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Abstract 

Coronaviruses are currently the most serious public health concern. The new outbreak of 

coronavirus disease 2019 (COVID 19) represents a pandemic threat, which led to being declared 

a Public Health Emergency of International Concern (PHEIC) by the World Health Organization 

(WHO). The first US outbreak of porcine epidemic diarrhea virus (PEDV) in 2013 and its 

subsequent spreading to European and Asian countries raised significant economic and public 

health concerns worldwide. Thus, the development of coronavirus vaccines and therapeutics are 

urgently needed. Detailed studies on the entry event of coronaviruses may contribute to developing 

novel therapeutic targets for coronavirus infection.  

Most cell culture adapted PEDV replication requires the addition of protease in the medium, 

but the mechanism of protease in PEDV infection is not well demonstrated. Thus, we examined 

the role of protease during the entry of PEDV using two different proteases-adapted PEDV US 

strains, PEDV KD and AA. Our study showed that the activity of protease was required at an early 

stage of PEDV KD replication, particularly after virus binding to cells. The addition of protease 

facilitated the escape of viruses from the endosome to the cytoplasm leading to a successful 

replication. The host endosomal protease and endosomal maturation were also shown to be 

important in the endosomal escape of PEDV by demonstrating endosomal retention of PEDV KD 

or AA in the presence of inhibitors of cathepsins or endosomal acidification.  

We also explored the roles of the acid sphingomyelinase (ASM)/ceramide pathway in the 

entry of PEDV. The infection of PEDV 8aa in Vero cells induced ceramide formation mediated 

by ASM activation. The inhibition of ASM significantly reduced the replication of 8aa by 

inhibiting viral endosomal escape. These results demonstrated the importance of interactions 

among viruses, host cells, and proteases during coronavirus entry for successful replication.  

During further examination of PEDV and host cell interaction, we observed that protease 

independent PEDV 8aa infection in Vero cells led to apoptotic cell death. Caspase 6 or 7 cleaved 

viral nucleocapsid(N) protein at the late stage of the replication while the cells were undergoing 

the apoptotic process. The caspase-mediated cleavage occurred between D424 and G425 near the C-

terminal of N protein. Addition of a pan-caspase inhibitor to prevent the N protein cleavage 

significantly increased 8aa replication.  

In conclusion, the achievement of endosomal escape is a crucial step in the PEDV life cycle.  

The addition of the exogenous protease facilitates the endosomal escape of protease adapted PEDV 



 

 

strains. Activation of ASM/ ceramide pathway led to the efficient replication of protease 

independent PEDV by facilitating the endosomal escape of the virion. During protease 

independent PEDV replication, host cells activate caspase-mediated apoptosis as a defense 

mechanism. These in-depth understandings will provide clues for developing potential PEDV and 

coronavirus therapeutic targets.   
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Coronaviruses are currently the most serious public health concern. The new outbreak of 

coronavirus disease 2019 (COVID 19) represents a pandemic threat, which led to being declared 

a Public Health Emergency of International Concern (PHEIC) by the World Health Organization 

(WHO). The first US outbreak of porcine epidemic diarrhea virus (PEDV) in 2013 and its 

subsequent spreading to European and Asian countries raised significant economic and public 

health concerns worldwide. Thus, the development of coronavirus vaccines and therapeutics are 

urgently needed. Detailed studies on the entry event of coronaviruses may contribute to developing 

novel therapeutic targets for coronavirus infection.  

Most cell culture adapted PEDV replication requires the addition of protease in the medium, 

but the mechanism of protease in PEDV infection is not well demonstrated. Thus, we examined 

the role of protease during the entry of PEDV using two different proteases-adapted PEDV US 

strains, PEDV KD and AA. Our study showed that the activity of protease was required at an early 

stage of PEDV KD replication, particularly after virus binding to cells. The addition of protease 

facilitated the escape of viruses from the endosome to the cytoplasm leading to a successful 

replication. The host endosomal protease and endosomal maturation were also shown to be 

important in the endosomal escape of PEDV by demonstrating endosomal retention of PEDV KD 

or AA in the presence of inhibitors of cathepsins or endosomal acidification.  

We also explored the roles of the acid sphingomyelinase (ASM)/ceramide pathway in the 

entry of PEDV. The infection of PEDV 8aa in Vero cells induced ceramide formation mediated 

by ASM activation. The inhibition of ASM significantly reduced the replication of 8aa by 

inhibiting viral endosomal escape. These results demonstrated the importance of interactions 

among viruses, host cells, and proteases during coronavirus entry for successful replication.  

During further examination of PEDV and host cell interaction, we observed that protease 

independent PEDV 8aa infection in Vero cells led to apoptotic cell death. Caspase 6 or 7 cleaved 

viral nucleocapsid(N) protein at the late stage of the replication while the cells were undergoing 

the apoptotic process. The caspase-mediated cleavage occurred between D424 and G425 near the 

C-terminal of N protein. Addition of a pan-caspase inhibitor to prevent the N protein cleavage 

significantly increased 8aa replication.  

In conclusion, the achievement of endosomal escape is a crucial step in the PEDV life cycle.  

The addition of the exogenous protease facilitates the endosomal escape of protease adapted PEDV 



 

 

strains. Activation of ASM/ ceramide pathway led to the efficient replication of protease 

independent PEDV by facilitating the endosomal escape of the virion. During protease 

independent PEDV replication, host cells activate caspase-mediated apoptosis as a defense 

mechanism. These in-depth understandings will provide clues for developing potential PEDV and 

coronavirus therapeutic targets. 
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1 

Chapter 1 - Literature Review and Significance 

 

1.1 General introduction and historical perspective of coronavirus 

The coronaviruses, enveloped viruses with a positive-strand RNA genome, are within the 

Nidovirales order. The name of order, Nidovirales, is derived from the Latin ‘nido’ (nest) for their 

most significant shared feature, the production of multiple 3’co-terminal nested subgenomic 

messenger RNAs(Brian & Baric, 2005; de Vries, Horzinek, Rottier, & de Groot, 1997).  

Coronaviruses were isolated in the early 20th century as the causative agents of several 

animal diseases such as infectious bronchitis in poultry (Schalk, 1931), transmissible 

gastroenteritis in swine (Doyle & Hutchings, 1946), and severe hepatitis and neurologic disease in 

mice(Bailey, Pappenheimer, Cheever, & Daniels, 1949). Later, they were grouped and named by 

their shapes under electron microscopy, surface protrusions that morphologically resemble the 

solar corona (Tyrell, 1968). Until 2002, coronaviruses were considered mostly animal viruses 

although human coronaviruses are responsible for the common cold in the winter season. However, 

the emergence of two highly pathogenic human coronaviruses changed this perception 

dramatically. The outbreak of severe acute respiratory syndrome (SARS) in 2002, which was 

caused by a novel coronavirus, resulted in more than 8000 cases(Stohr & Coll, 2003) with 774 

deaths in 27 countries(WHO, 2004). The emergence of SARS coronavirus recognized the first 

human introduction of a highly pathogenic coronavirus from the animals, related to Himalayan 

palm civets, raccoon dogs, and wild bats. This SARS outbreak has advanced coronavirus 

researches and led to a progression of understanding coronavirus epidemiology and pathogenesis. 

After 10 years, the second zoonotic transmission of coronavirus has occurred. A new coronavirus 

was isolated from a man in Saudi Arabia who died of acute pneumonia and renal failure(Zaki, van 
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Boheemen, Bestebroer, Osterhaus, & Fouchier, 2012) and was named Middle East respiratory 

syndrome coronavirus(MERS-CoV). Currently, the Dromedary camel is considered as a major 

reservoir host for MERS-CoV and an animal source of human MERS infection. The ongoing 

MERS epidemic in the Middle East is related to the failure to control camel-to human transmission. 

Because of the potential healthcare-associated outbreak and the high case-fatality rate, MERS-

CoV is a significant public health concern. (Haagmans et al., 2014)  

The outbreak of Porcine Epidemic Diarrhea Virus (PEDV) was first reported in England 

in 1971 and isolated in Belgium in 1978(M. B. Pensaert & de Bouck, 1978; Wood, 1977). Since 

then it has become an economic concern for the swine industry in Asian countries(C.-h. Kweon et 

al., 1993; Takahashi, Okada, & Ohshima, 1983). In late 2010, new highly pathogenic PEDV strains 

emerged in China with high mortality in infected piglets (D. Sun, Wang, Wei, Chen, & Feng, 

2016). In April 2013, the first confirmed outbreak of PEDV was reported in the US and 

subsequently, it spread to most states, Canada and Mexico(Stevenson et al., 2013). Within a year, 

PEDV caused significant economic problems with approximately 7 million death of piglets(Jung 

& Saif, 2015) and up to $1.8 million economic loss(Paarlberg, 2014).   

The outbreaks of SARS-CoV, MERS-CoV, and Coronavirus disease 2019 (COVID 19) 

are good examples demonstrating the significance of the Coronaviridae as emerging human 

viruses. Besides, the introduction of PEDV to the US in 2013 with the huge economic impact  

demonstrates the importance of the agriculture defense against animal coronaviruses. Therefore, 

there is a need to study mechanisms of coronaviruses entry, replication and its interaction with the 

host in order to develop countermeasures for current and future coronavirus outbreaks. 
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1.2 Coronavirus taxonomy 

The coronaviruses are in the largest group within the Nidovirales order including 

Coronaviridae, Arteriviridae, and Rnoiviridae families. Currently, the subfamily Coronavirinae 

in the family Coronaviridae is classified into four genera, Alphacoronavirus, Betacoronavirus, 

Gammacoronavirus, and Deltacoronavirus by phylogenetic clustering (Raoul J de Groot et al., 

2012) (Figure 1-1). Based on the evolution model study of coronaviruses, bats are the gene source 

of Alpha-and Betacoronavirus and birds are the gene source of Gamma- and Deltacoronavirus 

(Woo et al., 2012). The genus Alphacoronavirus comprises Alphacoronavirus-1(Feline 

Figure 1-1. Coronavirus classification according to the ICTV.  

Classification of the Coronaviridae family(R. J. De Groot et al., 2011). Abbreviations: HCoV, 

human coronavirus, FIPV, feline infectious peritonitis virus, TGEV, transmissible gastroenteritis 

virus, PEDV, porcine epidemic diarrhea virus, MHV, murine hepatitis virus, SARS-CoV, severe 

acute respiratory syndrome coronavirus, MERS-CoV, middle east respiratory syndrome virus, 

BWCoV SW1, beluga whale coronavirus, PorCoV, porcine coronavirus. 
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coronavirus, Canine coronavirus), Transmissible Gastroenteritis Virus (TGEV), Porcine Epidemic 

Diarrhea Virus (PEDV) and two human coronaviruses (HCoV 229E and NL63). The genus 

Betacoronavirus contains three highly pathogenic human coronaviruses (SARS-CoV, SARS-

CoV-2, and MERS-CoV), Betacoronaivurs-1, Murine coronavirus (Mouse hepatitis virus and Rat 

coronavirus). The genus Gammacoronavirus has been isolated from avian hosts including Avian 

coronavirus(IBV and Turkey coronavirus) and Beluga whale coronavirus SW1. The genus 

Deltacoronavirus has recently been classified by genomic sequence analysis of both pig and avian 

isolates including Coronavirus HKU15(Porcine coronavirus HKU15),White-eye coronavirus 

HKU16, Night heron coronavirus HKU19, Wigeon coronavirus HKU20, and Common moorhen 

coronavirus HKU21.  

 

 

Figure 1-2. Genotyping of PEDV strains.  

The tree was constructed by the neighbor-joining method, based on full-length genomic 

nucleotide sequences(Y.-W. Huang et al., 2013). 
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The PEDV strains are classified into two distinct genogroups, labeled genogroup 1(G1) 

and genogroup 2(G2), based on  the phylogenetic analysis of the full-length of S gene or full PEDV 

genome(Y. W. Huang et al., 2013; tian, Lv, Xiao, & Li, 2016) (Figure 1-2). The G1 PEDV divides 

into three subgroups, G1a, G1b, and G1c. The first subgroup G1a contains the prototype CV777 

strain, the Chinese LZC strain, and the Korean SM98 strain. Subgroup G1b contains DR13, which 

is an attenuated vaccine strain from South Korea, and the strains from China, and they share the  

same genetic signatures including the 8 amino acid deletion in nonstructural protein 3 (nsp3) and 

the large ORF deletion at the C terminus. Subgroup 1c consists of the virulent DR13 strain isolated 

in South Korea and CH/S strain isolated in China. The G2 PEDV divides into two subgroups 

designated G2a and G2b. PEDV strains isolated in the U.S. in 2013 and China in 2011 to 2012 are 

grouped in the G2a. Interestingly, The U.S. strains share over 99% nucleotide homology with 

AH2012 (China isolate) suggesting a closed connection between the US and China PEDV strains. 

The G2b represents the pandemic strains in China. In Asian countries, modified live attenuated 

vaccines for PEDV genogroup 1 have been widely used to control PEDV(C. H. Kweon, Kwon, 

Lee, Kwon, & Kang, 1999; Sato et al., 2011; D. Song, Moon, & Kang, 2015; D. S. Song et al., 

2007)and are considered an effective control measure due to their ability to prime the immune 

system in the vaccinated saw. These vaccines, however, may not effectively control subgroup G2a 

PEDV because of the low genetic homology (10%) of the S1 gene between the G1a and G2a.  

 

 

1.3 Coronavirus genome organization 

Coronavirus has a single-stranded positive-sense RNA genome of ~30kb in length, which 

is the largest among all RNA viruses. It has a standard eukaryotic 5’ terminal cap and 3’ poly-A 

tail(D. Yang & Leibowitz, 2015) allowing it to act as an mRNA. The genome contains the basic 
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genes including the replicase (Rep 1a and 1b), the spike (S), the envelope(E), the membrane (M), 

and the nucleocapsid protein (N). At the beginning of each structural or accessory genes resides 

transcriptional regulatory sequences (TRSs) that are necessary for transcription of each 

subgenomic RNAs. In addition to the basic genes, there are a variable number of genes (up to 8 

genes) encoding nonstructural proteins (Masters, 2006). These nonstructural proteins are usually 

not essential for replication in tissue culture but some have been reported to have important 

functions in viral pathogenesis(L. Zhao et al., 2012). 

 

1.4 Coronavirus structure and structural proteins 

Cryo-electron tomography and cryo-electron microscopy studies revealed that 

coronavirus is a spherical virion with a diameters of approximately 125nm (Barcena et al., 2009; 

Neuman et al., 2006). The most striking feature of coronavirus virion is the projections of a club-

shaped S protein from the surface of the virion (Figure 1-3). Coronavirus contains four major 

structural proteins including spike (S), membrane (M), envelope (E), and nucleocapsid 

(N)(Gorbalenya, Enjuanes, Ziebuhr, & Snijder, 2006). The S protein is a large type I 

transmembrane protein of 150 kDa in size. A single coronavirus particle has about 200 spikes in 

homotrimer form (Davies & Macnaughton, 1979; Kirchdoerfer et al., 2016a). Coronavirus S 

protein contains three segments: a large ectodomain, a single-pass transmembrane anchor, and a 

short intracellular tail. The ectodomain consists of a receptor-binding subunit S1 and a membrane-

fusion subunit S2. The S1 subunit is highly variable whereas the S2 subunit is  most conserved. 

N-terminal S1 subunit has glycan-binding domain (N-terminal domain, S1-NTD) and receptor-

binding domain (C-terminal domain, S1-CTD) interacting with host receptors. S2 subunit 

comprises the fusion peptide, heptad repeat 1 and 2 , which is responsible for viral-cellular 
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membrane fusion(Kirchdoerfer et al., 2016b). Protease cleavage sites are located between S1 and 

S2 subunits.  

 

The M protein ranging from 25 to 30 kDa is the most abundant structural protein in 

coronavirus. The M protein is embedded in the viral envelope by its three transmembrane domains 

and maintains the shape of the virion envelope. The N-terminal of M protein is a small ectodomain 

whereas the C-terminal is a larger endodomain that extends 6-8nm into the interior of the 

virion(Nal et al., 2005) and interacts with S and N proteins. M protein exists as a dimer in the 

virion in two different conformations: a compact form that promotes greater membrane curvature 

and an elongated form(Neuman et al., 2011).   

The E protein, a small protein of 8 to 12 kDa, is found in a small amount within the virion 

envelope(Ruch & Machamer, 2012). Even though E protein has a highly diverse sequence, it has 

Figure 1-3. PEDV virion structure. 

Illustration of PEDV virion structure (left) and linear representations of structural proteins(right).  

N proteins associated with viral RNA genome form ribonucleoprotein (RNP) inside the virion. 

The RNP is enfolded by viral envelope that is consist of S, E, and M. Abbreviation; SS, signal 

sequence; NTD, N-terminal domain; CTD, C-terminal domain; S1/S2, S1/S2 cleavage site; S2’, 

S2’ cleavage site; FP, fusion peptide; HR, heptad repeat; transmembrane domain, SR region, 

serine-and arginine-rich tract.     
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a common architecture: a short N-terminal hydrophilic ectodomain, followed by a large 

transmembrane region and hydrophilic C-terminal tail. The role of the E protein is the facilitation 

of viral assembly and release. Ion channel activity of SARS-CoV E protein is not required for viral 

replication but is required for pathogenesis(Nieto-Torres et al., 2014).  

The N protein, 43 to 50 kDa in size, forms the nucleocapsid of coronavirus by binding the 

RNA genome in a bead-on-a-string configuration(Nelson, Stohlman, & Tahara, 2000). N protein 

mainly contains two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). Each 

domain can bind RNA separately but it has been suggested that interactions of both domains are 

required for the optimal RNA binding ability (K. R. Hurst, Koetzner, & Masters, 2009). Domain 

3, which is located at the C-terminal of N protein, is another functionally distinct region (Kelley 

R. Hurst et al., 2005). The domain 3 mainly interacts with the carboxy tail of the M protein, and 

this N-M interaction plays an important role during coronavirus replication(Narayanan, Maeda, 

Maeda, & Makino, 2000). The N protein also interacts with two specific RNA substrates, the 

TRSs(Stohlman et al., 1988) and the genomic packaging signal(Molenkamp & Spaan, 1997) and 

also binds nsp3(K. R. Hurst et al., 2009). These N protein-RNA interactions help package the 

encapsidated genome into virion by localizing the viral genome to the replicase-transcriptase 

complex(RTC).  

The hemagglutinin-esterase (HE) is encoded in only a subset of the beta-coronaviruses, 

including murine coronavirus, betacoronavirus 1, and HCoV-HKU1. The HE monomer of 48kDa 

consists of large N-terminal ectodomain and a very short C-terminal endodomain. This protein 

binds sialic acids on surface glycoproteins and removes acetyl groups from O-acetylated sialic 

acid (Desforges, Desjardins, Zhang, & Talbot, 2013). These activities are thought to enhance S 

protein-mediated cell entry and virus release (Cornelissen et al., 1997). 
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1.5 Coronavirus epidemiology 

1.5.1 Human coronavirus epidemiology 

In humans, coronaviruses cause the common cold and severe respiratory infections (M. 

Berry, Gamieldien, & Fielding, 2015). Up to now, seven human coronavirus species are identified 

to infect humans: OC43, 229E, NL63, HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2 (Fehr 

& Perlman, 2015; Pyrc, Berkhout, & van der Hoek, 2007; N. Zhu et al., 2020). HCoV-OC43 and 

HCoV-229E were reported nearly 50 years ago, whereas HCoV-NL63 and HCoV-HKU1 were 

recently identified after the SARS-CoV outbreak. HCoV-NL63 was first isolated form a 7-month-

old baby in early 2004{van der Hoek, 2004 #1360} and HCoV-HKU1 was first identified from 

71-year-old man in Hong Kong in 2005{Woo, 2005 #977}. Four viruses (229E, OC43, NL63, and 

HKU1) mainly cause mild, self-limiting respiratory infection in humans and are endemic in human 

populations. Based on the study on human coronavirus outbreaks, they can efficiently transmit in 

human populations through droplets. Serological studies suggest that neutralizing antibodies 

against HCoV-OC43 or 229E have been detected in about 50% of school-age children and up to 

80% of adults(Kenneth McIntosh, 1974).  

SARS-CoV initially emerged in 2002-2003 in Guangdong province in the southern part 

of China and caused severe lower respiratory tract infections with high morbidity and mortality. 

SARS-CoV was isolated from several exotic animals, including Himalayan palm civets and 

raccoon dogs in the wet market(Guan et al., 2003). Severe acute respiratory syndrome-related 

coronaviruses(SARSr-CoV) were also isolated from wild horseshoe bats in China(S. K. Lau et al., 

2005; W. Li et al., 2005). These reports suggested that bats are the original source for the virus 

and the virus adapted to animals sold in the wet market accidentally spilled over to human 
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populations. Human-to-human transmission appeared to occur through direct person to person 

contact, fomites, droplets and probably aerosols in some instances (Peiris, Guan, & Yuen, 2004). 

Substantial patient-to-patient variation in the efficiency of transmission was reported. Most 

patients spread the virus to only one or a few susceptible persons suggesting that virus spread was 

relatively inefficient. However, through superspreading events, a single patient infected multiple 

people, but only a few infected individuals were involved in this type of spread(Lipsitch et al., 

2003; Riley et al., 2003). 

In September 2012, a novel human CoV was first reported from a patient with severe 

pneumonia and acute kidney injury in the Arabian Peninsula. The etiological agent of the series of 

highly pathogenic respiratory tract infections was identified and named Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV) (Zaki et al., 2012). MERS-CoV found in various natural 

hosts such as the dromedary camels(Camelus dromedaries), bats(Vespertilio superans and 

Neoromicia capensis), and European hedgehog (Erinaceus europaeus)(S. K. P. Lau, Wong, Lau, 

& Woo, 2017; Z. Zhang, Shen, & Gu, 2016). Human MERS-CoV is considered to be originated 

from bats because several genetically close coronaviruses were isolated from bats (De Benedictis 

et al., 2014). Dromedary camels are also considered a natural host and reservoir of MERS-CoV 

for the following reasons. More than 90% of adult dromedaries in the middle east and Africa are 

seropositive for MERS-CoV(Mackay & Arden, 2015). The spike protein of the virus isolated from 

dromedaries has conserved receptor-binding domains for the human DPP4 receptor(Hemida et al., 

2014). The serum samples from camel shepherds and slaughterhouse workers showed 15-23 times 

higher seroprevalence than the general population(M. A. Muller et al., 2015).  

The largest MERS outbreak outside of the Middle East occurred in South Korea in May 

2015 by a 68-year-old male who was infected during a business trip to Middle East countries. A 
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total of 186 cases were confirmed, with 38 deaths and 16,752 suspected cases. Similar to the 

SARS-CoV outbreak, MERS outbreak was mostly nosocomial and super-spreaders played a 

significant role in the spread of the virus. Furthermore, other problems contribute to the outbreak 

including late diagnosis, inadequate hospital infection management, and poor communication of 

the Government(K. H. Kim, Tandi, Choi, Moon, & Kim, 2017). MERS CoV still repeatedly 

introduced to the human population via direct or indirect contact with infected dromedary camels 

in the Arabian Peninsula. There is a probability of the MERS-CoV epidemic at any time in any 

place. All countries should be aware of it and prepare for potential introduction of MERS to 

prevent a large outbreak.  

