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Abstract

When updating a finite element (FE) model to match the measured properties of its corresponding structure,
the sensitivities of FE model outputs to parameter changes are of significant interest. These sensitivities
form the core of sensitivity-based model updating algorithms, but they are also used for developing reduced
parametrizations, such as in subset selection and clustering. In this work, the sensitivities of natural fre-
quencies and mode shapes are studied for structures having at least one plane of reflectional symmetry. It is
first shown that the mode shapes of these structures are either symmetric and anti-symmetric, which is used
to prove that natural frequency sensitivities are equal for symmetric parameters. Conversely, mode shape
sensitivities are shown to be unequal for symmetric parameters, as measured by cosine distance. These topics
are explored with a small numerical example, where it is noted that mode shape sensitivities for symmetric
parameters exhibit similar properties to asymmetric parameters.

Keywords: Modal analysis, Sensitivity-based model updating, Eigenvalue problem, Symmetry, Sensitivity
analysis

1. Introduction

Finite element (FE) models are of great importance in science and engineering for modeling of physical
systems. In structural engineering, an FE model generally corresponds to a unique physical structure but
there may exist significant discrepancy between measured and model-predicted behavior. The presence of
discrepancy limits the predictive value of an FE model. FE model updating seeks to reduce discrepancy
between measured and model-output behavior, often modal properties, by adjusting parameters of an FE
model, such as element masses and stiffnesses [1]. An excellent review of model updating, encompassing
contemporary methods in uncertainty quantification, is available by Simoen et al. [2].

One of the most popular and intuitive methods for FE model updating is the sensitivity method [1] which
uses a series of linear approximations to minimize a non-linear sum-of-square error function between measured
and model-output data vectors. In the linear approximation step, the sensitivity method directly utilizes
the Jacobian matrix, also called the sensitivity matrix, which captures the derivatives of model outputs with
respect to parameter changes [1]. The condition of the sensitivity matrix is of paramount importance to the
sensitivity method, since parameters are updated using the pseudo-inverse of the sensitivity matrix. Poor
conditioning occurs when there are more unknowns (parameters to update) than equations (measurements),
but can also result from noisy data or poor selection of updating parameters [1].

Two general approaches have been adopted for improving the condition of the sensitivity matrix in
FE model updating: regularization and reduced parametrization. Regularization has been widely studied
and utilized in FE model updating [1, 3–5], and involves adding equations to constrain the amount of
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parameter modification or enforce user-specified equalities. Reduced parametrization, on the other hand,
seeks to decrease the number of updating parameters through an intelligent, often automated process. Subset
selection [5, 6] produces a reduced set of updating parameters which are (locally) most effective in reducing the
modeling errors. Parameter clustering [1, 3, 7–9] has been established as a viable method for grouping model
parameters into clusters which are each updated with a single parameter. This relies on machine learning
[10] to group model parameters which have similar effects on model-outputs, as measured by sensitivity.
In these contexts, it is important to understand the properties of the sensitivity vectors for various model
parameters. Parameter clustering has typically been based on natural frequency sensitivities. When this
approach is used on symmetric structures, it has produced symmetric clusters [3, 8, 9]. Recently, the authors
incorporated both natural frequency and mode shape sensitivities which notably lead to asymmetric clusters
[3]. This also has ramifications for subset selection, since parameters are chosen based on their sensitivity
vectors and an orthogonalization process will prevent two parameters from being chosen which have the
same sensitivities [5].

Beyond sensitivity-based parametrization methods, other applications also benefit from an in-depth un-
derstanding of natural frequency and mode shape sensitivities for symmetric structures. Natural frequencies
and mode shapes are widely used damage-sensitive features, not only for damage detection, but also for
damage localization. Since natural frequencies are not enough to indicate structural damage locations, they
are typically used alongside mode shape data to localize structural damage [11–13]. For the same reason,
when model updating is used for a structural damage detection application, it usually includes a combination
of natural frequencies and mode shapes in an objective function. Since many civil and mechanical structures
have at least one plane of symmetry (for design and construction simplicity), it is fundamentally important
to understand the effects of parameter changes in symmetric structures. To this end, developing an un-
derstanding of natural frequency and mode shape sensitivities will contribute to robust damage detection
algorithms and parametrization methods for these special, yet ubiquitous structures.

In this work, natural frequency and mode shape sensitivities are thoroughly explored in the context
of structures having at least one plane of symmetry. In Section 2, prior work is reviewed to establish the
symmetry and anti-symmetry of mode shapes in symmetric structures. This is then combined with analytical
natural frequency and mode shape sensitivity results to show that natural frequency sensitivities are equal
(Section 3) and mode shape sensitivities are unequal (Section 4) between symmetric parameters. These
techniques are applied to an example symmetric truss in Section 5 with further analysis of mode shape
sensitivities for symmetric parameters. Section 6 presents discussion of findings and conclusions.

