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ABSTRACT
Turbulence in open channel flows is ubiquitous to hydro-environmental applications and has recently increased in importance with the deployment
of tidal stream turbines, as turbulence impacts both the turbine performance and the blade fatigue life. Tidal turbine analysis requires fully developed
turbulence characteristics at the inlet of numerical simulations where generally the length scale information is limited. In this study, fully resolved
large eddy simulations (LES) with flat beds were undertaken using an open source code at friction Reynolds numbers (Reτ) of 150, 400 and 1020. It
was found that the effects of the free surface on turbulence length scales were felt in approximately the uppermost 10% of the channel only, although
the influence on Reynolds stresses extended further downwards. Furthermore, the cross-correlation length scales of both streamwise and spanwise
velocities were found to be significantly affected by the free surface where turbulent eddies were flattened to the two-component limit.

Keywords: Anisotropy; budgets; open-channel flow; tidal stream turbines; turbulence length scales; turbulence spectra

1 Introduction

Turbulence near shear-free, approximately-flat surfaces occurs
in a wide variety of industrial and environmental flows, and
studying the structure of turbulence near the free surface is
important for understanding the complex interaction of the gas–
liquid interface. In engineering problems these flows occur
in marine-energy applications, ship hydrodynamics, heat-film

exchanges, heat and momentum transfer for two-phase flows,
weirs, spillways, sluices, etc. In the case of marine applications,
such as tidal-stream turbines, it is important to understand the
development of turbulent structures and their influence on the
rest of the flow field, as the performance of, and fatigue loading
on, marine energy extraction devices is directly dependent on
the onset levels of turbulence. Furthermore, understanding the
effects of a shear-free surface on turbulence is of fundamental
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importance for turbulence modelling, as models capable of pre-
dicting second-order statistics near a free surface are widely
used in industrial computational fluid dynamics (CFD).

Previous experimental studies by Komori, Ueda, Ogino,
and Tokuro (1982), Komori, Murakami, and Ueda (1989), Nezu
and Rodi (1986), Rashidi and Banerjee (1988) and Kumar,
Gupta, and Banerjee (1998) have established the behaviour
of root-mean-squared (rms) velocity fluctuations in the ver-
tical direction for open-channel flows. These experiments
reported that the fluctuations in the vertical direction were
damped, whereas fluctuations in the tangential direction were
enhanced near the free surface. Komori et al. (1989); Naka-
gawa and Nezu (1981); Rashidi and Banerjee (1988) have also
already established the connection between the bursts gener-
ated near the bed of the channel and the coherent motion also
known as surface-renewal motion. On the other hand the effects
of Reynolds-stress anisotropy have been studied experimentally
by Roussinova, Balachandar, and Biswas (2009). Thus, a wealth
of information regarding open-channel flows has already been
provided by experiments; however, there are some difficulties
related to measurements very close to the deformable interface
at the free surface. This results in a lack of accuracy of measure-
ments for the rms velocities near the free surface and derived
quantities such as Reynolds stresses, vorticity and turbulent
dissipation, all of which cannot be obtained with accuracy.

Open-channel flows have been studied via direct numerical
simulation (DNS) by Komori et al. (1993), Handler, Swean,
Leighton, and Swearingen (1993), Handler, Swearingen, Swean,
and Leighton (1991), Borue, Orszag, and Staroselsky (1995),
Lam and Banerjee (1992), Walker, Leighton, and Garza-
Rios (1996) and Campagne, Cazalbou, Joly, and Chas-
saing (2009). The main limitation of these studies has been
the relatively small Re numbers (when defined in terms of the
depth profile). At such low Re numbers the viscous effects from
the lower friction bed extend much further up into the water
column; in some cases even up to the free surface. Further-
more, under these flow conditions the thickness of the viscous
sub-layer forms a significant portion of the integral length
scale. Consequently, it becomes difficult to distinguish between
inviscid and viscous processes near the free surface (Calmet
& Magnaudet, 2003). In order to study higher Re number flows,
large eddy simulations (LES) for open-channel flows have been
performed by Hinterberger, Fröhlich, and Rodi (2008), Taylor,
Sarkar, and Armenio (2005), Calmet and Magnaudet (2003),
Salvetti, Zang, Street, and Banerjee (1997) and Walker,
Tejada-Martínez, Martinat, and Grosch (2014). These stud-
ies have investigated a range of friction Reynolds numbers
(Reτ ≈ 170 − 1280) and have explored the effects of a free sur-
face on turbulence with and without variations in temperature.
However, the present work differs substantially from the ear-
lier studies by simulating a range of Re numbers, obtaining full
budgets of the Reynolds stress equations, and deriving profiles
of integral correlations and turbulent length scales that are vital
for the synthesis of realistic turbulence in marine applications.

We also use higher streamwise and spanwise resolutions and
larger domain sizes than all of the aforementioned numerical
studies. As part of the validation work we compare our mean
velocity profiles with those of Taylor et al. (2005), Yokojima
and Shima (2010) and Nezu and Rodi (1986).

The main focus of this paper is to determine the variations
of the turbulent length scales and the Reynolds stresses in a
fully-developed open-channel flow over a range of Re numbers,
as these differences have implications on the performance and
efficiency of marine energy conversion devices (Ahmed, Aps-
ley, Afgan, Stallard, & Stansby, 2017). In the current paper we
thus provide the Reynolds-stress profiles, integral length scales
and turbulent spectra at different Re numbers. Furthermore, the
anisotropy of the Reynolds stresses are explored and to identify
the key processes, the budgets for the Reynolds-stress transport
equation are also presented.

