

Introduction

- Nonylphenol (NP) is chemical known to accumulate in aquatic environments.
- Due to its chemical structure, it is a known endocrine disruptor in many animal species, including crayfish and other invertebrates.
- Previous studies have shown NP to reduce olfaction, reproduction, and molting frequency in crayfish. This can inhibit their ability to develop, find food, and locate potential mates.
- At sufficient concentrations, NP has been demonstrated to be lethal in adult crayfish.
- The concentration at which NP is lethal to juvenile crayfish has not yet been determined and may differ from that of adults.
- Previous studies have indicated NP concentrations of 0.30 ug/L and below to be non-lethal values in adult crayfish.
- This project hypothesized that juvenile crayfish are more susceptible to the lethal dosing effects of NP than adults.

Methods

- Juvenile Faxonius propinquus crayfish were collected via a seine net from the Little Rio Grande river near Muskegon, Michigan.
- Juveniles were classified as individuals weighing less than 3.0 grams in this study.
- Subjects were individually isolated in their own tank for 2 days before 48-hour exposure to varying concentrations of nonylphenol or control acetone.
- Exposure groups had a sample size of 8 and were balanced between males and females.
- Dilute NP concentrations in acetone vehicle solution included 0.05 ug/L, 0.10 ug/L, 0.125 ug/L, 0.15 ug/L, and 0.30 ug/L.
- Subjects were monitored for 48 hours post-exposure to determine death rate.

Investigating the Toxicity of Nonylphenol in Juvenile Faxonius propinquus Crayfish Collin Trainor, Marlee Busalacchi, Haley Ryba, Natalie Rizza and Daniel Bergman

Results

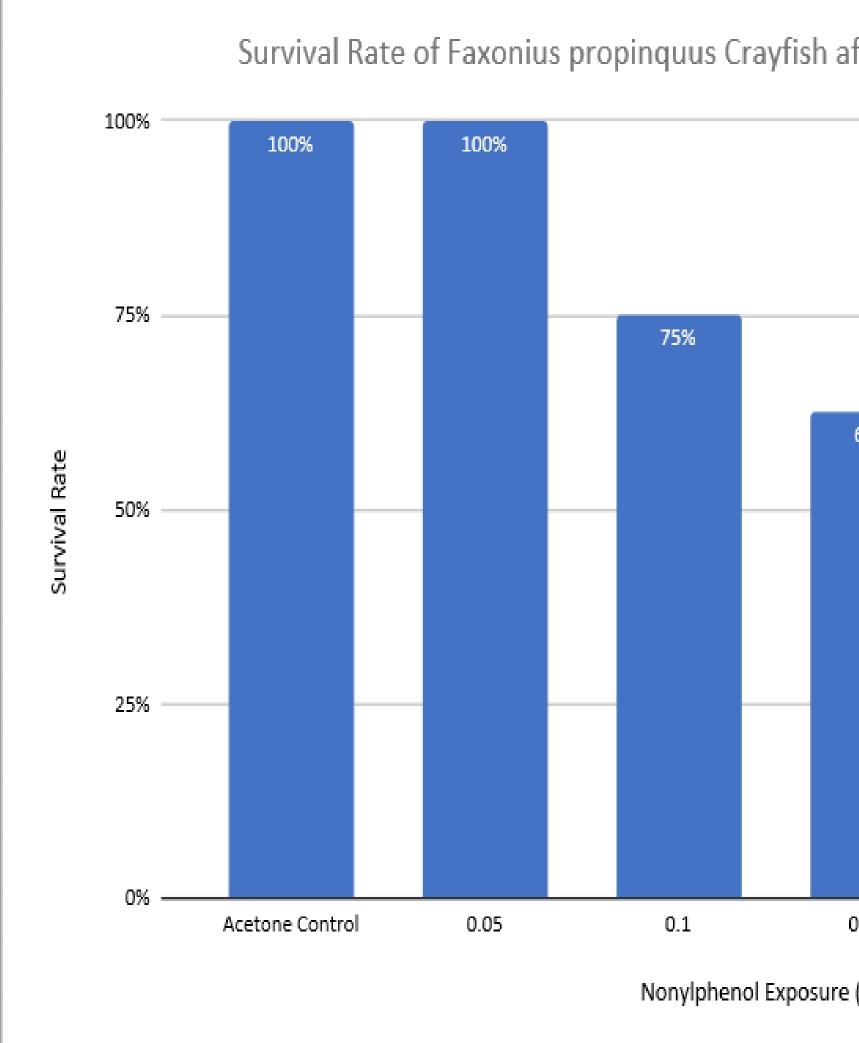
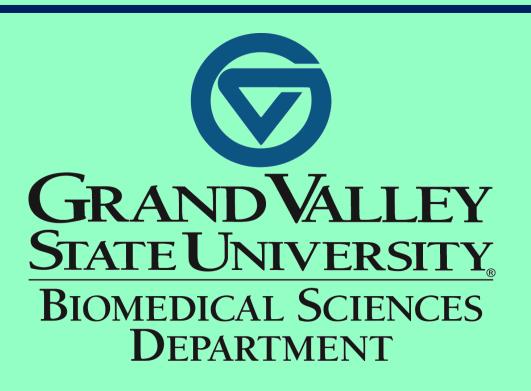


Figure 1: Survival Rate of Faxonius propir Nonylphenol Exposure

- Results indicate that 100% of juvenile crayfish exposed at 0.05 ug/L survived, 75% survived at 0.10 ug/L, 62.5% at 0.125ug/L, and 0% at or above 0.15 ug/L.
- According to these results, lethal effects of NP occur at very low concentrations.
- There was no significant difference was found in the survival rates between males and females at any concentration.
- Variation in weight values did not contribute any significant difference to survival rate.
- Crayfish survival rate did not change after the first 24 hours of exposure at any concentration; the majority of death activity occurred within 4 hours of exposure.
- Crayfish movement in the isolation tanks appeared to briefly increase immediately following initial exposure to NP.
- Presence of one or more claws missing did not have any significant difference on survival rate at any concentration.

Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, USA


S					
after Nony	lphenol Exposu	re			This study was cond classical ethical guid This study originally hemolymph concent objectives when left reported in previous All exposure concert environmentally rep Some subjects in thi exposure. Death rate from others at any c
0.125 e (ug/L)	0.15	0.3		●	Because subjects we there is a possibility
nquus C	Crayfish aft	er			NP concentrations the

of NP than adults.

tissues.

- The lethal dose concentration (the concentration at which 50% of subjects die) of NP in juvenile crayfish may be between 0.125 ug/L and 0.15 ug/L.
- Future Directions: Further studies should be conducted to assess the impact of sub-lethal NP exposure on juvenile physiology.

- MacKay, S. B. (2017). Chronic Effects of Nonylphenol on Reproductive Behavior, Physiology, and Development of Crayfish (Unpublished master's thesis). Grand Valley State University. • MacKay, S.B., Trainor, C.P., Bergman, D. (2019). Effects of Nonylphenol on
- University.

Discussion

- ducted under IACUC approval and followed delines for treatment of aquatic invertebrates. y began as an experiment measuring
- trations of NP after exposure but switched hal doses were noticed to differ from values studies and literature.
- ntrations of NP in this study are lower than ported values in the state of Michigan.
- is study were missing a claw before NP
- e of these subjects did not significantly differ concentration.
- ere collected from natural Michigan rivers, they had previously been exposed to varying that could have bioaccumulated in subject

Conclusions

Juvenile crayfish are more susceptible to the lethal dosing effects

References

Crayfish Molting Hormones (Unpublished study). Grand Valley State