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a b s t r a c t 

A geometric method for analysis of elastic and elastic-plastic solids is proposed. It involves operators on 

naturally discrete domains representing a material’s microstructure, rather than the classical discretisa- 

tion of domains for solving continuum boundary value problems. Discrete microstructures are consid- 

ered as general cell complexes, which are circumcentre-dual to simplicial cell complexes. The proposed 

method uses the separation of the total deformation energy into volumetric and distortional parts as a 

base for introducing elastoplastic material behaviour. Volumetric parts are obtained directly from volume 

changes of dual cells, and the distortional parts are calculated from the distance changes between primal 

and dual nodes. First, it is demonstrated that the method can accurately reproduce the elastic behaviour 

of solids with Poisson’s ratios in the thermodynamically admissible range from -0.99 to 0.49. Further veri- 

fication of the method is demonstrated by excellent agreement between analytical results and simulations 

of the elastic deformation of a beam subjected to a vertical displacement. Second, the Prandtl operator 

approach is used to simulate the behaviour of the solid during cyclic loading, considering its elastoplas- 

tic material properties. Results from simulations of cyclic behaviour during alternating and variable load 

histories are compared to expected macroscopic behaviour as further support to the applicability of the 

method to elastic-plastic problems. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

When a solid body is subjected to mechanical loading, it un-

dergoes volume and shape changes. Mechanical loads that act on a

solid can appear in simple forms, such as tension, bending, shear,

torsion; or they can act as a complex combination of the simple

loads causing an intricate deformation field. Methods to analyse

the deformation of solids, analytical and numerical, have been ex-

tensively studied to date. Analytical solutions, mostly based on the

seminal works of Timoshenko and Goodier (1951) , can quickly be-

come computationally too complex for the geometries of mechan-

ical products developed today. Finite difference methods are sim-

ple and intuitive numerical techniques for the solution of mechan-

ical problems ( Abreu et al., 2018; Li et al., 2019; Zheng and Zhang,

2019 ), but again the complex geometries can compromise the ac-

curacy of the results depending on the size of the chosen pertur-

bation ( Abreu et al., 2018 ). Finite volume methods ( Keilegavlen and

Nordbotten, 2017; Sokolova et al., 2019 ) and boundary-type meth-
∗ Corresponding author. 

E-mail address: domen.seruga@fs.uni-lj.si (D. Šeruga). 
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ds ( Markous, 2019; Liu et al., 2019 ) can alternatively be applied

o study the deformation of solids. At present, the finite element

ethods are the most mature and commonly used tool to analyse

olids subjected to mechanical or thermomechanical loadings ( Liu

t al., 2015; Fielder et al., 2017; Rajasekaran and Khaniki, 2017; Bar-

oura and Li, 2018; Šeruga and Nagode, 2019; Kotoul et al., 2019;

u and Cheng, 2019; Xiao and Yu, 2019; Pereira et al., 2019; Nu-

anoglu and Civalek, 2019; Falope et al., 2019 ). All these methods

re based on continuum formulations of governing equations, i.e.

y partial differential equations, complemented by boundary con-

itions defining boundary value problems. The numerical methods

hen proceed to discretise the domain representing the body and

se approximations of specific mechanical fields or differential or

ntegral operations. Solutions of such formulated boundary value

roblems are then sought by variational principles and iterative

rocedures ( Zienkiewicz et al., 2013; Šeruga and Nagode, 2019; Ra-

asekaran and Khaniki, 2017; Xu and Cheng, 2019 ). 

One limitation to the methods starting from continuum formu-

ations is that they are not suitable for the analysis of localised

henomena in solids, such as the formation of shear bands or

racks. This is because such phenomena are physically of finite
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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xtensions, whilst the classical solid mechanics, where stress and

train tensors are point-wise quantities, lacks the length scale.

 relatively simple alternative allowing for localisation as well

s heterogeneity to be introduced is offered by the lattice mod-

ls. For example, lattice methods based on the analysis of graphs

ave been used to simulate the elastic behaviour, damage initia-

ion and fracture propagation of various materials subjected to me-

hanical loads ( Jivkov and Yates, 2012; Jivkov et al., 2012; 2013;

orrison et al., 2014; 2016; Zhang et al., 2014; Dassios et al.,

017; 2018 ). However, various discrete formulations have been

roposed for achieving arbitrary values of Poisson’s ratio, espe-

ially for materials in the elastoplastic regime where Poisson’s

atio asymptotically approaches 0.5 (incompressibility) or to re-

roduce the behaviour of auxetic materials with a negative Pois-

on’s ratio. Kumar et al. (2016) studied simulations by a pack-

ng of bonded particles to provide the microscopic and macro-

copic characteristics of the packing and explored the capability

f a discrete element method with spheres to reproduce the be-

aviour of auxetic materials. Rojek et al. (2018) introduced a dis-

rete element method with deformable cylindrical particles which

roadens the range of the macroscopic Poisson’s ratio in com-

arison to the values achievable by the standard discrete ele-

ent method. Zhao et al. (2011) proposed a 3D distinct lattice

pring model where matter is discretised into individual particles

inked by springs forming either a random or a regular lattice

tructure and capable of representing a diversity of Poisson’s ra-

ios. Asahina et al. (2015) demonstrated that it is possible to cor-

ectly simulate the Poisson effect by a regular lattice model and

 set of fictitious forces introduced into the lattice. Furthermore,

sahina et al. (2017) presented an auxiliary stress approach which

s capable of representing the Poisson effect both macroscopically

nd in a local sense. Celiguet et al. (2017) proposed a way to en-

ich the spring dash-pot model in such a way that the macroscopic

oisson effect can be captured by the discrete element method.