The paper is arranged as follows. Section 2 describes the
mathematical background and the methods used for simulat-
ing open-channel flows along with the flow configuration and
the implemented numerical procedures. Section 3 presents the
results for all the studied cases. Finally the conclusions are
summarized in the last section.

2 Numerical procedure and flow geometry

2.1 Large-eddy simulation equations

In this paper turbulence is closed by using the LES approach. In
this method the spatially-filtered incompressible Navier–Stokes
equations are solved as:

∂ũi

∂xi
= 0 (1)

∂ũi

∂t
+ ∂ũĩui

∂xj
= − 1

ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xj ∂xj
+ 1

ρ

∂τ ij

∂xj
(2)

where ∼ signifies space-filtered quantities. In the above equa-
tions τ ij represents the sub-grid-scale (SGS) stress tensor and
needs to be closed. Here, the original Smagorinsky (1963)
model is used, where μsgs represents the SGS viscosity
defined as μsgs = ρ(2CsgsΔ)2(2S̃ijS̃ij)

0.5, where Δ is the fil-
ter width, which is calculated as (cell volume)1/3, and Csgs is
the Smagorinsky constant. Here, the recommended value of
Csgs = 0.065 for channel flows is used, along with Van-Driest
damping near the bottom wall (Jarrin, Benhamadouche, Lau-
rence, & Prosser, 2006). A similar formulation has been used
in the LES of open channel flows by Hinterberger et al. (2008).
In order to calculate fluctuating velocity for Reynolds-averaged
statistics, the resolved component of the instantaneous quan-
tities is used, u′ = ũi − ũi, where the overbar indicates time
averaging. Note that since the grid is highly resolved, the sub-
grid scale contributions remain very small in all the current
simulations. For the two-point correlations, the correlation ten-

sor is defined as; Rij(r) = (u′
i(x)u′

j (x + r))/
√

u′2
i u′2

j , where the
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primes denote the fluctuating quantities and r is the vector
joining the two points. The corresponding length scales can
then be obtained by integrating Rij as Lij = ∫∞

0 Rij(r)dr. Sim-
ilar techniques have been used to estimate length scales in the
past by Handler et al. (1993, 1991) for open-channel flows,
Sillero, Jiménez, and Moser (2014) for turbulent boundary lay-
ers and Kim, Moin, and Moser (1987) for computing two-point
correlations for a channel-flow calculation.

The calculations for this work have been performed using
the unstructured finite-volume code, Code−Saturne (Archam-
beau, Mechitoua, & Sakiz, 2004). This code has previously
been used in several studies ranging from simulations of incom-
pressible flows to low-Mach-number variable-density react-
ing flows (Ahmed & Prosser, 2018; Jarrin, Prosser, Uribe,
Benhamadouche, & Laurence, 2009). The code solves the
Navier–Stokes equations for Newtonian incompressible flows
with a fractional-step method based on a prediction-correction
algorithm for pressure/velocity coupling (SIMPLEC) and a Rhie
and Chow interpolation to avoid pressure oscillations. In the
case of LES calculations, the code uses a second-order cen-
tral differencing scheme for spatial gradients; time integration
is performed by a Crank–Nicholson scheme. For stability of the
solution, time steps during the simulations are set such that the
maximum CFL number remains below 1.

2.2 Flow configuration

The geometry of the open channels considered here is shown in
Fig. 1, where the flow is driven by a uniform pressure gradient
aligned with the x axis, in which turbulence is fully developed.
The flow is assumed to be periodic in both axial (x) and trans-
verse (z) directions. It can be shown by an overall momentum
balance that the average pressure gradient is directly related to
the averaged shear stress (ρuτ

2) as −∂ p̃/∂x = ρuτ
2/h, where

uτ = √
τw/ρ is the friction velocity, and τw = μ(∂ũ/∂y)y=0 is

the bed shear stress. A no-slip condition is applied at the wall
on the bottom of the domain (y = 0), while an undeformed-
surface, no-stress condition is enforced on the instantaneous
velocities at the top (y = h) of the domain S̃12 = S̃23 = 0 and
ũ2 = 0. Here the subscripts 1, 2 and 3 correspond to x, y and
z directions respectively. These boundary conditions are a good
approximation for low-Froude-number flows (Calmet & Mag-
naudet, 2003; Hinterberger et al., 2008; Taylor et al., 2005).

Open-channel flows at three different Reynolds numbers
(based on the friction velocity Reτ = uτ h/ν)) have been studied

Figure 1 Model domain and coordinate system

Table 1 Domain size and mesh resolution for all cases∗

Reτ Domain size Grid resolution �x+, �y+, �z+

150 6π × 1 × 2π 192 × 40 × 192 14.7, 0.4–2.9, 4.9
400 5π × 1 × 1.5π 320 × 64 × 320 19.6, 0.4–5.5, 5.9
1020 4π × 1 × π 396 × 96 × 396 32.4, 0.5–6.2, 8.0

∗ All dimensions given in units of channel height h.

