs to be reinforced.

Therefore, how to generate effective adversarial samples is the core issue of the entire testing
framework. Our approach to generating adversarial samples for the Android IoT malware detection
model is based on genetic algorithms. Without the knowledge of the model parameters, the original
sample is used as the input of the approach, and finally the adversarial sample of the specific label is
generated. The information used is only the probability of the various types of labels output by the
model. We hope that this method can be a robust benchmark for the learning-based Android malware
detection model for IoT devices. Our contribution is mainly reflected as follows:

1. We migrated the application of adversarial samples from the image recognition domain to
the Android malware detection domain of IoT devices. In this process, simply replacing the
model’s training data from a picture to an Android application is not possible. On the one
hand, the data of the binary program is not continuous like the image data. On the other hand,
random perturbation of the binary program may lead to the crash of the program, so special
processing is required for the Android application to ensure the validity of the adversarial samples.
We borrowed the processing method of Kathrin Grosse [28], which realized the disturbance to
the Android application by adding the request permission code in the AndroidMani f est.xml file.
The difference is that we have made corresponding analysis and restrictions on the types and
quantities of permissions that can be added. This method can ensure that the original function of
the app is not affected and can be used normally; and the app can be disturbed in the simplest
way to achieve the effect of changing the model detection result;

2. We introduce the genetic algorithm into the adversarial sample generation method and implement
the black-box attack against the machine learning model. Without knowing the internal
parameters such as the gradient and structure of the target network, it is only necessary to
know the probability of various types of labels output by the model. Compared to Kathrin
Grosse’s approach, our approach not only implements black-box attacks, but also has a higher
success rate, almost 100%.
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The rest of the paper is organized as follows. Section 2 introduces the related background of our
approach. Section 3 presents TLAMD (A Testing Framework for Learning-based Android Malware
Detection Systems for IoT Devices). Section 4 presents and discusses our experimental results. Finally,
further discussions and conclusions are accomplished in Section 5.

2. Related Background

2.1. Neural Network

The essence of the neural network is a function y = F(x), the input x is an n-dimensional
vector, and the output y is an m-dimensional vector. The function F implies the model parameter
θ. The purpose of the training network is to calculate the value of the parameter θ from the known
partial sample information. After the model is completed, the result of predicting x is to solve the
value of y by the function F. In this paper, we mainly study the neural network of the m classifier (that
is, the output y is an m-dimensional vector). The output of the last layer of the neural network uses
a fully connected layer. The classifier outputs the index with the largest value in the output vector
dimension as the result, that is:

L(x) = arg max
j=1

[F(x)]i, (1)

where L(x) is the category of x.
Define F as a single-layer fully-connected neural network. The output of the (n− 1)-th layer is the

input of the n-th layer, then:
yn = Fn(yn−1). (2)

Typical n-layer fully connected neural networks are:

F = Fn ∗ Fn−1 ∗ ... ∗ F2 ∗ F1, (3)

Fn(x) = σ(wn ∗ x + bn), (4)

where σ is a linear or nonlinear activation function. The commonly used activation functions are
RELU [29], tanh [30], sigmoid, etc., ω is the weight of this layer, and b is the layer offset.

2.2. Genetic Algorithm

The idea of the genetic algorithm is to simulate the biological evolution process of natural selection.
Using the thought of evolutionary theory, the process of finding the optimal solution of a certain
objective function is simulated into the evolution process of the population. Based on the idea of the
population, the algorithm uses a population containing information to perform an optimal search in
multiple directions and completes the exchange and reconstruction of information in the search process.

The genetic algorithm can be used to search for the feasible solution space of a problem,
and then find the possible optimal solution, which is the uncertainty optimization in the optimization
problem. Uncertain optimization is to rely on random variables in the search direction, rather than a
certain mathematical expression. Compared with other algorithms, the advantage is that, when the
optimization converges to the local extremum, the search result can jump out of an optimal solution
and continue to search for a better feasible solution.

By choosing the appropriate objective function, the generation of the adversarial sample can be
transformed into a solution to the optimization problem. The process of solving the optimal solution
corresponding to the objective function is actually the process of generating the adversarial sample.
This shows that genetic algorithms can be effectively applied to machine learning and other fields in
terms of parameter optimization and function solving. In terms of parameter optimization, Chen et al.
used a parallel genetic algorithm to optimize the parameter selection of Support Vector Machine
(SVM) [31]. Experiments show that the proposed method is superior to the grid search in classification
accuracy, the number of selected features and running time. Phan et al. proposed a GA-SVM model that
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can effectively improve classification performance based on genetic algorithm and SVM classifier [32].
Alejandre et al. selected features based on machine learning to detect botnets [33]. A genetic algorithm
is used in this method to select the set of features that provide the highest detection rate.

