
Stability and Bayesian Consistency in Two-Sided
Markets∗

Qingmin Liu†

April 15, 2020

Abstract

We propose a criterion of stability for two-sided markets with asymmetric informa-
tion. A central idea is to formulate matching functions, off-path beliefs conditional on
counterfactual pairwise deviations, and on-path beliefs in the absence of such devia-
tions. A matching-belief configuration is stable if the matching is individually rational
with respect to the system of on-path beliefs and is not blocked with respect to the
system of off-path beliefs. The formulation provides a language for assessing matching
outcomes with respect to their supporting beliefs and opens the door to further belief-
based refinements. The main refinement analyzed in the paper requires the Bayesian
consistency of on-path and off-path beliefs with prior beliefs. We also define concepts
of Bayesian efficiency, the rational expectations competitive equilibrium, and the core.
Their contrast with pairwise stability manifests the role of information asymmetry in
matching formation.
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1 Introduction

This paper develops a criterion of stability for two-sided markets with asymmetric informa-
tion. Specifically, we study a market where agents on one side of the market are privately
informed of their payoff-relevant attributes. Such a theory of stability is required on two
grounds. On the one hand, the solution concept of stability studied by Gale and Shapley
(1962) and Shapley and Shubik (1971) has been successful in analyzing matching applica-
tions, but the assumption of complete information is often restrictive. On the other hand,
the theory of asymmetric information in two-sided markets is long-standing and revolution-
ary (e.g., Wilson 1967, Akerlof 1970, Spence 1973, Rothschild and Stiglitz 1976, etc.), but
the main analytical tools are the competitive equilibrium and non-cooperative game theory,
which differ from stability in fundamental respects.1

In a complete-information matching problem, two players from opposite sides of the mar-
ket “block” a matching if both are better off by rematching with each other; a matching is
called stable if it is individually rational and no such pairwise blocking opportunity exists.
With asymmetric information, the players’ incentive to block depends on their private in-
formation; hence, the presence of a blocking opportunity reveals information that should
lead to a reassessment of the viability of the blocking opportunity. Likewise, the lack of any
viable blocking opportunity, a situation that stability describes, should also reveal informa-
tion. Therefore, the uncertainty in a stable matching is endogenous. In a Bayesian theory of
stability, a player’s uncertainty at each contingency should be described by a probabilistic
belief. However, the circular nature of the inference problem makes this task difficult.

We aim to develop a Bayesian theory of stability and to avoid, if at all possible, com-
promising cooperative models of matching with ad hoc non-cooperative assumptions. Nev-
ertheless, a comparison with the theory of dynamic non-cooperative games of asymmetric
information elucidates aspects of beliefs that must be captured in a satisfactory Bayesian
theory of stability. This comparison is warranted because it is a commonly held view that
coalitional solution concepts are reduced-form ways of capturing equilibrium or steady-state

1Two features distinguish equilibrium theories from stability. First, equilibrium theories are often de-
veloped on the premise of individual optimization while holding fixed the behavior of all other actors. In
many two-sided markets with pairwise relationships, pairwise blocking or optimization that jointly involves
two players from opposite sides of the market is no less plausible than unilateral deviation or optimization.
Secondly, non-cooperative games can be used to model coalition formation, but they often require complete
specifications of the strategic interactions including actions available to each player, orders of moves, rules
of information revelation, etc. In reality, however, researchers may not know the exact nature of the in-
teractions among players. Some assumptions on non-cooperative game forms may seem reasonable in one
context but may become unrealistic in another. The advantage of the cooperative concept of stability is that
it focuses on payoff assumptions and abstracts away from details of strategic interactions. Indeed, many
classic frameworks of adverse selection impose an endgame that precludes further transactions, a problem
that is resolved in the framework of this paper.
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outcomes of dynamic interactions.2 The starting point of this comparison is, naturally, se-
quential equilibrium, a leading solution concept for dynamic games. As Kreps and Wilson
(1982, p. 886) explain, a central principle of their theory is to describe equilibrium as a
belief-strategy pair, where equilibrium beliefs—both on and off the equilibrium path—are
determined in concert with equilibrium strategies. This powerful insight of separating equi-
librium beliefs from equilibrium strategies, so convenient as to be taken for granted today,
is instrumental in wide-ranging applications of dynamic games and it paved the way for
subsequent development of belief-based equilibrium refinements. We may expect an analog
in a cooperative theory of stability with asymmetric information; otherwise there would be
little hope for the new theory to capture the outcomes of decentralized dynamic market in-
teractions. Specifically, a notion of “on-path stable beliefs” that are consistent with “stable
matching outcomes” should be prescribed for a stability concept, and a notion of “off-path
stable beliefs” at “off-path” blocking opportunities that deter blocking should be formulated,
which would open the door for belief-based refinements. This idea seems obvious and natu-
ral, but, surprisingly, it has not been formally examined in matching problems in particular
and cooperative games in general.

By explicitly formulating the on-path belief at each matching outcome and the off-path
belief at each blocking opportunity, it is possible to define stability through the consistency
of the matching-belief configuration: the putative matching is individually rational with re-
spect to the system of on-path beliefs, and it is immune to pairwise blocking with respect
to the system of off-path beliefs. Matchings and beliefs that pass the consistency test are
referred to as stable matchings and stable beliefs. Although we have borrowed the terminol-
ogy of “on path” and “off path” from non-cooperative games, we do not impose a specific
non-cooperative interpretation on “off-path” events. In defining stability, we simply test a
putative matching against all counterfactual blocking opportunities, as is consistent with the
complete-information theory of stability.

If we agree that endogenous on-path and off-path stable beliefs are qualitatively different
from a prior belief that is an exogenous primitive of our model, the immediate next conceptual
question is how to relate these three kinds of beliefs to each other. Since cooperative matching
games do not specify strategies and game forms, we cannot apply Bayes’ rule as in non-
cooperative games. In particular, it would be a futile attempt to explicitly derive an on-path
belief by updating the prior belief from a sequence of failed pairwise deviations. This direct
approach does not cut through the Gordian knot of circular inference. Here is how we resolve

2See, e.g., Gul (1989) and Perry and Reny (1994) for the exposition of this idea known as the “Nash
program.” In fact, we may argue that many other solution concepts are shortcuts to capture some dynamic
interactions, including the fundamental non-cooperative concept of Nash equilibrium.
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this question. We make use of an idea of “outcome functions” similar to that in the literature
on rational expectations equilibrium: players understand the stable relationship between the
underlying uncertainties (players’ types) and the observables (matching outcomes). Using
Bayes’ rule, an on-path stable belief is “updated” from the prior conditional on an observable
outcome that is an output of the outcome function; an off-path stable belief associated
with an off-path blocking opportunity is further “updated” from the on-path stable belief
conditional on the off-path event that the blocking opportunity is mutually acceptable. This
Bayesian consistency property refines the notion of stability, and closes the loop of the
circular inference for defining on-path and off-path beliefs in a stable matching: there is no
individual or pairwise deviation from a stable matching outcome given the supporting stable
beliefs; stable beliefs and a prior belief are Bayesian consistent given the stability of the
matching.

Although the concepts of stability and Bayesian consistency apply to both transferable
utility and non-transferable utility problems, we study their implications in matching prob-
lems with transfers. With complete information, transfers and payoff distributions in a stable
matching exhibit a large degree of flexibility, which, unsurprisingly, continues to hold under
asymmetric information. However, it is well known that a stable matching with transfers
must maximize the total surpluses (Shapley and Shubik 1971). This efficiency is a simple yet
remarkable structural property of stability, and extending it to an asymmetric information
environment is obviously worthwhile. The existence of stable beliefs allows us to evaluate
match efficiency in the Bayesian sense. We define a criterion of Bayesian efficiency as maxi-
mization of the expected social surpluses with respect to on-path stable beliefs, the kind of
beliefs that an uninformed planner would have. We give conditions under which all stable
matchings that are supported by Bayesian consistent beliefs must be Bayesian efficient, and
these conditions apply to familiar models of adverse selection.

Incomplete information is qualitatively different from complete information in ways that
go beyond efficiency. Motivated by two concepts that have occupied significant places in
economic theory, we define the competitive equilibrium and the core to further study the
role of informational friction in matching formation. Our notion of rational expectations
competitive equilibrium extends the notion of the complete-information competitive equilib-
rium (see, e.g., Koopmans and Beckmann 1957, Shapley and Shubik 1971, and Becker 1973).
A competitive equilibrium specifies a price for any two players (including unmatched pairs)
and postulates that the validity of a player’s unilateral deviation is independent of the other
player’s willingness to match with the deviating player. By contrast, stability dispenses
with both postulates of price-taking behavior and unilateral deviation. However, the two
conceptually different notions are outcome-equivalent for matching under complete informa-
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tion. The equivalence breaks down under informational asymmetry. The set of competitive
equilibrium matchings and the set of stable matchings with Bayesian consistent beliefs must
overlap but in general neither one contains the other. The reason is precisely that the two
theories of market mechanisms, stability and competitive equilibrium, make different as-
sumptions about how information is processed in deviations. But a competitive equilibrium
is always Bayesian efficient conditional on the information being revealed, because of the
nature of unilateral optimization.

Under complete information, pairwise stability is the same as the concept of the core;
i.e., a matching is not blocked by any pair of players if and only if it is not blocked by
any set of players. Under incomplete information, the set of stable matchings contains the
core as a subset. The core can strictly refine stability even when (prior and posterior)
type distributions across players are independent: a blocking cycle can be created using
multiple pairs, where the formation of each blocking pair is conditional on the formation of
others blocking pairs, and every player in this cycle makes inference from the incentives his
respective partners both in the putative match and in the coalitional deviation.

The rest of the paper is organized as follows. Section 1.1 demonstrates several features of
beliefs and stability using two examples. Section 1.2 discusses the related literature. Section
2 introduce the model and Section 3 defines the notion of stability. Section 4 studies the
criterion of Bayesian efficiency. Section 5 compares stability and competitive equilibrium.
Section 6 offers several extensions: the core, the notion of correlated stability, and the
incentive compatibility. Section 7 concludes.

1.1 Examples

The first example shows that beliefs associated with stability, the on-path beliefs, are quali-
tatively different from prior beliefs, and they cannot be determined a priori independently of
the stability of a matching. The second example demonstrates natural restrictions on beliefs
across players.

Example 1. There is one worker whose type is drawn from {t1, t′1} according to a commonly
known prior distribution that assigns probability q ∈ (0, 1) to t1 and 1 − q to t′1. There are
two firms (firm 1 and firm 2). The matrix of matching values is given below:

firm 1 firm 2
t1 −1, 2 −3, 5
t′1 0, 2 −4, 5

where, for instance, the vector (−1, 2) in the matrix means that, before a transfer is made,
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the matching of the type-t1 worker and firm 1 gives the worker a payoff of −1 (e.g., cost of
effort) and the firm a payoff of 2 (e.g., output). Assume that the payoff of an unmatched
player is 0.

Suppose a matching is formed. We claim that it is impossible that firm 2 is matched
with the worker of type t′1 for a reasonable notion of stability that captures an immunity to
pairwise blocking. To see this, suppose to the contrary that the worker’s type happens to be
t′1 and this worker ends up matching with firm 2. Note that the salary that the worker of type
t′1 receives from firm 2 cannot exceed 5 (because firm 2’s matching value is 5) and hence the
worker’s payoff is at most −4 + p ≤ 1, where p is the salary. Since there is only one worker,
firm 1 is unmatched. The worker of type t′1 can block the above matching outcome with the
unmatched firm 1 with a salary of p′ = 1.5: the worker obtains a payoff of 0 + p′ = 1.5 > 1
and firm 1 obtains a payoff of 2− p′ = 0.5 regardless of the worker’s type.

Similarly, it is impossible that firm 1 is matched with the worker of type t1. Otherwise,
this worker and the unmatched firm 2 could block the matching outcome with a salary of
p′ = 4.5: the worker would obtain a payoff of −3+p′ = 1.5, which is higher than the maximal
payoff he could obtain in a match with firm 1, and firm 2 would make a payoff of 5−p′ = 0.5
regardless of the worker’s type.

Thus we conclude that, in a stable matching, the type-t1 worker cannot be hired by firm
1 and the type-t′1 worker cannot be hired by firm 2: a firm’s posterior belief associated with
any stable matching (i.e., the on-path stable belief) must assign probability 1 to t1 when
the worker is matched with firm 2, and must assign probability 1 to t′1 when the worker is
matched with firm 1. Therefore, there is a full separation of worker’s types irrespective of
the prior distribution.

The takeaway of the example is that beliefs in a stable matching should not simply be
taken as prior beliefs and they cannot be fixed a priori. The on-path belief must always be
determined together with the stability of the matching.

Example 2. Consider the following example with three firms and one worker whose type is
either t1 or t′1.

firm 1 firm 2 firm 3
t1 0, 2 0, 0 0, 5
t′1 0, 2 0, 5 0, 0

Can it be stable for the worker to match with firm 1 with some transfer? Suppose that firms
2 and 3 start with a common prior over {t1, t′1} and make identical observations (including
the fact that firm 1 and the worker are matched); then the two firms should share the same
posterior belief, say q ∈ [0, 1] , on t1. It is clear from the matrix of matching values that no
matter what q is, one of the two firms can form a blocking pair with the worker. Therefore,
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it is not a stable matching for firm 1 to hire the worker.
The argument above is intuitive, and one feels that a natural notion of stability should

not predict otherwise. But we shall raise an issue that may have broader implications, and
it should not be surprising for students of non-cooperative game theory. If the putative
matching of firm 1 and the worker is under consideration, a new pair formed by firm 2 (or
firm 3) and the worker is “off path”. The above argument assumes that the off-path belief of
the firm is the same as the on-path belief. This assumption is appealing in the context of this
example, as there does not seem to be a compelling reason for the two firms to change their
belief about t1 or t′1 given that both types obtain a constant matching value of 0 and prefer
to work for whichever firm for a higher wage. But we must be clear that this assumption
is a refinement of off-path beliefs. If firm 2 and firm 3 are allowed to have heterogeneous
posterior beliefs, and say, firm 2 thinks the worker’s type is t1 and firm 3 thinks the worker’s
type is t′1, i.e., each firm looks at its respective worst-case scenario, then it would be stable
for the worker to match with firm 1.