usatis et al. (2017) introduced a discontinuous cell method which

nables simulations of a full range of Poisson’s ratio from −1 to

.5. Analysis of graphs, applicable to lattices, is a geometrically

implified version of a more general formulation using discrete ex-

erior calculus (DEC) ( Hirani, 2003 ). DEC utilises the interaction be-

ween discrete primal and dual complexes to reproduce the key

eometric features useful for computational purposes. An impor-

ant feature of DEC is that both the intermediate discretisation of

he continuum governing equations and their application to the

iscretised domain become superfluous ( Yavari, 2008; Kosmas and

ivkov, 2019 ). This formulation is currently receiving increasing in-

erest after its successful application to fields within both physics

nd mathematics. Specifically, it has been used to tackle problems

anging from homology, riemannian geometry, fluid dynamics and

iscrete mechanics ( Schulz and Tsogtgerel, 2018 ). The application

o elasticity problems is still under development. However, by in-

roducing primal and dual complexes, boundary and co-boundary

perators for the connectivity of these complexes and Hodge star

perators between them, it is in principle possible to solve elas-

icity problems of solids based only on their geometric properties

 Yavari, 2008; Bell and Hirani, 2012; Kosmas and Jivkov, 2019 ). The

olution for a given structural problem is then found by the min-

misation of the deformation energy which accumulates in a solid

s a reaction to the external loading ( Kosmas and Jivkov, 2019 ).

his is a remarkable feature of the approach as it can prevent es-

alating computational errors during time-dependent loading. 

This paper offers an approach, denoted as lattice-complex mod-

lling, that combines the more established lattice approach with

lements of the emerging full DEC formulation. A new computa-

ional method is developed, where solids are represented by dis-

rete topological spaces and their behaviour is analysed using only

eometric features. The positions of the primal and the dual nodes
nd the stretches between them define the stored deformation en-

rgy in the dual complex, considered as a finite discrete structure

f the solid. The total deformation energy in a discretised solid

s calculated by separate volumetric and distortional contributions,

hich enables simulations of the elastic behaviour of solids. Only

he positions of the primal and the dual nodes are crucial for

he simulation regardless of their translational or rotational move-

ents. The method then extends the use of geometric modelling

o analysis of the elastoplastic behaviour of solids, which has not

een reported to date. This is enabled by the introduction of the

randtl operator approach ( Nagode and Zingsheim, 2004; Nagode

t al., 2010; 2011a ). The Prandtl operator approach enables the

imulation of elastoplastic stress-strain behaviour and the kine-

atic hardening of solids during variable mechanical loadings. The

ain advantages of the approach are high computational speeds

nd omission of the explicit use of the rules for the simulation

f cyclic behaviour as these rules are integrated within the model

 Šeruga and Nagode, 2019 ). Detailed descriptions of the Prandtl op-

rator approach development can be found in Nagode and Zing-

heim (2004) ; Nagode and Fajdiga (2007) ; Nagode et al. (2011b) ;

eruga et al. (2014) ; Šeruga and Nagode (2019) . In addition, some

pplications of the Prandtl operator approach on a variety of

echanical components can be found in Nagode et al. (2011b) ;

eruga et al. (2014) ; Kozjek et al. (2017) ; Šolinc et al. (2019) ;

artošak et al. (2019) . 

The application of the proposed method is aimed at metal-

ic mechanical components operating in demanding operational

onditions under considerable mechanical and thermal loads, e.g.

utomotive exhaust systems, turbines or aircraft engines ( Šeruga

t al., 2014; Bewlay et al., 2016; Abdallah et al., 2012; Hayakawa

t al., 2004; Thomas and Bacos, 2011 ). Stresses and strains arising

n the material of such components as a reaction to external loads

each beyond the yield stress causing elastoplastic behaviour of

he material. To endure such operating conditions, a considerable

mount of chromium, nickel, tungsten and cobalt is needed in con-

entional alloys ( Šeruga and Nagode, 2015; Grilli et al., 2017; Omari

nd Sevostianov, 2013; Tkaczyk et al., 2018; Mishakin et al., 2019 ).

owever, as most of these alloying elements are termed as critical

aw materials (CRM) for Europe, only functional recycling of used

roducts containing CRM and alternative CRM-reduced or CRM-

ree materials will enable the manufacture of mechanical compo-

ents able to withstand extreme operating conditions in the future

 Grilli et al., 2017; Tkaczyk et al., 2018; Novak et al., 2018 ). There-

ore only a robust method providing reliable predictions of the be-

aviour of solids in operation will improve their performance, re-

uce the consumption of critical raw materials or predict suitable

ubstitutes. 

The paper is structured as follows: Section 2 provides the for-

ulation of geometric modelling for mechanically loaded elastic

nd elastic-plastic solids. In Section 3 , results for a loaded icosa-

edron, a rigidly supported beam and an elastoplastic behaviour

nder variable mechanical loads are given to demonstrate the use

f the method. Section 4 discusses the results and provides the fu-

ure work regarding the method. 

. Method 

.1. Mathematical preliminaries 

A solid body is considered as a collection of polyhedral cells,

epresenting the individual grains of its polycrystalline structure.