2. Eigensolution for symmetric structures

The mathematical study of symmetry in structural dynamics began with Glockner [14] who applied group
theory to form reduced representations of full structural systems. A symmetric structure can be transformed
through a defined set of reflections and rotations, called the symmetry group, to configurations which are
identical to the original structure [15]. When a structure exhibits symmetry, its mass and stiffness matrices
can be decomposed into similar block-diagonal forms [16]. In vibration analyses of linear structures, this
greatly reduces the computational and memory requirements, as the single, large eigendecomposition is
transformed into several smaller, separable eigendecompositions [16]. Group theory is the natural vehicle
for establishing these transformations, and has seen extensive study in structural dynamics by Kaveh et al.
[17–20] and Zingoni [15, 21, 22].

In this work, a single type of symmetry is analyzed, namely a single reflection or bilateral symmetry.
This corresponds to the C1v symmetry group which comprises two operations: the identity operation e and
a single reflection about a vertical plane σv. The identity operation is part of any symmetry group, even for
asymmetric structures, so it is often disregarded as a trivial transformation [20]. An example of a structure
exhibiting C1v symmetry is given in Fig. 1.

Consider a structure which is divided by a reflection plane into left and right substructures, with link
elements cut by the plane. At this point, the structure can be general, with different mass, stiffness, and
connectivity properties within the left and right substructures. The only requirement which will be put
on the structure is that the left and right substructures contain an equal number of degrees-of-freedom
(DoFs), at n. The global stiffness matrix K and mass matrix M for the full structure are thus symmetric
positive-definite with dimension N × N where N = 2n. The N -element column vector u represents the
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displacements of the system. The displacement and force vectors can be partitioned into uT = {uT
1 u

T
2 } and

fT = {fT
1 fT

2 }, respectively. u1 and f1 correspond to displacements and forces on the left substructure,
while u2 and f2 correspond to displacements and forces on the right substructure. u1, f1, u2 and f2 are
thus equally-sized column vectors with n components.

One way of defining C1v symmetry in a structure is that the displacements and accelerations are sym-
metric given a symmetric force vector. Note that “symmetry” in this context refers to being unaffected by
reflection, not to the typical transpose-symmetry of matrices. If the displacements are symmetric with re-
flection, then uT = {uT

1 u
T
2 } = {uT

2 u
T
1 }, or u1 = u2. A more systematic way of representing this operation

is through a linear transformation representing reflection, defined as

T =

[
0 I
I 0

]
(1)

which is symmetric and involutory (i.e. T T = T−1 = T ). Therefore, stiffness-symmetry is defined such that
u = Tu given f = Tf . Substituting these transformations into the stiffness equation gives

Ku = f → KTu = Tf → TKT = K (2)

In other words, the stiffness matrix of a symmetric structure is unaffected by reflection and is indistinguishable
when measuring the stiffness of the left or right substructure DoFs. A similar approach can be applied to
the mass matrix, where a mass-symmetry is defined such that the acceleration vector is unaffected by
reflection: ü = T ü. This is used to satisfy the relation Mü = f , where f is again symmetric. This leads to
TMT = M .

The stiffness matrix for this general structure can be written in block-form as

K =

[
K(1) K(2)

K(2)T K(3)

]
(3)

where K(1) and K(3) represent the connectivity within the left and right side DoFs, respectively (intracon-
nectivity). K(2) and K(2)T represent the connectivity between the left and right side DoFs, respectively
(interconnectivity). As with the displacement vector, assume that the block matrices are equal in size with
dimension n× n. If the structure is symmetric such that TKT = K, then

TKT =

[
K(3) K(2)T

K(2) K(1)

]
→ K(1) = K(3); K(2) = K(2)T (4)

A similar result holds for the mass matrix M . Intuitively, this means that the stiffness and mass properties
are identical between the left and right substructures which are connected by link elements cut by the plane
of symmetry. In other words, for a structure to exhibit symmetrical displacement (and acceleration) given
a symmetric input force, it must exhibit stiffness (and mass) symmetry. Therefore, the stiffness and mass
matrices can be written as

K =

[
K(1) K(2)

K(2) K(1)

]
M =

[
M (1) M (2)

M (2) M (1)

]
(5)

These matrices have a special construction, with two identical blocks along the diagonal and two separate
identical blocks along the off-diagonal. This is defined as a Form II matrix, studied by Kaveh and Sayarinejad
[17]. Since K and M are symmetric, then so are the block matrices. K(1) corresponds to the stiffness of
the substructures on either side of the symmetry plane, while K(2) corresponds to the stiffness of elements
linking together the symmetric substructures. Note that this requires a consistent selection of DoFs. In the
case of Fig. 1, this required nodal numbering and DoF selection which was isomorphic with reflection.
K and M are used in a generalized eigenvalue problem for finding natural frequencies ω =

√
λ and mode

shapes φ which satisfy:

[K − λM ]φ = 0 (6)
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As noted before,K andM can be block-diagonalized via a transformation. Defining an orthogonal matrix
P that rotates the space of eigenvectors, then the eigenvalue problem can be rewritten using transformed
stiffness (K̄) and mass (M̄) matrices. Note that the eigenvalues are invariant to this transformation.