The takeaway of this example is that the specification of off-path beliefs should not be
completely arbitrary. Additional restrictions on beliefs based on our intuition about the game
will strengthen the predictive power of the solution concept, as is already well known from
the equilibrium refinement literature. The principal refinement we propose in this paper,
when applied to this example, will yield the intuitive prediction we started with.

1.2 Related Literature

Given the wide range of applications of stable matching, attempts to relax the restriction
on complete information are nothing new. Roth (1989) and Chakraborty, Citanna, and Os-
trovsky (2010) study implementation of matching outcomes using existing non-cooperative
concepts. Their response to incomplete information is natural, but the choice of game forms
matters for the equilibrium outcomes and beliefs. By contrast, we propose the notion of
stability as a test of a putative matching against all potential pairwise blocking opportuni-
ties, as in complete-information theory of stability. Unlike this early work, no game form is
imposed and hence the opportunity of blocking is never restricted. This aspect is the cen-
tral distinction between cooperative and non-cooperative game theory, as well as the main
conceptual question for a cooperative theory of incomplete information, a topic pioneered
by Wilson (1978). In the sequel, we explain how the present paper diverge from a broad
literature in terms of problem formulation and methodology.
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1.2.1 The Incomplete-Information Core

In his pathbreaking work, Wilson (1978) defines “coarse core” and “fine core” corresponding
to two protocols of information aggregation within a blocking coalition. See Forges, Minelli,
and Vohra (2002) for a survey of subsequent developments. Two other concepts stand out.
Holmström and Myerson (1983) propose a notion of durability based on a voting game.
Dutta and Vohra (2005) define the credible core, where the information that a deviating
coalition conditions on is the information that makes the deviation profitable, such that the
set of states that engage in a deviation is endogenously determined as a fixed point; Yenmez
(2013) defines stability with a similar kind of fixed point.

This literature analyzes a situation in which the final outcomes are not observed, or at
least the contracts already in place must be carried out. By contrast, we study a situation
in which the outcomes are observed and players consider deviating from an outcome based
on their updated information and inference.3 Our framework is suitable for decentralized
applications, such as marriage and labor markets, where players observe an actual market
outcome and stability describes a situation in which there is no further coalitional deviation
from this outcome. This critical distinction gives rise to the circular inference problem we
previously summarized, which is absent from Wilson (1978) and the literature that follows.
The new problem calls for a new approach to stability and beliefs. The following self-
contained example illustrates the difference in approaches.

Example 3. Consider one seller whose cost is 0 and one buyer whose valuation is either 1
or ε ∈ (0, 1/2), with equal prior probability. The following allocation rule is in the credible
core of Dutta and Vohra (2005), a refinement of the coarse core: the price is 1 and only the
high-type buyer trades with the seller. The reasoning is as follows. A potential coalition
that involves the low-type buyer must have a price p ≤ ε. This low price will attract the
high-type buyer as well, so the seller’s belief about the worker is the same as prior belief, as
required by Dutta and Vohra (2005), and the expected payoff from the deviation is p ≤ ε.
But the seller has no incentive to deviate because he gets an expected payoff of 1/2 from
selling only to the high type at price 1. So the allocation rule is not blocked. Accordingly, if
the buyer is the low type, the allocation rule prescribes no trade, and nothing can be done
when this is a realized outcome. This is not the situation we are considering in this paper.
Observing a no-trade outcome, the seller would know the buyer’s type is low and they would
block the no-trade outcome at a price of 1

2ε.
3Forges (1994) proposes a notion of posterior efficiency that conditions on the information revealed by

an outcome of a mechanism. Green and Laffont (1987) study “posterior implementability” that utilizes
information revealed by observable outcomes.
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The previous example illustrates the main difference between our approach and the other
literature. However, it is important to point out that our approach is similar to the seminal
paper of Wilson (1978), and some of the work that follows it, in two critical respects: we
define a solution concept for a class of coalitional incomplete-information games instead of
implementing the solution concept, and we avoid making non-cooperative assumptions an
indispensable component in the definition of a cooperative solution concept. We shall discuss
the issue of incentive compatibility in Section 6.3.

1.2.2 The Belief-Free Approach

As in the present paper, Liu, Mailath, Postlewaite, and Samuelson (2014) depart from the
previous literature by assuming observability of matching outcomes, which makes inference
from the non-existence of pairwise blocking necessary. Without pinning down the beliefs
that this inference induces, they take an approach in spirit resembles the rationalizability
concept of Bernheim (1984) and Pearce (1984), notwithstanding the issues created by incom-
plete information and the observability of matching outcomes. They observe that matching
outcomes that can be blocked under any beliefs of the uninformed firm that are consistent
with a worker’s incentive to deviate should never be considered as stable. Once these match-
ing outcomes are removed from consideration, the support of admissible beliefs shrinks,
which enables further rounds of elimination. Liu et al. (2014) define a concept based on
this iterated elimination procedure. Since there is no randomization, blocking under “any
beliefs” is mathematically equivalent to blocking under the “worst-case scenario.” The key
of this definition is to make no exogenous restrictions on beliefs over the tentatively sur-
viving outcomes in the elimination process, similar to the process of iterated elimination of
never-best responses in non-cooperative games. It would be logically inconsistent otherwise.
Alston (2020) and Bikhchandani (2017) demonstrate the consequence of such exogenous
restrictions on beliefs in the elimination process.

Notice that from the uniformed firms’ perspective, the set of workers’ type profiles is not
a Cartesian product, and hence it is implicitly a partitional structure. This information is
refined along the elimination process. Liu et al. (2014) show that this iterative elimination
has an equivalent fixed-point characterization.4 In subsequent papers that adopt their model,

4It should be pointed out that this fixed point is different from the fixed points in Dutta and Vohra (2005)
and Yenmez (2013). The latter concerns the self-fulfilling set of types of a blocking coalition and this set is
not needed if incomplete information is one-sided as is in Liu et al. (2014) and this paper. The approach
of Liu et al. (2014) is also different from the coalitional rationalizability of normal-form games studied by
Ambrus (2006), where there is neither inference from incomplete information and observable outcomes nor
the idea of blocking; they are different even in the special case of complete information, where the notion of
Liu et al. (2014) reduces to the familiar notion of the core.
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Chen and Hu (2020) explicitly formulate the partitional information in the fixed-point defi-
nition and construct an adaptive learning process learning to stability, and Pomatto (2015)
provides an epistemic formulation of blocking by using a forward-induction logic.

This approach, although imposing strong restrictions in specific contexts5, evades the
central question of economic analysis of uncertainty: the Bayesian formulation of prior and
posterior beliefs. We should not be content with a belief-free solution for Bayesian matching
games that are parameterized by prior beliefs. It should be noted that one cannot obtain
an on-path belief in the present paper by imposing a prior belief on a stable set obtained
from Liu et al. (2014) and subsequent reformulations; it is logically inconsistent: just as in
equilibrium theory, the on-path beliefs and off-path beliefs are determined concurrently, and
the belief-free notion is based on different assumptions on the off-path beliefs.

2 The Model

The model is based on job matching between firms and workers studied by Crawford and
Knoer (1981). But “firms” and “workers” are just semantics, and the model applies more
generally (e.g., men and women, sellers and buyers, etc.). In addition, the model reduces
to a non-transferable utility model if transfers are restricted to be zero, where the concepts
we shall develop remain valid mutatis mutandis. We prove results under the assumption of
quasi-linearity in transfers.

2.1 Asymmetric Information

Let I = {1, ..., n} be a set of workers, and J = {n + 1, ..., n + m} be a set of firms. Let
Ti be a finite set of types for worker i. Worker i’s type ti ∈ Ti is his private information.
Denote by t = (t1, ..., tn) ∈ T = ×ni=1Ti a profile of private types for the n workers. There
is a common prior β0 ∈ ∆(T ) on workers’ type profiles, and β0 has a full support. Firm j’s
type is commonly known and is denoted by its index j. Similarly, each worker i can also
have publicly observable, payoff-relevant attributes that are denoted by i.

2.2 Match and Payoff

Let aij(ti) ∈ R and bij(ti) ∈ R be the matching values worker i (with type ti) and firm
j receive, respectively, when they match.6 To ease notation, for a profile of workers’ types

5In addition to payoff assumptions, Liu et al. (2014) consider a situation where private information within
a matched pair is revealed.

6The matching value is allowed to depend on players’ observable attributes denoted by i and j. It thus
includes as a special case aij(ti) = u(ti, wi, fj) and bij(ti) = v(ti, wi, fj), where wi and fj are worker i’s and
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t = (ti, t−i) ∈ T , we write aij(t) := aij(ti) and bij(t) := bij(ti) whenever there is no confusion.
We normalize the matching values of unmatched players i and j to 0 and, with a slight
abuse of notation, write them as aii(t) = bjj(t) = 0. A matching game with asymmetric
information is fully summarized by the matching value function (a, b) : I × J × T → R2 and
the common prior β0 ∈ ∆(T ).

A match is a one-to-one function µ : I ∪J → I ∪J that pairs up workers and firms such
that the following holds for all i ∈ I and j ∈ J : (i) µ(i) ∈ J ∪ {i}, (ii) µ(j) ∈ I ∪ {j}, and
(iii) µ(i) = j if and only if µ(j) = i. Here µ(i) = i ∈ I means that worker i is unmatched;
similarly for µ(j) = j ∈ J .

Let pij ∈ R be the transfer that worker i receives from firm j. A transfer scheme
associated with a match µ is a vector p that specifies a transfer piµ(i) ∈ R for each i ∈ I and
a transfer pµ(j)j ∈ R for each j ∈ J, where pii = pjj = 0. If worker i and firm j are matched
together with a transfer pij when the profile of workers’ types is t, worker i’s and firm j’s ex
post payoffs are aij(t) + pij and bij(t)− pij, respectively.

We shall refer to a match together with a transfer scheme (µ,p) as amatching outcome.
We shall assume that a matching outcome is publicly observable.7

2.3 Matching Function

For every t = (t1, ..., tn) ∈ T, some matching outcome (µ,p) materializes. In a stable
matching, players should correctly understand the relationship between the underlying un-
certainties and the observable outcomes, which is described by a function M : t 7→ (µ,p).
We shall call the functionM a matching function or simply a matching for the matching
game with asymmetric information. Three remarks are immediately needed.

Remark 1. The function M : t 7→ (µ,p) describes a stable relationship between underlying
uncertainties and observables, and players agree on this relationship. This is similar to the
classic rational expectations equilibrium approach to markets with incomplete information
pioneered by Radner (1979), where an equilibrium relationship is described by a mapping
from unobservable uncertainties to publicly observable price vectors. In our matching en-
vironment, it is natural to assume that the assignment µ is observable in addition to price
vectors p. Economic theorists have utilized a similar approach in other contexts, such as
the formulation of conjectural equilibria and self-confirming equilibria (e.g., Rubinstein and
Wolinsky 1994, Dekel, Fudenberg, and Levine 2004).
firm j’s observable characteristics, respectively.

7The observability of matches and transfers are empirically relevant; see Salanié (2015) for a discussion
of marriage models with transfers.
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Remark 2. The matching function describes a deterministic relationship between private
types and matching outcomes. In Section 6.2, we incorporate stochasticity through M :
(t, s) 7→ (µ,p), where s = (sn+1, ..., sn+m) is a profile of private signals observed by firms. The
assumption of observable matching outcomes simplifies the analysis. If we are interested in
the partial observability of matching outcomes, we can introduce a private signal profile ω =
(ω1, ..., ωn+m) regarding a matching outcome (µ,p), and consider a mapping M : t 7→ ω. It
does not take sophisticated thinking to formalize this extension once we see the definition for
the case of observable matching outcomes. The extension involves no additional conceptual
innovation but necessitates more notation.

Remark 3. Wemay impose the following restriction on the matching function: M is measur-
able with respect to the privately informed players’ matching values, i.e., if for some worker
i ∈ I and his two types ti, t′i ∈ Ti, aij(ti) = aij(t′i) for all j ∈ J, then M(ti, t−i) = M(t′i, t−i)
for all t−i ∈ T−i. If this condition is satisfied, we say the matching M is measurable. Mea-
surability reflects the idea that an uninformed player’s private information can be revealed
only when it affects the player’s own payoff. This restriction is not without loss of generality
and one can think of situations where it is not appealing.

3 The Criterion of Stability

In this section, we first introduce the plain-vanilla version of stability that incorporates indi-
vidual rationality under on-path beliefs and the absence of pairwise blocking under off-path
beliefs. We then introduce a refinement based on Bayesian consistency between exogenous
prior beliefs and endogenous beliefs.

3.1 On-Path Beliefs and Individual Rationality

Consider any matching outcome (µ,p) that may appear according to the matching function
M, i.e., (µ,p) ∈M(T ). Upon observing (µ,p), each firm j ∈ J forms a belief β1

(µ,p,j) ∈ ∆(T )
over the types of all workers. This is firm j’s on-path belief associated with the matching
outcome (µ,p). Firm j’s expected payoff from the matching outcome (µ,p) is

Eβ1
(µ,p,j)

[bµ(j)j]− pµ(j)j =
∑

t∈T
bµ(j)j(t)β1

(µ,p,j)(t)− pµ(j)j.