his view allows for consideration of the nuclei, around which

rains have formed by solidification, as nodes ( x i , y i , z i ) for the

elaunay tetrahedralisation of the domain ( Si, 2015 ). The nodes,

dges, triangular faces and tetrahedra after tetrahedralisation form

 simplicial complex, which we consider as a primal complex in



138 D. Šeruga, O. Kosmas and A.P. Jivkov / International Journal of Solids and Structures 198 (2020) 136–148 

Fig. 1. Representation of a discretised solid in terms of a de Rham space. 
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the present development. In the terminology of algebraic topol-

ogy, the elements of the simplicial complex are denoted: 0-cells for

nodes, 1-cells for edges, 2-cells for triangles, and 3-cells for tetra-

hedra. The Voronoi tessellation ( Si, 2015; Voronoi, 1908 ) around

the primal 0-cells provides a general (non-simplicial) complex,

which is circumcentre-dual to the primal complex. This dual com-

plex is then considered to represent the polycrystalline structure

of the solid. To each primal 0-cell, denoted by σ 0 , corresponds

one dual 3-cell, denoted by ∗σ 0 (e.g. a single crystal); to each pri-

mal 1-cell, denoted by σ 1 , corresponds one dual 2-cell, denoted

by ∗σ 1 (generally a planar polygon, e.g. a grain boundary, normal

to the primal 1-cell); to each primal 2-cell, denoted by σ 2 , corre-

sponds one dual 1-cell, denoted by ∗σ 2 (e.g. a triple line in the

polycrystalline structure, normal to the primal 2-cell); to each pri-

mal 3-cell, denoted by σ 3 , corresponds one dual 0-cell, denoted by
∗σ 3 (e.g. a quadruple point of the polycrystalline structure). The

connectivity between the elements of the primal complex is de-

scribed by three matrices, providing the 0-cells that are bound-

aries of 1-cells, the 1-cells that are boundaries of 2-cells, and the

2-cells that are boundaries of 3-cells, respectively. Details on how

these are constructed can be found in Bell and Hirani (2012) . The

transposes of these boundary operators provide co-boundary op-

erators, denoted by d 0 , d 1 and d 2 , respectively, which are discrete

analogues of the exterior derivatives in the continuum exterior cal-

culus ( Hirani, 2003 ). Due to the one-to-one correspondence be-

tween σ i and 

∗σ i , the boundary operators of the dual complex

are the transposes of the primal boundary operators, and the dual

co-boundary operators are simply d T 
0 
, d T 

1 
and d T 

2 
. This formulation

leads to a discrete analogue of the de Rham complex depicted in

Fig. 1 . 

The illustration in Fig. 1 shows that three algebraic quantities,

the matrices d 0 , d 1 and d 2 arising from the topology of the pri-

mal complex, are sufficient to describe the connectivity as well as

the discrete derivatives in both the primal and the dual complexes.

The specific geometric properties of the two complexes, such as

volumes of 1-cells (physically meaning lengths), denoted by | σ 1 |

and | ∗σ 2 |, volumes of 2-cells (physically meaning areas), denoted

by | σ 2 | and | ∗σ 1 |, and volumes of 3-cells, denoted by | σ 3 | and

| ∗σ 0 |, do not affect the discrete derivatives, but are essential for

completing the discrete versions of the continuum gradient, curl

and divergence operations. This is done by the introduction of dis-

crete Hodge star operators, ∗0 = 

|∗σ 0 | 
| σ 0 | , ∗1 = 

|∗σ 1 | 
| σ 1 | , ∗2 = 

|∗σ 2 | 
| σ 2 | and

∗3 = 

|∗σ 3 | 
| σ 3 | , which are depicted in Fig. 1 , and where the volumes of

0-cells are assumed to be 1, i.e. | σ 0 | = | ∗ σ 3 | = 1 ( Hirani, 2003 ).

Using these notations, the following operations can be performed: 
e
• the gradient of a function on σ 0 is found by the application of
∗

1 · d 0 and is a function on 

∗σ 1 , 

• the curl of a function on σ 1 is found by the application of
∗

2 · d 1 and is a function on 

∗σ 2 and 

• the divergence of a function on σ 2 is found by the application

of ∗3 · d 2 and is a function on 

∗σ 3 . 

Similar operations are performed for functions defined on 

∗σ 3 ,

σ 2 , and 

∗σ 1 with inverse Hodge stars and the transposed co-

oundary operators. Hence discrete analogues of all the operations

sed in continuum physics and mechanics can be built, and as

entioned in the introduction this method has been used to con-

truct discrete formulations of many physical problems ( Schulz and

sogtgerel, 2018 ). However, a direct application of the DEC basis to

lasticity problems is still elusive due to the specific requirements

or the symmetry of strain and stress tensors in continuum me-

hanics, which cannot be ensured by the existing DEC apparatus.

herefore, we propose here to construct an approximate method,

hich takes ideas from the DEC formalism and the more explored

echanics of lattices. 

.2. Lattice-complex formulation of elastic behaviour 

Classical lattice models can be seen as a part of the primal com-

lex defined above, containing only the sets of 0-cells and 1-cells,

.e. the centres of physical grains in a polycrystalline structure and

he segments connecting centres of neighbouring grains ( Jivkov

nd Yates, 2012; Morrison et al., 2016; Zhang et al., 2014; Das-

ios et al., 2017; 2018 ). One problem with lattice formulations is

hat they do not allow for unique separation between the stretch-

ng and rotational components of deformation, which is straight-

orward in continuum formulations - either by additive decom-

osition of the displacement gradient into symmetric and skew-

ymmetric tensors in infinitesimal strain theories, or by multiplica-

ive decomposition of the deformation gradient into stretch and ro-

ation tensors in finite strain theories. This leads to an inability to

onstruct a frame-indifferent formulation for the whole lattice and

ne consequence is that such models cannot reproduce bulk elastic

ehaviour with all thermodynamically admissible Poisson’s ratios.

 frame-indifferent formulation can be achieved by using scalar in-

ariants, specifically the components of the stored elastic energy.

owever, the classical lattice models contain insufficient informa-

ion to capture the two principal contributions - volumetric and

istortional - arising from volume change and shape change of the

hysical grains. The proposal in this work is to use a complemen-

ary structure for evaluation of the volumetric and distortional en-

rgies. 
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Fig. 2. Discretised geometry shown for an arbitrary cross-section. 
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The dual 3-cells (generally polyhedrons), indexed by ∗σ 0 
i 
, i =

 , . . . , N, where N is the number of dual 3-cells, have individual

 i vertices, which are dual 0-cells indexed by ∗σ 3 
j 
, where j spans

he set of N i indices of the dual 0-cells on the boundary of ∗σ 0 
i 

.

ach dual 3-cell contains a unique part of the proposed comple-

entary structure - a set of interior segments e ij connecting its

orresponding primal 0-cell, σ 0 
i 
, which is in the ∗σ 0 

i 
interior by

onstruction, to its vertices ∗σ 3 
j 

. This is illustrated in Fig. 2 for an

rbitrary cross-section. The calculation of the volumetric and dis-

ortional strain energies in individual dual 3-cells is then based on

he changes of their volumes and stretches of thus defined interior

egments. 