Table 2 Non-dimensional large-eddy turnover time, sampling time
(interval between two samples) and output frequency (data write
frequency)

Rseτ

Large-eddy
turnover time

Sampling
time∗ (tτ )

Output
frequency∗

150 0.0067 50 50
400 0.0025 20 100
1020 0.00098 10 200

∗ All data reported in non-dimensional quantities.

as listed in Table 1. Note that several combinations for the
length and the width of the channels have been simulated at all
Reτ values, and the values reported in Table 1 lead to domain
sizes that are sufficient for the two-point correlation coeffi-
cient to go to zero for the respective Re number (more details
on two-point correlations are provided in Section 3.3). All the
�x+, �y+ and �z+ values are below 40, which implies that
the LES calculations have been performed at acceptable resolu-
tions (Pope, 2000). This can be further verified from the velocity
spectra presented in Section 3.

A hyperbolic stretching function is applied to grid points in
the vertical direction, which ensures the same high level of res-
olution near both the free surface and the bottom wall for all the
calculations.

Once a statistically-steady state was reached, the data from
all the simulations were sampled at the frequencies shown
in Table 2, where the non-dimensional time was defined as
tτ = tuτ/h. It can also be observed from the Table 2 that the
sampling frequency for a given simulation increases as the
large-eddy turnover time (LETOT) decreases. This was done to
ensure that the sampling does not introduce any bias into the
temporal statistics. The sampled data were then used to calcu-
late the turbulent correlations. The simulations for Reτ = 150,
400 and 1020 were sampled for a total of 50, 20 and 10 non-
dimensional time units respectively. The mean quantities were
then obtained by averaging over all snapshots in time and in the
periodic directions.

3 Results and discussion

3.1 Validation and comparison with earlier studies

Grid sensitivity studies for all the cases were performed with
grids of different sizes and aspect ratios (half the grid size in
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Figure 2 u+vs y+ plots for different Reτ values: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

all directions referred to as low resolution and double the grid
size in all directions referred to as high resolution); it was found
that the mean velocity and Reynolds stresses were not affected
by these changes. It was further observed that the mean-velocity
statistics at the tested Re numbers were not significantly affected
by the existence of the free surface, as shown in Fig. 2.

Figures 2a and 2c show the comparison of the present open-
channel flow calculations at Reτ = 150 and Reτ = 1020 with
literature for fully developed channel flow with no-slip walls
(Abe, Kawamura, & Matsuo, 2004)1 and (Graham et al., 2016)2

(the Johns Hopkins turbulence database (JHTDB)). On the other
hand Fig. 2b shows the results for the present calculations with
the DNS of Yokojima and Shima (2010) at Reτ = 395, LES
of Taylor et al. (2005) at Reτ = 400 and experiment of Nezu
and Rodi (1986) at Reτ = 439 for an open-channel flow. Fur-
thermore, the Reτ = 400 case has also been compared with the
DNS of Moser, Kim, and Mansour (1999)3 at Reτ = 395 for
a full channel flow. In the Reτ = 400 case, a longer domain
size and a higher grid resolution has been used than the earlier
work of Taylor et al. (2005). It can be seen from Fig. 2a that for
Reτ = 150 there is a slight deviation from the full channel flow
beyond y+of 30 due to the presence of a free surface. In the case
of Reτ = 400, a good agreement for u+ can be seen between the
present study, experimental data and the earlier studies of Taylor
et al. (2005) and Yokojima and Shima (2010).

In Fig. 2c there is also a good agreement between the present
study and the DNS results of Abe et al. (2004) and Graham
et al. (2016). This implies that at higher Re numbers the mean
velocity statistics near the free surface are similar to those in
the middle of a full channel flow. Further comparisons between
the Reynolds stresses of open channel and full channel flows are
presented in Section 3.5.

For all the three cases the grid spacing near the wall and the
free surface was smaller than the Kolmogorov scale in the ver-
tical direction, which ensured appropriate resolution of the flow
field. The bulk velocity (ub) and skin-friction coefficient Cf are

Table 3 Bulk velocity and skin friction coefficient for different Reτ

values

Reτ Bulk velocity (ub/uτ ) Skin friction coefficient Cf

150 15.24 8.594 × 10−3

400 17.25 6.710 × 10−3

1020 19.90 5.054 × 10−3

presented in Table 3 for all the cases, where ub and Cf are cal-
culated as ub = (1/h)

∫ h
0 u dy and Cf = (2τw)/(ρub

2), respec-
tively. It was found that the skin friction coefficient decreases
with increasing Re number, which is consistent with the findings
of Taylor et al. (2005).

3.2 Turbulent structures from mean velocities

The wall layer streaks for the open channel flow cases are
shown with the help of plots of the instantaneous streamwise
velocity (u/u) at y+ ≈ 1 in Fig. 3. These streamwise streaks
are indicators of quasi-streamwise-oriented vortices (Handler
et al., 1993, 1991) and as such decrease in size with increasing
Re number. The streaks periodically lift off from the wall and
become unstable, eventually breaking down, leading to what
are known as turbulent bursts; accounting for up to 70–80%
of the production of turbulence (Brodkey, Wallace, & Eckel-
mann, 1974; Kline, Reynolds, Schraub, & Runstadler, 1967;
Nakagawa & Nezu, 1981). In open channel flows the streaks are
larger, more frequent and persist farther from the wall compared
to a closed channel flow (Handler et al., 1993, 1991).