As we explained in the introduction, the on-path belief is the endogenous belief formed
when there is no longer an opportunity to deviate from a matching. Does the introduction
of β1

(µ,p,j) capture this endogeneity in a stable matching? Not yet, but it will. So far, β1
(µ,p,j)
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describes firm j’s posterior beliefs when the putative matching is in place. The to-be-defined
stability ofM will discipline the on-path belief, as demonstrated already by the first example
in Section 1.1. The stability ofM and the on-path belief β1 will be determined jointly rather
than separately.

Definition 1. A matching M is individually rational with respect to the system of on-
path beliefs β1 = (β1

(µ,p,j))(µ,p)∈M(T ),j∈J if
(i) aiµ(i)(t) + piµ(i) ≥ 0 for all worker i ∈ I, type profile t ∈ T , and matching outcome

(µ,p) = M(t), and
(ii) Eβ1

(µ,p,j)
[bµ(j)j]− pµ(j)j ≥ 0 for all firm j ∈ J and matching outcome (µ,p) ∈M(T ).

3.2 Off-Path Beliefs and Pairwise Blocking

Stability requires that there be no pairwise blocking; i.e., pairwise blocking is a counterfac-
tual, off-path possibility if M is stable. A (pairwise) deviating coalition from a matching
outcome (µ,p) ∈ M(T ) consists of a worker i ∈ I, a firm j ∈ J, and a transfer p ∈ R such
that j 6= µ(i). We shall refer to (µ,p, i, j, p) as a coalitional deviation, indicating that
the coalition (i, j, p) is for the matching outcome (µ,p). Let CM be the set of coalitional
deviations for M. Formally,

CM = {(µ,p, i, j, p) : (µ,p) ∈M(T ), i ∈ I, j ∈ J, j 6= µ(i), p ∈ R} .

We say (µ,p, i, j, p) ∈ CM is a coalitional deviation at type profile t if (µ,p) = M(t) for
some t ∈ T.

We would like to formalize the following intuitive idea: a coalitional deviation (µ,p, i, j, p)
for M at some type profile t is viable if the deviation is mutually beneficial to worker i and
firm j, i.e., if they prefer, in the expected utility sense, a rematch with each other at the
transfer p to their respective matches under (µ,p); a matchingM is blocked if some coalitional
deviation at some t is viable. To compare the firm’s expected payoffs, we need to specify
players’ beliefs conditional on this coalitional deviation.

Consider a coalitional deviation (µ,p, i, j, p) at t ∈ T.Worker i benefits from the deviation
at t if and only if

aij(t) + p > aiµ(i)(t) + piµ(i). (3.1)

Suppose firm j’s off-path belief conditional on this deviation is β2
(µ,p,i,j,p) ∈ ∆(T ). Firm

j’s profit from participating in the coalitional deviation (µ,p, i, j, p) is

Eβ2
(µ,p,i,j,p)

[bij]− p =
∑

t∈T
bij(t)β2

(µ,p,i,j,p)(t)− p. (3.2)
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The firm will also revise its expected payoff from the putative matching, using the off-path
belief, to

Eβ2
(µ,p,i,j,p)

[bµ(j)j]− pµ(j)j =
∑

t∈T
bµ(j)j(t)β2

(µ,p,i,j,p)(t)− pµ(j)j. (3.3)

Firm j benefits from the coalitional deviation (µ,p, i, j, p) if

Eβ2
(µ,p,i,j,p)

[bij]− p > max
{

0,Eβ2
(µ,p,i,j,p)

[bµ(j)j]− pµ(j)j

}
; (3.4)

that is, the firm must anticipate a positive payoff that is larger than what it expects to
obtain in the putative matching.

Definition 2. A coalitional deviation (µ,p, i, j, p) ∈ CM for the matching M at t ∈ T is vi-
able with respect to an off-path belief β2

(µ,p,i,j,p) ∈ ∆(T ) if both (3.1) and (3.4) hold. A match-
ing M is blocked with respect to a system of off-path beliefs β2 = (β2

(µ,p,i,j,p))(µ,p,i,j,p)∈CM if
there exists some coalitional deviation (µ,p, i, j, p) at some t ∈ T that is viable with respect
to β2

(µ,p,i,j,p).

In the sequel, we make three further remarks to facilitate the reader’s understanding.

Remark 4. Definition 2 describes when a coalitional deviation is mutually profitable for both
parties involved. It is silent about how two players find each other and how they negotiate
a transfer between them, a detail that is abstracted away in the cooperative model. The
definition proposes a test for a putative matching against arbitrary counterfactual coalitional
deviations, as in the existing complete-information theory.

Remark 5. The “max” operator in (3.4) is required for the definition of a viable coalitional
deviation because the firm’s expected payoff in the putative matching computed using the
off-path belief β2

(µ,p,i,j,p) may be negative, in which case firm j’s payoff from the coalitional
deviation being negative does not ensure firm j’s participation in the deviation. It is tempting
to argue that viability is too strong a requirement, and that the putative matchingM should
be viewed as defeated as long as

Eβ2
(µ,p,i,j,p)

[bij]− p > E2
β(µ,p,i,j,p)

[bµ(j)j]− pµ(j)j, (3.5)

because firm j would reject its assignment µ(j) under (µ,p) if its updated on-path payoff
(3.3) were strictly negative, regardless of whether or not firm j and worker i rematch with
each other.

This argument is flawed. Note that (3.5) and (3.4) differ only when firm j’s off-path
payoff, (3.2), is negative (i.e., firm j will not hire the deviating worker i). In this case,
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worker i’s incentive to work for firm j reveals to firm j that it should reject the match
outcome (µ,p), but worker i also understands that he will not be hired by firm j because,
being more informed, he can replicate firm j’s computation. Therefore, worker i will not
benefit from the coalitional deviation, thus violating mutual profitability required for a valid
coalitional deviation. One might still argue that firm j can still pay worker i for the purpose
of soliciting information from him but will not hire him. If that is the case, all types of worker
i would want to obtain the payment without actually switching to firm j and, consequently,
no information would be revealed, thus defeating the purpose of making the payment in the
first place.

We should carry this logic even further: in a viable coalitional deviation, firm j should
assign positive probability only to those types of worker i who know they will be accepted
by firm j. This is a refinement of firm j’s off-path belief. It is not captured by Definition 2
but will be captured by our main refinement in Section 3.4.

Remark 6. We consider all counterfactual coalitional deviations for the putative matching
M. But we do not consider further rounds of counterfactual deviations from the counterfac-
tual coalitional deviations. This issue of “farsighted blocking,” which makes blocking even
harder (and hence leads to a coarser concept of stability), is not the focus of this paper;
see, e.g., Mauleon, Vannetelbosch, and Vergote (2011) and Ray and Vohra (2015) for related
discussions of von Neumann–Morgenstern stable set in complete-information problems. In-
complete information will open a new venue of research on farsightedness. Another issue
is coalitions that jointly involve multiple pairs of workers and firms, which opens up more
blocking opportunities. This will lead to the concept of the core in Section 6.1.

3.3 Stability

A matching-belief configuration (M,β1, β2) consists of a matching function M , a sys-
tem of on-path beliefs β1 = (β1

(µ,p,j))(µ,p)∈M(T ),j∈J , and a system of off-path beliefs β2 =
(β2

(µ,p,i,j,p))(µ,p,i,j,p)∈CM . We have all the ingredients needed for the definition of stability.

Definition 3. A matching-belief configuration (M,β1, β2) is stable if M is individually
rational with respect to β1 and is not blocked with respect to β2. If (M,β1, β2) is stable, we
say M is a stable matching and β1 and β2 are, respectively, on-path stable beliefs and
off-path stable beliefs that support M.

Definition 3 formulates the consistency of matching-belief configuration.8 If T is a single-
ton, the stability notion coincides with the familiar complete-information notion of stability.

8We only study one-sided incomplete information, but it is clear that extending this definition to two-sided
incomplete information and more general environment is rather straightforward.
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Example 1 in Section 1.1 illustrates the implication of stability, without appealing to any
belief refinement. The example belongs to the class of games defined below, a generaliza-
tion of assignment problems studied by Koopmans and Beckmann (1957) and Shapley and
Shubik (1971).

Assumption 1. bij(ti) = bij(t′i) for any ti, t′i ∈ Ti, i ∈ I and j ∈ J.

Assumption 1 says that the uninformed player j’s matching value bij is independent of
the informed player i’s private types, although it can vary with their observable types that
are denoted by i and j. One application of this setting is multiple-object auctions in which
privately informed bidders (workers) acquire heterogeneous objects (jobs) and the object
owners can have heterogeneous reservation values. A special case is bij ≡ 0, where the
uninformed players care only about the transfers. We do not make any restrictions on aij.

Definition 4. A matching M is full-information efficient if for all t ∈ T and (µ,p) =
M(t), the match µ maximizes ∑n

i=1(aiµ′(i)(t) + biµ′(i)(t)) over all matches µ′ : I ∪ J → I ∪ J.

The following result is a basic test of the notion of stability, which conforms to our
understanding from auction theory (e.g., the Vickrey–Clarke–Groves allocation mechanism).

Proposition 1. Suppose that Assumption 1 holds. Then (M,β1, β2) is stable if and only
if for any t ∈ T, M(t) is complete-information stable when t is common knowledge; conse-
quently, a stable matching M is full-information efficient.

3.4 The Main Refinement: Bayesian Consistent Beliefs

The notion of stability can be permissive if no further restriction on beliefs is imposed.9

Although there is no invincible argument for any refinement of beliefs, and off-path beliefs in
particular, some restrictions are arguably “desirable” or “intuitive.” We propose the following
two principles and derive their implications:

(i) a firm’s belief should be updated using Bayes’ rule from the prior belief conditional on
what the firm observes and knows;

(ii) in a viable coalitional deviation, the deviating firm knows that the deviating worker
benefits from the deviation.

Since firms know the function M (by the rational expectations assumption), upon ob-
serving the matching outcome (µ,p), firms think the possible profiles of types lie in the

9For instance, an on-path belief assigns very small probability to a “disastrous” worker type, but all
off-path beliefs assign probability 1 to the disastrous type without taking into account the type’s willingness
to deviate, which makes coalitional deviation unlikely and hence supports many possible matching outcomes.
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set M−1(µ,p) = {t ∈ T : M(t) = (µ,p)} . Therefore, by the first principle, firm j’s on-path
belief is

β1
(µ,p,j)(·) = β0(·|M−1(µ,p)). (3.6)

As a result, firms share the same on-path belief because they have a common prior β0, a
common observation (µ,p), and a common understanding of M.

Consider a coalitional deviation (µ,p, i, j, p) at t. Worker i (strictly) benefits from the
deviation if and only if the type profile is in the following set:

D(µ,p,i,j,p) =
{
t′ ∈ T : aij(t′) + p > aiµ(i)(t′) + piµ(i)

}
.

By the second principle, for (µ,p, i, j, p) to be viable, firm j knows that worker i’s type is in
D(µ,p,i,j,p). Then, by the first principle, firm j’s off-path belief β2

(µ,p,i,j,p) is derived from the
prior according to Bayes’ rule conditional on what it observes and knows:

β2
(µ,p,i,j,p)(·) = β0(·|M−1(µ,p) ∩D(µ,p,i,j,p)) = β1

(µ,p,j)(·|D(µ,p,i,j,p)). (3.7)

WhenM−1(µ,p)∩D(µ,p,i,j,p) is empty, Bayes’ rule in (3.7) has no restriction and the off-path
belief is arbitrary.

Definition 5. A system of on-path and off-path beliefs (β1, β2) associated with a match-
ing function M is Bayesian consistent with the prior belief β0 if (3.6) is satisfied for all
(µ,p) ∈ M(T ) and (3.7) is satisfied for all (µ,p, i, j, p) ∈ CM . If a matching-belief configu-
ration (M,β1, β2) is stable and (β1, β2) is Bayesian consistent with the prior β0, we say that
(M,β1, β2) is stable with Bayesian consistent beliefs and M is a stable matching
supported by consistent beliefs (β1, β2).

Given a matching function M and a prior β0, the system of Bayesian consistent beliefs
(β1, β2) is pinned down by Bayes’ rule except when M−1(µ,p)∩D(µ,p,i,j,p) in (3.7) is empty,
in which case the coalitional deviation (µ,p, i, j, p) is not viable due to worker i’s lack of
incentive to participate and hence the arbitrariness is inconsequential for the definition of
blocking and stability. Under Bayesian consistent beliefs, the individual rationality of firm
j amounts to

E[bµ(j)j|M−1(µ,p)]− pµ(j)j ≥ 0,

and firm j benefits from the coalitional deviation (µ,p, i, j, p) if

E[bij|M−1(µ,p) ∩Dc]− p > max
{

0,E[bµ(j)j|M−1(µ,p) ∩Dc]− pµ(j)j
}
.

Remark 7. The Bayesian consistency of on-path beliefs with prior beliefs is familiar in the
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literature on rational expectations equilibrium pioneered by Radner (1979). The Bayesian
consistency of off-path beliefs with prior beliefs is also natural.10 A similar idea appears
in Rothschild and Stiglitz (1976) where the off-equilibrium belief associated with an off-
equilibrium contract is derived from the prior belief by conditioning on the set of types that
find the contract attractive; this idea reappears in refinements of the sequential equilibrium
such as the notion of the “credible updating rule” by Grossman and Perry (1986); Dutta and
Vohra (2005) use a similar idea in thier concept of the credible core.

The refinement of Bayesian consistency does not utilize the information on how much
different types of a worker benefit from the deviation. Section 3.5.1 offers refinements to
incorporate this consideration. We can also impose additional restrictions on on-path be-
liefs; see Section 3.5.2. Section 6.2 incorporates correlated private on-path beliefs that are
consistent with a common prior, which can be viewed as “correlated stability,” as reminscient
of correlated equilibrium.