2.3. Adversarial Samples

On many machine learning models, the decision boundary of the classifier has a certain margin of
error. That is, when the disturbance satisfies ||η||∞ < ε, the classifier considers that the perturbed input
x′ = x + η is the same as the original input x. Therefore, when the perturbation value on each feature
element is less than ε, the classifier cannot discern the difference in the sample. However, changes in
input characteristics have a cumulative effect on model predictions. Although the perturbation
value on each feature element is small, the accumulated error is sufficient to influence the model
prediction result.

On each neuron, the adversarial sample will have the following operations:

ωTx′ = ωT(x + η) (5)

although the adversarial sample has no effect on the classification results of the single-dimensional
neuron classifier. However, deep learning has a considerable number of neurons. The weight in each
neuron has n dimensions. If the average variation of an element in the weight vector is m, the activation
effect will increase by n ∗m. Furthermore, in a high dimensional linear classifier, each individual input
feature is normalized. The result is that in the process of deep learning, a small change may not be
enough to change the input result, but multiple disturbances to the input will cause the classifier to
make a wrong classification result.

Many methods of generating adversarial samples need to know the parameters of the learning
model to calculate the perturbation values, but some subsequent studies have shown that without
knowing the parameters of the learning model [34–37]. The attacker can interact with the black-box
learning model to calculate the samples. Specifically, the attacker can estimate the boundary of the
decision region of the model according to the difference of the model output brought by different
samples, and then use the estimated boundary as a substitute model. Finally, the adversarial samples
are calculated by the parameters of the substitute model. Considering that more and more malicious
Android application detection methods based on machine learning, how to evaluate the robustness
of these detection methods becomes a new problem. Since most machine learning algorithms are
vulnerable to adversarial samples, we have thought of using the generated adversarial samples to test
the robustness of these detection methods.

3. Methodology

3.1. Framework

The overview of TLAMD is shown in Figure 1.
When the test results show that the detection system cannot resist the attack against the adversarial

sample, it indicates that the system has potential safety hazards and it is necessary to implement such
reinforcement measures as distillation defense [38] on the detection system. As we can see, how to
generate an adversarial sample is the main challenge of this testing framework. Therefore, we will
describe the algorithm in detail for generating an adversarial sample for Android malware.
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Figure 1. Overview of our testing framework for learning-based Android Malware detection systems
for IoT devices. (1) Original Sample Input; (2) Calculate the disturbance size; (3) Generate the
adversarial samples; (4) Get detection result from learning-based systems; (5) Determine if the exit
condition is met; (6) If not, calculate the new disturbance size using genetic algorithm; (7) If yes,
output the final adversarial android application.

3.2. Algorithm

Our goal is to add minor perturbations to the malware without changing the malware
functionality, so that the previously trained detection model misidentifies it as normal software.
Therefore, our approach generates an adversarial sample by adding permission features to the
AndroidMani f est.xml, and in order not to affect the function of the original malware, the disturbance
does not reduce the existing permission features. For a single input sample X, the classifier returns a
two-dimensional vector F(X) = [F0(X), F1(X)], where F0(X) indicates the probability that the software
is a normal software, F1(X) indicates the probability that the software is a malware, and satisfies the
constraint F0(X)+ F1(X) = 1. We aim to add a perturbation δ to make the classification result F1(X + δ)

is less than F0(X + δ). At the same time, the smaller the δ, the better, that is, the fewer the number of
permission features added in the manifest file, the better. For example, for a specific malware x, we use
a genetic algorithm to find out which permission features δ are added to x, and finally make x detected
as normal software with minimum number of permission added.

From a mathematical point of view, the process of misjudging the detection model by adding
the permission features is regarded as a problem to be solved. The feasible solution space of the
problem is the disturbance if the detection model is successfully misjudged. The optimal solution is
to minimize the disturbance value, that is, add the least permission feature. A genetic algorithm is a
type of algorithm that finds the possible optimal solution by searching for a feasible solution space
of a problem. Our approach is to use genetic algorithms to search for the minimum perturbation
value that causes the detection model to be misjudged. The pseudo code of our approach is shown in
Algorithm 1.
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Algorithm 1 Generating an adversarial sample.

