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Abstract: In this paper, we introduce the class of extended rectangular b-metric spaces as
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these results.
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1. Introduction

Fixed points theory has become an important field in mathematics due to its variety of applications
in science, economics and game theory. Brouwer’s fixed-point theorem states that any continuous
mapping on a compact convex set to itself has a fixed point. In addition to their importance in
differential and integral equations, Brouwer’s theorem and its extension Kakutani theorem for set
valued function play a very important role in proving the existence of general equilibrium in market
economics and the existence of Nash equilibria in game theory—for more details, see [1,2].

In 2000, Branciari [3] introduced the concept of generalized metric space (rectangular space) as
a generalization of normal metric space. In 2015, George et al. [4] introduced the notion of rectangular
b-metric space as a generalization of rectangular metric space and they presented some fixed point
results for contractive mappings.

In this paper, we introduce the notion of extended rectangular b-metric spaces which is
a combination of properties of rectangular metric spaces and extended b-metric spaces. In addition,
we obtain some fixed point results dealing with JS-type contraction mappings. Furthermore, we present
examples to support these results.

2. Preliminaries and Known Results

In 1993, Czerwik [5] introduced the concept of b-metric space as follows:

Definition 1 ([5]). Let X be a nonempty set, s ≥ 1 be a given real number and let d : X × X → [0,+∞) be
a mapping such that for all a, b, c ∈ X the following conditions hold:

(b1) d(a, b) = 0 iff a = b;
(b2) d(a, b) = d(b, a);
(b3) d(a, b) ≤ s[d(a, c) + d(c, b)].
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Then, (X, d) is called a b-metric space.

For some fixed points results in b-metric space and its properties, we refer the reader to [5–18].
Recently, Parvaneh [19] introduced the concept of extended b-metric spaces as follows.

Definition 2 ([19]). Let X be a nonempty set. A function d : X × X → R+ is a p-metric if there exists
a strictly increasing continuous function Ω : [0, ∞) → [0, ∞) with t ≤ Ω(t) such that for all a, b, c ∈ X,
the following conditions hold:

(p1) d(a, b) = 0 iff a = b,
(p2) d(a, b) = d(b, a),
(p3) d(a, c) ≤ Ω(d(a, b) + d(b, c)).

Then, the pair (X, d) is called a p-metric space or an extended b-metric space.

A b-metric is a p-metric, when Ω(t) = st, s ≥ 1 while a metric is a p-metric, when Ω(t) = t.

Proposition 1 ([19]). Let (X, d) be a metric space and let ρ(a, b) = ξ(d(a, b)), where ξ : [0, ∞)→ [0, ∞) is a
strictly increasing continuous function with t ≤ ξ(t) and 0 = ξ(0). Then, ρ is a p-metric with Ω(t) = ξ(t).

The following example is constructed using the above proposition.

Example 1. Let (X, d) be a metric space and let ρ(a, b) = ed(a,b) sec−1(ed(a,b)). Then, ρ is a p-metric with
Ω(t) = et sec−1(et).

In 2000, Branciari [3] introduced the concept of generalized metric space (rectangular space)
as follows:

Definition 3 ([3]). Let X be a nonempty set and let d : X × X → [0,+∞) be a mapping such that for all
a, b ∈ X and all distinct points c, d ∈ X, each distinct from a and b, the following satisfied:

(r1) d(a, b) = 0 iff a = b;
(r2) d(a, b) = d(b, a);
(r3) d(a, b) ≤ d(a, c) + d(c, d) + d(d, b) (rectangular inequality).

Then, (X, d) is called a generalized metric space (g.m.s.) or rectangular space.

This metric attracted many authors and they obtain many results in this setting (see the references
cited in [20–22]). One can notice that each metric space is a generalized metric space, but the
converse need not be true (see [23,24]). Several authors show that the topology of g.m.s. need not be
Hausdorff—see examples in [25–27]. The topological structure of g.m.s. is not compatible with the
topology of ordinary metric space (see [24] (Example 7)), so it is not easy to deal with g.m.s. Therefore,
this concept is very interesting for researchers.

Definition 4 ([4]). Let X be a nonempty set, s ≥ 1 be a given real number and let d : X × X → [0,+∞)

be a mapping such that for all a, b ∈ X and all distinct points c, d ∈ X, each distinct from a and b, the
following satisfied:

(br1) d(a, b) = 0 iff a = b;
(br2) d(a, b) = d(b, a);
(br3) d(a, b) ≤ s[d(a, c) + d(c, d) + d(d, b)] (b-rectangular inequality).

Then, (X, d) is called a rectangular b-metric space.

The following are some easy examples of rectangular b-metric spaces.
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Example 2 ([25]). Let (X, ρ) be a g.m.s. and p ≥ 1 be a given real number. Let d(x, y) = (ρ(x, y))p.
Then, (X, d) is a rectangular b-metric space with s ≤ 3p−1.

Example 1.1 in [27] clarifies that some properties of metric spaces need not be true in g.m.s. (and so
in rectangular b-metric space).

Motivated by [28], Hussain et al. [29] used Ψ to stand for the set of all functions ψ : (0, ∞)→ (1, ∞)

satisfying the following conditions:

(1) ψ is non-decreasing;
(2) for each sequence {tn} ⊆ (0, ∞), limn→∞ ψ(tn) = 1 if and only if limn→∞ tn = 0;
(3) there exist r ∈ (0, 1) and ` ∈ (0, ∞] such that limt→0+

ψ(t)−1
tr = `.

(4) ψ(a + b) ≤ ψ(a)ψ(b) for all a, b > 0.