For given boundary conditions, the body is assumed to be in

n initial equilibrium configuration, described by the coordinates

f σ 0 
i 

denoted by X i with respect to some global coordinate sys-

em. The coordinates of ∗σ 3 
j 

denoted by X j are calculated by con-

truction of the dual complex. A change of boundary conditions,

.g. due to increments of prescribed forces and/or prescribed dis-

lacements, leads to a new, current configuration. The coordinates

f σ 0 
i 

and ∗σ 3 
j 

in the current configuration are denoted by x i and

 j , respectively, where the former form the set of unknowns for

he problem and the latter are functions of the former, derived by

he construction of the dual. 

The ratios between the current volumes, | ∗ ˜ σ 0 
i 
| , and the ini-

ial volumes, | ∗ σ 0 
i 
| , of the dual 3-cells represent discrete volume

hanges corresponding to the Jacobian of the deformation gradient

n continuum elasticity ( Bonet and Wood, 2008 ): 

 i = 

| ∗ ˜ σ 0 
i 

∣∣
| ∗ σ 0 

i 

∣∣ ; i = 1 , . . . , N. (1)

The interior segments, e ij , in a dual 3-cell ∗σ 0 
i 

have initial and

urrent lengths L i j = | X i − X j | and l i j = | x i − x j | , respectively, from

here their stretches are calculated as λi j = 

l i j 

L i j 
. However, each

tretch can be connected to the volumetric change J i , i.e. expan-

ion or contraction of a volume, and the shape change parameter

ij within the volume, 

3 
i j = J i · δi j . (2) 
Considering Eq. 2 , the shape change of e ij can be calculated as

i j = 

λ3 
i j 

J i 
. (3) 

The stretch of an interior segment e ij can always be evaluated

f both the primal 0-cell σ 0 
i 

and the dual 0-cell ∗σ 3 
j 

exist. Only if

ither of the quantities ceases to exist, e.g. if a primal 3-cell σ 3 is

eleted, then the evaluation of the stretch is not possible. 

The volumetric energy �i of the dual 3-cell ∗σ 0 
i 

can thus be

xpressed as 

i = 

1 

2 

κ0 ( ln ( J i ) ) 
2 
∣∣∗σ 0 

i 

∣∣, (4) 

here κ0 represents the elastic bulk modulus of the material, 

0 = 

E 

3 ( 1 − 2 ν) 
. (5) 

Parameters E and ν correspond to the elastic properties of the

aterial under consideration. The distortional energy �i within

he dual 3-cell ∗σ 0 
i 

is worked out from all the shape change pa-

ameters δij of the interior segments e ij as 

i = 3 

N i ∑ 

j=1 

μ0 

(
ln 

(
δi j 

))2 ∣∣∗σ 0 
i 

∣∣, (6) 

nd μ0 stands for the elastic shear modulus, 

0 = 

E 

2 ( 1 + ν) 
. (7) 

Finally, the total deformation energy U is calculated as the sum

f volumetric and distortional contributions within the dual com-

lex, 

 = 

N ∑ 

i =1 

( �i + �i ) . (8) 

In order to calculate the displacements of the primal complex

ubjected to mechanical loading, the total deformation energy is

inimised using a numerical routine, 

 i = argmin 

x 
( U ) ; i = 1 , . . . , N. (9)

In the present context, the minimisation of the total de-

ormation energy is achieved by the quasi-Newton method of

ocedal and Wright (2006) . The algorithm starts the search for the

ptimal coordinates of primal 0-cells in the current configuration

t an initial estimate x i 0 and iterates until the final position of the

rimal 0-cells x i is achieved. In the present work, the combinato-

ial structure of the primal cell complex is immutable, i.e. there is

o emergence or destruction of cells of any order and the relations

etween cells do not change. Clearly, this is also true for the struc-

ure of the dual cell complex. This is suitable for discrete mod-

lling of elasticity and plasticity. However, modelling of separation

rocesses, e.g. fracture, will require changes in the combinatorial

tructure of the complex. In such cases, cells of different order, in-

luding tetrahedra may vanish, but the analysis will proceed using

pdated co-boundary operators and the energy minimisation will

e performed on the new cell complex. During each iteration, the

oordinates of the dual 0-cells are determined as a function of the

oordinates of the primal 0-cells. The search in the k th iteration

ollows the direction p k determined as 

 k = −H k ∇U k (10) 

here H k and ∇U k are the inverse Hessian approximation and the

radient of the total deformation energy in the k th iteration, re-

pectively. A new estimate of the coordinates of the primal 0-cells

n the current configuration is then calculated as 

 ik +1 = x ik + αk p k (11)
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Fig. 3. Rheological spring-slider model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

ε  

a  

m  

o  

t  

(

ζ  

d  

t

s

 

f  

fi

μ  

ε  

w

ε  

a

I  

 

ε  

e  

t  

m  

t

 

t

2

 

d  

t  

(  

v  

(  

m

 

F  

T  

y  

c

β  

w  

t  

m

β  

w  

a  

t

where αk is the step length in the k th iteration. The minimisa-

tion algorithm is completed when the norm of the gradient || ∇U k ||

reaches the preset convergence value ε. 

The elasticity formulation of lattice-complex modelling is tested

in Section 3.1 . 