 

1.5.2 Animal coronavirus epidemiology 

In animals, a variety of coronaviruses have been reported since the early 1970s. Infectious 

bronchitis virus (IBV) causes avian infectious bronchitis in chickens(Cavanagh, 2007). In dogs, 

canine coronavirus (CCoV) causes respiratory or enteric infection(Erles, Toomey, Brooks, & 

Brownlie, 2003). Murine hepatitis virus (MHV) can generally cause wide range of diseases in 

mouse and rat, including hepatitis, enteritis, respiratory infection, and progressive demyelinating 

encephalitis(Weiner, 1973){Wege, 1982 #1362}. Other animal coronaviruses infect 

gastrointestinal tract of their respective hosts, for example, transmissible gastroenteritis 

coronavirus (TGEV) and Porcine epidemic diarrhea (PEDV) in pigs(M. Pensaert, Haelterman, & 

Burnstein, 1970; M. B. Pensaert & de Bouck, 1978), bovine coronavirus (BCV), and feline 

coronavirus (FCoV).  
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1.5.3 PEDV epidemiology worldwide and the US 

After first isolation of PEDV in 1977(M. B. Pensaert & de Bouck, 1978), PED has 

remained sporadic or locally endemic in the Netherlands(Pijpers, van Nieuwstadt, Terpstra, & 

Verheijden, 1993), Hungary(Nagy, Nagy, Meder, & Mocsari, 1996), England(Pritchard, Paton, 

Wibberley, & Ibata, 1999), and South Korea(S. J. Park, Song, & Park, 2013). In Thailand during 

2007 -2008, PEDV outbreaks with a new genotype of PEDV, which is the same clade with the 

Chinese strain JS-2004-2 was reported (Puranaveja et al., 2009). In 2010, There were reports of 

severe PED outbreaks in seropositive pigs in different regions of China(W. Li et al., 2012; R.-Q. 

Sun et al., 2012; J. Wang et al., 2013). These outbreaks were caused by both classical and new 

PEDV variant strains that are genetically different from the prototype CV777 (W. Li et al., 2012). 

In 2013, the first PEDV outbreak o was reported in the US with high mortality in neonatal 

piglets(Jung & Saif, 2015). The US PEDV strains were closely related to the Chinese strains 

(China/2012/AH2012) genetically(Y. W. Huang et al., 2013). Other PEDV variants with multiple 

or a large deletion in S gene were also isolated in the US: PEDV OH/OH851 strains contain 

multiple deletions and insertions in the S gene, which is close to Chinese strain HBQX-2010 or 

CH/ZMZKY/11(Vlasova et al., 2014). PEDV TC-PC22A strains have a large 197 amino acid 

deletion in the N-terminal of the S protein (Oka et al., 2014). 

 

1.5.4 Recent coronavirus outbreak – COVID 19 

Recently, a novel human coronavirus outbreak was reported in the city of Wuhan, China, 

on 31 December 2019, with severe respiratory disease possibly associated with exposures to 

animals in a seafood market (ProMED-mail, 2020). The person-to-person transmission was 

reported(J. F.-W. Chan et al., 2020). Based on the report of the World Health Organization (WHO) 



 

13 

on April 14th, 2020(WHO, 2020), 1844863 cases were confirmed and on 117021 deaths were 

reported globally. The official name for the disease the new coronavirus causes is coronavirus 

disease 2019 (COVID-19). The official name for the new coronavirus is severe acute respiratory 

syndrome coronavirus 2(SARS-CoV-2), which was named by the International Committee on 

Taxonomy of Virus. Based on its genetic classification. SARS-CoV-2 forms a sister clade to the 

SARS-CoV and bat coronaviruses of the species Severe acute respiratory syndrome-related 

coronavirus, and designated it as SARS-CoV-2{Gorbalenya, 2020 #1359}.  

Two probable animal sources of the coronavirus were suggested: a horseshoe bat ( 

Rhinolophus affinins)(P. Zhou et al., 2020) and a Malayan pangolin ( Manis javanica)(M. C. 

Wong, Javornik Cregeen, Ajami, & Petrosino, 2020). The genome of the bat coronavirus 

(RaTG13) isolated from a horseshoe bat shares a 96% amino acid sequence identity to the SARS-

CoV-2 genome. Since this bat coronavirus is known to be most closely related virus genome to 

COVID 19 virus, it is suggested that SARS-CoV-2 possibly originated from a bat (P. Zhou et al., 

2020). However, further analysis of the S protein in RaTG13 and SARS-CoV-2 showed that lower 

homology (75% nucleotide and 78% amino acid identity) was observed at the receptor binding 

motif (RBM, 435 to 510), which is responsible for receptor binding. Wong et al. demonstrated that 

Malayan pangolin is the possible alternate source for the new coronavirus because the RBM of 

pangolin coronaviruses share an 89% nucleotide and 98% amino acid homologies to SARS-CoV-

2(M. C. Wong et al., 2020). However, further researches will be needed with pangolin 

coronaviruses because this study used two partial pangolin coronavirus genomes instead of a full 

genome and this partial pangolin coronavirus shows lower sequence identity than RaTG13 bat 

coronavirus in whole genome level (90.5% amino acid similarity to SARS-CoV-2). 
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SARS-CoV-2 seem to be easily transmitted from human to human compared to SARS-

CoV(N. Chen et al., 2020; Q. Li et al., 2020). Two interesting studies that may be able to explain 

this easy human to human transmission of the new coronavirus. Recent studies reported that 

SARS-CoV-2, like SARS-CoV, uses angiotensin-converting enzyme 2(ACE2) as a functional 

receptor(Hoffmann et al., 2020; P. Zhou et al., 2020) and the virus can use ACE2 of various hosts 

including human, Chinese horseshoe bat civet, and pig for virus entry(P. Zhou et al., 2020). 

Interestingly, based on the interaction kinetics of SARS-CoV or SARS-CoV-2 and ACE2, The 

ectodomain of S protein of SARS-CoV-2 binds ACE2 with approximately 10 to 20 fold higher 

efficiency than SARS-CoV S binding to ACE2(Wrapp et al., 2020). In addition, the multiple 

sequence alignment on the S protein of SARS-CoV-2 and closely related coronaviruses showed a 

“PRRS” region in the S1/S2 cleavage site in the S protein of SARS-CoV-2, which creates a furin 

recognition site. This PRRS site is not present in SARS-CoV and other three closely-related bat 

CoV, and pangolin CoV genomes. It has been reported that the presence of the cleavage site in the 

viral envelop glycoprotein may attribute to pathogenesis as shown in the influenza virus and IBV. 

(J. Chen et al., 1998; J. Cheng et al., 2019).  

The World Health Organization (WHO) has declared the outbreak of COVID 19 a global 

pandemic(Cucinotta & Vanelli, 2020). This is a typical example of a CoV spillover from animals 

to the human population and that can repeatedly occur due to the increasing interaction of humans 

and wild animals (de Wit, van Doremalen, Falzarano, & Munster, 2016).  

 

1.6 Immune responses and pathogenesis in coronavirus infections 

Coronaviruses can cause  respiratory, enteric, or central nerve system (CNS) infection in 

humans and many species of animals. In humans, coronaviruses are the etiological agent of the 
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common cold. The prototype human coronaviruses, 229E and OC43 usually cause mild respiratory 

infection with sneezing, sore throat, malaise, headache, and nasal discharge with 2-5 days of 

incubation period (Monto, 1974; Tyrrell, Cohen, & Schlarb, 1993). However, there is no 

serological cross-reactivity between them(K. McIntosh, Dees, Becker, Kapikian, & Chanock, 

1967).  Because of the lesser impact on society and the economy, little is known about the 

pathogenesis of these four human coronaviruses. 

 

1.6.1 SARS-CoV pathogenesis 

SARS-CoV was the first human coronavirus that caused serious illness(Rota et al., 2003). 

SARS-CoV infects both alveolar epithelial cells to cause a severe lower respiratory tract infection 

and other organs (kidney, liver, and small intestine) (Y. L. Lau & Peiris, 2005). Patients who died 

from SARS-CoV infection had nonspecific pathological findings. Initially, cells in the upper 

airway were infected, leading to destroying cells but relatively little epithelial cell damage. After 

the virus rapidly spread to the alveoli, however, diffuse alveolar damage characterized by 

pneumocyte desquamation, alveolar edema, inflammatory cell infiltration, and hyaline membrane 

formation were observed. Eventually, pathologic signs of acute lung injury (ALI) and, in the most 

severe cases, acute respiratory distress syndrome (ARDS) were developed(N. Lee et al., 2003). 

Importantly, SARS-CoV infects macrophages and dendritic cells causing an abortive infection in 

these cells(Law et al., 2005; Spiegel, Schneider, Weber, Weidmann, & Hufert, 2006). Infected 

dendritic cells release several proinflammatory cytokines and chemokines (S. K. Lau et al., 2005). 

Lymphopenia and neutrophilia were detected in infected patients, which were likely to be 

primarily cytokine driven. During the 2002 endemic, SARS-CoV infection showed age-dependent 

severity. In patients younger than 60 years of age, the estimated case fatality was 6.8%. However, 
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that of older patients was 43%(Donnelly et al., 2003). Increased disease severity in an age-

dependent manner was also observed in the animal experiment (Roberts et al., 2005). The aged 

mice experimentally infected with the original human isolate showed pathologic signs of ALI, 

increased levels of proinflammatory chemokines and cytokines, and diminished T-cell responses, 

suggesting that immune dysregulation contributes to severe disease. 

 

1.6.2 MERS-CoV pathogenesis 

MERS-CoV infection causes a wide clinical spectrum from asymptomatic infection and 

upper respiratory tract illness to severe pneumonia and multiorgan failure(Assiri et al., 2013). 

About one-third of infected patients showed gastrointestinal symptoms such as diarrhea and 

vomiting. Recent post-mortem histopathological studies reported multi-organ failure including 

pulmonary diffuse alveolar damage, necrotizing pneumonia, acute kidney injury, portal and 

lobular hepatitis, and myositis with muscle atrophic changes. Viral particles were localized in not 

only the pulmonary but also extrapulmonary tissues such as pulmonary macrophage, pneumocytes, 

renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles (Alsaad et 

al., 2018). MERS-CoV can infect not only human respiratory epithelial cells but also immune cells 

including macrophages, T-cells, and immature monocyte-derived dendritic cells (J. Zhou, Chu, 

Chan, & Yuen, 2015). As similar to SARS-CoV, the infection of human macrophages and 

dendritic cells induced the expression of pro-inflammatory cytokines/chemokines (Cong et al., 

2018; J. Zhou et al., 2015). T-cells can be recruited to the site of infection by type-I IFN stimulated 

secretion of IL-10 and CXCL10. However, the expression of these cytokines is uncontrolled and 

persistent. The expression of IFN-γ and IL-12, which are required for the T helper cell activation, 

were inhibited (Ying, Li, & Dimitrov, 2016). Also, MERS-CoV can infect T cells and subsequently 
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induce both intrinsic and extrinsic apoptosis. These findings could partly explain the lymphopenia 

observed in MERS-CoV infected patients(H. Chu et al., 2016). Thus, the sequestered T cells in the 

infected tissue failed to eliminate the virus.   

 

1.6.3 Animal coronavirus pathogenesis 

Studies of the animal coronaviruses including the Murine Hepatitis Virus(MHV), 

Transmissible gastroenteritis virus (TGEV), Infectious bronchitis virus (IBV) and Feline 

infectious peritonitis virus (FIP), have contributed the understanding of coronavirus pathogenesis. 

 

1.6.3.1 Murine Hepatitis Virus 

MHV is the most extensively studied coronavirus until the emergence of SARS CoV. It 

causes enteric, hepatic, and neurologic infections to susceptible rodent strains. Each strain of 

murine coronavirus, all of which use the same host cell receptor(mCEACAM1) for entry 

(Williams, Jiang, & Holmes, 1991), shows different organ tropisms and levels of virulence. The 

enteric strains of MHV circulate in animal research facilities(Pritchett-Corning, Cosentino, & 

Clifford, 2009) and they are generally asymptomatic but may affect experimental results by 

modulating the host immune response. The neurotropic JHM and A59 strains infect primarily the 

brain and thus provide animal models for multiple sclerosis (MS). MHV-2 and MHV-3 infect both 

the liver and the CNS. The MHV-3 strain causes acute hepatitis in susceptible strains of mice. 

Infection of MHV-3 to macrophages results in the up-regulation of several proinflammatory 

cytokines, including fibrinogen-like protein 2(FGL2), a transmembrane procoagulant 

molecule(Marsden et al., 2003), resulting in consequent disseminated intravascular coagulation 

(DIC), hepatic hypoperfusion, and necrosis. Unlike most other strains of MHV, MHV-3 directly 
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infects T and B cells and causes lymphocyte apoptosis and lymphopenia(Lamontagne, Descoteaux, 

& Jolicoeur, 1989).  

 

1.6.3.2 Feline Enteric Coronavirus and Feline Infectious Peritonitis virus 

Feline enteric coronavirus (FeCoV) generally causes mild or asymptomatic infection in 

domestic cats. Two serotypes of FeCoV were identified; serotype II strain was emerged by 

recombination of serotype I FeCoV with canine coronavirus in co-infected animals(Herrewegh, 

Smeenk, Horzinek, Rottier, & de Groot, 1998). During persistent infection in some cats with 

FeCoV, mutations in the virus leads to the development of a virulent strain of FeCoV called feline 

infectious peritonitis virus(FIPV). This FeCoV to FIPV transition appears to involve positive 

selection for mutants that can replicate in macrophage, which is possibly mediated by mutations 

in the S protein or the ORF3b(Chang, Egberink, Halpin, Spiro, & Rottier, 2012; Rottier, 

Nakamura, Schellen, Volders, & Haijema, 2005; Vennema, Poland, Foley, & Pedersen, 1998). 

Infected macrophages help FIPV spread throughout the body and lead to a pyogranulomatous 

reaction that causes peritonitis and serositis. The clinical disease of FIPV is characterized by 

peritonitis, immunosuppression, weight loss, and death. FIP shows the recurrent patterns of fever 

and lymphopenia accompanied by repeated FIPV replication (de Groot-Mijnes, van Dun, van der 

Most, & de Groot, 2005). Antibodies against S protein were shown to enhance FIPV infection of 

macrophages that was mediated by virus entry through Fcγ receptors(Vennema et al., 1990) and 

contribute type III hypersensitivity vasculitis(Pedersen, 2009). The potential occurrence of the 

antibody-enhanced disease has made FIP vaccine development difficult.  

 

1.6.3.3 Porcine epidemic diarrhea virus 
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The clinical symptoms of PEDV infection are watery diarrhea and vomiting accompanied 

by anorexia and depression. PEDV infection can occur in swine of any age but the disease outcome 

usually varies by age. Piglets under 1 week of age severely affect by PEDV infection with watery 

diarrhea and vomiting followed by extensive dehydration and electrolyte imbalance leading to 

death. Mortality rate PEDV in young piglets reaches up to 100%(Shibata et al., 2000). However, 

older pigs recover the disease by themselves. PEDV infects the villous epithelial cells in the small 

intestine and destroys target enterocytes leading to villous atrophy and vacuolation. This loss of 

villi hinders digestion and absorption of nutrients and electrolytes, thereby causing watery diarrhea 

in piglets(Ducatelle, Coussement, Debouck, & Hoorens, 1982). 

 

1.7 Coronavirus replication 

1.7.1 Coronavirus entry 

The interaction of the S protein with specific cellular receptors on the cell surface is the 

initial step of coronavirus infection. After binding to the receptor, coronavirus entry can take place 

directly at the cell surface or at the endosome after internalization via endocytosis. During the 

coronavirus entry, the S protein plays two important roles: a receptor binding and a viral-cellular 

membrane fusion. The S1 subunit of S protein consists of two major domains, S1-NTD and S1-

CTD, which are responsible for sugar and receptor binding, respectively (Du et al., 2013; Godet, 

Grosclaude, Delmas, & Laude, 1994; H. Hofmann et al., 2005; H. X. Lin et al., 2008; S. K. Wong, 

Li, Moore, Choe, & Farzan, 2004). Sugar binding by S1-NTD brings the virus in close position to 

the cell surface membrane. The S1 subunit sits on top of the S2 stalk and fusion peptide is hidden 

within the trimer interface, all of which protect S protein from undergoing a conformational change 

in an inappropriate location (Figure 1-4A step1). The conformational change of the S protein 
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requires additional triggers including receptor binding, proteolytic cleavage, and pH acidification, 

but the requirement of triggers varies among coronavirus strains(Belouzard, Millet, Licitra, & 

Whittaker, 2012; Kirchdoerfer et al., 2016a; J. E. Park et al., 2016). After proteolytic activation, 

the S1 subunit detaches from the S2 subunit (Figure 1-4A step 3) and then the S2 subunit undergoes 

a rod-like structure (post-fusion structure) with the six-helix bundle, leading to the injection of 

fusion peptide into target membrane (F. Li et al., 2006) (Figure 1-4 step 4). Then, the dramatic 

refolding, the inversion of the C-helix packs the grooves of the N-terminal trimeric coiled-coils 

forming a six-helix bundle (6HB), brings viral and cellular membranes nearby facilitating 

membrane fusion(Bosch, van der Zee, de Haan, & Rottier, 2003) (Figure 1-4A step 5). This fusion 

leads to the delivery of the viral genome into the cytoplasm(Figure 1-4A step 6.).  



 

21 

 

 

 

 

 

 

Figure 1-4. Coronavirus S protein mediated membrane fusion model. 

(A) The Spike protein trimer on the virion surface interacts with the host functional receptor 

(1). The protease cleaves S protein (2). The S1 subunit separates from S2 (3). The fusion 

peptide is inserted into the host membrane (4). The S2 subunit folds into post-fusion 

conformation, the six helix bundle (6HB) (5). Viral-cellular membrane fusion forms a fusion 

pore to allow entry of viral genome(6)(Tripet et al., 2004). Cryo-EM Structure of HKU1 pre-

fusion spike trimer ectodomain(Kirchdoerfer et al., 2016a) (B). Conformational changes of S 

protein during the fusion. Ribbon and topology diagrams of the S2 subunit in the pre- and 

postfusion conformation (C). Cryo-EM structure of the MHV S2  postfusion machinery(D) 

(Walls et al., 2017). 
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1.7.1.1 S protein – host receptor interactions  

The binding of coronavirus S protein with its functional receptor is one of the most 

important determinants of the coronavirus host range. Coronaviruses recognize a wide range of 

receptors (F. Li, 2015). Many alphacoronaviruses such as Feline Coronavirus (FCoV), Canine 

Coronavirus (CCoV), Transmissible gastroenteritis virus (TGEV), and HCoV-229E use 

aminopeptidase N (APN) of their respective host as a receptor(Delmas et al., 1992; Yeager et al., 

1992). APN (CD13) is a zinc-binding protease on the cell surface that is expressed on respiratory 

and enteric epithelial cells. Mutational and inhibitor studies have documented that the enzymatic 

activity of APN is not necessary for viral attachment and entry. Another alphacoronavirus, PEDV, 

is also known to use porcine APN as a functional receptor(B. X. Li, Ge, & Li, 2007) but there have 

been controversial reports. PEDV efficiently replicates in African green monkey kidney cells(Vero 

cells), which do not express APN(M. Hofmann & Wyler, 1988; Shirato, Matsuyama, Ujike, & 

Taguchi, 2011). APN knockout Vero cells and porcine ST cells, or APN-deficient pigs were still 

susceptible to PEDV infection(Ji, Wang, Zhou, & Huang, 2018; W. Li, Luo, et al., 2017; 

Whitworth et al., 2019).  

The receptor for some Betacoronaviruses, SARS-CoV, SARS-CoV-2 and HCo-NL63, is 

angiotensin-converting enzyme 2 (ACE2). ACE2 is a zinc-binding carboxypeptidase involved in 

the regulation of cardiac functions and blood pressure existed on the epithelial cell surface of the 

lung and the small intestine(H. Hofmann et al., 2005; W. Li et al., 2003). Based on structural 

analysis, both receptor binding domains of SARS-CoV and HCoV-NL63 bind to the same motifs 

on ACE2(Wu, Li, Peng, & Li, 2009) even if their RBD didn’t have sequence and structural 

homology. This result suggests that they evolved independently to bind to the same motif on the 

ACE2 surface. The MERS-CoV S protein binds to dipeptidyl-peptidase 4(DPP4) to gain entry into 
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human cells(Raj et al., 2013). DPP4 is a serine exopeptidase, which expresses in many cell types 

and organs. S1-CTD of MERS-CoV directly interacts with the 11 critical residues within the β-

propeller domain of DPP4. Those residues are conserved in MERS-CoV susceptible species 

(camelids, primates, and rabbits) but not conserved in non-susceptible species (hamsters, ferrets, 

or mice)(Bosch, Raj, & Haagmans, 2013; de Wit et al., 2013; Haagmans et al., 2015; van 

Doremalen et al., 2014) suggesting that DPP4 can determine the host range of MERS-CoV. The 

functional receptor for MHV is murine carcinoembryonic antigen-related cell adhesion molecule 

1 (mCEACAM1) (Williams et al., 1991), and CEACAM1-knockout mice are completely resistant 

to the infection of the A59 strain of MHV(Hemmila et al., 2004). The functional receptor for a 

gammacoronaviruses, such as Infectious Bronchitis Virus (IBV) and Beluga Whale coronavirus 

SW1, and deltacoronaviruses has not been identified yet.   

Coronaviruses use sialic acid as a receptor or a coreceptor that mostly interacts with S1-

NTD. Human coronavirus OC43 (HCoV-OC43) and bovine coronavirus (BCoV) provide 

examples of acetylated sialic acid as a coronavirus functional receptor(Schultze, Gross, Brossmer, 

& Herrler, 1991; Vlasak, Luytjes, Spaan, & Palese, 1988). Interestingly, the similarity of the sugar-

binding sites in BCoV S1-NTD with human galectins suggests that ancestral coronaviruses might 

steel a host galectin gene and insert it into the 5’ end of their spike gene, which becomes S1-

NTD(F. Li, 2015). The sialic acid is used as a co-receptor providing the primary attachment of 

viruses on the cell surface. TGEV and PEDV can bind both bovine and porcine mucins, with a 

preference for N-glycolylneuraminic acid or N-acetylneuraminic acid, respectively(Chang Liu et 

al., 2015; Schultze et al., 1996). A recent publication demonstrated that MERS-CoV S1-NTD uses 

sialic acid as a coreceptor and depletion of cell surface sialic acids by neuraminidase treatment 

inhibited MERS-CoV entry on Calu-3 cells(W. Li, Hulswit, et al., 2017). IBV also binds to sialic 
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acid with a preference for alpha 2,3-linked sialic acid and neuraminidase treatment made 

susceptible cells resistant to IBV-Beaudette strain(Winter, Schwegmann-Wessels, Cavanagh, 

Neumann, & Herrler, 2006). Heavily glycosylated S protein is able to interact with host lectins 

such as DC/L-SIGN, which has been reported to be an alternative receptor for SARS-CoV and 

HCoV-229E(Jeffers, Hemmila, & Holmes, 2006; Jeffers et al., 2004). Type 1 and 2 FIPVs exploit 

DC-SIGN as a coreceptor or an alternative receptor to feline APN, respectively, which may 

participate in the interaction with immune cells to achieve systemic infection. (Regan, Ousterout, 

& Whittaker, 2010; Regan & Whittaker, 2008).  