Then, they introduced new concepts of generalized contractive mappings and obtained sufficient
conditions for the existence of fixed points for mappings from these classes on complete metric
spaces and complete b-metric spaces. In particular, they claimed that their results extend theorems of
Ćirić, Chatterjea, Kannan and Reich. On the other hand, Jiang et al., by removing the condition (3),
proved that in a metric space (X, d), D(x, y) = ln(ψ(d(x, y))) defines a metric on X (Lemma 1 of [30]).
They, also proved that the results in [29] are not real generalizations of Ćirić contractive principle.

From now on, we denote by Θ the set of all functions ψ : [0, ∞) → [1, ∞) satisfying the
following conditions:

(ψ1) ψ is a continuous strictly increasing function;
(ψ2) for each sequence {tn} ⊆ (0, ∞), limn→∞ ψ(tn) = 1 if and only if limn→∞ tn = 0.

Note that, in general, the conditions of Θ do not guarantee that the metric d generates a new
metric D(x, y) = ln(ψ(d(x, y))), due to the absence of condition (ψ4).

Remark 1 ([29]). The following are some examples of functions in Θ :
ψ(t) = et,
ψ(t) = cosh t,
ψ(t) = 1 + ln(1 + t),
ψ(t) = etet

,
ψ(t) = 2+2 ln(1+t)

2+ln(1+t) ,

ψ(t) = 2 cosh t
1+cosh t ,

ψ(t) = e
√

tet ,

ψ(t) = e
√

te
√

t
.

Note that ψ(t) = etet
does not belong to Ψ, since condition (4) does not satisfy.

We recall the following:

Theorem 1 ([28], Corollary 2.1). Let (X, d) be a complete metric space and let T : X → X be a given map.
Suppose that there exist ψ ∈ Ψ and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) 6= 0⇒ ψ
(
d(Tx, Ty)

)
≤ ψ

(
d(x, y)

)k.

Then, T has a unique fixed point.

Observe that the Banach contraction principle follows immediately from the above theorem.
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3. New Definition and Basic Properties

We start this section by introducing the definition of Extended rectangular b-metric space.

Definition 5. Let A be a nonempty set, Ω : [0, ∞)→ [0, ∞) be a strictly increasing continuous function with
t ≤ Ω(t) for all t > 0 and 0 = Ω(0) and let r̃ : A× A→ [0,+∞) be a mapping such that for all a, b ∈ A and
all distinct points u, v ∈ A, each distinct from a and b satisfies the following conditions:

(br1) r̃(a, b) = 0 iff a = b;
(br2) r̃(a, b) = r̃(b, a);
(br3) r̃(a, b) ≤ Ω[r̃(a, u) + r̃(u, v) + r̃(v, b)] (Ω-rectangular inequality).

Then, (A, r̃) is called an extended rectangular b-metric space (ERbMS).

Note that Ω−1(t) ≤ t for all t > 0 and Ω−1(0) = 0. Obviously, each rectangular b-metric space is
an ERbMS with Ω(t) = st, s ≥ 1. The following gives some more examples of extended rectangular
b-metric spaces.

Example 3. Let (A, rb) be a rectangular b-metric space with coefficient s ≥ 1 and let ξ : [0, ∞)→ [0, ∞) be
a strictly increasing continuous function with t ≤ ξ(t) and ξ(0) = 0. Let ρ(a, b) = ξ(rb(a, b)). Evidently, for
all a, b ∈ A and for any two distinct points u, v ∈ A, each of which distinct from a and b, we obtain

ρ(a, b) = ξ(rb(a, b)) ≤ ξ(srb(a, u) + srb(u, v) + srb(v, b))

≤ ξ(sξ(rb(a, u)) + sξ(rb(u, v)) + sξ(rb(v, b))

= Ω(sρ(a, u) + sρ(u, v) + sρ(v, b)).

Thus, (A, ρ) is an ERbMS with Ω(t) = ξ(st).

The convergence of sequences in ERbMS is introduced in a standard way. The following lemma
will be needed in forthcoming results.

Lemma 1. Let (A, r̃) be an ERbMS with the function Ω. Then, we have the following:
(i) Suppose that {an} and {bn} are two sequences in A such that an → a, bn → b and the elements of
{ a, b, an, bn : n ∈ N } are totally distinct. Then, we have

Ω−1(r̃(a, b)) ≤ lim inf
n→∞

r̃(an, bn) ≤ lim sup
n→∞

r̃(an, bn) ≤ Ω(r̃(a, b)).

(ii) Let {an} be a Cauchy sequence in A converging to a. If an has infinitely many distinct terms, then

Ω−1(r̃(a, b)) ≤ lim inf
n→∞

r̃(an, b) ≤ lim sup
n→∞

r̃(an, b) ≤ Ω(r̃(a, b)),

for all b ∈ A with a 6= b.

Proof. (i) Using the Ω-rectangular inequality, we get that

r̃(a, b) ≤ Ω[r̃(a, an) + r̃(an, bn) + r̃(bn, b)]

and
r̃(an, bn) ≤ Ω[r̃(an, a) + r̃(a, b) + r̃(b, bn)].

Taking the lower limit as n→ ∞ in the first inequality and the upper limit as n→ ∞ in the second
inequality, we obtain the desired result:
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(ii) If b ∈ A, then for infinitely many m, n ∈ N,

r̃(a, b) ≤ Ω[r̃(a, an) + r̃(an, am) + r̃(am, b)]

and
r̃(an, b) ≤ Ω[r̃(an, am) + r̃(am, a) + r̃(a, b)].

Taking the lower limit as n→ ∞ in the first inequality and the upper limit as n→ ∞ in the second
inequality, we obtain the desired result.

As shown in Example 1.1 of [27], a sequence in an ERbMS may have more than one limits.
However, under some constraints, the sequence has a unique limit if it exists. The following lemma is
a variant of [28] (Lemma 1.10) and [20] (Lemma 1) and will be used in the main results.

