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Supervisor:  Andrew D. Ellington 

 

Many different approaches exist for engineering bacterial genomes.  The most 

common current methods include transposons for random mutagenesis, recombineering 

for specific modifications in Escherichia coli, and targetrons for targeted knock-outs.  

Site-specific recombinases, which can catalyze a variety of large modifications at high 

efficiency, have been relatively underutilized in bacteria.  Employing these technologies 

in combination could significantly expand and empower the toolkit available for 

modifying bacteria. 

Targetrons can be adapted to carry functional genetic elements to defined 

genomic loci.  For instance, we re-engineered targetrons to deliver lox sites, the 

recognition target of the site-specific recombinase, Cre.  We used this system on the E. 

coli genome to delete over 100 kilobases, invert over 1 megabase, insert a 12-kilobase 

polyketide-synthase operon, and translocate a 100 kilobase section to another site over 1 

megabase away.  We further used it to delete a 15-kilobase pathogenicity island from 

Staphylococcus aureus, catalyze an inversion of over 1 megabase in Bacillus subtilis, and 

simultaneously deliver nine lox sites to the genome of Shewanella oneidensis.  This 

represents a powerful, versatile, and broad-host-range solution for bacterial genome 

engineering. 
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We also placed lox sites on mariner transposons, which we leveraged to create 

libraries of millions of strains harboring rearranged genomes.  The resulting data 

represents the most thorough search of the space of potential genomic rearrangements to 

date.  While simple insertions were often most adaptive, the most successful modification 

found was an inversion that significantly improved fitness in minimal media.  This 

approach could be pushed further to examine swapping or cutting and pasting regions of 

the genome, as well. 

As potential applications, we present work towards implementing and optimizing 

extracellular electron transfer in E. coli, as well as mathematical models of bacteria 

engineered to adhere to the principles of the economic concept of comparative advantage, 

which indicate that the approach is feasible, and furthermore indicate that economic 

cooperation is favored under more adverse conditions.  Extracellular electron transfer has 

applications in bioenergy and biomechanical interfaces, while synthetic microbial 

economics has applications in designing consortia-based industrial bioprocesses.  The 

genomic engineering methods presented above could be used to implement and optimize 

these systems. 



 x 

Table of Contents 

List of Tables ....................................................................................................... xiv 

List of Figures ...................................................................................................... xvi 

Chapter 1:  Background ...........................................................................................1 

1.1 Introduction ...............................................................................................1 

1.2 Serial culture .............................................................................................1 

1.3 Mutagens ...................................................................................................4 

1.4 F plasmid ...................................................................................................5 

1.5 Phage .........................................................................................................7 

1.6 Transposons ..............................................................................................9 

1.7 Homologous recombination with suicide plasmids ................................15 

1.8 Site-Specific Recombinases ....................................................................18 

1.9 Genome shuffling....................................................................................25 

1.10 Recombineering ....................................................................................26 

1.11 Targetrons .............................................................................................28 

1.12 Whole-genome synthesis ......................................................................38 

1.13 Targeted nucleases ................................................................................39 

1.14 Summary and perspective .....................................................................40 

Chapter 2:  Developing targetrons for delivery of functional genetic elements ....42 

2.1 Introduction .............................................................................................42 

2.2 Results .....................................................................................................43 

2.2.1 Engineering targetrons to carry lox sites .....................................43 

2.2.2 Engineering targetrons to carry Ter sites ....................................45 

2.2.3 Engineering targetrons to carry lac operators .............................49 

2.3 Discussion ...............................................................................................53 

2.4 Materials and methods ............................................................................54 

2.4.1 Intron retargeting ........................................................................54 

2.4.2 Cloning of inserts into targetrons ................................................55 



 xi 

2.4.2 Intron induction ...........................................................................56 

2.4.3 Doubling time measurements .....................................................56 

2.4.4 Statistical analyses ......................................................................57 

Chapter 3:  Generalized bacterial genome editing using targetrons and Cre/lox ...59 

3.1 Introduction .............................................................................................59 

3.2 Results .....................................................................................................61 

3.2.1 Overview of genomic manipulations of E. coli chromosome.....61 

3.2.2 Insertions (recombination-mediated cassette exchange) ............63 

3.2.3 Deletions .....................................................................................67 

3.2.4 Inversions ....................................................................................72 

3.2.5 One-step cut-and-paste................................................................75 

3.2.6 Growth of E. coli strains with chromosomal rearrangements.....77 

3.2.7 Genome engineering in diverse bacteria .....................................78 

3.3 Discussion ...............................................................................................83 

3.4 Materials and methods ............................................................................91 

3.4.1 Construction of broad host-range Cre-expressing plasmids .......91 

3.4.2 Intron induction in non-E. coli strains ........................................93 

3.4.3 Induction of Cre-mediated recombination ..................................93 

3.4.4 Cre-mediated genomic insertion (recombination-mediated cassette 

exchange) ....................................................................................93 

3.4.5 Statistical analyses ......................................................................94 

Chapter 4:  Lox-carrying transposons for generating libraries of genomic 

rearrangements ..............................................................................................97 

4.1 Introduction .............................................................................................97 

4.2 Results ...................................................................................................100 

4.2.1 Summary of initial efforts .........................................................100 

4.2.2 Overview of methodology ........................................................101 

4.2.3 Library creation and selection ...................................................104 

4.2.4 Analysis of detected rearrangements ........................................107 

4.2.5 Genetic interpretation of commonly detected modification .....117 



 xii 

4.3 Discussion .............................................................................................124 

4.4 Materials and methods ..........................................................................129 

4.4.1 Plasmid construction .................................................................129 

4.4.2 Transposon construction and electroporation ...........................130 

4.4.3 Preparation of sequencing libraries ...........................................131 

4.4.4 Analysis of sequencing results ..................................................133 

Chapter 5:  Toward implementing and improving extracellular electron transfer in 

Escherichia coli ..........................................................................................135 

5.1 Introduction ...........................................................................................135 

5.2 Results ...................................................................................................137 

5.2.1 Expression of the mtrCAB operon in Escherichia coli .............137 

5.2.2 Survey of phylogenetic variants of the mtrCAB operon ...........138 

5.3 Discussion .............................................................................................141 

5.4 Materials and methods ..........................................................................142 

5.4.1 Plasmid construction .................................................................142 

5.4.2 Insoluble iron(III) reduction assay ............................................143 

Chapter 6:  Mathematical models of synthetic microbial implementations of 

comparative advantage................................................................................145 

6.1 Introduction ...........................................................................................145 

6.2 Mathematical models ............................................................................149 

6.2.1 Basic model ...............................................................................149 

6.2.2 Model for Conception 1 ............................................................153 

6.2.3 Model for Conception 2A .........................................................156 

6.2.4 Model for Conception 2B .........................................................158 

6.2.5 Implementation .........................................................................159 

6.3 Results ...................................................................................................160 

6.3.1.1 Conception 1: Analysis of non-dimensionalized equations ...160 

6.3.1.2 Conception 1: Example growth curves ..................................161 

6.3.1.3 Conception 1: Investigations into the (RA,RB) parameter space163 

6.3.1.4 Conception 1: Effects of varying K, P, and V .......................166 



 xiii 

6.3.2.1 Conception 2: Example growth curves ..................................169 

6.3.2.2 Conception 2: Effects of varying K, P, and V .......................170 

6.3.2.3 Conception 2: Investigating specialization ............................173 

6.3.2.4 Conception 2: Further investigation of the K-P-V parameter space

...................................................................................................174 

6.3.2.5 Conception 2: Alternate efficiency regimes ..........................176 

6.4. Discussion ............................................................................................178 

Appendix: Targetrons used in the present work ..................................................185 

References ............................................................................................................191 

Vita 228 



 xiv 

List of Tables 

Table 1.1. Sequences of selected lox spacer mutants. ...........................................21 

Table 1.2. Recombination frequencies between selected lox spacer mutants. ......22 

Table 1.3. Bacteria in which targetrons have been used successfully...................36 

Table 1.4. Summary of current bacterial genome engineering methods. ..............41 

Table 2.1. Sequences of Ter sites delivered ectopically. ......................................47 

Table 2.2. Integration efficiencies of EcI5.SIR5.6 introns carrying Ter sites.......48 

Table 2.3. Doubling times of E. coli BL21(DE3) strains harboring integrations of 

Ter-carrying EcI5.SIR5.6 introns. ....................................................49 

Table 2.4. Intron integration counts for lacZ-targeting LtrB and EcI5 introns carrying 

lac operators. .....................................................................................51 

Table 3.1. Expected sizes of amplicons for verifying intron insertions and Cre/lox 

recombinations. .................................................................................70 

Table 3.1, cont. .....................................................................................................71 

Table 3.2. Summary of intra-genomic rearrangements in E. coli. ........................77 

Table 3.3. Doubling times of E. coli strains with intra-genomic rearrangements.78 

Table 3.4. Oligomers (primers) used to construct broad host-range Cre-expressing 

plasmids. ...........................................................................................91 

Table 4.1. Most common genomic modifications at generation 195 in LB-replicate 1 

library ..............................................................................................118 

Table 4.2. Most common genomic modifications at generation 195 in LB-replicate 2 

library ..............................................................................................119 

Table 4.3. Most common genomic modifications at generation 195 in M9-replicate 1 

library ..............................................................................................120 



 xv 

Table 4.4. Most common genomic modifications at generation 195 in M9-replicate 2 

library ..............................................................................................123 

Table 5.1. List of phylogenetic variants of genes in the mtrCAB operons. .........140 

Table 6.1. Output values for the heat maps in Figure 6.4. ..................................166 



 xvi 

List of Figures 

Figure 1.1. Mechanism of F plasmid transfer and subsequent recombination by Hfr 

strains. .................................................................................................7 

Figure 1.2. Outline of methods for determining transposon integration sites. ......14 

Figure 1.3. Schematic of suicide plasmid used for allelic replacement. ...............18 

Figure 1.4. Cre-lox basics. ....................................................................................19 

Figure 1.5. Sequences and functionality of wild-type (loxP) versus arm-mutant lox 

sites. ..................................................................................................20 

Figure 1.6. Activity of Int and Xis on their recognition targets. ...........................24 

Figure 1.7. Group II intron RNA structure and splicing mechanism. ...................30 

Figure 1.8. Group II intron retrohoming. ..............................................................32 

Figure 1.9. DNA target site recognition by mobile group II introns used as targetrons.

...........................................................................................................33 

Figure 2.1. Effect of lox insert on intron efficiency. .............................................44 

Figure 2.2. Locations of Ter sites in the E. coli genome. .....................................46 

Figure 2.3. RNA structures of Ter inserts. ............................................................47 

Figure 2.4. RNA structure of the lac operator, according to Mfold (Zuker, 2003).51 

Figure 2.5. Gel of PCR amplicons for assessing formation of deletions between 

homologous introns carrying lac operators.......................................52 

Figure 3.1. Genomic integration sites of the introns. ............................................61 

Figure 3.2. Genome edits performed. ...................................................................62 

Figure 3.3. GFP reporter assay for Cre/lox-mediated gene insertion. ...................64 

Figure 3.4.  Verification of DEBS1-TE (polyketide synthase operon) genomic 

insertion.............................................................................................66 



 xvii 

Figure 3.5. Verification of genomic deletions. .....................................................69 

Figure 3.6. Verification of genomic inversions. ...................................................74 

Figure 3.7. Verification of one-step cut-and-pastes. .............................................76 

Figure 3.8. Deletion in Staphylococcus aureus.....................................................79 

Figure 3.9. Inversion in Bacillus subtilis. .............................................................80 

Figure 3.10. Modifications in Shewanella oneidensis. .........................................81 

Figure 4.1.  Methodology for delivering lox sites and screening genomic libraries.102 

Figure 4.2. Growth curves of wild-type and genome-rearrangement libraries at 

various time points. .........................................................................106 

Figure 4.3. Growth curves testing specialization of end-point genomic rearrangement 

libraries. ..........................................................................................107 

Figure 4.4. Outline of method for identifying rearrangements from sequencing data.

.........................................................................................................108 

Figure 4.5. Library diversity over the course of selection. .................................109 

Figure 4.6.  Frequencies of rearrangement types over the course of the selections.111 

Figure 4.7. Box plots of distribution of deletion sizes over the course of the selection.

.........................................................................................................112 

Figure 4.8. Box plots of distribution of inversion sizes over the course of the 

selection. .........................................................................................114 

Figure 4.9.  Graphical depictions of common genomic modifications in replicate 1.

.........................................................................................................115 

Figure 4.10.  Graphical depictions of common genomic modifications in replicate 2.

.........................................................................................................116 

Figure 4.11. Structure of the detected Fis truncation. .........................................122 

Figure 5.1. Extracellular electron transport pathway in Shewanella oneidensis.136 



 xviii 

Figure 5.2.  Insoluble iron(III) reduction assay for testing functionality of Shewanella 

cytochromes in E. coli. ....................................................................138 

Figure 5.2. Bioinformatic analysis of conserved gene orders of orthologues of 

mtrCAB, mtrDEF, and omcA. .........................................................139 

Figure 5.3. Schematic of randomized operon construction. ...............................141 

Figure 6.1. Gene circuits of Conception 2. .........................................................156 

Figure 6.2.  Graphical analysis of the non-dimensionalized equations of Conception 

1.......................................................................................................161 

Figure 6.3. Example growth curves for Conception 1. .......................................162 

Figure 6.4. Heat maps for representative parameter sets in Conception 1..........165 

Figure 6.5. Effect of K, P, and V parameters on growth characteristics at the optimal 

(RA,RB) in Conception 1. ................................................................167 

Figure 6.6. Example growth curves for Conception 2. .......................................170 

Figure 6.7. Effect of K, P, and V parameters on growth characteristics in Conception 

2.......................................................................................................171 

Figure 6.8. Specialization in Conception 2. ........................................................173 

Figure 6.9. Exploration of the K-P-V parameter space in Conception 2B. ........175 

Figure 6.10. Alternate efficiency regimes in Conception 2B. ............................177 

  



 1 

Chapter 1:  Background 

1.1 INTRODUCTION 

 Bacteria have long played important roles in human food and health, and in recent 

decades genetically modified bacteria have become useful for the industrial synthesis of a 

large variety of proteins and other useful chemical compounds, among other applications 

(Glazer & Nikaido, 2007; Lee, 2006).  There is hope that in the near future designed 

bacteria will play a large role in transitioning from an economy powered by fossil fuels 

toward one based on renewable resources, in addition to helping solve other problems 

that humanity faces (Arora, 2012; Keasling, 2008; Khalil & Collins, 2010; Savage et al, 

2008; Stephanopoulos, 2008).  Thus there is great potential utility in developing better 

methods for reprogramming bacteria to perform human-directed tasks.  Plasmids have 

been the method of choice for modifying bacteria in recent decades, since they are 

relatively easy to manipulate.  The main drawback of plasmids is that the amount of DNA 

that can be put on a single plasmid is limited.  For making global changes in the 

biosynthetic machinery of bacteria or for adding large amounts of foreign DNA to 

perform a new function, as is becoming increasingly necessary as the scope and ambition 

of microbial biotechnology continues to expand, genome-scale techniques are needed.  

Following is a survey of different techniques for engineering bacterial genomes, 

presented approximately in the order of their development. 

1.2 SERIAL CULTURE 

 Humans have been unconsciously engineering bacterial genomes for millennia.  

In addition to Saccharomyces cerevisiae and other fungi, domesticated strains of bacteria 

have long been used to make such fermented food products as yogurt, cheese, vinegar, 

Japanese natto (fermented soybeans), Korean kimchi (fermented cabbage), and a number 
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of other traditional foods and beverages.  The origins of most of these foods are 

mysterious, but vinegar, which typically results from bacteria of the genus Acetobacter 

and Gluconacetobacter fermenting ethanol to acetic acid (Gullo et al, 2006; Kittelmann 

et al, 1989; Nakayama, 1959; Sievers et al, 1992; Sokollek et al, 1998), is likely the 

oldest, having in all likelihood arrived immediately after the development of alcohol 

(Adams, 1985).  By continuously picking particularly delicious batches of fermented 

foods to use as starter cultures for further fermentations, ancient chefs in effect used the 

laboratory technique of serial growth and dilution to gradually design bacteria that were 

more suitable to their needs.  The evolution of the bacteria inhabiting the human digestive 

tract can be considered along similar lines (Walter & Ley, 2011). 

 In addition to Acetobacter, some well-studied examples of bacteria use to produce 

fermented food products include Lactococcus lactis, which is used to make cheese and 

other fermented milk products, Lactobacillus delbrueckii subsp. bulgaricus, which is 

widely used in making yogurt, and Bacillus natto, which is used to make its namesake 

food in Japan.  The genomes of food-isolates of L. lactis and L. delbrueckii subsp. 

bulgaricus indicate size reductions and loss of functions, consistent with an evolutionary 

transition from life in complex environments to life in the relatively simple environment 

of milk (Kelly et al, 2010; van de Guchte et al, 2006).  Others, such as Acetobacter 

pasteurianus, have been found to be adapted for extremely rapid evolution.  The genome 

of A. pasteurianus contains 280 transposons (nearly 10% of the genome) and five genes 

with hyper-mutable tandem repeats (Azuma et al, 2009).)   B. natto is a variant of 

Bacillus subtilis that secretes 15-20 times more proteases than standard B. subtilis strains 

(Nagami & Tanaka, 1986; Uehara et al, 1974), including a fibrinolytic enzyme dubbed 

"nattokinase" (Sumi et al, 1987) that has been investigated for medical applications (Hsia 

et al, 2009; Kim et al, 2008; Pais et al, 2006).  Other unique species isolated from 
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fermented foods include Gluconacetobacter kombuchae (Dutta & Gachhui, 2007) and 

Lactobacillus kimchii (Yoon et al, 2000).  Such strains can be considered as examples of 

initial efforts by humans to engineer bacterial genomes. 

 These traditional approaches tend to be avoided in modern biotechnological 

settings due to their slow and unpredictable nature, but they may still be employed in 

industry to avoid a "GMO" label and are continuously used in academic settings as a 

model of natural evolution.  The most well-known example of the latter is the E. coli 

long-term evolution experiment run by the Lenski lab at Michigan State University.  In 

1988, twelve separate inoculations of Escherichia coli were made into minimal media, 

and every day since then 1% of the previously grown population has been reinoculated 

into fresh media, with frozen stocks being made every 500 generations.  Adaptation to the 

new environment was rapid during the first 2000 generations and then began to slow 

(Lenski et al, 1991).  Differences in morphology and fitness between the different 

lineages were established by generation 10,000 (Lenski & Travisano, 1994), though even 

at 20,000 generations, mutations and changes in gene-expression profiles were found to 

be quite similar between the different lineages (Cooper et al, 2003; Pelosi et al, 2006; 

Woods et al, 2006).  Despite the slowing of adaptation, changes continued to occur in the 

genomes, and at least one of the lineages developed a mutator phenotype between 

generations 20,000 and 30,000 (Barrick et al, 2009), which was later attenuated 

(Wielgoss et al, 2013).  Perhaps most surprisingly, around generation 31,000 one of the 

lineages evolved the ability to consume the citrate in the media, and had taken over the 

population by generation 33,000 (Blount et al, 2012; Blount et al, 2008).  The experiment 

has now covered more than 50,000 generations of bacteria (Lenski, 2011) and has been 

extremely valuable in testing hypotheses about evolution.  Thus these age-old methods of 

genome engineering still play an important role in the cutting-edge science of today. 
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1.3 MUTAGENS 

 Though Louis Pasteur demonstrated that microorganisms were responsible for 

fermentation in the 19th century (Pasteur, 1866; Pasteur, 1876), there were still no known 

genetic-engineering technologies other than the traditional method of applying a selective 

pressure and waiting for new mutations to be fixed in the population.  This began to 

change in the 1920s, when Hermann Muller showed that X-rays cause heritable genetic 

changes in fruit flies (Muller, 1927; Muller, 1928).  The field of bacterial genetics took 

some time to catch up, however, and for many years thereafter X-rays were more 

frequently used for killing bacterial cells than for inducing mutations (Lincoln & Gowen, 

1942; Wyckoff, 1930), though some changes in cell morphology were noted following 

irradiation (Haberman & Ellsworth, 1940).  Gray and Tatum finally succeeded in using 

X-rays to generate E. coli auxotrophs in the mid-1940s (Gray & Tatum, 1944; Tatum, 

1945). 

 Mustard gas was the first demonstrated chemical mutagen in 1947 (Auerbach et 

al, 1947).  The ease of use of chemical mutagens as opposed to ionizing radiation 

contributed significantly to the subsequent flowering of bacterial genetics, and many key 

studies made use of them.  For instance, the fact that constitutive expression mutants are 

easily generated in many inducible systems was a key clue in helping Jacob and Monod 

identify the regulatory motif of gene repression (Jacob & Monod, 1961).  The use of 

chemical mutagens to produce temperature-sensitive mutations in essential genes was 

important for identifying the genes involved in DNA replication (Carl, 1970; Fangman & 

Novick, 1968; Hirota et al, 1970; Wechsler & Gross, 1971).  Many other examples of the 

use of mutagens to generate knock-outs or other mutations could be given. 

 While mutagens were certainly useful for the study of bacteria, bacteria have been 

important in the study of mutagens, as well.  One of the most frequently used assays for 
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determining the mutagenicity of a given compound is the Ames test, which involves 

adding the compound to a culture of Salmonella bacteria auxotrophic for histidine and 

assessing the rate at which the ability to synthesize histidine is recovered (Ames et al, 

1973b; Mortelmans & Zeiger, 2000).  Some of the findings resulting from the use of this 

test include the fact that many carcinogens are also mutagens, and thus that mutation can 

cause cancer (Ames et al, 1973a). 

 Nowadays mutagens are not frequently used as a genomic-engineering tool when 

other techniques are available, because they can be dangerous to handle, and off-target 

mutations are common.  However, they are still useful for quickly generating strains with 

genomic markers.  For instance, bacterial cells resistant to streptomycin can be easily 

obtained after overnight growth in the presence of a weak mutagen such as 2-

aminopurine (Miller, 1992). 

1.4 F PLASMID 

 Lederberg and Tatum, in studying the mutant strains of E. coli they had made 

using X-rays and ultraviolet light, found that certain strains could swap mutations merely 

by being cultured together (Lederberg & Tatum, 1946a; Lederberg & Tatum, 1946b).  

This was the discovery of conjugation, by which bacteria can temporarily fuse their 

membranes and trade genetic material.  The genetic element responsible in this particular 

case was later identified as the F ("fertility") factor (Cavalli et al, 1953; Hayes, 1952), 

which was the first identified plasmid.  Strains that harbor the F factor are called F+, and 

those without are F-.  The F plasmid contains machinery for transferring itself from F+ 

strains to other strains.  The ability of the F plasmid to facilitate inter-genome 

recombination comes from the fact that it occasionally integrates into a random location 

in the genome of its host (strains harboring such an integration are called "Hfr" (high-
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frequency recombination) strains).  Upon mating, the integrated F plasmid will then begin 

transferring the entire genome of its host into the partner cell.  A depiction of the 

mechanism by which this occurs is shown in Figure 1.1. 

 A key discovery was when it was found that the transfer of genetic material 

(mating) between Hfr strains can be interrupted, and that by timing how long the mating 

must be for a given pair of mutations to both be transferred, the relative distance between 

the two can be assessed (Wollman et al, 1956).  This led to the ability to map the 

locations of the genes on the chromosome, and even today locations in the E. coli 

genome are sometimes referred to in terms of "minutes" as a result of this practice.  By 

1964 over one hundred E. coli genes had been mapped, almost exclusively by creating 

mutations as described in Section 1.3 and then locating those mutations using this 

method (Taylor & Thoman, 1964). 

Though the F plasmid has been employed less frequently as a genetic tool since 

the advent of large-scale sequencing technology and the publication of the E. coli genome 

sequence (Blattner et al, 1997), in recent years interest has resurged in using it to collect 

desired mutations together for planned and combinatorial genomic recoding.  For 

instance, in the recently reported creation of an E. coli strain completely lacking the UAG 

stop codon, the F plasmid was used in combination with positive and negative selectable 

markers to combine the modified sections from partially recoded genomes into larger 

recoded segments, culminating in the creation of a completely recoded genome (Isaacs et 

al, 2011; Lajoie et al, 2013).  Winkler and Kao have also demonstrated the utility of the F 

plasmid for speeding the rate of evolution of genetically diverse libraries of E. coli, 

(Winkler & Kao, 2012).  Meanwhile, Quandt and coworkers recently performed almost 

the reverse operation in using the F plasmid to parcel out the mutations acquired by the 

citrate-utilizing strain generated in the long-term evolution experiment (see Section 1.2) 
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in order to determine exactly which are necessary for efficient citrate consumption 

(Quandt et al, 2014).  Automated approaches to generating and mating Hfr libraries have 

also been developed in recent years (Typas et al, 2008). 

 

 

Figure 1.1. Mechanism of F plasmid transfer and subsequent recombination by Hfr 

strains. 

 
(Image from http://www.bio.miami.edu/dana/pix/Hfr_transfer.jpg.)  

For strains other than E. coli, the IncP plasmids, including RK2 and RP4, can 

function similarly to the F plasmid and work well in most Gram-negative strains (Thomas 

& Smith, 1987).  Such plasmids can also be used to facilitate inter-species transfer of 

DNA. 

1.5 PHAGE 

 Credit for the discovery that viruses also infect bacteria is typically given to 

Frederick Twort, who first reported observations of phenomena we now understand to be 

caused by such viruses (Twort, 1915), and Félix d'Hérelle, who was the first to 

http://www.bio.miami.edu/dana/pix/Hfr_transfer.jpg
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definitively identify these phenomena as caused by an infective agent dubbed 

"bacteriophage" (d'Herelle, 1917).  (See Duckworth (1976) for a discussion of the issues 

surrounding assignment of credit for this discovery.)  Phage subsequently played a key 

role in a number of important experiments, such as the work by Hershey and Chase that 

demonstrated that DNA was the carrier of genetic information (Hershey & Chase, 1952). 

 The utility of phage for engineering bacterial genomes first became clear in 1951, 

when Lederberg and Zinder carried out a search for a Salmonella equivalent of the F 

plasmid discussed in Section 1.4, but instead discovered that certain phage could assume 

a similar role (Lederberg et al, 1951; Zinder & Lederberg, 1952).  They dubbed this 

process "transduction," and the particular version of it they observed is now called 

generalized transduction.  During the process of replicating themselves, generalized 

transducing phage fragment the genome of the host bacterium, and these genomic 

fragments are occasionally packaged into phage capsids.  When the newly produced 

phage leave to infect other cells, a fraction of the new hosts will receive the fragment of 

genomic DNA from the previous hosts, which can be recombined into the new genome 

(Miller, 1992). 

 The size of the packaged fragments corresponds to about 2 minutes of the E. coli 

genome, and thus phage proved to be a welcome complement to the F factor for mapping 

chromosomes in finer detail (Miller, 1992; Neidhardt & Curtiss, 1996; Taylor & Thoman, 

1964).  Like the F factor, generalized transducing phage are used less often now in the era 

of high-throughput genome sequencing, but are occasionally employed to transfer desired 

chromosomal mutations between strains.  For instance, Yu and coworkers used such a 

phage to shuttle transposon-delivered lox sites (see Sections 1.6 and 1.8) between strains 

to generate planned chromosomal deletions, as well as to combine deletions from 

different strains (Yu et al, 2002).  The recent development of automated approaches 
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(Donath et al, 2011) may cause a resurgence in the use of this technique, as for the F 

plasmid. 

 The λ phage was discovered by Esther Lederberg in 1950 (Lederberg, 1950; 

Lederberg, 1951) and became extremely important to the study of both virology and 

molecular genetics (Ptashne, 2004).  After the discovery of generalized transduction in 

Salmonella, M. Laurance Morse and the Lederbergs discovered that λ is also capable of 

transferring genetic material between strains of E. coli.  However, it was always 

fragments from the same part of the genome that were transferred, and thus this became 

known as specialized transduction (Morse et al, 1956).  This results from the fact that λ 

phage integrates into a specific site in the host genome and occasionally takes DNA from 

that site with it when it excises itself.  The fact that so-called lysogenic phage insert 

themselves into the genome at a defined site without harming the host has led to 

development of such phage as cloning vectors for delivering DNA to the chromosome.  

These can carry 5 to 11 kilobases of DNA to the genome, with more possible if the genes 

for lysogeny are replaced and the phage is used as an extra-chromosomal vector (Preston, 

2003; Short et al, 1988). 

 A number of enzymes originally isolated from bacteriophage have also proven to 

be extremely useful for genetic manipulations, which are discussed in Sections 1.8 and 

1.10 below. 

1.6 TRANSPOSONS 

 Barbara McClintock was the first to notice that certain genes are capable of 

moving (McClintock, 1950), but the scientific community was slow in accepting this 

discovery.  Genetic studies in Escherichia coli came to the rescue in the late 1960s, when 

a new class of strong polar mutations (mutations that affect the expression of a gene other 
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than the one in which the mutation is found) were encountered in well-studied operons 

such as lac and gal (Jordan et al, 1967; Malamy, 1966).  These mutations were different 

from previous polar mutations, which had been found to be the result of single-base-pair 

changes causing frame shifts or premature stop codons, in that they were both stronger 

than such mutations and failed to revert back to wild-type upon addition of chemical 

mutagens or nonsense suppressor mutations.  The cause of these new mutations turned 

out to be the insertion of extra DNA from elsewhere (Jordan et al, 1968; Malamy, 1970).  

These so-called "insertion elements" (later more commonly called "transposable 

elements" or "transposons," though these latter terms are sometimes differentiated from 

the term "insertion element" as containing identifiable genes) soon became the subject of 

intense study and were found to be ubiquitous in nearly all forms of life (Calos & Miller, 

1980).  It has been found, for instance, that transposon genes account for at least half of 

the genomic DNA of many plant species (Li et al, 2004; SanMiguel et al, 1996), as well 

as approximately half of the human genome sequence (Lander et al, 2001). 

 The basic transposon structure consists of a pair of inverted repeats flanking DNA 

of variable content, often but not always including a gene for the transposase (the enzyme 

that catalyzes the movement of the transposon) as well as other genes, such as antibiotic 

resistance, that may provide a benefit to the host and aid in the genetic maintenance of 

the transposon (Calos & Miller, 1980).  In fact, many of the antibiotic resistance markers 

in use today were originally isolated from transposons.  The transposon/transposase 

complex recognizes a sequence of DNA with varying degrees of specificity as a site for 

integration.  Since many of these sequences are either quite short or not stringently 

defined, a typical genome contains numerous potential insertion sites, and many 

transposons can be considered to insert essentially randomly (Calos & Miller, 1980).  

Transposition in bacteria may involve a copy mechanism, where the transposon remains 
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in both the old and new loci (Shapiro, 1979), or a cut-and-paste mechanism, where the 

transposon is removed from the previous locus and reinserted at a new one (Bender & 

Kleckner, 1986). 

 The utility of transposons as a genetic tool was quickly realized (Kleckner et al, 

1977).  Compared to the mutagens discussed in Section 1.3, transposons are safer to 

handle, and have strong and comparably consistent effects as a result of interrupting 

rather than simply changing DNA sequences.  Further, the use of transposons carrying 

antibiotic-resistance genes makes it much easier to maintain deleterious mutations 

through antibiotic selection, and in mapping studies, marker-carrying transposons 

allowed loci to be mapped that otherwise have phenotypes that are difficult or impossible 

to observe.  It is also typically not difficult to find a transposon that will function in any 

given species (one example of an exceptionally broad-host-range class of transposon, the 

mariner type, is discussed in more detail below).   

 Due to these advantages, transposons remain a very widely used tool for random 

mutagenesis in bacteria even today, and developments and improvements in transposon 

technology have been ongoing.  Far more work has been done than can be discussed here, 

but some examples follow.  For instance, transposons have been widely used in studies to 

determine essential genes and potentially define a minimal genome (Akerley et al, 1998; 

Gerdes et al, 2003; Glass et al, 2006; Goryshin et al, 2003; Hare et al, 2001; Judson & 

Mekalanos, 2000; Sassetti et al, 2001).  Transposon mutagenesis has also been used to 

determine "conditional essentiality" in, for instance, determining genes required in 

minimal versus rich media (Badarinarayana et al, 2001), or genes not needed in culture 

media but essential for infection (Hensel et al, 1995) or survival in the digestive tract 

(Goodman et al, 2009).  Transposons have naturally also been used to search for genes 

required for specific processes, such as sporulation in Bacillus subtilis (Jaacks et al, 1989; 
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Youngman et al, 1983) or extracellular electron transport in Shewanella oneidensis 

(Beliaev & Saffarini, 1998; Bouhenni et al, 2005), and they have even been used to 

mutagenize individual genes that code for catalytically active RNAs in order to determine 

important structural determinants (Belhocine et al, 2008).  For biotechnological purposes, 

transposons have also been used to determine genes useful for increasing the metabolic 

yield of desired chemicals (Alper et al, 2005; Elischewski et al, 1999; Smith & Liao, 

2011).  Systems such as "transposomes" have also been developed to allow 

transposon/transposases complexes to be formed in vitro, stored indefinitely, and then 

used to induce mutagenesis upon electroporation without the need for expressing the 

transposase gene in the target organism (Goryshin et al, 2000). 

 The utility of transposons has also been increased by using them to deliver other 

genetic elements to the chromosome.  For instance, transposons can deliver genes 

encoding reporter proteins such as LacZ or GFP to allow transcriptional rates at the site 

of insertion to be monitored or simply to tag modified cells (Casadaban & Cohen, 1979; 

Lambertsen et al, 2004; Youngman et al, 1984).  Protein-purification tags can be 

delivered on transposons to allow easy capture of gene products identified in mutagenesis 

screens (Chiang & Rubin, 2002).  Inducible promoters have been added in order to search 

for cryptic genes (Bordi et al, 2008; Salipante et al, 2003) or aid in subsequent 

identification of the site of insertion (Badarinarayana et al, 2001).  Yu and coworkers 

used transposons to deliver site-specific recombinase recognition sites (see Section 1.8) 

to the genome in order to create targeted deletions (Yu et al, 2002), and in a similar vein, 

Goryshin and coworkers used a nested transposon structure, in which the entire 

chromosome is essentially treated as a transposon that inserts into itself, in order create 

deletions and inversions (Goryshin et al, 2003). 
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 Most of the transposons employed in the work cited above, such as the Tn5, Tn7, 

Tn10, and Mu transposons, have been in use since the 1970s, but the mariner class of 

transposons, which was discovered relatively recently, merits special mention.  The 

mariner transposons were originally discovered in Drosophila (Jacobson et al, 1986).  

The variant used in bacteria is Himar1, originally isolated from the fly, Haematobia 

irritans, and was shown to function in vitro in 1996 (Lampe et al, 1996) and in bacteria in 

1999 (Rubin et al, 1999).  The particular utility of mariner transposons comes from the 

fact that they work very efficiently in a wide variety of organisms, both eukaryotic and 

prokaryotic; they have very little insertion bias other than the recognition site, 

"TA"(Lampe et al, 1996); they do not rely on host factors for transposition and are active 

in vitro (Lampe et al, 1996); and they are more efficient than most other available 

transposons.  In the case of Himar1, a hyperactive transposase mutant was developed that 

inserts at 50 times the efficiency of the wild-type (Lampe et al, 1999).  The frequency of 

transposition is on the order of 3 × 10
-3

 cells that harbor the transposon in a given 

generation (Chiang & Rubin, 2002), whereas the more traditional transposons are 

typically in the range of 10
-4

 to 10
-7

 (Kleckner, 1981; Kleckner et al, 1977). 

 Finally, some mention should be made of the methods by which the location of a 

transposon insertion can be determined.  The mapping approaches discussed in Sections 

1.3 and 1.4 can of course be employed, but these are both laborious and imprecise by 

modern standards.  Most approaches currently in use make use of modified polymerase 

chain reaction (PCR) techniques.  In inverse PCR (Ochman et al, 1988), for instance, 

genomic DNA containing transposon insertions is digested with a restriction enzyme or 

otherwise fragmented, and the pieces are ligated into circular DNA molecules.  PCR is 

then performed using primers that anneal to transposon sequence and face outward 

toward the genome, resulting in amplification of the ligated genomic DNA sequences 
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outside. The amplified fragments can then be sequenced to identify the genomic regions 

flanking the transposon insertions. 

 

 

Figure 1.2. Outline of methods for determining transposon integration sites. 

 PCR can also be performed directly on unmodified genomic DNA using one 

primer that binds to the transposon and a second set of non-specific primers that bind 

randomly elsewhere in the genome (Liu & Whittier, 1995).  This approach may require 

alternating between different annealing temperatures to favor specific versus non-specific 

priming, and is typically done in stages employing different transposon-specific primers 

in order to limit the amount of non-specific product.  A method that can be readily 

employed in tandem with library preparation in modern deep sequencing approaches 

involves using one primer that binds to the transposon and another that anneals to an 

adaptor ligated to the fragmented end (Gallagher et al, 2011; Gawronski et al, 2009; 
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Goodman et al, 2009; Langridge et al, 2009; van Opijnen et al, 2009).  Such approaches 

may also include affinity purification using biotinylated primers that anneal to transposon 

sequence (Gawronski et al, 2009) and the addition of recognition sites of the MmeI 

restriction enzyme, which cuts approximately 20 bp away from its recognition site, on the 

ends of the transposon (Goodman et al, 2009; van Opijnen et al, 2009), to achieve 

uniform fragment sizes.  Schematics of these approaches are shown in Figure 1.2. 