 

1.7.1.2 Proteolytic activation of S protein 

The cleavage of S protein by proteases is an indispensable process to make S protein 

fusion competent form (S. Masters Paul & Stanley, 2013). Two major cleavage sites are located at 

the junction of the S1 and the S2 subunit (S1/S2) and just upstream of the fusion peptide(S2’). The 

cleavage of those sites by protease(s) results in dissociation of the S1 subunit and exposure of the 

fusion peptide (Belouzard et al., 2012). Some coronaviruses such as MERS-CoV, IBV, and MHV, 

their S proteins are cleaved by furin or related proprotein convertases during virus biogenesis (J. 

E. Park et al., 2016). There have been several reports of the significant role of furin cleavage in 

virus replication. The presence of furin inhibitors interfered with infection and syncytia formation 

of the IBV Beaudette strain. Mutation or deletion of the S1/S2 cleavage site in Beaudette S protein 

delayed virus propagation but does not abolish syncytia formation(Yamada & Liu, 2009). 

Introduction of a mutation H715D in the spike protein of MHV-A59 strongly impaired the 

cleavage of the protein and delayed cell-cell fusion(Leparc-Goffart et al., 1997). On the other hand, 
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the S proteins of many other coronaviruses remain uncleaved in mature virions and require an 

encounter with protease(s) at the entry step of infection.  

Depending on the location of proteases and S protein interaction, coronaviruses entry 

pathways are divided into be two different ways: fusion at the cell surface (nonendosomal) or 

fusion at the endosomal membrane (endosomal) (Shutoku Matsuyama, Makoto Ujike, Shigeru 

Morikawa, Masato Tashiro, & Fumihiro Taguchi, 2005; Simmons et al., 2005; Simmons et al., 

2004). In the nonendosomal pathway, uncleaved S protein attachs to cell surface receptor and it is 

cleaved by an exogenous protease such as trypsin, thermolysin, and elastase(Shutoku Matsuyama 

et al., 2005; Simmons et al., 2004) or transmembrane protease, all of which allow the virus 

infection insensitive to lysosomotropic agents. (Glowacka et al., 2011; Matsuyama et al., 2010; 

Shulla et al., 2011). In the endosomal pathway, the virus particle enters via receptor-mediated 

endocytosis without interactions of proteases, and then S protein is cleaved by the endosomal 

proteases, leading to membrane fusion. These two modes of entry, the endosomal or 

nonendosomal, may be easily shifted by the addition of a protease or mutations on S 

protein(Gallagher, Escarmis, & Buchmeier, 1991). For example, SARS-CoV enters cells via pH-

and receptor-dependent endocytosis without suitable protease (H. Wang et al., 2008) and 

participation of endosomal cathepsins was required (I. C. Huang et al., 2006). However, in the 

presence of trypsin in media or infected on TMPRSS2 expressing cells, SARS-CoV enters at the 

cell surface and is unresponsive to cathepsin inhibitors or lysosomotropic agents. HCoV-229E 

enters host cells via virus-cell membrane fusion on the cellular surface in the presence of 

extracellular protease or TMPRSS2, but the virus fuses with endosomal membrane in the absence 

of them (Bertram et al., 2013; Kawase, Shirato, Matsuyama, & Taguchi, 2009a; Shirato, Kanou, 

Kawase, & Matsuyama, 2017). Proteolytic activation, cathepsin dependence, and bypass this 
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dependence by the addition of exogenous protease are also observed with MHV-2, which has an 

uncleaved S protein (Qiu et al., 2006). PEDV has a unique characteristic that field isolation and 

efficient replication of most PEDV strains require the presence of exogenous trypsin in culture 

medium (W. Li, van Kuppeveld, He, Rottier, & Bosch, 2016). The addition of protease or 

endosomal cathepsins facilitates PEDV escape from the endosome to the cytoplasm(Oh, Kim, & 

Chang, 2019).  

   

Figure 1-5. Schematic representation of PEDV genome organization.  

PEDV has approximately 28kb genome with the 5’-cap and 3’ polyadenylated tail. The genome 

contains replicase ORF 1a and 1b followed by the structural protein genes, S, orf3, E, M and N. 

Two large ORF1a and 1b are translated into polyprotein(pp)1a and then pp1ab following -1 

ribosomal frameshift(RFS). The polyproteins are cleaved by the papain-like protease (nsp3) and by 

3C-like protease (nsp5) to generate 15 nonstructural proteins(nsps). ORF, open reading frame; RFS, 

S, spike protein; E , envelope protein; M, membrane protein; N, nucleocapsid protein; PLpro, 

papain-like protease; RdRp, RNA dependent RNA polymerase; Hel, helicase; ExoN, exonuclease; 

NendoU, nodovirus uridylate-specific endoribonuclease; O-MT, ribose-2’-O-methyltransferase.  
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1.7.2 Expression of the replicase-transcriptase complex 

After the trafficking of the viral genome to the cytoplasm, the next step is the translation 

of the genomic RNA to the viral replicase. The replicase gene is composed of two large ORFs, 

rep1a and rep1b, which occupy two-thirds of the genome coding two co-terminal polyproteins, 

ppla and pplab (Figure 1-5). Mostly, the ribosome unwinds the pseudoknot and continues 

translation until it reaches the rep1a stop codon. Occasionally the ribosome is blocked by the 

pseudoknot and paused on the slippery sequence, shifting the reading frame by moving back one 

nucleotide and extend translation into rep1b (Baranov et al., 2005). Polyproteins pp1a and pp1ab 

are composed of the nonstructural proteins(nsps), nsp1-11 or nsp1-16, respectively. Proteolytical 

processing of these polyproteins by virus-encoded two proteases, the papain-like proteases(PLpro) 

encoded in nsp3 and the main protease or 3C-like protease(Mpro or 3CLpro) encoded in nsp5 

generate the individual nsps (Ziebuhr, Snijder, & Gorbalenya, 2000). The PLpro cleaves the 

cleavage sites at nsp1/2, nsp2/3, and nsp/3/4. The 3CLpro cleaves the remaining 11 cleavage sites.  

Next, the nsps assemble into the replicase-transcriptase complex (RTC) to create a suitable 

environment for RNA replication and transcription of the subgenomic RNAs. The nsps play crucial 

roles in RNA replication including nsp12 encodes the RNA-dependent RNA polymerase (RdRp) 

domain, nsp13 encodes the RNA helicase domain and RNA 5’-triphosphatase activity, nsp14 

encodes the exoribonuclease(ExoN) and N7-methyltransferase activity, nsp16 encodes 2’-O-

methyltransferase activity. Other roles of the nsps, such as blocking innate immune responses 

(nsp1, nsp16, nsp3) have been identified with other largely unknown functions. Only the 

Nidovirales has ribonucleases nsp15-NendoU and nsp14-ExoN activities, all of which are 

considered genetic marker(Snijder et al., 2003).   
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1.7.3 Virus replication and transcription 

The assembly of the RTC provides an environment for synthesis of both genomic and sub-

genomic RNAs(sgRNAs). Each sgRNA consists of a leader RNA joined to a body RNA, which is 

identical to the 5’ and the 3’ end of the genome with 5’cap and 3’polyadenylated tail. The fusion 

of the leader RNA to body RNAs occurs at transcription-regulating sequence(TRS) during the 

discontinuous synthesis of negative-strand RNA(Sawicki, Sawicki, & Siddell, 2007). The current 

model proposes that the RdRp pauses at any one of the TRS sequences; following this pause the 

RdRp either continues elongation to the next TRS or it switches to amplifying the leader sequence 

at the 5’end of the genome guided by the complementarity of the leader TRS. These processes 

generate a 3’nested set of sgRNAs, the most unique feature of the order Nidovirales.  

 

1.7.4 Assembly and Release 

Following replication and RNA synthesis, sgRNAs serve as mRNAs for the viral proteins. 

Genomic RNAs and viral proteins are translocated into the endoplasmic reticulum(ER) and move 

along the secretory pathway into the endoplasmic reticulum-Golgi intermediate compartment 

(ERGIC)(Krijnse-Locker, Ericsson, Rottier, & Griffiths, 1994; Tooze, Tooze, & Warren, 1984). 

N protein and viral genome complex bud into membranes of the ERGIC that contain viral 

structural proteins and eventually mature virions are formed (de Haan & Rottier, 2005). Most 

protein-protein interactions required for assembly of coronavirus is mediated by the M protein. 

The interaction of M and E is sufficient to form VLPs suggesting that two proteins play together 

to form coronavirus envelop (Bos, Luytjes, van der Meulen, Koerten, & Spaan, 1996). The C-

terminal of M protein also binds to the C-terminal domain 3 of N, and this interaction promotes 

the completion of virion assembly(Kelley R. Hurst et al., 2005). The S protein is not required for 
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assembly but the S protein trafficking to the ERGIC and S-M interaction is critical for its 

incorporation into virions(Siu et al., 2008). In several coronaviruses, S proteins that do not 

participate in virion assembly move to the cell surface where they mediate cell-cell fusion. This 

leads to the giant cell formation that allows the virus to spread without being detected or 

neutralized by virus-specific antibodies. After assembly, the newly synthesized virions are 

transported to the cell surface in vesicles and released by exocytosis.  

 

1.8 Vaccine approaches against coronaviruses 

1.8.1 Animal coronavirus vaccine 

  Vaccines of animal coronaviruses have been widely used to prevent serious disease 

development in animals, but their efficiencies are variable. IBV vaccines are shown to be effective 

to protect IBV infection(Ladman et al., 2002). The efficacy and duration of Canine CoV vaccines 

vary under field conditions due to the low efficacy of an inactivated vaccine and high rate of 

serious adverse reactions of a modified-live vaccine(Pratelli et al., 2003; Pratelli et al., 2004). Since 

the PED outbreaks have been a major economic loss in Asia, several live-attenuated or inactivated 

PEDV vaccines have been developed and widely used. These vaccines have been reported to be 

effective with lower virulence and minimum histopathological changes, but they did not provide 

complete protection from PEDV infection (D. S. Song et al., 2007; Usami, Yamaguchi, 

Kumanomido, & Matsumura, 1998). The feline infectious peritonitis (FIP) vaccine is known to be 

deleterious to the health of the cat(Weiss & Scott, 1981) because FIPV infection is greatly 

enhanced in the presence of antibodies. There have been several efforts to develop efficient FIP 

vaccines using recombinant viruses(Balint, Farsang, Szeredi, Zadori, & Belak, 2014) or T-helper 



 

30 

1 epitope with CpG-oligodeoxynucleotides as adjuvants(Takano, Tomizawa, Morioka, Doki, & 

Hohdatsu, 2014) but their protective effects were questionable.   

 

1.8.2 Human coronavirus vaccine 

Currently, no vaccines are available for any human coronavirus infection. Since SARS-

CoV and MERS-CoV outbreaks, various vaccine candidates have been designed and studied. In 

SARS-CoV, the inactivated virus might be used as the first-generation vaccine because it is easy 

to generate whole killed virus particles. Mice immunized with several inactivated SARS-CoVs 

developed humoral and cell-mediated immune responses(Takasuka et al., 2004; Tang et al., 2004; 

C. H. Zhang et al., 2005). Several attempts of expressing SARS-CoV structural proteins by viral 

vectors were reported. The live attenuated bovine parainfluenza virus type 3 (BHPIV3), 

recombinant live attenuated modified vaccinia virus (rMVA-S), or adenovirus could induce 

neutralizing antibodies in immunized animals(Bisht et al., 2004; Buchholz et al., 2004; Bukreyev 

et al., 2004; Gao et al., 2003). After injection of a recombinant plasmid vector expressing the N 

protein, S protein, or S protein of either the S1 or S2 region to mice, high cytotoxic T-lymphocyte 

(CTL) and antibody responses were observed(Zeng et al., 2004; P. Zhao et al., 2004; M. S. Zhu et 

al., 2004). Current approaches for the development of MERS-CoV vaccines are mostly similar to 

the methods used for the development of SARS-CoV vaccines, including subunit vaccines(Tai et 

al., 2017), recombinant vector vaccines(Gilbert & Warimwe, 2017; E. Kim et al., 2014), and DNA 

vaccine(Al-Amri et al., 2017; Chi et al., 2017).    

HCoV vaccine development remains a major challenge due to highly sophisticated 

immune evasion mechanisms of viral pathogens (Kaufmann, McElrath, Lewis, & Del Giudice, 

2014). Moreover, the development of safe and effective coronavirus vaccines is more challenging. 
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CoV vaccine may induce harmful immune responses, resulting in liver damage in vaccinated 

animals or enhancing infection after being challenged (Czub, Weingartl, Czub, He, & Cao, 2005; 

Enjuanes et al., 2008; Honda-Okubo et al., 2015; Weingartl et al., 2004). 

 

1.9 Antiviral approaches against coronaviruses. 

Even though many coronavirus antiviral agents have been identified and developed, there 

is no approved drug to treat highly pathogenic human coronavirus outbreak. Furthermore, several 

attempts to treat SARS and MERS with approved antivirals (ribavirin and lopinavir-ritonavir) and 

immunomodulators (corticosteroid, interferons) were made, but their effectivity was questionable 

(Zumla, Chan, Azhar, Hui, & Yuen, 2016). Different steps of the coronavirus replication including 

virus entry (S protein-receptor interaction, endosomal proteases and acidification, or membrane 

fusion) or virus replication (3CLpro, PLpro, RdRp, or 5’-3’ helicase) have been considered as 

viable targets(Adedeji et al., 2012; Barnard & Kumaki, 2011; Liang, 2006).  

 

1.9.1 Viral entry inhibitors 

Since viral entry is a vital step for virus replication, it has been considered an attractive 

target for antiviral drug development. The possible targets within coronavirus entry are S protein- 

host receptor interaction, endosomal maturation and enzymes, and S mediated membrane fusion. 

First of all, neutralizing antibodies against S protein are possible SARS-CoV and MERS-CoV 

entry inhibitors. The majority of humanized monoclonal antibodies(HmAbs) against SARS-CoV 

bind with the receptor binding domain (RBD) of the S protein and likely prevented S protein-

receptor interaction (J. D. Berry et al., 2004; M. Coughlin et al., 2007; Greenough et al., 2005; Y. 

He et al., 2004; H. Hofmann et al., 2004; Sui et al., 2004; Traggiai et al., 2004). There have been 
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several reports that HmAbs target other regions except RBD including N-terminal and C-terminal 

of the RBD, proximity of junction of the S1 and S2, and HR2 domain (M. M. Coughlin, Babcook, 

& Prabhakar, 2009; J. Duan et al., 2005; Keng et al., 2005; H. Zhang et al., 2004). Prophylactic 

administration of a human monoclonal antibody to ferrets or naïve mice reduced replication of 

SARS-CoV, prevented the development of lung disease and the shedding of virus in pharyngeal 

secretions(Subbarao et al., 2004; ter Meulen et al., 2004). In MERS-CoV research, passive transfer 

of neutralizing antibodies that target functionally distinct domains of S protein also protected mice 

from the lethal challenge(Widjaja et al., 2019). All of these suggest that neutralizing antibodies 

provide a new way to gain humoral protection against coronavirus infection. However, the possible 

antibody-dependent enhancement is the one major concern with this treatment, as shown in FIP. 

Previous studies with HmAbs showed that infection of pseudotyped viruses was increased in the 

presence of HmAbs in vitro and this enhancement was not observed vaccination with a cDNA that 

encoded only the ectodomain of S protein(Z. Y. Yang et al., 2005). Another concern is the potential 

cross-reactivity of the hmAbs with self-antigens. Two defined epitopes within S2 (amino acids 

927-937 and 942-951) were reported to interact with self-antigens causing cytotoxicity in vitro(Y. 

S. Lin et al., 2005). Thus, future studies with therapeutic SARS-CoV and MERS-CoV HmAbs 

should be tested with these concerns. The host receptor can be targeted by specific monoclonal or 

polyclonal antibodies, peptides or functional inhibitors. In the SARS-CoV treatment, N-(2-

aminoethyl)-1-aziridine-ethanamine(NAAE) showed to inhibit the catalytic activity of ACE2 and 

S-mediated cell to cell fusion(Huentelman et al., 2004). Synthetic peptides mimicking ACE2 

segments also inhibited SARS-CoV replication in vitro(Han, Penn-Nicholson, & Cho, 2006). A 

recombinant humanized IgG1 anti-DPP3 mAbs (YS100) showed to inhibit MERS-CoV entry in 
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vitro (Ohnuma et al., 2013). However, the limitation of these approaches is their narrow anti-CoV 

activity and potential risks of affecting host biological functions.  

The cleavage of S protein by a host protease is a crucial trigger for viral-cellular membrane 

fusion, thus, host proteases are attractive antiviral targets. The type II transmembrane serine 

protease TMPRSS2 and human airway trypsin-like protease (HAT) have been shown to 

proteolytically activate the fusion proteins of SARS CoV. Cleaved SARS and HCoV-229E S 

protein by TMPRSS2 mediate cell surface entry of the viruses(Bertram et al., 2011; Glowacka et 

al., 2011). They also have shown to be co-localized with each cellular receptor, supporting that 

these protease families can activate CoVs for respiratory tract infection and participate to spread 

of CoV in human patients (Bertram et al., 2013). A synthetic low-molecular-weight serine protease 

inhibitor, camostat mesylate, which inhibits TMPRSS2 and HAT, is shown to inhibit SARS-CoV 

and MERS-CoV in vitro and in vivo(Shirato, Kawase, & Matsuyama, 2013; Y. Zhou et al., 2015).  

Coronavirus endocytosis is an important target of anti-CoV drugs. Coronaviruses are 

known to utilize the clathrin-mediated endocytosis for its entry(Inoue et al., 2007; J. E. Park, Cruz, 

& Shin, 2014). Therefore, chlorpromazine that blocks the assembly of clathrin-coated pits at the 

plasma membrane (L. H. Wang, Rothberg, & Anderson, 1993) inhibits replication of SARS-CoV 

and MERS-CoV in vitro(de Wilde et al., 2014). Cardiotonic steroids, which bind the ATP1A1 

subunit of ATPase, also inhibit clathrin-mediated endocytosis of MERS-CoV(Burkard et al., 

2015). The important roles of endosomal acidification and endosomal proteases during virus entry 

have been documented in numerous coronaviruses. Chloroquine, which is an anti-malarial drug 

that increases the endosomal pH, has been shown broad-spectrum anti-CoV activity to SARS-

CoV, MERS-CoV, HCoV-229E, HCoV-OC43, and PEDV(de Wilde et al., 2014; Keyaerts, 

Vijgen, Maes, Neyts, & Van Ranst, 2004; Kono et al., 2008; Oh et al., 2019; Vincent et al., 2005) 
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suggesting it as a potential broad-spectrum antiviral drug candidate. Cathepsins usually exist in 

the endosomal compartment and are classified into cysteine (cathepsin B, L, H, K, S, and O), 

aspartyl (cathepsin D and E) and serine (cathepsin G) protease(Vasiljeva et al., 2007a). Cathepsin 

B and L have been reported to cleave S protein of SARS-CoV, MERS-CoV, HCoV-229E, FCoV 

and MHV-2(Kawase, Shirato, Matsuyama, & Taguchi, 2009b; Y. Kim, Mandadapu, Groutas, & 

Chang, 2013; Qiu et al., 2006; Regan & Whittaker, 2008; Simmons et al., 2005; Wicht et al., 2014). 

Inhibition of cathepsin L by small-molecular compound showed to block entry of SARS-CoV 

(Simmons et al., 2005; N. Zhou et al., 2016). However, since coronavirus entry can be easily 

shifted between the cell surface and endosomal pathway, combinations of inhibitors with different 

mechanism of action should be considered.  

 

1.9.2 Coronavirus replication inhibitors 

1.9.2.1  Viral protease inhibitors 

After virus entry and the translation of the viral RNA to the polyproteins, the 3CLpro and 

the PLpro cleave the polyprotein into individual polypeptides. Thus, 3CLpro and PLpro are 

functionally critical in the CoV replication (Anand, Ziebuhr, Wadhwani, Mesters, & Hilgenfeld, 

2003) and they are regarded as an attractive drug target for anti-CoV drug development(Anand et 

al., 2003; Thiel, Herold, Schelle, & Siddell, 2001; H. Yang et al., 2005; H. Yang et al., 2003). 

Numerous 3CLpro inhibitors have been identified not only by screening compound libraries(Kuo 

et al., 2009; Ramajayam, Tan, & Liang, 2011) but also structure-based drug design(Lu et al., 2006). 

Activity of SARS-CoV 3CLpro can be inhibited by myriad kinds of protease inhibitors, including 

zinc or mercury conjugates, C2-symmetric diols, peptidomimetic-α,β-unsaturated esters, anilides, 

benzotriazole, N-phenyl-2-acetamide, biphenyl sulfone, glutamic acids and glutamine peptides 
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with a trifluoromethyl ketone group, pyrimidinone, and pyrazole analogs (Adedeji & Sarafianos, 

2014). Lopinavir, which is a protease inhibitor against HIV, is the most readily available 3CLpro. 

It showed anti-CoV activity in vitro, and in vivo (J. F. Chan et al., 2015; K. S. Chan et al., 2003; 

C. M. Chu et al., 2004). Our lab has developed dipeptidyl compounds targeting coronavirus 

3CLpro with broad-spectrum activity against feline CoV, ferret CoV, mink CoV, and feline 

calicivirus(Y. Kim et al., 2015). Antiviral treatment with one of these compounds, GC376, on 

experimentally FIP infected cats demonstrated full recovery of disease with a rapid improvement 

in fever, ascites, lymphopenia(Y. Kim et al., 2016). Since these 3CLpro inhibitors targeting highly 

conserved key residues for substrate recognition in all coronaviruses and picornaviruses, it has 

been proposed to be broad-spectrum antiviral drugs (Kumar et al., 2017).  