In this work we investigate this behaviour for different
Reτ values via visualization of instantaneous velocity from
the LES data and compare near-wall velocity structures with
those at mid-channel and near the stress-free upper boundary.
Figures 3–5 show that the streak size decreases with increasing
y/h for all Re numbers. The coherent structure of the streaks
can be seen up to y/h ≈ 0.5 in all cases. Beyond this height,
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Figure 3 Instantaneous velocity (u/u) contours close to the bottom wall for different Reτ values: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Figure 4 Instantaneous velocity (u/u) at the middle of the channel for different Reτ values: (a) Reτ = 150, (b) Reτ = 400, (b) Reτ = 1020

the streaks become smaller and incoherent. Open-channel flow
is different from a boundary-layer flow, as the entrainment of
outer irrotational fluid can act as ejections from a wall, thus
making the flow closer to that of a closed channel flow (Handler
et al., 1993, 1991). At the free surface (Fig. 5) the coherence of
the streaks vanish and they become bigger and less elongated.
These structures are substantially different from the ones found
in the middle of a closed channel flow, and only exist due to the
presence of the free surface.

3.3 Two-point correlations and turbulent length scales

Turbulent structures near the free surface are investigated fur-
ther by examining the two-point correlations and the resulting
length scales. These correlations are computed by averaging
over all flow realizations and all flow symmetries. Figures 6
and 7 show the two-point correlations in the streamwise and

spanwise directions respectively for the different Reτ values.
Note that the correlations for wall normal and spanwise veloc-
ities were also calculated but are not reported in this paper. All
the correlations converge to zero, indicating that the domain
size is large enough to determine the integral length scales. In
the near-wall region (y+ ≈ 5), the width of all the correlations
decreases as the Re number increases, implying smaller length
scales. Further away from the wall, (y+ ≈ 50), the streamwise
correlations are less sensitive to the change in the Re number.
However, near the free surface the streamwise correlations for
Reτ = 400 and Reτ = 1020 behave in a similar manner.

The trends of the two-point correlations resulting in the
length scales are reported in Fig. 8. Note that in the experimen-
tal study of Aubrun, Loyer, Hancock, and Hayden (2013), the
length scales were computed by integrating correlation curves
up to the first zero crossing. For the current study, the full inte-
gral of the correlation curve and also the integral to the first zero
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Figure 5 Instantaneous velocity (u/u) contours at the free surface for different Reτ values: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Figure 6 Two-point correlations of streamwise velocities in the streamwise direction (R11x) at different Reτ and y+ values: (a) Reτ = 150, (b)
Reτ = 400, (c) Reτ = 1020

Figure 7 Two-point correlations of streamwise velocities in the spanwise direction (R11z) at different Reτ and y+ values: (a) Reτ = 150, (b)
Reτ = 400, (c) Reτ = 1020

crossing were calculated. However, no significant difference
was found between the results from the two approaches and
hence only the profiles from the complete integral of the cor-
relation curves are reported here. The length scales calculated
from the u component of velocity in the streamwise direction
(L11x) are shown in Fig. 8a. It is observed that in the near-wall
region L11x becomes smaller with increasing Re numbers. At
Reτ = 150, L11x is largest at the wall and reduces with increas-
ing height (y/h) until the channel mid-depth. After which point
the L11x increases again and finally decreases near the free
surface. This behaviour is due to the thickness of the viscous

sublayer forming a significant portion of the integral length scale
for low Re numbers. Similar trends have been reported in the
DNS of open-channel flows by Handler et al. (1993) and Han-
dler et al. (1991). L11x for Reτ = 400 shows similar trends to
those of Reτ = 150, but the effects of the viscous sublayer are
reduced, resulting in smaller length scales both at the wall and
at the free surface. For the Reτ = 1020 case, L11x is smallest at
the wall and increases with height (y/h) until y/h ≈ 0.9 and then
reduces at the free surface. The near-wall behaviour of L11x is
dependent on the Re number, but L11x near the free surface is
not significantly affected beyond Reτ = 400.
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Figure 8 Length scales normalized by the channel height (h) from two-point correlations for Reτ = 150, Reτ = 400 and Reτ = 1020: (a) (L11x/h),
(b) (L22x/h), (c) (L33x/h), (d) (L11z/h), (e) (L22z/h), (f) (L33z/h)

The length scales in the streamwise direction for the wall-
normal velocity component (L22x) are shown in Fig. 8b. Here
L22x decreases with increasing Re number in the near-wall
region. This is associated with the changes in the size of the
streaks formed in the near-wall region, as discussed earlier. Note
that the Reτ = 150 case has the largest L22x length scale both
near the wall and near the free surface. L22x has similar values
for the Reτ of 400 and 1020 near the free surface, signifying that
L22x is not significantly affected beyond Reτ = 400.

The length scales in the streamwise direction for the trans-
verse velocity component as reported in Fig. 8c show similar
trends as those of L11x and L22x; decreasing with increasing Re

number. However, near the free surface, the affect of the Re

number once again seems to be insignificant.
The transverse length scales for the streamwise (L11z), wall

normal (L22z) and spanwise velocity (L33z) components increase
significantly near the free surface (y/h > 0.8) for all Re num-
bers (Fig. 8d–f). This implies that the transverse length scales
become large towards the top of the channel due to the free
surface boundary.