2.3. Lattice-complex formulation of elastoplastic behaviour 

In order to include plasticity in the lattice-complex modelling,

the time t in distinct steps k = 1 , . . . , N k is introduced to enable a

time-dependent application of the mechanical load. As the stretch

of an interior segment λij depends only on the applied load, it is

decomposed into volumetric and distortional stretches also beyond

the yield point of the material according to Eqs. (1) and (3) . In or-

der to consider the nonlinear effect of plasticity we suggest the

adaptation of both the bulk modulus and the shear modulus of

the material so as to enable the simulation of memory rules ex-

pected during the cyclic loading. For this purpose, one rheologi-

cal spring-slider model schematically given in Fig. 3 is placed into

each dual 3-cell to simulate the irreversible volumetric energy dis-

sipation and another rheological spring-slider model is placed onto

each interior segment to simulate the irreversible distortional en-

ergy dissipation. 

The bulk modulus of the material for an individual dual 3-cell

can thus be modelled as a Prandtl type operator, defined by 

κ( t k ) = κ0 + 

n κ∑ 

n =1 

βκn I κn 

∣∣ε κn ( t k ) − ε O κn ( t k ) 
∣∣ζ , (12)

where βκn , I κn , εκn ( t k ) and ε O κn ( t k ) are the bulk Prandtl density,

the active bulk play index, the bulk back-strain and the bulk back-

strain origin, respectively. The bulk Prandtl densities reflect the

volumetric material properties of the dual complex. Their deter-

mination is given in Section 2.4 . The active bulk play index I κn is

determined by 

I κn = 

{
0 , if ε κn ( t k ) = ε κn ( t k −1 ) 
1 , else 

(13)

and marks whether the n th bulk back-strain changed position. The

bulk back-strain εκn ( t k ) provides information on the position of the

n -th spring-slider segment in the k th time step as 

ε κn ( t k ) = max { ε V ( t k ) − q n , min { ε V ( t k ) + q n , ε κn ( t k −1 ) } } (14)
here εV ( t k ) is the volumetric strain in the k th time step, 

 V ( t k ) = ln 

(
3 
√ 

J ( t k ) 

)
, (15)

nd q n is the n -th yield strain used during the discretisation of the

aterial properties ( Fig. 3 and Section 2.4 ). The bulk back-strain

rigin ε O κn ( t k ) follows the memory rules for elastoplastic simula-

ion and is always set so as to identify the active hysteresis loop

 Nagode and Šeruga, 2016 ). Coefficient ζ , 

= 

{
1 , if | ε V ( t k ) | ≥ ε V , max 
1 
2 
, else , 

(16)

istinguishes the position on the cyclic curve in the first case and

he branch of the hysteresis loop in the second case where εV,max 

tands for the absolutely highest strain reached up to time t k −1 . 

Similarly, the shear modulus of the material can be modelled

or an individual interior segment as a Prandtl type operator, de-

ned by 

( t k ) = μ0 + 

n μ∑ 

n =1 

βμn I μn ( t k ) 
∣∣ε μn ( t k ) − ε O μn ( t k ) 

∣∣ζ . (17)

Now, the shear back-strain εμn ( t k ) is given as 

 μn ( t k ) = max { ε D ( t k ) − q n , min { ε D ( t k ) + q n , ε μn ( t k −1 ) } } (18)

here εD ( t k ) is the distortional strain in the k th step, 

 D ( t k ) = ln ( δ( t k ) ) , (19)

nd the active shear play index I μn ( t k ) is determined as 

 μn ( t k ) = 

{
0 , if ε μn ( t k ) = ε μn ( t k −1 ) 
1 , else . 

(20)

Coefficient ζ in Eq. 17 is defined with respect to ε D (t k ) and

 D , max . The volumetric and distortional energies in the case of

lastoplasticity are calculated according to Eqs. (4) and (6) , respec-

ively, with the elastic bulk modulus κ0 substituted for the bulk

odulus κ( t k ) and the elastic shear modulus μ0 substituted for

he shear modulus μ( t k ). 

The elastoplasticity formulation of lattice-complex modelling is

ested in Section 3.2 . 

.4. Determination of material properties 

The properties of the material needed for the simulation can be

etermined from uniaxial tensile and cyclic tests. From the tensile

est, the elastic modulus and the Poisson’s ratio can be measured

 Šeruga et al., 2019a ) whereas an incremental step test will pro-

ide experimental data for the determination of the cyclic curve

 Šeruga et al., 2019b ). Cyclic bulk modulus-strain and cyclic shear

odulus-strain curves can then be created as shown in Fig. 4 . 

For discretisation purposes, the yield strains q n depicted in

ig. 4 are first either equidistantly or non-equidistantly spaced.

hen, bulk Prandtl densities in the case of equidistantly spaced

ield strains are calculated from the cyclic bulk modulus-strain

urve as 

κn = 

1 

q n +1 − q n 
( κn +1 − 2 κn + κn −1 ) ; n = 1 , . . . , n κ + 1 (21)

ith κ0 = κ1 and shear Prandtl densities in the case of equidis-

antly spaced yield strains q n are calculated from the cyclic shear

odulus-strain curve as 

μn = 

1 

q n +1 − q n 
( μn +1 − 2 μn + μn −1 ) ; n = 1 , . . . , n μ + 1 (22)

ith μ0 = μ1 . In the case of non-equidistantly spaced yield strains,

 different expression for the determination of the Prandtl densi-

ies is required, e.g. as given in Šeruga et al. (2014) . 
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Fig. 4. Determination of bulk and shear Prandtl densities from a) the cyclic bulk modulus-strain curve and b) the cyclic shear modulus-strain curve. 
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3