Lemma 2. Let (A, r̃) be an ERbMS and let {an} be a Cauchy sequence in A such that am 6= an whenever
m 6= n. Then, {an} can converge to at most one point.

Proof. Suppose that (an) converges to two different points, say a, b. Since am and an are distinct
elements, as well as a and b, it is clear that there exists ` ∈ N such that a and b are different from an for
all n > `. For m, n > `, the rectangular inequality implies that

r̃(a, b) ≤ Ω[r̃(a, am) + r̃(am, an) + r̃(an, b)].

Taking the limit as m, n→ ∞, it follows that r̃(a, b) = 0, i.e., a = b. A contradiction.

In this paper, by an ordered ERbMS, understand a triple (A,�, r̃), where (A,�) is a partially
ordered set and (A, r̃) is an ERbMS.

4. Main Results

The following Lemma is needed in a sequel.

Lemma 3. For each ψ ∈ Θ, we have ψ(0) = 1.

Proof. Suppose that ψ(0) = α > 1 and let tn be a sequence in (0, ∞) such that limn→∞ tn = 0. Since ψ

is a strictly increasing function, we have ψ(tn) > ψ(0) = α > 1. Thus, limn→∞ ψ(tn) ≥ α > 1 which
contradicts the property (ψ2). Therefore, ψ(0) = 1.

Let (A, r̃) be an ERbMS with nontrivial function Ω (i.e., Ω(t) 6= t). Throughout this paper, FΩ
denotes the class of all functions β : [0, ∞)→ [0, Ω−1(1)).

Theorem 2. Let (A,�, r̃) be a complete ordered ERbMS with nontrivial function Ω. Let f : A → A be an
increasing mapping with respect to � such that there exists an element a0 ∈ A with a0 � f a0. Suppose that

ψ
(
Ω2[r̃( f a, f b)]

)
≤ ψ(M(a, b))β(r̃(a,b)) (1)

for some β ∈ FΩ, ψ ∈ Θ and all comparable elements a, b ∈ A, where

M(a, b) = max
{

r̃(a, b), r̃(a, f a), r̃(b, f b), r̃(b, f a)
}

.

Then, f has a fixed point.
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Proof. Starting with the given a0, put an = f na0. If an = an+1 for some n ∈ N, then an = f an. Thus, an

is a fixed point of f . Therefore, we will assume that an 6= an+1 for all n ∈ N. Since a0 � f a0 and f is
an increasing function, we obtain by induction that

a0 � f a0 � f 2a0 � · · · � f na0 � f n+1a0 � · · · .

Step I: We will show that limn→∞ r̃(an, an+1) = 0. Since an � an+1 for each n ∈ N, then, by
Inequality (1), we have

ψ(r̃(an, an+1)) = ψ(r̃( f an−1, f an)) ≤ ψ(Ω(r̃( f an−1, f an)))

≤ ψ(Ω2(r̃( f an−1, f an))) ≤ ψ(M(an−1, an))
β(r̃(an−1,an)), (2)

where

M(an−1, an) = max
{

r̃(an−1, an), r̃(an−1, an), r̃(an, an+1), r̃(an, an)
}

≤ max{r̃(an−1, an), r̃(an, an+1)}.

If max{r̃(an−1, an), r̃(an, an+1)} = r̃(an, an+1), then, from Inequality (2), we have

ψ(r̃(an, an+1)) ≤ ψ(M(an, an−1))
β(r̃(an ,an−1))

= ψ(r̃(an, an+1))
β(r̃(an ,an−1))

< ψ(r̃(an, an+1))
Ω−1(1) ≤ ψ(r̃(an, an+1)),

which is a contradiction. Hence, max{r̃(an−1, an), r̃(an, an+1)} = r̃(an−1, an), so, from Inequality (2),

ψ(r̃(an, an+1)) ≤ ψ(M(an−1, an))
β(r̃(an ,an−1)) = ψ(r̃(an−1, an))

β(r̃(an ,an−1)).

Therefore,

1 ≤ ψ(r̃(an, an+1))

≤ ψ(r̃(an−1, an))
β(r̃(an−1,an))

≤ ψ(r̃(an−2, an−1))
β(r̃(an−1,an))β(r̃(an−2,an−1))

...

≤ ψ(r̃(a0, a1))
∏n

i=1 β(r̃(ai−1,ai)). (3)

Now, by definition of β, we have β(t) < Ω−1(1) ≤ 1, ∀t ∈ [0, ∞). Hence,

lim
n→∞

n

∏
i=1

β(r̃(ai, ai−1)) = 0,

and so
lim

n→∞
ψ(r̃(a1, a0))

∏n
i=1 β(r̃(ai ,ai−1)) = 1. (4)

Letting n→ ∞ in Inequality (3) and using Equation (4), we get

lim
n→∞

ψ(r̃(an, an+1)) = 1,

and since ψ ∈ Θ, we obtain,
lim

n→∞
r̃(an, an+1) = 0. (5)



Symmetry 2019, 11, 594 7 of 17

Step II: Now we will prove that an 6= am for n 6= m. Suppose first that an = am for some n > m, so we
have an+1 = f an = f am = am+1. By continuing this procedure, we conclude that an+k = am+k for all
k ∈ N. Then, Inequality (1), Step I and being β(t) < Ω−1(1) ≤ 1, ∀t ∈ [0, ∞) imply that

ψ(r̃(am, am+1)) = ψ(r̃(an, an+1))

≤ ψ(Ω2(r̃(an, an+1)))

≤ ψ(M(an−1, an))
β(r̃(an−1,an))

≤ ψ(max{r̃(an−1, an), r̃(an, an+1)})β(r̃(an−1,an)).