 

1.9.2.2 Helicase inhibitors 

Helicase catalyzes the separation of double-stranded oligonucleotides into single. During 

positive-sense RNA virus replication, the helicase separates nucleic acids and melts highly stable 

secondary structures within the genomic RNA to increase translational efficiency(Paolini, De 

Francesco, & Gallinari, 2000). Thus, viral helicase is an important antiviral target. A few potential 

coronavirus helicase inhibitors have been identified(Adedeji et al., 2012; M. K. Kim et al., 2011; 

C. Lee et al., 2009; Tanner et al., 2005). SARS-CoV helicase was inhibited via blocking its ATPase 

activities by the Bananins in vitro (M. K. Kim et al., 2011; Tanner et al., 2005). Since these helicase 

inhibitors have a potential ability to blocks the cellular ATPases, cytotoxicity needs to be 

evaluated.  

 

1.9.2.3 Viral polymerase inhibitors 



 

36 

Coronavirus RNA dependent RNA polymerase (RdRp) is an essential part of the CoV 

replication-transcription complex due to its participation in genomic and subgenomic RNA 

synthesis, thus regarded as a validated target for an antiviral drug. Ribavirin, which is a guanosine 

analog that is known to block viral RNA synthesis and mRNA capping, shows broad-spectrum 

antiviral. Ribavirin was used to treat SARS patients with high doses, but benefits in SARS patients 

were uncertain(V. C. Cheng, Lau, Woo, & Yuen, 2007; N. Lee et al., 2003). A report of a 

combination of ribavirin and interferon therapy to five MERS-CoV patients showed that none of 

the patients responded to the therapy. However, with the early administration of treatment (8h post 

challenge), this treatment improved clinical symptoms of MERS-CoV infection in the rhesus 

macaque model (Falzarano et al., 2013). These results suggest further evaluation of the optimal 

timing of this therapy(Al-Tawfiq, Momattin, Dib, & Memish, 2014).  

 

1.9.2.4 Modulation of the host immune system 

The host immune system that was modulated by coronaviruses is appealing antiviral 

targets due to their potential as a broad-spectrum anti-coronavirus target. Interferons (IFNs) are a 

group of signaling molecules that enhance cellular antiviral defenses. Because of their beneficial 

immunomodulatory properties, the antiviral effects of type I IFNs were widely studied for the 

various viral diseases with no specific antiviral treatment. In vitro studies of type I IFNS on SARS- 

and MERS-CoV were shown to inhibit viral replication (Falzarano et al., 2013; Stroher et al., 

2004). IFNs were also used to treat SARS and MERS patients solely or in combination with other 

drugs including ribavirin and lopinavir-ritonavir but the therapeutic effects were limited, probably 

due to late administration(Stockman, Bellamy, & Garner, 2006). Poly I:C, an upstream stimulant 

of INFs signaling cascade, showed to protect SARS- and MERS-CoV infection in a mouse model 
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with upregulation of INF-β, INF-γ, IL-1β, and tumor necrosis factor(TNF) gene expression (J. 

Zhao et al., 2012) (J. Zhao et al., 2014). 

 

1.10 Ceramide and Acid sphingomyelinase 

Sphingolipids constitute the major class of eukaryotic lipids containing a sphingolipid 

base as a backbone. Several sphingolipids have been identified including sphingosine, ceramide, 

ceramide-1-phosphate, and sphingosine-1-phosphate (R. H. Kim, Takabe, Milstien, & Spiegel, 

2009; Morales, Lee, Goni, Kolesnick, & Fernandez-Checa, 2007; Ogretmen & Hannun, 2004; 

Figure 1-6. Ceramide synthesis pathways. 

Ceramide synthesis have tree major metabolic pathways: the de novo pathway synthesize ceramide 

from palmitoyl CoA and serine. The salvage pathway recycles long-chain sphingoid base to 

generate ceramide using ceramide synthase. The sphingomyelinase pathway breaks down 

sphingomyelin to ceramide using sphingomyelinase.  
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Zheng et al., 2006). Sphingolipids modulate almost all major cell biological processes, including 

growth regulation, cell migration, adhesion, apoptosis, senescence, and inflammatory responses.  

One of the main sphingolipids that have received the most attention is ceramide due to its 

central role in the sphingolipid metabolic pathway: ceramide was used as a substrate for complex 

sphingolipids synthesis and various secondary signaling intermediates. Ceramide consists of 

sphingosine in N-linked to a variety of acyl groups. Followed by various stimulations and stresses, 

ceramide can be generated via three different pathways, sphingomyelin(SM) hydrolysis pathway, 

salvage pathway, or de novo synthesis(Kitatani, Idkowiak-Baldys, & Hannun, 2008; Kolesnick, 

Goni, & Alonso, 2000), all of which leads to formation of ceramide-enriched domains or platforms 

at cellular membrane(Gulbins & Grassme, 2002) (Figure 1-6). In this literature review, we focused 

on the sphingomyelinase pathway because this rapidly initiating pathway seems to be crucial in 

relation to the virus entry. Several isoforms of sphingomyelinase have been identified and they are 

distinguishable by their optimum pH requirement and subcellular localization. Alkaline 

sphingomyelinases are found in the intestinal tract for digestion of sphingomyelin(R. D. Duan, 

2006). Neutral sphingomyelinase activity was first identified in 1967 in the tissues of patients with 

Niemann-Pick disease(Schneider & Kennedy, 1967) and four mammalian neutral 

sphingomyelinases have been identified including nSMase1 (gene name: SMPD2), nSMase2 

(SMPD3), nSMase3 (SMPD4) and mitochondrial associated-nSMase (SMPD5). The N-SMase2 

is well characterized and is an important mediator of cellular stress-induced ceramide production 

and a special role in bone mineralization. Acid sphingomyelinase (ASM) is found in the lysosome, 

as a secretory form (Jenkins, Canals, & Hannun, 2009) but also in domains on the outer leaflet of 

the plasma membrane(M. Xu et al., 2012) suggesting that ASM is not restricted to the lysosome. 

The localization of these two forms of ASM is determined by the cleavage site on precursor ASM 
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or the glycosylation pattern on the mature ASM(Ferlinz, Hurwitz, Vielhaber, Suzuki, & Sandhoff, 

1994; Newrzella & Stoffel, 1996; Schissel, Keesler, Schuchman, Williams, & Tabas, 1998). 

Sphingomyelinases catalyze the hydrolysis of the phosphodiester bond in sphingomyelin and 

separate it to ceramide and phosphorylcholine. 

Various stimuli have been reported to activate ASM. The ASM activation is mediated by 

the engagement of the TNF-receptor superfamily members including FAS(Cremesti et al., 2001; 

Grassme, Jekle, et al., 2001; Grassme, Jendrossek, & Gulbins, 2001), CD40(Grassme, Bock, Kun, 

& Gulbins, 2002), DR5(Dumitru & Gulbins, 2006) and TNFα(Schütze et al., 1992). In detail, FAS, 

as known as CD95, initiates the ASM activation by binding of a small amount of the adaptor 

protein FADD and initiator caspase 8(Brenner et al., 1998; Grassme, Cremesti, Kolesnick, & 

Gulbins, 2003). TNF-R55 and its associated proteins TRADD and FADD activate ASM in a 

caspase-dependent manner(Schwandner, Wiegmann, Bernardo, Kreder, & Kronke, 1998). Various 

stress stimuli have demonstrated to activate ASM including UV-light(Charruyer et al., 2005; 

Kashkar, Wiegmann, Yazdanpanah, Haubert, & Kronke, 2005; Rotolo et al., 2005; Y. Zhang et 

al., 2001), heat(Chung et al., 2003; Verheij et al., 1996), oxidative stress(Sanvicens & Cotter, 

2006), ionizing radiation(Paris et al., 2001; Santana et al., 1996), chemotherapeutic agents(Lacour 

et al., 2004), LPS(Pfeiffer et al., 2001), and engagement of the PAF-receptor(Göggel et al., 2004). 

There are numerous reports that infections of pathogens to mammalian cells activate ASM 

involved in their internalization and host cell interactions. Phagocytosis of Neisseria gonorrhoeae 

mediated by CEACAM receptor led to rapid activation of ASM that is involved in opsonin-

independent internalization without affecting bacterial binding(Hauck et al., 2000). Infection of 

Pseudomonas aeruginosa on human nasal epithelial cells activated ASM leading to the formation 

of ceramide-rich platforms that was required to internalize P. aeruginosa(Grassme, Jendrossek, et 
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al., 2003). Rhinovirus infection triggers rapid activation of ASM with microtubule- and 

microfilament- mediated translocation of ASM to the plasma membrane(Grassme, Riehle, Wilker, 

& Gulbins, 2005). Infection of Measles virus to dendritic cells via the pattern recognition receptor 

activates neutral and acid sphingomyelinases resulting in the formation of the ceramide-enriched 

platform with the recruitment of CD150, which involves uptake of measles virus (Avota, Gulbins, 

& Schneider-Schaulies, 2011). The attachment and entry of Ebolavirus required sphingomyelin 

enriched lipid rafts and its association with lysosomal ASM on the cell surface(Miller, Adhikary, 

Kolokoltsov, & Davey, 2012). The important roles of ASM activation in pathogen internalization 

are partly explained by the unique biophysical property of ceramide and ceramide rich platform. 

They can have self-aggregation, alteration of biophysical properties of the membrane, and 

membrane fusion. During the generation of ceramide, cleavage of the polar head from cylinder-

shaped sphingomyelin forms a cone-shaped ceramide at one leaflet of the lipid bilayer. 

Accumulation of corn-shape ceramide induces an asymmetric membrane tension(Lopez-Montero, 

Monroy, Velez, & Devaux, 2010), membrane rearrangements including transbilayer movement of 

ceramide to the inner monolayer(flip-flop), and membrane curvature, all of which consequently 

facilitate membrane fusion and help pathogens traverse cellular membranes (Utermohlen, Herz, 

Schramm, & Kronke, 2008).  

Therefore, ASM and ceramide metabolism are potential therapeutic targets for various 

viral and bacterial infections. Pharmacological and genetic inhibition of ASM and/or ceramide 

formation were shown to related to a reduction of infection via inhibiting viral and bacterial 

internalization(Avota et al., 2011; Grassme et al., 2005; Miller et al., 2012)and apoptosis. 

However, inhibition of ceramide formation significantly impairs host defense. ASM knock-out 

mice showed high susceptibility to L.monocytogens infection with 100-1000 folds higher bacterial 
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loads of wild-type mice. In ASM knock-out macrophages, L.monocytogens could survive 

extendedly in late phagosomes suggesting defects of phagosomal maturation and perturbation in 

lysosomal fusion due to the absence of ASM(Utermohlen et al., 2008; Utermohlen, Karow, Lohler, 

& Kronke, 2003). These results suggest that manipulation of ASM and ceramide formation is a 

potential, but a delicate therapeutic target for bacterial and viral infection. 

 

1.11 Coronavirus infection and cellular apoptosis 

1.11.1 Apoptosis 

Apoptosis is a systemic procedure of cell death. Morphological characteristics of the 

apoptotic cell are membrane blebbing, pyknosis and cell shrinkage, engulfed by phagocyte before 

leakage of cellular contents. To date, the two main pathways are known to mediate apoptosis: the 

intrinsic or mitochondrial pathway in response to a homeostatic mechanism and the extrinsic or 

death receptor pathway mediated by extracellular stimuli. However, these two pathways are linked 

with molecules that can influence each other(Igney & Krammer, 2002). Except for the intrinsic 

and extrinsic pathway, there is an additional pathway that is associated with perforin-granzyme 

and T-cell mediated cytotoxicity.  

The intrinsic pathway is initiated by non-receptor-mediated stimuli that induce 

intracellular signals to initiate the mitochondrial pathway. The stimuli that trigger the intrinsic 

pathway are classified into positive and negative signals. Positive signals are radiation, nutrient 

deprivation, toxins, hypoxia, hypothermia, and viral infections. Negative signals are the lack of 

certain hormones and cytokines, which cannot suppress death programs. All of these stimuli lead 

to increasing the mitochondrial outer membrane permeability (MOMP) and opening of the 

mitochondrial permeability transition (MPT) pore based on the ratio of pro-apoptotic and anti-
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apoptotic B-cell lymphoma 2 (Bcl2) family of protein and subsequent release of pro-apoptotic 

proteins such as cytochrome c from the intermembrane space of mitochondria to the 

cytosol(Saelens et al., 2004). Cytochrome c interacts with Apaf-1 and procaspase-9, forming an 

apoptosome(Chinnaiyan, 1999) and then activating caspase-9. 

The extrinsic pathway is initiated by receptor-mediated interactions with tumor necrosis 

factor (TNF) receptor gene superfamily(Locksley, Killeen, & Lenardo, 2001) and shared by the 

death domain(Ashkenazi & Dixit, 1998). The known ligands and corresponding death receptors 

are including FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4 and Apo2L/ DR5(Ashkenazi 

& Dixit, 1998; Chicheportiche et al., 1997; Peter & Krammer, 1998; Rubio-Moscardo et al., 2005; 

Suliman, Lam, Datta, & Srivastava, 2001). In the best characterized model, FasL/FasR, the binding 

of FasL to FasR leads to the association of the FADD, the adapter protein, then FADD interacts 

with procaspase-8 leading to the formation of the death-induce signaling complex (DISC), 

resulting in the activation of procaspase-8 with auto-catalysis(Kischkel et al., 1995).  

Both extrinsic and intrinsic pathways finally reach the execution phase, considered the 

final step of apoptosis. In this phase, the activation of a group of cysteine proteases called “ 

caspases” and complex cascade events that link the initiating stimuli occur (J. Li & Yuan, 2008). 

Caspases can be classified into two classes based on their roles in the apoptotic pathway. Initiator 

caspases (caspase 2, 8, 9, and 10) respond to proapoptotic signals and facilitate autocatalysis by 

activating effector caspases (caspase 3, 6, and 7). Once the effector caspases are activated, they 

create a functional mature protease and demolish key cellular structural proteins, leading to cellular 

disassembly (McIlwain, Berger, & Mak, 2013). Finally, the apoptotic cell is uptaken without the 

release of cellular constituents limiting inflammatory response. 
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1.11.2 Apoptosis in viral infections 

Viruses, which is an obligate intracellular parasite, produce an extensive number of viral 

proteins in the infected cells to generate progeny viruses. Most viral infections eventually reach to 

the host cell death. To limit exploiting cellular machinery by viruses, the host cell undergoes 

apoptosis to limit viral replication, spread, or persistence. Many viruses prevent host cell death via 

encoding anti-apoptotic proteins to stop the host cell destruction, which allows them to complete 

viral replication. Furthermore, some viruses take advantage of apoptosis to facilitate viral 

replication and spread as well as to induce immune suppression.  

 

1.11.3 Coronavirus infection and Apoptosis  

Several studies have reported the occurrence of apoptosis during coronavirus infection. 

Among SARS patients, extensive damages to the alveolar and bronchial epithelial cells and 

apoptosis of liver and thyroid glands were observed (Chau et al., 2004; Wei et al., 2007). These 

pathological consequences are likely to be caused by cell death mediated by infection of the SARS-

CoV and the inappropriate immune responses. Thus, cellular apoptosis induced by SARS-CoV 

infection has been extensively studied in vitro. SARS-CoV infection and replication induced Vero 

E6 cells apoptosis with caspases dependent manner (H. Yan et al., 2004) (Ren et al., 2005).  The 

only expression of SARS N, 3a, or 7a protein was shown to induce apoptosis of host cells. N 

protein expression on COS-1 cells under the starvation of serum led to the release of cytochrome 

c and activation of caspase -3 and -9(L. Zhang et al., 2007). Expression of 3a protein was shown 

to activate the mitochondrial death pathway in two possible ways, the extrinsic pathway and the 

intrinsic pathway, all of which resulted in increased Bax and p53(Padhan, Minakshi, Towheed, & 
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Jameel, 2008). Overexpression of 7a induces apoptosis via a caspase-dependent pathway in cells 

from the lung, kidney, and liver(Tan et al., 2004).  

Replication of IBV in Vero cells caused extensive cytopathic effects that were mediated 

by both necrosis and apoptosis. The addition of the pan-caspase inhibitor (Z-VAD-fmk) inhibited 

this CPE progress and increased virus yield suggesting the association of caspase-mediated 

apoptosis in IBV replication(C. Liu, Xu, & Liu, 2001). Infection of Turkey coronavirus (TCoV) 

in intestinal organ culture (IOC) induced apoptosis with nuclear fragmentation and DNA ladder 

formation(Deriane E. Gomes & Alexandre L. Andrade, 2011). MHV infection on 17Cl-1 cells and 

rat oligodendrocytes induced caspase-dependent apoptosis but infection on DBT cells did not show 

apoptotic changes, suggesting that MHV infection initiated apoptosis cell-type dependent 

manner(An, Chen, Yu, Leibowitz, & Makino, 1999; Y. Liu, Pu, & Zhang, 2006). Canine 

coronavirus II infection triggers apoptosis in A-72 cells by activating initiator and executioner 

caspases. However, inhibition of the apoptosis by caspase inhibitors did not affect CCoV 

replication(De Martino et al., 2010).  

Interestingly, there have been several reports of coronavirus N protein cleavage by caspases 

during apoptosis (Diemer et al., 2008; Eleouet et al., 2000; Jaru-Ampornpan, Jengarn, Wanitchang, 

& Jongkaewwattana, 2017). In SARS-CoV infected cells with a lytic CPE and high virus titer, N 

protein was proteolytically processed by caspase 3 and 6 and the possible cleavage site located at 

residues 400 and 403 on C-terminal of N protein(Diemer et al., 2008). Moreover, the mutation on 

the nuclear localization signal on N protein prevented N from translocating to the nucleus and 

abolished its cleavage by caspases suggesting that N protein nuclear translocation is closely 

associated with its caspase cleavage. Infection of TEGV in HRT 18 cells induced apoptosis 

through a caspase-dependent manner and caspase 6 and 7 cleave N protein at C-terminal (Eleouet, 
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Chilmonczyk, Besnardeau, & Laude, 1998; Eleouet et al., 2000). The recent PEDV study reported 

that N protein was cleaved by 3C-like protease (3CLpro) during replication(Jaru-Ampornpan et 

al., 2017). 3CLpro recognized leucine 381(P2) in PEDV N protein and cleaved glutamine 382(P1). 

Reverse-genetics-derived PEDV containing uncleavable N protein showed growth detention, 

suggesting that the 3CLpro cleavage related to cell culture adaptation. This PEDV N protein 

cleavage is the one topic of my dissertation research.  

 

1.12 Study objectives 

Although PEDV has been a serious problem in the swine industry and public health, there 

is still limited information on the PEDV lifecycle, particularly the role of protease in PEDV entry 

and PEDV-host interaction during viral replication. With these mechanistic understanding of the 

PEDV life cycle, we may develop rational molecular countermeasures for preventing PEDV or 

coronavirus infection. Based on this literature review, this dissertation will focus on: 

1) To identify the roles of protease during PEDV entry.  

Since PEDV is an enteric pig coronavirus with a special requirement of exogenous 

protease(s) for its efficient replication in cell culture, it represents a unique model for studying 

roles of protease in coronavirus entry. Using the protease adopted PEDV strains, PEDV KD and 

AA, we will study the roles of protease(s) on PEDV entry, trafficking and escape from the 

endosomal compartment for effective replication.  

2) To examine PEDV induced apoptosis and N protein cleavage during replication of protease 

independent PEDV strain and its biological significance.  

During protease independent PEDV replication in Vero cells, the cleavage of N protein 

has been observed in the western blot analysis. We will identify what protease(s) cleave PEDV N 
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protein and where is the cleavage site on N protein. We will also explore the biological significance 

of N protein cleavage during protease independent PEDV replication.  

3) To study roles of ceramide formation and acid sphingomyelinase during PEDV entry. 

Using cell culture adapted PEDV strains, we will study the roles of ceramide formation 

mediated by ASM activation during PEDV entry.  

This dissertation will provide fundamental molecular information for understanding the 

PEDV entry process and PEDV-host interaction. Such understanding could lead to the 

development of rational future strategies for preventing or treating PEDV or other coronavirus 

infections. The new strategies could support to fight against the ongoing new coronavirus outbreak 

as well as future coronavirus outbreak.  
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Chapter 2 - Proteases facilitate the endosomal escape of porcine 

epidemic diarrhea virus during entry into host cells 

 

2.1 Abstract 

Exogenous and endogenous proteases play important roles in porcine epidemic diarrhea 

virus (PEDV) entry and replication. The roles of proteases in the viral endosomal escape and 

replication using trypsin (KD) or elastase (AA)-adapted US PEDV strains were studied. While 

PEDV KD and AA require different exogenous protease for efficient replication in cells, PEDV 

KD was more dependent on the protease than PEDV AA. There was no marked difference in viral 

trafficking between them during the entry events. Both PEDV strains were observed in the 

endosomes with or without protease at 1 h after virus inoculation. With protease, viral signals in 

the endosomes disappeared after 4 h, and newly synthesized viral proteins were detected in the ER 

after 6 h. However, without protease, viruses remained in the endosomes up to 24 h, which 

correlated with limited virus replication. Inhibitors of cathepsins, endogenous proteases, 

significantly reduced the replication of both PEDV by interfering with the viral endosomal escape. 

 

2.2 Introduction 

Coronavirus entry processes require complex interactions between multiple host and viral 

factors to enter the cells and initiate viral RNA translation and replication (Belouzard et al., 2012). 

The coronavirus spike (S) protein, a class I viral fusion protein, is a critical viral factor for 

coronavirus entry. The S protein contains two subunits: N-terminal S1 subunit which binds to 

cellular receptors and S2 subunit which is responsible for membrane fusion (S.M. Paul & Perlman, 
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2013). The S protein undergoes conformation changes exposing two major cleavage sites at the 

junction of S1 and S2 subunit (S1/S2) and just upstream of the fusion peptide (S2’) before and 

during virus entry into host cells (Belouzard et al., 2012). Cleavage at the S2’ site by proteases 

exposes the fusion peptide, which is mainly composed of hydrophobic amino acids (Belouzard et 

al., 2012). The fusion peptide is then introduced into the host cell membrane by a conformational 

change of the S2 subunit mediated by the refolding of heptad repeat 1 (Belouzard et al., 2012). As 

the fusion protein folds back, viral and cellular membranes are drawn together to initiate the 

membrane fusion for virus entry (Kirchdoerfer et al., 2016a).  