Require: Popluation Size pop_size
δ← initialization()
for i = 0→ pop_size do

Pi ← Crossover_Operator()
Pi ← Mutation_Operator()
Compute→ S(δ)
if F(X + δ) > 1− F(X + δ) then

Continue
else

Output→ δ

end if
end for

The specific steps are as follows:

(1) Randomly generate the population δ = P1, P2, ..., PM. M is the number of individuals,
the individual Pi ∈ {0, 1}n refers to the permission characteristics to be added in the category,
and n is the number of permission features in the category. In addition, 1 means to add the
corresponding permission; otherwise, 0 means not to add. Our strategy is to only add permissions
and not reduce permissions. Therefore, if the original malicious sample has a certain permission
feature, the permission cannot be removed, that is, the disturbance is 0.

(2) Determine the fitness function.

S(δ) = min w1 · F(X + δ) + w2 · num(δ), (6)

where w1 and w2 represent the two weights, δ is the added small disturbance, F(X + δ) ∈ [0, 1]
means that the probability of original malicious sample is still detected as a malware, num(δi)

indicates the number of permission features added.

When w1 is much larger than w2, the sample after the addition of the disturbance must be
detected as normal by the detection model to survive, and the individual detected as a malicious
sample will be eliminated. The surviving individual must meet the minimum number of added
permission features; otherwise, it will also be eliminated. The fitness function defined in this way
searches for an optimal solution that can successfully cause the detection model to be misjudged.

(3) Perform mutation operations according to a certain probability to generate new individuals.
The mutation refers to adding a disturbance to the corresponding category according to a certain
probability, that is, changing the value from 0 to 1, and satisfying the constraint proposed in
step (1).

(4) Generate a new generation of the population from the mutation and return to step (2). If the
preset number of iterations is reached, the loop is exited.

4. Experiments

4.1. Data Set and Environment

In order to verify the effectiveness of the adversarial sample, we attempt to train five different
classifier models, including logistic regression (LR), decision tree (DT), and fully connected neural
network (NN) and so on. The hardware environment and software environment of all experiments are
shown in Table 1:

All the data we use in the experiments come from the DREBIN dataset [39,40]. The DREBIN
dataset has a total of 123,453 sample data for Android applications, including 5560 malicious samples
and contains as many as 545,333 behavioral features.
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The features of the Android app in this dataset consist of eight categories and are shown in
Table 2:

(S1) Hardware components, which are used to set the hardware permissions required by the software.
(S2) Requested permissions, which are granted by the user at the time of installation and allow the

application software to access the corresponding resources.
(S3) App components, which include four different types of interfaces: activities, services,

content providers and broadcast receivers.
(S4) Filtered intents, which are used for process communication between different components

and applications.
(S5) Restricted API (Application Programming Interface) calls, access to a series of key API calls.
(S6) Used permissions, a subset of permissions that are actually used and requested in S5.
(S7) Suspicious API calls, API calls for allowing access to sensitive data and resources.
(S8) Network addresses, the IP addresses accessed by the application, including the hostname

and URL.

Table 1. The environment of all experiments.

CPU Inter(R) Core(TM) i5-7400 CPU @ 3.00GHz

Memery 8 GB
Video Card Inter(R) HD Graphics 630

Operating System Windows 10
Programming Language Python 3.6
Development Platform Jupyter Notebook

Dependence Tensorflow, Keras, numpy etc.

The first four classes are extracted from the manifest file, and the last four classes are extracted from
the disassembly code. Since our method only adds permission requests to the AndroidMani f est.xml
file, we only cover the features in S1 to S4. In Section 4.2.1, we further reduce the feature categories used.

Table 2. Eight features in the DREBIN dataset.

Class Name Numbers Rate (/Total)

S1 Hardware Components 72 0.013%
S2 Requested Permissions 3812 0.704%
S3 App Components 218,951 40.488%
S4 Filtered Intents 6379 1.178%
S5 Restricted API Calls 733 0.136%
S6 Used Permissions 70 0.013%
S7 Suspicious API Calls 315 0.058%
S8 Network Address 310,447 57.4%

4.2. Android Malware Detection Model

First, a detection model is trained to determine whether an Android sample is malware. When the
detection model reaches a certain accuracy, our approach is used to generate an adversarial sample for
the model.

4.2.1. Feature Extraction

We use a random forest approach to measure the importance of features in the feature extraction
phase. The number of features is effectively reduced without affecting the accuracy of detection.