If max{r̃(an−1, an), r̃(an, an+1)} = r̃(an, an+1), then we have

ψ(r̃(am, am+1)) ≤ ψ(r̃(an, an+1))
β(r̃(an−1,an)) < ψ(r̃(an, an+1)),

a contradiction. If max{r̃(an−1, an), r̃(an, an+1)} = r̃(an−1, an), then the above inequality becomes

ψ(r̃(am, am+1)) ≤ ψ(r̃(an−1, an)) (6)

≤ ψ(M(an−2, an−1))
β(r̃(an−2,an−1))

≤ ψ(max{r̃(an−2, an−1), r̃(an−1, an)})β(r̃(an−2,an−1))

< ψ(max{r̃(an−2, an−1), r̃(an−1, an)}) (7)

≤ ψ(r̃(an−2, an−1)) (from Inequalities (6) and (7))
...

< ψ(r̃(am, am+1)),

a contradiction. Hence, from now on, we assume an 6= am for all n 6= m.
Step III: Now, we will prove that {an} is an r̃-Cauchy sequence. Suppose to the contrary that there
exists ε > 0 for which we can find two subsequences {ami} and {ani} of {an} such that ni is the smallest
index where

ni > mi > i and r̃(ami , ani ) ≥ ε. (8)

This means that
r̃(ami , ani−2), r̃(ami , ani−1) < ε. (9)

From Inequality (8) and using the Ω-rectangular inequality, we get

ε ≤ r̃(ami , ani ) ≤ Ω[r̃(ami , ami+1) + r̃(ami+1, ani−1) + r̃(ani−1, ani )].

Taking the upper limit as i→ ∞, and using Equation (5), the above inequality turns into

Ω−1(ε) ≤ lim sup
i→∞

r̃(ami+1, ani−1). (10)

Again, by using Inequality (8) and the Ω-rectangular inequality, we obtain

r̃(ami+1, ani−2) ≤ Ω[r̃(ami+1, ami ) + r̃(ami , ani−1) + r̃(ani−1, ani−2)].

Taking the upper limit as i→ ∞, using Equation (5) and Inequality (9), we find that

lim sup
i→∞

r̃(ami+1, ani−2) ≤ Ω(ε). (11)
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The rectangle inequality yields

r̃(ani−2, ani+1) ≤ Ω[r̃(ani−2, ani−1) + r̃(ani−1, ani ) + r̃(ani , ani+1)] (12)

and
r̃(ani−2, ami+1) ≤ Ω[r̃(ani−2, ani−1) + r̃(ani−1, ami ) + r̃(ami , ami+1)]. (13)

Using Inequalities (12) and (13), the definition of M(a, b) gives that

M(ami , ani−2)

= max
{

r̃(ami , ani−2), r̃(ami , ami+1), r̃(ani−2, ani+1), r̃(ani−2, ami+1)
}

≤ max


r̃(ami , ani−2), r̃(ami , ami+1),

Ω[r̃(ani−2, ani−1) + r̃(ani−1, ani ) + r̃(ani , ani+1)],
Ω[r̃(ani−2, ani−1) + r̃(ani−1, ami ) + r̃(ami , ami+1)]

 .

Taking the upper limit as i→ ∞ and using Equation (5), Inequalities (9) and (11), we have

lim sup
i→∞

M(ami , ani−2) ≤ Ω(ε).

Now, from (1), we obtain

ψ(Ω2[r̃(ami+1, ani−1)]) ≤ ψ(Ω2[r̃( f ami , f ani−2)]) ≤ ψ(M(ami , ani−2))
β(r̃(ami ,ani−2)).

Again, taking the upper limit as i→ ∞ and combining Inequalities (10) and (11), the above
inequality turns into

1 < ψ(Ω(ε)) = ψ(Ω2[Ω−1[ε]])

≤ ψ(Ω2[lim sup
i→∞

r̃(ami+1, ani−1)])

≤ ψ([lim sup
i→∞

M(ami , ani−2)])
β(r̃(ami ,ani−2))

< ψ(Ω(ε))Ω−1[1] ≤ ψ(Ω(ε)),

which is a contradiction. Consequently, {an} is an r̃-Cauchy sequence in A. Therefore, the sequence
{an} r̃-converges to some c ∈ A, that is, limn→∞ r̃(an, c) = 0.

Step IV: Now, we show that c is a fixed point of f . Suppose that f c 6= c. Then, it follows that an

differs from both f c and c for n sufficiently large and an � c. Hence,

ψ(r̃(an+1, f c)) ≤ ψ(Ω2[r̃(an+1, f c)]) ≤ ψ(M(an, c))β(r̃(an ,c))

= ψ((max
{

r̃(an, c), r̃(an, f an), r̃(c, f c), r̃(c, f an)
}
))β(r̃(an ,c)).

Thus,

ψ(r̃(c, f c)) ≤ lim inf
n→∞

ψ(r̃(an+1, f c)) ≤ ψ(r̃(lim inf
n→∞

an+1, f c))

≤ ψ(lim sup
n→∞

(max
{

r̃(an, c), r̃(an, f an), r̃(c, f c), r̃(c, f an)
}
))lim supn→∞ β(r̃(an ,c))

≤ ψ(r̃(c, f c))lim supn→∞ β(r̃(an ,c))

< ψ(r̃(c, f c))Ω−1[1] ≤ ψ(r̃(c, f c)),

a contradiction. Thus, c is a fixed point of f .
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The following examples illustrate the above obtained result.