1.7 HOMOLOGOUS RECOMBINATION WITH SUICIDE PLASMIDS 

 Though the F factor discussed in Section 1.4 was the first plasmid to be 

discovered, a number of further developments were needed before the true potential of 

the plasmid as a genetic tool could be realized.  The first was the discovery of the 

proliferation of the so-called "R factors" in Japan (Falkow et al, 1966; Watanabe & 

Fukasawa, 1961).  These were plasmids that provided antibiotic resistance and spread 

quickly due to the increased use of antibiotics in the post-war period.  A great many of 

the plasmids commonly used in the lab today are derived from these R factors.  Second 

was the identification, isolation, and application of enzymes such as restriction 

endonucleases (Kelly & Smith, 1970; Smith & Wilcox, 1970) and DNA ligases (Weiss & 

Richardson, 1967) from microbes and phage that could be used to site-specifically cut 

and re-ligate DNA.  This led in the 1970s to the first useful methods for editing DNA in a 

predictable and reproducible manner (Cohen et al, 1973; Jackson et al, 1972; Maniatis et 

al, 1982), giving birth to the biotechnology industry.  Molecular cloning techniques and 

plasmid biotechnology have loomed large over the fields of biology and medicine ever 

since. 

 A complete discussion of plasmid biotechnology is beyond the scope of this work, 

but following is a discussion of the ways in which plasmids have been employed to 
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modify genomic DNA.  Besides serving as vectors for delivering the enzymes and 

nucleic acids used in the other approaches discussed herein, DNA carried on plasmids 

can be directly inserted into the genome via homologous recombination, in much the 

same way as for the F plasmid described in Section 1.4.  The primary difference is that in 

this approach, the plasmid does not serve as a shuttle for DNA between genomes but as a 

means of delivery for artificially constructed DNA.  Most commonly some method is 

employed to make replication of the plasmid conditional, allowing the cell to be forced to 

integrate the desired DNA sequence into the genome in order to continue to express the 

associated antibiotic resistance gene or other marker, which is also delivered to the 

genome.  Such plasmids are thus referred to as "suicide plasmids." 

 The first suicide plasmids were actually used to deliver transposons and relied on 

the fact that the Mu prophage prevented replication of RP4 plasmids after transfer from 

E. coli to other strains such as Agrobacterium tumefaciens (van Vliet et al, 1978) and 

Rhizobium leguminosarum (Beringer et al, 1978).  The first use of homologous 

recombination with a recombinant plasmid to deliver genes to the chromosome did not 

employ suicide plasmids per se but rather involved removal of the initial, gene-delivering 

plasmid via subsequent addition of a second plasmid whose presence was incompatible 

with the first (Ruvkun & Ausubel, 1981), but the use of suicide plasmids for the approach 

was adopted soon after (Meade et al, 1982). 

 Many additions and improvements to the method followed.  For markerless 

modifications, a cassette containing a positive-selectable marker (such as antibiotic 

resistance) and a negative-selectable marker (such as the sacB gene, which is lethal to 

Gram-negative bacteria in the presence of sucrose) can be integrated first, followed by 

addition of DNA containing the desired modifications under selection against the 

negative (or "counter-selectable") marker (Ried & Collmer, 1987).  Alternatively, the 
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entire suicide plasmid can be integrated, creating two copies of the target DNA sequence 

(the original chromosomal copy and the copy from the plasmid) in the genome, which 

then recombine back to a single copy upon counter selection, deleting the markers and 

other plasmid sequences in the process (Link et al, 1997).  This second approach 

frequently results in resolution back to the wild-type, however, and screening is required 

to find cells harboring the desired mutations (see Figure 1.3).  Simpler and more reliable 

methods for inducing "suicide" were also developed, including plasmids that require a 

specific gene, such as pir (Miller & Mekalanos, 1988) or repA (Leenhouts et al, 1996a) to 

reproduce, or plasmids that do not replicate at high temperatures (Biswas et al, 1993; 

Hamilton et al, 1989; Link et al, 1997; Luchansky et al, 1989). 

 The advantages of this approach are that it works in a wide variety of organisms 

and can be used to delete, replace, or insert DNA of several kilobases in a predictable 

manner.  Disadvantages include low efficiency and potentially laborious cloning steps, 

and it is currently not preferred when other methods are available.  For instance, the 

approaches described in Section 1.10 have largely replaced suicide plasmids for targeted 

modifications in E. coli, except perhaps in certain special cases where complex, 

markerless gene replacements are desired, and the methods described in Section 1.11 are 

becoming a standard solution for creating targeted gene knock-outs in other strains.  

However, approaches based on homologous recombination between chromosomes and 

plasmids have been used to achieve some impressive results, such as inserting an entire 

bacterial genome piecemeal into another (Itaya et al, 2005). 
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Figure 1.3. Schematic of suicide plasmid used for allelic replacement. 

Colored boxes represent open reading frames, and the black bar represents the mutation to be 

introduced.  The example shown depicts integration at the site of the red gene, but integration could 

occur anywhere along the region of homology.  Figure from Nakashima & Miyazaki (2014), which is 

available under a Creative Commons Attribution license. 

  

1.8 SITE-SPECIFIC RECOMBINASES 

 Site-specific recombinases are a class of enzymes that catalyze efficient 

recombination between specific sequences of DNA.  This section will give particular 

attention to the Cre recombinase since it is arguably the best studied and most widely 

used (Anastassiadis et al, 2009) and is frequently employed in subsequent chapters of the 

present work. 

 The Cre protein (named because it causes recombination) was first characterized 

in 1981 (Sternberg & Hamilton, 1981).  Cre is a 38-kD enzyme that originates from the 

bacteriophage P1, which is commonly used for generalized transduction in E. coli.  Cre 

seems to serve cyclize the linear genome of P1 and to resolve chromosome dimers 
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(Sternberg et al, 1981).  Cre recognizes a sequence referred to as a "lox" site (for locus of 

crossing (x) over) and, in its basic implementation, will delete or invert the DNA between 

two lox sites depending on their relative orientation (see Fig. 1.4). 

 The lox site itself is 34 bases long and consists of 13-base-pair inverted repeats 

("arms") flanking an 8-base-pair spacer region (see Figure 1.5A).  The spacer is 

asymmetric and determines the relative oriention of the lox site.  Dimers of Cre bind the 

inverted repeats of the lox site.  Cre dimers bound to separate lox sites then bind together 

into tetramers, bringing the lox sites together such that the spacer regions are aligned.  

Recombination then takes place within the spacer region (Guo et al, 1997a; Hoess & 

Abremski, 1985). 

 

Figure 1.4. Cre-lox basics. 

(A) shows the mechanism of deletion, and (B) shows the mechanism of inversion, where lox sites are 

represented as white boxes with black arrows indicating orientation. 
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Figure 1.5. Sequences and functionality of wild-type (loxP) versus arm-mutant lox sites. 

(A) Sequences of wild-type and arm-mutant lox sites.  The arms are enclosed by large arrows, and the 

arrow above the spacer region indicates orientation.  Bases mutated relative to wild-type are shown in 

lowercase.  (Adapted from Langer et al. 2002) (B) Recombination between lox66 and lox71 generates 

a non-functional lox72 site and a reconstituted loxP site. 

 Mutant lox sites provide some of the most useful characteristics of the system.  

The variant lox sites can be separated into two groups: mutations in the 13-base-pair 

inverted repeats (arm mutants), and mutations in the 8-base-pair spacer (spacer mutants).  

Arm mutants affect the ability of Cre to bind the lox site.  The most widely used of these 

mutants are lox66, which contains mutations in the downstream arm, and lox71, which 

contains mutations in the upstream arm (Albert et al, 1995).  These mutants are still 

recognized by Cre, but upon recombination form a lox72 site in which both arms are 

mutated.  The lox72 site is no longer recognized by Cre, and thus the use of these arm 

mutants allows the direction of the recombination reaction to be controlled (see Fig 1.5).  

These lox sites have been used to for multiple marker removal (Arakawa et al, 2001; 

Lambert et al, 2007), directional cloning (Langer et al, 2002), and creating multiple large 

genomic deletions (Suzuki et al, 2005a). 
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 The spacer determines the specificity of the lox site, and mutations here can create 

new lox sites capable of recombining with each other but incapable of recombining with 

lox sites containing a different spacer sequence (Hoess et al, 1986; Langer et al, 2002; 

Livet et al, 2007; Sauer, 1996; Siegel et al, 2001) (see Tables 1.1 and 1.2).  Experimental 

evidence suggests that the second and seventh bases are most important for determining 

specificity, while a T is preferred at position 4 and a T or A is preferred at position 5 

(Langer et al, 2002).  Spacer mutants are typically used to force cassette exchange (in 

other words, insertion of new DNA) over deletion or inversion, though the loxPsym 

mutant was designed to remove the directionality of the spacer and create a completely 

symmetrical lox site (Hoess et al, 1986).  The combination of arm and spacer mutants 

allows exquisite control over the type and direction of recombination catalyzed by Cre. 

 12345678 

loxP (wild-type) ATAACTTCGTATAGCATACATTATACGAAGTTAT 

lox511 ATAACTTCGTATAGTATACATTATACGAAGTTAT 

lox511-I ATAACTTCGTATAATGTATACTATACGAAGTTAT 

loxFAS ATAACTTCGTATATACCTTTCTATACGAAGTTAT 

lox2272 ATAACTTCGTATAGGATACTTTATACGAAGTTAT 

lox5171 ATAACTTCGTATAGTACACATTATACGAAGTTAT 

loxm2 ATAACTTCGTATATGGTTTCTTATACGAAGTTAT 

loxN ATAACTTCGTATAGTATACCTTATACGAAGTTAT 

loxPsym ATAACTTCGTATAATGTACATTATACGAAGTTAT 

Table 1.1. Sequences of selected lox spacer mutants. 

(Sequences collected from Hoess et al. 1986; Siegel et al. 2001; Langer et al. 2002; and Livet et al. 

2007) 
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 WT 511-I 511 FAS 2272 5171 

WT 99.6 (± 0.7)      

511-I 1.4 (± 1.6) 99.2 (± 1.9)     

511 10.3 (± 1.4) 75.3 (± 9.3) 99.8 (± 0.3)    

FAS 0.2 (± 0.3) 5.7 (± 3.1) 0.0 (± 0.0) 99.4 (± 0.3)   

2272 0.5 (± 0.4) 0.3 (± 0.4) 1.6 (± 0.3) 1.7 (± 0.8) 99.7 (± 0.5)  

5171 5.7 (± 2.7) 77.7 (± 5.1) 99.9 (± 0.1) 4.8 (± 0.8) 0.1 (± 0.1) 99.5 (± 0.9) 

 

Table 1.2. Recombination frequencies between selected lox spacer mutants. 

(Data from Siegel et al. (2001)) 

 Additionally, a great deal of work has been done in finding Cre homologs with 

altered specificities in order to further increase the range of operations that can be carried 

out simultaneously using this system.  These include Dre (Anastassiadis et al, 2009; 

Sauer & McDermott, 2004), SCre and VCre (Minorikawa & Nakayama, 2011; Suzuki & 

Nakayama, 2011), and Vika (Karimova et al, 2013).  In addition, Cre has been subjected 

to directed evolution to generate variants with modified substrate specificity (Buchholz & 

Stewart, 2001; Rufer & Sauer, 2002; Santoro & Schultz, 2002), including a variant called 

Tre that was designed to excise the HIV provirus from the mammalian genome (Sarkar et 

al, 2007). 

 Another widely used site-specific recombination system is FLP/FRT.  FLP 

("Flippase") was discovered in 1980 (Broach & Hicks, 1980) in the yeast 2μm plasmid, 

which is a selfish element that uses recombination to flip the orientation of its origin of 

replication in order to switch between phage-like rolling-circle amplification and 

bacteria-like theta replication in order to modulate its copy number (Volkert & Broach, 

1986).  The FLP recognition target (FRT) was determined in 1985 (Andrews et al, 1985; 

Jayaram, 1985; Senecoff et al, 1985), and, like Cre/lox, the minimal recognition sequence 

involves an 8-base-pair spacer flanked by two 13-base-pair inverted repeats.  Though 

FLP is considered to be less active than Cre (Anastassiadis et al, 2009; Srivastava & 
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Gidoni, 2010), particularly at 37°C (Buchholz et al, 1996), more active variants of FLP, 

such as FLPe (Buchholz et al, 1998) and FLPo (Raymond & Soriano, 2007), have been 

engineered to narrow this gap.  As with lox sites, FRT sites with mutant arms have been 

developed for directional recombination (Senecoff et al, 1988).  It has been reported that 

these mutant arms may not work as well as might be desired, though the use of the FLPe 

variant may increase their utility (Huang et al, 1991; Nandy & Srivastava, 2011). Like 

Cre, work has also been done to generate variants of FLP with modified target-site 

specificity (Bolusani et al, 2006; Voziyanov et al, 2003). 

 Phage integrases can also perform similar functions, with the special 

characteristic of being naturally unidirectional.  The Int (integrase) of λ phage is the 

canonical example of this class and catalyzes recombination between so-called 

attachment sites in the phage and bacterial genomes, referred to as attP and attB, 

respectively (Campbell, 1962; Hershey, 1971).  In order for the backwards recombination 

to occur, both the Int and Xis proteins must be present (Guarneros & Echols, 1970).  This 

is schematically shown in Figure 1.6. 

 Though the activity of phage integrases has been known since 1960s, it was not 

until the early 1990s that they were employed separately from the phage themselves to 

aid in genome engineering (Atlung et al, 1991; Diederich et al, 1992).  In recent years a 

number of other phage integrases have been developed for biotechnological applications, 

including PhiC31 (Keravala et al, 2009; Thorpe & Smith, 1998) and PhiBT1 (Xu et al, 

2008). 
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Figure 1.6. Activity of Int and Xis on their recognition targets. 

 Though site-specific recombinases are widely used in eukaryotes (Nagy, 2000; 

Siegal & Hartl, 2000; Srivastava & Gidoni, 2010; Turan et al, 2013; Wirth et al, 2007), 

they have remained relatively under-utilized in bacteria, being primarily used for 

removing the markers employed in other methods (some of the numerous examples 

include work reported in Abuin & Bradley (1996); Gilbertson (2003); Guldener et al. 

(1996); Lambert et al. (2007); Leibig et al. (2008); Pomerantsev et al. (2006); and 

Stockinger et al. (2005)).  However, they have been used in a number of studies looking 

at the effects of large deletions and inversions on bacterial chromosomes in species 

including Lactococcus lactis (Campo et al, 2002; Campo et al, 2004), E.coli (Esnault et 

al, 2007; Fukiya et al, 2004; Valens et al, 2004), Salmonella typhimurium (Wilson et al, 

2004) and Corynebacterium glutamicum (Suzuki et al, 2005a; Suzuki et al, 2005b).  

Additionally, Val and coworkers recently used phage integrases to fuse the two 

chromosomes of Vibrio cholerae into one (Val et al, 2012), and integrases were also used 
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to deliver large polyketide-synthase operons into the genomes of industrially optimized 

strains (Rodriguez et al, 2003). 

1.9 GENOME SHUFFLING 

 Genome shuffling a method for rapid strain improvement that makes use of 

protoplast formation and subsequent fusion.  A protoplast is a bacterium that has had 

most of its cell wall removed, and two such bacteria can then be fused into a single cell 

by the addition of an appropriate surfactant.  This technique was first demonstrated in 

bacteria using Bacillus subtilis and Bacillus megaterium in 1976 (Fodor & Alfoldi, 1976; 

Schaeffer et al, 1976), and number of other bacteria soon followed (Peberdy, 1980).  

Placing multiple genomes from different strains in the same cell allows homologous 

recombination and trading of markers to occur, which was leveraged to map the genomes 

of species, such as Staphylococcus aureus, that had previously been difficult to analyze 

(Stahl & Pattee, 1983a; Stahl & Pattee, 1983b).  Protoplasted bacteria also proved easy to 

transform (Chang & Cohen, 1979), which had previously been a problem for Gram-

positive bacteria. 

 The field was reinvigorated in 2002 with the report of a technique called "genome 

shuffling," in which a large library of mutants is created and then repeatedly subjected to 

protoplast formation and fusion in between rounds of growth under a selective pressure 

or screening for a desired phenotype (Zhang et al, 2002).  This allows beneficial 

mutations to spread rapidly through a population and allows strain improvement to 

proceed much more quickly than traditional methods of repeated rounds of simple 

mutagenesis and screening or selection.  The initial example involved improving the 

production of tylosin by Streptomyces fradiae, and many other have followed, including 

improved acid tolerance and lactic acid production in Lactobacilli (John et al, 2008; 
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Patnaik et al, 2002; Wang et al, 2007), increased production of hydroxycitric acid in a 

Streptomyces species (Hida et al, 2007), and many others, most recently reviewed in 

Gong et al. (2009). 

 One drawback to these methods is that they do not function well in Gram-

negative bacteria such as E. coli, which have a more complex membrane structure.  

Though protoplasting methods have been reported for Gram-negative bacteria (Dai et al, 

2005), examples of protoplast fusion or genome shuffling of Gram-negative bacteria in 

the literature remain rare.  While it is possible that the F plasmid could be exploited as an 

alternative (Quandt et al, 2013; Winkler & Kao, 2012), sharing fragments of genomes 

between cells is unlikely to be as efficient in facilitating evolution as combining multiple 

intact genomes, as can be achieved in the standard genome shuffling approaches in 

Gram-positive bacteria. 

1.10 RECOMBINEERING1 

 In the 1960s, it was noticed that knocking out the homologous recombination 

system in E. coli did not stop homologous recombination from occurring between λ 

phage genomes (Takano, 1966; van de Putte et al, 1966), suggesting that λ possessed its 

own recombination system.  Mutations that destroyed this ability were mapped to a locus 

that was dubbed "Red" (recombination deficient) (Echols & Gingery, 1968; Signer & 

Weil, 1968).  It turned out that there were two genes responsible, called beta and exo 

(Radding, 1970; Shulman et al, 1970) that are involved in λ recombination and are now 

called the Red system.  Another neighboring gene, gam, is also involved and is frequently 

                                                 
1 Portions of this section are adapted from Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, 

Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome 

editing using mobile group II introns and Cre-lox. Mol Syst Biol 9: 685.  This work is used with permission 

under a Creative Commons – Attribution license.  The borrowed text was written by PJE with edits by 

ADE. 
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also considered as one of the Red functions.  The product of exo is an 5'-3' exonuclease 

that acts on double stranded DNA and leaves 3' overhangs (Carter & Radding, 1971).  

The Beta protein binds single-stranded DNA and promotes annealing to complementary 

DNA (Kmiec & Holloman, 1981; Muniyappa & Radding, 1986).  Together, then, Exo 

and Beta convert the ends of a linear DNA molecule to single-stranded DNA and 

promote annealing to complementary sequences.  The Gam protein inhibits the native 

exonuclease machinery in E. coli that would otherwise degrade such DNA (Karu et al, 

1975). 

 In the late 1990s it was found that over-expressing the exo, beta, and gam genes 

in E. coli greatly enhanced the frequency of homologous recombination in the cell 

(Murphy, 1998), allowing linear double-stranded DNA with short (approximately 40 base 

pairs) regions of homology on either end to be directly recombined into the genome 

(Datsenko & Wanner, 2000; Yu et al, 2000), entirely bypassing the use of plasmids as 

described in Section 1.8.  This technique came to be called "recombineering" and has 

been widely used (for a review, see Murphy (2012)).  It was, for instance, used by the 

Blattner lab to create their streamlined E. coli genome (Kolisnychenko et al, 2002; Posfai 

et al, 2006). 

 Soon after it was found that the beta gene by itself is sufficient to allow short, 

single-stranded DNA molecules to recombine into the genome (Ellis et al, 2001), the 

efficiency of which can be increased significantly in mutator strains (specifically, in 

strains lacking a functional mutS gene), which also confirmed long-standing suspicions 

that DNA replication played an important role in the process (Costantino & Court, 2003).  

In the latter case in particular, efficiencies can be on the order of 10% without the need 

for selectable markers (though the presence of markers can be exploited to push 

efficiency even higher (Carr et al, 2012)). This allows point mutations and other small 
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modifications to be made quickly and rapidly in E. coli.  The method has also been 

automated (Wang et al, 2009), and it was this mechanized version, combined with use of 

the F plasmid, that was used to create an E. coli strain completely free of UAG stop 

codons, allowing that codon to be assigned to new, unnatural amino acids (Isaacs et al, 

2011; Lajoie et al, 2013). 

 Though Red-based recombineering has become the default approach for genome 

engineering in E. coli, there are limitations.  When using single-stranded DNA, mutator 

strains must be used to achieve reliable efficiency even in the single-digit range.  Even 

then, the efficiency of inserting a sequence as large as a lox site is in the neighborhood of 

1%, and the efficiency of deleting 10,000 bases of genomic sequence is approximately 

0.1% (Wang et al, 2009).  The use of the full complement of λ Red proteins allows larger 

pieces of double-stranded DNA to be inserted, but selectable markers are typically 

required and the size of possible insertions is limited to several thousands of bases.  

Additionally, use of this approach in other species has so far been limited and typically 

requires developing new recombineering functions for each system (Binder et al, 2013; 

Datta et al, 2008; Swingle et al, 2010; van Kessel & Hatfull, 2008). 

1.11 TARGETRONS2 

 While introns are commonly associated with gene splicing in eukaryotic cells, 

introns are also present in bacteria, where they seem to function as selfish elements that 

insert into host genomes but splice themselves out of RNA transcripts in order minimize 

deleterious effects on the host.  In recent years, the class referred to as "mobile group II 

                                                 
2 Portions of this section are adapted from Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM (2014) 

Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, 

RNA-seq, and non-coding RNA analysis. Mob DNA 5: 2.  This work is used with permission under a 

Creative Commons – Attribution license.  The borrowed text was written by PJE with edits by AML.  The 

figures in this section were created by GM. 

 



 29 

introns" has been the subject of much interest after it was found that they recognize new 

sites for insertion via base-pairing of the intron RNA with the target site DNA (Guo et al, 

1997b), and that, furthermore, the site targeted can be changed by modifying the RNA 

sequence of the intron (Guo et al, 2000; Mohr et al, 2000).  Such retargeted introns have 

come to be called "targetrons."  Since these are frequently employed in later chapters of 

this work, they will be discussed in some detail here. 

 Mobile group II introns consist of a catalytically active intron RNA and an intron-

encoded protein (IEP), which is a reverse transcriptase and also performs other functions 

(see Fig. 1.7) (Lambowitz & Zimmerly, 2011; Michel & Ferat, 1995; Qin & Pyle, 1998).  

Group II intron RNAs have a length of 400 to 800 nts, excluding the open reading frame 

encoding the IEP (Lambowitz & Zimmerly, 2011).  They have little sequence similarity 

to each other, but fold into a conserved three-dimensional structure consisting of six 

interacting double helical domains (DI-DVI) (see Figs. 1.7A and 1.7B) (Marcia et al, 

2013; Michel & Ferat, 1995; Qin & Pyle, 1998; Toor et al, 2008). 

The folded group II intron RNA contains an active site that uses specifically bound 

magnesium ions to catalyze RNA splicing via two sequential transesterification reactions 

that yield ligated exons and an excised intron lariat RNA, the same reaction mechanism 

used for the splicing of nuclear spliceosomal introns in eukaryotes (see Fig. 1.7C) (Pyle 

& Lambowitz, 2006).  Because the transesterification reactions used for splicing are 

reversible, the intron RNA can also catalyze reverse splicing of the intron into RNA or 

DNA sites containing the ligated exon sequence, with reverse splicing into DNA playing 

a key role in intron mobility. 
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Figure 1.7. Group II intron RNA structure and splicing mechanism.  

(A) Group II intron RNA secondary structure. The example shown is the Lactococcus lactis Ll.LtrB 

group IIA intron. Intron RNA domains are different colors, and the 5’ and 3’ exons (E1 and E2, 

respectively) are thicker dark and light blue lines, respectively. The large ‘loop’ region of DIV, which 

encodes the group II intron reverse transcriptase, is shown as a dashed line and not drawn to scale. (B) 

Crystal structure of the Oceanobacillus iheyensis group IIC intron. The ribbon diagram of the intron’s 

structure was generated from Protein Data Bank file 3IGI (Toor et al, 2010) (http://www.pdb.org) with 

PyMol. Group II intron RNA domains are colored as in panel A. (C) Group II intron RNA splicing 

and reverse splicing. Double-stranded DNA is indicated by double lines and RNA as a single line. E1 

and E2 are shown in dark and light blue, respectively; the intron and intron RNA are shown in red; 

and the intron-encoded RT is shown in green. 

 

 The process by which the intron inserts into a new DNA site is called 

"retrohoming," depicted in Figure 1.8 and reviewed in Lambowitz & Zimmerly (2004) 

and Lambowitz & Zimmerly (2011).  Retrohoming starts with the group II intron splicing 

out of a larger RNA molecule, typically a transcript of the gene in which the group II 

intron is inserted. Splicing is accomplished via folding of the intron RNA into a catalytic 

structure, with help of the IEP, which binds the intron RNA and stabilizes the active 

RNA tertiary structure.  After splicing, the IEP remains tightly bound to the excised 

intron lariat RNA in a complex that initiates retrohoming by recognizing DNA target 

sequences by a combination of site-specific binding of the IEP and base pairing of 
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sequence motifs in the intron RNA, described in more detail below. The intron RNA then 

integrates directly into the DNA target site, while an endonuclease activity of the IEP 

cuts the opposite DNA strand slightly downstream of the insertion site, leaving an 

overhang with a cleaved 3’ end that is used as a primer for synthesis of a cDNA copy of 

the inserted intron RNA by the IEP (Yang et al, 1996; Zimmerly et al, 1995a; Zimmerly 

et al, 1995b).  The cDNA copy of the reverse-spliced intron RNA is integrated into the 

host genome by common cellular DNA recombination or repair mechanisms, a feature 

that contributes to the wide host range of group II introns. Host nucleases trim DNA 

overhangs, and ligases repair remaining nicks (Smith et al, 2005). 

 The key to using group II introns for gene targeting is their mode of DNA target 

site recognition. DNA target sequences are recognized by using both the IEP and base 

pairing of the intron RNA, with the latter contributing most of the DNA target specificity 

(Guo et al, 2000; Guo et al, 1997b).  The major target site interactions for the introns that 

have been adapted for retargeting are shown in Figure 1.8. 

 The Ll.LtrB intron (often simply referred to as "LtrB") is a type IIA intron and as 

such contains three sequence motifs that recognize DNA target sites by base pairing. 

These are denoted EBS1, EBS2, and δ, and they base pair to complementary sequences in 

the DNA target site denoted IBS1, IBS2, and δ' (where EBS stands for "exon-binding 

site" and IBS stands for "intron-binding site"; these same interactions also occur upon 

splicing out of a larger RNA molecule). The Ll.LtrB IEP (commonly called "LtrA") 

recognizes nucleotides both upstream and downstream of the IBS/δ' sequences (colored 

purple and blue, respectively, in Fig. 1.9). Binding of the IEP promotes DNA melting 

(Singh & Lambowitz, 2001), enabling the intron RNA to base pair to the DNA target 

sequence, and DNA bending, which positions the target DNA properly for cleavage and 

priming of reverse transcription (Noah et al, 2006). 
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Figure 1.8. Group II intron retrohoming.  

In the first step, the intron-encoded protein (IEP) binds to the intron in a larger initial transcript of a 

gene and promotes RNA splicing, resulting in a ribonucleoprotein complex that contains the excised 

intron lariat RNA and the tightly bound IEP. The complex recognizes DNA target sites by using both 

the IEP and base pairing of the intron RNA and then promote reverse splicing of the intron RNA into 

the top strand of the double-stranded DNA. After reverse splicing, the bottom DNA strand is cleaved 

by the endonuclease domain of the IEP, and the 3’ end generated at the cleavage site is used as a 

primer for target DNA-primed reverse transcription of the inserted intron RNA. The resulting intron 

cDNA (black) is integrated into the host genome by cellular DNA recombination or repair 

mechanisms. 
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Figure 1.9. DNA target site recognition by mobile group II introns used as targetrons.  

Portions of the intron RNA involved in the EBS1-IBS1, EBS2-IBS2, and δ − δ’ or EBS3-IBS3 base-

pairing interactions with the DNA target site are shown in red. Purple and blue highlights indicate 

base-pairs in the 5’ and 3’ exons (E1 and E2, respectively) that are important for DNA targeting and 

recognized by the IEP (denoted RT (reverse transcriptase) here). CS, bottom-strand cleavage site; IS, 

intron-insertion site. 

 

 EcI5 and RmInt1 are group IIB introns but also contain three sequence elements 

that recognize the DNA target site by base pairing. Specifically, EBS1, EBS2, and EBS3 

base pair to corresponding IBS sequences in the target. The IEP again recognizes 

flanking sequences. In EcI5, a relatively well-studied example of this class (Zhuang et al, 

2009), the IEP recognizes a similar number of residues as the IEP of Ll.LtrB, although 

the identities and locations of these residues differ. The RmInt1 IEP recognizes only two 
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critical nucleotide residues, but additional sequences may contribute (Jimenez-Zurdo et 

al, 2003). 

 These introns have high DNA-target specificity and integrate only rarely into off-

target sites.  For example, retrotransposition of the Ll.LtrB intron into off-target sites in 

the E. coli chromosome occurs at a frequency of 0.1-30 x 10
-6

 (Coros et al, 2005; 

Lambowitz & Zimmerly, 2011). 

Although group II introns can and have been retargeted by finding the closest match 

to the native recognition site in a sequence to be targeted and modifying the base-pairing 

sequences of the intron to accommodate discrepancies, the rules by which introns 

recognize their target sites are actually more complex. For instance, the IEP recognizes 

different residues at the target site with different stringencies, and none of these 

recognition events are absolutely required for retrohoming to occur (Guo et al, 2000; 

Mohr et al, 2000; Zhong et al, 2003). If only the wild-type recognition sequence is used, 

then new targeting sites may be hard to come by, but knowing which bases can be varied 

and how is not a simple matter. The EBS/δ sequences may also differ in the stringency of 

required base-pairing interactions at different positions. Algorithms have therefore been 

developed for retargeting the Ll.LtrB (Perutka et al, 2004) and EcI5 (Zhuang et al, 2009) 

introns. These algorithms were developed by examining libraries of inserted mobile 

group II introns with randomized base-pairing motifs for the most frequently conserved 

residues and base-pairing interactions, and using these frequencies to generate weighting 

schemes for the various interactions. Potential target sites are then assessed using the 

weighted criteria and assigned a score. Although the algorithms have limitations and do 

not always correctly predict insertion frequency, typically a targetron efficient enough to 

be screened via colony PCR for insertions without selection can be found for any given 

stretch of 1,000 base pairs of DNA. 
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The actual retargeting process is carried out by using two sequential PCR reactions 

that modify the EBS/δ sequences within the intron to base pair to the DNA target site and 

modify the IBS sequences flanking the intron to base pair to the retargeted EBS 

sequences to allow the intron to splice out of the precursor RNA transcribed from the 

expression plasmid (Karberg et al, 2001; Perutka et al, 2004). The PCR product 

corresponding to a segment of the intron and upstream exon is then cloned into an 

expression vector. Alternatively, the entire region covering the IBS and EBS/δ sequences 

can be commercially synthesized in a single DNA molecule (for example, as a gBlock 

sold by IDT) that can be cloned directly into the vector (Enyeart et al, 2013). The δ' or 

IBS3 positions in the downstream exon are typically adjusted by cloning the PCR product 

into one of four parallel targetron vectors already containing the correct base for this 

interaction. 

The typical configuration for the targetron cassette is one in which the open reading 

frame encoding the IEP is removed from the intron and expressed in tandem. This 

increases the efficiency of retrohoming and allows for disruptions of the targeted gene to 

be either conditional or non-conditional, depending on whether the intron is targeted to 

insert into the sense or antisense strand of the gene and whether or not the IEP remains 

present to aid in splicing of the intron from the mRNA (Frazier et al, 2003; Yao et al, 

2006). 

Targetrons have been used in a wide range of bacteria, including medically and 

commercially important species that had been recalcitrant to gene targeting by other 

methods (see Table 1.3).  Because the initial reverse splicing and target-DNA-primed 

reverse transcription reactions are catalyzed by group II intron RNPs, and because the 

late steps of second-strand synthesis and cDNA integration are performed by common 

host factors (Eskes et al, 2000; Eskes et al, 1997; Smith et al, 2005; White & Lambowitz, 
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2012; Yao et al, 2013), there are in principle no limitations to the number of bacterial 

species in which targetrons might function. As mobile group II introns are present in the 

genomes of some archaea (Rest & Mindell, 2003), targetrons may prove useful in 

archaea, as well. 

 
Genus Primary references 

Agrobacterium (Yao & Lambowitz, 2007) 

Azospirillum (Malhotra & Srivastava, 2008) 

Bacillus (Akhtar & Khan, 2012) 

Clostridium 
(Chen et al, 2005; Heap et al, 

2007) 

Chlamydia (Johnson & Fisher, 2013) 

Ehrlichia (Cheng et al, 2013) 

Escherichia 
(Karberg et al, 2001; Zhuang et 

al, 2009) 

Francisella (Rodriguez et al, 2008) 

Lactococcus (Frazier et al, 2003) 

Listeria (Alonzo et al, 2009) 

Paenibacillus (Zarschler et al, 2009) 

Pasteurella (Steen et al, 2010) 

Proteus (Pearson & Mobley, 2007) 

Pseudomonas (Yao & Lambowitz, 2007) 

Ralstonia (Park et al, 2010) 

Salmonella (Karberg et al, 2001) 

Shewanella (Enyeart et al, 2013) 

Shigella (Karberg et al, 2001) 

Sinorhizobium (Garcia-Rodriguez et al, 2011) 

Sodalis (Smith et al, 2013) 

Staphylococcus (Yao et al, 2006) 

Vibrio (Kumar et al, 2011) 

Yersinia (Palonen et al, 2011) 

Table 1.3. Bacteria in which targetrons have been used successfully. 

Targetrons have most frequently been used to generate knock-outs in bacteria. A 

great deal of work has been done using this method, with examples including identifying 

virulence factors (Alonzo et al, 2009; Buchan et al, 2009; Carter et al, 2011; Cheng et al, 
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2013; Francis et al, 2013; Sayeed et al, 2008; Steen et al, 2010) and potential drug targets 

(Zoraghi et al, 2010; Zoraghi et al, 2011), and examining the combinatorial effect of 

different genomic loci on protein expression (Rawsthorne et al, 2006). 

Targetrons have been particularly widely used in strains of the genus Clostridium 

(reviewed in Enyeart et al. (2014)). Suicide plasmids were previously the only method of 

utility in these strains (Heap et al, 2007), but since clostridia typically have very low 

transformations frequencies (for instance, more than a milligram of plasmid is required to 

transform Clostridium acetobutylicum (Shao et al, 2007)), suicide plasmids are difficult 

to apply in these organisms, which include a number of medically and industrially 

important species. 

Many bacteria of interest are difficult to transform due to restriction-modification 

systems. In Staphylococcus aureus (Corvaglia et al, 2010), Clostridium acetobutylicum 

(Dong et al, 2010), and Clostridium cellulolyticum (Cui et al, 2012), targetrons were used 

to knock out restriction enzymes, thereby opening clinical and environmental isolates to 

systematic mutational analysis. Targetrons have been developed for use in a number of 

pathogenic bacteria (see Table 1.3), opening up the possibility of using targetrons to 

develop vaccine strains of these organisms.  Additionally, a thermostable targetron was 

recently developed (Mohr et al, 2013), allowing the technology to be applied to 

thermophilic bacteria, which include many industrially important strains. 

Targetrons have also been used to deliver cargo genes, including genes for 

fluorescent proteins (Rawsthorne et al, 2006), phage resistance (Frazier et al, 2003), and 

antigens for release into a host's digestive system as a live vaccine (Chen et al, 2007).  

Sequences of less than 100 nt in length can usually be carried without impacting intron 

mobility (though see Chapter 2 for exceptions). Longer sequences may impair 

functionality, and sequences above 1,000 nt can drastically decrease efficiency. Domain 
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IV has been shown to be the best location to insert cargo genes for minimal impact on 

intron mobility (Plante & Cousineau, 2006). 

The advantages of targetrons are their broad-host range specificity and their high 

efficiency.  Disadvantages include the fact that retargeting and testing new introns is 

rather more laborious than the methods presented in Section 1.10, for example. 

1.12 WHOLE-GENOME SYNTHESIS 

 In 2007, researchers at the Venter Institute announced that they had replaced the 

genome of one bacterium with that of another (Lartigue et al, 2007).  This was followed 

by reports of complete chemical synthesis of a bacterial genome (Gibson et al, 2008), and 

then, by combining the two techniques, the creation of a bacterium whose genome was 

entirely synthetically constructed (Gibson et al, 2010).  These techniques have since been 

refined by employing yeast to assemble, modify and safely store bacterial genomes 

(Benders et al, 2010; Karas et al, 2013; Lartigue et al, 2009).  These advances raise the 

possibility of an entirely new paradigm for genome engineering: instead of modifying 

existing genomes, genomes having the desired properties could simply be designed, 

synthesized, and inserted into appropriate cells. 

 While these results are impressive, this technology is still in its infancy and is far 

from being routinely practicable for most practitioners.  The genomes to which this 

technique have been applied are quite small, with the artificial genome that was 

expressed in a living cell being about 1.1 megabases (Gibson et al, 2010), and the largest 

genome cloned in yeast being about 1.8 megabases (Karas et al, 2013).  These are quite 

small compared to E. coli, whose genome is about 4.6 megabases (Blattner et al, 1997).  

Whether and how these techniques can be scaled up to organisms with more complex 

genetics remains to be seen.  Synthesizing entire genomes is also extremely resource 
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intensive (Enyeart & Ellington, 2011), and while DNA synthesis costs are falling, the rate 

of decrease has lagged behind that for DNA sequencing, for instance (Carr & Church, 

2009).  Finally, the modifications that were made to the wild-type genome sequence in 

the process of synthesizing new genomes have thus far been modest, not extending 

beyond watermarks and unintentional mutations (Gibson et al, 2010).  It will be 

interesting to see if and when whole genome synthesis will be able implement new 

bacterial genome designs that could not be performed more easily by engineering 

naturally occurring chromosomes. 