The following is an existence result that respects all the restrictions we have made so far.

Proposition 2. For any matching game (a, b, β0), there exists a stable matching-belief con-
figuration (M,β1, β2) with Bayesian consistent beliefs (β1, β2) and a measurable11 matching
function M.

As a first step of the proof, we merge all types of worker i ∈ I that are payoff equivalent for
him, and redefine each firm’s matching value to respect measurability by taking the average
of the firm’s original matching values over these types weighted by their prior probabilities.
The rest of the proof is similar to the existence proof of a rational expectations equilibrium:
in the redefined matching game, take the matching M such that M(t) = (µ,p) is stable
when t is commonly known. The matchingM so defined satisfies Definition 3 even though it
is not invertible. In contrast to a standard rational expectations equilibrium where general
existence is difficult (see, e.g., Kreps 1977), general existence is straightforward for us. The
key difference is not that between equilibrium and stability or the special structure of two-
sided markets, but that the match µ (or “allocation”) is publicly observable.12

As in the rational expectations equilibrium, a special class of stable matchings is fully
revealing. We are naturally interested in the relationship between fully revealing incomplete-
information stability and complete-information stability.

10The second principle we use to motivate off-path beliefs is reminiscent of Milgrom and Stokey (1982),
where trade is assumed to occur if and only if there is common knowledge of gains from it. In the context of
exchange, no trade is the same as no blocking. Therefore, it is immediate that the second principle is readily
applicable beyond our setup.

11See Remark 3 for the definition of measurability.
12Jordan (1983) considers observable net trades in his formulation of rational expectations.
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Definition 6. A matching function M is fully revealing if M is invertible.

The following result shows that a matching outcome of a fully revealing stable matching
supported by Bayesian consistent beliefs must be stable when there is complete information
about the type profile. This desirable result, however, relies on the refinement of both
on-path and off-path beliefs.

Proposition 3. If M is a fully revealing stable matching supported by consistent beliefs
(β1, β2), then, for each t ∈ T, M(t) is a complete-information stable matching when t is
commonly known. Conversely, if M(t) is a complete-information stable matching when t is
commonly known for all t ∈ T, then M is a stable matching supported by Bayesian consistent
beliefs; if in addition M is invertible, then M is a fully revealing stable matching.

The intuition for the result is as follows. First, the Bayesian consistency of the on-path
belief with the prior belief implies that firms’ on-path beliefs in a fully revealing matching
assign probability 1 to the true types. Hence, the individual rationality of incomplete-
information stability is the same as that of complete-information stability. Secondly, unlike
a complete-information problem where the type of a deviating worker is observed, here
Bayesian consistency does not pin down the firm’s off-path belief β2

(µ,p,i,j,p) whenM−1(µ,p)∩
D(µ,p,i,j,p) is empty. Nevertheless, the arbitrariness of the off-path belief does not support
more stable outcomes than in the case of complete information, because it follows from
the emptiness of M−1(µ,p) ∩ D(µ,p,i,j,p) that worker i does not benefit from the coalitional
deviation which is therefore not viable. Thirdly, when M−1(µ,p) ∩D(µ,p,i,j,p) is not empty,
the fully revealing property of M implies that the set is a singleton, and hence it follows
from the Bayesian consistency that the off-path belief β2

(µ,p,i,j,p) is correct (indeed, what is
needed is that β2

(µ,p,i,j,p) assigns positive probability only to types in this set). Hence the
blocking condition is the same as in the complete-information case.

3.5 Alternative Specifications of Beliefs

3.5.1 Off-Path Beliefs

Stability with Bayesian consistent beliefs is a leading refinement that we use for the rest
of the paper. The literature on belief-based equilibrium refinements for non-cooperative
games offers many ideas for off-path beliefs β2. In spite of this connection, we reiterate
that the cooperative notion of stability tests a matching against pairwise deviations, and is
agnostic about how pairwise coalitions are formed and transfers are determined, as in the
case of complete-information theory of stability. The refinements we offer below serve as
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intuitive qualifications for viable coalitional deviations, and do not suggest specific ways of
non-cooperative implementations.13

Support Restriction. The most obvious specification is to restrict the off-path belief
to be β2

(µ,p,i,j,p) ∈ ∆(M−1(µ,p) ∩ D(µ,p,i,j,p)). This support restriction is natural, but it is
more permissive than Bayesian consistency which is a special case.

Pessimistic Belief. In addition to the support restriction, we can define β2 to be the
belief under which a coalitional deviation appears to be the least favorable to the firm. That
is, for a coalitional deviation (µ,p, i, j, p), the corresponding off-path belief is such that

β2
(µ,p,i,j,p) ∈ argminπ∈∆(M−1(µ,p)∩D(µ,p,i,j,p))

(
Eπ[bij]− p−max

{
0,Eπ[bµ(j)j]− pµ(j)j

})
. (3.8)

This off-path belief makes blocking more difficult than the Bayesian consistent belief and,
consequently, it supports more stable matching outcomes.

Optimistic Belief. We can define β2 to be the optimistic belief of the firm. That is,
we replace “argmin” by “argmax” in (3.8). This off-path belief makes blocking easier and,
consequently, leads to a strict refinement.

Dominance. We can consider the set of worker types that benefit the most from a
coalitional deviation and require that the off-path belief assign positive probability only
to these types.14 Formally, consider a coalitional deviation (µ,p, i, j, p) and t ∈ T with
M(t) = (µ,p) such that aij(t) + p > aiµ(i)(t) + piµ(i). Define

B(µ,p,i,j,p) = argmaxt′∈T (aij(t′) + p)− (aiµ(i)(t′) + piµ(i)).

Thus B(µ,p,i,j,p) is the set of type profiles under which worker i benefits the most from
deviating. The off-path belief assigns positive probability only to types in B(µ,p,i,j,p):

β2
(µ,p,i,j,p)(·) = β0(·|M−1(µ,p) ∩B(µ,p,i,j,p)).

Whether these restrictions make blocking easier or more difficult depends on whether the
firm’s preference is aligned with the worker’s.15 If the matching value is such that a deviation

13Many belief-based refinements of sequential equilibria do not suggest how restrictions on beliefs arise in
larger games, but, instead, they capture our intuition about how these games are expected to be played.

14This is in spirit related to the refinement idea of dominance. For example, the idea behind D1 (Cho and
Kreps 1987) is to compare the sets of responses of the uninformed players upon deviating. In a matching
game, a firm’s “response” is simply the decision of whether to join the coalition, and hence we cannot directly
apply the existing formulation of dominance. One approach is to consider the maximal set of prices p′ that
induce blocking by certain worker types. This leads us to the formulation presented here, because, due to
transferability, the types that benefit the most from deviating have the maximal set of prices p′ under which
(i, j, p′) may block.

15Traditional dominance-based refinements are developed for signaling games with aligned preferences.
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is more attractive to the firm whenever it is more attractive to the worker, this off-path belief
will make blocking easy.

Tremble-Based Refinements. We can make all off-path events on-path using trembles,
and then consider their limits, as in sequential equilibrium. This approach can also be used
to model beliefs implicitly through the likelihood of trembles across different types, as in
proper equilibrium.

Further Ideas. There are still many ways to refine the notion of stability. For instance,
one plausible scenario is that to decide whether to join a coalitional deviation (µ,p, i, j, p),
firm j makes the assumption that any other coalitional deviation (i, j′, p′, µ,p) with j′ 6= j is
less attractive to worker i. The refinement literature teaches us that it would be a Sisyphean
task to capture all reasonable ideas of refinements in a single definition, and selections of
these different notions depend on the economic applications, which is better left for future
research. What is essential is that the separation of on-path and off-path beliefs provides a
framework for model refinements and enables a coherent discussion of the (im)plausibility
of stable matching in a purely cooperative framework without mixing cooperative and non-
cooperative elements together.

3.5.2 On-Path Beliefs

In our refinement, firms share a common on-path belief. In some applications, a worker’s
employer observes more about the worker’s payoff-relevant attributes than other firms do.16

It is plausible that firms observe more about their workers in the continuation of the em-
ployment relationship, leading to further market movements, even though this information
is not known before the finalization of the initial job matches (and hence cannot be used to
define the stability of the initial job allocations). This additional information can be used
to define the stability of the market at this later stage. Our framework can accommodate
this, which merely amounts to an additional restriction on the on-path beliefs.

Formally, for each i ∈ I, let Ti = T 1
i × T 2

i , where the set T 1
i denotes the set of attributes

directly observable to worker i’s employer, and T 2
i denotes types only observable to worker

i. A type of worker i is ti = (t1i , t2i ), and a profile of workers’ types is t = (ti, t−i). Consider a
putative matching M : t → (µ,p). After observing (µ,p) and the observable attribute t2µ(j)

16For instance, Liu et al. (2014) and the literature that follows make the assumption that firms know
perfectly their own workers’ types in a putative match. Thus, individual rationality is ex post and a deviating
firm’s payoff is also compared to its ex post payoff in a putative matching. This assumption of perfect
observability circumvents the difficulty of defining payoffs in a stable matching even though information in
the stable matching should be endogenous; in addition, the assumption gives strength to the permissive
concept of Liu et al. (2014). The present paper does not make the assumption, and the conceptual difficulty
of defining payoffs in a stable matching is resolved by the notion of on-path belief and its joint determination
with stability.
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of its assigned worker µ(j), firm j’s private on-path belief at t ∈ T is

β1
(µ,p,j,t)(·) := β0(·|M−1(µ,p) ∩ (T 1

µ(j) × {t2µ(j)} × T−µ(j))) ∈ ∆(T ).

Firm j’s private off-path belief at t ∈ T at a coalitional deviation (µ,p, i, j, p) is

β2
(µ,p,i,j,p,t)(·) := β0(·|M−1(µ,p) ∩ (T 1

µ(j) × {t2µ(j)} × T−µ(j)) ∩D(µ,p,i,j,p)),

where D(µ,p,i,j,p) =
{
t′ ∈ T : aij(t′) + p > aiµ(i)(t′) + piµ(i)

}
.

By definition, β1
(µ,p,j,t) and β2

(µ,p,i,j,p,t) depend on t only through t2µ(j). Individual ratio-
nality, blocking, and stability can be defined with respect to β1 = (β1

(µ,p,j,t)) and β2 =
(β2

(µ,p,i,j,p,t)) in the same way as in Definitions 1, 2, and 3, respectively.
For applications, the right assumption on what an uninformed firm can observe depends

ultimately on the market situation we want to analyze. For instance, in the market for
junior economists, matches are formed and the market clears before employers know perfectly
the actual types of job candidates. If we are interested in the stability of markets at this
stage, it is not reasonable for us to assume full information revelation within a matched
pair because this extra information is not used to stabilize the market in the first place;
instead, the relevant stability notion should be defined without the uninformed players’
uncertainties about their ex post payoffs being exogenously assumed away, although belief
updating through indirect inference must be a component of stability. The same is true for
assignment problems where sellers do not directly observe the buyers’ types when the market
clears, although indirect inference can be made.

4 Structural Properties of Stability and Bayesian Con-
sistency

We are interested in the (in)efficiency of matchings for the following reasons. First, Shapley
and Shubik (1971) observe that, under complete information, all stable matching outcomes
maximize the sum of individual payoffs, although indeterminacy of transfers and payoff
distributions is generally inevitable. The full-information efficiency criterion introduced in
Definition 4 is too demanding for incomplete-information problems. It is thus worthwhile to
explore how and to what extent this robust allocative efficiency property identified by Shapley
and Shubik (1971) extends to incomplete information. Secondly, our definition of stability
with incomplete information is a joint requirement for beliefs and matching outcomes; hence,
efficiency is a joint prediction of endogenous matches and information in addition to being
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a welfare property. Indeed, we shall see that stability and competitive equilibrium, two
outcome-equivalent concepts under complete information, impose very different restrictions.

We must clarify the environments in which the efficiency criterion applies. Take as an
example the market for lemons. In traditional models of adverse selection, the market opens
only once and further interactions are excluded by the exogenous restriction of an endgame,
whereas in our model of stability, the option of trade (rematch) is always available although
players may choose not to exercise it (see Example 3). Thus stability and the prior literature
examine different scenarios of adverse selection. More concretely, if there is partial trade in
a traditional model of a market for lemons, beliefs will be updated after partial trade. An
updated belief is irrelevant in traditional models of adverse selection because the market will
not reopen. If market interactions continue, the updated belief will open up further trading
opportunities. An analysis of a discounted dynamic lemon market with unlimited trading
opportunities is provided by Deneckere and Liang (2006) who show that gains from trade are
eventually realized with probability 1, albeit slowly. That is, although allocative efficiency is
achieved in the long run, inefficiency takes the form of delay over time. We propose stability
as a shortcut to the limiting case in dynamic games, and efficiency of stable matchings
concerns only the allocative efficiency of this limit. This does not mean that efficiency is
easy to achieve. If there is a complete breakdown of trade as in Akerlof’s (1970) original
model, there will be no belief revision, and the inefficient no-trade outcome will be stable
according to our definition.

4.1 Criterion of Bayesian Efficiency

The full-information efficiency introduced in Definition 4 is obviously too demanding for
incomplete-information problems. We propose the following notion.

Definition 7. A matching M is Bayesian efficient if for all (µ,p) ∈ M(T ), the match µ
maximizes

E
[∑n

i=1(aiµ′(i) + biµ′(i))|M−1(µ,p)
]

over all matchings µ′ : I ∪ J → I ∪ J.

At the risk of belaboring the obvious, we make the following comments.