φ = Pφ̄ → [P TKP︸ ︷︷ ︸
K̄

−λP TMP︸ ︷︷ ︸
M̄

]φ̄ = 0 (7)

If the matrix P is defined as follows, then this block-diagonalizes K̄ and M̄

P =
1√
2

[
I −I
I I

]
→ K̄ =

[
K̄(1) 0
0 K̄(2)

]
=

[
K(1) +K(2) 0

0 K(1) −K(2)

]
(8)

where K̄(1) and K̄(2) are called the condensed submatrices of K and similar for M . Substituting these
results into Eq. (7) yields the separable eigenvalue problem:[

K̄(1) − λM̄ (1) 0
0 K̄(2) − λM̄ (2)

]
φ̄ = 0 (9)

The eigenvalues satisfy the following relation:

det(K̄ − λM̄) = det(K̄(1) − λM̄ (1)) det(K̄(2) − λM̄ (2)) = 0 (10)

This gives two separable eigendecompositions, where the first set of eigenvalues is denoted as {λ(1)} with
corresponding eigenvectors {φ̄(1)} which satisfy [K̄(1) − λ(1)M̄ (1)]φ̄(1) = 0. Similarly, the second set of
eigenvalues is denoted as {λ(2)} with corresponding eigenvectors {φ̄(2)} which satisfy [K̄(2)−λ(2)M̄ (2)]φ̄(2) =
0. The generalized eigenvalues of K,M , denoted as {λ(K,M)}, are then given by the set union of the
eigenvalues of the condensed problems:

{λ(K,M)} = {λ(K̄,M̄)} = {λ(1)} ∪ {λ(2)} (11)

The eigenvectors of K,M , denoted as {φ(K,M)} can be evaluated from the eigenvectors of the condensed

problems after rotation back through P . Inserting the ith eigenvalue of the first condensed problem λ
(1)
i into

Eq. (9) yields

φ̄i =

{
φ̄

(1)
i

0

}
→ φi = Pφ̄i =

{
φ̄

(1)
i

φ̄
(1)
i

}
(12)

where the scalar was dropped because mode shape scaling is arbitrary. This set of eigenvectors is assembled
by duplicating the eigenvectors of the first condensed problem. These eigenvectors are thus symmetric, since
φi = Tφi for all i from the first condensed problem. Since the eigenvectors are symmetric (i.e. unaffected
by reflection) the corresponding modes are said to be symmetric modes.

The eigenvector associated with the jth eigenvalue of the second condensed problem, λ
(2)
j is similarly

evaluated as

φ̄j =

{
0

φ̄
(2)
j

}
→ φj = Pφ̄j =

{
φ̄

(2)
j

−φ̄(2)
j

}
(13)

where the scalar was again omitted. The eigenvectors are assembled by duplication from the eigenvectors of
the condensed problem, but now the two blocks are opposite. These eigenvectors are thus anti-symmetric
since φj = −Tφj for all j from the second condensed problem. Similar to the symmetric mode shapes, the
modes corresponding to anti-symmetric eigenvectors are said to be anti-symmetric modes.

The total set of generalized eigenvectors, {φ(K,M)}, is then given by the union of those two sets of
eigenvectors

{φ(K,M)} =

{
φ̄(1)

φ̄(1)

}
∪
{

φ̄(2)

−φ̄(2)

}
(14)

4



which takes significant liberty with notation to indicate that it comprises only symmetric and anti-symmetric
forms of the condensed problem eigenvectors.

These results are applicable to structures which may exhibit further symmetry, as long as they are
decomposable by (at least) one C1v symmetry group which produces Form II K and M matrices, as defined
in Eq. (5). Furthermore, this approach can be extended to structures which have DoFs along the line of
symmetry. Using the notation of Kaveh and Nikbakht [20], this corresponds to a Form III matrix which
is essentially an augmentation of a Form II matrix. The symmetry and anti-symmetry of mode shapes
(excluding the DoFs along the line of symmetry) are preserved for Form III matrices. The reflection matrix
T becomes more complex in these situations, and further work is warranted to derive the solutions for these
structures.