The proteases involved in the proteolytic cleavage of S protein have been studied for 

several coronaviruses. It was shown that furin processes the S protein of mouse hepatitis virus 

(MHV) strain A59 and infectious bronchitis virus (IBV) targeting the junction of S1/S2 (Sturman, 

Ricard, & Holmes, 1985; Yamada & Liu, 2009). Since furin is mainly expressed in the trans-golgi 

network and the newly produced viruses possess cleaved S protein, the S proteins of those 

coronaviruses are thought to be processed during the stage of viral assembly (Seidah & Prat, 2012; 

Sturman et al., 1985; Yamada & Liu, 2009). The S proteins of severe acute respiratory syndrome 

coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and 

HCoV-229E are reported to be activated by a membrane-bound protease, serine 2 (TMPRSS2), 

which is widely distributed in the respiratory tracts (Bertram et al., 2011; Bugge, Antalis, & Wu, 

2009; Shirato et al., 2013). Other cellular proteases such as cathepsins, which exist in the 

endosomes and lysosomes, have been reported to process coronavirus S protein of  SARS-CoV, 

MERS-CoV, human coronavirus (HCoV)-229E and feline coronavirus (FCoV) and MHV-2 

(Kawase et al., 2009a; Y. Kim et al., 2013; Qiu et al., 2006; Regan, Shraybman, Cohen, & 

Whittaker, 2008; Simmons et al., 2005; Wicht et al., 2014). While the replication of most 
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coronaviruses does not require exogenous proteases in cell culture media, proteases in the medium 

have been reported to enhance the replication of some coronaviruses including SARS-CoV (S. 

Matsuyama, M. Ujike, S. Morikawa, M. Tashiro, & F. Taguchi, 2005). For instance, trypsin, 

dispase, thermolysin, and elastase have been reported to activate the S protein of SARS-CoV and 

enhance viral replication in cells (S. Matsuyama et al., 2005). The mutations in S protein are 

reported to alter protease susceptibility, pathogenicity and host range (Millet & Whittaker, 2015). 

Therefore, the proteolytic activation of S protein and viral entry are potential targets for antiviral 

drug development (Du et al., 2017; Simmons, Zmora, Gierer, Heurich, & Pohlmann, 2013). 

Porcine epidemic diarrhea virus (PEDV), which belongs to the genus of Alphacoronavirus 

in the Coronaviridae family, causes porcine epidemic diarrhea (PED), a disease responsible for 

severe economic losses in the swine industry worldwide (Jung & Saif, 2015). PEDV infects the 

villous epithelium of the small intestines and causes diarrhea and vomiting in the affected pigs 

with up to 100% mortality in neonatal piglets (Jung & Saif, 2015). Unlike most coronaviruses, 

field isolation and efficient replication of most PEDV strains require the presence of exogenous 

trypsin in culture medium (W. Li et al., 2016). Previous reports have shown that cleavage of PEDV 

S protein by trypsin occurs after viral receptor binding (W. Li et al., 2016; J. E. Park, Cruz, & Shin, 

2011; Wicht et al., 2014). However, the detailed mechanism of proteolytic activation of PEDV S 

protein by proteases is not well understood. In this study, we aimed to investigate the role of 

proteases in PEDV entry focusing on the endosomal escape by confocal microscopy. Using two 

cell-culture-adapted PEDV strains that require trypsin (PEDV KD) or pancreatic elastase (PEDV 

AA) in cell culture for virus replication (Y. Kim, Oh, Shivanna, Hesse, & Chang, 2017), we 

examined if exogenous proteases are involved in the endosomal escape of PEDV for efficient viral 

replication. We also investigated the roles of endogenous proteases (cathepsin B and L) in the 
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endosomes/lysosomes and endosome maturation in PEDV replication in correlation with the 

endosomal escape.  

 

2.3 Materials and Methods 

 

2.3.1 Cells, viruses, and reagents 

PEDV KD and AA were described in our previous publication  (Y. Kim et al., 2017). PEDV 

KD and AA were propagated in Vero (ATCC® -CCL-81™) cells in the presence of L-1-

tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated trypsin (Sigma-Aldrich, St Louis, 

MO) or elastase (Promega, Madison, WI), respectively, in Eagle’s Minimal Essential Medium 

(MEM) supplemented with 100U/ml penicillin and 100 µg /ml streptomycin and 5% fetal bovine 

serum (FBS). Concentrated (>100-fold) PEDV KD or AA was prepared by ultracentrifugation of 

viruses at 100,000×g through a 30% w/v sucrose cushion at 4°C for 2 h. The pellet was 

resuspended in serum-free MEM and stored at -80°C.  

 

2.3.2 Regents and antibodies 

Leupeptin (trypsin inhibitor), Elastatinal (elastase inhibitor), CA074-Me (cathepsin B 

inhibitor) and chloroquine (endosomal acidification inhibitor) were obtained from Sigma-Aldrich 

(St. Louis, MO). Z-FL-COCHO (Cathepsin L inhibitor) was purchased from Calbiochem (San 

Diego, CA). The anti-PEDV polyclonal antibody was collected from a pig challenge study 

previously reported by us (Y. Kim et al., 2017).  
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2.3.3 One-step growth kinetics 

Confluent Vero cells were incubated for 1 h at 37°C with PEDV KD or PEDV AA at a 

MOI of 0.1. After washing 3 times with PBS, fresh MEM containing mock-medium, trypsin (1 

µg/ml) or trypsin (1 µg/ml) + leupeptin (5 μM) or elastase (1 µg/ml) was added to the cells infected 

with PEDV KD, and fresh MEM containing mock-medium, elastase (1 µg/ml), or elastase (1 

µg/ml) + elastatinal (5 μM) was added to the cells infected with PEDV AA. Virus infected cells 

were further incubated at 37°C and virus RNA titers were measured by real-time quantitative RT-

PCR at various time points following incubation. For real-time quantitative RT-PCR, total RNA 

was extracted from the PEDV infected cells using the RNeasy Kit (Qiagen, Valencia, CA) 

according to the manufacturer’s protocol. Real-time quantitative RT-PCR was performed using 

One-Step Platinum RT-PCR kit (Invitrogen, Carlsbad, CA) with forward primer (5’-

GCTATGCTCAGATCGCCAGT-3’), reverse primer (5’-TCTCGTAAGAGTCCGCTAGCTC-

3’), and probe (5’-/56-FAM/TGCTCTTTG/ZEN/GTGGTAATGTGGC/3IABkFQ/-3’) targeting 

the PEDV N gene on a Rotor-Gene Q (Qiagen) (Y. Kim et al., 2017). The condition for RT-PCR 

was 50°C for 30 min (for RT) and 95°C for 5 min, then 40 cycles of denaturation at 95°C for 15s, 

annealing at 60°C for 60s and elongation at 72°C for 30s. The TCID50 equivalents/ml were 

calculated from the Ct values based on the equation derived from the standard curve generated 

with the serial dilution of cell culture-grown PEDV.  

 

2.3.4 Leupeptin addition assay 

To determine which step of the virus entry is dependent on trypsin, leupeptin (a trypsin 

inhibitor) addition assay was performed using PEDV KD. Confluent Vero cells were inoculated 

with PEDV KD at an MOI of 0.1 in the presence of trypsin, and leupeptin (1 μM) was added to 
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the culture media at a binding (4°C for 1 h), entry (37°C for 1 h) or replication (37°C for 10 h) 

stage. Between each stage, cells were washed extensively (3×) with MEM. PEDV KD infection 

with trypsin (but without leupeptin) was included a control. PEDV KD infection without trypsin 

also served as a control. Virus replication was assessed by real-time quantitative RT-PCR at the 

end of a replication stage, and TCID50 equivalents/ml was determined as described above. Virus 

RNA titers from each treatment were compared to those with trypsin (without leupeptin).   

 

2.3.5 Confocal microscopy 

Recently, we demonstrated that PEDV utilizes the endocytic pathway, and successful viral 

endosomal escape and subsequent virus replication requires the presence of proteases such as 

trypsin or elastase. Therefore, PEDV cellular trafficking with or without protease inhibitors was 

investigated by confocal microscopy. Vero cells were seeded onto Lab-Tek™ II CC2™ chamber 

slide (Fisher Scientific, Pittsburgh, PA), treated with 5% FBS and grown to 70% confluency. Mock 

or PEDV KD or AA at an MOI of 50 were inoculated into the confluent cells on the chamber 

slides, and the virus-infected cells were incubated at 4°C for 1 h. After washing with PBS for 3 

times, the cells were subject to the following treatment for 1 h, 4 h, 6 h or 8 h prior to confocal 

microscopy. The treatments are: 1) Cells infected with PEDV KD were incubated with Mock (no 

trypsin), TPCK-treated trypsin (1 µg /ml) or TPCK-treated trypsin (1 µg/ml) + trypsin inhibitor 

(PPACK, 2 μM); 2) Cells infected with PEDV AA strain were incubated with Mock (no trypsin), 

elastase (1 µg/ml) or elastase (1 µg/ml) + Elastatinal (5 μM); 3) Cells infected with KD were 

incubated with TPCK-treated trypsin with or without cathepsin inhibitors [Z-FL-COCHO (10 μM) 

or CA074-Me (40 μM)] or chloroquine (75μM). To prepare cells for confocal microscopy, cells 

were fixed in 4% formaldehyde (Sigma-Aldrich) in PBS (pH 7.4) at room temperature (RT) for 15 
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min, permeabilized with 0.1% Triton x-100 (Fisher Scientific) in PBS for 10 min at RT. The cells 

were then washed three times with PBS and incubated in PBS containing 0.5% bovine serum 

albumin for 15 min. After washing with PBS three times, cells were further incubated with primary 

antibody to PEDV (1:200) at 37°C for 2 h. After washing three times with PBS, the slides were 

incubated with FITC labeled secondary antibodies diluted 1:100 in PBS. The cell nucleus was 

stained with SYTOX orange (0.5 μM in 0.9% NaCl). To determine the intracellular location of 

PEDV, the KD-infected cells fixed at 6 and 12 h PI were incubated with the PEDV antibody and 

mouse monoclonal antibody against VPS26A (endosome marker) or PDIA3 (ER marker), 

followed by the appropriate secondary antibodies with FITC and AlexFluor® 594. Coverslips were 

mounted with ProLong®  Gold antifade reagent (Molecular Probes), and the cells were scanned 

with a confocal microscope LSM 510 (Zeiss, Oberkochen, Germany) using a 100x oil-immersion 

objective lens. The images were processed by Image J software 1.51 (http://imagej.nih.gov/ij/). 

The colocalization analysis was performed using JACoP and colocalization-MBF plugins for 

ImageJ software.  

 

2.3.6 Statistical analysis 

The effects of cathepsin or chloroquine in PEDV replication were statistically analyzed 

using GraphPad Prism (GraphPad Software, La Jolla, CA, USA). Statistical analysis was 

performed using the student t-test. P-value of <0.05 was considered as statistically significant. 

Data were from at least three independent experiments.  

 

 

http://imagej.nih.gov/ij/
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2.4 Results 

 

2.4.1 Efficient replication of PEDV requires the addition of protease.  

To determine the effect of protease in PEDV entry and replication, one-step growth kinetics 

of PEDV KD and AA were investigated in the presence or absence of trypsin or elastase, 

respectively. Trypsin inhibitor or elastase inhibitor was also used as additional controls for the 

study. The RNA levels (or viral titers) at each time point were compared to those at 0 h. During 0-

4 h post infection, the titers of PEDV KD in all three groups remained unchanged and statistically 

not different (Figure 2-1A). The virus RNA titers of the trypsin-treated group increased rapidly 

after 4 h post-infection (PI) and reached 7.5 log10 TCID50/ml at 24 h PI (Figure 2-1A). However, 

the virus RNA titers of mock-medium treatment (without trypsin) or trypsin plus inhibitor group 

did not significantly increase from 4 to 24 h post-infection (PI) (Figure 2-1A). For PEDV AA, 

virus RNA titers remained unchanged during 0-6 h PI in all three groups (Figure 2-1A). The virus 

RNA titers of PEDV AA with elastase significantly increased after 6 h PI, reaching 6.9 log10 

TCID50/ml at 24 h PI. Interestingly, virus RNA titers of PEDV AA also significantly increased at 

24 h with mock-medium (without elastase) or at 12 h and 24 h with elastase plus inhibitor 

compared to those at 0 h (Figure 2-1B). Although virus RNA titers of PEDV AA also significantly 

increased without elastase or with elastase plus inhibitor, the increments are only moderate up to 

5.0 log10 TCID50/ml (Figure 2-1B).  
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2.4.2 Trypsin is required after viral attachment/entry of PEDV KD. 

To determine which stage of PEDV replication is dependent on trypsin, we designed and 

conducted leupeptin (serine protease inhibitor) inhibition assay as described in Figure 2-2A. The 

absence of trypsin in the media led to a significant reduction of virus RNA titers, as expected, 

compared to those with trypsin. Significant changes in virus RNA titers were observed when 

leupeptin was present in the media during both entry and replication stages (treatments e and f), 

Figure 2-1. Replication kinetics of PEDV KD & AA. 

Confluent Vero cells were inoculated with PEDV KD (A) or AA (B) at an MOI of 5 and incubated 

at 37°C for 1 h. After thorough washing with PBS, fresh MEM  containing (A) Mock-medium, 

TPCK-treated trypsin (1 µg/ml) or TPCK-treated trypsin (1 µg/ml)+inhibitor or (B)  elastase (1 

µg/ml), elastase (1 µg/ml)+inhibitor were added to the virus infected Vero cells. Viral RNA was 

extracted from the cells at 0, 2, 4, 6, 12 or 24 h post-inoculation (PI) for real-time qRT-PCR, and 

genome copy numbers were calculated by plotting Ct values against a standard curve gene-rated 

using a series of dilutions of in-vitro transcribed PEDV RNA genome. Error bars show standard 

deviations, and asterisks indicate significant difference (p < 0.05) in virus RNA titers, compared 

to those at 0 h.    
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indicating trypsin activity is required for both stages (Figure 2-2B). We also tested whether the 

pre-incubation of cells or viruses with trypsin induces viral replication. Pre-incubation of 

concentrated PEDV KD with TPCK-treated trypsin (up to 5 µg /ml) or pre-incubation of Vero 

cells with TPCK-treated trypsin (up to 5 µg /ml) for 1 h at 37°C did not lead to virus replication 

(data not shown).  

 

 

 

 

Figure 2-2. Addition of leupeptin at different virus replication stages (PEDV KD) 

Confluent Vero cells were inoculated with PEDV KD at an MOI of 5 in the presence of trypsin (1 

µg/ml) or trypsin + inhibitor (leupeptin, 1 µM) at 4C for 1 h (binding stage). After thorough 

washing with PBS, virus infected cells were transferred to 37C and incubated for 1 h with trypsin 

or trypsin+inhibitor (entry stage). After another thorough washing, cells were incubated for 

additional 10 h with trypsin or trypsin+inhibitor before viral replication was assessed.  (A) A 

schematic drawing shows trypsin or trypsin+leupeptin treatment of cells at various stages of virus 

replication. (B) Virus replication was quantified by real time qRT-PCR at 12h PI. Error bars show 

standard deviations. Asterisks indicate significant difference (p < 0.05) in virus genome levels, 

compared to those of PEDV infection with trypsin. 
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2.4.3 The protease was required for the endosomal escape of PEDV. 

The effect of protease in the entry events of PEDV KD or PEDV AA in Vero cells was 

examined by confocal microscopy. While PEDV AA and KD require different protease for 

replication, there was no difference in the overall viral trafficking between these strains (Figure 2-

3A and B). In the cells incubated with protease (trypsin or elastase), aggregated fluorescence 

signals of PEDV KD or AA were observed within the cell cytoplasm at 1 h PI, but the signals 

disappeared at 4 h PI. However, fluorescence signals of PEDV KD or AA remained at 4 h or 6 h 

PI in the cells incubated without protease or with protease + inhibitor (Figure 2-3A, and 2-4). 

These signals were colocalized with VPS26A (an endosome marker) but not with PDIA3 (an ER 

marker) (Figure 2-4B). At 6 h PI, diffuse fluorescence signals of PEDV KD or AA were observed 

around the nucleus in the cells incubated with protease (Figure 2-4, PEDV KD + trypsin and PEDV 

AA + elastase Panels), and these fluorescence colocalized with PDIA3, which suggests newly 

synthesized PEDV proteins were detected in ER (Figure 2-4B). However, in the cells incubated 

without trypsin or elastase (Mock), aggregated fluorescence signals were still visible in the 

endosomes at 6 h PI (Figure 2-4, PEDV KD + Mock and PEDV AA + Mock Panels) and 24 h PI 

(data not shown).  
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Figure 2-3. Confocal microscopy of PEDV entry. 

Confluent Vero cells grown on Lab-Tek II CC2 chamber slides were infected either with Mock 

(medium) or PEDV KD (A) or AA (B) at an MOI of 50, and incubated with Mock-medium, trypsin 

1 µg/ml (elastase 1 µg/ml) or trypsin+ inhibitor (elastase +inhibitor) for 1 h or 4 h. Fixed cells 

were probed with swine polyclonal anti-PEDV primary antibodies, followed by FITC-labelled 

goat-anti-swine antibody (green). Nuclei were stained with sytox orange (5μM) (red), and merged 

images for PEDV and nuclei were prepared by using Image J. 
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Figure 2-4. Confocal microscopy of KD or PEDV with or without protease. 

A. Virus infected cells were prepared at 6 h after PEDV KD or PEDV AA with or without (Mock) 

trypsin or elastase, respectively.  Virus infection, treatment and procedures are same as Figure 2-

3. B. Co-localization of PEDV KD with the endosomes (VPS26A) or ER (PDIA3) marker. PEDV 

KD infected cells without (Mock) or with trypsin were fixed at 6 h and PEDV, PEDV (green), 

VPS26A (red), PDIA3 (red) or merged images were presented.   



 

60 

2.4.4 Cathepsin activity is required for efficient replication of PEDV.  

 As the PEDV KD and PEDV AA travel through the endosomes, the roles of endosomal 

proteases, cathepsin B and L, in virus replication were examined using inhibitors. The cytotoxicity 

of each inhibitor was determined in Vero cells, and the concentrations showing minimal toxicity 

was used (up to 10 µM for Z-FL-COCHO and up to 40 µM for CA074-Me). Treatment of cells 

with cathepsin L inhibitor (Z-FL-COCHO) significantly reduced PEDV KD or AA replication at 

10 and 5 µM (Figure 2-5A). Cathepsin B inhibitor (CA074-Me) also significantly reduced the 

replication of PEDV KD at 40 and 10 µM (Figure 2-5A) and PEDV AA at 40 µM. Chloroquine 

which inhibits acidification of endosomes significantly reduced the replication of PEDV KD or 

AA at 50 µM (Figure 2-5A). In confocal microscopy, there was no difference in the fluorescence 

signals of PEDV KD between trypsin only and trypsin + cathepsin B or L inhibitor at 1 h PI. At 4 

h PI, the fluorescence signals were greatly reduced in cells without inhibitors, while there is still 

no change in the fluorescence signals in the cells with cathepsin B or L inhibitor (Figure 2-5B).  
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2.5 Discussion 

Many viruses, including PEDV, utilize receptor-mediated endocytosis to gain entry into 

the host cells (J. E. Park et al., 2014). During the endocytic entry processes, viruses or viral genome 

Figure 2-5. Effect of Cathepsin inhibitors (Z-FL-CHCHO or CA074-Me) or chloroquine in 

PEDV entry into the cells. 

(A). Confluent Vero cells were pre-treated with mock (medium), Z-FL-CHCHO, CA074-Me or 

chloroquine for 1h before PEDV inoculation (MOI 10). Following virus infection, cells were 

incubated with same inhibitor in the presence of TPCK-treated trypsin(1 µg/ml) for PEDV KD (left 

panel) or elastase (1 µg/ml) for PEDV AA (right panel) at 37°C, and total RNAs were collected at 12 

h PI. Viral replication was assessed by real time qRT-PCR. (B) Confluent Vero cells grown on Lab-

Tek II CC2 chamber slides were pre-treated with mock(medium), Z-FL-CHCHO, CA074-Me, or 

chloroquine for 1h prior to PEDV inoculation (MOI 50). Then PEDV KD was inoculated to the cells 

with TPCK-treated trypsin (1 µg/ml). The cells were incubated at 37°C for 1 or 4 h, then fixed and 

stained for confocal laser scanning microscopy. Error bars show standard deviations.  Asterisks 

indicate significant difference (p < 0.05) compared to the control (trypsin or elastase treatment only). 
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translocate to the cytoplasm (endosomal escapes) and initiate virus replication. Because the 

endosomal escape of the virus is critical for successful virus replication, viruses utilize various 

mechanisms for the events (Grove & Marsh, 2011; Gruenberg & van der Goot, 2006; Marsh & 

Helenius, 2006).  Early endosomes become progressively acidic as they mature into late 

endosomes and eventually into lysosomes. Endosomal proteases have been implicated in the 

crucial roles by digesting and processing of proteins transported in the endosomal/lysosomal 

compartments [reviewed in (S. Muller, Dennemarker, & Reinheckel, 2012)]. The S protein of 

SARS coronavirus and the Glycoprotein (GP) of Ebola virus are cleaved by endosomal proteases, 

such as cathepsin L and B, to expose a putative fusion domain (Chandran, Sullivan, Felbor, 

Whelan, & Cunningham, 2005; Cote et al., 2011; Ebert, Deussing, Peters, & Dermody, 2002; 

Grove & Marsh, 2011). For reovirus, a non-enveloped virus, endosomal proteases remove the 

outer-capsid protein σ3, which exposes the protein µ1. The µ1protein is involved in viral 

membrane-penetration, which allows the reovirus core particles to be delivered into the cytoplasm 

for transcription of the viral genome (Schiff, 1998). Recently we demonstrated that porcine enteric 

calicivirus (PEC) requires endosomal cathepsins and bile acids that are supplemented in the 

medium for viral endosomal escape (Shivanna, Kim, & Chang, 2014a, 2014b, 2015).  

The addition of exogenous trypsin (or other proteases) is absolutely required for the 

isolation of PEDV from field samples as well as efficient replication of most PEDV strains (W. Li 

et al., 2016). It has been shown that proteases activity is required for efficient PEDV replication at 

the post-viral attachment stage, but where and how they work during virus entry is not clearly 

understood. Using two different PEDV strains KD or AA that were adapted to grow in the presence 

of trypsin or elastase, respectively, we investigated the roles of proteases in PEDV replication 

focusing on the viral entry events. One-step growth kinetic study showed that viral replication (or 
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RNA synthesis) occurs between 4-12 h PI (Figure 2-1) in the presence of trypsin or elastase. 

Without trypsin, no significant replication of PEDV KD occurred, indicating that this strain is 

heavily dependent on the presence of trypsin for replication. PEDV AA replication was 

significantly hampered by the absence of elastase but, interestingly, limited viral replication 

occurred even without elastase (or elastase with its inhibitor) (Figure 2-1). It is unclear how this 

limited viral replication occurs in the absence of elastase, but it is possible that it is associated with 

the fact that protease independent PEDV such as PEDV 8aa in our previous report (Y. Kim et al., 

2017) can be generated by passaging the virus in the absence of any protease. It is possible that a 

minor population of the protease-independent PEDV may be generated spontaneously during the 

infection of PEDV KD or AA with trypsin or elastase, respectively, and elastase provides more 

favorable conditions for producing the protease-independent PEDV.          