Remark 8. Bayesian efficiency differs from full-information efficiency in only one respect:
it concerns surplus maximization conditional on each M(t) instead of each t ∈ T. It then
follows immediately that a full-information efficient matching M is Bayesian efficient.

Remark 9. In Definition 7, E
[∑n

i=1 aiµ′(i)|M−1(µ,p)
]
should not be interpreted as the work-

ers’ expected total surplus conditional on the information revealed by the matching outcome,
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because the workers know their own types and ex post payoffs. This expectation is from the
viewpoint of an outside observer whose probability distribution over T is the prior β0 con-
ditional on the publicly observable outcome (µ,p). It is, of course, also the workers’ surplus
computed from the firms’ perspective, because firms’ consistent on-path beliefs about the
workers are correct in stable matching with Bayesian consistent beliefs.

Remark 10. Bayesian efficiency is motivated by a the following question: when we economists
observe matching outcomes in the data, and correctly update the distribution over the un-
derlying types (assuming that we are as uninformed as the firms in the model and the data
are generated by a stable matching), can we conclude that the observed match must maxi-
mize, among all possible matches, the expected social surplus computed using the updated
distribution? This question is precisely about the criterion of Bayesian efficiency. Similar
notions of efficiency are proposed by Forges (1994) to take into account information revealed
by outcomes of a mechanism.

Bayesian inefficiency can persist and no pairwise recontracting arrangement can correct
it (this is in contrast to the competitive equilibrium notion studied in Section 5 where
inefficiency can be corrected if deviation is unilaterally). The following is an example of
Bayesian inefficient stable matching.

Example 4. There are two workers and one firm. Worker 1’s type is t1 or t′1 with equal
probability. Worker 2’s type is known to be t2. Suppose that the matching values are as
follows:

t1 t′1 t2

(−1, 5) (1,−2) (0, 1)

Here (−1, 5) means that by matching with the firm, worker 1 of type t1 obtains a payoff of
−1, and the firm obtains a payoff of 5.

Consider the matching M in which the firm hires worker 2 at a price of 0, regardless
of worker 1’s type. The total surplus is 1. This matching is stable (even with Bayesian
consistent beliefs) for the following reason. Any coalitional deviation acceptable to the firm
must involve worker 1 of type t1, and thus the price p must be at least 1 to satisfy the
individual rationality of type t1. But this price will attract both types of worker 1. So the
firm’s expected payoff from the blocking with worker 1 will be 1

2 × 5 + 1
2 × (−2)− p ≤ 0.5,

which is less than its payoff in the matching with worker 2.
This matching is not Bayesian efficient. It is dominated by a match µ′ in which the firm

is matched with worker 1, which yields an expected total surplus of 1.5. But µ′ cannot be
part of a Bayesian stable matching with consistent beliefs for any price: the firm must pay
at least 1 to worker 1 (by the individual rationality of type t1) and thus its expected payoff
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is at most 0.5; but the firm can block the matching with the unmatched worker 2 to obtain
a larger payoff.

In this example, the firm needs to pay a high price to recruit worker 1 of type t1 (who
is more productive for the firm), but transfers between players are not counted toward the
social surplus. Thus the source of social inefficiency is the usual conflict with individual
incentives.

4.2 Bayesian Efficiency and Stability

We are interested in conditions under which all stable matchings of a given matching game
(a, b, β0) are Bayesian efficient. In particular, we shall make no assumptions on bij in order
to include adverse selection problems as special cases.

Assumption 2. aij(ti) = aij(t′i) for any ti, t′i ∈ Ti, i ∈ I, and j ∈ J.

Assumption 2 says that the privately informed players do not directly care about their
own types, which are payoff-relevant for the uninformed players (the informed players care
about their types indirectly because they affect the matching outcomes). A special case that
is of applied interest is when aij ≡ 0. This case captures a situation in which workers care
only about the salaries they receive.

A weaker assumption is that all public and private attributes are directly payoff-relevant
for the informed players, but aij(ti) is separable in ti and j.

Assumption 3. aij(ti) = g(i, ti)+h(i, j) for some functions g : I×Ti → R and h : I×J → R.

A special case of Assumption 3 is familiar in many classic adverse-selection models such
as signaling and screening: aij(ti) = g(i, ti). This is to say, a worker does not value which
firm he works for, but his own types may affect his reservation utilities or costs of effort,
etc. This assumption allows aij(ti) to vary with the worker’s private type ti and the worker’s
identity i which summarizes all of his observable attributes, but the value is not allowed to
vary with the firm’s type, which is summarized in j.

The following result concerns Bayesian efficiency of stable matchings. Its proof is based
on the duality theorem of linear programming. Unlike the case of complete information (e.g.,
Shapley and Shubik 1971), the proof is not immediate because surplus maximization and its
dual are defined by on-path beliefs, but stability and blocking utilize off-path beliefs. We
say workers are fully matched under M if µ(i) 6= i for all i ∈ I and (µ,p) ∈M−1(T ).

Proposition 4. A stable matching M supported by Bayesian consistent beliefs is Bayesian
efficient if one of the following properties is satisfied:
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(i) Assumption 2 holds.
(ii) Assumption 3 holds and workers are fully matched.

We leave the full-match condition in the statement because (ii) can be reinterpreted as
follows: if Assumption 3 holds, then constrained Bayesian efficiency obtains for all stable
matching outcomes if it is restricted to matched agents. This condition excludes the no-trade
outcome in Akerlof (1970). The full-match condition is ensured, for example, if workers are
on the short side of the market and matching values are positive (or more generally there
exists a price p such that aij(ti) + p > 0 and bij(ti) − p > 0 for all ti ∈ Ti, i ∈ I and
j ∈ J). Assumptions on the short side of the market being fully matched are common; see
Ashlagi, Kanoria, and Leshno (2017) and the references therein for discussions of unbalanced
matching markets. Example 4 shows that the full-match restriction in condition (ii) is tight.
It is easy to construct examples where Assumption 2 and Assumption 3 cannot be dispensed
with.

A natural question is what happens when firms are on the short side of the market,
and hence workers cannot be fully matched—in which case condition (ii) of Proposition 4
does not apply. Proposition 4 makes assumptions only on the payoffs (a, b) and Bayesian
efficiency is obtained regardless of prior belief β0. Since on-path beliefs play an important
role in the definition of Bayesian efficiency, it is natural to think of restrictions on beliefs.
If β0(t) = ∏ n

i=1β
0
i (ti) for all t = (t1, ..., tn) ∈ T , where β0

i is the marginal of β0 on Ti, we
say that workers’ types are independent under the prior β0. In dynamic non-cooperative
games in which types are independent under prior beliefs, it is common to assume that types
remain independent after any history (see Fudenberg and Tirole 1991, p. 237). Naturally,
we shall consider independent on-path beliefs after any observables; that is, workers’ types
are independent under β0(·|M−1 (µ,p)) for all (µ,p) ∈M(T ).

Proposition 5. A stable matching M with Bayesian consistent beliefs is Bayesian efficient
if Assumption 3 holds, aij and bij are co-monotonic17 for all i ∈ I and j ∈ J, and the on-path
beliefs are independent.

The order over Ti with respect to which aij and bij are co-monotonic may vary (i, j).
Thus this condition is weak. Co-monotonicity is an intuitive property in the special case
where ti is a real variable that ranks the worker’s ability according to the total order of
“greater than or equal to,” aij can be interpreted as worker i’s disutility from work, and bij
can be interpreted as the output. The monotonicity of aij and bij says that the worker’s
disutility is decreasing in his ability and his output is increasing in his ability. Note, however,

17Two functions aij and bij are co-monotonic if (aij(ti)− aij(t′i))(bij(ti)− bij(t′i)) ≥ 0 for any ti, t′i ∈ Ti.
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that in a lemon market (Akerlof 1970), co-monotonicity is not satisfied. The independence
assumption in Proposition 5 cannot be relaxed, as the following example illustrates.

Example 5. Consider a market with two workers and one firm. The matching values of
each worker and the firm are co-monotonic, and are as follows:

t1 t′1 t2 t′2

(0.5, 5) (1, 6) (−2, 4) (−1.9, 12)

Suppose that β0(t1, t2) = β0(t′1, t′2) = 1
2 . Thus, the workers’ types are not independent.

Consider a matching M in which the firm hires worker 2 at a price of 2 regardless of the
workers’ types. In this case, the Bayesian consistent on-path belief is the same as the prior
belief β0. This matching is not Bayesian efficient: it generates an expected total surplus of
1
2 × (−2 + 4) + 1

2 × (−1.9 + 12) = 6.05, while the matching in which the firm hires worker 1
generates an expected total surplus of 1

2 × (0.5 + 5) + 1
2 × (1 + 6) = 6.25.

But the matchingM is stable with Bayesian consistent beliefs. The firm’s expected payoff
in this matching is 1

2 × 4 + 1
2 × 12− 2 = 6. Consider a deviating coalition that involves the

firm and worker 1 with a price p. No price p is such that only the type t1 of worker 1 joins the
coalition. If the price p is such that both types of worker 1 join the coalition, i.e., p > −0.5,
then the firm’s expected payoff is 1

2 × 5 + 1
2 × 6 − p < 6. In this case the firm rejects the

coalition. If the price p is such that only the type t′1 of worker 1 joins the coalition, then the
firm’s payoff cannot be higher than 7, the total surplus produced by the pair. But because
the two workers’ types are correlated, when worker 1’s type is t′1, worker 2’s type must be
t′2, and the firm infers that its payoff from M by matching with worker 2 is 12 − 2 = 10.
Therefore, the firm rejects the coalition with worker 1 in this case as well.

5 Competitive Equilibrium

5.1 Motivation and Definition

For complete information matching and assignment problems, Koopmans and Beckmann
(1957) and Shapley and Shubik (1971) construct the following notion of competitive equi-
librium. Each partnership (i, j) ∈ I × J is viewed as one unit of an indivisible commodity,
and there is a price pij associated with each commodity, irrespective of whether i and j are
matched or not in equilibrium. Let p = (pij)i∈I,j∈J denote the price matrix. We also define
pii = pjj = 0 for all i ∈ I and j ∈ J. In a competitive equilibrium (µ,p), each individual
player is maximizing in the sense that he does not profit from staying alone, or from switch-
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ing to any other player on the opposite side of the market at the competitive price specified
by p (i.e., demand the commodity (i, j) at a price pij).

The matching mechanism described by a competitive equilibrium has two critical differ-
ences from stable matching. First, a player’s acceptability to the other player is not taken
into account in defining a profitable deviation; that is, deviation is unilateral. Second, if a
player deviates to another player, the price between them is determined by the competitive
equilibrium price p; that is, players are price takers. In spite of these disparities, Shapley
and Shubik (1971, pp. 114–118) point out that competitive equilibrium and stability are
equivalent in their model of complete information. We shall study how the assumptions of
unilateral deviation and price-taking behavior manifest under incomplete information.

A natural notion of a competitive equilibrium in an economy with uncertainty and with-
out state-contingent contracts is the rational expectations equilibrium of Radner (1979).18

We now construct such a notion for two-sided matching markets.
A competitive matching is a function M : t 7→ (µ,p), where p = (pij)i∈I,j∈J . We

may impose the same measurability condition on M as in Remark 3. Both the match
µ and the commodity prices p are publicly observable. Upon observing (µ,p), players
will update their prior belief to the on-path belief β0(·|M−1(µ,p)), where M−1(µ,p) =
{t ∈ T : M(t) = (µ,p)} .

Definition 8. A matching M : t 7→ (µ,p) is a (rational expectations) competitive equi-
librium if the following conditions hold for all t ∈ T and (µ,p) = M(t):

(i) aiµ(i)(t) + piµ(i) ≥ aij(t) + pij for all i ∈ I and j ∈ J ∪ {i} ;
(ii) E[bµ(j)j|M−1(µ,p)]− pµ(j)j ≥ E[bij|M−1(µ,p)]− pij for all j ∈ J and i ∈ I ∪ {j} .

A competitive equilibrium satisfies individual rationality: take j = i in (i) and i = j in
(ii). Notice also that only the on-path belief β0(·|M−1(µ,p)) is utilized in the definition,
because only unilateral deviation is involved. When T is a singleton, this definition reduces
to the familiar notion of competitive equilibrium under complete information.

Proposition 6. A (measurable) competitive equilibrium matching exists for each matching
game (a, b, β0).

As in Proposition 2, general existence is straightforward because the matching outcomes
are publicly observable. In a two-sided market, the assumptions behind stability look more
appealing than those behind competitive equilibrium. We should emphasize that, despite
its previous usage, we define competitive equilibrium for the purpose of comparison rather
than as a competing concept.

18Complete state-contingent contracts bring the problem back to complete information. The Arrow–
Debreu formulation of competitive equilibrium under uncertainty is not a suitable solution concept for our
purposes.
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5.2 Stability and Competitive Equilibrium

Stability and competitive equilibrium are two different ways of looking at a matching prob-
lem. A stable matching outcome (µ,ps) does not specify a price for an unmatched pair (i, j),
where µ(i) 6= j, while the price matrix pc for a competitive matching outcome does specify
a price for every pair (i, j). The observability of the price matrix pc may seem to suggest
that prices in a competitive equilibrium matching t 7→ (µ,pc) reveal more information than
prices in a stable matching t 7→ (µ,ps) do. This intuition is incorrect, because it focuses
literally on on-path beliefs but ignores the fact that stability makes restrictions directly on
off-path beliefs and hence indirectly on on-path beliefs. The difference between stability and
competitive equilibrium thus has to stem from the incentives and information embedded in
their definitions.

Definition 9. A stable matching M s extends to a competitive matching M c if for each
t ∈ T, the matching outcomes M s(t) = (µs,ps) and M c(t) = (µc,pc) share the same match,
µs = µc = µ, and ps and pc agree on the matched pair (i, µ(i)) for all i ∈ I. In this case, we
say that M c is an extension of M s.