3. Natural frequency sensitivity

Previous applications of group theory to structural dynamics sought to reduce computational expense
or memory requirements for the analysis of symmetric structures. In this work, the special properties of
mode shapes in symmetric structures are combined with analytical sensitivity results to explore natural
frequency and mode shape sensitivities. To simplify notation in the remaining work, λ refers to λ(K,M)
and φ = φ(K,M). The resulting natural frequency sensitivities can be calculated analytically using the
result of Fox and Kapoor [23], which is also derived in Adhikari [24] for arbitrary mode shape normalization
and for systems with damping:

λi,k = φT
i Gi,kφi (15)

Note that Gi,k = K,k − λiM,k where �,k represents the partial derivative with respect to parameter k,
∂�/∂θk. The term Gi,k is evaluated for two parameters, θk and θl which are symmetric, such that

K,k =

[
K

(1)
,k 0

0 0

]
K,l = TK,kT =

[
0 0

0 K
(1)
,k

]
(16)

and similar for M,k and M,l. This uses the reflection matrix T defined in Eq. (1). Symmetric parameters
may be, for example, the mass densities of two symmetrically-located (mirrored) elements. However, the
definition is generic and may include groups of parametrized elements which have a mirror group. The
only requirement is that the symmetric parameters satisfy K,l = TK,kT . Note that the off-diagonal block
matrices of K,k and M,k are necessarily zero since they correspond to the stiffness and mass properties,
respectively, of link elements. Since link elements are cut by the reflection plane, they are not part of either
substructure and are never going to give symmetric parameters. Gi,k and Gi,l are then formed

Gi,k =

[
K

(1)
,k − λiM

(1)
,k 0

0 0

]
Gi,l = TGi,kT =

[
0 0

0 K
(1)
,k − λiM

(1)
,k

]
(17)

3.1. Symmetric mode shape

As established in Section 2, the mode shapes of symmetric structures are either symmetric or anti-
symmetric. Analysis begins with an arbitrary symmetric mode i, such that

φi =

{
vi
vi

}
= Tφi (18)

for some non-zero vector vi. φi is unaffected by the reflection matrix T in Eq. (1). Writing the eigenvalue
sensitivity with respect to parameter θl and using the relation in Eq. (17):

λi,l = φT
i Gi,lφi = φT

i [TGi,kT ]φi = [φT
i T ]Gi,k[Tφi] = φT

i Gi,kφi = λi,k (19)

then equivalence is satisfied, and eigenvalue sensitivities are equal between symmetric parameters for sym-
metric modes.
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3.2. Anti-symmetric mode shape

This examination is repeated for an arbitrary anti-symmetric mode j,

φj =

{
vj
−vj

}
= −Tφj (20)

which is negated when transformed by the reflection matrix T in Eq. (1). The eigenvalue sensitivity with
respect to θl can again be equated to the sensitivity with respect to θk:

λj,l = φT
j Gj,lφj = φT

j [TGj,kT ]φj = [−φT
j T ]Gj,k[−Tφj ] = φT

j Gj,kφj = λj,k (21)

and thus eigenvalue sensitivities are equal between symmetric parameters also for anti-symmetric modes.
Therefore eigenvalue (and correspondingly, natural frequency) sensitivities are equal between symmetric

parameters for all modes, comprising symmetric and anti-symmetric modes, in symmetric structures. This is
a significant result and gives an analytical explanation for the symmetry of clusters based on natural frequency
sensitivity, as noted in [3, 8, 9]. Since natural frequency sensitivity vectors will always be equal between
symmetric parameters, they will be clustered together using any distance metric or clustering technique.
Furthermore, this means that subset selection based on natural frequency sensitivity will necessarily select
against a symmetric parameter after its complement has been chosen. This occurs because the selection
process orthogonalizes after each selection, and the identical sensitivity of the parameter pair will be removed.

Finally, this has large ramifications for the sensitivity matrix in sensitivity-based model updating. If an
updating problem is set to update only natural frequencies, then two columns corresponding to symmetric
parameters will be linearly dependent and the rank of the sensitivity matrix will be less than the number
of columns. Therefore, special care must be taken when updating the natural frequencies of symmetric
structures to correctly determine the rank of the sensitivity matrix prior to updating and take the correct
ameliorating steps of regularization or reparametrization.