The leupeptin inhibition assay (Figure 2-2A) showed that trypsin is required for the post-

viral attachment stage (Figure 2-2A and B), which is consistent with a previous study by  Wicht et 

al (Wicht et al., 2014) where they reported that PEDV replication is significantly reduced when 

trypsin is inhibited after viral attachment to cellular receptors. During viral entry through receptors 

and endosomes, escaping of viral genomes from endosomes is critical for viral replication. Viral 

proteins in endosomes undergo conformational changes by decreasing pH and/or cleavage of viral 

proteins by host proteases in the endosomes, which leads to exposure of fusion domains or other 

mechanisms for membrane fusion and viral genome translocation to the cytoplasm (Grove & 

Marsh, 2011; Marsh & Helenius, 2006). Recently, our group has demonstrated the crucial events 

of the endosomal escape of PEDV and caliciviruses using confocal microscopy (Y. Kim et al., 

2017; Shivanna et al., 2014b, 2015). In that confocal microscopy study, the fluorescence signals 
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for PEDV and caliciviruses co-localized with the endosome marker Rab7, and viral escape from 

the endosomes occurred at 3 h PI (Y. Kim et al., 2017; Shivanna et al., 2014b, 2015).  

While PEDV KD and AA require different protease for efficient replication, there was no 

difference in viral trafficking in the early stages of viral replication (Figure 2-3). Both PEDV KD 

and AA were detected in the endosomes at 1 h PI regardless of the presence or absence of trypsin 

or elastase, but viral fluorescence signals disappeared at 4 h PI only in the presence of trypsin or 

elastase (Figure 2-3A for PEDV KD and 3B for PEDV AA). These suggested both PEDV KD and 

AA were able to escape from the endosomes at 4 h PI only in the presence of protease. At 6 h PI, 

viral signals were detected on perinuclear areas for both PEDV KD and AA in the presence of 

trypsin and elastase, respectively (Figure 2-4A), and the signals were co-localized with ER marker 

(PDI3A) (only PEDV KD was shown in Figure 2-4B), suggesting active viral protein synthesis 

(with replication). Without proteases, viral signals remained at endosomes (co-localized with an 

endosome marker, VPS26A) at 6 h PI (Figure 2-4A and 4B) or later time points up to 24 h PI (data 

not shown). This is consistent with our previous report with viral trafficking through endosomes, 

and interference with the proper viral escapes led to a significant reduction of viral replication (Y. 

Kim et al., 2017; Shivanna et al., 2014b, 2015).  

        Cathepsins are host proteases that are usually found in the endosomal compartments. The 

cathepsin family is classified into cysteine (cathepsins B, L, H, K, S, and O), aspartyl (cathepsin 

D and E) and serine (cathepsin G) proteases (Vasiljeva et al., 2007b). Cathepsin B and L have been 

reported to be involved in virus fusion and/or uncoating of some coronaviruses including SARS 

coronavirus, feline coronavirus and murine hepatitis virus (MHV) (Bosch, Bartelink, & Rottier, 

2008; Y. Kim et al., 2013; Qiu et al., 2006). A previous study using the pseudovirus of PEDV 

reported that PEDV S protein is activated by cathepsins, and a lysosomal acidification inhibitor, 
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or lysosomal cysteine protease inhibitors including cathepsin B (CA074) and L (Z-FY-CHO) 

inhibitors significantly reduced pseudovirus entry and PEDV replication (C. Liu et al., 2016). The 

results from this study are consistent with the previous study (C. Liu et al., 2016) demonstrating 

that cathepsins are required PEDV entry. We further demonstrated that cathepsin L and B 

inhibitors (Z-FL-CHCHO or CA074, respectively) inhibited the replication of PEDV KD and AA 

strain via interfering with the endosomal viral escapes (Figure 2-5A and B).   

        Based on the results, we established a proposed model for protease-mediated PEDV 

replication in Vero cells. In this model, PEDV binds to its receptor (APN), enters the cells via the 

endocytic pathway to reach the late endosomes, which is independent of exogenous protease in the 

medium. In the presence of exogenous protease, the activation of S protein can lead to virus escape 

from the late endosomes into the cytoplasm to initiate virus replication. In addition to exogenous 

protease, cathepsins in the endosomes are required for the successful endosomal escape of PEDV. 

In the absence of protease, PEDV remains in the late endosomes/lysosomes and is destined to be 

degraded.  
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Chapter 3 - Endosomal escape of protease independent PEDV is 

facilitated by acid sphingomyelinase mediated ceramide formation  

 

3.1 Abstract  

During the receptor-mediated endocytic pathway, viruses need to escape from the 

endosomes to the cytoplasm to initiate successful replication. The activation of acid 

sphingomyelinase (ASM) facilitates ceramide formation on the cell membrane and alters 

membrane permeability. Because it was shown that this ASM/ceramide pathway plays important 

role in the replication of various viruses, we examined this pathway in the entry events of porcine 

epidemic diarrhea virus (PEDV) with the trypsin independent strain (PEDV 8aa) with various 

methods including the confocal microscopy. In this report, we demonstrated the PEDV 8aa induces 

ASM activation and ceramide formation, which is crucial for viral replication. Inhibition of ASM 

with small molecule inhibitors or siRNA significantly reduced the replication of PEDV 8aa by 

inhibition of viral endosomal escape events.  

 

3.2 Introduction   

The majority of viruses utilize the receptor-mediated endocytosis to deliver their genetic 

cargo into the cell cytoplasm or nucleus to initiate the RNA/DNA replication (White & Whittaker, 

2016; Yamauchi & Helenius, 2013). Viruses traveling the endocytic pathway must escape from 

the endosome to the cytoplasm to initiate the replication, if not they will be degraded by various 

endo-lysosomal enzymes (Hogle, 2002; Kielian & Rey, 2006; Moyer & Nemerow, 2011). 

Therefore, the successful escape from the endosomes is essential for viral infection and replication. 
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Various constituents of cellular endocytic machinery are reported to participate in the virus entry. 

One of them is the acid sphingomyelinase (ASM)/ceramide pathway. Activation of ASM (or 

SMPD1) hydrolyzes sphingomyelin to produce bioactive lipid ceramide (Marchesini & Hannun, 

2004) on the cell membranes. The generated ceramides are accumulated, leading to formation of 

large ceramide-enriched membrane platforms, which modulate the biophysical properties of 

membranes resulting in shift of the plasma membrane fluidity, and further selectively trap 

receptors and signaling molecules for amplifying cellular signaling (Grassme, Jekle, et al., 2001; 

Gulbins & Li, 2006; Utermohlen et al., 2008). ASM can be activated by various stimuli including 

stress, ionizing, death receptors, irradiation, UV light, or heat (X. He et al., 2003; Stancevic & 

Kolesnick, 2010). Important roles of ASM mediated ceramide formation have also been 

documented in studies of various pathogens including Measles virus (Avota et al., 2011), 

rhinovirus (Grassme et al., 2005), Japanese encephalitis virus (Tani et al., 2010), and Ebolavirus 

(Miller et al., 2012) as well as Neisseriae gonorrhea (Grassme et al., 1997), Pseudomonas 

aeruginosa(Grassme, Jendrossek, et al., 2003) and Staphylococcus aureus (Esen et al., 2001). Our 

previous reports have also demonstrated that ASM/ceramide is important in the entry of 

caliciviruses including feline calicivirus (FCV), murine norovirus (MNV) and porcine enteric 

calicivirus (PEC) (Shivanna et al., 2015).  

The porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus with a single-stranded, 

positive-sense RNA genome. The PEDV infection leads to severe liquid diarrhea and vomiting in 

older pigs or extreme dehydration and death in suckling piglets(Jung & Saif, 2015).  Since the 

2013 PED outbreak in the US(Stevenson et al., 2013), the highly virulent genotype 2 PEDV strains 

have spread through Asia, America, and European continents raising significant economic losses 

in the swine industry. In our previous study, distinct PEDV US strains, 8aa and KD were generated 
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by serially passaging under different culture conditions including bile acids (glychenodeoxycholic 

acid, GCDCA) and trypsin to obtain suitable vaccine strains (Y. Kim et al., 2017). While PEDV 

KD strain requires trypsin for efficient replication in cells like most of PEDV isolates, PEDV 8aa 

does not need any exogenous protease for efficient replication. Using PEDV 8aa, we studied the 

role of ASM in PEDV entry, viral endosomal escape, and replication. Here, we demonstrated 

PEDV can activate ASM and ceramide formation, and inhibition of ASM with small molecule 

inhibitors or siRNA could reduce PEDV 8aa replication via inhibition of viral endosomal escape 

events. 

  

3.3 Materials and methods 

 

3.3.1 Viruses, cells, and reagents.  

The cell culture adapted PEDV 8aa was propagated on Vero cells as described previously 

(Y. Kim et al., 2017). The cultured viruses were concentrated by ultracentrifugation at 25,000 rpm 

with 30% w/v sucrose cushion at 4°C for 2h in an SW27 rotor. The pellets were resuspended in 

serum-free MEM and stored in -80°C. Vero cells (ATCC-CCL-81tm ) were obtained from ATCC 

(Manassas, VA) and maintained in Dulbecco’s minimal essential medium (DMEM) containing 

5% fetal bovine serum (FBS) and antibiotics (chlortetracycline [25 μg/ml], penicillin [250 U/ml], 

and streptomycin [250 μg/ml]). For ASM inhibitors, AY9944 was purchased from Santa Cruz 

Biotech (Santa Cruz, CA), desipramine and fluoxetine were purchased from Sigma-Aldrich (St 

Louis, MO). The anti-PEDV polyclonal antibody was collected from a pig challenge study 

previously reported by our group(Y. Kim et al., 2017). Monoclonal antibody to ceramide, VPS26A 
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(an endosomal marker), or PDIA3 (an ER marker) was obtained from Santa Cruz Biotech (Santa 

Cruz, CA).   

 

3.3.2 Confocal microscopy.  

50% confluent Vero cells on Lab-Tek II CC2 chamber slide (Thermo Fisher Scientific, 

Waltham, MA) were pretreated with 50 μM of AY9944 at 37°C for 1h. The cells were inoculated 

with Mock-medium or PEDV 8aa at an MOI of 50 and incubated at 37°C for 1h. Following three 

times washing with PBS, the cells were replenished with fresh media containing Mock-DMSO or 

50 μM of AY9944. Further incubation times differed for the purpose of the study: 4 h for ceramide 

formation study, 1, 3, 6, 9 and 12 h for endosomal escape study and 12 h for the intracellular 

location of PEDV. To prepare for the confocal microscopy, cells were fixed in 4% 

paraformaldehyde (Sigma-Aldrich) in PBS at room temperature (RT) for 15 min, permeabilized 

with 0.1% Triton x100 in PBS for 10 min at RT. Then, the cells were incubated in blocking buffer 

(5% bovine serum albumin in PBS) for 15min. After three-time washing with PBS, the cells were 

incubated with anti-PEDV polyclonal pig serum, mouse anti-ceramide antibody, mouse anti-

VPS26A, or mouse anti-PDIA3 at 37°C for 2h. Followed by the appropriate secondary antibodies 

with FITC and Alexa FlourTM 633, the nucleus was stained with SYTOX orange (0.5 μM in 0.9% 

NaCl). Coverslips were mounted with ProLongTM Gold antifade reagent (Invitrogen, CA), and the 

cells were scanned with a confocal microscope LSM 510 (Zeiss, Oberkochen, Germany) using a 

100x oil-immersion objective lens. The images were processed by ImageJ software 1.52b 

(http://imagej.nih.gov/ij/). The amounts of ceramide signal in the cytoplasm of cells were 

measured with the relative pixel intensity from randomly selected 10 cells of each treatment. 

Colocalization analysis was conducted using JACoP plugin in ImageJ software. Especially, the 

http://imagej.nih.gov/ij/
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colocalization of PEDV and ceramide was examined carefully with various time points and 

magnitudes.  

 

3.3.3 Inhibition of ASM by ASM inhibitors.  

Serial dilutions of ASM inhibitors including AY9944, desipramine or fluoxetine were used 

to explore an effect of ASM activity on PEDV replication. Confluent Vero cells in 12-well plates 

were preincubated with serial dilutions of each inhibitor or DMSO (less than 0.1%) at 37°C for 1 

h and infected with PEDV 8aa at an MOI of 0.01. After 1h incubation, the cells were washed three 

times with PBS, replenished with MEM containing the same concentration of the inhibitor or 

DMSO, and further incubated at 37°C for 24 h. Total RNA was isolated from the cells for real-

time qRT-PCR for measuring PEDV RNA levels.  

 

3.3.4 Small interfering RNA (siRNA) transfections.  

siRNA for ASM was designed based on the green monkey SMPD1 gene (GenBank 

accession no. NC_023642) and synthesized by Integrated DNA Technology (Coralville, IA). The 

two sets of ASM siRNAs were designed: ASMsiRNA_1 (5’-rGrGrUrCrUrArUrUrCrArCrCrGrCr 

CrArUrC and 5’-rCrArArGrGrUrUrGrArUrGrGrCrGrGrUrG) and ASMsiRNA_2 (5’-rCrCrArUr 

GrArGrArCrUrUrArCrArUrCrCrU and 5’-rCrArGrArUrUrCrArGrGrArUrGrUrArArGrU). One-

day old 50~70% confluent Vero cells were transfected with Mock-medium (transfection agent), 

irrelevant siRNA (negative control from Qiagen) or ASM siRNA sets using Lipofectamine 

RNAiMAX (Thermo Fisher Scientific) following the manufacturer’s protocol and incubated at 

37°C. After 48h post-transfection, the cells were inoculated with PEDV 8aa at an MOI of 0.01. 

After 1h incubation for virus attachment and entry, cells were replenished with fresh media 
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containing mock-medium, and further incubated for 24h. Total RNA was isolated from the cell 

lysates using the RNeasy kit (Qiagen, CA) according to the manufacturer’s protocol. Viral RNA 

titers were measured by real-time quantitative RT-PCR. 

 

3.3.5 Real-time quantitative RT-PCR.  

Real-time quantitative RT-PCR was performed to determine ASM expression levels after 

siRNA transfection, and PEDV RNA levels after virus infection using the one-step platinum RT-

PCR kit (Invitrogen, CA). ASM specific mRNA levels were measured with the primer/probe set 

with 5’-CCCAGTCTGCAAAGGTCTATT-3’, 5’-GCAGATTGCACAGCTTGATG-3’, and 

probe: 5’-56-FAM/TGGGCTGAA/ZEN/GAAGGAA CCCAATGT/3IABkFQ/-3’ targeting 

African green monkey ASM. PEDV RNA levels were determined with the primer/probe set: F-5’-

GCTATGCTCAGATCGCCAGT-3’, R-5’-TCTCGTAAGAGTCCGCTAGCTC-3’, and probe: 

5’/56-FAM/TGCTCTTTG/ZEN/ GTGGTAATGTGGC/3IABkFQ/-3’ targeting the PEDV N gene 

(Y. Kim et al., 2017). β-actin expressions were measured using the specific primer sets to 

normalize variations and calculate ΔΔCT values. The condition for both reactions was 50°C for 30 

min (for RT) and 95°C for 5 min, then 40 cycles of denaturation at 95°C for 15s, annealing at 60°C 

for 60s and elongation at 72°C for 30s. The Ct values for PEDV RNA were converted to the Log10 

TCID50 equivalents/ml based on the equation derived from the standard curve generated from the 

serial dilution of cell culture-grown PEDV (Y. Kim et al., 2017).  

 

3.3.6 Cathepsin inhibition assay.  

Serial dilutions of cathepsin L inhibitor (MDL 28170), cathepsin B inhibitor (CA074-Me) 

or an endosomal acidification inhibitor (chloroquine) were used to determine an effect of 
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endosomal proteases or maturation on PEDV replication. Confluent Vero cells in 12-well plates 

were preincubated with serial dilutions of each inhibitor or DMSO(less than 0.1%) at 37°C for 1 

h and infected with PEDV 8aa at an MOI of 0.01. After 1h incubation, the cells were washed three 

times with PBS, replenished with MEM containing the same concentration of the inhibitor or 

DMSO, and further incubated at 37°C for 24 h. Total RNA was isolated from the cells for real-

time qRT-PCR for measuring PEDV RNA levels.  

 

3.3.7 Statistical analysis.  

The effect of ASM inhibitors or ASM siRNA and the ceramide pixel intensities were analyzed 

using Graph Pad Prism 5 (GraphPad Software, La Jolla, CA) with Student’s t-test. P-value < 0.05 

(two-tailed) was considered statistically significant. All the results shown were from at least three 

independent experiments.  

 

3.4 Results 

 

3.4.1 PEDV infection in Vero cells induces ASM mediated ceramide formation.  

We have previously reported that incubation of live or inactivated FCV or MNV to the permissible 

cells induced the ceramide formation (Shivanna et al., 2015), and the increased ceramide facilitated 

viral endosomal escape and viral replication. Since PEDV is also known to utilize the endocytic 

pathway, we investigated if the inoculation of PEDV to Vero cells triggers ceramide formation 

using confocal microscopy. The confocal images of cells with Mock-medium infection showed 

minimal levels of ceramide signals (Figure 3-1A). Incubation of PEDV 8aa at an MOI of 50 for 1 

h, and further incubation for 4 h, the ceramide signals in cells significantly increased (Figure 3-
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1A) up to 4-fold increase from the base-line. The treatment with ASM inhibitor abolished the 

ceramide induction by PEDV 8aa (Figure 3-1C and 1D). At this time point, PEDV was found in 

the endosomes in the cells as we reported before(Y. Kim et al., 2017). However, there was no 

evidence for the co-localization of PEDV and ceramide with various conditions (Figure 3-1B).  

 

 

 

 

 

Figure 3-1. Ceramide formation by PEDV inoculation on Vero cells. 

Vero cells were pretreated with DMSO (0.1%) or 50 μM of AY9944 at 37°C for 1h, followed by 

inoculation of Mock-medium (A), 50 MOI of PEDV 8aa (B and C). Following 1 h incubation, cells 

were washed with PBS and then added with fresh media containing same concentration of DMSO 

or AY9944, further incubated at 37°C for 4h. Cells were then fixed for confocal microscopy. Nuclei 

(blue), ceramide (red), PEDV(green) or merged images were presented. The relative pixel intensity 

was measured from randomly selected 10 cells of each treatment. Asterisks indicate a significant 

difference compared to the Mock (*, P < 0.05) (D). 
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3.4.2 The inhibition of ASM significantly reduced the replication of PEDV 8aa.  

To determine the roles of ceramide formation by ASM in the PEDV replication, we 

infected 8aa on Vero cells with ASM inhibitors and measured PEDV replication. Three well-

known ASM inhibitors were used in this study including AY9944, desipramine, and fluoxetine. 

These are known to block and degraded ASM within cells and thereby inhibit ceramide formation 

(Kornhuber et al., 2010). The cytotoxic concentrations of each inhibitor were tested in Vero cells, 

and the concentration showing minimal cytotoxicity for each compound was determined. In the 

presence of each ASM inhibitor at 50 μM, the replication of PEDV 8aa was significantly reduced 

by 3 - 4.6 log10-fold  compared to the mock treatment control (Figure 3-2A). To further confirm 

the effects of ASM on PEDV replication, two ASM specific siRNAs were designed and tested 

against ASM mRNA levels and PEDV replication. The transfection of each siRNA at 100 nM to 

Vero cells, significantly decreased ASM RNA levels by at least 85% compared to the transfection 

with mock-medium or irrelevant siRNA treatment (Figure 3-3A). The transfection of each ASM 

Figure 3-2. Effect of ASM inhibitors on PEDV 

replication.  

Confluent Vero cells were preincubated with DMSO 

or each ASM inhibitor at 37 ° C for 1 h, followed by 

inoculation with PEDV 8aa.  After the incubation, 

cells were washed 3 times with PBS, replenished with 

fresh media containing same concentration of 

inhibitor and further incubated at 37°C for 24 h. Viral 

replication was determined by real-time qRT-PCR and 

converted to the TCID
50

 equivalents/ml. Asterisks 

indicate significant difference compared to the control 

(*,P < 0.05), ns: non-significant difference. 
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siRNA also significantly reduced the replication of PEDV 8aa by 80.7~91.9% compared to the 

transfection with mock-medium or irreverent siRNA (Figure 3-3B).  

 

3.4.3 Ceramide formation facilitated the endosomal escape of PEDV 8aa.  

The effects of ASM mediated ceramide formation on PEDV endosomal escape were 

examined by using the confocal microscopy. Vero cells inoculated with PEDV 8aa, the viral 

fluorescence signals were detected within the endosomes up to 6 h PI with and without ASM 

inhibitor (Figure 3-4A top). At 9 h PI, PEDV signals disappeared from the endosomes without the 

inhibitor (Figure 3-4A middle row), but remained in the endosomes in the presence of the inhibitor 

(Figure 3-4B middle row), suggesting that virions escaped from the endosome in the absence of 

the inhibitor, and the inhibitor blocked the escape events. At 12 h PI, strong and diffused 

fluorescence signals of PEDV were observed around the nucleus without the inhibitor (Figure 3-

Figure 3-3. Effect of ASM siRNA on ASM RNA levels (A) and PEDV replication (B). 

Vero cells were transfected with Mock-medium, ASM specific siRNA (1 and 2) or irrelevant 

siRNA (IRR). After 48 h, cells were inoculated with PEDV 8aa at an MOI of 0.01, and viral 

replication was measured at 24 h PI by real-time qRT-PCR. Asterisks indicate significant 

difference compared to the control (*,P < 0.05), ns: non-significant difference. 
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4A bottom row), which were colocalized with PDIA3 (an ER marker) (Figure 3-5), which suggests 

newly synthesized PEDV proteins and active viral replication (Figure 3-4A bottom, Figure 3-5). 

However, in the presence of the inhibitor, PEDV signals remained in the endosomes (Figure 3-4B 

bottom row), colocalized with VPS26A (Figure 3-5).     

   

 

 

 

 

 

Figure 3-4. Effects of ASM inhibitor on the endosomal escape of PEDV 8aa.  

Confluent Vero cells were infected with PEDV 8aa  at an MOI of 50 and incubated with DMSO or 

AY9944 (50 μM) for 1h, 3h, 6h, 9h, or 12h. Cells were fixed and probed with swine polyclonal 

anti-PEDV antibody, followed by FITC-labeled goat-anti-swine antibody (green). Nuclei were 

stained with SYTOX orange (5 μM)(Blue) as described in the text. Merged images of PEDV with 

nuclei were presented. 
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Figure 3-6. Effect of cathepsin inhibitors 

(MDL 28170 or CA074 ME) or chloroquine 

in PEDV 8aa replication. 

Confluent Vero cells were pre-treated with mock 

(medium), MDL 28170, CA074 ME, or 

chloroquine for 1h before PEDV inoculation 

(MOI 0.1). After virus infection, cells were 

replenished with the same concentration of 

inhibitor at 37°C and total RNA was isolated at 

12h PI. Viral replication was determined by real-

time qRT-PCR. Asterisks indicate significant 

difference compared to the control (*,P < 0.05) 

(D). 