We present an example in which a competitive equilibrium matching cannot be an ex-
tension of a stable matching supported by Bayesian consistent beliefs.

Example 6. Consider a market with two workers and one firm. Worker 1’s type is known to
be t1. Worker 2’s type is t2 or t′2 with equal probability. The matching values are as follows:

t1 t2 t′2

(1, 5) (1,−4) (2, 4)

The following matching is a competitive equilibrium: the firm hires worker 1 with a price
of p11 = 0, and worker 2 is unmatched regardless of his type; the price for the firm to hire
worker 2 is p21 = −3. By deviating to worker 2, the firm’s expected payoff is 1

2 × (−4) +
1
2 × 4− (−3) = 3. Hence the firm does not deviate. By working for the firm, type t2 obtains
a payoff of 1 − 3 = −2 and type t′2 obtains a payoff of 2 − 3 = −1. Hence neither type of
worker 2 deviates. Therefore, this matching is a competitive equilibrium.

The matching outcome of this competitive equilibrium cannot be stable with Bayesian
consistent beliefs. Worker 2 with type t′2 and the firm could block with a price of −1.5. Type
t2 will earn a negative payoff from this match and type t′2 will earn a positive payoff. The
firm will infer the worker’s type correctly and hire him to obtain a payoff of 5.5.

The above example demonstrates that flexible off-path prices allow for more informa-
tion revelation, so one would conjecture that stability refines competitive equilibrium. This
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is again incorrect. The key is that having more information does not necessarily facilitate
blocking when the rematch is ex post undesirable; unilateral deviation may still be possi-
ble in a competitive environment with less information revelation. We confirm this point
by providing an example where a stable matching cannot be extended to a competitive
equilibrium.

Example 7. Consider a market with two workers and one firm, where worker 1’s type is
known to be t1, and worker 2’s type is t2 or t′2 with equal probability. The matching values
are as follows.

t1 t2 t′2

(1, 5) (2, 1) (1, 6)

The following is a stable matching supported by Bayesian consistent beliefs: the firm hires
worker 1 for a price of 0, and worker 2 is unmatched regardless of his type (with a payoff of
0). The firm’s payoff is 5.We now argue that the firm cannot block the matching with worker
2 for any price p. If p ≤ −2, neither type of worker 2 deviates; if p ∈ (−2,−1], only type t2
deviates, and the firm’s payoff from rematching with t2 is 1− p ≤ 3; if p > −1, both types of
worker 2 deviate, and the firm’s expected payoff from the deviation is 1

2×1+ 1
2×6−p < 4.5.

Therefore, the firm does not deviate.
This stable matching cannot be extended to a competitive equilibrium for any pre-

specified price between the firm and worker 2. If p > −2, one or both types of worker 2 devi-
ate. If p ≤ −2, the firm’s expected payoff from deviating to worker 2 is 1

2×1+ 1
2×6−p ≥ 5.5;

hence the firm deviates.

Although stable matchings and competitive matchings are generally not the same, they
must overlap. We summarize our finding in the following result.

Proposition 7. (i) For any matching game (a, b, β0), there exists a stable matching M s

with Bayesian consistent beliefs that can be extended to a competitive matching. There exists
a matching game (a, b, β0) with a stable matching M s with Bayesian consistent beliefs that
cannot be extended to a competitive matching. (ii) For any matching game (a, b, β0), there
exists a competitive matching M c that is an extension of a stable matching with Bayesian
consistent beliefs. There exists a matching game (a, b, β0) with a competitive matching M c

that is not an extension of a stable matching with Bayesian consistent beliefs.

5.3 Bayesian Efficiency of Competitive Equilibrium

Given a competitive equilibrium matching M : t 7→ (µ,p), the notions of full-information ef-
ficiency and Bayesian efficiency can be reproduced verbatim from Definition 4 and Definition
7, respectively, by taking into account p = (pij)i∈I,j∈J . Remarks 8–10 apply here.
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Recall that a stable matching is not guaranteed to be Bayesian efficient. By contrast, a
competitive equilibrium matching is always Bayesian efficient. This result is reminiscent of
the first fundamental theorem of welfare economics. The logic is as follows: if there is overall
inefficiency conditional on the information revealed in a matching, at least some player is
inefficiently matched, and this player can correct this inefficiency by a unilateral rematch,
under the same information. The contrast with stability is notable: the new information
generated from a blocking pair can prevent the inefficiency from being corrected. We would
like to reiterate that the efficiency is about allocative efficiency, but it does not take into
account what it takes to achieve it, as is similar to Bayesian efficiency of stable matching.

Proposition 8. A competitive equilibrium matching M : t 7→ (µ,p) is Bayesian efficient. If
Assumption 1 holds, then a competitive equilibrium matching M is full-information efficient
and M(t) is a complete-information competitive equilibrium matching when t is common
knowledge for all t ∈ T.

We should emphasize that the result does not imply that a competitive equilibrium has
a better welfare property than a stable matching, because the amount of information that
is revealed may be different and Bayesian efficiency is defined relative to information.

6 Extensions

6.1 The Core

Pairwise deviations are natural in two-sided markets. Conceptually, it is useful to consider
deviations by a coalition of multiple pairs of firms and workers. Given a matching M : t 7→
(µ,p), suppose that (µ,p) = M(t) is a matching outcome at t ∈ T. Each firm j should
have an on-path belief β1

(µ,p,j) associated with this outcome. Consider the following blocking
possibility: a subset of workers I ′ ⊂ I and a subset of firms J ′ ⊂ J walk away from (µ,p)
and rematch among themselves according to µ′ : I ′ ∪ J ′ → I ′ ∪ J ′ and a transfer scheme
p′ = (p′iµ′(i))i∈I′ associated with the match µ′, where µ′ is not the same as µ restricted
to I ′ ∪ J ′.19 We call µ′ a rematch relative to µ. We write this coalitional deviation by
c = (µ,p, I ′, J ′, µ′,p′). Each firm j ∈ J ′ should have an off-path belief β1

(c,j) associated with
this deviating coalition. Let us denote a matching-belief configuration by (M,β1, β2) where
β1 is the system of on-path beliefs and β2 is the system of off-path beliefs.

Individual rationality of a matching M with respect to the system of on-path belief β1

is defined as in Definition 1. The blocking condition is defined below.
19We have assumed that a player receives transfers only from his matched partner. A relaxation is

straightforward.
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Definition 10. A matching M is blocked with respect to a system of off-path beliefs β2 if
there does exist a coalitional deviation c = (µ,p, I ′, J ′, µ′,p′), where (µ,p) = M(t) for some
t ∈ T, I ′ ⊂ I, J ′ ⊂ J , µ′ : I ′ ∪ J ′ → I ′ ∪ J ′ is a rematch, and p′ = (p′iµ′(i))i∈I′ is a transfer
scheme associated with the rematch µ′, such that

(i) aiµ′(i)(t) + p′iµ′(i) > aiµ(i)(t) + piµ(i) for all i ∈ I ′, and

(ii) Eβ2
(c,j)

[
bµ′(j)j

]
− p′µ′(j)j > max

{
0,Eβ2

(c,j)

[
bµ(j)j

]
− pµ(j)j

}
for all j ∈ J ′.

Condition (ii) needs a remark. The formulation implicitly excludes the possibility that
µ′(j) = j for some j ∈ J ′; i.e., j joins the coalitional deviation but stays unmatched in µ′,
because otherwise the left-hand side of condition (ii) becomes 0, thus violating the condition.
This exclusion is without loss of generality because an unmatched firm j does not contribute
any information or value to the coalitional deviation.

Definition 11. Amatching-belief configuration (M,β1, β2) is in the core ifM is individually
rational with respect to the system of on-path beliefs β1 and is not blocked with respect to
the system of off-path beliefs β2. We also say M is a core matching supported by (β1, β2)
if (M,β1, β2) is a stable configuration.

The refinement of Bayesian consistent beliefs also has a counterpart: beliefs are updated
from the prior conditional on players’ observations and the information revealed by their
incentive to participate in the coalitional deviation.

Definition 12. A system of on-path and off-path beliefs (β1, β2) associated with a matching
function M is Bayesian consistent with the prior belief β0 if β1

(µ,p,j) = β0(·|M−1(µ,p)) for
each j ∈ J and (µ,p) ∈M(T ), and β2

(c,j) = β0(·|M−1(µ,p) ∩Dc), where

Dc =
{
t′ ∈ T : aiµ′(i)(t′) + p′iµ′(i) > aiµ(i)(t′) + piµ(i) for all i ∈ I ′

}
for each deviating coalition c = (µ,p, I ′, J ′, µ′,p′) and j ∈ J ′. If (M,β1, β2) is in the core
and (β1, β2) is Bayesian consistent with the prior β0, we say that M is a core matching
supported by Bayesian consistent beliefs.

It should be noted that D is the set of workers’ types (t1, ..., tn) with which all workers
in I ′ find the rematch profitable. It does not take into account the incentives of firms in
the set J ′\ {j} because these firms are uninformed and their incentives to block reveal no
information unknown to firm j (firm j can replicate their calculation).

In complete-information matching games, the core and stability coincide, but they differ
under incomplete information.
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Proposition 9. If M is a core matching supported by Bayesian consistent beliefs, then it
is a stable matching supported by Bayesian consistent beliefs; however, a stable matching
M supported by consistent beliefs is not necessarily a core matching supported by consistent
beliefs.

One direction is straightforward. Individual rationality is the same for stability and the
core. A pairwise coalition (µ,p, i, j, p) is a special coalition (µ,p, I ′, J ′, µ′,p′) with I ′ =
{i} , J ′ = {j} , µ′(i) = j, and p′ij = p. Specifically, if (M,β1, β2) is in the core, then it is not
blocked by any coalition including a pairwise coalition; hence, (M,β1, β

2) is stable, where β2

is a restriction of β2 to pairwise coalitions. This property does not rely on belief refinements.
The following example demonstrates the subtle reason that the core is a strict refinement of
stability even when β0 is independent: a blocking by a larger coalition can be found when
a pairwise blocking does not exist. The example has a pair of a firm and a worker who are
matched together in the given matching, but both deviate to rematch with other players.
It is precisely its own worker’s incentive to join the coalitional deviation that reveals to the
firm that its payoff from the putative matching is actually lower than it has thought, which
incentivizes the firm to rematch with the other worker; meanwhile, the deviation of the
firm’s own worker is made possible precisely for the same reason: the other firm accepts him
because the other worker’s deviation reveals information. This existence of this four-player
cycle refines stability.

Example 8. Consider two workers and two firms. Suppose that β0 = β0
1 × β0

2, where
β0

1(t1) = β0
1(t′1) = β0

2(t2) = β0
2(t′2) = 1

2 . The matrix of matching values is as follows:

firm 1 firm 2
t1 0,−1 1, 1
t′1 1, 7 −2, 0
t2 1, 1 0,−1
t′2 −2, 0 1, 7

It is readily verified that aij and bij are co-monotonic.
Consider the following matchingM : regardless of their types, worker i is assigned to firm

j = i, and the salaries of both workers are 0. In this matching, the expected payoffs for both
firms are 1

2× (−1)+ 1
2×7 = 3. The matchingM is stable with Bayesian consistent beliefs for

the following reason. Let us consider pairwise deviation by worker i and firm j = 3− i. For
the firm to join the deviation, its expected payoff from the deviation must be more than 3,
but the total surplus from a match with worker i cannot exceed 2 regardless of the worker’s
type.
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But M is not in the core with Bayesian consistent beliefs. A viable coalitional deviation
involves a rematch of both firms and both workers when their types are ti with a transfer
of 0. Given that each worker i = 1, 2 finds it profitable to deviate to firm j = 3 − i with a
price of 0, both firms infer that worker i = 1, 2 must have type ti instead of t′i. With this
information, firm j = i knows that its payoff in the matching M is actually −1. For this
reason, firm i is willing to accept worker 3− i.

The refinement of the off-path beliefs is used only in that its support should be the set
of types that benefit from the deviations.

The following is an immediate corollary of Propositions 1, 4, and 9.

Corollary 1. Suppose that (M,β1, β2) is in the core. Then M is full-information efficient
if Assumption 1 holds. Suppose further that (β1, β2) is Bayesian consistent. Then M is
Bayesian efficient if one of the following properties is satisfied:

(i) Assumption 2 holds.
(ii) Assumption 3 holds and workers are fully matched.
(iii) Assumption 3 holds, aij and bij are co-monotonic in ti for all i ∈ I and j ∈ J, and

on-path beliefs are independent.

6.2 Correlated Stability and Stochastic Matching Functions

Modeling the firms’ private observations and their private beliefs is a natural question. We
have considered deterministic matching functions so far. Naturally, we are interested in
stochastic matching functions. The two tasks can be accomplished together. This idea is an
analog of the correlated equilibrium.

For each j ∈ J, let Sj be the finite set of payoff-irrelevant signals. We denote by s =
(sn+1, ..., sn+m) the profile of signals of the m firms, and write S = ×j∈JSj. We do not
need to introduce private signals for workers, because this amounts to a reinterpretation of
workers’ types t = (t1, ..., tn). Assume that there is a common prior belief β0 ∈ ∆(T × S).20

A matching (with private signals) is a function M : (t, s) 7→ (µ,p). It is readily seen that
the formulation proposed here includes a stochastic mapping as a special case where s is a
public signal. In what follows, we will skip the plain-vanilla version of stability, and sketch
the formulation of stability with Bayesian consistent beliefs.