4. Mode shape sensitivity

This approach is now extended to mode shape sensitivities. The sensitivity, or derivative, of mode shape
φi with respect to parameter θk is given by [23]:

φi,k = −[FiFi + 2Mφiφ
T
i M ]︸ ︷︷ ︸

Li

−1
[FiFi,k +Mφiφ

T
i M,k]︸ ︷︷ ︸

Ri,k

φi (22)

This can be split into the inverse of a symmetric matrix Li which does not depend on the parameter θk, a
matrix Ri,k, and the mode shape φi. Li is Form II, meaning that TLiT = Li. Thus L−1

i is also Form II
(L−1

i = [TLiT ]−1 = TL−1
i T ), giving properties that will be exploited later. Fi represents the eigenvalue

problem with eigenvalue λi, which has the same form as the K and M matrices:

Fi = K − λiM =

[
F

(1)
i F

(2)
i

F
(2)
i F

(1)
i

]
(23)

The derivative of Fi with respect to parameter θk is given as Fi,k = K,k − λiM,k − λi,kM , which is closely
related to Gi,k from Eq. (17):

Fi,k =

[
F

(1)
i,k F

(2)
i,k

F
(2)
i,k F

(3)
i,k

]
= Gi,k − λi,kM (24)

The derivative with respect to a symmetric parameter θl is

Fi,l =

[
F

(1)
i,l F

(2)
i,l

F
(2)
i,l F

(3)
i,l

]
= Gi,l − λi,kM (25)

6



where the result λi,l = λi,k was used from Section 3. This means that Fi,l is the reflection of Fi,k, using the
reflection matrix in Eq. (1):

Fi,l = TFi,kT (26)

Using these definitions, the goal is to describe the similarity between mode shape sensitivities for two
symmetric parameters. Generally, subset selection methods and parameter clustering methods phrase simi-
larity in terms of the cosine distance between vectors [3, 5, 7–9]. Between two mode shape sensitivity vectors,
this can be written:

dcos(φi,k,φi,l) = 1−
φT

i,kφi,l√
φT

i,kφi,k · φT
i,lφi,l

(27)

This is equal to 1 − cos(ψ) where ψ is the angle between the two vectors. dcos ranges between 0 (vectors
are parallel) and 2 (vectors are anti-parallel). When φi,k and φi,l have the same magnitude (i.e. φT

i,kφi,k =

φT
i,lφi,l), then this can be written as

dcos(φi,k,φi,l) = {φi,k − φi,l}T {φi,k − φi,l}/(2φT
i,kφi,k) (28)

In order for two symmetric parameters, θk and θl, to have dcos = 0 when using Eq. (28) then the following
condition must hold:

φi,k − φi,l = −L−1
i [Ri,kφi −Ri,lφi] = 0 → Ri,kφi −Ri,lφi = 0 (29)

where L−1
i can be reduced because it is invertible.

4.1. Symmetric mode shape

Eq. (29) is analyzed in the context of a symmetric mode shape, φi, with form given by Eq. (18).
However, we will first show that the symmetric parameter sensitivities are equal in magnitude to allow use
of Eq. (28). To do this, Eq. (22) is examined for mode i and parameter l:

Ri,lφi = [FiFi,l +Mφiφ
T
i M,l]φi = [Fi[TFi,kT ] +Mφiφ

T
i [TM,kT ]]φi

= [FiTFi,k +Mφiφ
T
i TM,k]Tφi = [FiTFi,k +Mφiφ

T
i M,k]φi

(30)

This uses the reflection matrix T in Eq. (1) to describe the transformations of Fi,l in Eq. (26) and M,l,
similar to Eq. (16). This is further simplified using the fact that Tφi = φi for a symmetric mode shape.
Given that L−1

i is a Form II matrix, then TL−1
i = L−1

i T . Thus, we can show that Tφi,k = φi,l using a
part of Eq. (22) and Eq. (30):

Tφi,k = −L−1
i TRi,kφi = −L−1

i [FiTFi,k +Mφiφ
T
i M,k]φi = φi,l (31)

This utilizes the facts that Fi and M are Form II to give TFi = FiT and TM = MT . Therefore the two
sensitivity vectors have equal magnitude, φT

i,lφi,l = φT
i,kTTφi,k = φT

i,kφi,k, so Eq. (28) can be used.
Comparing Eq. (30) to Ri,kφi in Eq. (22) gives the following relation to satisfy Eq. (29):

[Fi − FiT ]Fi,kφi = 0 (32)

Note that Fi can not be reduced from this equation since it is not invertible. For a particular mode shape
φi and parameter θk, this equation may be satisfied by several Fi because Fi,k isn’t necessarily full-rank.
However, this equation must hold for any arbitrary parameter θk. Therefore, Fi,k can be treated as an
arbitrary matrix because the K,k and M,k are arbitrary based on parametrization. Since φi is necessarily
non-zero by definition of an eigenvector, the only general solution is Fi = FiT . This requirement can be

written as F
(1)
i = F

(2)
i from Eq. (23):

K(1) − λiM (1) = K(2) − λiM (2) (33)
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This may have infinitely many solutions for a particular eigenvalue λi, but it is desired to find a condition
such that mode shape sensitivities are equal for symmetric parameters for all symmetric modes. Therefore,
λi is treated as arbitrary, giving the requirements that

K(1) = K(2) M (1) = M (2) (34)

While generally difficult to attain, this condition doesn’t violate any properties of the stiffness and mass
matrices (i.e. symmetry, non-zero).