Example 4. Let A = {ζ, λ, γ, ω, η} be equipped with the order � given by

�= {(ζ, ζ), (λ, λ), (γ, γ), (ω, ω), (η, η), (ω, ζ), (ω, λ), (ω, γ), (ω, η), (ζ, γ), (λ, γ), (η, γ)}

and let d : A× A→ [0,+∞) be given as

d(m, m) = 0 for m ∈ A;

d(m, n) = d(n, m) for n, m ∈ A;

d(ζ, λ) = 0.45,

d(ζ, γ) = d(ζ, η) = d(λ, γ) = d(γ, η) = 0.05,

d(ζ, ω) = d(λ, ω) = d(λ, η) = d(γ, ω) = d(ω, η) = 0.2,

and r̃(m, n) = sinh(d(m, n)) for all m, n ∈ A. Then, one can easily check that (A,�, r̃) is a (complete) ordered
ERbMS with Ω(t) = sinh( 3

2 t). Define ψ : [0, ∞) → [1, ∞) by ψ(t) = cosh(t). Consider the mapping
f : A→ A defined as

f =

(
ζ λ γ ω η

γ γ γ ζ γ

)
.

One easily can check that all the constraints of Theorem 2 are achieved with λ(u) = 1
5 e−4u ≤ 1.195 ≈

sinh−1( 3
2 ). The contractive Condition (1) is trivial except the case when a ∈ {ζ, λ, γ, η}, b = ω (or vice versa)

when it reduces to

ψ
(
Ω2(r̃( f m, f n))

)
= cosh

(
sinh

(3
2

sinh
(3

2
sinh

(
d( f m, f n)

))))
≈ 1.006 ≤ 1.017

≈ 1.0200.851 ≈ ψ(M(m, n))λ(r̃(m,n)),

which implies that f has a (unique) fixed point γ. Note that (A, r̃) is neither a metric space, nor a rectangular
metric space. For instance,

r̃(ζ, λ) = sinh(0.45) ≈ 0.465 > 0.150

≈ sinh(0.05) + sinh(0.05) + sinh(0.05)

= r̃(ζ, η) + r̃(η, γ) + r̃(γ, λ).

Example 5. Let A = {0, 1, 1
2 , 1

3} be equipped with the following partial order �:

�:= {(0, 0), (1, 0), (1, 1), (1, 1
2 ), (

1
2 , 1

2 ), (
1
3 , 1), ( 1

3 , 1
2 ), (

1
3 , 1

3 ), (0, 1
3 )}.

Define the rectangular metric d : A× A→ R+ by

d(a, b) =


0, if a = b,
1

n2 , if {a, b} = {0, 1
n},

1, if a 6= b, a, b ∈ A \ {0},

and let r̃(a, b) = sinh(d(a, b)). It is easy to see that (A, r̃) is a complete ERbMS. Define the self-map f by

f =

(
0 1 1

2
1
3

0 0 1
3 0

)
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We see that f is an ordered increasing mapping. Define ψ : [0, ∞)→ [1, ∞) by ψ(t) = e
√

t, Ω(t) = sinh(t)
and β(t) = 1

2+t ≤ 0.5 ≤ 0.882 ≈ Ω−1(1).
One can easily check that f satisfies the Condition (1). We will present the nontrivial cases as follows:
1. (a, b) = ( 1

3 , 1). Then,

ψ(Ω2(r̃( f a, f b))) = e
√

sinh(sinh(sinh(d( f 1
3 , f 1))))

= e
√

sinh(sinh(sinh(0)))

= 1 ≤ 1.007 ≈ 2.9570.315 ≈ ψ(M(a, b))β(r̃(a,b)).

2. (a, b) = ( 1
3 , 1

2 ) or (a, b) = (1, 1
2 ). Then,

ψ(Ω2(r̃( f a, f b))) = e
√

sinh(sinh(sinh(d( f a, f b))) = e
√

sinh(sinh(sinh( 1
9 )))

= 1.397 ≤ 1.407 ≈ 2.9570.315

= ψ(M(a, b))β(r̃(a,b)).

Thus, all the conditions of Theorem 2 are satisfied and hence f has a fixed point. Indeed, 0 is the fixed point
of f .

By introducing the following concept (which is adapted from Definition 2.2 of [29]), we extend
the result of Jleli and Samet [28]. Furthermore, we obtain some new generalizations of the Banach
contraction principle.

Definition 6. Let (A, r̃) be an ERbMS. The mapping f : A → A is said to be a ψΩ-contraction, whenever

there exists a function ψ ∈ Θ and functions β1, β2, β3, β4 ∈ FΩ with 0 ≤ βi <
Ω−1(1)

4 ; i = 1, 2, 3, 4 such that

ψ
(
Ω2[r̃( f a, f b)]

)
≤ ψ

(
r̃(a, b)

)β1(r̃(a,b))
ψ
(
r̃(a, f a)

)β2(r̃(a, f a))
ψ
(
r̃(b, f b)

)β3(r̃(b, f b))
ψ
(
r̃(b, f a)

)β4(r̃(b, f a)) (14)

for all a, b ∈ A.

Our second main result is the following:

Theorem 3. Let (A, r̃) be a complete ERbMS and let f : A→ A be a ψΩ-contraction. Then, f has a unique
fixed point.