Each firm j observes its own signal sj ∈ Sj, but is uncertain about workers’ types t =
(t1, ..., tn) and other firms’ signals s−j = (sn+1, ..., sj−1, sj+1, ..., sn+m). Similarly, each worker
i ∈ I observes its type ti but is unaware of t−i and s. Each firm j ∈ J, upon observing sj ∈ Sj,

20Modeling heterogeneous priors is straightforward.
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updates its belief to the conditional probability measure β0(·|T × {sj} × S−j) ∈ ∆(T × S),
which we shall denote simply by β0

sj
(·). To further ease notation, we adopt the following

harmless convention: for a non-empty subset E ⊂ T×S, we write β0
sj

(t|E) := β0
sj

({t}×S|E),
and for a function f : T → R, we write Eβ0

sj
[f |E] := ∑

t∈T f(t)β0
sj

(t|E).
Each firm j ∈ J, after observing its private signal sj and the matching outcome (µ,p),

holds a Bayesian consistent private on-path belief over workers’ types β0
sj

(·|M−1(µ,p)) ∈
∆(T ). In a deviating coalition (µ,p, i, j, p), firm j, which receives a private signal sj, holds a
Bayesian consistent private off-path belief β0

sj
(·|M−1(µ,p)∩(D(µ,p,i,j,p)×S)), whereD(µ,p,i,j,p) ={

t′ : aij(t′) + p > aiµ(i)(t′) + piµ(i)
}
is the set of types such that worker i benefits from the

coalitional deviation.
With the on-path and off-path beliefs in place, notions of individual rationality, blocking,

and stability of the matching M : (t, s) 7→ (µ,p) can be defined in the same way as in
Definitions 1, 2, and 3, respectively.

6.3 Incentive Compatibility

Although we have argued that stability is a reduced-form way of capturing the outcome of
dynamic decentralized interactions, Bayesian incentive compatibility of a stable matching
function M : t 7−→ (µ,p) implies a one-shot implementation of a stable matching and serves
as a desirable selection among stable matchings. However, in general, Bayesian incentive
compatibility cannot be achieved.

Example 9. Consider a one-worker and one-firm problem. The worker privately knows the
cost of his production (i.e., the negative of the worker’s matching value), which takes the
value of either 0 or 1 with equal prior probability. The firm’s matching value is L ∈ (0, 1)
if the worker’s cost is 0 and H > 1 if the worker’s cost is 1. We assume that 1

2(L+H) < 1;
i.e., the firm’s prior average matching value is less than the high cost. We claim that, in all
stable matchings, the low-cost worker must be employed. This is true because, otherwise,
the worker and the firm can block the matching with a salary of, say 1

2L, whereby the low-
cost worker is better off and the firm is better off regardless of its belief about the worker’s
type. Given that the low-cost worker must be matched, the high-cost worker cannot stay
unmatched in a stable matching with Bayesian consistent beliefs; otherwise, the firm will
assign probability 1 to the unmatched worker’s cost being high, and the worker and the firm
can block the matching with a salary of, say 1

2(1 +H) > 1, whereby the high-cost worker is
better off and the firm, knowing the worker’s type, is also better off.

We have established the claim that, in a stable matchingM that supported is by Bayesian
consistent beliefs, both types of the worker must be hired. Given this, Bayesian incentive
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compatibility of M requires that the salaries for both worker types be the same. However,
the highest price the firm is willing to offer is 1

2(L + H), which the high-cost worker will
reject. Thus, no stable matching can be Bayesian incentive compatible in this example.

The conflict between Bayesian incentive compatibility and stability is not surprising.
The direct-revelation game associated with incentive compatibility is sometimes too restric-
tive for our purposes. For instance, we could allow for more general dynamic mechanisms,
which is consistent with our motivation that stability is a reduced-form way of capturing
the equilibrium outcome of decentralized interactions.21 Indeed, Deneckere and Liang (2006,
Proposition 2) cover this example and show that allocative efficiency is achieved in a se-
quential equilibrium of a firm-offer bargaining game with two separating prices and delayed
trading for the high-cost type. This fully revealing outcome is stable by Proposition 3.

Characterizing the joint implications of Bayesian incentive compatibility and stability
needs to remain an open question for now, but we do have a positive result under Assump-
tion 1. In fact, dominant-strategy incentive compatibility can be obtained. The argument
proceeds in two steps. First, under Assumption 1, the preferences of firms are independent
of workers’ private types, the matching function M that specifies a worker-optimal stable
matching for each type profile t is dominant-strategy incentive compatible for workers. This
claim follows from a result for complete information problems: when the firms’ preference
is fixed, the worker-optimal complete-information stable matching is strategyproof for the
workers (e.g., Demange 1982 and Leonard 1983) and can be implemented by the VCG mech-
anism. Secondly, it follows from Proposition 1 that M so defined is incomplete-information
stable.

Another special case where Bayesian incentive compatibility is easy to satisfy is “fully non-
revealing” matching. If there exists an outcome (µ,p) such that it is complete-information
stable matching for all t ∈ T, then M ≡ (µ,p) is stable by Proposition 3. The existence of
such (µ,p) is not generally ensured and it depends on the value function (a, b).

7 Concluding Discussion

The main conceptual contribution of the paper is to propose a criterion of stability for
two-sided markets with asymmetric information, with a formulation of Bayesian consistency
of prior beliefs, on-path stable beliefs, and off-path stable beliefs. This criterion lays the
foundation for further developments. It has immediate implications for empirical analysis of

21The literature of frictional search may offer useful insights in this direction; see, e.g., Lauermann (2013)
and the references therein.
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matching; see, e.g., Chiappori (2017). Although existing empirical work allows certain char-
acteristics of players to be unobservable to the analysts, players themselves are assumed to
have complete information, and hence the solution concept is complete-information stability.

We do not pretend that the results developed in this paper are immediately applicable to
practical market design questions. However, providing a logically coherent Bayesian theory
of stability is a necessary step toward understanding how players respond to information and
incentives in both decentralized and centralized matching environments. The idea developed
in this paper can easily be extended to markets with networked structures, more general
coalitional games, or incomplete-information modeled by Harsanyi type spaces. The research
agenda we propose here, which we can call the “Kreps–Wilson program,” aims to develop
cooperative concepts and their refinements under incomplete information using the insights
from non-cooperative games.

A Appendix

A.1 Proof of Proposition 1

It follows from a similar construction as in Proposition 2 that if M(t) is a complete-
information stable matching when t is common knowledge, then M is stable. We now
show the converse under Assumption 1. By the individual rationality of M, for any t ∈ T
with M(t) = (µ,p), we have

aiµ(i)(t) + piµ(i) ≥ 0 for all i ∈ I (A.1)

and Eβ1
(µ,p,j)

[
bµ(j)j

]
− pµ(j)j ≥ 0 for all j ∈ J. By Assumption 1, bµ(j)j(t) is independent of t,

and hence Eβ1
(µ,p,j)

[
bµ(j)j

]
= bµ(j)j(t). Thus,

bµ(j)j(t)− pµ(j)j ≥ 0 for all j ∈ J. (A.2)

Hence, (A.1) and (A.2) imply that (µ,p) is individually rational when there is complete
information about t.

Consider any coalitional deviation c = (µ,p, i, j, p) to M at t. Since M is stable, c is not
viable. If aij(t) + p ≤ aiµ(i)(t) + piµ(i), then c is not viable even if t is common knowledge. If
aij(t) + p > aiµ(i)(t) + piµ(i), then

Eβ2
c

[bij]− p ≤ max
{

0,Eβ2
c

[
bµ(j)j

]
− pµ(j)j

}
. (A.3)
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By Assumption 1, Eβ2
c

[bij] = bij(t) and Eβ2
c

[
bµ(j)j

]
= bµ(j)j(t). Inequality (A.3) can be

rewritten as
bij(t)− p ≤ max

{
0, bµ(j)j(t)− pµ(j)j

}
= bµ(j)j(t)− pµ(j)j,

where the last equality follows from (A.2). Therefore, c is not a viable coalitional deviation if
there is complete information about t. We have thus proved that M(t) = (µ,p) is complete-
information stable at t ∈ T. A stable matching under complete information maximizes the
sum of surpluses, and hence the stable matching M is full-information efficient.

A.2 Proof of Proposition 2

Consider a matching game (a, b, β0). If two types ti and t′i of worker i are indistinguishable,
we write ti ∼ t′i.We write t ∼ t′ if ti ∼ t′i for each i ∈ I. For each t ∈ T, let E(t) = {t′ : t′ ∼ t}
be the type profiles in the same equivalent class of t, and let T ∗ = {E(t) : t ∈ T} be the
collection of indistinguishable classes. For each t ∈ T, i ∈ I, and j ∈ J, define

a∗ij(E(t)) = aij(t); (A.4)

b∗ij(E(t)) = 1
β0(E(t))

∑
t′∈E(t) bij(t′)β0(t′). (A.5)

For each t ∈ T, pick any stable matching (µ,p) for the complete information matching
game where the matching values are defined by (a∗ij(E(t)), b∗ij(E(t)))i∈I,j∈J . If t′ ∈ E(t), we
pick the same (µ,p) for t′. The existence of (µ,p) is ensured by Shapley and Shubik (1971)
and Crawford and Knoer (1981). We claim that the matching function M : t 7→ (µ,p)
defined in this way is stable with Bayesian consistent beliefs.

Individual rationality. For each t ∈ T and (µ,p) = M(t),

aiµ(i)(t) + piµ(i) = a∗iµ(i)(E(t)) + piµ(i) ≥ 0,

where the first equality follows from (A.4) and the inequality follows from the individual
rationality of (µ,p). In addition,M−1(µ,p) can be written as the union of disjoint equivalent
classes E1, E2, ..., Ek. Therefore,

E
[
bµ(j)j|M−1(µ,p)

]
= 1

β0(M−1(µ,p))
∑

t′∈M−1(µ,p)
bij(t′)β0(t′) (A.6)

= 1
β0(∪k`=1E`)

k∑
`=1

β0(E`)
(

1
β0(E`)

∑
t′∈E`

bij(t′)β0(t′)
)

(A.7)

= 1
β0(∪k`=1E`)

k∑
`=1

β0(E`)b∗ij(E`), (A.8)
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where the last equality follows from (A.5). Hence,

E
[
bµ(j)j|M−1(µ,p)

]
− pµ(j)j ≥

1
β0(∪k`=1E`)

k∑
`=1

β0(E`)
(
b∗µ(j)j(E`)− pµ(j)j

)
≥ 0,

where the last inequality follows from firm j’s individual rationality in (µ,p).
No blocking. Consider a coalitional deviation c = (µ,p, i, j, p) at t ∈ T such that

(µ,p) = M(t). Suppose aij(t) + p > aiµ(i)(t) + piµ(i) (otherwise, the deviation is not viable).
Let Dc =

{
t′ ∈ T : aij(t′) + p > aiµ(i)(t′) + piµ(i)

}
. If t′ ∈ Dc, then E(t′) ⊂ Dc. Therefore,

M−1(µ,p) ∩Dc can be written as a union of equivalent classes F1, ..., Fh.

Following the same arguments as in (A.6), (A.7), and (A.8), we have

E
[
bij|M−1(µ,p) ∩Dc

]
− p = 1

β0(∪h`=1F`)

h∑
`=1

β0(F`)
(
b∗ij(F`)− p

)
and

E
[
bµ(j)j|M−1(µ,p) ∩Dc

]
− pµ(j)j = 1

β0(∪h`=1F`)

h∑
`=1

β0(F`)
(
b∗µ(j)j(F`)− pµ(j)j

)
.

It follows from the complete-information stability of (µ,p) that

b∗ij(F`)− p ≤ b∗µ(j)j(F`)− pµ(j)j,

where the right-hand side is positive by worker j’s individual rationality. Hence,

E
[
bij|M−1(µ,p) ∩Dc

]
− p ≤ E

[
bµ(j)j|M−1(µ,p) ∩Dc

]
− pµ(j)j.

This implies that firm j will not join the coalitional deviation c under impartial beliefs.
Hence c is not a viable coalitional deviation for M.

A.3 Proof of Proposition 3

To show the first claim, take any t ∈ T and let (µ,p) = M(t). Since M is fully revealing,
β1

(µ,p,j)(t) = β0(t|M−1(µ,p)) = 1, and hence the individual rationality of (µ,p) follows from
the stability of M. Suppose to the contrary that (µ,p) is not stable when there is complete
information about t. Then there exists (i, j, p) ∈ I×J×R such that aij(t)+p > aiµ(i)(t)+piµ(i)

and bij(t)−p > bµ(j)j(t)−pjµ(j). ConsiderD(µ,p,i,j,p) = {t′ : aij(t′)+p > aiµ(i)(t′)+piµ(i)}. Since
β1

(µ,p,j)(t) = 1 and t ∈ D(µ,p,i,j,p), it follows that β2
(µ,p,i,j,p)(t) = 1. Thus Eβ2

(µ,p,i,j,p)
[bij(t)]− p >

Eβ2
(µ,p,i,j,p)

[bµ(j)j(t)]− pjµ(j). Therefore, the coalitional deviation (µ,p, i, j, p) for M is viable,
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a contradiction. It should be noted that the power of Bayesian consistency of
(
β1, β2

)
is

not fully used in the argument; it is sufficient that the support of β2
(µ,p,i,j,p) is restricted to

M−1(µ,p).
The proof of the second claim proceeds exactly the same way as the proof of Proposition

2 by work with an equivalence relation Ẽ(t) = {t}.

A.4 Proof of Propositions 4 and 5

A.4.1 Duality of Bayesian Efficiency

Consider a stable matching M , and any matching outcome (µ,p) ∈ M(T ). Since β1
(µ,p,j) =

β0(t|M−1(µ,p)) is independent of j, we abuse the notation to write β1
(µ,p) = β0(·|M−1(µ,p)).