1.13 TARGETED NUCLEASES 

 Brief mention will be made of artificial targeted nucleases, such as zinc finger 

nucleases (Urnov et al, 2010), TAL effector nucleases (Sun & Zhao, 2013), and the 

CRISPR-Cas9 system (Cho et al, 2013; Cong et al, 2013; Mali et al, 2013), which were 

developed in recent years and have been widely employed in a variety of applications in 

eukaryotes, including human gene therapy (Gaj et al, 2013).  These approaches rely on 

cutting the genome at a precisely defined point, which allows mutations to be introduced 

upon repair, including the insertion of new DNA at that site via homologous 

recombination.  These approaches have not gained much traction in bacteria, however.  

For the CRISPR-Cas9 nuclease system in particular, targeting the system to genomic 

sites was found to be lethal (Bikard et al, 2012), but it has been found to function 

acceptably well in bacteria with exceptionally efficient homologous recombination 

systems, such as Streptococcus (Jiang et al, 2013).  Similar phenomena are likely 

responsible for the fact that zinc finger nucleases and TAL effector nucleases are rarely 

used in bacterial systems. 
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1.14 SUMMARY AND PERSPECTIVE 

 Table 1.4 summarizes bacterial genome engineering methodologies.  In 

considering conventional methods for modifying bacterial genomes, we note two issues.  

The first is that efficient, versatile, and broad-host range solutions for genome 

engineering are rare.  The second is that many opportunities exist for combining these 

methods to achieve new functionalities, particularly as regards the utility of site-specific 

recombinases.  The research presented in Chapters 2 through 4 herein was inspired by 

these observations, while Chapters 5 and 6 present some potential applications of that 

work. 
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 Primary uses Advantages Disadvantages 

Serial dilution Strain improvement "Natural," universal 

application 

Extremely slow, 

difficult to target and 

analyze 

Mutagens Creation of knock-outs 

and other mutant 

strains, strain 

improvement 

Easy to use, random, 

universal application 

Dangerous to handle, 

unpredictable effects, 

difficult to analyze, 

possibly difficult to 

maintain 

F plasmid Mapping, strain 

improvement 

Useful for combining 

or dispersing mutations 

between strains 

Narrow host range, 

somewhat labor 

intensive 

Generalized 

transducing 

phage 

Mapping, strain 

improvement 

Useful for combining 

or dispersing mutations 

between strains (finer 

grained than F 

plasmid) 

Narrow host range, 

somewhat labor 

intensive 

Specialized 

transducing 

phage 

Gene delivery Reliable delivery of 

large DNA pieces 

Narrow host range, 

rigid site specificity, 

somewhat labor 

intensive 

Transposons Creation of knock-out 

mutants, strain 

improvement 

Efficient, random, 

mutations easy to 

maintain, relatively 

easy to analyze, broad 

host range 

Not suitable for site-

specific applications 

Suicide 

plasmids 

Knock-outs, gene 

replacements, deletions 

Broad host range Inefficient, somewhat 

labor intensive 

Site-specific 

recombinases 

Deletions, inversions, 

insertions 

Extremely efficient, 

broad host range 

Recognition sites must 

be positioned using 

other methods 

Genome 

shuffling 

Strain improvement Fast Does not work well in 

Gram negatives 

Recombineering Insertions, deletions, 

point mutations 

Easy to use Limited to small-size 

modifications, narrow 

host range 

Targetrons Knock-outs Efficient, broad host 

range 

Somewhat laborious 

Whole-genome 

synthesis 

Large-scale 

chromosomal 

remodeling 

Virtually any type and 

any number of viable 

modifications can be 

made simultaneously 

Extremely expensive, 

laborious, and 

currently limited to 

small genomes 

Targeted 

nucleases 

Insertions and short 

deletions 

Site specificity Lethal to most bacteria 

Table 1.4. Summary of current bacterial genome engineering methods.  
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Chapter 2:  Developing targetrons for delivery of functional genetic 

elements 

2.1 INTRODUCTION 

Targetrons are a useful, broad-host-range tool for integrating site-specifically into 

bacterial genomes, but to date they have primarily been employed for knock-outs.  

Targetrons can be used to carry cargo, however.  In both the LtrB and EcI5 introns that 

have been developed into targetrons, the open reading frame of the intron encoded 

protein (IEP) has been removed and is expressed separately.  The former site of the IEP 

in Domain IV is replaced by an MluI restriction site and serves as favorable location for 

inserting cargo (Plante & Cousineau, 2006).  All of the work presented in this chapter 

involved cloning new elements into this MluI site. 

We specifically looked at adding three different elements to targetrons for 

delivery to the genome.  The first was lox sites, to enable a versatile and broad-host range 

solution to making large genomic rearrangements.  The second was Ter sites, which are 

polar sequences normally found near the termination of replication in bacterial genomes, 

where they serve to orient and arrest the replication machinery.  As part of a 

collaboration, we wanted to examine the effect of introducing Ter sites to unnatural 

genomic locations in order to better understand their function.  Lastly, we put lac 

operators into targetrons to test the hypothesis that binding and dimerization of the lac 

repressor could be used to bring disparate regions of the chromosome together and 

increase the frequency of homologous recombination as a potential alternative to using 

site specific recombinases. 
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2.2 RESULTS 

2.2.1 Engineering targetrons to carry lox sites3 

We began by inserting lox sites into the MluI site of the lacZ-targeting introns 

LtrB.LacZ.635s and EcI5.LacZ.912s (see the Appendix for a complete list of targetrons 

employed in this work; the numbers 635 and 912 indicate the position in the lacZ gene at 

which the introns insert, and "s" (as opposed to "a") indicates that the introns insert into 

the sense strand of the gene).  However, some of the initial lox-site constructs 

significantly reduced the integration efficiency of the introns.  We hypothesized that the 

tight hairpins that were predicted to be formed by the symmetric lox sites (Zuker, 2003) 

might disrupt the tertiary structure of the intron, and thereby inhibit splicing or insertion.  

The lox site inserts were therefore redesigned to include the sequence "GAGAG" at both 

ends of the insert to increase the flexibility of the structures, as judged by the presence 

and size of non-base-pairing regions in the predicted structures, particularly at the base of 

the stem.  This largely restored insertion efficiency (see Fig. 2.1).  We hypothesize that 

this trend occurs because inserts having inflexible structures are more likely to interfere 

with proper folding of the catalytic structures of the intron than inserts having flexible 

structures, which can be moved out of the way of other formations. 

                                                 
3 This section is adapted from Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt 

JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using 

mobile group II introns and Cre-lox. Mol Syst Biol 9: 685.  This work is used with permission under a 

Creative Commons – Attribution license.  All experiments described in this section were performed by PJE, 

and the borrowed text was written by PJE with edits by ADE. 



 44 

 

Figure 2.1. Effect of lox insert on intron efficiency.  

Different lox sequences were inserted into the MluI site of the LtrB.LacZ.635s (Ll.LtrB) and 

EcI5.LacZ.912s (EcI5) introns (see Appendix), and efficiency was screened by counting the number 

of white colonies obtained.  Error bars are standard error of three replicates, each representing a 

separate transformation of the intron plasmid into the recipient strain.  The identities of the lox inserts 

are as follows, where all sequences are flanked by MluI sites: 1L66– lox66; 1L71– lox71; 1WL1– loxP 

(wild-type lox site); 1WL2– 1WL1 plus a flexible base; 2ML1– lox511 with the lox71 arm mutation 

(lox511/71) and loxFAS with the lox66 arm mutation  (loxFAS/66), separated by a PmeI site and a 

short linker; 2ML4– 2ML1 plus a flexible base; and 2ML5– identical to 2ML4 except with lox71 and 

loxm2/66 instead of lox511/71 and loxFAS/66.  At the bottom are the RNA structures of the inserts as 

determined by Mfold (Zuker, 2003). 

Statistical analyses (see Section 2.4) confirmed that the inserts fall into two 

classes: one of wild-type efficiency, and one of impaired efficiency.  The 2ML5 insert 
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was the only insert that performed markedly differently in the Ll.LtrB intron versus the 

EcI5 intron.  The poor performance of the 2ML5 insert in the Ll.LtrB intron may be due 

to its relative inflexibility at the central non-base-pairing region as compared to the 2ML4 

insert, which is otherwise similar in structure. 

2.2.2 Engineering targetrons to carry Ter sites 

In bacteria with circular genomes, DNA replication starts at the origin of 

replication and proceeds bi-directionally around the chromosome until the two replication 

complexes meet and halt in the termination domain on the other side (Rocha, 2008).  In 

Escherichia coli, the mechanism of this termination occurs via Ter sites, which are 21-

basepair sequences of DNA found primarily in the termination domain and the left and 

right domains flanking it (see Fig. 2.2).  The Ter sites have a specific orientation and, 

upon binding by a protein called Tus, will halt the DNA replication machinery when it 

approaches the Ter-Tus complex from one side but not the other (Hidaka et al, 1988; Hill 

et al, 1988).  In particular, one set of five Ter sites all having the same orientation is 

found one side of the genome, and another set of five unidirectional Ter sites is found on 

the other.  Both sets are oriented so as to arrest a DNA replication complex traveling 

from inside the termination domain to the outside, while allowing passage from outside 

in, with the end result being that replication is terminated in the termination domain 

(Duggin & Bell, 2009).  The Tus protein has differing affinities for the different Ter sites 

depending on their sequence (Moreau & Schaeffer, 2012a; Moreau & Schaeffer, 2012b), 

which in turn correspond well to the frequency with which replication is arrested at a 

given Ter site (Duggin & Bell, 2009) (see Fig. 2.2). 
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Figure 2.2. Locations of Ter sites in the E. coli genome. 

Ter sites oriented to block a replication fork moving from the terminus to the origin are grey triangles, and 

those oriented to block a replication fork moving from the origin to the terminus are white triangles, where 

the direction the triangle points is the permissive direction.  The letter designations of the Ter sites are 

encoded from blue to red according to increasing strength of Tus binding, as assayed in (Moreau & 

Schaeffer, 2012a) (the grey-lettered sites were not assessed and are farther from the consensus sequence 

than the others).  The arrows represent the frequency of replication pausing at a given Ter site, as assessed 

in Duggin & Bell (2009).  The coloring of the circle represents the different structural domains of the 

chromosome according to Valens et al. (2004) and Scolari et al. (2011), with the ori domain in green, the 

left domain in dark blue, the termination domain in light blue, the right domain in red, and the unstructured 

domains in white.  Figure adapted from Moreau (2013).  Used with permission. 

In order to further study the biological activity of the Ter sites, we entered into a 

collaboration with Morgane Moreau and Patrick Schaeffer at James Cook University in 

Australia to use targetrons to deliver Ter sites ectopically to a site near the origin to 

assess the effect of placing Ter sites where they are not normally found.  We chose one 

strong Tus-binding site (TerB) and two intermediate-strength Tus-binding sites (TerH and 

TerJ), the sequences of which are given in Table 2.1. 

 



 47 

TerB (permissive orientation) 5’-ACTTTAGTTACAACATACTTATT-3’ 

TerB (non-permissive orientation) 5’-AATAAGTATGTTGTAACTAAAGT-3’ 

TerH (permissive orientation) 5’-GAGATAGTTACAACATACGATCG-3’ 

TerH (non-permissive orientation) 5’-CGATCGTATGTTGTAACTATCTC-3’ 

TerJ (permissive orientation) 5’-GCATTAGTTACAACTTACTGCGT-3’ 

TerJ (non-permissive orientation) 5’-ACGCAGTAAGTTGTAACTAATGC-3’ 

Table 2.1. Sequences of Ter sites delivered ectopically. 

Given the issues with insert structure previously encountered, as described in 

Section 2.2.1, we examined the structures these sequences would form upon transcription 

into RNA, as shown in Figure 2.3.  Though some of the sites do form hairpins, we 

judged that they were small enough and flexible enough that we did not need to add extra 

sequence to add flexibility. 

 

 

Figure 2.3. RNA structures of Ter inserts. 

As for genomic integration sites, it was important to ensure as much as possible 

that the effects of delivering a Ter site to a given locus were a result of the Ter site itself 

and not from interrupting a gene at that site.  We therefore sought to design targetrons to 
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insert into "safe insertion regions" (SIRs) that had been previously determined for the E. 

coli genome (Isaacs et al, 2011).  We found suitable integration sites in SIR32.1 (about 1 

kilobase away from the origin, on the left side) and in SIR5.6 (about 900 kilobases away 

from the origin, on the right side).  We designed two introns, LtrB.SIR32.1 and 

EcI5.SIR2.3, to integrate into these respective loci (for sequences, see the Appendix), 

which retrohomed with efficiencies of approximately 10% and 80%, respectively. 

We judged the integration site of LtrB.SIR32.1 to be too close to the origin to 

judge effects reliably and thus focused on EcI5.SIR2.3, into which we cloned each of the 

Ter sites in Table 2.1 in both permissive and non-permissive orientations relative to the 

direction of DNA replication upon intron integration.  We first assayed retrohoming 

efficiency in E. coli BL21(DE3).  These results are shown in Table 2.2. 

 
Ter site Successful integrations 

TerB (permissive) 5/9 

TerB (non-permissive) 0/28 

TerH (permissive) 12/14 

TerH (non-permissive) 12/14 

TerJ (permissive) 12/14 

TerJ (non-permissive) 12/14 

Table 2.2. Integration efficiencies of EcI5.SIR5.6 introns carrying Ter sites. 

The fact that no integrations were ever obtained with TerB in the non-permissive 

orientation suggests that this site is strong enough to cause replication arrest wherever it 

is found.  On the other hand the TerH and TerJ sites do not seem to halt replication to an 

extent sufficient to result in unviable cells, regardless of their orientation. 

We further proceeded to measure doubling times of strains harboring integrations 

of Ter-carriyng LtrB.SIR32.1 introns.  These results are shown in Table 2.3.   
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Integrated Ter site Doubling time (standard 

error)4 

(None) 25.9 (± 0.5) 

TerB (permissive) 25.5 (± 0.4) 

TerH (permissive) 24.1 (± 0.1) 

TerH (non-permissive) 23.7 (± 0.6)5 

TerJ (permissive) 22.7 (± 0.3) 

TerJ (non-permissive) 23.7 (± 0.3) 

Table 2.3. Doubling times of E. coli BL21(DE3) strains harboring integrations of Ter-

carrying EcI5.SIR5.6 introns. 

No growth deficiencies were seen in any of the strains harboring ectopic Ter sites, 

suggesting that if such ectopic insertions can be obtained at all they will have little 

practical effect on DNA replication in the cell.  In fact, the data suggests the strains grow 

better with Ter sites at this location, though it is unclear why this might be. 

2.2.3 Engineering targetrons to carry lac operators 

Homologous recombination can result in deletions or inversions, and the presence 

of two homologous targetrons in the same genome can serve as sites for such 

recombination to occur (see Chapter 3).  This phenomenon has been applied as a means 

for generating genomic deletions in Clostridium (Jia et al, 2011).  However, the process 

was slow (requiring about a week after placement of the introns) and inefficient (less than 

0.5% for a two-gene operon).  If the efficiency of homologous recombination could be 

site-specifically increased, homologous recombination between introns might serve as a 

more rapid alternative to creating genomic rearrangements, as compared to using introns 

to deliver lox sites, as described in Section 2.2.1, which requires subsequent addition of a 

Cre-expressing plasmid.   

                                                 
4 Standard error is of three replicates. 
5 One outlier was removed.  With outlier included, doubling time is 28 ± 4. 
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We hypothesized that the frequency of homologous recombination between two 

sites could potentially be increased by causing the two sites to spend more time in 

proximity to one another.  One way to accomplish this using targetrons would be to 

include a sequence bound by a dimerizing protein, which would then bring the two 

targetron sequences together upon protein binding.  One such well-studied sequence is 

the lac operator, which is bound by the lac repressor, which dimerizes with other 

repressors bound at other sites in order to loop out the intervening DNA (Lewis et al, 

1996; Oehler et al, 1990).  Thus we set out to examine whether including lac operators in 

targetrons could increase the efficiency of homologous recombination enough to be 

useful in biotechnological applications. 

The structure of the lac operator when transcribed into DNA is shown in Figure 

2.4.  Since the lac operator forms a tight hairpin similar to the lox sites discussed in 

Section 2.2.1, we examined the differences in efficiency obtained from cloning a lac 

operator directly into lacZ-targeting L1.LtrB and EcI5 introns (specifically, 

LtrB.LacZ.635s and EcI5.LacZ.912s; see the Appendix) versus also including a non-

base-pairing linker ("GAGAG") on both sides of the insert to improve flexibility.  Counts 

of white colonies (presumably resulting from intron integrations into lacZ) from plates of 

individual intron electroporations are given in Table 2.4. 
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Figure 2.4. RNA structure of the lac operator, according to Mfold (Zuker, 2003). 

 
LtrB.LacZ.635s EcI5.LacZ.912s 

Insert type White colony count Insert type White colony count 

None 22/289 (7.6%) None 154/544 (28.3%) 

LacO 68/299 (22.7%) LacO 69/338 (20.4%) 

LacO + linker 55/231 (23.8%) LacO + linker 75/318 (23.6%) 

Table 2.4. Intron integration counts for lacZ-targeting LtrB and EcI5 introns carrying lac 

operators. 

Though these data only represent single replicates, and no statistical analysis was 

performed, the results suggest that the deficit in retrohoming efficiency caused by the 

structural rigidity of the lac operator sequence is slight if it exists.  The difference in 

effect as compared to the lox sites analyzed in Figure 2.1 maybe be due to the fact that 

the lac operator sequence is approximately 50% shorter than the lox-site sequence, while 

the loop region at the end of the hairpin is approximately 50% longer in the lac operator, 

resulting in a hairpin that is both smaller and more flexible at the distal end. 

To examine whether the presence of lac operators increases the frequency of 

homologous recombination, we first delivered one lac operator on the EcI5.LacZ.912s 
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intron.  We then subsequently used the EcI5.LacZ.1806s intron to carry a second lac 

operator, and as a control, a lox71 site into the genome of the strain carrying a lac 

operator at the EcI5.LacZ.912s integration point.  The EcI5.LacZ.1806s intron is 

homologous to the EcI5.LacZ.912s intron and inserts in the same orientation 

approximately 900 bases away (see Appendix), meaning that homologous recombination 

between the two introns will result in a deletion the intervening bases.  PCR was 

performed using primers outside the region of the lacZ gene containing both integration 

points in order to assess deletions between the two integration points.  A gel displaying 

the results in shown in Figure 2.5. 

 

 

Figure 2.5. Gel of PCR amplicons for assessing formation of deletions between 

homologous introns carrying lac operators. 

Figure 2.5 shows that deletions are seen upon integration of the EcI5.LacZ.1806s 

intron, as expected, but gives little reason to believe that the presence of lac operators in 

both integrated introns increased the rate of deletions as compared to delivering a lox71 

site, which will not be bound by the lac repressor, which presumably does bind the lac 

operator in the nearby EcI5.LacZ.912s intron.  As a further examination, each of the five 

colonies found to harbor EcI5.LacZ.1806s intron insertions in Figure 2.5 was restreaked, 

and the same PCR was repeated on five colonies from each of the five resulting plates.  

Both the insertion and deletion bands were once again seen in all cases, indicating that 
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the frequency of deletion within the colonies assayed in Figure 2.5 is likely less than one 

in five without or without a lac operator in the second intron, and that isogenic isolates 

containing the desired deletion are not likely to be obtained without screening many 

colonies and/or repeated restreakings. 

We thus concluded that if including lac operators in targetrons increases the 

frequency of homologous recombination, the magnitude of the increase is not enough to 

be useful in biotechnological applications as compared to using targetrons to deliver lox 

sites and then transforming a Cre-expressing plasmid. 

2.3 DISCUSSION 

The results in this chapter show that targetrons can be used to deliver a variety of 

genetic elements to genomic loci for applications in biotechnology and basic research.  

An in-depth treatment of the uses of the lox-site-carrying targetrons discussed in Section 

2.2.1 is found in Chapter 3.  The Ter-site-carrying targetrons discussed in Section 2.2.2 

were used successfully to examine the effect of ectopic Ter sites on growth in E. coli.  

The introns targeting the safe insertion sites described in Section 2.2.2 are also worthy of 

note for their potential general utility for delivering genetic cargo to the chromosome 

without interrupting other genetic elements in the genome.  For example, these introns 

could be particularly useful for delivering lox sites for inserting large pieces of DNA via 

recombination-mediate cassette exchange, which is investigated in more detail in Section 

3.2.2.  Finally, while the results reported in Section 2.2.3 did not support the hypothesis 

that the presence of lac operators increases the frequency of homologous recombination 

between introns, better results could potentially be obtained by including multiple lac 

operators in each intron. 
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Taken together, the data presented in this chapter also provides some initial 

guidelines for the design of targetrons carrying genetic elements.  The structure of the 

RNA sequence inserted into the intron is important.  If the structure is large and rigid, 

intron mobility may be significantly impaired.  In particular, hairpins containing 14 or 

more base pairs with short loop regions on the distal end can cause major deficits, while 

hairpins of 6 or fewer base pairs may cause only minor impairments, or none at all.  The 

addition of non-base-pairing loop regions, particularly at the base of the structure, can 

serve to mitigate deleterious effects, however. 

2.4 MATERIALS AND METHODS6 

2.4.1 Intron retargeting 

 Introns were designed as described elsewhere (Perutka et al, 2004; Zhuang et al, 

2009).  The algorithm is available at http://www.targetrons.com.   Ll.LtrB-type introns 

were retargeted according to the Sigma Aldrich User Guide for the TargeTron Gene 

Knockout System 

(http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/General_Information/targetron-

user-guide.Par.0001.File.tmp/targetron-user-guide.pdf), except that the primers were 

prepared differently to improve the yield of the PCR amplification.  Specifically, 1 μL 

each of 20-μM solutions of the EBS2 and EBS2AS primers were diluted into 26 μL of 

water.  2 μL of this mixture and 1.4 μL each of 20-μM solutions of the IBS and EBS1 

primers were used in the PCR amplification.  The rest of the protocol was not 

substantially different from the Sigma-Aldrich protocol.  Alternatively, the entire 

                                                 
6 This section is adapted from Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt 

JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using 

mobile group II introns and Cre-lox. Mol Syst Biol 9: 685.  This work is used with permission under a 

Creative Commons – Attribution license.  The protocols here were developed by PJE, MND, and JP.  The 

text was written by PJE with edits by other authors. 

http://www.targetrons.com/
http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/General_Information/targetron-user-guide.Par.0001.File.tmp/targetron-user-guide.pdf
http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/General_Information/targetron-user-guide.Par.0001.File.tmp/targetron-user-guide.pdf
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retargeted HindIII/BsrGI was ordered as a gBlock from IDT and cloned directly into the 

introns to be retargeted. 

 For the EcI5 introns, two different PCR amplifications were first executed using 

the IBS1/2S and EBS2AS primers in one, and the EBS1S and EBSR primers in the other.  

In these reactions, 2 μL each of 10-μM solutions of the two primers and at least 5 ng 

template (an EcI5 intron having the proper base at the +1 position) were used in 50 μL.  

The products were subjected to PCR clean-up, and then at least 5 ng of each were 

combined for use as the template of a second PCR amplification similar to the first except 

doubled to a total volume of 100 μL, with 8 μL of 10-μM EBSR and 2 μL of 10-μM 

IBS1/2S as the primers.  The product was subjected to PCR clean-up, digested with AvaII 

and XbaI, and ligated into the EcI5 vector (having the proper base at the +1 position) cut 

with AvaII and XbaI. 

2.4.2 Cloning of inserts into targetrons 

 To insert lox, ter, or lacO constructs into the introns, the intron plasmids were 

first cut with MluI in the presence of calf intestinal phosphatase.  The inserts themselves 

were ordered as two complementary oligomers having 5'-phosphates and forming MluI 

sticky ends (i.e., having "CGCGT" on the 5' end and "A" on the 3' end) upon annealing.  

For sequences of oligomers used to make the lox inserts, see the online supplementary 

materials of Enyeart et al. (2013).  The oligomers for the Ter inserts were designed by 

adding sequences for MluI sticky ends to the sequences listed in Table 2.1.  For lac 

operator inserts, the sequences for MluI sticky ends were added to the sequence of the lac 

operator (AATTGTGAGCGGATAACAATT) plus the sequence "GAGAG" on both ends 

in cases where a flexible linker was added. 
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 The oligomers for any given insert were annealed together by mixing 10 µL of 

200-µM solutions of each of the oligomers with 80 µL of water, holding at 95°C for 20 

minutes, and then allowing to cool (in some cases by ramping downward at 0.5°C/s until 

reaching 40°C, holding 20 minutes at 40°C, and then cooling at room temperature).  The 

annealed oligomers were then ligated directly into the MluI-cut intron plasmids. 

2.4.2 Intron induction 

 In E. coli strains, cells transformed with the intron expressing plasmid were 

grown overnight at 37°C in Luria-Bertani (LB) broth plus 34 μg/mL chloramphenicol, 

diluted to an OD600 of 0.05 in 5 mL of LB plus 34 μg/mL chloramphenicol, and then 

grown for one hour at 37°C.  250 μL of that culture was then inoculated into 5 mL of LB 

containing 200-μM IPTG (no antibiotic) and grown for 20 min (for Ll.LtrB-type introns) 

or 3 hours (for EcI5-type introns) at 37°C.  (EcI5 introns can also be induced for the 

shorter time period, but efficiency is somewhat better using the longer period.)  The 

cultures were then put on ice, and 50 μL of a ×100 dilution (for Ll.LtrB-type introns) or a 

×1000 dilution (for EcI5-type introns) was then streaked on LB plates (non-selective) 

pre-warmed to 37°C.  The plates were then incubated overnight, and intron integration 

was screened using colony PCR.  A subset of positive colonies was then screened for loss 

of antibiotic resistance to indicate absence of the intron-expressing plasmid. 

2.4.3 Doubling time measurements 

 Overnight cultures of the strains to be measured were diluted in LB to an OD600 of 

0.001, and triplicates of 500 µL of that culture were placed in a 96-well plate (Nunc).  All 

other wells (including all wells on edges) were filled with 500 µL of sterile media (LB).  

Growth was measured using a plate reader (Bio-Tek PowerWave 340), pre-heated to and 
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maintained at 37°C with a shaking intensity of 4 for 250 seconds at a time, with 

measurements taken every 300 seconds. 

 The results were plotted as log2(OD600) versus time (min).  In order to select the 

linear region of the curve, each point was assigned a correlation coefficient R
2
 

corresponding to the value of R
2
 for the line consisting of that point and the three points 

before and after.  Since variance was lower when the same time window was used for all 

three replicates, the resulting R
2
 values were averaged for all three replicates at each time 

point.  The longest stretch in which all these averaged R
2
 values were equal to or greater 

than 0.99 was taken as the linear range.  The slope of the least-squares linear fit of each 

replicate in that time range was then taken as the doubling time. 

2.4.4 Statistical analyses 

 Statistical analyses were performed in R.  For the data on the dependency of 

intron efficiency on insert type in Figure 2.1, analyses were performed on square-root-

transformed data in order to obtain better homoscedasticity, which is a requirement for 

analysis of variance (ANOVA) comparisons (Rosner, 2011).  Barlett's test for equality of 

variances (Rosner, 2011) gave 8.1 × 10
-5

 for the untransformed LtrB values, 0.30 for the 

transformed LtrB values, 0.10 for the untransformed EcI5 values, and 0.77 for the 

transformed EcI5 values.  For normality tests, all data triplets gave a P-value of at least 

0.01 in the Shapiro-Wilk normality test (Shapiro & Wilk, 1965), except the values for the 

1WL1 insert in LtrB, which contained two values of zero.  Replacing the LtrB.1WL1 

data with values randomly selected from a normal distribution having the same mean as 

the actual data points (0.084%) and a standard deviation equal to 0.08% made no 

substantial difference in the results.  Multiple pairwise comparisons for this and all other 

data were made using the Tukey method for correcting for multiple testing (Hsu, 1994). 
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An analysis of variance (ANOVA) of the results presented in Figure 2.1 confirmed the 

dependence of intron efficiency on insert type (with P-values of 2.93 × 10
-9

 for 

LtrB.LacZ.635s and 3.04 × 10
-11

 for EcI5.LacZ.912s).  The pairwise comparisons also 

confirmed that the inserts generally fall into two groups: one of approximately wild-type 

efficiency (with flexible structures) and one of markedly impaired efficiency (with 

relatively rigid structures).  The P-values for the difference between the least efficient 

insert in the wild-type group and the most efficient insert in the impaired group were 6.8 

× 10
-5

 for LtrB and 6.0 × 10
-6

 for EcI5. 
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Chapter 3:  Generalized bacterial genome editing using targetrons and 

Cre/lox7 

3.1 INTRODUCTION 

 Though synthetic biology has thus far been focused primarily on building circuits 

of small numbers of genes to perform tasks of interest (Kaern et al, 2003; Lu et al, 2009), 

in recent years, more interest is being taken in the genome as a whole as the unit of 

engineering (Dymond et al, 2011; Gibson et al, 2010; Isaacs et al, 2011). As interest in 

engineering bacterial genomes increases, so too will the need for efficient tools for 

manipulating these genomes.  Though a variety of methods exist for engineering bacterial 

genomes (Hughes & Maloy, 2007; Miller, 1991), each has specific limitations in terms of 

site specificity, efficiency, versatility, and/or range of applicable bacterial species.  

Recombineering and related methods making use of phage recombinases have come into 

widespread use for small-scale modifications in Escherichia coli (Costantino & Court, 

2003; Datsenko & Wanner, 2000; Wang et al, 2009; Yu et al, 2000), but use of this 

approach in other species has so far been limited and often requires developing new 

recombineering functions for each system (Datta et al, 2008; Swingle et al, 2010; van 

Kessel & Hatfull, 2008).  On the other hand, site-specific recombinases such as the Cre-

lox system are quite efficient and function in many organisms; indeed, the Cre-lox system 

has been claimed to function efficiently "in any cellular environment and on any kind of 

DNA" (Nagy, 2000).  In bacteria the system has thus far been primarily used for selective 

                                                 
7 This chapter is adapted from Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt 

JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using 

mobile group II introns and Cre-lox. Mol Syst Biol 9: 685.  This work is used with permission under a 

Creative Commons – Attribution license.  SMC and PJE performed the GFP and DEBS-TE 

insertions, which were planned by PJE, SMC, ATK-C, and ADE and analyzed by SMC and PJE. JP 

designed the introns and planned the S. aureus deletion. MND constructed most of the introns, and 

designed, performed, and analyzed the simultaneous triple deletion. JY, JTW, and AML designed and 

tested the B. subtilis introns, and EMQ designed and tested the S. oneidensis rDNA intron. PJE and ADE 

designed the rest of the experiments, and PJE performed and analyzed all other experiments.  PJE wrote the 

text, and all authors participated in revising and editing the text. 
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marker removal, but it has, for example, been used to create large deletions in E. coli
 

(Fukiya et al, 2004) and large inversions in Lactococcus lactis (Campo et al, 2004).  

However, positioning the recombination-recognition targets requires complementary 

genome-engineering approaches (typically with selectable markers), thus creating a 

chicken-and-egg problem. 

 Retargetable mobile group II introns are another tool that has been developed 

relatively recently.  These so-called "targetrons" can be designed to insert into a given 

DNA site at efficiencies high enough that selectable markers need not be used.  Mobile 

group II introns occur naturally in bacteria, eukaryotic organelles, and some archaea, and 

are thought to be precursors to the eukaryotic spliceosome (Lambowitz & Zimmerly, 

2004).  In these introns, the intron-encoded protein (IEP) aids in self-splicing and in the 

process of 'retrohoming,' in which the intron site-specifically reverse-splices into DNA. 

 While targetrons are conventionally used for gene knockouts, their efficiency, 

specificity, and broad applicability make them attractive for tandem use with other 

general-utility genome-engineering tools, such as site-specific recombinases.  In this 

chapter, we used modified targetrons to efficiently carry lox sites to defined genomic loci 

and thereby developed a generalizable approach to genome editing that can be adapted 

with minimal modification to a wide variety of bacterial strains.  We use this system, 

called GETR (Genome Editing via Targetrons and Recombinases), to generate large-

scale chromosomal insertions, deletions, inversions, and one-step cut-and-pastes, and we 

demonstrate its use in the Gram-negative Escherichia coli and Shewanella oneidensis 

bacteria, as well as the Gram-positive Staphylococcus aureus and Bacillus subtilis 

bacteria. 
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3.2 RESULTS 

3.2.1 Overview of genomic manipulations of E. coli chromosome 

 Introns were targeted to a variety insertion sites in E. coli (Fig. 3.1); these sites 

were chosen to flank genomic regions that had previously been shown to be non-essential 

and amenable to deletion (Fukiya et al, 2004; Kolisnychenko et al, 2002).  A list of 

introns used in the present work is given in the Appendix.  Figures 3.2A through 3.2D 

show schematics for using this system to implement insertions, deletions, inversions, and 

cut-and-paste operations, respectively. 

  

 

Figure 3.1. Genomic integration sites of the introns.   

Insertion sites of introns used in the present work are labeled in bold type.  Pink highlights are regions 

previously deleted by Kolisnychenko et al. (2002), and the purple highlight is a region previously 

deleted by Fukiya et al. (2004).  The intron used for lacZ is Eci5.LacZ.1806s (see Appendix) unless 

otherwise noted.  Image made using Circos (Krzywinski et al, 2009). 
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Figure 3.2. Genome edits performed. 

(A) Inserting exogenous DNA (recombinase-mediated cassette exchange). Two lox sites having 

incompatible linker regions and differing arm mutations (for example, lox71 and lox66) are delivered 

to the genome using an intron. The sequence to be inserted is then delivered between lox sites 

identical to those in the genome except having opposite arm mutations. The formation of non-

functional lox sites (lox72) makes the process irreversible. (B) Procedure for deleting genomic 

sequences. After delivery of lox sites (lox71 and lox66) on targetrons, Cre-mediated recombination 

then deletes the intervening region, leaving a non-functional lox site (lox72) behind. (C) Procedure for 

inverting genomic sequences. The procedure is the same as in panel B, except the lox sites have 

opposing orientations. (D) Procedure for one-step cut-and-paste after using introns to position lox sites 

(two lox71 sites and one lox66 site) as shown. The first (reversible) step is Cre-mediated deletion, 

followed by Cre-mediated reinsertion at the target site that is made irreversible by the formation of a 

non-functional lox site (lox72).  Adapted from Enyeart et al. (2014), used with permission. 
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3.2.2 Insertions (recombination-mediated cassette exchange) 

 After targetron integration, genomic insertions were performed by recombination-

mediated cassette exchange (RMCE), using the EcI5.LacZ.1806s intron to deliver an 

incompatible pair of loxP and loxm2 (Langer et al, 2002) sites to the genome (Fig. 3.2A).  

The 1806s intron for inserting into lacZ was used for most subsequent modifications 

instead of the 912s intron due to its higher efficiency, approaching 97% (Zhuang et al, 

2009).  The use of incompatible linker mutations prevents inversion or deletion of the 

sequence between the lox sites, and the use of arm mutants makes the recombination 

reaction unidirectional and allows multiple insertions to be made without cross-reactivity.  

In order to examine the role of various experimental parameters (in particular, incubation 

time, copy number of the delivery plasmid, and strain background) on the efficiency of 

RMCE, we first delivered a T7 promoter to the genome along with the lox sites in the 

EcI5.LacZ.1806s intron, and separately provided both a promoterless GFPuv gene, 

flanked by lox sites on a pUC19 vector or a pACD vector (derived from pACYC184), 

and a Cre-expressing plasmid (pQL269 8  (Liu et al, 1998)).  The pUC19 high-copy 

plasmid is present at about 500 copies per cell (Chambers et al, 1988), whereas pACYC 

is present at only about 20 copies per cell (Chang & Cohen, 1977).  In co-transformed 

cells, GFP expression (via the endogenous T7 RNA polymerase) should only occur upon 

insertion into the genomic target site (see Fig. 3.3A).  Two E. coli strains, HMS174(DE3) 

(a K-12 strain related to MG1655), and BL21(DE3) (a B strain), which contained intron-

delivered lox sites were used and were plated at one, two, and three days after 

                                                 
8 Concerning Cre plasmids, in initial work we made several attempts to put the cre gene on the same 

plasmid as the lox sites but found that the cre gene was quickly deleted.  Sequencing plasmids harboring 

the deletion yielded results consistent with Cre-mediated recombination between one of the lox sites and 

the ribosome binding site of the cre gene.  This occurred with the cre gene under control of the T7 

promoter in a cell that did not express the T7 polymerase, and we thus abandoned further attempts to create 

a single-plasmid RMCE system. 
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transformation.  Efficiency was gauged by manually counting colonies.  The results are 

shown in Figure 3.3B, and the full statistical analysis of the results is presented in 

Section 3.4.5. 

 

 

Figure 3.3. GFP reporter assay for Cre/lox-mediated gene insertion. 

(A) Overview of the method. A T7 promoter is first delivered to the genome with an intron. A 

promoterless GFP ORF (with ribosome binding site) is then inserted via Cre/lox, such that GFP 

expression is only seen upon insertion. Color-coding as in Figure 3.2. (B) Results as a percentage of 

green colonies, by strain, delivery-plasmid copy number, and incubation time. Error bars are the 

standard error of three replicates. On day 3, the HMS174(DE3) (High) colonies were visually 

homogenous and were thus also assayed by PCR. (C) Results as a percentage of green colonies, by 

genomic location, in HMS174 using the lower-copy vector. The data for lacZ are identical to those for 

HMS174(DE3) (20) in (B). Error bars are the standard error of three replicates. 

 In interpreting these results, we first note the significant effect of increasing time 

on efficiency of insertion.  This is likely because interaction between the delivery plasmid 

and the chromosome occurs at random during any given period, and thus the chance of an 

interaction occurring increases with time (though in general little is gained by waiting 

three days as opposed to two).  The better performance of the lower-copy vector versus 

the high-copy vector is surprising at first but may be a result of the lower opportunity for 

Cre-mediated swapping of cassettes between plasmids in the lower-copy case.  The effect 

of strain, which was not statistically significant except in interaction with other factors, 
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seems to be in modulating the influence of time and copy number.  In particular, the 

effect of time was more pronounced in HMS174(DE3), and the effect of vector copy 

number was more pronounced in BL21(DE3). 