Random forest is an integrated learning in machine learning. It is an integrated classifier
composed of multiple sets of decision trees: h(X, θk), k = 1, 2, ..., where θk is a random variable subject
to independent and identical distribution, and k represents the number of decision trees. The principle
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is to generate multiple decision trees and let them learn independently and make corresponding
predictions. Finally, observe which category is selected the most and get the result.

The specific steps are as follows:

(1) Select out of bag (OOB) to calculate the corresponding out-of-bag data deviation error1 for each
decision tree.

(2) Add random noise, perturb all samples of OOB, and then calculate the out-of-bag data deviation
error2 again.

(3) Define and calculate the importance of the features:

I = ∑(error1 − error2)/N, (7)

where N is the number of forest decision trees.

If error2 is greatly increased after adding random noise, the OOB accuracy rate decreases,
indicating that this type of feature has a greater impact on the prediction result, that is,
the importance is higher.

The sorting result of feature importance is shown in Figure 2.

Figure 2. The sorting result of feature importance. The ordinate represents different behavioral feature
categories and the abscissa represents the proportion of importance.

As we mentioned before, we only cover the four types of features from S1 to S4. Taking into
account the number and importance of various features, we finally choose the two characteristics of S1
and S2.

4.2.2. Training Detection Model

To test the effectiveness of our method for different detection models, we trained five kinds of
detection models.
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a. Neural Network

Our neural network chooses a two-layer fully connected model with 200 neurons in each
connected layer and the activation function is RELU. The output layer of the last layer has two
neurons and is the so f t max activation unit. Furthermore, no dropout operation is performed on each
layer. To train our network, we used the gradient descent training method with a batches size of 256.
All data was trained five times per iteration.

b. Logistic Regression

Since there are only two types of target predictions, we adopt a two-class logistic regression
model. The penalty term selects the L2 paradigm, and the model parameters satisfy the Gaussian
distribution, that is, the parameters are constrained so that they do not over-fitting. Considering that
the solution problem is not a linear multi-core, and the number of samples is selected to be larger than
the number of features, the dual method is not set. Set the condition for stopping the solution is that
the loss function is less than or equal to 1× e−4; the category weight defaults to 1. The maximum
number of iterations of the algorithm convergence is set to 10.

c. Decision Tree

The decision tree is a tree structure used for classification. The maximum depth of the decision
tree is set to 15 to prevent overfitting. The min_impurity_decrease is set to 0. The min_samples_split
is set to 2, indicating the minimum number of samples required for internal node subdivision.
The min_samples_lea f is set to 10, indicating the minimum number of samples in the leaf node.
The max_lea f _nodes is set to None, which is expressed as the maximum number of leaf nodes in the
decision tree. The min_weight_ f raction_lea f is set to 0, which represents the minimum value of all
sample weights and sums of leaf nodes.

d. Random Forest

Random forest is an integrated learning. Through the bootstrap resampling technique, a number
of sample inputs are randomly selected from the original training set with repeated iterations. In this
way, a new training set is obtained, and then several decision trees are generated to form a random
forest. The max_ f eature is set to auto, that is, a single decision tree can utilize all permission features.
The n_estimators is set to 20, which means there are 20 decision trees to form the random forest to
be trained. The min_sample_lea f is set to 20, that is, the minimum number of sample leaves in each
decision tree is 20.

e. Extreme Tree

Extra Tree is equivalent to a variant of the random forest. Compared with random forests,
the randomness is further calculated when dividing the local best, that is, the selection of the division
points is calculated. Most of its parameters are the same as those of random forests, except that
n_estimators is set to 10 and max_depth is set to 50.

Finally, when the five detection models are trained, we test 42,570 samples and the results are
shown in Table 3.

Table 3. The detection results of five models.

Models TPa FP a FN a TN a Accuracy Precision Recall

NN (Neural Network) 40770 0 74 1726 99.83% 1 95.95%
LR (Logistic Regression) 40770 0 234 1566 99.45% 1 96.32%

DT (Decision Tree) 40770 0 60 1740 99.86% 1 95.91%
RF (Random Forest) 40770 0 32 1768 99.92% 1 95.85%
ET (Extreme Tree) 40770 0 16 1784 99.96% 1 95.81%

a TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.
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4.3. Simulation Experiments

After getting the trained detection models, we will generate adversarial samples for the five
models. The features we add to the AndroidMani f est.xml file are from S1 or S2. The parameters of
the generation algorithm are also different depending on the permission category. The details are as
shown in Table 4.