. Results 

The method was applied to a titanium aluminide alloy Ti-42Al-

.5Nb used for applications in high temperature and high me-

hanical load areas. The bulk modulus-strain and shear modulus-

train curves were determined from experimental data gained in

ppel et al. (2014) . They are depicted in Fig. 5 . Ten equidistantly

paced segments for both the bulk and the shear moduli have been

sed for discretisation of the curves although an arbitrary number

f segments can be applied in general. The calculations have been

erformed using PyDEC library ( Bell and Hirani, 2012 ) for the de-

ermination of primal and dual complexes and corresponding geo-

etrical quantities, supplemented by an in-house Python software

or the calculation of stored energies. Although available software
ig. 5. Bulk modulus-strain (solid line) and shear modulus-strain (dotted line) 

urves for titanium aluminide alloy Ti-42Al-8.5Nb. 
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or the Delaunay triangulation, Voronoi tessellation and the dis-

rete exterior calculus operators on orthogonal simplicial primal

nd general dual complexes has been used ( Si, 2015; Bell and Hi-

ani, 2012 ), the lattice-complex modelling is not bonded to the De-

aunay triangulation and the Voronoi tessellation. Another type of

ual topological quantity could be used instead as long as the posi-

ions of the primal and the dual 0-cells are known. The minimisa-

ion of the total energy was achieved by the quasi-Newton method

f Nocedal and Wright (2006) with the preset gradient norm con-

ergence value set to ε = 10 −2 . 

.1. Simulations of elastic behaviour 

First, the proposed geometric formulation of elasticity was

ested on a simple structure – an icosahedron consisting of 13 pri-

al 0-cells and 20 primal 3-cells was chosen. Both primal and dual

omplexes for the icosahedron are depicted in Fig. 6 . The icosa-

edron was supported on one edge and the loading displacement

as applied on the opposite edge as shown in Fig. 6 . The input

oisson’s ratio, given as a material property to calculate both the

ulk and the shear moduli, was varied between −0.99 and 0.49

hereas the elastic modulus was kept at 161538 MPa. After the

imulation, the calculated displacements in directions perpendicu-

ar to the direction of loading were transformed into the calculated

oisson’s ratio and compared to the input Poisson’s ratio. The re-

ults are given in Fig. 7 . It can be seen that the geometric lattice-

omplex model can represent the whole range of thermodynami-

ally admissible Poisson’s ratios with high accuracy. This is the first

emonstration of the model capability, the outcome is discussed

urther in Section 4 . 

Second, a rigidly supported beam was subjected to a vertical

isplacement at one of the supports. The beam consisted of 36 pri-

al 0-cells and 48 primal 3-cells; the primal and dual complexes

re given in Fig. 8 . Elastic modulus and Poisson’s ratio were set

o 161538 MPa and 0.32, respectively. The results of the simula-

ion using lattice-complex modelling were compared to an analyt-

cal solution of the same rigidly supported beam, 

 y ( z ) = 

K · D 

24 EI x 

(
z 4 − 4 Lz 3 + 4 L 2 z 2 

)
− D 

(
3 

z 2 

L 2 
− 2 

z 3 

L 3 

)
(23) 
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Fig. 6. Primal and dual complexes of the icosahedron consisting of 13 primal 0-cells and 20 primal 3-cells. The edge with the applied displacement and the supported edge 

can be observed in the middle. 

Fig. 7. The results of the loaded icosahedron. Equal axial displacement in the z-direction causes different circumferential displacements. The diagram shows comparison 

between the theoretical Poisson’s ratio (dashed line) and the calculated Poisson’s ratio using lattice-complex modelling (solid line). 
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Fig. 8. Primal and dual complexes of the analysed beam consisting of 36 primal 0-cells and 48 primal 3-cells. The support with the applied displacement and the supported 

side can be observed in the middle. 

Fig. 9. Deformation of a loaded beam. The vertical y-displacement of one of the supports creates deformation of the whole structure (upper diagrams). The lower diagram 

shows a comparison between the vertical displacements of the neutral z-line of the beam using lattice-complex modelling, an analytical solution and the finite element 

method. 
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here I x is the cross-sectional moment of inertia for a rectangular

ross-section of the beam, D is the displacement of the support,

 is the length of the beam between the supports and K is the

igidity of the beam, given as 

 = 

48 EI x 

L 4 
. (24) 

Furthermore, a simulation using the finite element method was

erformed under the same conditions. The results of the compar-
son are given in Fig. 9 . These provide further verification of the

odel, to be discussed in Section 4 . 

.2. Simulations of cyclic elastoplastic behaviour 

The response of the system to cyclic mechanical loads was sim-

lated by changing the bulk and the shear moduli. The moduli for

he titanium aluminide alloy Ti-42Al-8.5Nb as given in Fig. 5 were

onsidered. The results of these simulations are given in Fig. 10 for
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Fig. 10. Simulated time history of a) the bulk modulus and b) shear modulus during alternating mechanical load history (solid grey line); simulated strain path of c) the 

bulk modulus and d) shear modulus during alternating mechanical load history (solid grey line). Strain histories in a) and b) are depicted with a thin black line. Thin black 

lines in c) and d) are used to indicate the cyclic bulk modulus-strain curve and the cyclic shear modulus-strain curve, respectively. 
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an alternating mechanical load history and in Fig. 11 for a variable

mechanical load history. 