 We then further examined the effect of genomic location on RMCE insertion 

efficiency by repeating the experiment using the lower-copy pACD vector in 

HMS174(DE3) at two new loci, the galK gene and the malT gene.  The results are shown 

in Figure 3.3C.  While efficiency of integration into the malT locus was worse than at the 

other loci (see Section 3.4.5 for a full statistical analysis), in all cases the efficiency was 

high enough by the second day that screening for insertions via colony polymerase chain 

reaction (PCR) could be easily performed. 

 To demonstrate not just the efficiency but the broad utility of this system, we then 

proceeded to insert the 12-kilobase DEBS1-TE polyketide synthase operon (Kodumal et 

al, 2004; Wiesmann et al, 1995) into the lacZ gene of E. coli K207-3 (Murli et al, 2003).  

The delivery-plasmid lox sites used in earlier experiments were inserted on either side of 

the operon in the pET26b-DEBS1-TE plasmid using conventional cloning methods.  The 

pET vectors are built on the pBR322 backbone (Rosenberg et al, 1987), which is similar 

in copy number to the pACYC backbone used for the pACD plasmids (Green & 

Sambrook, 2012).  Insertion of the entire operon into the lacZ gene was facile (as judged 

by PCR across an insertion junction) and also showed a trend of increased insertion 

efficiency as a function of incubation time; after three days of incubation, 25/25 screened 

colonies tested positive for the insertion.  One of the features of this manipulation is that 

insertion also inactivated the LacY gene.  Thus IPTG sensitivity is reduced due to a 

smaller amount being transported into the cell (Mehdi et al, 1971), and protein production 

can be more precisely modulated, resulting in a lower fitness load on the cell.  When two 

of these colonies were screened more fully using overlapping PCR amplifications that 
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were subsequently sequenced, both were found to in fact contain the entire polyketide 

synthase operon without error (see Fig. 3.4).  In principal, insertions of any size could be 

made at similar efficiency, limited only by the constraints of genome structure (Esnault et 

al, 2007). 

 

Figure 3.4.  Verification of DEBS1-TE (polyketide synthase operon) genomic insertion. 

A through E are overlapping PCRs covering the entire 12-kb operon, where the A and E PCRs in 

particular also amplify the flanking DNA intron sequence in the genome and should only be seen upon 

successful insertion.  Lane 1: Unmodified E. coli K207-3; Lane 2: Plasmid pET26b-DEBS1TE-i 

(DEBS1-TE delivery plasmid); Lane 3: DEBS1-TE insertion clone 1 (E. coli K207-3 base strain); 

Lane 4: DEBS1TE insertion clone 2 (E. coli K207-3 base strain); Lane 5: Negative control (water).  

All bands are of the expected sizes and were further verified by sequencing.  The primers used are 

listed in the supplementary material of Enyeart et al. (2013), available online. 

 We have devised a set of vectors to facilitate the use of RMCE insertion of 

cassettes into the genome: pX10, pX11, pX20, and pX21.  All the vectors contain the 

sacB gene for counter-selection on sucrose, as well as two T7 terminators between the 

sacB gene and the lox sites to prevent read-through from the sacB promoter to the 
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delivery target between the lox sites.  Vectors pX10 and pX11 contain the incompatible 

lox pair of loxFAS/71 and lox511/66 for use with the 2ML4 pair of lox sites (see Fig. 2.1) 

at the integration site, and vectors pX20 and pX21 contain the incompatible lox pair of 

loxm2/71 and lox66 for use with the 2ML5 pair of lox sites (see Fig. 2.1) at the 

integration site.  For ease of cloning, vectors pX10 and pX20 contain a PmeI restriction 

site between the lox sites, while vectors pX11 and pX21 have the multiple cloning site 

from the pUC vectors between the lox sites. 

3.2.3 Deletions 

 We used the same methods to demonstrate larger scale manipulations of the 

cellular genome of E. coli MG1655(DE3).  First, we attempted large-scale deletions (Fig. 

3.2B).  The A-lacZ, D-E, and B-C regions (see Fig. 3.1) were deleted both sequentially 

(in the order given) and simultaneously.  A set of three mutually incompatible lox sites 

(loxP, lox2272, and loxN (Livet et al, 2007)) was used for the simultaneous triple 

deletion.  The use of arm mutants once again allowed multiple deletions to be made 

without cross-reactivity.   

 Screening for the deletions was performed via colony PCR as depicted in Figure 

3.5A.  Three PCR amplifications can be used to characterize each deletion: two 

amplicons that bridge the genomic sites at which lox-carrying targetrons are inserted, and 

one amplicon that bridges the expected deletion between those sites.  The first two PCRs 

testing for insertion are expected to give relatively small bands (several hundred base 

pairs) when performed on the wild-type strain and larger bands (about 1 kilobase larger) 

when performed on a strain harboring targetrons at the expected sites.  Upon successful 

deletion of the intervening region, all of these bands should no longer be generated.  

Instead, the PCR that bridges the two sites should yield a new band of a predicted size.  
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Doing all three PCR amplifications on all three strains (wild-type, wild-type harboring 

insertions, and recombined (induced with Cre)) provided clear diagnostic signatures of 

the recombination events.  When artifact bands near the sizes of expected bands were 

observed, these were further analyzed by sequencing to ensure that they did not represent 

an off-target rearrangement.  The predicted sizes of all of the expected amplicons of the 

present work (as shown in the gels of Figures 3.5 through 3.10) are listed in Table 3.1. 

 The gels used for verifying the occurrence of these deletions are shown in Figure 

3.5.  In particular, Figure 3.5B shows the three PCR amplifications performed on the 

three successive, engineered strains that ultimately resulted in a deletion of 121 kilobases 

between the A and lacZ loci.  The deletion-bridging amplicon (Au/Ld-I in Fig. 3.5B) 

from the strain that was finally exposed to the Cre protein (E. coli MG1655 E1) was 

sequenced and found to conform to expectations. 

 As deletions are added, verification becomes more complex but is performed in 

exactly the same manner.  Figure 3.5C shows the PCR amplifications for verifying the 

sequential double-deletion strain (E. coli MG1655 E6) that harbors deletions of both the 

A-lacZ and D-E regions.  The Eu/Dd-I band for verifying the deletion of the D-E region 

is small because the recombination results in an inverted repeat of intron sequences that is 

subsequently removed by homologous recombination.  Sequencing results confirmed this 

interpretation. There were some unexpected PCR-amplified bands.  These bands, in 

particular the Eu/Dd-I, Au/Ad-U, and Au/Ad-I bands, were sequenced and found to 

match genomic sequences from unrelated regions, and not to off-target rearrangements. 
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Figure 3.5. Verification of genomic deletions. 

In the figure, ‘W’ refers to the wild-type E. coli strain MG1655(DE3); ‘U’ refers to the relevant 

uninduced strain, in which introns and lox sites have been placed but Cre has not been added; and ‘I’ 

refers to the induced strain, which results from Cre-mediated recombination of the ‘U’ strain. For 

primers, the first letter indicates the genomic location the primer amplifies (where ‘L’ refers to the 

lacZ locus), and the subsequent ‘u’ or ‘d’ designates the primer as ‘up’ or ‘down.’ PCR products are 

designated by the two primer names separated by a slash. ‘5′’ or ‘3′’ refers to the sense strand of the 

intron. (A) Methodology, using the deletion of the A-lacZ region as an example. (B) Verification of 

the strain (E. coli MG1655 E1) containing a deletion of the A-lacZ region, as shown in (A). (C) 

Verification of the sequential double-deletion strain (E. coli MG1655 E6), with schematic 

corresponding to the ‘U’ strain. ‘U’ here is E. coli MG1655 E1 with introns inserted to delete the D-E 

region. The Eu/Dd PCR amplifies the D-E deletion site (the D-E deletion leaves an inverted repeat 

behind). (D) Verification of the sequential triple-deletion strain (E. coli MG1655 E10), with schematic 

corresponding to the ‘U’ strain. ‘U’ here is E. coli MG1655 E6 with intron insertions for the deletion 

of the B-C region. Bu/Cd amplifies the B-C deletion site (the B-C deletion leaves behind an inverted 

repeat). 
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Primers Event detected 

Expected size 

(bp) 

Inverted repeat 

generated9 Relevant figures 

Au/Ad LtrB insertion 
379 (before) 

1335 (after) 
No 

3.5B, 3.5C, 3.6B, 

3.7A, 3.7B 

Bu/Bd EcI5 insertion 
367 (before) 

1286 (after) 
No 3.5D 

Cu/Cd EcI5 insertion 
388 (before) 

1307 (after) 
No 3.5D 

Du/Dd EcI5 insertion 
285 (before) 

1204 (after) 
No 3.5C, 3.6C 

Eu/Ed EcI5 insertion 
284 (before) 

1203 (after) 
No 

3.5C, 3.6C, 3.6D, 

3.7A, 3.7B 

Lu/Ld EcI5 insertion 
222 (before) 

1141 (after) 
No 

3.5B, 3.5C, 3.6B, 

3.6D, 3.7A, 3.7B 

Lu0/Ld0 LtrB insertion 
246 (before) 

1226 (after) 
No 3.6D 

Iu/Id LtrB insertion 
357 bp (before) 

1312 (after) 
No 3.8B 

SDu/SDd LtrB insertion 
514 (before) 

1469 (after) 
No 3.8B 

Ad/Ld Inversion 1747 No 3.6B 

Au/Ld Deletion 1308 No 
3.5B, 3.5C, 3.5D, 

3.7A, 3.7B 

Au/Lu Inversion 729 No 3.6B 

Bu/Cd Deletion 644 Yes 3.5D 

Du/Eu Inversion 1268 No 3.6C 

Ed/Ad Cut-and-paste 1785 No 3.7B 

Ed/Dd Inversion 1139 No 3.6C 

Eu/Ad Cut-and-paste 1192 No 3.7A 

Eu/Dd Deletion 546 Yes 3.5C, 3.5D 

Eu/Ld Inversion 1165 No 3.6D 

Eu/Ld0 Inversion 1093 No 3.6D 

Eu/Lu Cut-and-paste 586 Yes 3.7B 

Lu/Ed 
Inversion/cut-and-

paste 
1179 No 3.6D, 3.7A 

Lu0/Ed Inversion 1336 No 3.6D 

Iu/SDd Deletion 1432 No 3.8B 

SBd/Yd Inversion 783 Yes 3.9B 

 

Table 3.1. Expected sizes of amplicons for verifying intron insertions and Cre/lox 

recombinations. 

 

                                                 
9 If an inverted repeat is generated, the actual size will usually be significantly smaller than the expected 

size due to loss of most of the repeated sequences via homologous recombination. 
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Primers Event detected 

Expected size 

(bp) 

Inverted repeat 

generated Relevant figures 

sorrsAu/ltrbint30r LtrB insertion 1354 No 3.10B, C 

sorrsBu/ltrbint30r LtrB insertion 1317 No 3.10B, C 

sorrsCu/ltrbint30r LtrB insertion 1328 No 3.10B, C 

sorrsDu/ltrbint30r LtrB insertion 1166 No 3.10B, C 

sorrsEu/ltrbint30r LtrB insertion 1345 No 3.10B, C 

sorrsFu/ltrbint30r LtrB insertion 1329 No 3.10B, C 

sorrsGu/ltrbint30r LtrB insertion 1592 No 3.10B, C 

sorrsHu/ltrbint30r LtrB insertion 1624 No 3.10B, C 

sorrsIu/ltrbint30r LtrB insertion 1340 No 3.10B, C 

Table 3.1, cont. 

 Similarly, Figure 3.5D shows the PCR amplifications for verifying the sequential 

triple-deletion strain (E. coli MG1655 E10) that contains a deletion of the B-C region in 

addition to the A-lacZ and D-E regions.  The unexpected band in the Bu/Cd-U lane was 

sequenced and found to be from an unrelated genomic region.  The Bu/Cd-I amplicon 

that confirms the deletion also represents the formation and removal of an inverted 

repeat, which was confirmed by sequencing.  The simultaneous triple deletion strain (E9) 

and a strain containing a single deletion of the D-E region (E11) were verified in the 

same manner. 

 As was the case with insertions, the efficiency of deletions approached 100%, 

with the expected deletion being found in every colony tested.  Off-target recombination 

was rare; in strains designed for deletion, only 1/60 was found to have an inversion when 

screened after Cre induction; recombination between lox72 sites was not detected in any 

of the modifications reported herein.  The removal of inverted repeats upon formation of 

the the D-E and B-C deletions is interesting in that the lox sites are removed entirely and 

the size of the scar is reduced from hundreds to tens of base pairs. 
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3.2.4 Inversions 

 GETR proved to be robust for other types of recombination that are not easily 

achieved by other methods.  The same methods used to detect deletions can be used to 

detect inversions, except that four different PCRs are used to verify an inversion: two 

amplicons bridging the insertions sites and two amplicons bridging the new ends of the 

inversion (see Fig. 3.6A).  Several inversions (see Fig. 3.2C) were executed: namely, 

between the A-lacZ, B-lacZ, E-lacZ, and D-E loci.  All colonies screened by PCR soon 

after addition of Cre tested positive for the expected inversion.  Some inversions were 

only detected immediately after adding Cre and were not detected at later time points.  

This is in line with previous studies of inversions in the E. coli genome, some of which 

are not well tolerated (Esnault et al, 2007).  Inversions into the lacZ locus were transient 

when an inverted repeat was formed and subsequently deleted but were stable when non-

homologous introns were used, suggesting that the intron sequences may function as a 

buffer against otherwise deleterious rearrangements at this site. 

 Recombination back to the original state via homologous recombination of the 

introns could be detected in some cases but was not seen when non-homologous introns 

were used.  In other words, inversions between lox sites in homologous introns may be 

reversible, but inversions between lox sites in non-homologous introns are irreversible.  

We also tested for the presence of uninverted chromosomes soon after induction of an 

irreversible inversion between the E and lacZ loci.  All ten colonies assayed tested 

positive for both inverted and uninverted chromosomes, though uninverted chromosomes 

were not found after restreaking. 

 Gels for verifying the stable inversions are found in Figure 3.6.  Figure 3.6B 

shows the PCRs used to verify an inversion between the A and lacZ loci, as depicted in 

Figure 3.6A.  Figure 3.6C shows an analogous set of PCRs for verifying an inversion 
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between the D and E loci.  Since these introns are present in opposite orientations upon 

integration, inversions can occur via homologous recombination, and this inversion is in 

fact detected at low levels prior to the addition of Cre.  Similarly, the uninverted 

(reinverted) state can still be detected after the addition of Cre.  These bands were 

confirmed by sequencing. In those strains where inversion had occurred in the absence of 

Cre, unrecombined lox sites were found, while in those strains where inversions back to 

the wild-type state had apparently occurred after the induction of Cre, recombined lox 

sites were found.  These results are consistent with homologous recombination between 

the introns rather than catalyzed recombination between the lox sites.  No artifacts were 

seen in these instances, consistent with the presence of a template that could be amplified 

by the primers. 

 Figure 3.6D demonstrates the difference between using homologous introns 

(where both introns are of the EcI5 type) versus non-homologous introns (one EcI5, one 

Ll.LtrB) for delivering lox sites to create substantially identical inversions.  When non-

homologous introns are used, as in the E5 strain, the inversion is only detected (via the 

Lu0/Ed-I and Eu/Ld0-I bands, which are of the expected size and were confirmed by 

sequencing) after adding Cre, and reversions back to the original state via homologous 

recombination were not detected.  However, when homologous introns were used, as in 

the E2 strain, PCR products that should only have been seen upon inversion were also 

seen in the absence of Cre, and furthermore the uninverted state could still be detected 

after the addition of Cre, consistent with homologous recombination between introns.  

The bands of the sizes expected for recombination events, whether due to Cre-lox or 

homologous recombination, were confirmed by sequencing. 
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Figure 3.6. Verification of genomic inversions.  

Letter designations are as in Figure 3.5. (A) Methodology, using the inversion of the A-lacZ region as 

an example. ‘5′’ or ‘3′’ refers to the sense strand of the intron. (B) Verification of the strain containing 

an inversion of the A-lacZ region (E. coli MG1655 E3), as shown in (A). (C) Verification of the strain 

containing an inversion of the D-E region (E. coli MG1655 E4), with schematic corresponding to the 

‘U’ strain. (D) Comparison of a strain containing an inversion of the E-lacZ region using homologous 

introns (E. coli MG1655 E2) and a strain containing the same inversion using non-homologous introns 

(E. coli MG1655 E5), with schematic corresponding to the ‘U’ strains. The subscript in Lu0 and Ld0 

signifies that these primers amplify the insertion site of the LtrB.LacZ.635s intron rather than the 

EcI5.LacZ.1806s intron used elsewhere.  
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3.2.5 One-step cut-and-paste 

 Finally, we used combinations of three lox sites to effect unique one-step cut-and-

paste reactions (Fig. 3.2D).  We use the term "one-step" because the designated region 

moves directly from one part of the genome to another upon adding Cre, without the 

requirement for a stable intermediate, such as a plasmid, to act as a shuttle.  In particular, 

we transferred the D-E region to the B locus, and the A-lacZ region to the E locus.  Six 

different PCR amplifications were used to validate a stable cut-and-paste reaction, as 

shown in Figure 3.7: three amplicons bridging the three intron integration sites (the left 

set of three triplets in Figures 3.7A and B), one amplicon bridging the site of the "cut" 

(the fourth set of triplets in Figs. 3.7A and B), and two amplicons bridging the boundaries 

of the "paste" region (the fifth and sixth set of triplets in Figs. 3.7A and B).  The D-E to B 

transfer was detected (via the "cut" and "paste" bridging amplicons) in every colony soon 

after exposure to Cre but was not stable upon restreaking. 

 The A-lacZ region was stably translocated to the E locus in both possible 

orientations, with 3/5 and 4/5 colonies positive for the translocations after overnight 

growth in liquid culture after transformation.  Gels for verifying these recombinations can 

be found in Figure 3.7.  In the case shown in Figure 3.7A, intron homology allows 

inversions to occur back and forth between the lacZ and E loci, but the complete cut-and-

paste was only seen upon addition of the Cre protein.  Figure 3.7B shows a similar case 

where the orientation of the lox site at the target (E) locus is reversed with respect to the 

case shown in Figure 3.7A.  The expected rearrangement was obtained, but since the 

insertion at E is in the opposite orientation, inversions and reversions resulting from 

intron homology were avoided.  The key bands for confirming the cut-and-pastes 

(Au/Ld-I, Lu/Ed-I, Eu/Ad-I, Eu/Lu-I, and Ed/Ad-I) as well as the bands expected to 
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result from homologous recombination (Lu/Ld-U and Lu/Ed-U in Fig 3.7A) were 

confirmed by sequencing. 

 

Figure 3.7. Verification of one-step cut-and-pastes. 

Orange is Ll.LtrB intron sequence, which is non-homologous with respect to EcI5 intron sequence 

shown in red. Letter and number designations are as in Figure 3.5. (A) Verification of the strain (E. 

coli MG1655 E7) containing a cut-and-paste (translocation) of the A-lacZ region to the E locus in the 

reverse orientation. (B) Verification of the strain (E. coli MG1655 E8) containing a cut-and-paste 

(translocation) of the A-lacZ region to the E locus in the forward orientation. 
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Loci 

recombined10 

Largest 

distance 

between 

recombined 

loci 

Type of 

modification 

Inverted 

repeat 

generated 
Stability11 

Recombination 

in absence of 

Cre12 

A-lacZ 121 kb Deletion No Stable Yes 

A-lacZ 121 kb Deletion No Stable No 

B-C 81 kb Deletion Yes Stable No 

D-E 14 kb Deletion Yes Stable No 

A-lacZ 121 kb Inversion Yes Unstable No 

A-lacZ 121 kb Inversion No Stable No 

B-lacZ 1 Mb Inversion Yes Unstable No 

E-lacZ 1.5 Mb Inversion No Quasi-stable Yes 

E-lacZ 1.5 Mb Inversion No Stable No 

D-E 14 kb Inversion No Quasi-stable Yes 

A-lacZ to E 1.5 Mb Cut-and-paste Yes Stable Some 

D-E to B 2.1 Mb Cut-and-paste Yes Unstable Some 

Table 3.2. Summary of intra-genomic rearrangements in E. coli. 

3.2.6 Growth of E. coli strains with chromosomal rearrangements 

 A summary of the genomic rearrangements generated in E. coli is given in Table 

3.2, and a list of E. coli strains containing these rearrangements is given in Table 3.3, 

along with doubling times measured for these strains as a proxy for fitness.  A statistical 

analysis of the doubling times indicated that the strains fall broadly into two groups, one 

group having approximately wild-type growth, and the other group having impaired 

growth (see Section 3.4.5).  All strains that either lacked the A-lacZ region or had an 

                                                 
10 The LtrB.LacZ.635s intron was used in the first A-lacZ deletion (with recombination in the absence of 

Cre) and in the stable A-lacZ and E-lacZ inversions; the EcI5.LacZ.1806s intron was used in all other cases 

(see Appendix). 
11 "Stable" means the recombination remained present unchanged through multiple rounds of regrowth.  

"Unstable" means the recombination was detected initially but was not detected after multiple rounds of 

regrowth.  "Quasi-stable" means the recombination was still detected after multiple rounds of regrowth, but 

back-recombination due to homologous recombination was also detected. 
12 Recombination was only seen in the absence of Cre when (1) the introns were homologous and (2) the 

introns were oriented so as to allow the homologous recombination to occur.  "Some" recombination in the 

absence of Cre for the cut-and-pastes refers to the fact that inversions caused by homologous recombination 

were detected, but the complete cut-and-paste did not occur without Cre. 



 78 

inversion between the E and lacZ regions showed significantly impaired growth.  

Interestingly, the strains containing a cut-and-paste of the A-lacZ region to the E site 

displayed wild-type growth rates. 

Strain 

Doubling 

Time 

Standard 

Error13 Description     

MG1655 24.94 0.1     

MG1655(DE3) 24.44 0.2 base strain for E1-E11 

E1 28.33 0.5 A-lacZ deletion 

E2 33.25 0.6 E-lacZ inversion (reversible) 

E3 22.03 0.1 A-lacZ inversion (irreversible) 

E4 24.65 0.4 D-E inversion (reversible) 

E5 30.5 1.2 E-lacZ inversion (irreversible) 

E6 33.94 0.8 lacZ-A, D-E deletion 

E7 25.24 0.5 lacZ-A region to E, reverse orientation 

E8 23.65 0.4 lacZ-A region to E, forward orientation 

E9 29.27 1.0 lacZ-A, D-E, B-C simultaneous deletion 

E10 31.39 0.2 lacZ-A, D-E, B-C sequential deletion 

E11 24.45 0.5 D-E del 

Table 3.3. Doubling times of E. coli strains with intra-genomic rearrangements. 

3.2.7 Genome engineering in diverse bacteria 

 While GETR is obviously broadly useful for creating virtually any type of 

rearrangement, the real utility of the method appears when moving beyond E. coli as a 

model system.  We therefore applied the method to making genomic modifications in 

three additional phylogenetically diverse species:  Staphylococcus aureus, Bacillus 

subtilis, and Shewanella oneidensis. 

 The Gram-positive bacterium Staphylococcus aureus is an intensely studied 

human pathogen, and the rise of drug-resistant strains in recent years has given new 

urgency to the development of prophylactic and therapeutic approaches to treatment 

(Otto, 2012).  We therefore attempted to delete the 15-kilobase Staphylococcus aureus 

                                                 
13 Error is from three replicates. 
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pathogenicity island 1 (SaPI-1) from Staphylococcus aureus RN10628 (Ubeda et al, 

2009), in order to create a strain that might serve as a live vaccine.  Highly efficient 

Ll.LtrB-type introns were generated that could integrate in the first gene (int) of SaPI-1 

and also downstream of the pathogenicity island.  After transformation of the Cre-

expressing plasmid pRAB1 (Leibig et al, 2008), 40/40 colonies tested contained cells 

harboring the expected deletion, and 19/40 colonies tested still harbored SaPI-1. The 

deletion was detected and verified via PCR and sequencing (see Fig. 3.8).  No 

chromosomes containing SaPI-1 were detected in restreaked colonies.  The deletion was 

stably maintained. 

 

Figure 3.8. Deletion in Staphylococcus aureus.   

Letter designations are as described in Figure 3.5.  (A) Methodology, showing schematics of the 

PCRs used to verify the deletions, where Iu and Id primers amplify the int insertion site, and the SDu 

and SDd primers amplify the SAPI-B insertion site.  (B)  Verification of the strain (S.aureus RN10628 

E1) containing a deletion of the SaPI (int/SAPI-B) region, as shown in (A).  The Iu/SDd-I band was 

further verified by sequencing. 
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Figure 3.9. Inversion in Bacillus subtilis. 

Letter designations are as described in Figure 3.5.  (A) Methodology, where the SBu and SBd primers 

amplify the sacB intron insertion site, and the Yu and Yd primers amplify the yhcS insertion site.  (B)  

Screening for inversions via PCR using the SBd/Yd primer pair on B. subtilis colonies containing 

intron insertions as depicted at the top in (A), after the addition of the Cre-expressing plasmid.  The 

negative control (NC) was the same strain, except without the addition of Cre.  The smaller, brighter 

bands are consistent with deletion of the inverted repeat formed by the inversion, but dimmer bands 

corresponding to the expected amplicon size are seen in all four lanes that gave bands.  (The source of 

the uppermost band in lane 3, but it is assumed to be an artifact.)  All four PCR products were 

sequenced, and the results confirmed the occurrence of the expected inversion between the sacB and 

yhcS loci followed by removal of the intron and lox sequences by homologous recombination.  These 

bands were not found in individual colonies upon restreaking, and thus the inversion was judged to be 

unstable. 

 Bacillus subtilis is a model system for the study of Gram-positive bacteria, 

including studies on sporulation (Earl et al, 2008; Higgins & Dworkin, 2012).  We 

designed and built two Ll.LtrB-type introns that inserted into the sense strands of the 

sacB and yhcS (srtA) genes of B. subtilis at efficiencies of 98% and 91%, respectively 

(Whitt, 2011; Yao, 2008).  We used these introns to deliver a lox71 site to the sacB locus 

and a lox66 site to the yhcS locus in B. subtilis 168, positioning the intervening region for 

inversion.  Upon addition of the Cre-expressing plasmid pCrePA (Pomerantsev et al, 
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2006), 4/11 screened colonies tested positive for the inversion via colony PCR (Fig. 3.9).  

Sequencing of the PCR products gave a sequence consistent with the expected inversion.  

The inversion covers about 1.5 Mb of the 4.2 Mb genome and was not seen upon 

restreaking, indicating that it was not well tolerated. 

 

Figure 3.10. Modifications in Shewanella oneidensis. 

(A) Schematic of the S. oneidensis genome, showing locations and orientations of the rrs genes. (B) 

The results of PCR amplifications to determine intron insertions into each rrs gene in five isolates of 

S. oneidensis transformed with RP4.T5.rDNA.798s.1WL2R.  One primer binds to intron sequence, 

and the other binds to a unique genomic region outside the rrs gene.  The "NC" lanes were performed 

on untransformed cells.  (C) A repetition of the PCRs in (B) performed on a single colony grown by 

inoculating isolate 5 into liquid culture and streaking the overnight culture on a plate. 
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 Shewanella oneidensis is a Gram-negative bacterium that is a model system for 

extracellular electron transfer, with potential applications in bioremediation and energy 

(Fredrickson et al, 2008).  We initially designed EcI5 introns to insert into the nrfA gene, 

which has been shown to increase current production when inactivated (Bretschger et al, 

2007), but were unable to find evidence of integration.  We then borrowed an Ll.LtrB 

targetron designed by Erik Quandt to insert into the ribosomal rrs genes (rrsA through 

rrsI) in S. oneidensis (see Fig. 3.10A).  A loxP site was inserted into the MluI site of the 

intron to facilitate subsequent genomic rearrangements.  The intron, which was cloned 

onto the broad host-range plasmid RP4, was introduced into S. oneidensis via 

conjugation.  We screened single colonies for insertions at each site by PCR using one 

primer complementary to the intron and another primer complementary to a unique 

chromosomal sequence near the insertion site.  We initially found insertions in all copies 

of the rrs gene except rrsC (Fig. 3.10B); subsequent PCRs using other primers to more 

specifically detect insertions in rrsC did yield bands.  We found the same pattern of PCR 

bands after growing one of the colonies overnight in liquid culture, freezing at -80°C, 

restreaking, and repeating the PCR amplifications on one of the resultant colonies (Fig. 

3.10C). 

 Several attempts were made to generate rearrangements by introducing Cre-

expressing plasmids into the S. oneidensis strain harboring lox sites in all nine copies of 

the rrs gene.  We initially cloned the cre gene onto the broad-host range plasmid 

pBAV1K (Bryksin & Matsumura, 2010) (along with a gene encoding chloramphenicol 

acetyltransferase, to provide a selectable marker not found on the RP4 plasmid) to 

generate pBAV1KC.Cre.  Despite several attempts at transforming this plasmid into the 

nine-lox S. oneidensis strain, the only chloramphenicol resistant strains that were 

obtained tested negative for the presence of the cre gene upon PCR screening.  However, 
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the plasmid was successfully transformed into wild-type S. oneidensis MR-1.  Reasoning 

that perhaps the high copy number of this plasmid caused problems, we next looked into 

putting the cre gene onto the pWV01 vector (Kok et al, 1984), which is the low-copy 

vector from which pBAV1K was derived.  The resulting plasmid, which we called 

pCre.LAC, was not successfully transformed into either the wild-type or the lox-

harboring S. onedensis.  Finally, we examined placing the cre gene on the pBT-2 and 

pBTML-4 broad-host range plasmids (Lynch & Gill, 2006) containing the pBBR1 

replicon, which has previously been used in S. oneidensis (Johnson et al, 2010).  Thus we 

built plasmids pBT.Cre and pBTML.Cre, which differ from each other in that the latter 

contains an origin of transfer.  Attempts to transform pBT.Cre into the nine-lox S. 

oneidensis strain were also unsuccessful.  We thus concluded that inducing 

recombination between lox sites in this strain was likely lethal.  However, the suite of 

broad host-range Cre-expressing plasmids generated herein should be useful for future 

work in applying these methods to new species. 

3.3 DISCUSSION 

 As synthetic biology continues to advance, there will be an increasing emphasis 

on the genome as the unit of engineering, which allows much larger swaths of DNA to be 

manipulated than is possible with plasmid-based methods and enhances our ability to 

study the structure and function of genomes.  This is already evidenced by the synthesis 

and transplantation of whole genomes by the Venter Institute (Gibson et al, 2008; Gibson 

et al, 2010; Lartigue et al, 2007; Lartigue et al, 2009) and the development of 

technologies such as MAGE that can site-specifically perturb multiple sites in a genome 

(Isaacs et al, 2011; Wang et al, 2009).  However, both technologies are still time- and 
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resource-intensive and are currently limited to a relatively small number of organisms 

(Enyeart & Ellington, 2011). 

 We have therefore combined the well-known Cre-lox recombinase system and the 

adaptable targetron technologies to create a method we dub Genome Editing via 

Targetrons and Recombinases (GETR).  GETR presents several advantages in 

comparison to recombineering and related methods that make use of the λ Red functions.  

One of these advantages is the fact that GETR is very efficient, and, while the use of 

selectable markers is required for temporary plasmid maintenance, markers need not be 

used for selecting or maintaining genomic modifications.  Recombineering using single-

stranded DNA is simple to execute and useful for making small changes such as point 

mutations, but percent efficiencies are typically in the single digit range in mutator strains 

(specifically, mutS mutants) and are much lower in wild-type strains.  Even then, the 

efficiency of inserting a sequence as large as a lox site is in the neighborhood of 1%, and 

the efficiency of deleting 10,000 bases of genomic sequence is approximately 0.1% 

(Wang et al, 2009).  The use of the full complement of λ Red proteins allows larger 

pieces of double-stranded DNA to be inserted (Datsenko & Wanner, 2000), but selectable 

markers are typically required and the size of possible insertions is limited to several 

thousands of bases.  Manipulations such as inversions and cut-and-paste operations are 

also impossible using these methods alone.   

 Another advantage is that targetrons function at high efficiency in many bacterial 

strains and thus provide an appealing alternative to recombineering functions in many 

contexts.  While the λ Red system has been used outside of E. coli, it typically does not 

function as well in other organisms and in such cases generally requires 500 nucleotides 

of target-site homology on either side of the integration cassette to obtain reliable results 

(Beloin et al, 2003; Derbise et al, 2003; Jia et al, 2010; Lesic & Rahme, 2008; Rossi et al, 
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2003).  This requires significantly more labor than the 30-40 nucleotides of homologous 

sequence required in E. coli.  In Pantoea ananatis, the system only worked well after 

selection of mutants resistant to the toxic effects of the λ Red proteins (Katashkina et al, 

2009).  In some organisms, such as Pseudomonas syringae (Swingle et al, 2010) and 

Mycobacterium tuberculosis (van Kessel & Hatfull, 2007; van Kessel & Hatfull, 2008), 

alternative recombineering functions have been discovered, but these do not exceed 0.1% 

efficiency without selection and also typically require at least 500 nucleotides of 

homology on either side for reliable results with selectable markers. Recombineering 

using single-stranded oligonucleotides for making point mutations has been reported in 

Lactobacillus species, but the electroporation of 100 µg of DNA (1,000 times the optimal 

amount in E. coli) was required for efficient mutagenesis (van Pijkeren & Britton, 2012). 

Wang and coworkers were also able to demonstrate gene disruption in B. subtilis using 

single-stranded DNA, but the method required the use of selectable markers and the 

generation of single-stranded DNA long enough to encode those markers (Wang et al, 

2012).  After a search for a suitable recombinase, Binder and coworkers were able to 

obtain over 4% efficiency using 1 µg of single-stranded DNA in C. glutamicum, 

however, which is a relatively promising result (Binder et al, 2013).  Datta and coworkers 

have identified a number of other possible recombineering proteins from a variety of 

species (Datta et al, 2008), but to our knowledge none of these have yet been 

demonstrated as recombineering tools in their natural hosts. 

 Another common method of genome engineering is the use the use suicide 

plasmids.  For instance, temperature-sensitive integrable plasmids have been developed 

for all the systems described here other than S. oneidensis (Biswas et al, 1993; Hamilton 

et al, 1989; Link et al, 1997; Luchansky et al, 1989), and systems based on plasmids 

requiring expression of the pir (Kolter et al, 1978; Miller & Mekalanos, 1988) or repA 
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(Leenhouts et al, 1996b) genes to replicate  have also been frequently employed.  These 

systems are most useful for gene replacements.  For the types of modifications discussed 

in the present work, suicide plasmids present many of the same limitations as 

recombineering, such as requirements for selectable markers and large regions of 

homology, and are limited by poor efficiency and relatively high background.  The 

profusion of research into alternative recombineering systems in recent years, described 

above, is symptomatic of broader dissatisfaction with suicide plasmids as genetic tools, 

and the present system represents a favorable alternative to suicide plasmids for large-

scale genomic modifications. 

 A more recent addition to the set of tools available for genome engineering is the 

CRISPR/Cas9 system, which adapts the site-specific RNA-mediated restriction system of 

bacteria toward making targeted double-strand breaks in genomic DNA (Cho et al, 2013; 

Cong et al, 2013; Hwang et al, 2013; Mali et al, 2013).  Methods of genome engineering 

relying solely on the creation of double-strand breaks have not traditionally gained much 

traction in bacterial systems.  Besides the requirement for selectable markers, the 

efficiency of double-strand break repair tends to be poor in bacteria, since most 

prokaryotes are only capable of repairing breaks via homologous recombination, and 

those that can carry out non-homologous end joining have only a rudimentary system for 

doing so (Aravind & Koonin, 2001; Hefferin & Tomkinson, 2005).  CRISPR-Cas9-

mediated cutting of genomic DNA has been shown to be lethal to bacteria (Bikard et al, 

2012), but Jiang and coworkers have recently reported that this method can be used to 

select for the integration of mutated DNA homologous to the cut site (Jiang et al, 2013).   

 However, the CRISPR/Cas9 system alone is only of functional efficiency in 

bacteria that have very active recombination systems, such as Streptococcus pneumoniae, 

and in those systems the CRISPR-Cas9 expression construct must also be integrated into 
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the genome along with a selectable marker and then subsequently removed.  In E. coli the 

CRISPR-Cas9 system has been shown to increase the efficiency of recombineering by 

cleaving the genome at unmodified sites (and thereby selecting for modified strains), but 

this method also has the inherent limitations of recombineering; i.e., the requirement of a 

mutator strain for high efficiency, limitation to relatively small changes, and generally 

poor efficiency in systems other than E. coli.  That said, it is possible that a more general 

application of CRISPR-Cas9 could be to increase the efficiency targetron-mediated 

mutagenesis.  Finally, recent work by Fu and coworkers (Fu et al, 2013) demonstrates 

extensive off-target mutagenesis by CRISPR-Cas9, often at efficiencies comparable to 

the degree of on-target mutagenesis. 

 We have demonstrated the utility of targetron-delivered lox sites by deleting up to 

120 kilobases of the E. coli genome and 15 kilobases of the S. aureus genome, inverting 

up to 1.5 megabases (one third) of both the E. coli and B. subtilis genomes, and stably 

translocating 121 kilobases of the E. coli genome to another locus 1.5 megabases away.  

Efficiencies of the Cre-mediated recombinations are typically near 100%.  This method 

compares favorably with another recently reported method for using targetrons to make 

genomic deletions (Jia et al, 2011) that relied on homologous recombination between 

introns and reported an efficiency of 2/648 for the deletion of a two-gene operon, 

requiring seven rounds of growth and transfer to new media. 