Table 4. The parameters of our approach.

Features S1: Hardware Components S2: Requested Permissions

Initialize Probability 1% 0.01%
Mutation Probability 30% 0.5%

Iterations 50 50
Population 150 150

Attacked Samples 1000 1000

The final experimental results are shown in Table 5. In the ten sets of adversarial sample generation
experiments for the five detection models, the success rates are above 80%, and most of them are close
to 100%. In order to generate these adversarial samples, the average number of permission features
added is less than three. On the one hand, it shows that the adversarial sample generated by our
method is very effective and our approach is able to be a robust benchmark for the learning-based
Android malware detection model for IoT devices; on the other hand, it shows that the existing machine
learning algorithms are very vulnerable to the adversarial sample. Our TLAMD test framework is
very necessary.

In subsequent experiments, we also performed a reinforcement method for the distillation defense
of these models. However, the reinforced model is still unable to resist the attack of adversarial
samples, and the success rate of our approach is still close to 100%. This means that, when we want
to reinforce existing machine learning models, common methods such as distillation defenses work
poorly. We need to find a more effective defense method.

Figure 3 shows the most frequently added permissions in the ten sets of adversarial sample
generation experiments for the five kinds of detection models. Compared to other permission features,
these permissions are mostly permissions that involve sensitive privacy. In order to verify whether
these features have a decisive influence on the model discrimination results, we have conducted further
experiments. In the new experiment, we will not allow the algorithm to add the features listed in the
figure. However, the success rate of the generated adversarial samples is consistent with the previous
one in Table 5, and the number of permission features added is slightly increased. It can be seen that
those features that are added more frequently only have greater weight, but have no decisive influence
on the results.

Table 5. The results of our approach. b

Model Category Success Rate Average of num (δ)

NN S1 1 2.25
S2 1 2.33

LR S1 0.998 2.66
S2 0.995 1.94

DT S1 0.896 1.05
S2 0.992 1.68

RF S1 0.866 2.89
S2 0.995 9.54

ET S1 0.833 2.81
S2 0.945 9.36

b Each line of data in the table is the average of the 1000 sample tests results.
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Figure 3. The most frequently added permissions in our adversarial sample generation experiments.
The data is the average of 5 × 2 × 1000 samples test results.

Figure 4 is a trend graph of fitness function values as a function of the number of iterations. As the
number of iterations increases, the value of the fitness function decreases rapidly. It shows that it is
very effective to use the genetic algorithm to solve the problem of generating adversarial samples.

Figure 4. Trend graph of fitness function values with number of iterations.

By comparing the individual models, it can be found that the more complex the detection model,
the better the effect of the adversarial samples generated for the model. This phenomenon may be
different from what we expected. We believe that one possible reason is that the more complex the
model, the more times the feature is processed. This makes small changes in features easily magnified,
making the model very sensitive to adversarial samples.

Figure 5 is a box plot of the fitness function values of adversarial samples for five detection
models with S1 permission features and Figure 6 is with S2 permission features. As can be seen from
the figures, the adversarial samples generated by our approach is very stable. There are only a very
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small number of divergence points out of 1000 samples. By comparing Figures 5 and 6, the stability
of the adversarial sample generated by S2 is better. The reason is that the number of permission
features in the S2 list is much larger than the number in the S1 list. This is equivalent to finding the
optimal solution of the objective function in a larger space, so there is a greater probability of finding a
better solution. Combined with Figure 3, it also provides us with an idea of how to strengthen the
learning-based detection model. It is not useful to improve the defense of high-weight permission
features. It is necessary to optimize the detection model so that it is not sensitive to small disturbances
of all sample features.

Figure 5. The fitness function values of adversarial samples for five detection models with S1
permission features.

Figure 6. The fitness function values of adversarial samples for five detection models with S2
permission features.

5. Conclusions

To address the challenge of the lack of the testing framework for learning-based Android malware
detection systems for IoT devices, we approach TLAMD. Our experimental results show that our
approach generates high-quality adversarial samples with a success rate of nearly 100% by adding
permission features. In the technical implementation of the TLAMD algorithm, the selection of feature
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and the range of disturbance are the keys to have a good result. We hope TLAMD can be a benchmark
for learning-based IoT Android malware detection model. The limitations of TLAMD is our black-box
approach need frequent model requests and our future work includes reducing the requesting times
and designing an effective defense approach to reinforce the malware detection model.
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