Proof. Let a0 ∈ A be arbitrary. Define the sequence {an} by an = f an−1. Assume that an 6= an+1

(If an0 = an0+1 for some n0 ∈ N, then an0 is a fixed point of f ), i.e., r̃( f an−1, f an) > 0 for all n ∈ N∪ {0}.
First, we will prove that limn→∞ r̃(an, an+1) = 0. Since f is a ψΩ-contraction, using the

Condition (14), we obtain that

ψ
(
r̃(an, an+1)) = ψ

(
r̃( f an−1, f an)

)
≤ ψ

(
Ω2(r̃( f an−1, f an)

)
)

≤ ψ
(
r̃(an−1, an)

)β1(r̃(an−1,an))ψ
(
r̃(an−1, f an−1)

)β2(r̃(an−1, f an−1))

ψ
(
r̃(an, f an)

)β3(r̃(an , f an))ψ
(
r̃(an, f an−1)

)β4(r̃(an , f an−1))

= ψ
(
r̃(an−1, an)

)β1(r̃(an−1,an))ψ
(
r̃(an−1, an)

)β2(r̃(an−1,an))

ψ
(
r̃(an, an+1)

)β3(r̃(an ,an+1))ψ
(
r̃(an, an)

)β4(r̃(an ,an))

= ψ
(
r̃(an−1, an)

)[β1(r̃(an−1,an))+β2(r̃(an−1,an))]ψ
(
r̃(an, an+1)

)β3(r̃(an ,an+1)).
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Therefore,

ψ
(
r̃(an, an+1)

)1−β3(r̃(an ,an+1)) ≤ ψ
(
r̃(an−1, an)

)β1(r̃(an−1,an))+β2(r̃(an−1,an)),

and so,

ψ
(
r̃(an, an+1)

)
≤ ψ

(
r̃(an−1, an)

) β1(r̃(an−1,an))+β2(r̃(an−1,an))
1−β3(r̃(an ,an+1)) .

Let αn = β1(r̃(an−1,an))+β2(r̃(an−1,an))
1−β3(r̃(an ,an+1))

. Then,

1 ≤ ψ
(
r̃(an, an+1)

)
≤ ψ

(
r̃(an−1, an)

)αn

≤ ψ
(
r̃(an−2, an−1)

)αnαn−1

...

≤ ψ
(
r̃(a0, a1)

)αnαn−1···α1

= ψ
(
r̃(a0, a1)

)∏n
i=1 αi .

Note that, for i = 1, 2, . . . , n, αi ≤ 2
3 < 1. Thus, limn→∞ ∏n

i=1 αi = 0. Hence,
limn→∞ ψ(r̃(an, an+1)) = 1. According to (ψ2), we conclude that

lim
n→∞

r̃(an, an+1) = 0. (15)

Now, we will prove that limn→∞ r̃(an, an+2) = 0. Since f is a ψΩ-contraction and using
Condition (14), we obtain that

1 ≤ ψ
(
r̃(an, an+2)

)
≤ ψ

(
Ω(r̃(an, an+2))

)
= ψ

(
Ω2(r̃( f an−1, f an+1))

)
≤ ψ

(
r̃(an−1, an+1)

)β1(r̃(an−1,an+1))ψ
(
r̃(an−1, f an−1)

)β2(r̃(an−1, f an−1))

ψ
(
r̃(an+1, f an+1)

)β3(r̃(an+1, f an+1))ψ
(
r̃(an+1, f an−1)

)β4(r̃(an+1, f an−1))

= ψ
(
r̃(an−1, an+1)

)β1(r̃(an−1,an+1))ψ
(
r̃(an−1, an)

)β2(r̃(an−1,an))

ψ
(
r̃(an+1, an+2)

)β3(r̃(an+1,an+2))ψ
(
r̃(an+1, an)

)β4(r̃(an+1,an))

≤ ψ
(
Ω[r̃(an−1, an+2) + r̃(an+2, an) + r̃(an, an+1)]

)β1(r̃(an−1,an+1))

ψ
(
r̃(an−1, an)

)β2(r̃(an−1,an))ψ
(
r̃(an+1, an+2)

)β3(r̃(an+1,an+2))ψ
(
r̃(an+1, an)

)β4(r̃(an+1,an))

≤ ψ
(
Ω[Ω[r̃(an−1, an) + r̃(an, an+1) + r̃(an+1, an+2)] + r̃(an+2, an) + r̃(an, an+1)]

)β1(r̃(an−1,an+1))

ψ
(
r̃(an−1, an)

)β2(r̃(an−1,an))ψ
(
r̃(an+1, an+2)

)β3(r̃(an+1,an+2))ψ
(
r̃(an+1, an)

)β4(r̃(an+1,an)).

Taking the upper limit as n→ ∞, we get

1 ≤ lim sup
n→∞

ψ
(
Ω(r̃(an, an+2))

)
≤ ψ[Ω(Ω(0) + lim sup

n→∞
r̃(an+2, an))]

Ω−1(1)
4

= ψ[Ω(lim sup
n→∞

r̃(an+2, an))]
Ω−1(1)

4 .

Since Ω−1(1)
4 < 1

4 , the above can only happen if

ψ
(
Ω(lim sup

n→∞
r̃(an+2, an))

)
= 1.
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Thus, it must hold
Ω(lim sup

n→∞
r̃(an+2, an)) = 0.

However,
0 ≤ lim sup

n→∞
r̃(an+2, an) ≤ Ω(lim sup

n→∞
r̃(an+2, an)) = 0.

Hence,
lim sup

n→∞
r̃(an, an+2) = 0. (16)

In order to show that {an} is an r̃-Cauchy sequence, suppose the contrary. Then, there exists ε > 0
for which we can find two subsequences mi and ni such that ni is the smallest index where

ni > mi > i and r̃(ami , ani ) ≥ ε. (17)

This means that
r̃(ami , ani−1) < ε and r̃(ami , ani−2) < ε. (18)

Rectangle inequality implies

r̃(ami−1, ani−2) ≤ Ω[r̃(ami−1, ami ) + r̃(ami , ani−1) + r̃(ani−1, ani−2)].

Taking the upper limit as i→ ∞, and using Equation (15) and Inequality (18), we get

lim sup
i→∞

r̃(ami−1, ani−2) ≤ Ω(ε). (19)

From Inequality (18), we have

r̃(ami , ani−1) < ε ≤ Ω(ε), (20)

which yields that
lim sup

n→∞
r̃(ami , ani−1). ≤ Ω(ε).