To show that M is Bayesian efficient, it is equivalent to show that µ maximizes

∑
i∈I

(∑
t∈T

β0(t|M−1(µ,p))aiµ′(i)(t) +
∑

t∈T
β0(t|M−1(µ,p))biµ′(i)(t)

)
(A.9)

over all matches µ′ : I ∪ J → I ∪ J, where bii := 0.
Primal. We introduce a vector of non-negative real variables x = (xij)i∈I,j∈J . Consider

a problem that maximizes

V (x) :=
∑

i∈I

∑
j∈J

xij
(∑

t∈T
β0(t|M−1(µ,p))(t)aij(t) +

∑
t∈T

β0(t|M−1(µ,p))bij(t)
)

subject to ∑
j∈J xij ≤ 1;∑
i∈I xij ≤ 1;

xij ≥ 0, i ∈ I, j ∈ J .

It is well known that this linear programming problem has an optimal solution x∗ with
all x∗ij = 0 or 1. Such (x∗ij) can be equivalently written as a match µ∗: µ∗(i) = j if and only
if x∗ij = 1, and the objective function of the linear program can be viewed as the sum of
surpluses weighted by the probability measure β1

(µ,p). Therefore, Bayesian efficiency of M is
ensured if the match µ is an optimal solution to the linear programming problem.

Dual. The dual of this linear programming problem is to choose real variables u = (ui)i∈I
and v = (vj)j∈J to minimize

U(u, v) :=
∑

i∈I
ui +

∑
j∈J

vj

39



subject to

ui + vj ≥
∑

t∈T
β0(t|M−1(µ,p))aij(t) +

∑
t∈T

β0(t|M−1(µ,p))bij(t), i ∈ I, j ∈ J ;(A.10)

ui ≥ 0, i ∈ I;

vj ≥ 0, j ∈ J .

Denote the optimal value of the dual by Umin and the optimal value of the primal by
Vmax. By the strong duality theorem, Vmax = Umin.

If there is complete information, the duality analysis is well known: the dual problem
links the stable matching, and the strong duality theorem says that a stable matching is
(full-information) efficient. With asymmetric information, the linkage of the dual to a stable
matching is not immediate because the system of off-path beliefs β2 is used to define stability
whereas the system of the on-path beliefs β1 appears in the dual problem. The impartial
belief that links β2 with β1 through conditionality is critical here.

A.4.2 Proof of Propositions 4 and 5

Define u∗ = (u∗1, ..., u∗n), v∗ = (v∗1, ..., v∗m), and x∗ = (x∗ij)i∈I,j∈J as follows:

u∗i =
∑

t∈T
β0(t|M−1(µ,p))aiµ(i)(t) + piµ(i);

v∗j =
∑

t∈T
β0(t|M−1(µ,p))bµ(j)j(t)− pµ(j)j;

x∗ij =

 1 if µ(i) = j

0 otherwise.

By definition, x∗ is feasible for the primal problem. We need to show that x∗ is the optimal
solution to the primal problem under certain conditions. We proceed in two steps.

Step 1. We shall establish the following claim: if (u∗, v∗) is a feasible solution to the dual
problem, then x∗ is an optimal solution to the primal problem, and consequently the match
µ maximizes (A.9).

To prove this claim, note that

U(u∗, v∗) ≥ Umin = Vmax ≥ V (x∗),

where the first relation follows from the assumption that (u∗, v∗) is a feasible solution to the
dual problem, the second relation follows from the strong duality theorem, and the third
relation follows because x∗ is a feasible solution to the primal problem.

Note also that V (x∗) = U(u∗, v∗) because each of them is the total expected payoff from
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(µ,p) with belief β1
(µ,p). Therefore,

U(u∗, v∗) = Umin = Vmax = V (x∗).

This proves that x∗ is an optimal solution to the primal problem.
Step 2. We shall show that (u∗, v∗) is a feasible solution to the dual problem, if the

conditions in Propositions 4 and 5 are satisfied.
By definition, (u∗, v∗) is non-negative. It remains to show that (u∗, v∗) satisfies the con-

straint (A.10) in the dual problem. We claim that for any t in the support of β0(·|M−1(µ,p)),
and any i ∈ I and j ∈ J,

aiµ(i)(t) + piµ(i) +
∑

t∈T
β0(t|M−1(µ,p))bµ(j)j(t)− pµ(j)j (A.11)

≥ aij(t) +
∑

t∈T
β0(t|M−1(µ,p))bij(t).

The claim is trivially true if µ(i) = j. To prove this claim, suppose by way of contradiction
that (A.11) does not hold for some t in the support of β0(·|M−1(µ,p)) and some pair (i, j) ∈
I × J, µ(i) 6= j. Then, there exists p ∈ R such that

aiµ(i)(t) + piµ(i) < aij(t) + p, and (A.12)∑
t∈T

β0(t|M−1(µ,p))bµ(j)j(t)− pµ(j)j <
∑

t∈T
β0(t|M−1(µ,p))bij(t)− p. (A.13)

Inequality (A.12) captures worker i’s incentive to form a coalitional deviation with firm j.

Consider the coalitional deviation c = (µ,p, i, j, p), and the set

Dc :=
{
t ∈ T : aiµ(i)(t) + piµ(i) < aij(t) + p

}
.

By (A.12), Dc is a non-empty set that contains t. Firms’ common off-path belief is given by
β0(·|M−1(µ,p) ∩Dc).

Under condition (i) of Proposition 4, i.e, Assumption 2, aiµ(i)(t) and aij(t) are independent
of t. Therefore, Dc =

{
t ∈ T : piµ(i) < p

}
if µ(i) ∈ J, and Dc =

{
t ∈ T : piµ(i) < h(i, j) + p

}
if µ(i) = i, where h(i, j) = aij(t) and aii(t) = 0. In either case, Dc = T since t ∈ Dc.

Under condition (ii) of Proposition 4, µ(i) 6= i, and by Assumption 3, aiµ(i)(t) = aij(t) =
g(i, t) + h(i, j). Hence,

Dc =
{
t ∈ T : h(i, µ(i)) + piµ(i) < h(i, j) + p

}
.

Again, Dc = T since t ∈ Dc.
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Under either condition (i) or condition (ii) of Proposition 4, β0(Dc|M−1(µ,p)) = 1. If
we replace the on-path belief β0(t|M−1(µ,p)) by the off-path belief β0(t|M−1(µ,p) ∩ Dc)
in (A.13), the inequality is unchanged. Therefore, (A.13) implies that firm j is willing to
deviate with worker i. That is, (µ,p, i, j, p) is a successful blocking, a contradiction.

Suppose that the conditions of Proposition 5 hold and that µ(i) = i (the case of µ(i) 6= i

has already been covered by the proof of Proposition 4 under condition (ii)). Then

Dc =
{
t ∈ T : piµ(i) < aij(t) + p

}
.

Since aij(·) and bij(·) are co-monotonic, there exists some linear order on Ti that is specific
to the pair (i, j), such that both aij(ti) and bij(ti) are non-decreasing in ti (note that since aij
and bij depend only on ti, the linear order naturally extends to an order on T ). Therefore,
Dc contains all t’s such that ti is larger than a cutoff according to the linear order. It follows
from the monotonicity of bij(t) in ti that

∑
t∈T

β0(t|M−1(µ,p))bij(t)− p ≤
∑

t∈T
β0(t|M−1(µ,p) ∩Dc)bij(t)− p. (A.14)

Since µ(i) = i 6= j, we have µ(j) 6= i. It follows from the independence of β0(·|M−1(µ,p))
that

β0({tµ(j)} × T−µ(j)|M−1(µ,p)) = β0({tµ(j)} × T−µ(j)|M−1(µ,p) ∩Dc).

Hence

∑
t∈T

β0(t|M−1(µ,p))bµ(j)j(t)−pµ(j)j =
∑

t∈T
β0(t|M−1(µ,p)∩Dc)bµ(j)j(t)−pµ(j)j. (A.15)

It follows from (A.15) and (A.13) that

∑
t∈T

β0(t|M−1(µ,p) ∩Dc)bµ(j)j(t)− pµ(j)j <
∑

t∈T
β0(t|M−1(µ,p))bij(t)− p. (A.16)

By (A.14) and (A.16),

∑
t∈T

β0(t|M−1(µ,p) ∩Dc)bµ(j)j(t)− pµ(j)j <
∑

t∈T
β0(t|M−1(µ,p) ∩Dc)bij(t)− p.

That is, firm j is willing to deviate with worker i. Thus, the coalitional deviation (µ,p, i, j, p)
is not viable, a contradiction. This establishes the claim that (A.11) holds.

Multiplying both sides of (A.11) by β0(t|M−1(µ,p)) and summing over t, we obtain

u∗i + v∗j ≥
∑

t∈T
β0(t|M−1(µ,p))aij(t) +

∑
t∈T

β0(t|M−1(µ,p))bij(t).
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That is, (u∗, v∗) satisfies (A.10). Thus, (u∗, v∗) is a feasible solution to the dual problem.

A.5 Proof of Proposition 6

For each t ∈ T, pick any complete-information competitive equilibrium matching (µ,p) asso-
ciated with the complete-information matching game (a∗ij(E(t)), b∗ij(E(t)))i∈I,j∈J as in (A.4)
and (A.5). We claim that the matching M : t 7→ (µ,p) is a (rational expectations) com-
petitive equilibrium. Since (µ,p) is a competitive equilibrium of the complete-information
matching game (a∗ij(E(t)), b∗ij(E(t)))i∈I,j∈J ,

a∗iµ(i)(E(t)) + piµ(i) ≥ a∗ij(E(t)) + pij.

Thus, by (A.4),
aiµ(i)(t) + piµ(i) ≥ aij(t) + pij.

That is, condition (i) of Definition 8 is satisfied. In addition, M−1(µ,p) can be written as
the union of equivalent classes G1, ..., Gc. Following the argument as in (A.6)–(A.8), for all
j ∈ J and i ∈ I ∪ {j} , we have

E
[
bµ(j)j|M−1(µ,p)

]
− pµ(j)j = 1

β0(∪k`=1G`)

k∑
`=1

β0(G`)
(
b∗µ(j)j(G`)− pµ(j)j

)
;

E
[
bij|M−1(µ,p)

]
− pij = 1

β0(∪k`=1G`)

k∑
`=1

β0(G`)
(
b∗ij(G`)− pij

)
.

By the definition of (µ,p), b∗µ(j)j(G`)− pµ(j)j ≥ b∗ij(G`)− pij. Therefore,

E
[
bµ(j)j|M−1(µ,p)

]
− pµ(j)j ≥ E

[
bij|M−1(µ,p)

]
− pij.

That is, condition (ii) in Definition 8 is satisfied.

A.6 Proof of Proposition 7

By the proofs of Propositions 2 and 6, M s : t 7→ (µ,ps) and M c : t 7→ (µ,pc) are stable and
competitive equilibrium respectively, when (µ,ps) is a complete-information stable matching
at t and (µ,pc) is a complete-information competitive equilibrium extension of (µ,ps). This
proves the first halves of (i) and (ii). The second halves are shown by Examples 6 and 7,
respectively.
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A.7 Proof of Proposition 8

Suppose to the contrary that a competitive equilibrium matchingM is not Bayesian efficient.
Then for some (µ,p) ∈M(T ) there exists a match µ′ : I ∪ J → I ∪ J such that

E
[∑n

i=1(aiµ(i) + biµ(i))|M−1(µ,p)
]
< E

[∑n

i=1(aiµ′(i) + biµ′(i))|M−1(µ,p)
]
. (A.17)

Since M is a competitive equilibrium,

E
[
aiµ(i) + piµ(i)|M−1(µ,p)

]
≥ E

[
aiµ′(i) + piµ′(i)|M−1(µ,p)

]
(A.18)

for all i ∈ I, and

E
[
bµ(j)j − pµ(j)j|M−1(µ,p)

]
≥ E

[
bµ′(j)j − pµ′(j)j|M−1(µ,p)

]
(A.19)

for all j ∈ J. Observe that, since pii = pjj = 0,

∑n

i=1 piµ(i) =
∑m

j=1 pµ(j)j and
∑n

i=1 piµ′(i) =
∑m

j=1 pµ′(j)j.

Hence, summing (A.18) over i ∈ I and (A.19) over j ∈ J, we have

E
[∑n

i=1 aiµ(i) +
∑m

j=1 bµ(j)j|M−1(µ,p)
]
≥ E

[∑n

i=1 aiµ′(i) +
∑m

j=1 bµ′(j)j|M
−1(µ,p)

]
,

which, since aii ≡ 0 ≡ bjj, is equivalent to

Eβ1
(µ,p)

[∑n

i=1

(
aiµ(i) + biµ(i)

)]
≥ Eβ1

(µ,p)

[∑n

i=1

(
aiµ′(i) + biµ′(i)

)]
. (A.20)

But (A.20) and (A.17) contradict each other.
We now prove the claim about full-information efficiency. It follows from the construction

of Proposition 6 that ifM(t) is a competitive equilibrium matching when t is common knowl-
edge, then M is a competitive equilibrium. Suppose that M is a competitive equilibrium.
Then, by definition, for all t ∈ T and (µ,p) = M(t), aiµ(i)(t)+piµ(i) ≥ aij(t)+pij for all i ∈ I
and j ∈ J ∪ {i} , and E[bµ(j)j|M−1(µ,p)] − pµ(j)j ≥ E[bij|M−1(µ,p)] − pij for all j ∈ J and
i ∈ I ∪ {j} . By Assumption 1, the last inequality is equivalent to bµ(j)j − pµ(j)j ≥ bij − pij
for all j ∈ J and i ∈ I ∪{j} . Thus, (µ,p) is a complete-information competitive equilibrium
(and maximizes the sum of surpluses) when the type profile is t. HenceM is full-information
efficient.
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