4.2. Anti-symmetric mode shape

Eq. (29) is now analyzed in the context of an anti-symmetric mode shape, φj , with form given by Eq.
(20). Again, it is first shown that the symmetric parameters have equal magnitude sensitivity vectors by
examining part of Eq. (22) This is simplified using Tφj = −φj for an anti-symmetric mode shape:

Rj,lφj = [FjFj,l +Mφjφ
T
j M,l]φj = [Fj [TFj,kT ] +Mφjφ

T
j [TM,kT ]]φj

= [FjTFj,k +Mφjφ
T
j TM,k]Tφj = −[FjTFj,k −Mφjφ

T
j M,k]φj

(35)

This can be used to show that φj,l = −Tφj,k in a similar process to Eq. (31). Thus, two sensitivity vectors
have equal magnitude, φT

j,lφj,l = φT
j,kφj,k, so Eq. (28) can be used. Comparing Eq. (35) to Eq. (29) for

mode j gives the following condition such that Eq. (29) is satisfied:

[Fj + FjT ]Fj,kφj = 0 (36)

As discussed previously, this equation has to hold for an arbitrary parameter θk and non-zero φj , making

Fj,kφj an arbitrary vector. The only solution, then, is Fj = −FjT , or equivalently, F
(1)
j = −F (2)

j . This can
be written as

K(1) − λjM (1) = −[K(2) − λjM (2)] (37)

Since this must hold for various values of λj , corresponding to different anti-symmetric modes, the only
solution which satisfies φj,k = φj,l for arbitrary (symmetric) parameters θk and θl and arbitrary anti-
symmetric mode j is

K(1) = −K(2) M (1) = −M (2) (38)

Comparing the equivalence criterion for symmetric mode shapes in Eq. (34) and anti-symmetric Eq.
(38) yields the only solution to both sets: K(1) = K(2) = 0 and M (1) = M (2) = 0, which is a null
result. Therefore, we have analytically shown that there is no symmetric structure for which all mode shape
sensitivities will be equal between symmetric parameters, in direct contrast to natural frequency sensitivities,
which will be equal. In other words, the presence of structural symmetry is never going to let symmetric
parameters have the same mode shape sensitivities. Intuitively, one would expect that the more closely
mode shape sensitivity equivalence is satisfied for symmetric modes, the greater discrepancy would exist for
anti-symmetric modes, and vice versa. This comes from observation of Eqs. (32) and (36), but L−1

i , Fi,k,
and φi will vary for each mode, so it is not guaranteed that this condition will exist.

However, the observation that dcos(φi,k,φi,l) > 0 is limited in utility. While the cosine distance between
mode shape sensitivities for symmetric parameters is necessarily greater than zero, the cosine distance may
still be close enough to zero such that symmetric parameters are still clustered together (in cluster analysis)
or nearly orthogonalized (in subset selection) or essentially linearly dependent (in the sensitivity matrix).
Since the equations do not readily admit a bound on dcos, this will be explored in a small numerical study.

5. Example structure with C1v symmetry

The structure of study, in Fig. 1, was modified from Kaveh and Nikbakht [20]. This is a symmetric
10 element truss formed from two equilateral triangles (elements {1, 2, 3} and elements {8, 9, 10}) with link
elements {4, 5, 6, 7}. The element properties are uniform, with dimensionless Young’s modulus of 1, area 1,
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and mass density 1. The structure is pinned at the symmetric nodes 1 and 4, giving 8 free DoFs. Note that
DoFs 5 and 7 are reversed relative to the direction of 1 and 3 such that DoFs 5-8 are isomorphic to DoFs 1-4
after reflection, giving the structure C1v symmetry. The displacements of the structure are thus partitioned
as

uT =
{
uT

1 | uT
2

}
= {u1 u2 u3 u4 | u5 u6 u7 u8} (39)

corresponding to left and right substructures. The stiffnessK and massM matrices are Form II, as described

3
1

6
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u4

u7

u8

u5

u6

Figure 1: Symmetric 8-DoF truss structure adapted from Kaveh and Nikbakht [20]

in Eq. (5) with block matrices given by

K =

[
K(1) K(2)

K(2) K(1)