Note that the typical size for L11x is of the order of 0.5h − 1h
and decreases with Re number. Overall, length scales in the
axial direction are largest and the length scales in the wall-
normal direction are smallest; i.e. L11 > L33 > L22.

3.4 Reynolds stresses and anisotropy

Figure 9 shows the Reynolds stresses, turbulent kinetic energy
and turbulent dissipation profiles in the vertical direction for
all the cases. The results in the near-wall region are consistent
with those of full-channel flows, whereas there are some devia-
tions from the full-channel flow in the upper part of the channel.
These differences are discussed in more detail in Section 3.5.
The current numerical profiles have an excellent comparison to
the predictions of Yokojima and Shima (2010), in particular near
the free-surface region as shown in more detail in the zoom in
Fig. 9a. The normalized Reynolds stresses increase with Reτ,
as the relative importance of viscosity to momentum transfer
diminishes. The free surface has different effects on the nor-
mal stresses, with the kinematic boundary condition reducing
v′v′ to zero, whilst u′u′ and w′w′ are enhanced. The overall tur-
bulence energy is only modestly affected (Fig. 9e). In contrast
to the no-slip wall condition, the non-viscous upper-boundary
condition means that the behaviour of stresses is largely inde-
pendent of the Re number near the free surface. The influence
of the free surface becomes more significant as the Re number
is increased. This is due to the redistribution of the Reynolds
stresses by the pressure–strain correlation, which is explained
in more detail in Section 3.7. Figure 9f shows that turbulent
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Figure 9 Reynolds stresses and turbulent dissipation for Reτ = 150, Reτ = 400 and Reτ = 1020: (a) u′u′/u2
τ , (b) v′v′/u2

τ , (c) w′w′/u2
τ , (d) u′v′/u2

τ ,
(e) turbulent kinetic energy, (f) turbulent dissipation

dissipation increases at the wall as the Re number increases,
which is qualitatively consistent with the full-channel flow
results of Moser et al. (1999). Turbulent dissipation decreases
as the distance from the wall increases, and the rate of decrease
is dependent on the Re number. This is due to the decrease in
the size of the vortical structure in the fluid as the Re number
increases.

The nature of turbulent structures can be determined by
examining the invariants of the anisotropy tensor (Lumley trian-
gle). Anisotropy of the Reynolds stresses near the free surface
is the main cause of secondary currents near the free surface in
open channel flows (Nakagawa & Nezu, 1993). In the current
simulations the level of anisotropy increases in the near-wall
and the near-free-surface regions of the flow and the level of
anisotropy is dependent on the Reτ of the flow. Readers are
encouraged to look at the Lumley triangles and their relevant
discussions on the Lumley triangles-Manchester Twiki.4

3.5 Comparison of Reynolds stresses with full channel flow

Figures 10 and 11 show the comparison of the Reynolds stresses
between the open channel flow and the full channel flow (see
figure captions for DNS citations). The Reynolds stresses from

a full channel and open channel flow deviate from each other
with an increase in the Re number. Note that in the case of open
channel flow there is a frictionless rigid lid at y/h = 1 where the
normal fluctuations are damped leading to zero at the boundary,
whereas the fluctuations parallel to the surface are amplified. In
the case of full channel this location is at half channel height and
there is no restriction on the velocity fluctuations.

At Reτ = 150 the differences between the two channels
become apparent near y/h = 1 for u′u′, while significant dif-
ferences can be seen between v′v′ and w′w′ near y/h = 0.5 as
shown in Fig. 10. In the case of Reτ = 400 the differences in the
Reynolds stresses from the two channels appear at y/h = 0.2
(plots not shown here). At Reτ = 1020, u′u′, v′v′ and w′w′ are
exactly the same in the near-wall region and differences can be
seen beyond y/h = 0.1 (Fig. 11). Similar differences were noted
in the earlier comparison of the two channels at Reτ = 590 by
Hinterberger et al. (2008).

3.6 Spectra of velocity

The velocity spectrum tensor �ij(κ) represents the Reynolds-
stress density in wavenumber space (Pope, 2000). It is
required for the calculation of fatigue loading for the design
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Figure 10 Comparison of Reynolds stresses from LES of open channel flow at Reτ = 150 with DNS data of Abe et al. (2004) for a full channel at
Reτ = 150: (a) u′u′/u2

τ , (b) v′v′/u2
τ , (c) w′w′/u2

τ , (d) u′v′/u2
τ

of off-shore structures and marine energy-extraction devices
(Milne, Sharma, Flay, & Bickerton, 2013). �ij(κ) can be cal-
culated as:

�ij(κ) = 1
(2π)3

∫ ∫ ∞

−∞

∫
(u′

i(x)u′
j (x + r))(r)exp (−iκ .r) dr

(3)
One-dimensional velocity spectra �ij are plotted as a function of
the streamwise wave number κ1 in Fig. 12 for different Re num-
bers at different locations in the upper half of the channel. For
�11 and �33, there is only a modest variation of energy content
with changes in the Re number, and these are hence not reported
here. The most significant influence of the free surface was
observed for �22 ( Fig. 12). The energy in the vertical velocity
component is preferentially reduced, as only this component is
suppressed at the free surface. Similar results have been reported
in the earlier studies of Thomas and Hancock (1977), Hannoun,
Fernando, and List (1988), Brumley and Jirka (1987), Handler
et al. (1993), Handler et al. (1991), Pan and Banerjee (1995) and
Calmet and Magnaudet (2003). These trends are also broadly
consistent with the predictions of the theory proposed by Hunt
and Graham (1978) for the evolution of turbulence near a free
surface.