 While large-scale inversions were presented here primarily as a demonstration of 

the lack of size limits for generating rearrangements using our method, artificial 

inversions have traditionally been used for studying genome structure and its constraints 

(Campo et al, 2004; Esnault et al, 2007; Garcia-Russell et al, 2004; Guijo et al, 2001; Hill 

& Gray, 1988; Rebollo et al, 1988; Segall et al, 1988; Valens et al, 2004), and the 
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approaches presented herein allow such studies to be more easily performed in many 

more systems. 

 The one-step cut-and-paste method we present is of particular interest given that it 

allows one piece of a genome to be inserted within another site, without the accumulation 

of intervening intermediates, an operation that is not possible with any other technique.  

The cut-and-paste method could also be applied to more nuanced studies of genome 

structure constraints.  For instance, the effect of moving different structural domains or of 

swapping two domains, such as the Ori and Ter domains, could be examined.  

Additionally, expression levels tend to be dependent on genomic location, with, for 

instance, genes nearer the origin tending to be more highly expressed (Cooper & 

Helmstetter, 1968; Rocha, 2008), and thus cut-and-pastes could be used as a simple 

means for modulating the overall expression levels of super-operons (Lathe et al, 2000; 

Rogozin et al, 2002) or other large genetic units.  The ability to move DNA between 

species without regard for inherent similarities or phylogenetic relationships opens up the 

possibility of using genomic editing for rapidly adapting bacterial genomes. 

 The use of the Cre/lox system also allows large pieces of foreign DNA to be 

integrated into genomes at high efficiency.  An initial recombination occurs between a 

lox site on the plasmid and a lox site in the genome, serving to integrate the entire 

plasmid into the genome, and a second recombination event then occurs between the 

other two lox sites and removes the plasmid sequence.  We found no evidence for a 

difference in efficiency between inserting 1 kilobase and 13 kilobases into the E. coli 

genome via RMCE.  Given the high efficiency observed during the construction of large 

deletions and inversions, the limiting factor in RMCE would thus seem to be the initial 

encounter between the plasmid and the genome, and not the size of the insertion.  The 
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speed and efficiency of the second recombination event is presumed to be rapid and 

essentially 100% efficient, similar to the other intragenomic recombinations we report. 

 Targetron genomic engineering technology can be readily practiced by almost any 

lab.  The algorithm for retargeting the targetrons is available online.  The targeting sites 

in the intron can be changed via restriction cloning of a short fragment of DNA that can 

be created via two PCR reactions or synthesized in its entirety (see Section 2.4.1), 

followed by the typical time required for ligation, transformation, and sequence 

validation.  Retargeting and the addition of lox sites can be performed for multiple introns 

in parallel.  Following electroporation into the target strain, intron induction requires only 

one day, and plated induction colonies grow after one day.  The method is similar in 

complexity to lox-site placements with λ Red, but is an improvement on recombineering 

in that no selectable markers are required and it can be used in strains where λ Red 

performs poorly.  Similarly, Cre-mediated recombination requires one day for 

electroporation of the Cre-expressing plasmid (and, for RMCE insertions, the delivery 

plasmid), and one to two days for the cells to grow and for recombination to occur.  

Though we used plasmids (one plasmid carrying the targetron, one plasmid carrying the 

Cre gene, and, as necessary, a plasmid or other vector carrying DNA to be integrated, 

delivered by electroporation or conjugation) to deliver targetrons in the present study, 

phage, direct electroporation or other methods could potentially be used, as well. 

 The scars left by the GETR method and the possibility of unplanned homologous 

recombination between introns are potential drawbacks, but we have shown that these 

can be avoided by careful planning.  If intron and lox site orientations are designed so 

that inverted repeats form upon Cre-mediated recombination, the repeats will be deleted 

by the cell, removing most of the intron scar.  However, the fact that certain inversions 

into the lacZ locus were viable when a scar was present but not when the scar was 
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removed indicates that such scars may serve as a buffer against deleterious genomic 

rearrangements.  Unwanted homologous recombination between introns can be prevented 

by the use of non-homologous introns (EcI5 and Ll.LtrB), or by targetron-mediated 

disruption of the recA gene.  

 Removing the genome-modifying plasmids was also simple.  Except in the case 

of S. oneidensis, which required the continued presence of the intron-encoded protein to 

allow the intron to splice out from the rRNA genes, a significant fraction (at least 1/3) of 

colonies were found to have lost the intron-expressing plasmid after the induction 

process.  The Cre-expressing plasmids employed all contained temperature-sensitive 

origins of replication, and the delivery plasmids for RMCE had the sacB gene for 

counter-selection on sucrose, allowing these plasmids to be easily removed, as well. 

 In summary, GETR is a new method for genome engineering that can be adapted 

for use in a variety of bacteria with minimal modifications and without significant loss of 

functionality.  Large, specific, and varied changes can be made with high efficiency.  

This approach presents certain advantages over recombineering, particularly when 

working in strains not closely related to E. coli, or when the use of selectable markers is 

impractical or undesirable.  In the case of Staphylococcus aureus in particular, recent 

work has made it possible to transform clinical strains (Corvaglia et al, 2010), opening 

the way to genome editing of otherwise drug-resistant bacteria to create vaccine strains.  

As concerns about increasing drug resistance of pathogenic bacteria continue to mount, 

such strains may prove to be a viable alternative to antibiotics.  We also expect the 

system to be of general utility to synthetic biologists looking to engineer entire genomes, 

particularly those looking to work in systems other than E. coli. 
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3.4 MATERIALS AND METHODS 

 Intron retargeting, lox site cloning, and intron induction in E. coli were performed 

as described in Section 2.4.  Doubling time measurements were also performed as 

described in Section 2.4.3, except measurements were made every 540 seconds, with 

shaking for 500 seconds.  Introns used in this work are listed in the Appendix.  A 

complete list of plasmids, strains, and oligomers not reported in Section 3.4.1, as well as 

detailed cloning procedures for the delivery plasmids described in Section 3.2.2 and the 

rrs-targeting intron used in S. oneidensis, are available in the online supplementary 

materials of Enyeart et al. (2013). 

3.4.1 Construction of broad host-range Cre-expressing plasmids 

 Oligomers used in the construction of the broad host-range Cre-expressing 

plasmids pBAV1KC.Cre, pCre.LAC, pBT.Cre, and pBMTL.Cre are given Table 3.4. 

 
Primer name Sequence 

bavliu TCCCAGTCACGACGTTGTAAAAC 

bavliu_creu GTTTTACAACGTCGTGACTGGGACCCAGGCTTTACACTTTATGCTTC 

bavlid AATCCAGAGGCATCAAATAAAACGA 

bavlid_catdown TCGTTTTATTTGATGCCTCTGGATTCGGGTCGAATTTGCTTTC 

catdown CGGGTCGAATTTGCTTTC 

cdpar TGGCAGAAATTCGAAAGCAAATTCGACCCGCGCTTAGTGGGAATTTGTACC 

cd-pbt22f TGGCAGAAATTCGAAAGCAAATTCGACCCGATTCAGGACGAGCCTCAGACTC 

cred CTTTACCGCTGATTCGTGGAACAG 

cred_catup2 CTGTTCCACGAATCAGCGGTAAAGCGTTGATCGGCACGTAAGA 

lid2 GACGGAGCCGATTTTGAA 

lidpaf2 CATAATTGTGGTTTCAAAATCGGCTCCGTCAATAGGATGAATCCGAACCTCATTA 

lid-pbt1559r CATAATTGTGGTTTCAAAATCGGCTCCGTCGGTGAAAGTTGGAACCTCTTACG 

Table 3.4. Oligomers (primers) used to construct broad host-range Cre-expressing 

plasmids. 

 To construct pBAV1KC.Cre, first the chloramphenicol-acetyltransferase gene 

was amplified from pX20 using the cred_catup2 and bavlid_catdown primers, the cre 
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gene (including the lac promoter) was amplified from pQL269 using the bavliu_creu and 

cred primers, and the pBAV1K backbone was amplified from the plasmid 

pBAV1K.lacI.t5.798s (contains the lacI gene, plus ltrA and the rrs-targeting intron under 

a t5 promoter; provided by E. Quandt) so as to include the lacI gene (but not the genes 

for the intron or the intron-encoded protein) using the bavliu and bavlid primers.  These 

three amplicons were then assembled into pBAV1KC.Cre using the method of Gibson 

(Gibson, 2011; Gibson et al, 2009).  Thus, in addition to the cre gene, pBAV1KC.Cre 

also carries the lacI gene for regulating the lac promoter that controls Cre expression, as 

well as genes for resistance to both kanamycin and chloramphenicol. 

 For pCre.LAC, an amplicon containing the lacI, cre, and cat (chloramphenicol 

acetyltransferase) genes was amplified from pBAV1KC.Cre using the catdown and lid2 

primers, while the temperature-sensitive variant of the pWV01 backbone was amplified 

from pCrePA using the cdpar and lidpaf2 primers.  These two amplicons were then 

subjected to Gibson assembly to yield pCre.LAC, which also harbors lacI and cre under 

the lac promoter on a low-copy, temperature-sensitive vector granting resistance to 

chloramphenicol and erythromycin. 

 For pBT.Cre and pBMTL.Cre, the vector backbones of pBT-2 and pBMTL-4, 

respectively, were amplified using the cd-pbt22f and lid-pbt1559r primers.  These 

amplicons were each subjected to Gibson assembly with the catdown/lid2 amplicon 

above to yield pBT.Cre and pBMTL.Cre.  Both of these plasmids have lacI and cre under 

the lac promoter and provide chloramphenicol resistance.  pBT.Cre also grants 

kanamycin resistance, while pBMTL.Cre grants tetracycline resistance.  pBMTL.Cre also 

contains the mob gene and can be transferred between cells when RP4 transfer functions 

are provided in trans (Lynch & Gill, 2006). 
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3.4.2 Intron induction in non-E. coli strains 

 Intron induction in S. aureus RN10628 and B. subtilis 168 was performed as 

described elsewhere (Yao et al, 2006).  Tryptic soy broth (TSB) was used as the growth 

medium for S. aureus, and LB broth was used for B. subtilis (with 5 µg/mL 

erythromycin) and S. oneidensis (with 50 µg/mL kanamycin).  The 

T5.rDNA.798s.1WL2R intron was not formally induced. 

3.4.3 Induction of Cre-mediated recombination 

 For intra-molecular recombinations in E. coli, the plasmid pQL269 (Liu et al, 

1998) was electroporated into cells that were then plated on LB plus 100 μg/mL 

spectinomycin and grown at 30°C until colonies appeared.  Occurrence of recombination 

was screened using colony PCR, and a subset of positive colonies were restreaked on LB 

(non-selective) and grown overnight at 42°C to cure the plasmid.  Freezer stocks were 

made from these cells, and the analyses shown in Figures 3.5 through 3.8 were 

performed on cells streaked from these stocks.  The procedure was essentially the same in 

S. aureus RN10628, except that the cells were electroporated with pRAB1 (Leibig et al, 

2008) and grown initially on tryptic soy agar (TSA) plus 10 μg/mL chloramphenicol.  B. 

subtilis 168 was electroporated with pCrePA and grown on LB plus 5 μg/mL 

erythromycin. 

3.4.4 Cre-mediated genomic insertion (recombination-mediated cassette exchange) 

 To assay insertion efficiency, delivery plasmids pACDX3S-GFP and pUC19X3S-

GFP were used.  These plasmids contain the GFP open reading frame (ORF) flanked by 

T7 terminators and the lox71 and loxm2/66 sites.  Each of the GFP delivery plasmids was 

transformed into E. coli BL21(DE3) Gold and E. coli HMS174(DE3) having a T7 

promoter, as well as lox66 and loxm2/71 sites complementary to those in the delivery 
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plasmids, integrated at the lacZ, galK, or malT locus.  The Cre-expressing plasmid 

pQL269 was transformed into the strains, which were then grown at 30°C in liquid 

culture. At days one, two, and three after transformation of pQL269, aliquots from each 

culture were spread on LB plates.  The plates were grown overnight at 37°C, and then 

imaged using a UV backlight and a B&W 061 dark-green filter.  Identical strains lacking 

pQL269 were used as negative controls at each time point.  Green colonies were counted 

manually to determine insertion efficiency.  The entire three-day procedure was 

performed three separate times. 

 The insertion of DEBS1-TE was performed similarly, using pET26b-DEBS1TE-i 

as the delivery plasmid.  Insertion was assayed by colony PCR using primers flanking the 

5' end of the insertion three days after transformation of pQL269.  Selected positive 

clones were then further assayed by overlapping PCRs covering the entire operon after 

removal of the delivery plasmid. 

3.4.5 Statistical analyses 

 The analyses of the data on Cre-mediated insertion (RMCE) efficiency were also 

performed on square-root-transformed values.  The P-values of Bartlett's test for 

transformed and untransformed data were 0.11 and 0.99, respectively, for the data shown 

in Figure 3.3B, and 4.4 × 10
-5

 and 0.37, respectively, for the data shown in Figure 3.3C.  

Even for the data shown in Figure 3.3B, the P-values resulting from an ANOVA 

performed on the square-root-transformed data were more stringent and were in better 

agreement with the results of pairwise comparisons, and thus the square-root-transformed 

data was used for the analysis.  All triplets had P-values of at least 0.04 in the Shapiro-

Wilk normality test, except for HMS174 containing a high-copy vector on day three, 

where all three values were 100%.  Replacing these values with values randomly drawn 
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from a normal distribution having a mean of 100% and a standard deviation of 1% 

(similar to the other triplets near 100%) made no substantial difference in the analysis 

results. 

 A multifactorial analysis of variance performed on the results in Figure 3.3B 

indicated that time (P-value = 7.837 × 10
-14

) and delivery-plasmid copy number (P-value 

= 2.363 × 10
-8

) were significant factors, but strain (P-value  = 0.2708) was not.  However, 

the interactions between strain and time (P-value = 1.588 × 10
-5

) and between strain and 

copy number (P-value = 7.243 × 10
-7

) were significant.  The interaction between copy 

number and time (P-value = 0.04234) and the three-way interaction between all factors 

(P-value = 0.02650) were significant at the 0.05 level but not the 0.01 level.  Subsequent 

comparisons between days (corrected for multiple comparisons) showed a significant 

difference between day one and day two (P-value = 1.1 × 10
-5

) and between day one and 

day three (P-value = 1.0 × 10
-6

), but not between day two and day three (P-value = 

0.698).  Multiple pairwise comparisons for this and all other data were made using the 

Tukey method for correcting for multiple testing (Hsu, 1994). 

 A multifactorial analysis of variance performed on the results in Figure 3.3C 

indicated that location significantly affects insertion efficiency (P-value = 7.2 × 10
-7

).  

Time also proved once again to be a significant factor, with a P-value of 2.6 × 10
-13

.  

Subsequent pairwise comparisons, corrected for multiple testing, showed that the malT 

locus differed significantly from the lacZ and galK loci on days two and three (maximum 

P-value = 4.1 × 10
-3

) but not on day one (minimum P-value = 0.61).  The lacZ and galK 

loci were not found to differ significantly (P-value = 0.72). 

 For the doubling-time data in Table 3.3, all strains had a Shapiro-Wilk P-value of 

at least 0.01.  Bartlett's test gave a P-value of 0.13 for the original data and 0.19 for 

square-root-transformed data.  Using square-root-transformed data versus untransformed 
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data made little difference in the quantitative results (P-values) and no difference in 

qualitative results (determinations of statistically significant differences), and thus the P-

values presented below for doubling times are those for untransformed data. 

 An analysis of variance performed on the results in Table 3.3 showed that 

doubling time is highly dependent on the type of rearrangement present (P-value = 1.85 × 

10
-14

).  Subsequent pairwise comparisons corrected for multiple testing showed that the 

strains fall broadly into groups: a high-growth group having approximately wild-type 

doubling times and a low-growth group having impaired doubling times, where the P-

value for the difference between the slowest member of the high-growth group and the 

fastest member of the low-growth group was 0.028. 
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Chapter 4:  Lox-carrying transposons for generating libraries of 

genomic rearrangements 

4.1 INTRODUCTION 

In Chapter 3, targetron technology was adapted to deliver lox sites to specific 

genomic loci and thereby execute planned rearrangements.  This is obviously useful, but, 

as discussed in Chapter 1, random approaches to genome engineering are also powerful, 

for two related reasons.  The first, which could be considered the basic-science rationale, 

is that random approaches (mutant screening or selection) are the most consistently 

reliable option for learning what is not already known, at least in the field of genetics.  

The second reason is that random approaches allow the experimenter to harness the 

power of evolution via natural selection, which allows the discovery of optimization 

solutions without any a priori knowledge about what those solutions might be.  This 

might be called the biotechnological rationale.  We therefore adapted transposons to carry 

lox sites to random genomic loci in order to create libraries of strains containing genomic 

rearrangements upon expression of the Cre protein, which are then analyzed by deep 

sequencing. 

In the context of the basic-science rationale, the reason for creating such libraries 

is to probe and press the limits of bacterial genome structure.  This question has 

previously been explored primarily via the generation of planned deletions (Fukiya et al, 

2004; Kolisnychenko et al, 2002; Posfai et al, 2006; Suzuki et al, 2005a; Suzuki et al, 

2005b; Wilson et al, 2004) or inversions (Campo et al, 2002; Campo et al, 2004; Esnault 

et al, 2007; Garcia-Russell et al, 2004; Guijo et al, 2001; Hill & Gray, 1988; Rebollo et 

al, 1988; Segall et al, 1988; Valens et al, 2004) or by the analysis of naturally occurring 

inversions (Eisen et al, 2000; Hill & Gray, 1988; Liu et al, 2006; Liu & Sanderson, 1996; 

Louarn et al, 1985). 
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Studies such as these, combined with the fact that genome structure is highly 

conserved across bacterial lineages, have led to the general assumption that many 

fundamental aspects of bacterial genome organization are immutable (Rocha, 2008).  

However, very little of the potential search space for alternative genomic rearrangements 

has been explored.  Among those works presenting artificial rearrangements, none 

examine more than a few dozen different modifications, while the study of naturally 

occurring recombinations is limited to those that occur via homologous recombination 

between repeated genomic elements, which in bacteria is primarily the ribosomal genes.  

This represents a very small fraction of the ways in which the structure of the genome 

could in theory be rearranged.  While some characteristics such as the requirement for 

replichore balance are likely not subject to much modification (Esnault et al, 2007; Itaya 

et al, 2005), a question remains as to whether the evolutionarily conserved elements of 

bacterial genome structure are the best possible arrangement or simply one of many 

possible arrangements alternate arrangements that might have been chosen.  In other 

words, does the current bacterial genome structure really represent the highest peak of the 

fitness landscape, or is it simply a peak from which other peaks are difficult to reach?  A 

more thorough search through the space of potential structures could shed more light on 

this issue. 

In the biotechnological context, random methods used for strain improvement 

have focused primarily on generating and combining knock-out mutants (see Chapter 1).  

Expanding this focus and implementing large-scale genomic rearrangements may be 

useful in finding strains better suited to a specific task or environment. 

There have been a few attempts to apply random methods to the generation of 

genomic rearrangements.  For instance, Goryshin and coworkers utilized a nested 

transposon structure, in which the entire genome is essentially made into a transposon 
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that then inserts randomly into itself, to create randomized rearrangements in Escherichia 

coli (Goryshin et al, 2003).  However, likely due to the paucity of high-throughput 

genomic analysis approaches available at the time, only a small number of such 

rearrangements were generated and analyzed.   The authors reported that the method 

could be applied recursively and that they were in the process of using it to build a 

minimal genome, but to our knowledge these results were never published.  Yu and 

coworkers have also previously used transposons to randomly deliver lox sites to the E. 

coli genome, but they only placed one lox site per genome, and rearrangements were 

generated by rationally selecting lox insertions in different strains and combining them 

via P1 transduction before introducing the Cre protein to catalyze recombination (Yu et 

al, 2002). 

Thus a truly random approach to creating genomic rearrangements that achieves 

library sizes and analysis throughput sufficient to begin providing serious answers to the 

questions raised above does not yet exist.  The work in this chapter aims to provide such 

an approach, as well as initial data relating to the questions at hand.  Specifically, we 

randomly delivered two lox sites per genome on modified mariner transposons 

(mobilized by the hyperactive mutant of the Himar1 transposase (Lampe et al, 1999)) to 

create two separate libraries (biological replicates) of genomic rearrangements, each 

consisting of several million variants.  We then subjected them to successive rounds of 

growth and dilution for approximately 200 generations in both LB and M9 media, and 

performed targeted high-throughput sequencing on the libraries at generations 0, 25, 95, 

and 195 in order to examine the genetic dynamics over the course of the selections.  The 

results are presented below. 
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4.2 RESULTS 

4.2.1 Summary of initial efforts 

A primary obstacle facing the implementation of such a method is the question of 

how to analyze the results.  Though numerous methods exist for determining the site of 

transposon integrations (see Section 1.6 and Fig. 1.2), these methods are usually used 

under the assumption that the genomic sequence on one side of the insertion site is 

contiguous with the genomic sequence on the other side with reference to genomic 

arrangement of the unmodified strain.  Thus many of these approaches only give 

information about the genomic sequence on one side of the insertion site and cannot be 

applied to the present case, where the insertion site is also a recombination site, and 

information about the genomic context on both sides of the insertion is required in order 

to assess the nature of the recombination. 

We initially attempted an approach analogous to the restriction/ligation approach 

shown on the left side of Figure 1.2, where sequencing primer-binding sites were 

included within the transposon, and the DNA was sheared and ligated.  PCR 

amplification using the sequencing primers failed to yield trustworthy results, however.  

This approach could potentially be improved upon by employing end-repair or enzymatic 

digestion, but given the poor results of the initial implementation and the fact that even 

under ideal circumstances this approach could yield false rearrangements resulting from 

inter- rather than intra-molecular ligation, we decided to abandon it. 

Next we tried skipping the enrichment step entirely and simply sequencing 

everything, sorting out reads containing both sides of a transposon integration 

computationally after the fact.  However, the fraction of usable reads was very small, 

ranging from 0.004 to 0.006% of all reads, which was inadequate to obtain the depth of 

coverage we required without incurring great expense.  We next attempted to increase the 
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proportion of usable reads via pulldown with a biotinylated primer that annealed to the 

transposon sequence, but this yielded only about five-fold enhancement, which was still 

insufficient.  The reason the pull-down performed poorly is likely due to the fact that, 

after the marker is removed by Cre-lox recombination, the insertion site consists of a lox 

site flanked by the inverted repeats of the transposon.  Since the majority of the lox 

sequence also consists of an inverted repeat, the insertion site as a whole is largely 

palindromic.  This means that when the DNA is melted to allow primer binding, the 

insertion site folds up into a tight hairpin, which likely impedes primer binding.  In 

support of this hypothesis, it was found that insertion sites containing lox71 or lox66 

sites, which, as shown in Figure 2.1, form imperfect hairpins, were enriched in the 

pulled-down sequences as opposed to loxP or lox72 sites, which form much tighter 

hairpins.  This also meant that the pull-down was biased against insertion sites where a 

recombination event had occurred. 

Next we tried adding extra sequence into the transposon to serve as a binding site 

for primer pull-down, but for unknown reasons the addition of this sequence significantly 

impaired transposon efficiency.  This issue could potentially be remedied by changing the 

sequence included for primer binding, but we decided to switch focus to the approach 

described in Section 4.2.2 instead.  However, if the issue of reduced transposon 

efficiency could be resolved, this approach could potentially be used in tandem with that 

used in Section 4.2.2 to further improve efficiency. 

4.2.2 Overview of methodology 

The approach used to generate and analyze the libraries of genomic 

rearrangements is shown schematically in Figure 4.1. 
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Figure 4.1.  Methodology for delivering lox sites and screening genomic libraries.   

The "IR" box is the inverted repeat of the transposon; black is used to denote DNA originally from a 

different region of the genome than the grey genomic DNA.   

Transposons are constructed by PCR amplification of a selectable marker using 

primers that add a lox site and the transposon inverted repeat on both sides.  The 

transposase is expressed from a plasmid (pQLH1) in the cell, and the transposon PCRs 

are electroporated separately.  This avoids the issues with background that are seen using 

conventional methods based on suicide plasmids.  For instance, in another study using 

this transposon expressed in E. coli from a conditionally replicating plasmid that also 

expressed the transposase, 2% of resistant target colonies were also found to harbor 

antibiotic resistance found only on the plasmid (Chiang & Rubin, 2002).  This is 

acceptable for single insertions, but given the transposon efficiency, measured in the 

same work, of about 3 × 10
-3

, it can become a progressively larger problem in multiple 
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rounds of mutagenesis.  Not keeping the transposon on a plasmid with the transposase 

also means that transposition will not occur in cloning or donor strains harboring the 

plasmid.  While transposome technology, in which a Tn5 transposon and transposase are 

assembled together in vitro and then directly electroporated (Goryshin et al, 2000), is 

another potential option for this application, we chose the current approach because the 

Tn5 inverted repeats cannot be readily adapted to carry MmeI recognition sites (see 

below), and because the approach used here also does not require protein purification or 

the purchase of a commercial kit, except as required for standard PCR reactions. 

The efficiency of transposition of the amplicons varied depending on the nature of 

the insert and the sequence used for the inverted repeats but was typically in the range of 

10
-4

 to 10
-6

 integration events per microgram of PCR product, as measured by number of 

resistant colonies.  No viable resistant colonies were seen upon transforming transposons 

harboring kanamycin or chloramphenicol resistance into strains lacking the transposase 

(tiny colonies were occasionally seen with kanamycin, but these did not grow upon 

inoculation into LB containing kanamycin). 

Once the lox sites have been placed, Cre is introduced on the plasmid pQL269A, 

which has the same origin as the transposase-expressing plasmid but a different selectable 

marker, and the cells are grown overnight.  Cre-mediated recombination between lox sites 

removes the markers and then causes rearrangements between lox sites at different sites 

in the genome.  Both plasmids pQLH1 and pQL269A are temperature sensitive and can 

be removed by growth at 42°C. 

The sequencing and analysis methodology relies on the fact that the inverted 

repeat of the Himar1 mariner-type transposon can be modified to contain a recognition 

site for the restriction enzyme MmeI, as discussed in Section 1.6.  Upon digestion of 

genomic DNA with MmeI, this results in all fragments containing an insertion being of a 
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uniform size containing approximately 16 bases of genomic sequence on either side of 

the transposon DNA.  These fragments can be enriched via a size-selection step and then 

sequenced.  In the samples, analyzed here, the percentage of mate-paired sequencing 

reads that were found to have the transposon inverted repeat in at least one read ranged 

from 0.6 to 3.5%, and the percentage that had the inverted repeat in both reads ranged 

from 0.3 to 3%. 

4.2.3 Library creation and selection 

We started by making two separate libraries (biological replicates) in which each 

strain contained two lox sites randomly delivered to the genome.  E. coli MG1655 was 

used as the base strain.  The first set of lox sites were lox71 sites delivered with a 

kanamycin resistance gene.  The efficiency of transposition was estimated to be 6.0 ± 0.4 

× 10
4
 insertions μg

-1
 (calculated from the averages for each replicate, which in turn were 

calculated from three different platings), and the estimated library sizes were 1.6 ± 0.2 × 

10
5
 for replicate 1 and 1.4 ± 0.2 × 10

5
 for replicate 2, which correspond to approximately 

30× coverage of one insertion in every kilobase of the genome. 

The second set of lox sites were lox66 sites delivered with a chloramphenicol 

resistance gene (cat).  The efficiency of transposition was estimated to be 4.94 ± 0.02 × 

10
5
 insertions μg

-1
, and the estimated library sizes were 5.41 ± 0.9 × 10

6
 for replicate 1 

and 5.4 ± 0.1 × 10
6
 for replicate 2, which correspond to approximately 1× coverage of 

every possible pairwise combination of insertions in every two kilobases of the genome.  

The efficiency of insertion of a transposon that was identical except had the wild-type 

inverted-repeat sequence (lacking the MmeI recognition site) was 1.5 ± 0.3 × 10
6
 

insertions μg
-1

 when electroporated under similar conditions. 
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The Cre-expressing plasmid pQL269A was then transformed.  The total numbers 

of transformants of pQL269A were estimated to be 2.7 ± 0.1 × 10
6
 and 1.16 ± 0.04 × 10

6
, 

respectively, for replicates 1 and 2 (transformation efficiency under these conditions: 1.3 

± 0.2 × 10
5
 μg

-1
).  Since a large number of the recombinations executed by Cre were 

likely lethal, it is difficult to put an exact number on the diversity of the resulting 

libraries, but taking that fact into account, the rearrangement libraries seem to be large 

enough to represent good coverage of the two-transposon libraries they were generated 

from. 

The pQL269A-transformed cells were incubated for approximately one day in LB 

at 30°C, and the end of this incubation was considered as "generation 0" for purposes of 

the subsequent selection.  Next each replicate was diluted by a factor of 100 into LB and 

M9 minimal media (0.4% glucose) and grown overnight with shaking at 42°C to remove 

the temperature-sensitive pQL269A plasmid and any residual pQLH1 plasmid.  The 

cultures were then diluted ×1000 into fresh media and regrown to saturation at 37°C 

nineteen more times.  Glycerol stocks were made and genomic DNA was isolated after 

growth of the 3
rd

, 10
th

, and 20
th

 dilutions after generation 0, which correspond to 

approximate generations 25, 95, and 195. 

As an initial assessment of whether the selections were successful in producing 

strains better adapted to their respective environments, growth curves were measured for 

each library under each condition at each for generations 0, 25, 95, and 195.  These 

results are shown in Figure 4.2.  The growth curves are consistent with significant 

improvement in fitness compared to wild-type, with some improvement seen starting 

even at generation 0, with fitness increasing over time and then leveling off.  These 

results appear to be consistent with a successful selection.  The M9 libraries seem to have 
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a greater fitness relative to wild-type than the LB libraries, suggesting that wild-type E. 

coli MG1655 is closer to optimal for growth in LB as opposed to M9. 

 

Figure 4.2. Growth curves of wild-type and genome-rearrangement libraries at various 

time points.   

Each curve is an average of three replicates (except wild-type in M9, which is an average of two). 

 

Additionally, the generation-195 LB libraries were grown in M9, and the 

generation-195 M9 libraries were grown LB in order to assess whether the growth 

benefits attained were general or environment-specific.  These results are shown in 

Figure 4.3.  The "winners" from both conditions outgrew wild-type in the opposite 

condition, consistent with some general benefit to growth in vitro from the selection 

procedure in all cases.  It is interesting to note that the M9 winners in particular 

outperform wild-type in LB primarily in the later stages of growth, when nutrients are 

presumably more scarce, akin to the situation in M9 media.  Neither set of winners seem 
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to grow as well in the opposite environment as the winners selected in that environment, 

which indicates some degree of specialization and is not unexpected. 

 

LB winners in M9 M9 winners in LB

 

Figure 4.3. Growth curves testing specialization of end-point genomic rearrangement 

libraries. 

Each curve is an average of three replicates (except wild-type in M9, which is an average of two). 

4.2.4 Analysis of detected rearrangements 

The key issue in the sequencing analysis is determining what type of 

rearrangement, if any, is represented by a given mate-pair read covering an insertion.  A 

schematic showing the approach used to identify rearrangement types is found in Figure 

4.4.  In short, each mate-pair can be represented four numbers: the wild-type genomic 

positions corresponding to the MmeI cut-site on one end, the insertion junction on the 

same end, the insertion junction on the other end, and the MmeI cut-site on the other end.  

These four positions can further be simplified to three binary values representing the 

direction that must be traversed to move from one position to the next in the shortest 

distance on the wild-type chromosome. 
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Figure 4.4. Outline of method for identifying rearrangements from sequencing data. 

The "X" boxes represent lox-containing transposon insertion sites. The numbers are arbitrary and 

meant simply to represent relative locations on the wild-type chromosome.  Numbers at box edges 

represent wild-type genomic positions at the insert junctions, and numbers at the lines outside 

represent genomic positions at the MmeI cut site.  "+" or "–" represents the direction that must be 

traversed to move from one numbered position to the next adjacent numbered position in the shortest 

distance; the pattern of these directions can be used to identify the rearrangement. 

If the cut-site/junction direction is different on one side than on the other, then an 

inversion is present.  If the cut-site/junction directions are the same on both sides, and the 

distance between the two junction sites is small (the exact cutoff is somewhat arbitrary; 

ten bases was used here), then no rearrangement has occurred and the reads represent a 

simple insertion.  If the distance between the two junction sites is large, a deletion has 

occurred.  Since a recombination-mediated deletion in a circular chromosome actually 

involves resolving the chromosome into two separate circles, it is important to determine 

which of those two deletions is represented by a given deletion read, without simply 
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assuming one or the other.  If the direction representing the shortest distance between the 

two junction points is the same direction as the cut-site/junction directions, then the DNA 

represented by the reads was on the larger genomic fragment, and the apparent deletion is 

the smaller fragment.  If the direction between junctions is different, then the DNA was 

on the smaller fragment, and the apparent deletion was the larger fragment. 

 

Figure 4.5. Library diversity over the course of selection. 

The diversity coefficient is the number of unique reads (specifically, the number of reads remaining 

after removing all duplicates) divided by the total number of reads.  Note that the generation 0 bars are 

identical in both plots. 

Bar plots showing the change in diversity of insertion reads over the course of the 

selection are shown in Figure 4.5.  Diversity declines significantly over time, again as 

would be expected from a successful selection.  Diversity becomes particularly low in the 

M9 libraries, which may mean that a small number of changes are most important for 

adapting to M9, while a larger number of less important changes can be used to adapt to 

LB.  This may also support the hypothesis that wild-type MG1655 is better adapted to 

growth in LB than in M9, since any extremely important adaptations to growth in LB 

seem to have already been made. 
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Figure 4.6 shows the changes in the distribution of types of rearrangements over 

the course of the selections.  Besides deletions, inversions, and no rearrangement, two 

other types were assigned.  In some cases, the genomic sequence on one or both sides of 

the insertion cannot be assigned to a single genomic locus.  Insertions into ribosomal 

genes are one example.  Since it is difficult to make a determination of the type of 

rearrangement without knowing exactly where the insertion is placed, such reads are 

labeled "undetermined."  The "alignment failure" type results when the alignment 

program fails to find a match in the MG1655 genome for the genomic sequence on one or 

both sides of the insertion.  Particularly in generation zero, these may represent plasmid 

DNA.  The integration of other exogenous DNA or simple sequencing error may also 

contribute to the presence of such reads. 

In generation 0, approximately equal numbers of deletions, inversions, and simple 

insertions are seen.  It is initially surprising to see so many reads representing non-

rearrangements given the apparent high efficiency of Cre-mediated recombination seen in 

Chapter 3.  These insertions would not show up in the analysis if Cre had not deleted the 

marker gene in the transposon, however, so Cre clearly functioned in these strains.  One 

possible explanation is that the finer detail available in this data allows us to see that Cre 

is actually less efficient than is apparent from the bulk information presented in Chapter 

3.  Another explanation, which is not mutually exclusive with the first, is that the 

existence of unrecombined insertions is selected for in cells that would die if 

recombination between distant lox sites was successful. 
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Figure 4.6.  Frequencies of rearrangement types over the course of the selections. 

In most cases genomic rearrangements decrease in frequency as the selection 

progresses, supporting the hypothesis that the wild-type genome structure is best.  

Deletions are particularly disfavored, especially in M9, which is expected since the 

chance of deleting an important gene for any random deletion is quite high (generation 0 

can be expected to include a large number of functionally dead cells).  Replicate 2 in M9 

represents a counter-example to the trend of the other libraries in disfavoring 

rearrangements, however, as inversions (in particular, two specific inversions) come to 
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dominate the population by the end of the selection.  Even in replicate 1, inversions seem 

to be better favored in M9 than in LB, which is somewhat surprising but may also be 

related to the hypothesis that more drastic measures are required to adapt E. coli MG1655 

to M9 than to LB. 

The box plots of the distribution of sizes of inversions and deletions in the 

libraries over the course of the selections are shown in Figures 4.7 and 4.8, respectively. 

 

Figure 4.7. Box plots of distribution of deletion sizes over the course of the selection. 
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The general trend is that large deletions are disfavored, which is as expected.  

However, a small number of apparently extremely large deletions seem to persist, and, in 

M9, perhaps even be relatively favored.  (The number of deletions detected in the later 

stages of the M9 selection was very small however, and thus the opportunity for sampling 

error is great.)  It is unlikely that these reads truly represent strains lacking most of the 

genome.  Since many such deletions were detected in significant numbers, however, it is 

also difficult to discount them as sequencing error.  The explanation may have to do with 

the fact that during exponential growth E. coli harbors numerous active replication forks 

and therefore multiple copies of its genome within each cell (Cooper & Helmstetter, 

1968; Rocha, 2008).  Thus, if a large deletion were to occur in one chromosomal copy, 

part or all of the deleted fragment could potentially homologously recombine into another 

copy.  Though much of the insertion would likely be removed by further recombination, 

parts including the deletion site might remain.  Such rearrangements could be selected for 

if they result in adaptive gene duplications. Alternatively, the presence of large regions of 

homology in the sets of ribosomal genes could allow for an intra-chromosomal cut-and-

paste reaction to occur between ribosomal genes on the deleted fragment and those in the 

remainder of the genome.  Further work will be required to assess the true nature of these 

apparent deletions. 

The distributions of inversion sizes as shown in Figure 4.8 also show a general 

trend of decreasing size, though not as pronounced as the trend for deletions, which is to 

be expected.  Additionally, it does seem that certain large and adaptive inversions exist, 

particularly in the M9 libraries. 

Finally, graphical visualizations of the modifications most commonly detected are 

shown in Figure 4.9 for replicate 1 and Figure 4.10 for replicate 2.  Not all detected 

modifications are depicted; there are too many to show for generations 0 and 25, and 
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modifications found at extremely low frequencies are not shown for generations 95 and 

195.  The wide variety of deletions and inversions present at generation 0 is clear, and the 

quick reduction in the diversity of those rearrangements is also apparent.  The increased 

tolerance of the M9 libraries for inversions can also be seen by comparing the LB and M9 

libraries at generation 25; the apparent reduction in inversion diversity in later M9 

generations is a result of a small number of inversions dominating the population.  