]
=



1.43 −0.25 −0.25 0.43 0.50 0 0.43 0.25

−0.25 1.64 0.43 −0.75 0 0 −0.25 −0.14

−0.25 0.43 2.68 −0.18 0.43 −0.25 1 0

0.43 −0.75 −0.18 0.89 0.25 −0.14 0 0

0.50 0 0.43 0.25 1.43 −0.25 −0.25 0.43

0 0 −0.25 −0.14 −0.25 1.64 0.43 −0.75

0.43 −0.25 1 0 −0.25 0.43 2.68 −0.18

0.25 −0.14 0 0 0.43 −0.75 −0.18 0.89


(40)

M =

[
M (1) M (2)

M (2) M (1)

]
=



1.91 0 0.17 0 −0.33 0 −0.29 0

0 1.91 0 0.17 0 0.33 0 0.29

0.17 0 1.58 0 −0.29 0 −0.17 0

0 0.17 0 1.58 0 0.29 0 0.17

−0.33 0 −0.29 0 1.91 0 0.17 0

0 0.33 0 0.29 0 1.91 0 0.17

−0.29 0 −0.17 0 0.17 0 1.58 0

0 0.29 0 0.17 0 0.17 0 1.58


(41)

Transforming these matrices by P in Eq. (8) to be block-diagonal yields the condensed matrices K̄(1), K̄(2),
M̄ (1) and M̄ (2). This leads to the separable eigenvalue problem in Eq. (9), which give the eigenvalues of K
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and M as the union of the eigenvalues for the condensed problems:

{λ(1)} = {0.08, 0.88, 1.76, 2.70} {λ(2)} = {0.19, 0.42, 0.83, 1.81} (42)

Therefore, the eigenvalues are {λ} = {0.08, 0.19, 0.42, 0.83, 0.88, 1.76, 1.81, 2.70} with modes 1, 5, 6, and
8 coming from the first condensed problem (symmetric) and modes 2, 3, 4, and 7 from the second condensed
problem (anti-symmetric). The associated eigenvectors for the separable problems are

φ̄(1) =


−0.30 1 1 0.20

0.58 0.77 −0.82 0.05
0.04 −0.21 −0.06 1

1 −0.42 0.96 −0.04

 φ̄(2) =


1 0.31 0.59 −0.57

−0.33 0.63 1 0.80
0.68 0.02 −0.90 1
−0.40 1 −0.84 −0.36

 (43)

These can be transformed into the eigenvectors of the full problem using Eq. (7), which are separated into

φ =

[
φ̄(1) φ̄(2)

φ̄(1) −φ̄(2)

]
(44)

Note that this doesn’t reflect the typical mode ordering (based on ascending eigenvalue), but is used to show
that the mode shapes are symmetric and anti-symmetric. The mode shapes are depicted in Fig. 2.

1st sym. mode, ϕ1 2nd sym. mode, ϕ5 

1st anti-sym. mode, ϕ2 2nd anti-sym. mode, ϕ3 

3rd sym. mode, ϕ6 4th sym. mode, ϕ8 

3rd anti-sym. mode, ϕ4 4th anti-sym. mode, ϕ7 

Figure 2: Truss mode shapes

The model was parametrized to modify the stiffness (or equivalently, Young’s modulus) of each element
l out of a total p = 10

K(θ) =

p∑
l=1

Kl(1− θl) (45)

where θ is the vector of parameters and Kl is the element stiffness matrix of element l. Therefore, the
derivatives are simple, with K,l = −Kl and M,l = 0. The parameter sets {1, 8}, {2, 9}, and {3, 10} were
symmetric.

The natural frequency sensitivities and mode shape sensitivities were computed numerically for the
purposes of verification. A selection of these mode shape sensitivities for symmetric parameters are shown
in Fig. 3. The parameter (element) is indicated with a bold line while the sensitivity is indicated by a red
arrow for each DoF. This represents how the mode shape changes as a result of perturbing the indicated
parameter. The numerically-computed sensitivities obeyed the reflection properties noted in Section 4,
with φ1,1 = Tφ1,8 and φ2,3 = −Tφ2,10. In words, mode shape sensitivities for symmetric parameters are
reflections for a symmetric mode, while they are negative reflections for anti-symmetric modes. Visually,
φ1,1 and φ1,8 appear to be near-opposite, with most of the sensitivities having opposite direction between
the two parameters. Conversely, φ2,3 and φ2,10 appear quite similar, especially for the large magnitude
terms on nodes 3 and 6.

To quantify the similarity between sensitivity vectors, the cosine distance between mode shape sensitivities
was computed between all parameter pairs using Eq. (27). This comprised p(p − 1)/2 = 45 unique pairs
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Sensitivity of mode 1 to parameter 1, ϕ1,1 Sensitivity of mode 1 to parameter 8, ϕ1,8

Sensitivity of mode 2 to parameter 10, ϕ2,10Sensitivity of mode 2 to parameter 3, ϕ2,3

Figure 3: Selected mode shape sensitivities for symmetric parameters

sym.