3.7 Budgets for the Reynolds-stress transport equation

In this section the influence of the free surface on the various
terms in the Reynolds-stress transport budget is examined. It
is important to compare between the low- and high-Reynolds-
number cases to differentiate between viscous and inviscid
processes and to explain the influence of the anisotropy of the
bulk turbulence on the redistribution of energy. At statistically-
steady state, the Reynolds-averaged stress-transport equation
can be written as:

Du′
iu

′
j

Dt
= −

(
u′

iu
′
k
∂uj

∂xk
+ u′

j u′
k
∂ui

∂xk

)
︸ ︷︷ ︸

Pij

+ 1
ρ

p ′
(

∂u′
i

∂xj
+ ∂u′

j

∂xi

)
︸ ︷︷ ︸

φij

− 2ν
∂u′

i

∂xk

∂u′
j

∂xk︸ ︷︷ ︸
εij

+ ∂

∂xk

(
ν
∂u′

iu
′
j

∂xk

)
︸ ︷︷ ︸

Dν
ij

− ∂

∂xk
u′

iu
′
j u′

k︸ ︷︷ ︸
Dt

ij

− ∂

∂xk

(
1
ρ

p ′
(

u′
iδjk + u′

j δik

))
︸ ︷︷ ︸

DP
ij

(4)

where DP
ij is the production, φij the pressure–strain correlation,

εij the turbulent dissipation, Dν
ij the viscous diffusion, Dt

ij the
turbulent diffusion and DP

ij the pressure diffusion term. Note
that the information obtained from these budgets is useful for
Reynolds-averaged Navier–Stokes (RANS) modelling, where
it is a common practice to modify models for wall-reflection
effects. These budgets are thus discussed next.

Total budgets

The total budgets for the normal stress component (u′
2u′

2) are
presented in Fig. 13 for different Re numbers; the budgets for
u′

1u′
1 and u′

3u′
3 components are not reported as they are not as

significant as budgets of u′
2u′

2. The magnitude of P11, φ11 and
ε11 increases with the Re number in the near-wall region, as do
the diffusion terms (DP

11, Dν
11 and Dt

11). Note that there is no pro-
duction for the u′

2u′
2 component of the Reynolds stress transport

equation (i.e. P22 = 0). Magnitudes for ε22, φ22 and all the dif-
fusion terms (DP

22, Dν
22 and Dt

22) increase with Re number in the
near-wall region, whilst these terms decrease in magnitude near
the free surface, as shown in Figs 12–17.

At all Re numbers, the free surface only contributes to the
(2,2) component, most notably with a large negative φ22 pres-
sure correlation component, acting to redistribute energy from
u′

2u′
2 to the other velocity components. The magnitude of φ22

is, however, significantly smaller near the free surface than near
the lower-boundary wall. The effects of the free surface on the
individual terms in the Reynolds stress transport equation are
examined in detail in the following subsections.
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Figure 11 Comparison of Reynolds stresses from LES of open channel flow at Reτ = 1020 with DNS data of Abe et al. (2004) for a full channel
at Reτ = 1020 and DNS of a full channel from Johns Hopkins turbulence database Graham et al. (2016) at Reτ = 1000: (a) u′u′/u2

τ , (b) v′v′/u2
τ , (c)

w′w′/u2
τ , (d) u′v′/u2

τ

22 22 22

Figure 12 One-dimensional velocity spectra near the free surface at different Reτ numbers: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Figure 13 Budgets of wall normal stresses for different Reτ values normalized by u4
τ /ν: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Production

In fully-developed boundary-layer flows Reynolds stresses are
only produced by the P11 and P12 components of the produc-
tion term, whereas all of the other components are equal to
zero. Figure 14 shows that the largest production of Reynolds
stresses is near the bottom wall of the channel and the produc-
tion decreases as the free surface is approached. These results

are consistent with the earlier findings of Taylor et al. (2005),
Calmet and Magnaudet (2003) and Yamamoto, Kunugi, and Ser-
izawa (2001). The Reynolds-number dependence on Pij can be
observed by comparing Fig. 14a–c. As the Re number increases
the magnitude of P11 and P12 increases and the influence of Pij

is reduced in the upper half of the channel. This is due to the
thinning of the shear layer as the Re number increases.
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Figure 14 Pij normalized by u4
τ /ν at different Reτ values: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Figure 15 φij normalized by u4
τ /ν at different Reτ values near the free surface: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Pressure–strain correlation

The pressure–strain correlation (φij) contains pressure fluctu-
ations which have a profound effect on turbulence dynamics.
Pressure perturbations travel in all directions as waves through
the fluid, and in the case of “incompressible flow” propagate at
infinite speed. Thus, pressure effects are not local and are felt
instantly across the whole flow domain. In the absence of any
boundary, the pressure–strain term reduces the anisotropy which
may exist in a turbulent field. In earlier studies it has been rec-
ognized that the presence of an impermeable boundary affects
not only the normal Reynolds stresses but also the tangential
components of the Reynolds stresses. The most common inter-
pretation of this phenomenon is that energy is transferred from
the normal component to the tangential ones through pressure–
strain correlations (Gibson & Launder, 1978; Launder, Reece,
& Rodi, 1975). This implies that φij tends to increase the local
anisotropy in the presence of a boundary. The presence of the
free surface introduces anisotropy in the flow field as discussed
in Section 3.4.