Genetic interpretations of the most common rearrangements are given in Section 4.2.5. 

 

Figure 4.8. Box plots of distribution of inversion sizes over the course of the selection. 
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Figure 4.9.  Graphical depictions of common genomic modifications in replicate 1. 

From the outside, the opposing black lines denote locations of the ori and dif sites; the blue ring 

represents the frequency of unrecombined insertions; the red ring represents the frequency of 

deletions; the thick ring denotes locations in the MG1655 genome, colored by structural domain 

(Valens et al, 2004); and the links in the interior represent inversions, colored according to frequency, 

with darker links being more common.  The most frequent 15% of rearrangements are shown for 

generation 0, the top 30% for generation 25, the top 80% for generation 95, and the top 90% for 

generation 195.  Made using Circos (Krzywinski et al, 2009). 
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Figure 4.10.  Graphical depictions of common genomic modifications in replicate 2. 

From the outside, the opposing black lines denote locations of the ori and dif sites; the blue ring 

represents the frequency of unrecombined insertions; the red ring represents the frequency of 

deletions; the thick ring denotes locations in the MG1655 genome, colored by structural domain 

(Valens et al, 2004); and the links in the interior represent inversions, colored according to frequency, 

with darker links being more common.  The most frequent 15% of rearrangements are shown for 

generation 0, the top 30% for generation 25, the top 80% for generation 95, and the top 90% for 

generation 195.  Made using Circos (Krzywinski et al, 2009). 



 117 

4.2.5 Genetic interpretation of commonly detected modification 

One interesting point in the data representations shown in Figures 4.9 and 4.10 is 

the fact that certain unrecombined insertions are already very common in generation 0.  

These are likely insertions that gave a selective advantage during the initial stages of 

library construction.  They do not necessarily remain common over the course of the 

selections, however, because some are more adaptive than others over longer periods, and 

because different selection pressures presumably come to bear in the M9 libraries.  The 

set of these insertions is also very similar between replicates 1 and 2, indicating that both 

have good coverage of the space of simple insertional mutations. 

A number of these insertions cluster in a region to left of the dif site, from 

positions 1.96 to 2.02 Mb on the genome.  This region is also commonly deleted.  These 

insertions are all in genes for flagellar synthesis.  The peak in that region, which also 

typically remains the longest in the later stages of selection, is in the flhCD operon, which 

is one of the primary regulators of flagellar synthesis (Liu & Matsumura, 1994).  Another 

set of extremely common insertions are those in the region from 1.13 to 1.14 Mb, which 

is the flg operon that also consists of genes necessary for flagellar synthesis and export.  

These observations can likely be explained by the fact that E. coli MG1655 is not only 

motile but hyper-motile compared to other strains; it contains an insertional mutation in 

the regulatory region of the flhCD operon that upregulates the expression of the operon 

(Barker et al, 2004).  Since building flagella is both clearly energy intensive and 

dispensable for growth with shaking in vitro, shutting down this system is an obvious 

choice for improving growth under such conditions.  Knocking out the flhCD operon of 

E. coli MG1655 has in fact previously been shown to be adaptive even in the mouse 

intestine (Gauger et al, 2007). 
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The other set of common insertions in the early-stage libraries are in the hsdR and 

hsdM genes at about 4.58 Mb (near the top of the circles in Figures 4.9 and 4.10).  These 

encode the components of the native restriction system, EcoKI.  Inactivation of these 

genes may have been selected for in the library construction stage in order to facilitate 

plasmid maintenance, though these mutants also often persist throughout the selection, 

particularly in the LB libraries. 

Next, the most successful modifications in the various libraries will be discussed.  

Table 4.1 shows the ten most common modifications in the LB-replicate 1 library. 

 

 

Frequency 

Position 

1 

Position 

2 

Rearrangement 

type 

Rearrangement 

size 

Position 1 

Gene 

Position 2 

Gene 

25.66% 1907558 1907558 None  yobF yobF 

22.53% 3771847 3771848 None  [intergenic] [intergenic] 

6.79% 4534941 4534942 None  [intergenic] [intergenic] 

6.14% 1978167 1978166 None  flhD flhD 

1.52% 1915600 1977300 Inversion 61700 [intergenic] flhC 

1.34% 2022100 2044700 Deletion 22600 fliP [intergenic] 

1.09% 3260360 3260361 None  tdcE tdcE 

0.74% 1978426 1978427 None  [intergenic] [intergenic] 

0.71% 1977368 1977369 None  flhC flhC 

0.68% 2021200 2044700 Deletion 23500 fliN [intergenic] 

Table 4.1. Most common genomic modifications at generation 195 in LB-replicate 1 

library 

Knock-outs and deletions of flagellar genes are well represented among the top 

ten, and the only inversion in the top ten also has an anchor site in flhC.  The gene 

apparently knocked out in the dominant variant, yobF, is not very well studied, but is 

known to be expressed in stationary phase (Hemm et al, 2008) and to increase sensitivity 

to cell-envelope stress and acid (Hobbs et al, 2010). 
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The second most common variant is in the intergenic space between the yibIH 

operon and the mtlADR operon.  Little is known about the former except that it seems to 

be involved in nitrate/nitrite redox reactions (Constantinidou et al, 2006), whereas the 

latter encodes machinery for mannitol import and phosphorylation (Postma et al, 1993).  

The upstream regulatory elements of both operons are found in this intergenic space, 

which also hosts one of the highest concentrations of cAMP-receptor protein (CRP) 

binding sites in the genome (Shimada et al, 2011).  CRP binding sites are apparently 

frequently found in intergenic spaces between divergently transcribed genes.  The 

transposon insertion site is just outside the CRP binding sites, nearer to the yibIH operon, 

and may thus affect expression of both operons. 

Frequency 

Position 

1 

Position 

2 

Rearrangement 

type 

Rearrangement 

size 

Position 1 

Gene 

Position 2 

Gene 

10.55% 1078829 1078828 None  putA putA 

8.70% 3828680 3828679 None  [intergenic] [intergenic] 

6.11% 3159829 3159828 None  ygiQ ygiQ 

6.01% 2843087 2843086 None  hycH hycH 

4.44% 4581382 4581381 None  hsdS hsdS 

4.23% 1824229 1824228 None  cho cho 

3.17% 2866790 2866789 None  rpoS rpoS 

2.61% 4581300 3348100 Inversion 1233200 hsdS npr 

2.31% 59717 59716 None  rluA rluA 

2.13% 4582929 4582928 None  hsdM hsdM 

Table 4.2. Most common genomic modifications at generation 195 in LB-replicate 2 

library 

The top performing modifications for replicate 2 in LB are shown in Table 4.2.  

As compared to replicate 1, replicate 2 has a less clear winner and seems to be more 

enriched for simple insertional mutants.  The sum of frequencies of insertions in hsdS or 

hsdM in the top ten would put them in second place overall.  The top performing variant 

is an insertion in putA.  PutA acts in proline degradation and in the presence of proline 
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also represses expression of the put operon, which also encodes a proline transporter, 

PutP (Larson et al, 2006; Zhou et al, 2008).  Knocking out this gene may thus increase 

proline uptake. 

The second place intergenic insertion is also between two divergently transcribed 

genes, gltS and xanP, and thus could potentially affect regulation of both.  GltS is one of 

four glutamate transporters in the cell (Schellenberg & Furlong, 1977), while XanP is a 

xanthine transporter (Karatza & Frillingos, 2005).  The insertion site is fifteen bases 

upstream of the start codon of gltS and thus very likely has an effect on its expression.  

Knocking out gltS has been shown to be beneficial both in butanol production (Smith & 

Liao, 2011) and in surviving ionizing radiation (Harris et al, 2009), though it is not clear 

why this should be. 

 

Frequency 

Position 

1 

Position 

2 

Rearrangement 

type 

Rearrangement 

size 

Position 1 

Gene 

Position 2 

Gene 

49.12% 3815794 3815795 None  [intergenic] [intergenic] 

12.84% 2016285 2016284 None  fliH fliH 

2.91% 3820697 4169232 

(+6 

more) 

Undetermined ligB [intergenic] 

2.18% 3411475 3411476 None  fis fis 

2.06% 3820696 226349 

(+6 

more) 

Undetermined ligB fliH 

1.92% 1134100 3379500 Inversion 2245400 flgF yhcM 

1.49% 757756 757755 None  sdhB sdhB 

1.32% 1756861 1756862 None  pykF pykF 

1.29% 755760 755761 None  sdhD sdhD 

1.22% 1965984 1965984 None  flhB flhB 

Table 4.3. Most common genomic modifications at generation 195 in M9-replicate 1 

library 
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The top ten most common modifications at the end of the selection for replicate 1 

in M9 are shown in Table 4.3.  In this case we have a very clear winner, which is an 

insertion in the intergenic space between the rph and pyrE genes.  The pyrE gene encodes 

orotate phosphoribosyltransferase, which takes part in pyrimidine biosynthesis and is 

required for growth in minimal media (Patrick et al, 2007).  The rph and pyrE genes are 

actually part of an operon, and there is an attenuator in this intergenic space that serves to 

negatively regulate pyrE (Andersen et al, 1992).  The insertion site is directly adjacent to 

the attenuator sequence on the pyrE side and thus seems likely to function in removing 

attenuation. 

FliH is another protein involved in flagellar biosynthesis and is required for 

targeting the flagellar ATP synthase to the export machinery (McMurry et al, 2006).  

Though it of course makes sense to down-regulate the flagellar machinery, as discussed 

above, it is interesting that this particular mutation would prove more adaptive here than, 

for instance, the flhCD knock-outs discussed above. 

The two "undetermined" modifications in M9-replicate 1 almost certainly 

represent the two end points of an inversion.  Doing a BLAST search on the multiply 

matched sequence turns up matches the ribosomal genes rrnA, B, C, D, E, G, and H.  The 

nature of the inversion is such to potentially allow the regions downstream of the ligB 

gene to be controlled by the strong ribosomal promoter.  The first operon that is 

downstream of ligB and oriented so as to be able to be activated by the ribosomal 

promoter is rph-pyrE, the same operon modified by the insertion in the top-performing 

variant. 

Another interesting high-frequency hit in the M9-replicate 1 reads is fis.  Fis plays 

a wide variety of roles (Finkel & Johnson, 1992; Travers et al, 2001) and is one of the 

most abundant DNA-binding proteins in the cell during log phase (Ali Azam et al, 1999).  
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Thus it is surprising to see this gene on the list of competitive insertional mutants.  

However, Fis is not required for growth, even in minimal media (Baba et al, 2006; Joyce 

et al, 2006).  A close look at the insertion shows that it serves to introduce an in-frame 

stop codon in 3' end of the gene.  Mapping the downstream codons to a crystal structure 

of Fis bound to DNA (Stella et al, 2010), as shown in Figure 4.11, shows that the 

insertion is perfectly placed to remove the DNA binding domain while leaving the rest of 

the protein intact.  Thus it seems this insertion results in a variant of Fis that is still able to 

dimerize but is not able to bind DNA. 

 

Figure 4.11. Structure of the detected Fis truncation. 

Fis binds as a dimer, and the monomers are shown in blue and green.  The residues that are removed 

by the insertion detected in the M9-replicate 1 library are shown in red.  Structure generated from 

Protein Data Bank (http://www.pdb.org) file 3IV5 (Stella et al, 2010) using PyMol. 

The ten most common rearrangements found at the end of the M9-replicate 2 

selection are given in Table 4.4.  The winner here is unique among the samples studied 

here not only in being an inversion but also in representing the highest fraction of the 

total of any of the winners.  The cyaA gene at one end of the inversion encodes adenylate 

cyclase, which is likely dispensable in this context since cAMP signaling is not used 

when glucose is the only carbon source present, as is the case here.  The other side of the 
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inversion is four bases upstream of the pyrE gene.  Taken as whole, the inversion is 

situated to remove the attenuator upstream of pyrE and place pyrE under control of the 

cyaA promoter. 

 

Frequency 

Position 

1 

Position 

2 

Rearrangement 

type 

Rearrangement 

size 

Position 1 

Gene 

Position 2 

Gene 

51.33% 3993200 3815700 Inversion 177500 cyaA [intergenic] 

34.12% 2810900 1173900 Inversion 1637000 mprA [intergenic] 

2.09% 3379282 3379281 None  yhcM yhcM 

1.19% 1137239 1137238 None  flgI flgI 

1.17% 3379173 3379173 None  yhcM yhcM 

0.80% 2176115 2176114 None  gatZ gatZ 

0.62% 1133817 1133818 None  flgF flgF 

0.53% 3379774 3379775 None  yhcM yhcM 

0.52% 2573800 1135400 Inversion 1438400 eutT flgG 

0.40% 2315014 2315014 None  rcsD rcsD 

Table 4.4. Most common genomic modifications at generation 195 in M9-replicate 2 

library 

The second-place inversion is more difficult to interpret, but also intriguing.  At 

generation 95 the cyaA-pyrE inversion actually represented 63% of the detected 

modifications, with the second-place inversion at 11%, but by generation 195 the second 

inversion seems to be closing the gap.  The mprA gene at one end of this inversion 

encodes a multidrug resistance regulator that regulates the operon of which it is a part, 

which includes multidrug resistance pumps, and that activates transcription in response to 

antimicrobial agents (Lomovskaya et al, 1995).  Thus under present conditions, this gene 

would seem to be dispensable and its promoter weakly activated.  An RNA polymerase 

moving from a promoter on the other side of the inversion would transcribe the genes for 

the multidrug resistance pumps in the operon downstream of mprA, which is not 

obviously adaptive in the present circumstances.  In considering whether the inversion is 
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placed to put another gene under the control of the mprA promoter, the first gene that 

would be in position to be transcribed in this way is mfd.  The Mfd protein removes 

stalled RNA polymerases from DNA lesions (Selby & Sancar, 1993), but it is not clear 

what benefit would be gained from expressing this protein under the mprA promoter.  

Furthermore, this inversion serves to severely disrupt the replichore balance of the 

chromosome, adding to the mystery of what benefit it provides the cells in which it is 

found. 

4.3 DISCUSSION 

The results presented above represent a large initial dataset for exploring the 

limits of genome plasticity and the utility of artificially induced genomic rearrangements 

for directed evolution of bacteria.  Perhaps the most striking aspect of this data is the 

differences that arise when the same libraries are grown in LB versus M9 (0.4% glucose) 

minimal media.  In comparison to LB, the libraries selected in M9 appear to achieve 

greater fitness relative to wild-type, become pared down to lower diversity, and yet seem 

more tolerant to major genomic rearrangements.  Indeed, the most successful single 

variant in any of the libraries, as judged by the proportion of the population occupied 

(51%), was an inversion around the origin in replicate 2 grown in M9.  The other 

inversion in M9-replicate 2 occupied 34% of the population, which places it third among 

proportional rankings, after the winning variant in M9-replicate 1.  Taken together, these 

observations suggest that the wild-type E. coli strain MG1655 is better adapted to growth 

in LB than in M9, and that more drastic changes to genome structure are better tolerated 

when the progenitor organism is poorly adapted to its environment. 

The low diversity in the end-stage M9 libraries as well as a reproducible trend in 

the top performing variants points to one major issue preventing E. coli from being as 
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well adapted to growth in M9 as it might otherwise be: the attenuation of the pyrE gene, 

which is an essential gene in minimal media and codes for orotate 

phosphoribosyltransferase (OPRTase).  This enzyme synthesizes orotidine 5'-

monophosphate from orotic acid and phosphoribosyl pyrophosphate (Bhatia et al, 1990; 

Scapin et al, 1994; Scapin et al, 1995).  Orotidine 5'-monophosphate in turn is an 

intermediate in the synthesis of uridine monophosphate (UMP), which is required for 

RNA synthesis. 

The method of attenuation works in a fashion somewhat analogous to the well-

known trp attenuator, where low levels of tryptophan cause the ribosome to stall at a 

string of tryptophan codons, in turn preventing formation of a terminating hairpin, which 

allows RNA polymerase to transcribe the entire operon (Platt, 1981).  The pyrE gene is 

activated in a similar fashion by low levels of UMP.  The site where transcription is 

terminated is enriched in uridine residues, and the mechanism in this case seems to be 

that the RNA polymerase slows down in this region when UMP is low, allowing a 

pursuing ribosome to catch up and prevent formation of the termination hairpin 

(Andersen et al, 1992; Bonekamp et al, 1984).  As it turns out, E. coli strains MG1655 

and W3110 harbor a two-base deletion near the end of the rph gene (Jensen, 1993).  This 

results in a premature stop codon, which in turn means the ribosome leaves the RNA 

before ever reaching the attenuator region, leaving the terminator hairpin intact. 

The importance of fixing this problem for growth in minimal media is evident 

both in the number of different ways it was solved, and in the large growth advantages 

that clearly incurred to those individuals that solved it.  The dominant strain in M9-

replicate 1 harbors an insertion six bases downstream of the attenuated transcriptional 

stop site and presumably serves to break the attenuation.  The most common inversion in 

M9-replicate 1 seems to put the entire operon under the control of a ribosomal promoter, 
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which likely compensates for reduced read-through in the attenuator with increased 

transcription frequency, and may also incur some benefit in coupling UMP regulation to 

ribosomal regulation.  Finally, the dominant variant in M9-replicate 2 is an inversion that 

releases pyrE completely from control of the rph promoter and attenuator and instead 

places it under control of the promoter for the adenylate cyclase gene, which is negatively 

regulated by cAMP-CRP (Aiba, 1985) and is therefore presumably freed from repression 

due to the interruption of the gene responsible for producing cAMP.  These solutions also 

highlight the potential utility of artificial inversions for rewiring gene expression to better 

match the demands of the local environment.  An interesting experiment might be to 

reconstruct the ancestral sequence of the rph-pyrE operon (specifically, by reversing the 

two-base deletion) in order to examine how the solution these strains have found to the 

problem of pyrE regulation compares to that which was had previously evolved. 

Though explanations are evident for many of the mutations and rearrangements 

found here, others are harder to explain.  The truncated Fis protein generated in M9-

replicate 1 is very curious, for instance, and expression studies or protein binding studies 

such as two-hybrid assays might be done to examine the effect of this mutation.  

Additionally, the second-most common modification in M9-replicate 2 is a large 

inversion that seems to severely unbalance the chromosome without resulting in an 

obviously beneficial change in gene expression.  Since this strain represents nearly one 

third of the final library, it should be easy to isolate.  A full-genome sequence of the 

strain may yield more clues as to what has happened.  Alternatively, an attempt could be 

made to recapitulate this inversion using λ Red or the methods described in Chapter 3 in 

order to verify that it is real.  Finally, the presence and even persistence of apparently 

very large deletions in the libraries is intriguing.  The fact that these large deletions are 

relatively persistent in the M9 libraries relative to smaller deletions, despite the fact that 
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deletions as a whole are more disfavored in the M9 libraries compared to the LB libraries, 

would seem to indicate that the regions are not actually deleted but rather displaced.  

Thus an attempt to artificially recreate one or more of these deletions, such as the large 

deletion that can be seen at generation 25 of M9-replicate 1 in Figure 4.9, followed by 

sequencing of survivors in order to see what happened, could be instructive.  An attempt 

could also be made to generate the deletion in a recA- strain in order to test the 

hypothesis that homologous recombination is responsible for the maintenance of these 

deletions. 

The data presented here suggest that genomic rearrangements are more likely to 

be adaptive when the cell is poorly matched to its environment.  However, another goal 

in examining the limits of genome plasticity would be to explore the space of neutral 

rearrangements.  How many different genome rearrangements could be made that are 

equivalent to the current arrangement?  This is difficult to answer in the present case 

since neutral mutations are quickly drowned out by adaptive ones.  Perhaps performing 

experiments such as these in a truly wild-type bacterium in the environment it evolved in 

could yield more data on neutral rearrangements.  Alternatively, the data presented here 

constitutes a starting point for constructing strains ultra-adapted to growth in culture.  For 

instance, the cells in these contexts clearly benefit from removing genes for flagellar 

proteins and restriction enzymes, and of course the problem with pyrE attenuation must 

be resolved for optimal growth in M9.  F plasmid (Quandt et al, 2013; Winkler & Kao, 

2012) or P1 transduction (Donath et al, 2011) could potentially be employed to 

combinatorially find the best set of modifications. 

This approach could of course also be of potential utility in adapting strains to 

industrial conditions, such as high temperatures or the presence of organic solvents.  

Redoing the selections presented here under such conditions, such as at 42°C or the in the 
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presence of ethanol, would be an obvious next step, both for further testing the hypothesis 

that major rearrangements are more likely to be selected for when the strain is poorly 

adapted to its environment, and to test the power of this approach in yielding industrially 

useful results. 

Additional work in this area could also include building libraries containing more 

lox sites per genome.  For instance, three lox sites per genome would allow cut-and-paste 

reactions, as described in Chapter 3, and six lox sites per genome would allow entire 

regions to swapped.  If it is the case that there are other viable but drastically different 

genome configurations that are nonetheless difficult to reach from the current position on 

the fitness landscape, such more extreme measures might be more likely to find them. 

Alternatively, a modification of this approach could be used to analyze double 

knock-out libraries.  In method used here, double knock-outs are created, then 

recombined, and then selected.  However, if the recombinations were instituted after the 

selection, they would serve to bring together the two selected insertion sites at one locus 

for easy identification in subsequent sequencing analysis.  Cre would likely have to be 

tightly and inducibly expressed from the genome for such methods, and steps would have 

to be taken to assess the potential biasing effect of distance and lethal rearrangements on 

the final makeup of the sequencing pool, but the end result could yield a powerful new 

tool for genetic analysis. 

Finally, the fact that both mariner transposons and the Cre/lox system function 

efficiently across the domains of life means that this approach can be widely adapted to 

different species.  These results thus open a gate to large number of potential follow-up 

studies with significance for both basic science and industrial biotechnology.   
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4.4 MATERIALS AND METHODS 

4.4.1 Plasmid construction 

To construct the temperature-sensitive hyperactive Himar1-expressing plasmid 

pQLH1, the himar1 gene was amplified via polymerase chain reaction from plasmid 

pSC189 (Chiang & Rubin, 2002) using primers himar1u5p 

(ATGGAAAAAAAGGAATTTCGTGTTT) and himar1d5p 

(TTATTCAACATAGTTCCCTTCAAGA) (though these primers were ordered with 5' 

phosphates, this was not necessary for the method in which the plasmid was finally 

constructed), and the backbone of the pQL269 plasmid was amplified without the cre 

gene using primers pqATGr_hi1uOL 

(AAACACGAAATTCCTTTTTTTCCATTTAACACTCAGCGGCCGCCTAG) and 

pqTAGf_h1dOL 

(TCTTGAAGGGAACTATGTTGAATAGCCCGGGAAGCCGAATTCG).  The two 

amplicons were then assembled into the pQLH1 plasmid using the Gibson method 

(Gibson, 2011).  This plasmid has the rep101ts origin, is temperature sensitive, and 

harbors spectinomycin resistance. 

To construct pQL269A, the pQL269 backbone was amplified without the aadR 

gene that imparts spectinomycin resistance using primers pq6111f5p 

(TGTCTAACAATTCGTTCAAGCCGAC) and pq4945r5p 

(TCTCCACGCATCGTCAGG), and the ampicillin resistance gene from pUC19 was 

amplified using primers pUCampru (GTCAGGTGGCACTTTTCGG) and pUCamprd 

(AACTCACGTTAAGGGATTTTGGTCA).  (All these primers had 5' phosphates, 

though technically only one pair requires them.)  These two amplicons were ligated 

together with T4 ligase, transformed, and plated on LB with ampicillin to yield colonies 

harboring pQL269A, which is essentially identical to pQL269A except that it expresses 
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ampicillin resistance instead of spectinomycin resistance.  An ampicillin-resistant variant 

of pQLH1, pQLH1A, was also constructed in the same manner but was not used in the 

present work. 

4.4.2 Transposon construction and electroporation 

To generate an amplicon consisting of Himar1 inverted repeats (mutated to carry 

MmeI recognition sites) flanking lox66 sites flanking a kanamycin resistance gene, 

primers kantuIS 

(GAGAGAGATACAGGTTGGATGATAAGTCCCCGGTCTATAACTTCGTATAGCA

TACATTATACGAACGGTAGGAAAGCCACGTTGTGTCTC) and kantdIS 

(GAGAGAGATACAGGTTGGATGATAAGTCCCCGGTCTTACCGTTCGTATAATG

TATGCTATACGAAGTTATTGAGGTCTGCCTCGTGAAG) were used to amplify the 

kanamycin resistance gene from a variant of the pACD.EcI5.1806s plasmid carrying 

kanamycin resistance instead of chloramphenicol resistance (the kanamycin resistance 

gene originated from pUC4K).  Analogously, primers cattuIS 

(GAGAGAGATACAGGTTGGATGATAAGTCCCCGGTCTTACCGTTCGTATAGCA

TACATTATACGAAGTTATCGTTGATCGGCACGTAAGA) and cattdIS 

(GAGAGAGATACAGGTTGGATGATAAGTCCCCGGTCTATAACTTCGTATAATG

TATGCTATACGAACGGTACGGGTCGAATTTGCTTTC) were used to amplify the 

chloramphenical acetyltransferase gene from the pX20 plasmid so as to flank the cat gene 

with the modified inverted repeats and lox71 sites. 

Initial tests indicated transposition efficiency was better with extra sequence on 

the ends of the transposons and after ligating the transposons into circles.  So the 

kantuIS/kantdIS and cattuIS/cattdIS PCRs were digested with DpnI to remove residual 

plasmid and then used as a template for a second PCR reaction using bp2_udM 
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(5Phos/GGAAGTGCTGGAGTTATGCGGAGAGAGATACAGGTTGGATGATAA) as 

both the forward and reverse primer.  Phusion was used as the polymerase. 

400 to 800 μL of these PCR reactions were subjected to PCR clean-up and 

recovered in 150 to 300 μL, which were concentrated in a vacuum concentrator, 

resuspended in 20 μL, desalted using cellulose filters having a pore size of 0.025 μm 

(Millipore catalog no. VSWP01300), divided in two, and ligated overnight at room 

temperature with 3 μL of T4 DNA ligase (NEB, 20 U/μL) in 30 μL.  These ligations were 

then pooled, concentrated in a vacuum concentrator, resuspended in 15 μL, and desalted.  

(The pQL269A plasmid was also concentrated and desalted in the same way before 

electroporation.) 

Electroporations were performed using a Bio-Rad Micropulser and chilled 0.1-cm 

cuvettes at 1.8 kV, with 1 to 1.5 μL of the ligated PCR products in 40 to 60 μL freshly 

made electrocompetent cells (E. coli MG1655 harboring the pQLH1 plasmid) per 

electroporation. 

Growth curves were measured as described in Section 2.4.3. 

4.4.3 Preparation of sequencing libraries 

The protocol used to prepare the sequencing libraries was a modification of the 

ddRAD protocol (Peterson et al, 2012) available at http://www.bit.ly/ddRAD.  Genomic 

DNA was prepared using a kit from Sigma (GenElute, catalog no. NA2110-1KT).  1 to 4 

μg of genomic DNA were digested using 2 U of MmeI per microgram of genomic DNA 

and 50 μM S-adenosyl methionine in the NEB CutSmart buffer in 50 to 100 μL total 

reaction volumes.  Digestions were performed for five hours at 37°C (though likely little 

was gained from digesting five hours versus one), and subjected to column clean-up 

without heat inactivation. 
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For adaptors, P5.1M (ACACTCTTTCCCTACACGACGCTCTTCCGATCTNN) 

and P5.2M (5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT) were 

annealed together, and P7.1M 

(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNN) and P7.2M 

(5Phos/AGATCGGAAGAGCGAGAACAA) were annealed together by combining 15 

μL of 100 μM solutions of each oligomer plus 0.3 μL of 5 M NaCl, keeping at 95°C for 

five minutes, then ramping down to 14°C at 0.1°C per second.  5 μL aliquots were stored 

at –20°C. 

After inputting the results from BioAnalyzer analyses of the restriction digests 

into the ddRAD ligation molarity calculator, it was decided to use 2 μL of 20× dilutions 

of each of the annealed adaptor solutions per μg of digested DNA (0.5 to 2 μg total) in 

ligations with 2 μL 20 U/μL T4 DNA ligase plus buffer and water to 40 μL.  The 

ligations were put at 16°C for one hour, 65°C for 10 minutes, and then ramped back 

down to 16°C at 0.1°C per second.  The ligations were then subjected to a bead-based 

cleanup (Agencourt Ampure XP) using a ratio of 1.5 beads:ligation mixture. 

Size selection to 195±10 basepairs was performed using a Pippin Prep system.  

The samples were recovered in 50 μL.  The size-selected ligations were then PCR 

amplified using Phusion with ddRAD primers, with 25 μL of sample in 100 μL reactions.  

The thermocycle was as follows: 

1. 98°C for 30s 

2. 98°C for 10s 

3. 65°C for 30s 

4. 72°C for 30s 

5. repeat 2-4 11 times 

6. 72°C for 5 min 
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7. hold at 4°C 

The PCRs were cleaned up using beads as above.  If subsequent Bioanalyzer 

results indicated the presence of amplified adaptor-adaptor ligations, these were removed 

via bead-based size selection (which could potentially be performed as the final bead 

clean-up, instead). 

Sequencing was performed on an Illumina MiSeq V2 with 2×100 mate-pair reads.  

Generations 0 and 25 were sequenced on one lane, and generations 95 and 195 were 

sequenced on another.  The indices of the ddRAD primers were used to differentiate 

samples, though barcodes could also be added to the P5M adaptor sequence above just 

before the MmeI overhangs. 

4.4.4 Analysis of sequencing results 

The presence of the 5'-most fifteen bases of the modified transposon inverted 

repeat on both reads of the mate-pair was taken as required to accept a mate-pair read as 

covering an insertion site.  A reasonably good alignment to the inverted repeat sequence 

could be potentially be used instead, but for present purposes we decided to err on the 

side of making correct determination.  Once a transposon-containing mate-pair read was 

identified, non-genomic sequence was stripped out, an identification of the type of lox 

site present was added to the tag, and both reads were added to a single FASTQ file 

containing all the usable reads for a given sample.  These were then aligned to the E. coli 

MG1655 genome using BWA (samse) with the default parameters.  Analysis of 

recombinations was then performed on the aligned sequences, as discussed in Section 

4.2.4 and diagrammed in Figure 4.4.  Any rearrangements occurring within the same 100 

bases of genome sequence were considered the same for analysis purposes, though this 

number could potentially be modified up or down as desired.  Other than BWA and 
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Circos, all the analyses were performed using scripts written in Python by the author of 

this work.  These scripts are available upon request. 
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Chapter 5:  Toward implementing and improving extracellular electron 

transfer in Escherichia coli 

5.1 INTRODUCTION 

Certain bacteria such as Geobacter sulfurreducens and Shewanella oneidensis are 

capable of the remarkable feat of exporting electrons from the cell for purposes of 

anaerobic respiration (Lovley et al, 2004; Nealson et al, 2002).  In short, in the absence of 

oxygen, such bacteria search out oxidants (often metals) in their environment to act as 

terminal electron acceptors and transfer electrons across the outer membrane to these 

oxidants.  This process has a number of potential applications, including electricity 

production via microbial fuel cells (Logan, 2010), bioremediation via the reduction of 

soluble uranium (VI) to insoluble uranium (IV) (Wall & Krumholz, 2006), and 

interfacing manmade electrical systems with microbial biochemical systems.  It has also 

been shown that the same pathway can be used to drive electrons into the cell (Ross et al, 

2011), raising the possibility of using electricity directly as a reducing equivalent for 

improving the efficiency of biosynthesis.  Thus there is also great interest in being able to 

transfer the machinery for extracellular electron transfer to heterologous hosts in order to 

combine them with the advantageous properties of other strains, such as the variety of 

genetic tools and well-understood metabolic networks of Escherichia coli, for example. 

The pathway for extracellular electron transport is probably best understood for S. 

oneidensis.  A schematic of this pathway as currently understood is shown in Figure 5.1. 

The multi-heme cytochrome CymA can be considered the start of pathway.  CymA is 

localized to the periplasm, anchored to the inner membrane, and can take electrons from 

the quinol molecules that serve as electron shuttles in the electron transport chain (Shi et 

al, 2012).  CymA seems to transfer electrons directly to another multi-heme cytochrome, 

MtrA (Firer-Sherwood et al, 2011; Schuetz et al, 2009), which is expressed from the 
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mtrCAB operon that forms the core of this pathway.  MtrA localizes to the periplasm 

(Beliaev et al, 2001) and forms a complex with the other members of the mtr operon, the 

outer-membrane proteins MtrB and MtrC (Ross et al, 2007).  MtrB is not a cytochrome 

but has been hypothesized to aid in the transfer of electrons from MtrA to MtrC across 

the outer membrane (Hartshorne et al, 2009).  MtrB is also required for proper 

localization of MtrC and OmcA (Myers & Myers, 2002).  MtrC also binds OmcA (Shi et 

al, 2006), and these two cytochromes have been implicated as the terminal reductases in 

the chain (Borloo et al, 2007).  All five of these proteins cause large drops in current 

density when absent (Bretschger et al, 2007). 

 

 

Figure 5.1. Extracellular electron transport pathway in Shewanella oneidensis. 

 Given that CymA alone (Gescher et al, 2008) or MtrA alone (Pitts et al, 2003) 

have been shown to allow E. coli to reduce solubilized iron(III), and that OmcA has been 

shown to properly localize to the outer membrane in E. coli (Donald et al, 2008), we 

hypothesized that the entire pathway could be reconstituted in E. coli, and set out to do 

so. 
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5.2 RESULTS 

5.2.1 Expression of the mtrCAB operon in Escherichia coli 

 Since MtrA can interface with the rest of the E. coli metabolic machinery, and the 

MtrCAB complex forms a membrane-spanning electron conduit, as described above, we 

reasoned that the expression of the mtrCAB operon alone might be sufficient to observe 

extracellular electron transfer to solid substrates in E. coli.  We therefore amplified both 

the entire mtrCAB operon and, separately, the omcA gene, directly from the S. oneidensis 

genome and cloned them onto a modified pBR322 vector under control of the tacI 

promoter.  We transformed these plamids (pRS.M expressing the MtrCAB operon and 

pRS.O expressing OmcA) into E. coli BL21 along with a plasmid (pEC86 (Arslan et al, 

1998)) constitutively expressing cytochrome maturation genes, and subjected them to a 

visually screenable iron reduction assay (Cho & Ellington, 2007) by placing them in 

anaerobic conditions with a non-fermentable compound (glycerol) as the only carbon 

source and amorphous iron(III) as the only electron acceptor, thus making iron reduction 

a requirement for survival.  In different samples, pRS.M was induced using 0, 1, 10, 50, 

200 μM IPTG, and pRS.O was induced using 10 and 200 μM IPTG.  S. oneidensis was 

used as a positive control (with lactate instead of glycerol), and E. coli BL21, E. coli 

BL21 plus the pEC86 plasmid, E. coli BL21 plus the pRS.M plasmid, and sterile media 

were used as negative controls.  The results after 10 days are shown in Figure 5.2. 
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Figure 5.2.  Insoluble iron(III) reduction assay for testing functionality of Shewanella 

cytochromes in E. coli. 

The left-most bottle is a positive control harboring wild-type Shewanella oneidensis MR-1.  The rest 

are samples containing cytochrome-expressing plasmids at various levels of induction in E. coli BL21, 

as well as negative controls. 

 Visually, no difference could be detected between negative controls and those 

samples containing cytochrome-expressing E. coli strains.  After one month, the bottles 

were shaken, and 50 μL from each of the E. coli-containing samples was inoculated into 

LB plus the antibiotics pertaining to the expected plasmids, and grown overnight 

aerobically at 37°C.  Growth was seen only in the cultures corresponding to wild-type E. 

coli, E. coli plus pRS.M, and E. coli plus pRS.M and pEC86 induced at 1 μM IPTG.  

Freezer stocks were made of the latter two cultures. 

 Not long after, Jensen and coworkers reported functional expression of the 

mtrCAB operon in E. coli under a T7 promoter using a much more sensitive assay for 

insoluble iron reduction (Jensen et al, 2010), and we suspended further experiments in 

this vein. 

5.2.2 Survey of phylogenetic variants of the mtrCAB operon 

 Though the MtrCAB proteins of Shewanella oneidensis MR-1 have served as the 

model system for studying extracellular electron transfer, a great many alternatives exist, 

and it is possible that another variant or combination of variants might yield better 

performance in E. coli.  Even within S. oneidensis there is another operon, mtrDEF, 

which is situated very near mtrCAB in the genome and encodes a similar set of 
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membrane-spanning redox active proteins.  However, these proteins have not been much 

studied until recently (Bucking et al, 2010; Clarke et al, 2011; Coursolle & Gralnick, 

2010), and functional expression in a heterologous host remains to be attempted.  The 

mtrCAB operon itself still holds some mysteries; the intergenic region between mtrC and 

mtrA, which is highly conserved among orthologues of the operon (J. Swaminathan, 

personal communication), contains a putative hairpin structure that may be involved in 

regulating expression levels (Beliaev et al, 2001), but this hypothesis remains to be 

tested. 

 

 

Figure 5.2. Bioinformatic analysis of conserved gene orders of orthologues of mtrCAB, 

mtrDEF, and omcA. 

Each number represents a set of orthologues from different species.  Squares represent orthologues 

found in S. oneidensis, with yellow squares for the MtrCAB operon and red squares for other S. 
oneidensis genes.  Circles represent genes not found in S. oneidensis.  Arrows represent a conserved 

gene ordering, with the thickness of the arrow representing the frequency of the ordering.  Data 

generated by J. Swaminathan. 
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 With help from Jagannath Swaminathan, we therefore performed an initial 

bioinformatic analysis of gene order and identity in the region of mtrCAB operon variants 

in various bacteria.  A summary of the results is shown in Figure 5.2. 