Figure 3-5. Co-localization of PEDV 8aa with the endosome (VPS25A) or ER(PDIA3) 

marker.  

Confluent Vero cells were infected with PEDV 8aa at an MOI of 50 and incubated with DMSO 

or AY9944 (50 μM). Cells were at 12 h PI and probed with the antibody to PEDV, VPS26A 

and  PDIA3, followed by FITC-labelled goat-anti-swine antibody (green), anti-mouse Alexa 

Flour 633 (red) and nuclei (blue).  Merged images were prepared for the colocalization. 
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3.4.4 Cathepsin activity and endosomal maturation are required for efficient 

replication of PEDV 8aa.  

As the PEDV 8aa passes through the endosomal pathway, the roles of endosomal proteases 

(cathepsin B and L) or the endosomal acidification in PEDV 8aa replication were explored. In 

advance of the experiment, the cytotoxicity of each inhibitor was established in the Vero cells, and 

the minimal toxicity concentrations were used. Treatment of the cells with MDL 28170 at 80 and 

40 μM or CA0740Me at or 40 μM significantly inhibited PEDV 8aa replication (Figure 3-6). The 

treatment of chloroquine also significantly reduced the replication of PEDV 8aa (Figure 3-6).  

 

3.5 Discussion 

It has been shown that ASM-mediated ceramide formation plays an important role in the 

replication of various viruses including Measles virus (Avota et al., 2011), rhinovirus (Grassme et 

al., 2005), Japanese encephalitis virus (Tani et al., 2010), and Ebolavirus (Miller et al., 2012). The 

precise roles of ceramide and ASM in the viral infection remain to be established. There are several 

possible explanations for the effects of ASM in viral replication including initiating signaling 

cascade via ceramide, segregation of membrane receptors at large lipid rafts, and alteration of the 

membrane biophysics which can increase membrane fusogenicity (Grassme et al., 2007; Zhang et 

al., 2009). Activated ASM cleaves the polar head of compact shaped sphingomyelin, which 

generates cone-shaped ceramide at one leaflet of the lipid bilayer and induces an asymmetric 

membrane tension (Lopez-Montero et al., 2010). This increased ceramide on the plasma membrane 

leads to fluidity change, triggering a sequence of membrane perturbation, all of which 

consequently propel intracellular membrane fusion (Utermohlen et al., 2008). Thus, ASM and 

ceramide formation may facilitate viral fusion to cell membranes and viral entry events.   
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Coronaviruses are not only one of the most important current zoonotic viruses, but also 

future health threats due to their ability to adapt to new host via rapid mutations. While there are 

many different coronaviruses infecting humans and animals, they utilize S protein to bind 

corresponding receptors and the receptor-mediated endocytosis events are well conserved. These 

conserved features may be the targets for broad-spectrum antiviral drug development. PEDV 

provides a unique model to study coronavirus entry because most strains require exogenous 

protease for efficient replication in cultured cells. However, we and others isolated protease 

independent PEDV strains that can replicate well in cultured cells without any exogenous 

proteases. Trypsin dependent PEDV KD strain is representing most of the cell-culture adapted 

PEDV strains which require exogenous protease. This strain enters target cells via the endocytic 

pathway and subsequently can escape from endosomes only in the presence of exogenous protease 

(trypsin) (Oh et al., 2019). However, protease-independent PEDV 8aa escapes from the endosomes 

without any exogenous protease. Because most coronaviruses do not require exogenous protease 

for efficient replication in cells, this strain may serve a good model for ASM/ceramide studies on 

the coronavirus entry.       

The formation of ceramide by coronavirus infection also has been mentioned by an earlier 

human coronavirus study (Muller et al., 2018). Lipidome analysis of human coronavirus-229E 

infected Huh-7 cells demonstrated the upregulation of ceramides and lysophospholipids, but the 

relationship between the ceramide upregulation and replication of HCoV-229E was not 

investigated. First, we investigated if PEDV could activate ASM and ceramide formation in Vero 

cells. Incubation of PEDV 8aa at an MOI of 50 for 1 h (and an additional 4 h), the ceramide signals 

in cells significantly increased (Figure 3-1) detected by the confocal microscopy. During this time 

point, virus particles were observed in the endosomes in the cells (Figure 3-1).  Previous Ebola 
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virus study demonstrated that the EBOV pseudotyped virus colocalized with the ASM on the cell 

surface (non-permeabilized treatment) at an early time of infection (30min – 90min pi) suggesting 

recruitment of ASM by virus binding (Miller et al., 2012). We tried to explore the same early ASM 

recruitment by PEDV binding. The number and intensity of ASM signals were gradually increased 

on the cell surface after PEDV infection. However, there was no evidence for the colocalization 

of PEDV and ASM (Data not shown), which may be due to the different virus type and entry 

mechaism. 

Recently, our group has demonstrated the importance of ASM activation on viral escapes 

from endosomes and successful replication with caliciviruses. Among caliciviruses, FCV and 

MNV can grow well in the cells without any supplement, but PEC can replicate in the cells only 

in the presence of bile acids. Incubation of live or inactivated FCV or MNV to the permissible 

cells induced the ceramide formation, viral escapes from endosomes and successful replication 

(Shivanna et al., 2015). However, when PEC was the inoculation to the cells, while viruses entered 

into endosomes, they were not able to escape from the compartment, and degraded. Bile acids 

facilitated viral escapes from endosomes and successful replication (Shivanna et al., 2015). The 

results with PEDV 8aa were similar to our studies with caliciviruses, showing ASM activation and 

ceramide formation by PEDV is crucial for viral escapes from endosomes and successful 

replication. Both small molecule inhibitors and specific siRNA to ASM significantly reduced the 

replication of PEDV 8aa (Figure 3-2 and 3-3). When we further studied which step of 8aa 

replication was affected by ASM inhibition, both could block viral escape events from endosomes 

(Figure 3-4 and 3-5).  

There have been numerous reports that cathepsins and endosomal maturation are involved 

in the various virus lifecycle including influenza A virus, SARS CoV, and  MHV (Edinger, Pohl, 
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Yángüez, & Stertz, 2015; Qiu et al., 2006; Simmons et al., 2005). That was also previously 

reported by our group that the treatment of cells with cathepsin inhibitor or chloroquine 

significantly reduced calicivirus and protease adapted PEDV replication through interfering 

endosomal escape of the viruses(Shivanna et al., 2014b) (Oh et al., 2019). These previous results 

are consistent with the results of PEDV 8aa from this study (Figure 3-6) that the treatment of 

cathepsin inhibitors and chloroquine significantly decreased 8aa titer. The roles of caspases during 

viral replication can be explained by cleavage of viral structural protein by them. SARS S protein, 

PEC VP2, or MNV-1 and FCV VP1 are known to be cleaved by cathepsin L (Bosch et al., 2008; 

Shivanna et al., 2014b) and the cleaved structural protein may contribute to virus-cell membrane 

fusion or capsid uncoating to allow translocation of viral genomes. These results suggest different 

viruses (enveloped PEDV or non-enveloped caliciviruses) utilize the same pathways for 

transferring genetic materials from endosomes to cell cytoplasm where the translation may initiate 

with positive-sense RNAs. Understanding this shared mechanism may provide therapeutic targets 

for broad-spectrum antiviral development against diverse viruses from different families.  

 

3.6 Acknowledgment  

We would like to thank David George for technical assistance. This work was supported by NIH 

Grant, R01 AI130092. 

 

 

 

 

 



 

82 

Chapter 4 - Caspase-Mediated Cleavage of Nucleocapsid protein of 

a Protease-Independent Porcine Epidemic Diarrhea Virus Strain 

 

4.1 Abstract 

Porcine epidemic diarrhea virus (PEDV) infection in neonatal piglets can cause up to 100% 

mortality, resulting in significant economic loss in the swine industry. Like other coronaviruses, 

PEDV N protein is a nucleocapsid protein and abundantly presents at all stages of infection. 

Previously, we reported that the N protein of trypsin-independent PEDV 8aa is cleaved during 

virus replication. In this study, we further investigated the nature of N protein cleavage using 

various methods including protease cleavage assays with or without various inhibitors and 

mutagenesis study. We found that PEDV 8aa infection in Vero cells leads to apoptotic cell death, 

and caspase 6 or 7 can cleave PEDV 8aa N protein at the late stage of the replication. The caspase-

mediated cleavage occurs between D424 and G425 near the C-terminal of N protein. We also report 

that both cleaved and uncleaved N proteins are exclusively localized in the cytoplasm of PEDV 

infected cells.    

 

4.2 Introduction 

Porcine epidemic diarrhea virus (PEDV) is an enveloped virus with a single-stranded 

positive-sense RNA genome of about 30 kb and a member of the genus Alphacoronavirus in the 

family Coronaviridae (Kocherhans, Bridgen, Ackermann, & Tobler, 2001).  PEDV can cause an 

enteric disease (PED) with high mortality of up to 100% in neonatal piglets. There are at least two 

genogroups with PEDV with classical genogroup 1 and newly emerging genogroup 2 (Y. W. 
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Huang et al., 2013; Jung & Saif, 2015). Genogroup 1 PEDV has circulated among countries in 

Europe and Asia since the early 1980s (Y. W. Huang et al., 2013). In 2013, the first outbreak with 

genogroup 2a PEDV occurred in the US (Stevenson et al., 2013) and subsequently in Canada and 

Mexico (Anastasia et al., 2014; Q. Chen et al., 2014; Pasma, Furness, Alves, & Aubry, 2016), 

resulting in death of 7 million pigs during one year epidemic period (Cima, 2014). Moreover, there 

are several reports that the US PEDV strains (genogroup 2) caused outbreaks in European 

(Grasland et al., 2015; Hanke et al., 2015; Theuns et al., 2015) and Asian countries (S. Lee & Lee, 

2014; C. N. Lin et al., 2014; Van Diep et al., 2015), which raised significant economic and public 

health concerns worldwide (Schulz & Tonsor, 2015).   

Coronavirus genome encodes four major structural proteins including spike (S), envelope 

(E), membrane (M) and nucleocapsid (N) (Duarte, Gelfi, Lambert, Rasschaert, & Laude, 1994). 

Among them, N protein is an abundant structural protein present at all stages of infection. The 

coronavirus N protein is composed of multiple domains including N1 (or N-terminal domain), N2 

(or C-terminal domain) and N3 with spacers between them (K. R. Hurst, Koetzner, & Masters, 

2013). Both N1 and N2 are very basic and interact with the viral RNA genome and/or N protein 

(K. R. Hurst et al., 2013). N3 is the carboxy-terminal part (~45 aa) with an excess of acidic residues 

and known to interact with M protein (Kelley R. Hurst et al., 2005; Verma, Bednar, Blount, & 

Hogue, 2006). The primary role of N protein is to act as an essential architecture component in 

coronavirus assembly through the interactions with N, M and viral RNA (Cavanagh, 1997). In 

addition to its primary role, N protein appears to perform multiple functions in the viral replication 

cycle and viral pathogenesis (McBride, van Zyl, & Fielding, 2014). Some previous research 

suggests that the N protein correlates with optimal coronavirus RNA transcription and/or 

replication, by acting as RNA chaperones to assist the template-switching steps (Zuniga et al., 
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2010; Zuniga et al., 2007), and participating in the replicase components for efficient RNA 

synthesis (K. R. Hurst et al., 2013; K. R. Hurst, Ye, Goebel, Jayaraman, & Masters, 2010). In 

several studies, N protein was also shown to be involved in host cell signaling and immune 

responses to facilitate viral replication (Cao et al., 2015; X. Xu et al., 2013).  

It was reported that N protein of acute respiratory syndrome coronavirus (SARS-CoV) or 

transmissible gastroenteritis virus (TGEV) is processed by caspases during apoptotic cell death 

(Diemer et al., 2008; Eleouet et al., 2000). The N protein cleavage was implied for playing roles 

in efficient viral replication and pathogenicity (Diemer et al., 2008; Eleouet et al., 2000). For 

PEDV N protein, Jaru-Ampornpan et al. demonstrated that virally-encoded 3C-like protease 

(3CLpro) cleaves PEDV N protein during virus replication and the cleavage is associated with 

viral adaptation in cell culture (Jaru-Ampornpan et al., 2017). Previously, we reported two forms 

of N protein from the protease independent PEDV 8aa strain, while only one form from the 

protease dependent PEDV KD strains (Y. Kim et al., 2017). We hypothesized that the two forms 

of N protein are generated by a post-translational modification by a host or cellular protease(s) 

during the replication of the PEDV 8aa strain. Here, we demonstrated that the N protein of PEDV 

8aa strain is cleaved by caspases during apoptosis of Vero cells. The PEDV N protein was cleaved 

by caspase 6 or 7 between D424 and G425 near the C-terminal of N protein. Furthermore, N protein 

was localized exclusively in the cytoplasm of PEDV infected cells regardless of N protein 

cleavage. Our results demonstrated characteristics during the replication of PEDV 8aa, which 

provides valuable information to understanding PEDV biology. 

 

4.3 Materials and methods 
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4.3.1 Viruses, cells, and reagents.  

The cell culture adapted PEDV US strains (8aa and KD) were propagated in Vero cells 

without any protease (8aa strain) or in the presence of TPCK-treated trypsin (1 μg/ml) (KD strain) 

as described previously (Y. Kim et al., 2017). Vero (ATCC-CCL-81tm ) cells and HEK 293T cells 

were obtained from ATCC (Manassas, VA). Vero cells were maintained in Dulbecco’s minimal 

essential medium (DMEM) containing 5% fetal bovine serum (FBS) and antibiotics 

(chlortetracycline [25 μg/ml], penicillin [250 U/ml], and streptomycin [250 μg/ml]). HEK293T 

cells were maintained in minimal essential medium (MEM) containing 10% fetal bovine serum 

(FBS) and the antibiotics. L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated 

trypsin and Leupeptin was purchased from Sigma-Aldrich (St. Louis, MO). Furin inhibitor I was 

purchased from Cayman (Ann Arbor, MI). Pan-caspase inhibitor, Z-VAD.fmk was purchased from 

Enzo (Farmingdale, NY). Recombinant human Caspase 3 and 6 were purchased from Millipore 

(Temecula, CA) and recombinant caspase 7 were purchased from R&D Systems (Minneapolis, 

MIN). The synthesis of a coronavirus 3CLpro inhibitor, GC376, was previously described (Tiew 

et al., 2011). Anti-PEDV polyclonal antibody (Pab) was collected from a pig challenge study 

previously reported by us (Y. Kim et al., 2017). A monoclonal antibody (Mab) against PEDV N 

protein was kindly provided by Dr. Ying Fang (Kansas State University).    

 

4.3.2 Protein identification by mass spectrometry.  

To confirm whether the double bands from PEDV 8aa in SDS-PAGE are both N proteins, 

they were analyzed by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) 

mass spectrometry. Briefly, concentrated 8aa strain was loaded on the SDS-PAGE gel and stained 
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with Coomassie brilliant blue. The two bands that correspond to N protein were cut out separately 

and sent to Applied Biomics, Inc (Hayward, CA) for MALDI-TOF mass spectrometry study.  

 

4.3.3 Western blot analysis of PEDV N protein.  

To study the kinetics of PEDV N protein synthesis and cleavage, confluent Vero cells were 

inoculated with PEDV 8aa or KD at an MOI of 0.01, and incubated with or without trypsin (1 

μg/ml). Following 24, 36, or 48 h incubation, cells were lysed with Tris-glycine SDS Sample 

Buffer (Thermo Fisher Scientific, PA) and subjected for the Western blot analysis. To determine 

the effect of various protease inhibitors on N protein cleavage, Z-VAD.fmk (pan-caspase inhibitor, 

100 μM), furin inhibitor I (20 μM), leupeptin (trypsin inhibitor, 20 μM), or mock-Medium was 

added to confluent Vero cells in a 12-well plate, and the cells were then immediately inoculated 

with PEDV 8aa at an MOI of 0.01. Following 24, 36 or 48 h incubation at 37°C, cells were then 

lysed with Tris-glycine SDS sample buffer. Cell lysates were resolved by SDS-PAGE (4-12% 

Tris-glycine gel) and transferred onto nitrocellulose membranes. The membranes were blocked 

with 5% non-fat milk in phosphate-buffered saline with Tween-20 for 1 h and probed with PEDV 

Pab antibody followed by horseradish peroxidase(HRP)-conjugated goat anti-swine IgG. Virus 

proteins were visualized by chemiluminescence reagents (Thermo Fisher Scientific, PA). 

 

4.3.4 Effects of Z-VAD-fmk on PEDV 8aa replication.  

Confluent Vero cells in 12 well plates were inoculated with PEDV 8aa (MOI of 0.01) for 1 h at 

37°C in the presence of Z-VAD-fmk (100 μM, 10 μM, or mock (Medium). Following incubation, 

the plates were washed three times with PBS and replenished with fresh media containing the same 

concentration of Z-VAD-fmk or mock-medium. After 24 h or 48 h incubation, cells were subjected 



 

87 

to three times of freezing and thawing and PEDV titers were determined by the 50% tissue culture 

infective dose (TCID50) method (Reed & Muench, 1938).  

 

4.3.5 DNA fragmentation assay.  

To determine if Vero cells infected with PEDV 8aa undergo apoptosis, DNA fragmentation 

assay was performed. Vero cells inoculated with PEDV 8aa or mock-medium were incubated for 

48 h before DNA isolation as described previously (Hinshaw, Olsen, Dybdahl-Sissoko, & Evans, 

1994). Briefly, infected or uninfected cells were detached with 0.5 ml of detergent buffer (10mM 

Tris [pH7.4], 5mM EDTA, 0.2%Triton) and incubated on ice for 30 minutes. The cell lysates were 

centrifuged at 10,000 x g at 4°C for 30 min, and supernatants were used for extraction of DNA 

with buffered phenol, once with buffered phenol-chloroform, and once with chloroform-isoamyl 

alcohol (24:1). DNA was ethanol precipitated with 500 mM NaCl and resuspended in 15 μl of 

sterile water. The samples were run on a 2% agarose gel with ethidium bromide.  

 

4.3.6 Cell-free cleavage of PEDV N protein by recombinant caspases.  

To examine if caspases can cleave N protein, the N gene of PEDV US 8aa strain was cloned 

into pIRES (Clontech, CA) plasmid. The sequences encoding HA tag was added to the N- or C-

terminus of N protein using the primers, 5’-AATTCTCGAGATGTACCCATACGATGTTCCAG 

ATTACGCTGGTGGAGCTTCTGTCAGTTTTCAG-3 and 5’-AATTCTCGAGATGGCTTCT 

GTCAGTTTTCA-3’ for N-terminal tag; and 5’-AATTCTCGAGATGGCTTCTGTCAGTTTTC 

AG-3’ and 5’-AATTCTCGAGTTAATTTCCTGTGTCGAAGATAGCGTAATCTGGAACAT 

CGTATGGGTATCCACC-3’ for C-terminal tag. The amplified DNA was cloned into the plasmid 

in the downstream of the CMV promoter and the resulting plasmid was designated as pCI-N-nHA 
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or pCI-N-cHA. The 60-80% confluent 293T cells were transfected with pCI-N-nHA or pCI-N-

cHA using Lipofectamine 3000 reagent (Thermo Fisher Scientific, PA) according to the 

instructions of the manufacturer and incubated for 48h for N protein expression. Following 

incubation, cell lysates (5 μl) were prepared and incubated with the equal volume of recombinant 

human caspase 3, 6 or 7, which contains containing 20 or 2 unit, 1:2 or 1:10, respectively) 

respectively, in the reaction buffer (20 μl) for 2 h at 37°C (Stennicke & Salvesen, 1997). The 

samples were then subjected to SDS-PGE using 4-12% Tricine gel (Thermo Fisher Scientific, PA) 

and the proteins were transferred onto nitrocellulose membranes. The membranes were probed 

with anti-HA mouse monoclonal antibodies followed by horseradish peroxidase-conjugated anti-

mouse secondary antibody for Western blot analysis.  

 

4.3.7 Plasmid constructions and mutagenesis assay.  

First, using the N protein with HA tag at N- and or C-terminal tag and caspase 6, the 

cleavage site was determined at the C-terminus. To determine the exact cleavage site in N protein, 

aspartic acid at four different locations (345, 372, 424, and 427) at the C-terminus was mutated to 

glycine using pIRES-N-nHA and the QuikChange site-directed mutagenesis kit (Agilent, CA). 

These four putative cleave sites were selected using the online tool (Cascleave: 

http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/Cascleave/index.html) (Song et al., 2010). The plasmids 

carrying each mutation were generated with following primers: for pIRES-N-nHAD345G , 5’ GTT 

CGT GAG CTA GCG GGC TCT TAC GAG ATT ACA 3’ and 5’ TGT AAT CTC GTA AGA 

GCC CGC TAG CTC ACG AAC 3’, for pIRES-N-nHAD372G, 5’ CTT GTT TCA CAG GTG GGT 

GCA TTT AAA ACT GGG 3’ and 5’ CCC AGT TTT AAA TGC ACC CAC CTG TGA AAC 

AAG 3’,  for pIRES-N-nHAD424G,  5’ TGG GAC ACA GCT GTT GGT GGT GGT GAC ACG 
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GCC 3’ and 5’ GGC CGT GTC ACC ACC ACC AAC AGC TGT GTC CCA 3’), and for pIRES-

N-nHAD427G, 5’ GCT GTT GAT GGT GGT GGC ACG GCC GTT GAA ATT 3’ and 5’ AAT 

TTC AAC GGC CGT GCC ACC ACC ATC AAC AGC 3’. The underlined bold italic nucleotide 

in each primer is for the change in the mutagenesis analysis. The mutated sequence in each plasmid 

was confirmed by sequencing analysis. Each mutated N protein was expressed in 293T cells by 

transfecting the cells with each mutated plasmid and cell-free cleavage assay with the recombinant 

caspases 6 was done using the mutated N protein as described above.  

 

4.3.8 Antiviral effects of GC376 on PEDV in cell culture. 

Because the previous report suggested that PEDV 3CLpro can cleave N protein (Jaru-

Ampornpan et al., 2017), we used a 3CLpro inhibitor GC376 to determine its effect on N protein 

cleavage. First, we examined the effectiveness of GC376 against PEDV replication and determined 

the effective concentrations inhibiting 50% and 90% of viral replication (EC50 and EC90, 

respectively). Serial concentrations of GC376 were added to confluent Vero cells in 24-well plates 

and the cells were promptly infected with PEDV 8aa at an MOI of 0.01. The cells were then further 

incubated at 37°C in the presence of GC376 until an extensive cytopathic effect was observed in 

the mock-treated well (up to 48 h). After three times freezing and thawing of the plates, viral titers 

were determined by real-time quantitative RT-PCR as described previously (Y. Kim et al., 2017). 