Combining rectangle inequalities and Inequality (17), we get

ε ≤ Ω(r̃(ami , ani ))

≤ Ω(r̃(ami , ani−1) + r̃(ani−1, ani−2) + r̃(ani−2, ani )). (21)

Taking the upper limit as i→ ∞ and using Equation (16), Inequalities (20) and (18), we get

lim sup
i→∞

r̃(ami , ani−1) ≥ Ω−1(ε). (22)

On the other hand, we have

ψ
(
r̃(ami , ani−1)

)
= ψ

(
r̃( f ami−1, f ani−2)

)
≤ ψ

(
Ω2(r̃( f ami−1, f ani−2))

)
≤ ψ

(
r̃(ami−1, ani−2)

)β1(r̃(ami−1,ani−2))ψ
(
r̃(ami−1, f ami−1)

)β2(r̃(ami−1, f ami−1))

ψ
(
r̃(ani−2, f ani−2)

)β3(r̃(ani−2, f ani−2))ψ
(
r̃(ani−2, f ami−1)

)β4(r̃(ani−2, f ami−1))

= ψ
(
r̃(ami−1, ani−2)

)β1(r̃(ami−1,ani−2))ψ
(
r̃(ami−1, ami )

)β2(r̃(ami−1,ami ))

ψ
(
r̃(ani−2, ani−1)

)β3(r̃(ani−2,ani−1))ψ
(
r̃(ani−2, ami )

)β4(r̃(ani−2,ami )).
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Now, taking the upper limit as i→ ∞ in the above inequality and using (ψ1) and Inequality (22),
we have

ψ
(
Ω[ε]

)
= ψ

(
Ω2[Ω−1(ε)]

)
≤ ψ

(
Ω2[lim sup

i→∞
r̃(ami , ani−1)]

)
≤ ψ

(
lim sup

i→∞
r̃(ami−1, ani−2)

)lim supi→∞ β1(r̃(ami−1,ani−2))

ψ
(

lim sup
i→∞

r̃(ami−1, ami )
)lim supi→∞ β2(r̃(ami−1,ami ))

ψ
(

lim sup
i→∞

r̃(ani−2, ani−1)
)lim supi→∞ β3(r̃(ani−2,ani−1))

ψ
(

lim sup
i→∞

r̃(ani−2, ami )
)lim supi→∞ β4(r̃(ani−2,ami )),

which further implies, from Equation (15), Inequalities (18) and (19), that

1 < ψ
(
Ω[ε]

)
≤ ψ

(
Ω[ε]

)Ω−1(1)
2 < ψ

(
Ω[ε]

)
,

which is a contradiction. Thus, we have proved that {an} is an r̃-Cauchy sequence. The completeness
of A ensures that there exists a∗ ∈ A such that, an → a∗ as n→ ∞. Suppose that a∗ 6= f a∗; then, from
Condition (14), we have

ψ
(
r̃(an, f a∗)

)
= ψ

(
r̃( f an−1, f a∗)

)
≤ ψ

(
r̃(an−1, a∗)

)β1(r̃(an−1,a∗))
ψ
(
r̃(an−1, f an−1)

)β2(r̃(an−1, f an−1))

ψ
(
r̃(a∗, f a∗)

)β3(r̃(a∗ , f a∗))
ψ
(
r̃(a∗, f an−1)

)β4(r̃(a∗ , f an−1))

≤ ψ
(
r̃(an−1, a∗)

)β1(r̃(an−1,a∗))
ψ
(
r̃(an−1, an)

)β2(r̃(an−1,an))

ψ
(
r̃(a∗, f a∗)

)β3(r̃(a∗ , f a∗))
ψ
(
r̃(a∗, an)

)β4(r̃(a∗ ,an)).

Taking the upper limit as n → ∞ in the above inequality and using (ψ1) and Equation (15),
we have

1 < ψ
(
r̃(a∗, f a∗)

)
≤ ψ

(
r̃(lim inf

n→∞
an, f a∗)

)
≤ lim inf

n→∞
ψ
(
r̃(an, f a∗)

)
≤ lim sup

n→∞
ψ
(
r̃(an, f a∗)

)
≤ lim sup

n→∞
ψ
(
r̃(an−1, a∗)

)lim supn→∞ β1(r̃(an−1,a∗))

lim sup
n→∞

ψ
(
r̃(an−1, an)

)lim supn→∞ β2(r̃(an−1,an))

lim sup
n→∞

ψ
(
r̃(a∗, f a∗)

)lim supn→∞ β3(r̃(a∗ , f a∗))

lim sup
n→∞

ψ
(
r̃(a∗, an)

)lim supn→∞ β4(r̃(a∗ ,an))

≤ ψ
(
r̃(a∗, f a∗)

)β3(r̃(a∗ , f a∗)) ≤ ψ
(
r̃(a∗, f a∗)

)Ω−1
4 < ψ

(
r̃(a∗, f a∗)

)
,

which is a contradiction, that is, a∗ = f a∗. Thus, f has a fixed point. The uniqueness is
straightforward.
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Taking various functions ψ ∈ Θ (see Remark 1), several corollaries of the previous theorem are

obtained. For instance, taking ψ(t) = et, ψ(t) = etet
, ψ(t) = 2etet

1+etet , or ψ(t) = 1 + ln(1 + t), we get

Corollary 1. Let (A, r̃) be a complete ERbMS and f : A → A be a mapping such that one of the following
conditions is satisfied for all a, b ∈ A:

(1)

r̃( f a, f b) ≤ β1(r̃(a, b))r̃(a, b) + β2(r̃(a, f a))r̃(a, f a)

+ β3(r̃(b, f b))r̃(b, f b) + β4(r̃(b, f a))r̃(b, f a);