 A list of the locus tags of orthologues of the MtrC, MtrA, and MtrB proteins 

(corresponding to group numbers 37064, 177364, 75248, 431359, and 431402 in Figure 

5.2) is given in Table 5.1. 

 
MtrC MtrA MtrB 

(Group 37064) (Group 75248) (Group 431359) 

SO_1778 SO_1777 SO_1776 

Shewmr7_2578 Shewmr7_2579 Shewmr7_2580 

Sfri_2637 Sfri_2638 Sfri_2639 

Shew_2525 Shew_2526 Shew_2527 

Shewana3_2676 Shewana3_2677 Shewana3_2678 

Sputw3181_2623 Sputw3181_2624 Sputw3181_2625 

Shewmr4_2510 Shewmr4_2511 Shewmr4_2512 

Sama_1208 Sama_1207 Sama_1206 

Sbal_1589 Sbal_1588 Sbal_1587 

Shew185_1578 Shew185_1577 Shew185_1576 

Sputcn32_1478 Sputcn32_1477 Sputcn32_1476 

Sbal195_1612 Sbal195_1611 Sbal195_1610 

Spea_2698 Spea_2699 Spea_2700 

Ssed_1525 Ssed_1524 Ssed_1523 

Shal_2784 Shal_2785 Shal_2786 

Swoo_3125 Swoo_3126 Swoo_3127 

Sbal223_2765 Sbal223_2766 Sbal223_2767 

swp_3278 swp_3279 swp_3280 

(Group 177364) Acid_7896 VVA0644 

Gmet_0910 Rfer_4082 VP1218 

Acid_7897 Gura_3626 VV2_0135 

Rfer_4083 ACP_0479 AHA_2766 

 GM21_0397 (Group 431402) 

  Gura_3627 

  GM21_0398 

  RPC_2959 

  amb3018 

Table 5.1. List of phylogenetic variants of genes in the mtrCAB operons. 

The first locus tag in each column is from Shewanella oneidensis MR-1.  Group numbers refer to 

Figure 5.2. 
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5.3 DISCUSSION 

 Further work in this area could involve synthesizing numerous alternatives to the 

S. oneidensis MtrCAB operon and screening these alternatives for activity in E. coli.  

Beyond testing rational designs such as the mtrDEF operon or an mtrCAB operon lacking 

the intergenic region between mtrC and mtrA, unnatural mtrCAB operons could be 

randomly assembled from the various orthologues listed in Table 5.1.  An example of 

how this might be done using Gibson assembly (Gibson, 2011; Gibson et al, 2009) is 

shown in Figure 5.3.  Additionally, designs including genes commonly associated with 

the members of the mtrCAB and mtrDEF operons depicted in Figure 5.2 could also be 

synthesized and tested. 

 

 

Figure 5.3. Schematic of randomized operon construction. 

The white and grey boxes represent regions of homologous sequence; "v. 1," "v. 2," etc. represent 

different orthologues of the gene in question. 

 Such designs could yield alternatives to MtrCAB that are more suitable for 

expression in heterologous hosts such as E. coli, but even if that is not the case a great 
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deal could be learned about the biology of these operons from such work.  Furthermore, 

though synthetic biology to date has generally focused on achieving the goal of rationally 

designed "plug-and-play" genetic architectures, this would represent a more biologically 

inspired design approach of performing selections on randomized pools and extracting 

evolutionarily tested designs from phylogenetic data. 

 Research in this field can also benefit substantially from the methods developed in 

other parts of this work.  For instance, a complete set of genes expressing CymA, 

MtrCAB, and OmcA is more than 8000 base pairs, which begins to push the limits of the 

amounts of DNA advisable to put on plasmids.  Furthermore, maximal functional 

proteins levels of the cytochromes and the cytochrome maturation genes require 

relatively low expression rates (Goldbeck et al, 2013), which could be achieved by using 

the methods of Section 3.2.2 to place these genes on the chromosome instead of on 

plasmids.  Indeed, CymA was functionally expressed from a genomic locus in E. coli due 

to problems with toxicity when expressed on a plasmid (Gescher et al, 2008).  

Additionally, transposon selection methods such as those described in Chapter 4 could 

be used in tandem with the survival assay of Section 2.2.1 to optimize strains for higher 

efficiency output. 

5.4 MATERIALS AND METHODS 

5.4.1 Plasmid construction 

 Amplicons containing the omcA gene and the mtrCAB operon were amplified 

from Shewanella oneidensis MR-1 genomic DNA (ATCC #700550D) using the Roche 

Expand Long Range enzyme mix with primers having the sequences 

"CCTTTGCTAATGTGTGACTTGG" and "CAGGTGGGATCTAATTCC" (for omcA) 
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or "CTTTAGAGGCTGATCTCATTCA" and "CATAGCGGTTAAGCAATGC" (for 

mtrCAB).  These amplicons were cloned into TOPO vectors and verified by sequencing. 

 Next, the mtrCAB operon was amplified from the TOPO vector using the primers 

"GAGAGAGAGAGAGAGAGAGATCTAGAATGATGAACGCACAAAAATCA" and 

"GAGAGAGAGAGAGAGACTCCTCGAGTTAGAGTTTGTAACTCATGCTCA," and 

the omcA gene was similarly amplified using primers 

"GAGAGAGAGAGAGAGAGGAGTCTAGAATGATGAAACGGTTCAATTTC" and 

"GAGAGAGAGAGAGAGAGAGGCTCGAGTTAGTTACCGTGTGCTTC."  These 

amplicons were digested with XhoI and XbaI and ligated into similarly digested pRS.1 

plasmid (containing ampicillin resistance and the lacIq gene on the pBR322 vector 

backbone; courtesy of Randall Hughes) to place the genes under the control of the tacI 

promoter, resulting in plasmids pRS.M and pRS.O, respectively. 

5.4.2 Insoluble iron(III) reduction assay 

 The amorphous iron(III) gel was made by suspending 27 g of FeCl3•6H2O in 150 

mL water, adjusting the pH to 7 using 10 N NaOH (using unadjusted FeCl3•6H2O to 

lower the pH upon overshoot).  The suspension was stirred for 30 minutes, and the pH 

adjusted again.  The suspension was then washed six times using water, spinning at 5000 

RPM in a Beckman-Coulter Avanti J-20 XP centrigue for 20 minutes each time, 

discarding the supernatant. 

 The media used for the iron(III) reduction/survival assays consisted of 50 mM 

phosphate buffer (pH 7.4, prepared at 2X concentration beforehand), 0.06 M NaCl, 1% 

v/v ATCC mineral mix, 1% v/v ATCC vitamin mix, and 0.1 M carbon source (glycerol 

for E. coli, lactate (pH 6.4) for S. oneidensis).  Each bottle contained 20 mL of this media 

(which included 1 mL of overnight culture added as the source of the cells) and 
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approximately 0.8 mL of the iron(III) gel.  The bottles were sealed and degassed with 

pure nitrogen delivered via needles inserted through the stoppers for 30 minutes to create 

an anaerobic environment.  Bottles containing E. coli were incubated at 37°C, while 

those containing S. oneidensis were incubated at 30°C. 
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Chapter 6:  Mathematical models of synthetic microbial 

implementations of comparative advantage 

6.1 INTRODUCTION 

 One of the justifications for developing methods such as those described in 

Chapter 3 (and in Section 3.2.2 in particular) is that as the circuits employed in synthetic 

biology grow larger and more complex, it becomes more difficult logistically and more 

detrimental to the host to express such machinery from plasmids.  Keeping part or all of 

this machinery on the chromosome then becomes more appealing, and if the sequences of 

DNA involved are at all large, then few methods other than those described in Section 

3.2.2 will facilitate that task.  Furthermore, once these circuits are in place, methods such 

as those described in Chapter 4 can potentially be used to optimize their function.  In this 

chapter we present mathematical models for such complex circuits as a proof of principle 

in advance of actually building them.  In particular, these circuits are designed to 

replicate the characteristics of comparative advantage when expressed in bacteria. 

 Comparative advantage is a mathematical concept in economics and is thought to 

underlie many trade interactions.  The theory is usually credited to David Ricardo 

(Ricardo, 1817), but Richard Torrens is also recognized as having made key insights 

(Torrens, 1815).  In simple terms, comparative advantage demonstrates that as long as 

two groups have differing efficiencies in producing two or more goods, it is typically to 

the advantage of both to engage in trade, even if one group produces all of the relevant 

goods with higher efficiency than the other.  Though it is tempting to think of economics 

as a zero-sum game and assume that if one group is gaining another group must be 

losing, this is not necessarily the case, and comparative advantage provides a 

mathematical proof of this assertion.  Comparative advantage has of course traditionally 

been applied to the study of human interactions, but the mathematical universality of the 
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concept implies that comparative advantage could come into play anytime two self-

interested entities with different resource bases come into peaceful contact with each 

other.  For instance, two bacteria that produce and export useful metabolites at different 

efficiencies could find profit in trading with each other.  The question then arises as to 

whether comparative advantage could be implemented in microbial systems. 

 In order to design and test such models, we must first specify what the conditions 

and expected results of comparative advantage are.  Fortunately, comparative advantage 

involves specific requirements for the interacting parties and makes specific predictions 

about their subsequent behavior.  The example that Ricardo used to illustrate the concept 

involves the production of wine and cloth by England and Portugal, where each has a set 

amount of man-hours that can be allocated toward producing either wine or cloth.  Both 

countries are capable of producing both products, but Portugal is better at producing both 

than England.  Specifically, Portugal can produce a greater amount of each product for 

the same amount of man-hours than England can.  Intuition might then suggest that it is 

not in Portugal's interest to trade with England for either product, but this is not 

necessarily the case.  If Portugal produces the wine it needs more efficiently than it 

produces cloth, and England produces the cloth it needs more efficiently than it produces 

wine, then cloth is more valuable to Portugal than wine, and wine is more valuable to 

England than cloth.  It can be shown that both sides can profit by shifting resources into 

making the more efficient product and then trading for the other.  This allows both 

countries individually to consume more wine and cloth through trade than either country 

could produce on its own.  In practice, any two entities of sufficient complexity should be 

able to find a trading scheme that is to the advantage of both. 

 The requirements for demonstrating comparative advantage are therefore (1) that 

both countries have differing efficiencies for producing the two products, where the two 
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have opposite relative efficiencies, and one has better absolute efficiency in producing 

both, and (2) that neither country can produce more of one product without producing 

less of the other.  The specific predictions that comparative advantage makes for 

situations in which two such entities enter into trade are: (1) to reach maximum levels of 

consumption and production, both countries will specialize in manufacturing the product 

they make most efficiently; (2) under such conditions the amount of product available for 

consumption is greater for both countries than if they had not entered into trade; and (3) 

the country that is less efficient overall will specialize more than the more efficient 

country in order to balance out the higher production of the other.  With this information 

we can begin to design microbes that might be capable of engaging in comparative 

advantage-like trading and formulate testable hypotheses about how they will behave. 

 As for how such bacteria might be designed, the tools of the burgeoning field of 

synthetic biology can be used to engineer bacteria to demonstrate desired behaviors.  In 

particular, the practice of using synthetic biology to model social or ecological 

interactions has come to be called "synthetic ecology" (Dunham, 2007).  Building on the 

artificial genetic oscillators (Elowitz & Leibler, 2000) and switches (Gardner et al, 2000) 

that formed the foundation of synthetic biology, the sub-field of synthetic ecology has 

thus far successfully modeled a number of social systems in microbes, including 

mutualist interactions between two strains trading essential nutrients (Biliouris et al, 

2012; Hu et al, 2010; Kerner et al, 2012; Kubo et al, 2013; Shendure et al, 2005; Shou et 

al, 2007; Wintermute & Silver, 2010), predator prey relationships (Balagadde et al, 

2008), and communally synchronized cyclic behavior (Danino et al, 2010; Mondragon-

Palomino et al, 2011).  Additionally, a great deal of work in recent years has concerned 

competition between cooperative producers and selfish consumers in designed microbial 

populations (Celiker & Gore, 2013; Chuang et al, 2009; Chuang et al, 2010; Craig 
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Maclean & Brandon, 2008; Diggle et al, 2007; Gore et al, 2009; Greig & Travisano, 

2004; Nahum et al, 2011; Rainey & Rainey, 2003; Sanchez & Gore, 2013; Tanouchi et 

al, 2012; Waite & Shou, 2012). 

 Such engineered biological models occupy a useful intellectual territory between, 

on the one hand, mathematical and computational models, which can be criticized for 

being too simple to accurately represent reality or for experimenter bias in selecting 

parameters or other model characteristics, and, on the other, natural biological systems, 

which tend to be extremely complex and frequently involve confounding variables that 

interact in unpredictable ways with the phenomenon of interest.  Synthetic biological 

models, on the other hand, provide the experimenter with a significant measure of control 

over the system's behavior but still ultimately play out in the context of actual living 

organisms with all their inherent complexity and unpredictability.   In the present case, 

using comparative advantage as a model provides a framework for implementing more 

nuanced models of cooperation than the synthetic ecology systems that have been 

implemented thus far, which typically involve trade between two strains with mutually 

exclusive capabilities, or cases where the strains can be simply partitioned into 

"producers" and "cheaters." 

 The microbial context also provides an interesting test of the generality of 

comparative advantage.  In particular, the systems employed by bacteria to sense and 

respond to their environment rely on non-linear feedback mechanisms, and direct 

measurements and calculations of the sort humans might employ when engaged in trade 

cannot be used.  In the biological context, cooperation can be seen as a problem when 

considered in the light of basic Darwinian ideas about organisms' struggle to maximize 

their fitness relative to others (Hamilton, 1963).  Kin selection, by which an individual 

helps another individual with similar genes and thereby increases the likelihood of those 
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genes being passed on, is a commonly cited solution (Frank, 1998; Smith, 1964).  

Comparative advantage can be considered as an example of division of labor, which is 

one type of mutually beneficial cooperation.  Division of labor is most well known 

among eusocial insect species (Page & Erber, 2002) but occurs among bacteria, as well 

(Crespi, 2001; Shapiro, 1998), with a well-studied bacterial example being the division 

into nitrogen-fixing and photosynthetic cells in certain cyanobacteria (Muro-Pastor & 

Hess, 2012).  Such cases also frequently involve complete specialization on the part of 

the participants, whereas comparative advantage need only deal in shifts in relative 

specialization.  Additionally, division of labor frequently involves a kin selection 

component, but comparative advantage has no such requirement.  Thus the question of 

whether comparative advantage is generalizable enough to serve as a solution to the 

evolutionary problems faced by microbes is an interesting one. 

 Below we present mathematical models of both experimenter-controlled and self-

regulating microbial systems designed to demonstrate comparative advantage in a 

bacterial system, as well as analyses of how these models perform.  We find that the 

principles of comparative advantage do extend to these systems, and further that external 

stress increases the benefit gained from cooperative trading. 

6.2 MATHEMATICAL MODELS 

6.2.1 Basic model 

 We chose to employ as a model system an extension of the one-component 

system used by Chuang and coworkers (Chuang et al, 2009; Chuang et al, 2010) to study 

the interactions between "producer" bacteria, which produce and distribute necessary 

metabolites to the entire community, and "non-producer" bacteria, which make use of the 

metabolites provided by the producers but contribute nothing in return.  Specifically, both 
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bacterial strains are made to grow in the presence of antibiotics and must produce an 

antibiotic-resistance protein in order to reproduce.  However, the gene for this protein is 

only expressed when a chemical signal referred to as a "quorum-sensing molecule" or 

"autoinducer" is present in the culture medium.  This signal is manufactured by the 

producer strain at a certain cost to growth so that the community as a whole may grow, 

and the relative success of the community is assessed by measuring the growth rate (the 

individual strains are also tagged with different fluorescent proteins in order to allow the 

relative success of the two types to be measured). 

 To modify this system to replicate comparative advantage, we propose adding a 

second antibiotic along with a second antibiotic resistance gene under the control of a 

second autoinducer.  (However, the genes activated by the autoinducers do not 

necessarily need to code for antibiotic resistance proteins, but could also code for 

essential amino acids or other essential molecules.)  In such a system, the two 

autoinducers would be the "products" traded between the two groups, and growth would 

be the measured output variable. 

 To develop a model for how such bacteria might grow, we start with the Monod 

equation (Monod, 1942; Monod, 1949) for modeling microbial growth, which is 

equivalent to the Michaelis-Menten equation used in enzyme kinetics (Lehninger et al, 

2013): 
  

  
   

  

      
               

 Here C is the density of the bacteria, S is the concentration of a substance required 

for growth, V is the maximum rate at which S can be converted into growth, and K is the 

value of S at which this rate is one half of V. 
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 Since here we wish the bacteria to be dependent on two different products for 

growth, which we will call I1 (the concentration of autoinducer 1) and I2 (the 

concentration of autoinducer 2), we accordingly replace S in equation (1) with the 

arithmetical product of I1I2, which results in sigmoidal growth dynamics and reduces the 

growth rate to zero in the absence of either product: 
  

  
   

     
         

               

 Next we add a quantity to force the system to adhere to logistic growth, with Z as 

the carrying capacity.  While this term is not strictly necessary since we are interested not 

in the final density of the cells so much as the growth rate at which that density is 

reached, without this term the system grows to infinity, and it is difficult to devise a 

consistent rule for determining the range over which the growth rate should be measured.     
  

  
   

     
         

    
 

 
                

 Finally, we add a penalty term to represent the growth deficit that results from 

producing the autoinducers, which requires separate equations for the two strains, which 

we will call "A" and "B": 

   

  
    

     

    
       

   
          

    
     

 
               

   

  
    

     

    
       

   
          

    
     

 
               

 

 IA1 and IB1 here are the concentrations of autoinducer 1 produced by strain A and 

strain B, respectively, and IA2 and IB2 analogously represent the amounts of autoinducer 2 

produced by the two strains, where I1 = IA1 + IB1 and I2 = IA2 + IB2.  Since both strains 

should be essentially identical except in their differing production rates of the two 
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autoinducers, we can safely assume that the parameters V, K, P, and Z are the same for 

both strains. 

 In the penalty term     
       

   
 , P is analogous to the inhibition coefficient (KI) 

in Michaelis-Menton kinetics (Lehninger et al, 2013) and determines the severity of the 

penalty, with smaller values of P leading to larger penalties.  This formulation was 

chosen with reference to the kinetics of enzyme inhibition to penalize the strains for 

making more of the autoinducers, without allowing for the possibility of negative growth 

(we assume bacteriostatic rather than bacteriocidal antibiotics).  Since the concentration 

of autoinducer should be a linear function of the density of cells at any given time, for 

determining the growth penalty this concentration should be divided by the density 

(concentration) of cells in order to avoid penalizing the cells for the presence of other 

cells in addition to penalizing them for production.  (For instance, if, as a control, strains 

A and B are made to be identical, then the results should be the same for starting at (CA, 

CB) = (n, n) and at (CA, CB) = (2n, 0).  If CN is omitted from the denominator in the 

penalty term, this will not be the case.) 

 The penalty term could also be multiplied by K alone or by I1I2 alone, depending 

on the nature of the inhibition.  However, if the inhibition affects the apparent K, then the 

growth inhibition will be lessened at higher values of the I1I2 product, which is not the 

behavior we would expect from such a system.  Thus the growth inhibition due to 

producing the autoinducers should only affect the apparent V, as in equations (4) and (5) 

above.  In other words, the situation corresponds to non-competitive inhibition in enzyme 

kinetics. 

 We note that this model is similar to one previously developed for the one-

component model (Chuang et al, 2010).  We increase the complexity of that model by 

taking into account two autoinducers instead of one and by including a more 
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sophisticated penalty function, and we simplify the model by not assuming a minimum 

growth rate. 

 Equations (4) and (5) can be considered output functions for converting 

production rates of the autoinducers into measurable variables, but the key design aspects 

of the system come from the question of how those production rates are determined.  We 

have devised two methods by which this might be done.  In the first (Conception 1), the 

production rates are determined according to the concentrations of exogenous inducers 

added by the experimenter.  In the second (Conception 2), the bacteria control the 

production rates themselves through feedback regulation.  Conception 1 has the 

advantage of allowing greater control over the system and greater freedom in exploring 

the parameter space, while Conception 2 is more intellectually pleasing as a self-

regulating system. 

6.2.2 Model for Conception 1 

 In this conception, the experimenters manually control the amounts of the 

autoinducers by changing the concentration of four exogenous inducers (γA1, γA2, γB1, γB2) 

that modulate the promoters that control expression of the genes for producing the 

autoinducers I1 and I2 in strains A and B: 

 IA1 = CA kA1 γA1  (6) 

 IA2 = CA kA2 γA2  (7) 

 IB1 = CB kB1 γB1  (8) 

 IB2 = CB kB2 γB2  (9) 

 The kNi coefficients represent the strength of the promoters regulated by the 

exogenous inducers and determine how effectively these inducers stimulate production of 

the autoinducers.  Therefore, setting these coefficients to proper values allows 
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implementation of the necessary differences in efficiency for satisfying the requirement 

of comparative advantage.  Equations (6) through (9) could also be represented using 

Michaelis-Menten kinetics, but this simpler formulation can be used if functions for 

converting inducer concentrations into gene expression are experimentally determined so 

as to yield a set of inducer values that result in a linear response in autoinducer 

concentration. 

 To force the strains to make a trade-off between producing one autoinducer or the 

other, we can require that γA1 + γA2 = γA and γB1 + γB2 = γB, where γA and γB are constant 

for each strain and represent a resource base that the respective strains have exclusive 

access to.  In other words, we give each strain a set amount of resources (the exogenous 

inducers) that can be allocated to producing one or the other autoinducer.  (For simplicity 

we here assume that the exogenous inducers are active over the same concentration 

ranges, but normalizing coefficients could be added as necessary for specific inducers.)  

Further, we can set "rheostat" values RA and RB to represent how that allocation has been 

made (specifically, the extent of specialization in making autoinducer 1), where: 

    
   

        
  

   

  
   

   

  
                

 

    
   

        
  

   

  
    

   

  
               

 Equations (6) through (9) can then be converted to: 

 IA1 = CA kA1 γA RA  (12) 

 IA2 = CA kA2 γA(1 – RA) (13) 

 IB1 = CB kB1 γB RB  (14) 

 IB2 = CB kB2 γB(1 – RB) (15) 
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 By combining constants such that κA1 = kA1 γA RA, κA2 = kA2 γA(1 – RA), κB1 = kB1 

γB RB, and κB2 = kB2 γB(1 – RB), and then substituting into equations (1) and (2), we 

obtain: 

   

  
    

                             

    
       

                                   
    

     

 
                

 

   

  
    

                             

    
       

                                   
    

     

 
                

  

 These equations can be non-dimensionalized to: 
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 In the non-dimensionalized equations, α, β, γ, and δ are the four parameters that 

determine the relative efficiencies of the two strains, while ε performs the role of K in the 

original equations (the other parameters fall out during the course of non-

dimensionalization). Though the rheostat values RA and RB are not explicitly included in 

these equations, since they are dimensionless they could be separated out and included by 

replacing α, β, γ, and δ with αRA, βRB, γ(1 – RA), and δ(1 – RB). 
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6.2.3 Model for Conception 2A 

 For Conception 2, we designed gene circuits that will allow the bacteria to make 

their own decisions about how to modulate autoinducer production via feedback 

regulation, a very common approach in molecular systems (Lehninger et al, 2013).  In the 

simplest scheme, each autoinducer inhibits its own synthesis by inducing expression of a 

repressor that represses the gene of that autoinducer.  In order to implement a trade-off, 

each autoinducer should also induce expression of the other autoinducer.  We call this 

implementation Conception 2A, a diagram of which is shown by the black arrows in 

Figure 6.1. 

 

Figure 6.1. Gene circuits of Conception 2.   

Circles represent signaling molecules (products), and squares represent repressors.  Pointed arrows 

indicate activation, and flat arrows represent inhibition.  The black arrows represent the interactions in 

Conception 2.1, and the red arrows are interactions added in Conception 2.2.  Note that the signaling 

molecules are the only components that can leave to influence other cells. 

 In a simplified mathematical model of this circuit, we can imagine each 

autoinducer is produced according to Michaelis-Menten kinetics, where the autoinducer 

acts as its own inhibitor, and the other autoinducer acts as the substrate.  We can therefore 

represent Conception 2A with the six coupled equations (20) through (25). 
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 Here VA1, VA2, VB1, and VB2 represent the maximum expression rates of the genes 

that code for the autoinducers and are the quantities that will be varied in order to create 

the conditions necessary to demonstrate comparative advantage.  In an actual gene 

circuit, these parameters could be varied by changing the strength of the ribosome 

binding sites.  The autoinducers are not produced directly from the genes, of course, but 

are produced by enzymes that are translated from RNA molecules that are transcribed 

from the genes.  However, this simplified model should be sufficient as an initial test of 

the feasibility of the system.  The constants k1 and k2 are the concentrations of I1 and I2, 

respectively, at which expression reaches half-maximum.  KI is the inhibition constant 

and represents the affinity of the repressor for the operator that it binds.  The inhibition 

term in equations (20) through (23) affects the apparent ki in this case and not the VNi, 

because we expect large amounts of the substrate autoinducer to overcome the inhibition 

and allow maximal expression.  In terms of enzyme kinetics, this is competitive 
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inhibition, which makes sense because the repressor and the RNA polymerase should be 

competing for access to the same stretch of DNA.  In the actual gene circuit we would 

likely need at least two different ki and two different KI, but for theoretical purposes we 

assume they are all the same. 

6.2.4 Model for Conception 2B 

 A potential failing of Conception 2A is that the strains do not differentiate 

between products made by themselves and products made by others.  Specifically, in 

order to properly allocate resources according to the comparative advantage model, each 

cell must decrease the production of one autoinducer in response to increased production 

by itself of the other, yet simultaneously increase production of the first autoinducer in 

response to increased production by other strains of the other autoinducer.  Intracellular 

RNA-based inhibition mechanisms (Isaacs et al, 2004; Lucks et al, 2011; Na et al, 2013; 

Saito & Inoue, 2009) could be used to allow a cell to respond separately to the amount of 

autoinducer it produces as opposed to the total amount of autoinducer present.  We call 

this modification Conception 2B, which is shown schematically by both the black and red 

arrows in Figure 6.1, and is implemented mathematically by replacing equations (20) 

through (23) with equations (26) through (29): 
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 Here we add an extra inhibition term,    
   

     
 , as a simplified model of RNA-

based inhibition that serves to reduce production of one autoinducer in response to 

increased production of the other in the same strain, where KIint serves as the inhibition 

coefficient.  In actual bacteria, RNA levels could be measured by reverse transcription 

and quantitative PCR. 

6.2.5 Implementation 

 For analysis, the equations derived above were integrated in Matlab.  Integration 

was started from (CA, CB) = (1, 1) (alternatively, (0, 1) or (1, 0) for monoculture controls) 

and, in Conception 2, IA1 = IA2 = IB1 = IB2 = 1.  Integration was then continued for 5 

arbitrary time units for each parameter set in Conception 1, and for 100 arbitrary time 

units for each parameter set in Conceptions 2A and 2B (Conception 1 being much more 

computationally intensive than Conception 2).  Parameters whose values are not specified 

elsewhere were set to one.   

 Growth rate was defined as the fraction of increase per unit time from the start of 

growth until reaching half the carrying capacity defined by the Z parameter (i.e., if the 

start point is C0, half carrying capacity is C0.5, and the time between is t, the growth rate 

equals (C0.5/C0)
1/t

 – 1).  Since values at exactly half the carrying capacity (C0.5) could not 

be directly obtained without using extremely resource-intensive integration parameters, 

we instead used the values for the growth of strains A and B (CA and CB) at the time 

points before and after the moment when CA + CB reached the threshold value C0.5 to 

estimate the time t0.5 required to reach C0.5, and then used t0.5 to estimate the values of CA 

and CB (and, in Conception 2, IA1, IA2, IB1, and IB2) when C0.5 was reached.  R
2
 values for 

both linear and log2-linear fits of the data points in the vicinity of C0.5 were >0.99, 

indicating that either could be used to provide accurate estimations of values at the point 
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of reaching C0.5.  The results of simple linear estimation proved to be more robust to 

variations in the stiffness of integration, however, and so we employed the linear method.  

Specifically, using the subscript α to denote integrated values obtained at the point just 

before reaching C0.5 and using the subscript β to denote values obtained just after 

reaching C0.5, t0.5 = tα + (C0.5 – Cα)(tβ – tα)/(Cβ – Cα), and the value of any other variable x 

at t0.5 is then calculated as x0.5 = xα + (t0.5 – tα)(xβ – xα)/(tβ – tα). 

6.3 RESULTS 

6.3.1.1 Conception 1: Analysis of non-dimensionalized equations 

 We analyzed the non-dimensionalized equations (18) and (19) in order make 

initial checks as to whether the model is behaving as expected.  Isoclines (lines along 

which one of the variables is fixed) occur at x = 0 and y = 0.  The intersection between 

the two isoclines at (0, 0) is a fixed point, where neither variable changes.  Another 

region where neither variable changes is along the fixed line defined by y = 1 – x.  The 

presence of a fixed line makes sense because, if we consider the fixed-line steady-state as 

equivalent to the system at carrying capacity (where x + y = 1), we do not expect the 

system to reach any particular value (x, y), but we do expect the ratio between x and y at 

the steady state to depend on the ratio between x and y at the starting point.   

 A flow field showing the direction and magnitude of flux at various points in the 

x-y plane is plotted in Figure 6.2A, in which the (0, 0) fixed point appears to be an 

unstable node, and the fixed line appears to be stable.  This is consistent with any non-

zero concentration of cells growing toward carrying capacity.  A phase portrait showing 

trajectories over time from various starting points is plotted in Figure 6.2B, which again 

is consistent with all non-zero, non-negative starting points moving eventually onto the 



 161 

fixed line (reaching carrying capacity) and then stopping.  Thus in these respects the 

model is behaving as expected. 

 

Figure 6.2.  Graphical analysis of the non-dimensionalized equations of Conception 1. 

Isoclines (which in this case also correspond to the x and y axes) are solid lines, the fixed line is a 

dotted line, and the fixed point is given by an X.  The triangular region enclosed by the lines is the 

biologically relevant region of the parameter space.  The parameter values used were α = 2, β = 0.5, γ 

= 1.5, δ =1, and ε =1, which represent values that could potentially recreate comparative-advantage-

like dynamics. (A) Phase plane analysis of the system, where each arrow is a vector representing the 

direction and magnitude of flow in the system at the point at which the arrow starts.  (B) Phase portrait 

of the system, where the black lines plot trajectories in the system from various starting points denoted 

by black dots. 

6.3.1.2 Conception 1: Example growth curves 

 We performed further investigations of Conception 1 using equations (16) and 

(17), since the variables and constants therein are more easily interpretable in biological 

terms.  Figure 6.3A shows an example of growth curves for strains A and B under 

conditions potentially compatible with comparative advantage (specifically, kA1 = 2, kA2 

= 1.5, kB1 = 0.5, kB2 = 1, meaning that strain A makes product 1 more efficiently that 

product 2, strain A makes product 2 more efficiently than product 1, and strain A makes 

both products more efficiently that strain B).  The expected sigmoidal growth curve is 
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seen for both strains.  Strain B grows faster than strain A, which is also in line with 

expectations since strain B produces less and thus receives a lesser growth penalty.  Both 

rheostat values RA and RB are set to 0.5 in this example, which means both strains 

specialize equally in both products (autoinducers), and differences in production result 

entirely from the differences in the values for kA1, kA2, kB1, and kB2.  (RA and RB vary 

between zero and one and represent the extent to which strain A and strain B, 

respectively, have specialized in making product (autoinducer) 1 as opposed to product 

2.)  Figures 6.3B and 6.3C, which show the amounts of products 1 and 2, respectively, 

being produced at each time point show that, as expected, the highest level of production 

under these circumstances is strain A's production of product 1, followed by strain A's 

production of product 2, then strain B's production of product 2, and finally the lowest 

production is for strain B and product 1. 

 

Figure 6.3. Example growth curves for Conception 1. 

Parameter values are K = 20, P =20, V = 10, Z = 200, kA1 = 2, kA2 = 1.5, kB1 = 0.5, kB2 = 1, and (RA, 

RB) = (0.5, 0.5).  Values for strain A are shown in blue, and values for strain B are shown in red.  

Units are arbitrary.  (A) Cumulative cell concentration over time starting from a value of 1 for both 

strains.  (B) The amount of product 1 (I1) being produced by each strain at each time point.  (C) The 

amount of product 2 (I2) being produced by each strain at each time point. 
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6.3.1.3 Conception 1: Investigations into the (RA,RB) parameter space 

 In order to examine the effects of different concentrations of inducers, which 

correspond to different degrees of specialization between the two strains, we created heat 

maps examining the growth rate of the system at every combination of the rheostat values 

RA and RB in increments of 0.005.  Examples of such heat maps are shown in Figure 6.4, 

and relevant output values are given in Table 6.1. 

 We first examined the dynamics of two strains with identical efficiencies allowed 

to specialize separately, as shown in Figures 6.4A through 6.4C.  There are two 

equivalent optimal (RA,RB) points.  Strain A grows better when specialized to produce 

less than Strain B, and vice versa.  Thus it is in the interest of both strains to produce less 

and have the other produce more.  This diametrical opposition is graphically illustrated 

by the difference between Figure 6.4B and Figure 6.4C, which show the specialization 

preferences for maximal growth of each individual strain.  In ecological terms, we could 

say that both strains are attempting to occupy the same niche, which means that at least 

one has to take up a suboptimal position. 

 Next we looked at strains designed to replicate comparative advantage.  In this 

and all subsequent cases, strain A is the high-level producer, and strain B is the low-level 

producer.  Figures 6.4D through 6.4F show heat maps of these strains at three different 

levels of the parameter K.  We chose to examine K because it represents the amount of 

difficulty the strains face in converting the products to growth and as such can likely be 

modulated by changing environmental factors such as the concentration of antibiotics.  It 

is also the only parameter of out of K, P, V, and Z that still remained in some form after 

non-dimensionalization (as ε in equations (18) and (19)), supporting the idea that it is in 

some sense the most important of these parameters.  Increasing K from 5 to 20 (compare 

Figs. 6.4D and 6.4E) narrows the parameter space in which high growth can occur.  The 
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high-growth parameter space expands again somewhat at K = 80 (Fig. 6.4F), though we 

note that the area representing the lowest growth rates (the area of the darkest color) is 

greater, as well.   The values in Table 6.1 also show that increasing K reduces growth 

rates, as expected. 

 We also note that the degrees of specialization occurring at the optimal (RA,RB) 

are in line with expectations: both strains are specializing in the product they make more 

efficiently, and strain B is completely or almost completely specialized, as can be seen 

from the optimal (RA,RB) values given for the comparative advantage cases in Table 6.1.  

We also note that changing K does not seem to significantly change the optimal (RA,RB).  

Only the combined-growth heat maps are shown for these cases because the heat maps of 

the individual preferences did not look much different, which would seem to indicate that 

the interests of the two strains are now aligned.  In ecological terms, they can now occupy 

different niches, and cooperation now becomes more advantageous. 

 In Figures 6.4G through 6.4I we examine the effects of changing the efficiencies 

between the two strains.  Figure 6.4G and Figure 6.4H represent cases where the 

efficiencies of strain A or B are reversed with respect to the case in Figure 6.4E.  This 

results in a state of absolute advantage, where strain A still makes both products more 

efficiently than strain B, but now both have similar relative efficiencies.  The growth 

rates are lower than for the comparative advantage case shown in Figure 6.4E (see Table 

6.1), as expected, and furthermore, the optimal (RA,RB) involves strain A specializing in 

the product it makes less efficiently, most likely because strain B is unable to take up the 

slack if strain A specializes in its preferred product.  A case in which the efficiencies of 

both strain A and strain B are reversed with respect to Figure 6.4E is shown in Figure 

6.4I, which as expected successfully recapitulates the specialization and improved growth 

characteristics of comparative advantage. 
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Figure 6.4. Heat maps for representative parameter sets in Conception 1. 

The x-axis is RA (the specialization of strain A in making product 1 versus product 2), the y-axis is RB 

(the specialization of strain B in making product 1 versus product 2), and color represents relative 

growth rate.  Default parameter values are K = 20, P =20, V = 10, Z = 200, kA1 = 2, kA2 = 1.5, kB1 = 

0.5, kB2 = 1, which are conditions that should result in behavior consistent with comparative 

advantage.  (A) through (C) represent a control case where two identical strains are permitted to 

specialize differently, such that kA1 = kB1 = 2 and kA2 = kB2 = 1.5.  (A) depicts overall growth rates, 

(B) depicts the growth rates of strain A, and (C) depicts the growth rates of strain B.  The optimal 

(RA,RB) for (B) and the optimal (RA,RB) for (C) are equivalent and together represent the optimal 

(RA,RB) for (A).  (D) through (F) represent different values for K in the comparative advantage 

context.  Specifically, K = 5 in (D), 20 in (E), and 80 in (F).  (G) through (I) show variations on the 

efficiencies of production between strains.  Specifically, kA1 = 2, kA2 = 1.5, kB1 = 1, kB2 = 0.5 (absolute 

advantage control) in (G), kA1 = 1.5, kA2 = 2, kB1 = 0.5, kB2 = 1 (absolute advantage control with 

reversed specializations) in (H), and kA1 = 1.5, kA1 = kA2 = 2, kB1 = 1, kB2 = 0.5 (comparative 

advantage positive control with reversed specializations) in (I). 
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Relevant figure Optimal (RA,RB) 

Overall growth 

rate at optimal 

(RA,RB) 

Growth rate of 

strain A at optimal 

(RA,RB) 

Growth rate of 

strain B at optimal 

(RA,RB) 

4A through 4C 

(Identical strains) 

(0, 0.995) and 

(0.995, 0) 
89.1 93.8 and 84.5 93.8 and 84.5 

4D (K = 5) (0.82, 0) 524 456 595 

4E (K = 20) (0.835, 0) 45.5 41.7 49.3 

4F (K = 80) (0.835, 0) 3.51 3.36 3.65 

4G  

(Absolute 

advantage kB1 = 1, 

kB2 = 0.5) 

(0.24, 1) 30.4 28.8 31.9 

4H 

(Absolute 

advantage kA1 = 

1.5, kA2 = 2) 

(0.76, 0) 30.4 28.8 31.9 

4I 

(Comparative 

advantage – 

reverse) 

(0.165, 1) 45.5 41.7 49.3 

Table 6.1. Output values for the heat maps in Figure 6.4. 