The value of φij is very large near the bed of the channel
for all Re numbers considered in this study, which is consistent
with the earlier findings of full channel flows (Hanjalić & Laun-
der, 2011). As the Re number is increased, φij increases, and
its influence with height decreases. In Fig. 15 it is observed

that φ11, φ12, φ22 and φ33 are affected by the presence of the
free surface. This is due to the restriction of the vertical veloc-
ity at the free surface, which causes u′

2u′
2 to redistribute its

energy to u′
1u′

1 and u′
3u′

3. Figure 15a–c show that φ22 is a sink
term near the free surface whereas φ11 and φ33 are the source
terms. Note that the maximum redistribution of φ22 occurs at
the lowest tested Re number as the structures from the bed of
the channel interact with the free surface. This effect is slightly
reduced as the Re number increases, as shown in Fig. 15a–c.
The Reynolds-number dependence of φ22 near the free surface
has a significant contribution towards the two-component-limit
behaviour for open-channel flows.

Pressure diffusion

The pressure diffusion term is recognized as the process which
leads to a spatial transport of the Reynolds stresses via the dif-
fusion of the stresses caused by pressure fluctuations. Only DP

12
and DP

22 contribute to the pressure diffusion in fully-developed
boundary-layer flows. Note that DP

ij becomes small as the dis-
tance from the wall increases for all Re numbers. Figure 16
shows the effects of the free surface on DP

ij , where it is observed
that DP

22 becomes a source term in the presence of the free
surface. Furthermore, these effects decrease with increasing Re

numbers.
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Figure 16 DP
ij normalized by u4

τ /ν at different Reτ values near the free surface: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Figure 17 Dν
ij normalized by u4

τ /ν at different Reτ values near the free surface: (a) Reτ = 150, (b) Reτ = 400, (c) Reτ = 1020

Viscous diffusion

The viscous diffusion term (Dν
ij) describes the diffusive transport

by molecular action in the Reynolds-stress transport equation.
This term is usually very small and is only important in the vis-
cous layer near a wall (Hanjalić & Launder, 2011). It is observed
from Fig. 17 that the effect of Dν

ij near the free surface decreases
with an increase in the Re number, that is Dν

ij → 0 near the free
surface as Re → ∞.

Diffusion due to triple correlations and turbulent dissipation

The triple correlations (Dt
ij) represent the turbulent diffusion

of the Reynolds stresses. Plots for diffusion and turbulent
dissipation can be accessed via the Diffusion and Turbulent
Dissipation-Manchester Twiki link.5

Note that the since this is an LES rather than a DNS study,
the comparisons, especially near the bottom wall for the turbu-
lent dissipation, are not very accurate and are only presented for
qualitative reasons. It is observed from these plots that the influ-
ence of the triple-correlation term decreases in the upper half
of the channel with increasing Re number and the total contri-
bution due to the triple correlations is negligibly small near the
free surface. On the other hand εij represents the effects of turbu-
lent dissipation in the Reynolds-stress transport equation. Note
that both the turbulent dissipation and viscous diffusion terms

contain the effects of viscosity. The main difference between the
two is that the turbulent dissipation contains the correlations of
fluctuating velocity gradients and at the “finest scales of motion”
these derivatives are very large. The normal components of tur-
bulence dissipation εii play a significant role near the bed of the
channel, but, due to their viscous nature, become insignificant
in the Reynolds-stress budget at greater depths within the chan-
nel, including near the free surface (not shown here) (Yamamoto
et al., 2001).

4 Summary and conclusions

Large-eddy simulations were performed for fully-developed
open-channel flow with a stress-free, impermeable lid. Three
Re numbers were considered: Reτ = 150, 400, 1020, based
on friction velocity and channel depth. It was found that the
mean-velocity profiles agreed well with the open-channel flow
results of Taylor et al. (2005) and Nezu and Rodi (1986) at
the tested intermediate Re number. However, the present study
goes beyond these earlier works in terms of the range of the
covered Re numbers and the turbulence statistics analysis. Nor-
malized mean-velocity profiles also compared well with the
channel results of Abe et al. (2004), Moser et al. (1999) and
the JHTDB (Graham et al., 2016), admittedly without the more
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restrictive upper boundary condition on normal and tangential
velocity fluctuations in the present case.

It was observed that the coherent turbulent structures became
smaller with an increase in the Reynolds number and incoherent
further away from the wall. For the correlations in the stream-
wise direction, integral length scales for the various velocity
components were found to increase in the order streamwise >

vertical > spanwise, whilst this order was reversed for corre-
lations in the spanwise direction. The length scales were found
to be significantly larger at the lowest tested Re number, but
became largely insensitive at the two higher tested Reynolds
numbers, except for regions very close to the wall.