4. Discussion 

Conventional material models establish the elastoplastic be-

haviour of solids during cyclic loading based on stresses and strains

whose calculation is an essential step required for simulation of

the deformed structure. Namely, such models first require the dis-

cretisation of both the geometry and the governing equations for

continuum and then search for equilibrium within the solid iter-

ating the displacement–strain–stress–force loop. The intention of

the lattice-complex modelling is to discretise the governing equa-

tions, given a discrete (and finite) formulation of the solid inter-

nal structure. The deformation of the structure is found as the

equilibrium state of the dual complex for which the stored de-

formation energy is a minimum. This gives a significant advan-

tage to the lattice-complex modelling, because numerical errors

which can arise by conventional iterative schemes are minimised

by requiring the preservation of the minimum accumulated total
nergy. Classical variational approaches to mechanics satisfy lo-

al conservation laws on average and preserve important invari-

nts, although the underlying structures of the simulated continu-

us systems can often be compromised ( Desbrun et al., 2008 ). For

n elastoplastic structural analysis using a finite element method,

imulation results might differ depending on the integration pro-

edure, i.e. whether an implicit or an explicit Euler method is ap-

lied. Using an explicit solver, a compromise refers to stability

ssues of the simulation which might amplify the stored energy

n the solid. The stability of the simulation ensured by the im-

licit integration procedure can compromise the preservation of

nergy due to avoidance of numerical divergence. Another exam-

le is given in Stern and Desbrun (2006) for a pendulum which can

ain or lose energy depending on the integration scheme. Discrete

omputational modelling, with which the lattice-complex mod-

lling is associated, operates with forces and displacements at their

eometrically-meaningful locations (primal and dual 0-cells) and

reserves the minimum stored total deformation energy within the

olid in every time step (at present by the quasi-Newton method

f Broyden, Fletcher, Goldfarb and Shanno). The principle of
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Fig. 11. Simulated time history of a) the bulk modulus and b) shear modulus during variable mechanical load history (solid grey line); simulated strain path of c) the bulk 

modulus and d) shear modulus during variable mechanical load history (solid grey line). Strain histories in a) and b) are depicted with a thin black line. Thin black lines in 

c) and d) are used to indicate the cyclic bulk modulus-strain curve and the cyclic shear modulus-strain curve, respectively. 
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nergy minimisation is hence applied in both the classical varia-

ional approaches and the discrete modelling ( Yavari, 2008; Kanso

t al., 2007 ). However two pivotal steps have to be performed so

hat applicable lattice-complex modelling is achieved: a plausible

escription of the energy within the complex, and a powerful to-

al energy minimisation method. Here, we propose the description

f the energy in terms of the bulk modulus, the shear modulus

nd the stretch due to the external load which is consistent with

.g. Bonet and Wood (2008) where energy functions also include

hese terms. Moreover, the total energy is separated into volumet-

ic and distortional parts as mostly the distortional part of the en-

rgy is responsible for the plastic deformation of metals whereas

oth parts of the energy influence the elastic deformation of a

olid. The latter can be obtained from Figs. 4 and 5 where bulk

nd shear moduli retain a constant value within the elastic area.

n the elastoplastic area, the bulk modulus starts increasing whilst

he shear modulus starts decreasing indicating the resistance of the

aterial to volume change and its susceptibility to shape change.

he separation of the energies also enables the introduction of the

randtl operators and consequently the continuous modelling of

oth the bulk and the shear moduli throughout the cyclic loading

istory. 
However, the volumetric and the distortional energies have to

e expressed so as to enable such deformations of structures af-

er the minimisation of their total energy as would be observed if

hey were physically tested under the same conditions. First, this

eans that all the primal 0-cells of the complex have to achieve

he correct displaced positions. Second, the Poisson’s effect of com-

ressible solids has to be represented - expansion or contraction

erpendicular to the direction of the applied load. In order to val-

date the calculation of the energies proposed here, an icosahe-

ron has been tested initially for the thermodynamically admis-

ible range of Poisson’s ratios between -0.99 and 0.49 although

ost structural materials exhibit a non-negative Poisson’s ratio.

s can be seen from the results in Fig. 7 , the simulated Pois-

on’s ratio using the lattice-complex modelling is in good agree-

ent with the theoretical values. As anticipated, there are some

iscrepancies between the simulated and the theoretical values,

hich do not exceed a value of 0.08. Comparing the undeformed

nd the deformed shape of the icosahedron, the simulated defor-

ation for the Poisson’s ratio ν = −0 . 99 clearly shows how the

olid shrinks under a compressive load as opposed to the simu-

ated deformation for the Poisson’s ratio ν = 0 . 48 where the solid

xpands under the same compressive load. For ν = 0 . 0 , there is



146 D. Šeruga, O. Kosmas and A.P. Jivkov / International Journal of Solids and Structures 198 (2020) 136–148 

Fig. 12. Convergence of the calculated total energy for the simulation of the loaded 

beam using the quasi-Newton optimisation method. 
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almost no perpendicular displacement when the compressive load

is applied. 

The results using the lattice-complex modelling of the rigidly

clamped beam subjected to the displacement of one of the sup-

ports match well with the results obtained using both the analyt-

ical solution and the finite element method ( Fig. 9 ). Apart from

slightly higher discrepancies of the obtained vertical displacements

around the supports, the result is a confirmation of the accept-

ability of the proposed method. Nevertheless, a shortcoming of the

present method in the case of the rigidly clamped beam turned out

to be the energy minimisation method. Namely, the quasi-Newton

method of Broyden, Fletcher, Goldfarb and Shanno showed a ten-

dency to find local total energy minima. For the clamped beam this

meant possible solutions of the deformed shape having a low value

of the total accumulated energy, but not the minimum. In this case,

a different initial set of displacements would help the algorithm

to find the global total energy minimum. Additionally, the conver-

gence rate of this minimisation method can create time-consuming

simulations, in particular for more complex structures consisting

of a large amount of vertices and tetrahedra. Furthermore, the

Voronoi tessellation which is performed in each iteration, repre-

sents a drawback of the method as the computational cost grows

with the level of complexity of the analysed structures. As the

Voronoi tessellation is enabled within the PyDEC library, which has

been used during the study, this option has been employed de-

spite the influence to the computational time. Although the com-

putational cost depends on the initial position of the nodes, i.e. the

method converges faster for analyses with smaller displacements,

the determination of the position of the dual complex introduces

a demanding computational task to the method. However, as the

connectivity within the simplicial complex does not change during

the loading as compared to the original configuration, the update

of the coordinates of the dual 0-cells based on the current posi-

tions of the primal 0-cells would considerably expedite the calcu-

lation. This step will be included during the future work within the

improvement of the computational performance of the method. In

Fig. 12 , the convergence of the calculated total energy for the sim-

ulation of the loaded beam is shown. Despite an apparent descent

of the total energy to the final value it can be seen that a con-

siderable number of iterations were necessary to obtain a suitable
olution. The number of iterations directly influenced the compu-

ational costs. The duration of the analysis performed by an Intel

ore i7-8550U 1.8 GHz processor using the lattice-complex mod-

lling took 3140 s whereas the finite element method took 7 s. A

actor of about 450 has therefore been observed for the calculation

ime in favour of the finite element method. 