 We further note that strain B consistently grows better than strain A, which is a 

result of its lower production and therefore lower growth penalty.  Thus strain A and 

strain B can be considered partly analogous to the producer and non-producer strains 

examined by Chuang and coworkers (Chuang et al, 2009; Chuang et al, 2010); 

alternatively, the work of Chuang and coworkers can be considered as a limit case for the 

system presented here. 

6.3.1.4 Conception 1: Effects of varying K, P, and V 

 Next we examined in more detail the effects on the system of varying K, P, and 

V.  As mentioned above, K represents the degree of difficulty with which the strains 

convert products into growth and can likely be externally modulated by changing the 

antibiotic concentration.  The parameter P represents the growth penalty for generating 

product, with small values of P corresponding to a greater penalty.  The P parameter is 

likely intrinsic to the system and not easily modified.  The parameter V represents the 
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maximum rate with which the products can be converted into growth.  The V parameter 

could likely be modified by changing the strength of the promoters regulating the 

antibiotic resistance genes activated by the products. 

 

Figure 6.5. Effect of K, P, and V parameters on growth characteristics at the optimal 

(RA,RB) in Conception 1. 

In all cases the x-axis represents the parameter value, and the y-axis is the resultant growth (absolute 

or relative).  K = 20, P =20, V = 10, Z = 200, kA1 = 2, kA2 = 1.5, kB1 = 0.5, kB2 = 1, except when a 

specified parameter is being varied.  The first column of graphs shows the effects of varying K, the 

second column shows the effects of varying P, and the third column shows the effects of varying V.  

The first row shows the effect of parameter changes on the combined growth rate of strains A and B.  

The second row shows the effect of parameter changes on the ratio of the coculture and monoculture 

growth rates of the two strains, with values specific to strain A in blue, and values specific to strain B 

in red.  The last row shows the effect of parameter changes on the ratio of the coculture growth rates 

of strain A and strain B. 
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 The effects on growth of varying these three parameters are explored in Figure 

6.5.  Increasing K decreases overall growth rates (first row, first column of Fig. 6.5), as 

expected, and also generally increases the benefit to cooperation as judged by the ratios 

of coculture versus monoculture growth rates for the two strains (second row, first 

column of Fig. 6.5), where apparent thresholds exist which when crossed significantly 

increase the benefit to coculture, which then levels off.  Increasing K also narrows the 

growth advantage of strain B (third row, first column of Fig. 6.5) perhaps because as 

growth becomes harder to achieve, the penalty for producing more products carries less 

weight compared to the benefit for successfully achieving growth. 

 Increasing P (second column in Fig. 6.5) improves growth (both absolute growth 

and growth in coculture relative to monoculture) up to a point and then stops, which is in 

line with expectations, as the penalty term in equations (1) and (2) goes to one as P goes 

to infinity, removing its effect.  Increasing P also narrows the gap between the strains, for 

the same reasons. 

 Increasing V increases growth rate (first and second rows, third column in Fig. 

6.5), of course, and significantly widens the gap in growth rates between strain A and B 

(third row, third column in Fig. 6.5), likely because higher V makes strain B less 

dependent on strain A for growth.  Note also that the benefit to cooperation is 

consistently higher for strain B than for strain A (second row in Fig. 6.5).  Threshold 

effects as seen for the K parameter also seem to occur with changing V (second row, 

third column in Fig. 6.5). 

 The effects of varying K, P, and V on specialization are shown in Movies 1, 2, 

and 3, respectively, which show how the heat map changes as these parameters are varied 

over the same ranges as in Figure 6.5.  The movies are available online at 

http://bit.ly/1cwG52S (Movie 1), http://bit.ly/1hdbgQy (Movie 2), and 
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http://bit.ly/1c6pb7K (Movie 3).  Increasing K generally either narrows the range of the 

high-growth parameter space or expands the range of the low-growth parameter space, 

which is not an unsurprising result of more difficult growth conditions.  Increasing P 

initially somewhat narrows the high-growth parameter space but ceases to have much 

effect at higher values.  As V increases the high-growth parameter space narrows 

between V = 1 and V = 1.5, increases from approximately V = 1.5 to V = 3, and 

thereafter decreases.  In a somewhat similar fashion to P, changing V seems to have the 

most effect on the specialization landscape when V is small; when V is big the options 

narrow, perhaps as a result of accentuating the advantage gained by finding the optimal 

level of specialization.  The optimal (RA,RB) (the reddest area in the heat maps) 

experiences little change in location as these parameters change, indicating the robustness 

of the specialization effect.  (Also note that heat map intensities are normalized by frame, 

and the reddest area with one parameter set does not necessarily correspond in absolute 

growth rate to the reddest area with another parameter set.) 

 Conception 1 thus demonstrates comparative advantage.  Specifically, the optimal 

growth conditions are those under which both strains specialize in the product they make 

more efficiently, with the weaker strain specializing more.  Under these conditions, both 

strains grow better together than alone, and also grow better than under comparable 

absolute advantage conditions. 

6.3.2.1 Conception 2: Example growth curves 

 Figure 6.6A shows examples of growth curves for strains A and B in both 

Conceptions 2A and 2B under conditions potentially compatible with comparative 

advantage.  (Conceptions 2A and 2B both involve self-regulating gene circuits, where 

Conception 2B contains an additional "rheostat" mechanism for forcing an intracellular 
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trade-off in production between the two products, as shown in Fig. 6.1.)  The curves are 

similar to those seen for Conception 1 in Figure 6.3A, with Conception 2B resulting 

slower growth than Conception 2A, with a narrower gap between strains A and B.  As 

seen in Figures 6.6B and 6.6C, which show production levels of products 1 and 2, 

respectively, in a fashion analogous to Figures 6.3B and 6.3C, product levels are lower 

yet better balanced in Conception 2B than in Conception 2A. 

 

Figure 6.6. Example growth curves for Conception 2. 

Parameter values are K = 20, P =20, V = 10, Z = 200, VA1 = 2, VA2 = 1.5, VB1 = 0.5, VB2 = 1, which 

are conditions that should be compatible with comparative advantage.  Otherwise the format is 

identical to Figure 6.3, with (A) showing cumulative cell concentration, (B) showing the change in 

production of product 1, and (C) showing the change in production of product 2. 

6.3.2.2 Conception 2: Effects of varying K, P, and V 

 We next repeated the analyses from Figure 6.5 using the equations for 

Conceptions 2A and 2B.  These results are shown in Figure 6.7.  In most cases the 

effects are similar, but some differences exist.  Perhaps most important is the fact that, as 

opposed to Conception 1, coculture is not more advantageous than monoculture over the 

entire parameter space, particularly for strain A.  In other words, cooperation between the 

two strains is only beneficial to both under certain conditions. 
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Figure 6.7. Effect of K, P, and V parameters on growth characteristics in Conception 2. 

Non-varied parameter values are as in Figure 6.6.  Data for Conception 2A is always a solid line, 

while data from Conception 2B is always a dotted line.  Otherwise the format is identical to Figure 

6.5. 

 Specifically, coculture is advantageous for Strain A when K is above 55 for 

Conception 2A or above 18 for Conception 2B; when P is above 10 for Conception 2B 

(and never for Conception 2A when P is between 1 and 100); and when V is less than 11 
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for Conception 2B (and never for Conception 2A when V is between 1 and 100).  (When 

not being varied, the parameters here are K = 20, P = 20, and V = 10.) 

 Thus besides being interesting as a self-regulating system, Conception 2 is also 

interesting in providing more stringent conditions under which comparative advantage 

can work.  In light of the discussion above, these conditions would seem to be a relatively 

light growth penalty for production (high P) combined with otherwise difficult growth 

conditions (high K and low V).  In other words, capable individuals in trying 

circumstances benefit from cooperation, but in comfortable environments may be better 

off alone (see Figs. 6.7C through 6.7F). 

 The V parameter affecting the maximum growth rate is interesting in that 

increasing it is beneficial for strain B but has the reverse effect on strain A, perhaps 

because the penalty term makes higher overall production rates more advantageous to 

lower-producing strain.  On the other hand, Conception 2B, which adds an internal 

rheostat, results in increased benefit to cooperation for strain A but not for strain B, as 

well as lower absolute growth rates, perhaps because the internal rheostat makes it more 

difficult for strain B to allocate production to its less efficient (and less growth-

penalizing) product, thus preventing it from gaining benefits from strain A without 

providing benefits in return. 

 Another interesting difference between Conceptions 1 and 2 is that in Conception 

2, increasing K slightly reduces the ratio of the growth rates between strains A and B 

(third row, first column in Figure 6.7), perhaps because of a combination of the less 

precise method for finding the optimal specialization values in Conception 2 and the fact 

that as K increases, the fraction of total production assumed by strain A increases 

slightly, which also increases its growth penalty.  Also note that the A/B growth ratio is 



 173 

more robust to changing parameters in Conception 2B than in 2A (third row in Figure 

6.7). 

6.3.2.3 Conception 2: Investigating specialization 

 Next we examined the extent of specialization in the strains of Conception 2 by 

comparing the production ratios of the two products for each strain when grown together 

and separately, across the same parameter variations as were studied in Figure 6.7.  

These results are shown in Figure 6.8. 

 

Figure 6.8. Specialization in Conception 2. 

In all cases the x-axis represents the parameter value, and the y-axis is the production ratio of product 

1 to product 2.  Blue represents strain A, and red represents strain B.  Results from Conception 2A are 

solid lines, and results from Conception 2B are dotted lines.  Non-varied parameter values are as in 

Figure 6.6.  The first column of graphs shows the effects of varying K, the second column shows the 

effects of varying P, and the third column shows the effects of varying V.  The first row displays 

results for coculture of strains A and B, and the second row displays results for monoculture. 
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 Figure 6.8 shows that in nearly all cases specialization is greater (i.e., the 

production ratios are farther from one) in coculture than in monoculture, and also that 

specialization is usually greater in Conception 2B than in Conception 2A, consistent with 

the better relative performance of Conception 2B in coculture versus monoculture.  Strain 

B also usually specializes more than Strain A, as expected in comparative advantage, 

though the difference is not always large.  Also interesting is that changing the 

parameters K, P, and V has little effect on specialization in monoculture but much more 

noticeable effects on specialization in coculture.  Specialization is particularly responsive 

to changing parameter values in Conception 2B.  Increasing K serves to increase 

specialization in the higher efficiency and higher penalty product, consistent with 

adversity requiring greater effort, while increasing P or V serves to decrease 

specialization, consistent with permissive conditions allowing laxity. 

6.3.2.4 Conception 2: Further investigation of the K-P-V parameter space 

 To examine more fully the effects of changing the parameters K, P, and V, we 

made heat maps depicting changes in the benefit to coculture and the degree of 

specialization for both strains A and B across the K-P, K-V, and P-V planes in 

Conception 2B.  We chose to focus on Conception 2B since, as discussed previously, it 

better adhered to the expectations of comparative advantage over a larger parameter 

space and was more responsive to changing parameters.  The results are shown in Figure 

6.9.  The results are consistent with those shown in Figures 6.7 and 6.8 in that coculture 

is favored at high K and high P, with strain A benefitting more from coculture at low V 

and strain B benefitting more at high V.  Specialization, on the other hand, is highest at 

high K, low P, and low V for both strains, as seen previously. 
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Figure 6.9. Exploration of the K-P-V parameter space in Conception 2B. 

The first and second rows display the relative coculture/monoculture growth ratios for strains A and 

B, respectively, normalized such that a ratio of 1 is the median value on the color scale.  The third and 

fourth rows display relative I1/I2 production ratios for strains A and B, respectively, where the color 

represents the absolute value of I1/I2 – 1.  Non-varied parameter values are as in Figure 6.6. 
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 The relative influence of the different parameters can also be assessed from such 

heat maps, in that when a banding pattern is seen across a particular axis, the value 

represented by that axis can be considered to have a stronger effect on the characteristic 

depicted than the value on the other axis.  By this reasoning, we can judge that K and V 

have a similar degree of influence over the growth benefit from coculture, and both have 

much more influence than P.  In specialization, V has the strongest effect, followed by K, 

and then P.  These trends are also consistent with the data presented in Figures 6.7 and 

6.8. 

6.3.2.5 Conception 2: Alternate efficiency regimes 

 Next we wanted to compare the previous comparative advantage cases to a case 

of absolute advantage differing only in that the efficiencies of strain B are swapped.  

These results are shown over a range of values for K in the first two rows in Figure 6.10.  

(All the data in Figure 6.10 is from Conception 2B, but equivalent results were obtained 

for Conception 2A, with trends in coculture growth benefit and specialization relative to 

Conception 2B similar to those in Figs. 6.7 and 6.8.)  Specifically, the first row in Figure 

6.10 shows that the strains in the comparative advantage case gain a consistently higher 

benefit from cooperation than those in the absolute advantage case, and the second row in 

Figure 6.10 shows that strain A specializes less in the absolute advantage case, while 

strain B specializes somewhat more and in the opposite direction from the comparative 

advantage case.  Interestingly, this is the reverse of the absolute advantage effect seen in 

Conception 1 (see Figs. 6.4G and 6.4H), where strain A specialized in its less efficient 

product.  The difference in effect in Conception 2 may result from strain A's ability to 

influence the production of strain B through its own production. 
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Figure 6.10. Alternate efficiency regimes in Conception 2B. 

In all cases the x-axis represents the value of K, and the y-axis is either coculture/monoculture growth 

ratio (growth benefit) or the product 1/product 2 production ratio (specialization).  Unvaried parameter 

values are as in Figure 6.6 unless otherwise noted.  The first and second rows show the difference in 

effect on growth benefit and specialization, respectively, between the comparative advantage case 

shown in Figures 6.7 and 6.8 (black lines), and an absolute advantage case that is identical except that 

the efficiencies for strain B have been switched such that VB1 = 1 and VB2 = 0.5 (magenta lines).  The 

third row shows the effect on growth benefit resulting from changing the efficiency of production of 

strain A, where the darkest colors represent a case where VA1 = 4 and VA2 = 3 (stronger strain A), the 

lightest colors represent a case where VA1 = 1.5 and VA2 = 1.2 (weaker strain A), and the intermediate 

colors represent the case where VA1 = 2 and VA2 = 1.5 (standard strain A), as in Figure 6.7. 
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 Finally, in order to examine more closely the factors that determine whether 

cooperation is beneficial, particularly for strain A, we looked at varying the production 

efficiency of strain A.  Specifically, we examined the differences in coculture benefit for 

strain A and strain B for three different value sets: VA1 = 1.5 and VA2 = 1.2 (weaker strain 

A), VA1 = 2 and VA2 = 1.5 (standard strain A), and VA1 = 4 and VA2 = 3 (stronger strain 

A) over a range of K values.  The results are shown in the third row of Figure 6.10, 

which shows that the benefit to strain A of coculture decreases as its production strength 

increases, while the opposite trend is seen for strain B, which gains more from 

cooperation when strain A has higher production strength.   Thus it seems that the 

stronger strain A is in comparison to strain B, the more of the burden of production it 

takes on. 

 Thus we have shown that a self-regulating microbial genetic circuit can in theory 

demonstrate the principles of comparative advantage, particularly when a strict trade-off 

in production is enforced, in adverse conditions, when the penalty for production is not 

too large, and when the difference in advantage between the two systems is not overly 

great. 

6.4. DISCUSSION 

 We have shown that comparative advantage can in principle be implemented 

using simple signaling and feedback systems similar to those found in bacteria, which 

significantly broadens the demonstrated reach of the theory.  Specifically, under the right 

conditions in both Conception 1, where the production levels are controlled by the 

experimenter, and Conception 2, which employs self-regulating genetic circuits, both 

strains grew better together than separately and specialized in the product they could 
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generate more efficiently, with the weaker strain specializing more completely than the 

stronger strain. 

 One interesting difference that arose in this model versus traditional models of 

comparative advantage is the variability in when and to what extent cooperation is 

beneficial to both parties in the comparative advantage context.  Traditional models of 

comparative advantage assume that the total amount of effort expended by a given party 

remains constant, regardless of the amount produced.  This is difficult to implement in a 

microbial system using current tools, and so we designed the system in terms analogous 

to having a relatively constant amount of raw materials, where greater or lesser effort can 

then be expended to produce greater or lesser amounts of products from those raw 

materials.  This complicates the system in that the benefit to trade must be weighed 

against the disadvantages of increasing production.  This difference results from 

including the penalty term and is responsible for much of the surprising behavior of these 

models.  Situations such as this, where differential resource access is relatively constant 

but the effort that may be required to make use of those resources is variable, also have 

relevance to human economic systems, and thus these results may also have applicability 

beyond microbial genetics.  For instance, if two countries of similar size both have arable 

land of comparable productivity per unit area, but one country has a greater amount of 

arable land than the other, the country with more farmland can produce more food, but 

only upon investing more effort. 

 The most interesting property emerging from the use of the penalty term is a 

general trend of more stringent conditions increasing the benefit to cooperation.  In 

particular, increasing the difficulty with which the products can be converted into growth 

(the K parameter), which can be considered at least partly a result of environmental 

effects, is generally associated with increased benefit to cooperation.  In the current 
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system this effect could likely be modulated by changing the antibiotic concentration.  Hu 

and coworkers have in fact demonstrated that increased antibiotic concentration (below 

lethal limits) increases the benefit to cooperation in a simpler version of the system 

analyzed here, where each strain produces a single signaling molecule that the other 

needs to survive (Hu et al, 2010). 

 Similar findings have also resulted from a number of other studies of cooperation 

in both synthetic and natural microbial systems.  For instance, in studies of yeast that 

secrete sugar-degrading enzymes in a cooperative fashion, the presence of environmental 

stressors such as low population density of common-good producers (Greig & Travisano, 

2004; Sanchez & Gore, 2013; Waite & Shou, 2012), low nutrient concentration (Gore et 

al, 2009; Waite & Shou, 2012), and competition from other species (Celiker & Gore, 

2013), has been shown to increase the benefit to cooperation.  Similar trends have also 

been noted in Pseudomonas systems (Brockhurst, 2007; Brockhurst et al, 2007), which 

use signaling molecules of the type we have modeled here.  In wild-type organisms these 

signaling molecules are frequently used to coordinate the formation of biofilms, which 

are known to form in response to adverse conditions, including the presence of antibiotics 

(Li & Tian, 2012; Mah, 2012).  Additionally, a number of microbial systems exist that 

are normally unicellular but in stringent environments enter into cooperative relationships 

in which certain individuals sacrifice themselves and/or their ability to reproduce in order 

to benefit others.  Such systems include the yeast Saccharomyces cerevisiae, in which 

older cells undergo programmed cell death and bequeath their nutrients to the younger 

generation (Fabrizio et al, 2004), as well as the bacterium Myxococcus xanthus (Fiegna et 

al, 2006) and the amoeba Dictyostelium purpureum (Mehdiabadi et al, 2006), which form 

multicellular fruiting bodies in which some cells reproduce and others are relegated 

exclusively to structural roles. 
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 One interesting point to consider is the idea that antibiotics themselves could in 

some cases act as signals to induce cooperation.  Cornforth and Foster have recently 

hypothesized that microbes may detect competitors via competition-induced stress, which 

is supported by the fact that production of antibiotics and toxins is frequently up-

regulated by stressors such as nutrient limitation, cell damage, and oxidative stress, which 

could result from the presence of competitors, but is rarely enhanced by strictly abiotic 

stressors such as heat-shock and osmotic stress (Cornforth & Foster, 2013).  Additionally, 

a number of investigators have shown that many antibiotics induce specific 

transcriptional changes in bacteria at concentrations too low to affect growth, leading 

some to hypothesize that antibiotics act as signaling molecules in natural environments 

(Davies, 2006; Fajardo & Martinez, 2008).  The types of genes up-regulated depend on 

the strain and the compound but in a number of cases include genes for biofilm formation 

and cell adhesion (Davies et al, 2006; Linares et al, 2006), functions obviously associated 

with intercellular cooperation.  Thus it may be the case that, at least in some contexts, 

microbial antibiotic production plays a dual role of attacking competitors while signaling 

friendly cells to band together for mutual benefit. 

 In contrast to the trend of environmental stress encouraging cooperation, making 

it intrinsically harder for the strains to produce the antibiotic resistance genes typically 

reduces the benefit to cooperation.  Specifically, the V and P parameters, which represent 

respectively the maximum rate at which product can be turned into growth and the 

growth penalty for making the products, are likely intrinsic to the system and unlikely to 

be significantly modulated by changing external conditions such as antibiotic 

concentration.  Changing either of these parameters can be considered as changing the 

cost of cooperation, and previous work in designed bacteria (Chuang et al, 2010) and 

yeast (Gore et al, 2009) has shown that increasing the cost of cooperation decreases the 
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benefit gained.  The one quasi-exception we noted was in Conception 2, where the 

higher-producing strain (strain A) benefits more from cooperation at lower V, which is 

likely because a lower intrinsic production rate minimizes the opportunity for the lower-

producing strain (strain B) to profit from the higher production of strain A without 

contributing production itself. 

 A next step would be testing these models in vivo, and the results presented here 

provide useful guidelines and testable hypotheses for designing such experiments.  The 

first step would be to build a base strain that expresses two antibiotic resistance genes in 

response to two respective signaling molecules.  For the signaling molecules, the rhl and 

lux systems have been reported to be orthogonal (Hu et al, 2010), and methods exist for 

reducing cross-talk should it occur (Brenner et al, 2007; Smith et al, 2008).  Alternatively 

one or the other of the rhl and lux systems could be used together with an orthogonal 

peptide signal (Marchand & Collins, 2013).  Once the base strains are built, the accuracy 

of equations (4) and (5) could then be verified by exogenously adding the signaling 

molecules at different concentrations to examine the effect on growth.  Values for V and 

K could then be estimated.  These parameters could also be checked for their dependence 

on antibiotic concentration. 

 For Conception 1, the genes for producing the signaling molecules would need to 

be put under the control of four different exogenous inducers, and then mapping 

functions for generating a linear response in growth rate from inducer concentrations 

would need to be experimentally determined.  A value for P could also be obtained from 

these experiments.  Equivalents to the heat maps presented here could then be generated 

by growing the cells in 96-well plates along gradients of inducer concentrations and 

measuring growth rates directly. 
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 For Conception 2 in particular, the results presented here give a great deal of 

guidance for how the gene circuits should be designed and tested to maximize the 

chances of successfully replicating the effects of comparative advantage.  Specifically, 

better performance should be seen under Conception 2B, with relatively weak promoters 

for the antibiotic resistance genes (lower V), with relatively narrow differences in 

efficiencies of production between the two strains, and at higher antibiotic concentrations 

(higher K).  Although Conception 2A grew faster than 2B, this may be because 

Conception 2B simply adds negative feedback to 2A.  If an additional internal positive 

feedback loop was added, these growth deficits might disappear.  Additionally, more 

detailed simulations of transcription, translation, enzyme catalysis, and export could also 

be developed as necessary to guide the design of both Conceptions 1 and 2.   

 Besides expanding the demonstrated reach of the comparative advantage theory 

and proving that bacteria are capable of implementing and benefitting from such trading 

relationships, the implementation of such systems in vivo would also expand our toolkit 

for engineering bacterial consortia to efficiently execute human-directed tasks (Shong et 

al, 2012).  As a hypothetical example, in a consortium of two microbes that can both 

produce a desired product but have differing efficiencies in performing different steps of 

the relevant metabolic pathway, if the microbes are designed to allow trading of 

intermediates,  responsive signaling networks such as those modeled in Conception 2 

herein could be used to maximize overall production and to continuously adapt to 

changes in environmental variables, such as the concentrations of intermediates, 

products, and other cells.  The results presented herein represent a theoretical proof of 

this principle. 

 Finally, it is possible and perhaps likely that wild-type microbes enter into 

comparative-advantage-like social interactions in natural settings.  In order to find such 



 184 

interactions, a series of pair-wise coculture growth experiments could be performed, and 

the results compared to the monoculture case, as was reported, for instance, by (Foster & 

Bell, 2012).  Those strains that grew better together than separately are candidates for 

natural examples of microbial comparative advantage, and this could potentially be 

confirmed by expression studies comparing gene regulation in monoculture and 

coculture, and/or mutagenesis studies to determine the genes required for mutualism.  It 

is also possible that comparative advantage might be more likely to come into play in 

tandem with kin selection.  Comparative advantage could potentially arise even between 

genetically identical cells if they are subjected to different environments, such as the 

center versus the edge of a colony or biofilm.  Expression studies examining the 

differences between cells in different locations in a biofilm (Lenz et al, 2008) could 

potentially turn up such examples.  It may be that comparative advantage is universally 

applied in all domains of life. 
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Appendix: Targetrons used in the present work 

 This appendix lists the names, sources, integration sites, insertion efficiencies, and 

retargeting primers for all the targetrons used in this work.  For LtrB introns, the constant 

retargeting primer (used in tandem with the IBS primer) is EBS2AS 

(AATTAGAAACTTGCGTTCAGTAAACACAACTTATAC), and for EcI5 introns, the 

constant retargeting primer (used in tandem with the IBS1/2S primer is EBSR 

(TATCCGGTCCATTACAGACTGGCATTC).  Note that the primers for the lacZ-

targeting introns were inferred from the sequences of the intron-expressing plasmids and 

were not used to construct the introns used in this work. 

 Notes on sources for efficiency data:  Intron efficiency for LtrB.LacZ.635s is 

the average from the three plates used in calculating the efficiency of the unmodified 

intron in Figure 2.1.  Intron efficiencies for EcI5.LacZ.912s and EcI5.LacZ.1806s are as 

reported in Zhuang et al, 2009. Intron efficiencies for the LtrB.SIR32.1 and EcI5.SIR5.6 

introns are from all introns carrying Ter sites that did not destroy integration efficiency.  

Intron efficiencies for LtrB.SacB.1221s are as reported in Yao, 2008.  Introns efficiencies 

for LtrB.YhcS.187s are as reported in Whitt, 2001.  Intron efficiencies for all other 

introns are for all uses of the intron during the course of studies in Chapters 2 and 3 and 

include tests in various strains and with any lox inserts that form hairpins with flexible 

bases (in addition to tests using the unmodified intron). Partial insertions (bands 

corresponding to both uninserted and inserted states seen upon colony PCR) were 

counted as insertions. 
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LtrB.LacZ.635s (E. coli; insertion site sequence from strain MG1655) 

Source: Perutka & Lambowitz, unpublished results. 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   

364894|364895(-)  T A T G T G G C G G A T G A G C G G C A T T T T C C G T G A C G T C T C G T T G C T G C A    

 

Inserts in sense strand of lacZ. 

Insertion efficiency: 15.3% 

 

Retargeting primers: 
635s-IBS      AAAAAAGCTTCGTCGATCGTGAACATTTTCCGTGAGTGCGCCCAGATAGGGTG 

635s-EBS1     CAGATTGTACAAATGTGGTGATAACAGATAAGTCCCGTGACGTAACTTACCTTTCTTTGT 

635s-EBS2     TGAACGCAAGTTTCTAATTTCGGTTAAATGTCGATAGAGGAAAGTGTCT 

 

 

EcI5.LacZ.912s (E. coli; insertion site sequence from strain MG1655) 

Source: Zhuang et al., 2009 

 
EcI5 IS            -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15     

364617|364618(-)    A A C G T C G A A A A C C C G A A A C T G T G G A G C G C C G A A A T C C C G A A T C T C                   

 

Inserts in sense strand of lacZ. 

Insertion efficiency: 68±7.1% 

 

Retargeting primers: 
912s-IBS1/2S  CCCCTCTAGAAGAATTCCCATGCCAAAACTGTGGAGCGCCGTGCGACATGAAGTCG 
912s-EBS1S    CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTGGCGCCTAGGGGTACACGGAC 

912s-EBS2AS   TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTACTGTTAACGACGCTTCAGC 

 

EcI5.LacZ.1806s (E. coli; insertion site sequence from strain MG1655) 

Source: Zhuang et al., 2009 

 
EcI5 IS            -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15     

363723|363724(-)    T T T G G C G A T A C G C C G A A C G A T C G C C A G T T C T G T A T G A A C G G T C T G    

 

Inserts in sense strand of lacZ. 

Insertion efficiency: 97±0.4% 

 

Retargeting primers: 
1806s-IBS1/2S CCCCTCTAGAAGAATTCCCATGCCAAACGATCGCCAGTTCGTGCGACATGAAGTCG 
1806s-EBS1S   CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTGAACTCTAGGGGTACACGGAC 

1806s-EBS2AS  TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTCGATCTAACGACGCTTCAGC 
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LtrB.A (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   
243410|243411(-)  T G A A G T G C G G A T A A A A A C A G C A A C A A T G T G A G C T T T G T T G T A A T T     
 

Insertion efficiency: 6/239 (2.5%) 

 

Retargeting primers (constant primer listed in Supplementary Table 5): 

A-IBS         AAAAAAGCTTATAATTATCCTTAAGCAACAATGTGGTGCGCCCAGATAGGGTG 

A-EBS1        CAGATTGTACAAATGTGGTGATAACAGATAAGTCAATGTGAGTAACTTACCTTTCTTTGT 

A-EBS2        TGAACGCAAGTTTCTAATTTCGATTTTGCTTCGATAGAGGAAAGTGTCT 
 

LtrB.SIR32.1 (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
LtrB IS         -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   
3922698|3922698(+) A A C A C T G G T G A T A A A G C G T G C T T C A G A T C A C A T A T T G C G C A T G T T     
 

Insertion efficiency: 9/27 (33%) 

 

Retargeting primers: 
SIR32.1-IBS   AAAAAAGCTTATAATTATCCTTATGCTTCAGATCAGTGCGCCCAGATAGGGTG 

SIR32.1-EBS1  CAGATTGTACAAATGTGGTGATAACAGATAAGTCAGATCACATAACTTACCTTTCTTTGT 

SIR32.1-EBS2  TGAACGCAAGTTTCTAATTTCGATTAAGCATCGATAGAGGAAAGTGTCT 

 

 

EcI5.B (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
EcI5 IS            -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   

1399016|1399017(-)  T G C A G A C A T T G A C C G A A A G T C A G C G T T T T G G T T T A C G C A T A G C A G    

 

Insertion efficiency: 26/94 (27.7%) 

 

Retargeting primers (constant primer listed in Supplementary Table 5): 
B-IBS1/2S     CCCCTCTAGAAGAATTCCCATGCCAAAAGTCAGCGTTTTGGTGCGACATGAAGTCG 

B-EBS1S       CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTCAAAACTAGGGGTACACGGAC 

B-EBS2AS      TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTAGTCATAACGACGCTTCAGC 
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EcI5.C (CMP) (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
EcI5 IS               -30        -25         -20        -15        -10         -5       -1+1       +5          

+10        +15    

1479630|1479631(+)   T G T A T T G A T G G A G C T A A T G A T G A T G A T T C A G T T A T G G T G G T C A G T    

 

Insertion efficiency: 11/31 (35.5%) 

 

Retargeting primers: 
C-IBS1/2S     CCCCTCTAGAAGAATTCCCATGCCAAATGATGATGATTCAGTGCGACATGAAGTCG  

C-EBS1S       CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTTGAATCTAGGGGTACACGGAC 

C-EBS2AS      TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTTGATGTAACGACGCTTCAGC 

 

EcI5.D (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
EcI5 IS            -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   

3452370|3452371(-)  T G G A T C G C A T C G C T T A A A G T C G G G G A C A A A A A A T T G C C T G T T G T G    

 

Insertion efficiency: 8/67 (11.9%) 

 

Retargeting primers: 
D-IBS1/2S     CCCCTCTAGAAGAATTCCCATGCCAAAAGTCGGGGACAAAGTGCGACATGAAGTCG 
D-EBS1S       CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTTTTGTCTAGGGGTACACGGAC 
D-EBS2AS      TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTAGTCGTAACGACGCTTCAGC 

 

 

EcI5.E (E. coli; insertion site sequence from strain MG1655) 

Source: This work 

 
EcI5 IS            -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   

3466270|3466271(+)  C A C A C C G T T A A A G C G A A T C A G C G T A T C G C T G G C A T A A A G C G T T T C    

 

Insertion efficiency: 53/93 (57.0%) 

 

Retargeting primers: 
E-IBS1/2S     CCCCTCTAGAAGAATTCCCATGCCAAATCAGCGTATCGCTGTGCGACATGAAGTCG 

E-EBS1S       CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTAGCGACTAGGGGTACACGGAC 

E-EBS2AS      TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTTCAGCTAACGACGCTTCAGC 
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EcI5.SIR5.6 (E. coli, insertion site sequence from strain MG1655) 

Source: This work 

 
EcI5 IS        -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15 

182213|182214(-) A T T G T G C A A A T G C C T A A A G G A T G A T G A A G A T G T A T G G A G T T G T G G 

 

Insertion efficiency: 53/65 (81.5%) 

 

Retargeting primers: 
SIR5.6-IBS1/2S    CCCCTCTAGAAGAATTCCCATGCCAAAAGGATGATGAAGAGTGCGACATGAAGTCG 

SIR5.6-EBS1S      CAGGCTTGAACCAAAAGGTATGTGGTTGGTTACTCCTCTTCTTCCTAGGGGTACACGGAC 

SIR5.6-EBS2AS     TACCTTTTGGTTCAAGCCTGTCAGCATCTTTGGCTTGTTAGGATTAACGACGCTTCAGC 

 

 

LtrB.SAPI-int (S. aureus, insertion site sequence from strain NCTC 8325) 

Source: This work 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   
953084|953085(-)  G A T G A A A T G G A T A G T A A A G G T T A T G T A T A T C A A G T T A A C A A A G A T     

 

Inserts in sense strand of the int gene. 

Insertion efficiency: 27/28 (96.4%) 

 

Retargeting primers: 
SAPI-int-IBS      AAAAAAGCTTATAATTATCCTTAGGTTACGTATATGTGCGCCCAGATAGGGTG 

SAPI-int-EBS1     CAGATTGTACAAATGTGGTGATAACAGATAAGTCGTATATCATAACTTACCTTTCTTTGT 

SaPI-int-EBS2     TGAACGCAAGTTTCTAATTTCGATTTAACCTCGATAGAGGAAAGTGTCT 

 

LtrB.SAPI-B (S. aureus, insertion site sequence from strain NCTC 8325) 

Source: This work 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15  

968024|968025(-)  T C T T T G G T G G A T T A A T C A T T G G T A T C G T T C C A T A T T T A T T G A A A A     
 

Insertion efficiency: 23/23 (100.0%) 

 

Retargeting primers: 
SAPI-B-IBS      AAAAAAGCTTATAATTATCCTTATTGGTCTCGTTCGTGCGCCCAGATAGGGTG 
SAPI-B-EBS1     CAGATTGTACAAATGTGGTGATAACAGATAAGTCTCGTTCCATAACTTACCTTTCTTTGT 

SAPI-B-EBS2     TGAACGCAAGTTTCTAATTTCGGTTACCAATCGATAGAGGAAAGTGTCT 
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LtrB.SacB.1221s (B. subtilis, insertion site sequence from strain 168) 

Source: Yao 2008 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15  

3537232|3537233(+)T T A A A A A T G G A T C T T G A T C C T A A C G A T G T A A C C T T T A C T T A C T C A      
 

Inserts into the sense strand of the sacB gene. 

Insertion efficiency: 47/48 (97.9%) 

 

Retargeting primers: 
1221s-IBS AAAAAAGCTTATAATTATCCTTACCTAACGATGTAGTGCGCCCAGATAGGGTG  

1221s-EBS1 CAGATTGTACAAATGTGGTGATAACAGATAAGTCGATGTAACTAACTTACCTTTCTTTGT  

1221s-EBS2 TGAACGCAAGTTTCTAATTTCGGTTTTAGGTCGATAGAGGAAAGTGTCT 

 
 

LtrB.YhcS.168s (B. subtilis, insertion site sequence from strain 168) 

Source: Whitt 2011 

 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   
995184|995184(+)  A A T A G C A C A G A T C A A G C A A A G A A C A A A G C A T C A T T T A A G C C T G A G      

 

Inserts into the sense strand of the yhcS (srtA) gene. 

Insertion efficiency: 91 ± 5% 

 

Retargeting primers: 
186s-IBS  AAAAAAGCTTATAATTATCCTTAAAGAACAAAGCAGTGCGCCCAGATAGGGTG 

186s-EBS1 CAGATTGTACAAATGTGGTGATAACAGATAAGTCAAAGCATCTAACTTACCTTTCTTTGT 

186s-EBS2        TGAACGCAAGTTTCTAATTTCGGTTTTCTTCCGATAGAGGAAAGTGTCT 

 
 

LtrB.rDNA.798s (S. oneidensis, insertion site sequence from strain MR-1 rrsA gene) 

Source: Erik Quandt (Enyeart et al., 2013) 
 
LtrB IS          -30       -25       -20       -15       -10       -5      -1+1      +5        +10       +15   

787|788s          A A G C G T G G G G A G C A A A C A G G A T T A G A T A C C C T G G T A G T C C A C G C C 

 

Inserts into the sense strand of the rrs genes in S. oneidensis. 

Insertion efficiency: Not directly applicable, but all tested colonies contained the 

insertion in most copies of the rrs gene. 

 

Retargeting primers: 
798s-IBS  AAAAAAGCTTATAATTATCCTTAGGATTCGATACCGTGCGCCCAGATAGGGTG 

798s-EBS1 ACAAAGAAAGGTAAGTTAAGGGTATCGACTTATCTGTTATCACCACATTTGTACAATCTG 

798s-EBS2 TGAACGCAAGTTTCTAATTTCGATTAATCCTCGATAGAGGAAAGTGTCT 
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