(2)

r̃( f a, f b)er̃( f a, f b) ≤ β1(r̃(a, b))r̃(a, b)er̃(a,b) + β2(r̃(a, f a))r̃(a, f a)er̃(a, f a)

+ β3(r̃(b, f b))r̃(b, f b)er̃(b, f b) + β4(r̃(b, f a))r̃(b, f a)er̃(b, f a);

(3)

1 + ln(1 + r̃( f a, f b))

≤ [1 + ln(1 + r̃(a, b))]β1(r̃(a,b))[1 + ln(1 + r̃(a, f a))]β2(r̃(a, f a))

[1 + ln(1 + r̃(b, f b))]β3(r̃(b, f b))[1 + ln(1 + r̃(b, f a))]β4(r̃(b, f a)),

where βi, β2, β3, β4 ∈ FΩ are such that 0 ≤ βi(t) < Ω−1(1)
4 for all t > 0 and i = 1, 2, 3, 4. Then, f has

a unique fixed point.

Taking β1 = β4 = 0 and β2 = β3 = k in (1) of the above result, we obtain Theorem 2.7 of [29] in
the framework of non-ordered ERbMS.

Example 6. Let A = {0} ∪ { 1
n : n ∈ N} be endowed with the rectangular metric

d(a, b) =


0, if a = b,
1
n , if {a, b} = {0, 1

n},
1, otherwise,

for all a, b ∈ A and r̃(a, b) = ed(a,b) − 1. Define f : A → A and ψ : R+ → [1, ∞) by f a = 1
8 a and

ψ(t) = 1 + ln(1 + t), βi(t) = 2
7+ln(1+t) for i = 1, 2, 3, 4 . Let {a, b} = {0, 1

n}. Then, d( f a, f b) = 1
8n .

Therefore, 1 + ln(1 + r̃( f a, f b)) = 1 + 1
8n , and

[1 + ln(1 + r̃(a, b))]β1(r̃(a,b))[1 + ln(1 + r̃(a, f a))]β2(r̃(a, f a))

[1 + ln(1 + r̃(b, f b))]β3(r̃(b, f b))[1 + ln(1 + r̃(b, f a))]β4(r̃(b, f a))

= [1 +
1
n
]β1(e

1
n −1)[1]β2(0)[2]β3(e−1)[1 +

1
n
]β4(e

1
n −1)

= [1 +
1
n
]

2
1
n +7 [2]

2
8 .

Since [2]
2
8 > 1 and [1 + 1

8n ] ≤ [1 + 1
n ]

2
1
n +7 , we get

[1 +
1

8n
] ≤ [1 +

1
n
]

2
1
n +7 [2]

2
8 .
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Let a, b ∈ { 1
n : n ∈ N}. Then, 1 + ln(1 + r̃( f a, f b)) = [1 + 1] = 2, and

[1 + ln(1 + r̃(a, b))]β1(r̃(a,b))[1 + ln(1 + r̃(a, f a))]β2(r̃(a, f a))

[1 + ln(1 + r̃(b, f b))]β3(r̃(b, f b))[1 + ln(1 + r̃(b, f a))]β4(r̃(b, f a))

= [1 + 1]β1(e−1)[1 + 1]β2(e−1)[1 + 1]β3(e−1)[1 + 1]β4(e−1)

= [2]
2
8 [2]

2
8 [2]

2
8 [2]

2
8 .

Thus, 2 ≤ [2]4(
1
4 ). Hence, f is a ψΩ-contraction and so all conditions of Corollary 1 are satisfied and f has

a fixed point.

5. Some Consequences in Rectangular b-Metric Spaces

Corollary 2. Let (A, rb) be a rectangular b-metric space and f : A→ A be such that

ψ
(

sinh(s · sinh(s · [sinh(rb( f a, f b))]))
)

≤ ψ
(

sinh(rb(a, b))
)β1(sinh(rb(a,b)))

ψ
(

sinh(rb(a, f a))
)β2(sinh(rb(a, f a)))

ψ
(

sinh(rb(b, f b))
)β3(sinh(rb(b, f b)))

ψ
(

sinh(rb(b, f a))
)β4(sinh(rb(b, f a)))

for all a, b ∈ A, where ψ ∈ Θ and β1, β2, β3, β4 are positive real functions such that 0 ≤ βi(t) <
sinh−1(1)

4 for
all t ≥ 0 and i = 1, 2, 3, 4. Then, f has a unique fixed point.

Corollary 3. Let (A, rb) be a rectangular b-metric space. Let f : A→ A be such that

ψ
(

es·es·erb( f a, f b)−1−1 − 1
)

≤ ψ
(
erb(a,b) − 1

)β1(e
rb(a,b)−1)

ψ
(
erb(a, f a) − 1

)β2(erb(a, f a)−1)

ψ
(
erb(b, f b) − 1

)β3(erb(b, f b)−1)
ψ
(
erb(b, f a) − 1

)β4(e
rb(b, f a)−1)

for all a, b ∈ A where ψ ∈ Θ and β1, β2, β3, β4 are positive real functions such that 0 ≤ βi(t) <
ln(2)

4 for all
t ≥ 0 and i = 1, 2, 3, 4. Then, f has a unique fixed point.

6. Conclusions

We have introduced the class of extended rectangular b-metric spaces (ERbMS) as a generalization
of both rectangular metric and rectangular b-metric spaces, and we proved some fixed point results on
complete ordered ERbMS with certain contractions. Moreover, one can easily see that the set of fixed
points of a mapping is well ordered if and only if the mapping has a unique fixed point. Furthermore,
by introducing the concept of ψΩ-contraction, we extend the result of Jleli and Samet and we obtained
some new generalizations of the Banach contraction principle. It would be very interesting to analyze
the existing literature in light of the new defined metric (ERbMS).
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