This implies that future work will investigate other energy min-

misation methods that will ensure fast and robust solutions using

attice-complex modelling. Moreover, although the results of the

omparisons are encouraging, further studies concentrating on the

alculation of volumetric and distortional energies for other struc-

ures are required to confirm our method. Currently, the finite ele-

ent method supported by decades of research on the subject is a

ar more effective method in terms of the computational time, as

lso noted by other researchers, e.g. Kumar et al. (2016) . 

The formation of both the cyclic bulk modulus-strain and the

yclic shear modulus-strain curves constitutes the base for the

imulation of the elastoplastic effect using the lattice-complex

odelling. The curves are created from the cyclic stress-strain

urve which is usually based on experimental results gained from

train-controlled uniaxial tests. A tensile stress-strain curve can

lso be used for the determination of the bulk modulus-strain and

hear modulus-strain curves. In the latter case however, discrepan-

ies between the simulated and the experimentally observed cyclic

esponse might be noted. As mentioned, the initial value of the

oduli is valid until the yield strain. Beyond the yield strain, the

ulk modulus starts increasing due to an increase in the Poisson’s

atio and the shear modulus starts decreasing due to a decrease in

he tangent modulus of the material. This can be seen in Fig. 5 for

he titanium aluminide alloy Ti-42Al-8.5Nb used in this study. The

ulk modulus represents the resistance of the material against its

olume change and the shear modulus stands for the resistance

f the material against its shape change. As the ratio between the

hange of the bulk modulus and the change of the shear modu-

us are nonlinear as the load of the structure grows beyond the

ield point of the material, a nonlinear deformation of the struc-

ure is observed as a result when a minimised total energy has

een reached. For either the alternating or the variable load his-

ory used here, the increase of the bulk modulus and the decrease

f the shear modulus can be seen in Figs. 10 and 11 in state Nr.

. If the load is reversed, the material behaves elastically again un-

il it crosses the whole elastic region and reaches the yield strain

n the compressive direction. This happens after twice the value

f the yield strain if kinematic hardening of the material is con-

idered as shown here for state Nr. 3 in Fig. 10 and state Nr. 5 in

ig. 11 . Whilst crossing the elastic region, the bulk and the shear

oduli regain their initial (‘elastic’) values which can be seen as

umps just after states Nr. 2 and 3 in Fig. 10 and jumps just after

tates Nr. 2–7 in Fig. 11 . 

Correct values of the moduli in every instant during the

yclic loading are assured by application of the Prandtl operators

 Eqs. (12) and (17) ) which continuously model the elastoplastic

ysteresis loops of the bulk modulus in every dual 3-cell and the

lastoplastic hysteresis loops of the shear modulus in every inte-

ior segment of the dual 3-cell. The formation of the hysteresis

oops, either simple during the alternating loading or nested as

n the case of the variable loading history, can be noticed for e.g.

he bulk modulus during the variable loading history as shown in

ig. 13 . Although abrupt jumps are noticed in Figs. 10 and 11 for

oth the bulk and the shear modulus after every reversal point

uring the simulation, a continuous modelling of the bulk modu-

us is observed if only the bulk back-strains are shown from Eq. 12 .

he abrupt jumps hence follow from the fact that the values of the

oduli needed for the simulation originate from both the continu-

us modelling and their relative positions to the values in reversal

oints during the loading history. The first attempt to introduce
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Fig. 13. Modelling of bulk modulus during a) alternating and b) variable mechanical load history. 
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lastoplasticity into geometric modelling is presented in this pa-

er. Nevertheless, further studies concentrating on elastoplastic re-

ponse of mechanically loaded structures are required to confirm

he computation. 

The future ambition of lattice-complex modelling is fracture

imulation in solids considering elastoplastic material properties

n terms of the bulk and shear moduli, geometry representation

y discrete topological spaces and the analyses of their behaviour

sing only geometric features whilst ensuring a preservation of

he minimum stored total deformation energy. Geometric discon-

inuities will be considered by lattice-complex modelling as the

haracterisation of the connectivity between the primal and dual

odes. 

. Conclusions 

A method for the simulation of mechanically loaded elastic and

lastic-plastic solids using a combination of lattice models and

lements of the discrete exterior calculus is developed and pro-

osed. It is demonstrated that the separation of the total defor-

ation energy into volumetric and distortional parts enables the

orrect modelling of discrete structures. Accurate results were ini-

ially obtained for the behaviour of a loaded icosahedron over the

ntire range of Poisson’s ratios. Subsequently, good agreement be-

ween the model solution and the theoretical solution for a rigidly

lamped beam was demonstrated. Finally, simulations of the bulk

odulus and shear modulus during cyclic loading indicated that

he proposed methodology is applicable to cyclically loaded solids.

attice-complex representation of solids enables simulation of the

ntire range of possible material elastic behaviours. Considering

he primal intention of lattice models is to allow for studies of

ailure initiation and crack propagation in solids with explicit mi-

rostructure representation, the proposed approach offers a consis-

ent methodology to capture the elastic and plastic behaviour prior

o the initiation of such failures. Work on effective and efficient en-

rgy minimisation schemes is ongoing. 
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