For the individual Reynolds stresses, the purely kinematic
boundary condition at the free surface distinguishes it from the
solid-wall boundary where a no-slip condition is enforced. At
the free surface the boundary-normal stress is suppressed, with
compensating increases in u′u′ and w′w′ maintaining a nearly
constant total turbulent kinetic energy. This flattening of eddies
was also observed by the approach to the two-component limit
indicated by the invariants of the anisotropy tensor, and in the
substantial reduction in spectral energy associated with the ver-
tical component in the top 10–15% of the channel. In contrast,
there was little effect of the free surface on the spectra of the
other velocity components.

In the present study the turbulent transport budgets pro-
vided through the supplementary material on the Twiki link6

are reported purely for qualitative analysis and flow physics dis-
cussions. These budget profiles show that (in a fully-developed
flow) the redistribution of turbulence energy from normal
to streamwise and spanwise components is overwhelmingly
effected by the φ22 component of the pressure–strain correla-
tion, which goes negative in the upper 5–10% of the channel
with equally compensating increases in φ11 and φ33 components
in the same region to keep the overall pressure–strain correla-
tion traceless. The changes to these components were, however,
significantly less than those observed at the lower viscous wall
boundary.

The mean-velocity, length scales and Reynolds-stress pro-
files derived here can (once scaled to appropriate bulk velocity
and depth for tidal flows) be used to establish synthetic inlet
turbulence conditions for transient analysis such as LES of
marine hydrokinetic turbines (see Jarrin et al., 2006, 2009 for
synthetic eddy methods). Fluctuating loads for such devices
have also recently been analysed by rapid distortion theory
by Graham (2017), which gives unsteady pressures around
rotor discs; such an approach also requires definition of the
onset turbulence. Indeed, LES has already been implemented
to compare fluctuating loads with field data for a 1 MW device
deployed in the Pentland Firth (Ahmed et al., 2017). Further
work is ongoing to establish how realistic channel and tidal-
flow turbulence recovers in the wake of such devices and how
device performance is affected by free-surface waves. It is
also accepted that tidal turbulence will be affected by topo-
graphic features, such as headlands, islands, sandbanks, etc.,

but the steady uni-directional case presented here is a valuable
reference case.
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Notes

1. Database available online at: http://www.rs.tus.ac.jp/ ∼ t2lab/db/
index.html

2. Database available online at: http://turbulence.pha.jhu.edu/
3. Database available online at: https://turbulence.oden.utexas.edu/

MKM_1999.html
4. http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/

Supplementary_Material_for_Twiki.pdf
5. http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/

Diffusion_and_turbulent_dissipation.pdf
6. http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/

Supplementary_Material_for_Twiki.pdf

Notation

h = channel height (m)
p = pressure (Pa)
r = distance vector (m)
t = time (s)
tτ = non-dimensional time ( − )
ub = bulk velocity (m s−1)
ui = velocity in the i direction (m s−1)

ui
′uj

′ = Reynolds stress tensor (m2 s−3)
u+ = non-dimensional velocity ( − )
uτ = wall friction velocity (m s−1)
y+ = non-dimensional distance from the

wall ( − )
x, y, z = spatial directions ( − )
Cf = skin friction coefficient ( − )
Csgs = Smagorinsky constant ( − )
DP

ij = pressure diffusion in the Reynolds stress
transport equation (m2 s−3)

Dν
ij = viscous diffusion in the Reynolds stress

transport equation (m2 s−3)
Dt

ij = diffusion due to triple correlations in the
Reynolds stress transport equation (m2 s−3)

Lij = integral length scale in the i and j
direction (m)

Pij = production term in the Reynolds stress
transport equation (m2 s−3)

Re = Reynolds number
Reτ

= Reynolds number based on the friction
velocity ( − )

Rij = correlation tensor ( − )

http://www.rs.tus.ac.jp/~t2lab/db/index.html
http://www.rs.tus.ac.jp/~t2lab/db/index.html
http://turbulence.pha.jhu.edu/
https://turbulence.oden.utexas.edu/MKM_1999.html
https://turbulence.oden.utexas.edu/MKM_1999.html
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Supplementary_Material_for_Twiki.pdf
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Supplementary_Material_for_Twiki.pdf
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Diffusion_and_turbulent_dissipation.pdf
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Diffusion_and_turbulent_dissipation.pdf
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Supplementary_Material_for_Twiki.pdf
http://cfd.mace.manchester.ac.uk/twiki/pub/CfdTm/TestCase059/Supplementary_Material_for_Twiki.pdf
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Sij = strain rate tensor (s−1)
δij = Kronecker delta
κ = wavenumber (m−1)
ηk = Kolmogorov scale (m)
εij = turbulent dissipation in the Reynolds stress

transport equation (m2 s−3)
μ = fluid dynamic viscosity (kg m−1 s−1)
μsgs = sub-grid-scale viscosity (kg m−1 s−1)
ν = fluid kinematic viscosity (m2 s−1)
φij = pressure–strain correlation in the Reynolds

stress transport equation (m2 s−3)
ρ = density of the fluid (kg m−3)
τ ij = sub-grid-scale stress (m2 s−2)

τw = wall shear stress (Pa)
� = filter width (m)
�x+,�y+,�z+ = non-dimensional grid spacing in the x, y

and z directions ( − )
�ij = velocity spectrum tensor ( − )

′ = fluctuating component of a quantity ( − )˜ = filtered quantity ( − )
= Reynolds averaged quantity ( − )
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