The TCID50 equivalents/ml was calculated by a standard curve generated from the CT values 

plotted against the corresponding TCID50 titers/ml. The EC50 and EC90 values were calculated by 

non-linear regression analysis (four-parameter variable slope) using GraphPad Prism software 

version 6.07 (GraphPad Software, La Jolla, CA). To determine whether 3CLpro or caspases cleave 

N protein, GC376 (20 μM), Z-VAD-fmk (100 μM) or DMSO (Mock) was added to PEDV 8aa-
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infected Vere cells at 24 h after virus inoculation. Cells lysates were prepared at 0, 12 and 24 h 

(24, 36 and 48 post virus inoculation (hpi), respectively) after the addition of the inhibitors for 

Western blot analysis as described above.  

 

4.3.9 Confocal laser scanning microscopy for N protein localization.  

A confocal microscopy study was performed to determine whether N protein cleavage 

affects the localization of the N protein. Semi-confluent Vero cells on Lab-Tek II CC2 chamber 

slide (Thermo Fisher Scientific, PA) were inoculated with PEDV 8aa strain at an MOI of 1 in the 

presence of Z-VAD-fmk (100 μM) or DMSO. Following 1h incubation at 37°C, the cells were 

washed three times with PBS, replenished with fresh media containing the same concentration of 

Z-VAD-fmk and further incubated for 36 h at 37°C. In another experiment, PEDV KD strain was 

used to infect the cells on Lab-Tek II CC2 chamber slide, and the cells were incubated for 12 h in 

the presence of trypsin (1 μM) at 37°C. In addition, Vero cells were transfected with pIRES-N-

nHA and incubated for 24 h. The cells in these experiments were fixed in 4% paraformaldehyde 

(Sigma-Aldrich, MO) in PBS (pH 7.4) for 15 min at room temperature (RT), permeabilized with 

0.1% Triton X-100 in PBS for 10min at RT, washed three times with PBS and further incubated 

with 0.5% bovine serum albumin in PBS for 15 min. The cells were then incubated with Mab 

against PEDV N protein for 1 h at 37°C.  Then, the cells were washed three times with PBS and 

further incubated with FITC-labeled secondary antibody against mouse IgA, IgG or IgM (KPL, 

Gaithersburg, MD) for 1h at 37°C. The cells were also stained with SYTOX orange (Invitrogen, 

CA) for 15 minutes. Coverslips were mounted with ProLong®  Gold antifade reagent (Invitrogen, 

CA), and the cells were observed with a confocal microscope LSM 510 (Zeiss, Oberkochen, 
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Germany) using a 100x oil-immersion objective lens. The images were processed by Image J 

software 1.52n (http://imagej.nih.gov/ij/).  

 

4.3.10 Statistical analysis.  

The effects of Z-VAD-fmk in PEDV 8aa replication were compared to the Mock treatment 

using GraphPad Prism (GraphPad Software, La Jolla, CA, USA). Statistical analysis was 

performed using student t-test. P-value of <0.05 was considered as statistically significant. Data 

were from at least three independent experiments.  

 

4.4 Results 

 

Figure 4-1. The kinetics of PEDV N protein synthesis and cleavage.  

Confluent Vero cells were inoculated with PEDV 8aa (left lanes) or KD (right lanes) at an MOI of 

0.1.  Cell lysates were prepared at 24, 36 or 48 h post inoculation (hpi), and Western blot analysis 

was performed with an anti-PEDV positive serum. Uncleaved (N) and cleaved (N’) N protein are 

indicated by arrowheads. 

 

http://imagej.nih.gov/ij/
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4.4.1 The N protein of PEDV 8aa is cleaved during virus replication.  

We have previously generated two distinct PEDV strains, 8aa and PEDV KD by serially 

passaging a field-isolated PEDV in different culture conditions (Y. Kim et al., 2017). Some distinct 

characteristics of PEDV 8aa strain include protease independence, no cell fusion formation, 

efficient virus replication (viral titers reach over 108 TCID50/ml) and putative N protein cleavage 

(Y. Kim et al., 2017). In this current study, we confirmed that these bands are both N proteins by 

analyzing the two protein bands at approximately 49 and 47 kDa on an SDS-PAGE gel using 

MALDI-TOF mass spectrometry (data not shown). Next, we examined the kinetics of N protein 

cleavage in the cells (cell lysates). The cleaved N protein appeared at 36 and 48 hpi, but not at 24 

hpi (Figure 4-1, left lanes). The ratios of the intact and cleaved N protein were approximately 1:1 

for both 36 and 48 hpi (Figure 4-1). In contrast, no cleaved N protein from PEDV KD strain grown 

in the presence of trypsin (1 μg/ml) was detected for up to 48 hpi (Figure 4-1, right lanes). Of note, 

PEDV KD infection produced extensive cell-fusion and cell lysis after 24 hpi, which resulted in 

reduced levels of N protein in 36 and 48 hpi (Figure 4-1, right lanes).   

 

4.4.2 N protein cleavage is dependent on the induction of apoptosis.  

We explored potential protease(s) that can cleave N protein during PEDV 8aa replication 

using protease inhibitors. As shown in Figure 4-2A, the N protein cleavage was abolished by the 

addition of Z-VAD-fmk (36 and 48 hpi). However, furin or trypsin inhibitors did not block N 

protein cleavage (Figure 4-2A). Because activation of the caspase family plays central roles in 

cellular apoptosis, we conducted DNA fragmentation assay in PEDV 8aa infected cells. As 

expected, the low molecular weight DNA from the 8aa infected Vero cells showed a typical feature 

of apoptosis, fragmentation of DNA (Figure 4-2B). The DNA fragmentation was not observed in 
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the mock-infected cells. Inhibition of caspase by Z-VAD-fmk led to significantly increased viral 

replication compared to DMSO (mock) (Figure 4-3).  

 

 

 

 

Figure 4-2. Effects of protease inhibitors on the cleavage of PEDV N protein.  

A. Confluent Vero cells were inoculated with PEDV 8aa at an MOI of 0.1. Cell lysates were 

prepared at 24, 36 or 48 hpi. Pan-caspase inhibitor (Z-VAD.fmk, 100 uM), furin inhibitor (20 uM) 

or trypsin inhibitor (leupeptin, 20 uM) was added at 0 hpi. Uncleaved (N) and cleaved (N’) N 

protein are indicated by arrowheads. (B) DNA fragmentation assay was performed using Vero 

cells infected with PEDV 8aa or mock-Medium. Low-molecular-weight DNA was extracted at 48 

hpi and loaded on 2% agarose gel. MW is a DNA marker. 
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Figure 4-3. Effects of caspase inhibition on 

PEDV 8aa replication. 

Confluent Vero cells were inoculated with 

PEDV 8aa at an MOI of 0.01 for 1 h with Z-

VAD-fmk or Mock (medium), washed three 

times, replenished with fresh media containing 

the same concentration of Z-VAD-fmk or Mock 

(medium), and further incubated at 37°C. At 24 

(open bars) or 48 hpi (closed bars), cells were 

subjected for virus titration using the TCID50 

assay. The mean and the standard deviations of 

the mean was acquired from three independent 

experiments. Asterisks indicate the statistical 

significance compared to the Mock treatment.  

Figure 4-4. Cleavage of the PEDV N protein with recombinant caspase 3,6 or 7.  

Expressed N protein was incubated with recombinant caspase 3, 6, or 7 with different dilution 

ratios (1:2 or 1:10) at 37°C for 2 h. The mixtures were subjected to SDS-PAGE, and Western blot 

analysis was performed with the anti-HA monoclonal antibody. Uncleaved (N) and cleaved (N’) 

N protein are indicated by arrowheads. 
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4.4.3 Caspase 6 or 7 cleave N protein at D424G425.  

To determine which caspase cleaves N protein, a cell-free cleavage assay was performed 

with the recombinant caspase 3, 6 or 7. The Western blot analysis demonstrated that caspase 6 or 

7 cleaved PEDV N protein, whereas caspase 3 did not cleave the N protein (Figure 4). Mock 

treatment (PBS) was used as a control (Figure 4-4). The mutation study on the four mutated N 

proteins carrying a single mutation of D345G, D372G, D424G or D427G at the putative caspase 

cleavage site showed that D424G mutation abolished the N protein cleavage by caspase 6 (Figure 

4-5), which revealed N protein cleavage occurs between D424G425  (Figure 4-5).    
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Figure 4-5. Identification of the N protein cleavage site by caspase 6 with mutagenesis assay 

and the Western blot analysis.  

(A) A schematic representation of PEDV N protein with putative C-terminal caspase cleavage sites 

predicted by the Cascleave. (B) Four mutant recombinant N proteins carrying a single mutation of 

D345G, D372G, D424G or D427G were generated by site-directed mutagenesis. (C) Wild-type N 

protein (WT) or mutant N proteins (D345G, D372G, D424G, or D427G) were incubated for 2 h at 37°C 

with a recombinant caspase 6. The mixtures were analyzed by the Western blot with anti-HA 

antibody. Uncleaved (N) and cleaved (N’) N protein are indicated by arrowheads. 
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4.4.4 PEDV 3CLpro did not affect N protein cleavage.   

First, the inhibitory effects of GC376 against PEDV 8aa were determined with the EC50 

and EC90 at 2.75 and 3.84 μM, respectively (Figure 4-6A). To examine the effect of 3CLpro on N 

protein cleavage, GC376 at 20 µM was added at 24 hpi, and the N cleavage was monitored at 36 

or 48 hpi.  The addition of GC376 or Mock (DMSO) did not block N protein cleavage at 36 or 48 

hpi (Figure 4-6B). As a positive control, Z-VAD-fmk at 100 µM prevented the N protein cleavage 

at 36 or 48 hpi (Figure 4-6B).  

 

 

Figure 4-6. Effects of a 3CLpro inhibitor (GC376) on PEDV replication and N protein 

cleavage.  

(A)  Inhibition of PEDV replication by GC376. Confluent cells were inoculated with PEDV 8aa 

at an MOI of  0.01 and incubated with serial dilutions of GC376 for 48 h. Viral titers were 

measured by real-time qRT-PCR and converted to TCID50 equivalents/ml, and EC50 and EC90 were 

calculated.  (B) The effects of GC376 on the cleavage of PEDV N protein. Cells were inoculated 

with PEDV 8aa at an MOI of 0.1, and Z-VAD-fmk (100 μM), GC376 (20 μM ) or Mock(DMSO) 

was added at 24 hpi. Cells were further incubated for additional 12 or 24 h. Cell lysates were then 

prepared, and Western blot analysis was performed with an anti-PEDV positive serum. Uncleaved 

(N) and cleaved (N’) N protein are indicated by arrowheads. 
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4.4.5 PEDV N protein localizes in the cytoplasm.  

Because previous studies suggested PEDV N protein was localized in both nucleus and 

cytoplasm (Shi et al., 2014), and the localization of SARS-CoV N protein was affected by N 

Figure 4-7. Subcellular localizations of N protein in Vero cells by the confocal microscopy.  

Vero cells were inoculated with PEDV 8aa or KD at an MOI of 1.  For PEDV 8aa, Z-VAD-fmk 

(100 μM), or Mock (DMSO) was added to the virus infected cells. For PEDV KD, trypsin (1 

µg/ml) was added. Virus infected cells were further incubated for 36 (8aa) or 12 (KD) h.  For the 

expression of N protein, 24 h-old semi-confluent cells were transfected with pIRES-N-nHA, and 

cells were incubated for 24 h. Cell were fixed, and N proteins were probed with anti PEDV N 

monoclonal antibody (green).  Nuclei were stained with SYTOX orange (Blue), and single or 

merged images were prepared with the ImageJ software. 
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protein cleavage by caspases (Diemer et al., 2008), we analyzed the localization of N protein of 

PEDV 8aa (and KD) with or without  Z-VAD-fmk (100 µM) using the confocal microscopy. With 

or without Z-VAD-fmk, N protein was exclusively localized in the cytoplasm at 36 hpi of PEDV 

8aa (Figure 4-7). In addition, the N protein of PEDV KD (with trypsin) was also localized in the 

cytoplasm at 12 hpi (Figure 4-7). The N protein expressed from the transfection of pIRES-N-nHA 

also localized in the cytoplasm at 24 hpi (Figure 4-7).  

 

4.5 Discussion 

It has been shown that coronavirus infection can induce apoptosis and N protein cleavage 

by caspases (Diemer et al., 2008; Eleouet et al., 2000). TGEV N protein is cleaved by caspase 6 

and 7 during replication in HRT18 cells, which resulted in 22 amino acid fragment from the C-

terminal of N protein (Eleouet et al., 2000). SARS-CoV N protein is also cleaved by caspase 6 and 

potentially by caspase 3, and the possible cleavage site is located at residues 400 and 403 on the 

C-terminal of N protein (Diemer et al., 2008). The biological significance of the virus-induced 

apoptosis and N protein cleavages is still unclear, but it is suggested to be involved in the 

pathogenicity (Diemer et al., 2008; Eleouet et al., 2000). Previously, we reported that the N protein 

of trypsin-independent PEDV 8aa was cleaved during virus replication. In this study, we 

demonstrated the cleaved N band (N’) appeared at the late stage (after 36 hpi) of PEDV 8aa 

infection (Figure 4-1) and required caspase activities because the N’ product was abolished by the 

addition of pan-caspase inhibitor (Z-VAD-fmk) (Figure 4-2A). In addition, this cleavage was 

associated with the virus induced apoptosis evident with the DNA fragmentation at 48 hpi (Figure 

4-2B).  However, N protein of PEDV KD did not show any evidence of the N cleavage during 

virus replication (Figure 4-1). Because PEDV KD, a trypsin-dependent strain, causes the extensive 
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cell fusion formation with lysis, there were significant differences in the virus induced cell death 

by these two different PEDV strains. It is possible that protease-independent PEDV strains can 

target tissues (cells) which are not exposed to high concentrations of proteases, and induce 

significantly different pathogenicity in the hosts.       

There have been numerous reports on the induction of apoptosis of virus-infected cells, 

which raised a discussion of whether apoptosis is favorable to host or virus. In a host defense point 

of view, apoptosis curtails the use of cellular machinery necessary for viral protein synthesis and 

facilitates the elimination of viral proteins through caspase-mediated proteolysis, resulting in the 

reduction of viral replication and spread (Danthi, 2011; F. Yan, Xia, Lv, Qi, & Xu, 2010). Thus, 

viruses in diverse families encode anti-apoptotic proteins (Clem, Fechheimer, & Miller, 1991) to 

limit apoptosis. On the other hand, viruses can take advantage of the apoptosis of host cells to 

facilitate virus replication. Various viruses have utilized caspases to cleave their viral proteins for 

successful replication, which is aborted when the caspase cleavage sites on the viral proteins are 

eliminated (Best, Shelton, Pompey, Wolfinbarger, & Bloom, 2003; Moody & Laimins, 2009). It 

was shown that PEDV infection induces apoptotic cell death in a caspase-independent manner 

(Kim and Lee, 2014). In this study, we observed that PEDV 8aa induces apoptosis in the infected 

cells caspase-dependent manner because pan-caspase inhibitor (Z-VAD-fmk) blocked apoptotic 

cell death (data not shown). Furthermore, the replication of PEDV 8aa was slightly but 

significantly increased in the presence of Z-VAD-fmk (Figure 4-3), suggesting the apoptosis is not 

favorable for viruses. Of note, the replication of PEDV KD in the presence of trypsin induced 

extensive fusions with cell lysis starting 12 hpi, and the addition of Z-VAD-fmk in the medium 

did not affect virus replication (data not shown).   
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Then we investigated which caspases are involved in the N protein cleavage using 3 

individual recombinant caspases. We demonstrated that caspase 6 or 7, but not caspase 3, is 

responsible for the N protein cleavage (Figure 4-4). Furthermore, we identified that caspase 6 

cleaves the C-terminal of the PEDV N protein between D424/G425 (Figure 4-5). This cleavage 

location is similar to that of TGEV N protein (Eleouet et al., 2000). This site is located at the 

domain 3 on the PEDV N protein. Because domain 3 is not involved in N-N interaction and RNA 

binding, the cleavage may not affect these functions of N protein. Because domain 3 is to interact 

with M protein and this interaction is known to plays an important role in coronavirus replication 

(Narayanan et al., 2000), the cleavage may result in the reduction of replication. In this study, we 

found that the N protein cleavage occurred at the late stage of virus replication (Figure 4-1), which 

may be the reason for slightly increased viral replication in the presence of Z-VAD-fmk. 

Interestingly, we observed that both forms of N proteins were present in the concentrated (purified) 

PEDV 8aa virus at the ratio of 1:1 (Kim et al., 2017). The results suggest that the cleaved form of 

N protein could still integrate into virions at similar rates as the uncleaved form.  

It was previously reported in a study that PEDV N protein is processed by viral 3CLpro 

glutamine at the position 382 (P1) and leucine at the position 381 (P2), and this cleavage was 

speculated to be associated with cell culture adaptation of PEDV (Jaru-Ampornpan et al., 2017). 

In this study, we used a specific inhibitor (GC376) of PEDV 3CLpro to investigate whether the N 

protein of PEDV 8aa is cleaved by 3CLpro. However, inhibition of 3CLpro did not abolish N 

protein cleavage for PEDV 8aa (Figure 4-6). It is possible that 3CLpro-mediated N protein 

cleavage may dependent on the different PEDV strains.  

A nucleus localization of N protein has been reported for several coronaviruses including 

PEDV, TGEV, MHV, SARS-CoV, and infectious bronchitis virus (IBV) (Diemer et al., 2008; 



 

102 

Hiscox et al., 2001; Shi et al., 2014; Wurm et al., 2001). The nuclear localization signals (NLS) in 

N proteins are composed of “pat 7” NLS sequences, including 261-PKKNKSR-267 and 381-

PQRKKEK-387 and well conserved among PEDV (441 amino acids), including PEDV 8aa or KD 

strains. Shi et al. (Shi et al., 2014) reported nuclear localization of PEDV N protein in Vero E6 

cells after transfection with N genes. For SARS-CoV, Rowland et al. reported that there is no 

evidence of N protein nuclear localization during SARS-CoV infection and after the transfection 

of plasmids encoding the N protein in Vero cells (Rowland et al., 2005). However, it was shown 

that SARS-CoV could induce apoptosis, N protein cleavage, and nuclear localization, and these 

were dependent on cell types and levels of viral replication (Diemer et al., 2008). Diemer et al. 

(Diemer et al., 2008) further demonstrated that the cleavage of N protein (by caspase) could change 

its subcellular localizations from the cytoplasm (uncleaved) to both cytoplasm and nucleus 

(cleaved N protein).  To study the localization of PEDV 8aa N protein, we examined two aspects: 

1) whether N protein of PEDV 8aa or KD is found in both cytoplasm and nucleus; 2) whether N 

protein cleavage can change its subcellular localizations. First, we discovered that the N protein of 

PEDV 8aa or KD, or the recombinant of N protein expressed from PEDV 8aa N gene exclusively 

localized in the cytoplasm (Figure 4-7). Second, N protein localization was not changed by Z-

VAD-fmk (and N protein cleavage) (Figure 4-7). The localization of N protein was consistently 

shown in the cytoplasm when it was examined at different time points for both PEDV 8aa and KD 

(data not shown). It is possible a minor population of N protein (with or without N protein 

cleavage) may be localized to nucleus, and there could be variations among strains. To further 

elucidate the functional role of N protein and its cleavage, we are currently investigating the 

cleaved (and uncleaved) N protein in viral assembly and replication.  
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Chapter 5 - Summary and Future Directions 

The family Coronaviridae contains viruses infecting humans and animals with broad ranges 

of symptoms from common colds in humans or acute gastroenteritis in animals to lethal lower 

respiratory infection or lethal systemic infections in cats. Especially, COVID 19 currently spreads 

throughout the whole world due to their high infectivity and high mortality in elderly people, 

causing severe public health and economic problem. Developments in coronavirus 

countermeasures need to be considered a high mutant rate and immune evasion strategies of the 

coronavirus. Studies have shown that blocking coronavirus infection at the entry step can be a 

good target for antiviral drug development. However, the entry events of coronavirus are not well 

understood till date due to its complexity mediated by the spike protein. Thus, understanding the 

viral and host factors during coronavirus entry events will help in the development of coronavirus 

countermeasures to current coronavirus outbreaks and maybe future outbreaks.  

Entry events of coronavirus replication start from the binding of its host receptor with the 

S1 receptor-binding domain(RBD) of S protein. Following receptor binding, S protein exposes 

cleavage sites and undergoes priming by protease(s). This proteolytic activation exposes fusion 

peptide in the S2 subunit, which leads to viral-cellular membrane fusion mediated by its dramatic 

conformational change, finally translocating viral genome. Various host factors, which constitute 

the cargo delivery pathway, are also used by coronaviruses. The study demonstrated in this 

dissertation examines the entry events during PEDV replication and identifies the roles of 

exogenous protease and the host factors required by PEDV endosomal escape.  

In our first study, we examined the role of exogenous protease during the entry of PEDV 

using two different protease-adapted PEDV US strains, PEDV KD and AA. We demonstrated that 

the activity of protease was required at an early stage of PEDV KD replication, particularly after 
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virus binding to cells. Further, we showed that PEDV was able to enter the endosome without the 

presence of protease. The addition of protease facilitated the escape of viruses from the endosome. 

The host endosomal protease, cathepsin B and L were also shown to be important in the endosomal 

escape of PEDV.  

The second study identified the roles of the acid sphingomyelinase (ASM) /ceramide 

pathway in the entry of PEDV. We reported that PEDV infection in Vero cells triggered ceramide 

formation by activation of ASM. The Inhibition of ASM significantly reduced protease 

independent PEDV replication by inhibiting viral endosomal escape. These results demonstrated 

the importance of interactions among viruses, host cells, and proteases during coronavirus entry 

for successful replication.  

The third study examined that protease independent PEDV 8aa strain infection in Vero 

cells led to caspases mediated apoptotic cell death. PEDV nucleocapsid (N) protein was cleaved 

by caspase 6 and 7 at the late stage of the replication while the cells were undergoing the apoptotic 

process. The caspase-mediated cleavage occurred between D424 and G425 near the C-terminal of N 

protein. Addition of a pan-caspase inhibitor to prevent the N protein cleavage significantly 

increased 8aa replication. We further demonstrated that N protein exclusively localized in the 

cytoplasm regardless of N cleavage and time post-infection.  

Our studies have demonstrated important factors affecting PEDV entry (exogenous or 

endosomal protease and ASM /ceramide pathway) and virus-host interaction (caspase-mediated 

apoptosis/N protein cleavage), all of which provide fundamental information for understanding 

the PEDV replication. We will further identify (1) genetic mutation(s) in the PEDV structural 

proteins, especially spike protein, that switch protease dependency, (2) the detailed mechanism of 

action of ASM/ceramide formation during protease independent PEDV entry, and (3) effects of 
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ASM inhibition to other coronaviruses in the presence of relevant proteases. Such understanding 

could lead to the development of rational future strategies for preventing coronavirus infections.  
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