Figure 4: Cosine distances between parameter pairs, separated into symmetric pairs and all other pairs

of parameters, of which 3 represented the symmetric parameter pairs. This was performed for all 8 modes,
with results shown in Fig. 4. This allowed for a limited comparison of cosine distance between mode shape
sensitivities for symmetric parameter pairs and for all other pairs.

The cosine distance between mode shape sensitivities for the three symmetric parameter pairs was largely
similar to the behavior for any other parameter pair. For all symmetric parameter pairs, dcos was near its
maximum for modes 1 and 4-8, showing little preference between symmetric and anti-symmetric mode shapes.
A maximal value of dcos = 2 indicated that the mode shapes sensitivities were opposites, as discussed in
φ1,1 and φ1,8 of Fig. 3. Conversely, lower values of dcos can be noted for the symmetric parameter pairs on
modes 2 and 3. In particular, dcos(φ2,3,φ2,10) was quite small (≈ 0.14), as suggested in the discussion of
Fig. 3.

The other 42 parameter pairs showed largely uniform behavior for modes 1-3 and 8, with few values below
1. Conversely, modes 4-7 showed a large proportion of extreme values, having many pairs with dcos near zero
and also near 2. This doesn’t seem to indicate a difference between symmetric and anti-symmetric mode
shape sensitivity behavior, as these distinct behaviors encompassed both symmetric and anti-symmetric
modes.

The mean of dcos (across all modes) for the symmetric parameter pairs was approximately 1.5, while it was
near 1.1 for the other parameter pairs. While this indicates that symmetric parameter pairs are more likely
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to exhibit significantly different mode shape sensitivities, this is not a guarantee. Symmetric parameter pairs
still exhibited significant variability, with dcos values noted near zero as well as near 2. This is an important
result, as it indicates that there are no special properties (e.g. equality, negation) of mode shape sensitivities
between symmetric parameters. For the purposes of clustering and subset selection, symmetric parameters
aren’t expected to exhibit different behavior than any arbitrary pair of parameters. Therefore, they are
expected to contribute to asymmetry in clustering and prevent orthogonalization of symmetric parameters
in subset selection. For sensitivity-based updating, they are expected to behave like any other parameter
pair, with no reason to suspect that they won’t contribute to the column-space (rank) of the sensitivity
matrix.

6. Conclusions

The properties of natural frequency and mode shape sensitivities were explored in the context of struc-
tures possessing at least one plane of reflectional symmetry. For these structures, it was shown that the
stiffness and mass matrices can be partitioned into a special form, which reduces the eigenvalue problems
into two smaller problems. The reduced problems provide exclusively symmetric or anti-symmetric mode
shapes for the symmetric structure. The special symmetry properties of the mode shapes were then used
to explore the derivatives (or sensitivities) of natural frequencies and mode shapes to changes in symmetric
parameters. It was analytically proved that natural frequency sensitivities are necessarily equal between
symmetric parameters, while mode shape sensitivity vectors are always unequal. These topics were applied
to a small example truss with symmetry to quantify the difference between mode shape sensitivity vectors, as
measured by cosine distance. It was noted that symmetric parameters generally had greater cosine distance
between their mode shape sensitivity vectors, as compared to other (asymmetric) parameter pairs, but still
exhibited significant variability.

For sensitivity-based clustering, this proves that using natural frequency sensitivities will lead to symmet-
ric clusters, while incorporating mode shape sensitivities will tend to create asymmetric clusters, as observed
previously by the authors [3]. This stems from mode shape sensitivities being necessarily unequal between
symmetric parameters, while natural frequency sensitivities are always equal between symmetric parameters.
For parameter subset selection (which uses the sensitivity matrix), if natural frequency sensitivities are used
exclusively, then only one of a pair of symmetric parameters can possibly be chosen, as its counterpart will
be orthogonalized. However, incorporating mode shape sensitivity will differentiate the sensitivities of the
symmetric parameters, possibly allowing both parameters to be selected. This has similar ramifications for
sensitivity-based updating, where use of natural frequency sensitivities will necessarily lead to linearly depen-
dent columns of the sensitivity vector, since the sensitivity vectors for symmetric parameters will be equal.
Using mode shape data, with or without natural frequency data, is expected to ameliorate this problem and
improve the rank of the sensitivity matrix.

The derived results were validated on the example problem, but the degree of variability between mode
shape sensitivities corresponding to symmetric parameters deserves further investigation on a variety of
structures.
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