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Recent years have seen a staggering increase in the deployment and

utilization of wireless networks. More and more devices are being equipped

with Wireless LAN (WLAN) cards to take advantage of the omnipresence

of WLAN networks. Therefore, it has become necessary that the protocols

used by WLANs are efficient and provide good performance. Rate Adapta-

tion protocols are an important mechanism employed by WLANs to improve

network performance. This dissertation develops three complementary tech-

niques, which use rate adaptation to optimize and improve performance by

i) performing rate adaptation to optimize energy consumption, ii) developing

a more accurate technique to predict the frame delivery ratio that is used by

rate adaptation protocols, and iii) jointly optimizing rate adaptation with data

retransmission to maximize throughput.
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More specifically, in i), we use extensive measurements to develop a

simple yet accurate energy consumption model for 802.11n wireless cards. We

use the model to drive the design of an energy aware rate adaptation scheme. A

major benefit of a model-based rate adaptation is that applying a model allows

us to eliminate frequent probes required in many existing rate adaptation

schemes.

In ii), we find that the accuracy of existing delivery ratio calculation

techniques is still limited due to bursty errors inherent to the wireless channel.

We develop a new method for computing packet delivery rate that captures

the burstiness of errors. Furthermore, we propose a new data interleaving

technique, which leverages our framework to reduce the burstiness of errors,

thereby improving frame delivery ratio.

Finally, in iii), we address the susceptibility of wireless networks to

transmission failures due to dynamic channel conditions and unpredictable in-

terference. To efficiently recover from failures, we propose a retransmission

scheme where the receiver combines information received from multiple failed

transmissions associated with the same frame. The protocol has two distin-

guishing features. First, it simultaneously supports partial retransmission and

combines bits with low confidence. Second, it jointly optimizes the data rate

of the retransmission and the information to be retransmitted to maximize

throughput.
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Chapter 1

Introduction

1.1 Motivation

The last decade has seen an explosive growth in the deployment and

use of Wireless Local Area Networks (WLANs). Owing to its low cost and

ease of deployment it has become the de-facto method to providing internet

access in a large array of setting; from providing wireless connectivity at home

to providing coverage across university campuses. In recent years, WLAN

capability has been added to consumer electronic devices. This trend is likely

to continue with Internet of Things (IOTs) on the horizon [48], resulting in

billions of new devices getting connected to WLANs. Recent studies indicate

that there will be more than 30 billion wireless capable devices by 2020 [21].

Most new technologies that incorporate wireless support are small devices

which run on battery. As a result power consumption is a key factor in these

devices.

Energy Consumption:

A recent study shows [76] that radio interfaces in smartphones can ac-

count for 50% of the power budget under typical use. In [37], Halperin et

al.show that IEEE 802.11n wireless cards can draw up to 2.1W in MIMO con-
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figurations. Furthermore, using large channels worsens the power consumption

by 40%. With the continuing increase in the number more antennas and wider

channels, the power consumption of these devices is likely to go up.

Throughput Performance:

The growth of wireless devices has resulted in an exponential growth

of traffic demand. Mobile data traffic in 2013 was nearly 30 times the entire

global internet traffic in 2000 [18]. The growth is also not showing any signs

of slowing down. There was an 69% increase in mobile data traffic in 2014

compared to 2013. 46% of the traffic generated by mobile devices was carried

by WLANs. It is projected that 72% of the world’s mobile data traffic will

video with WLANs carrying 50% of the traffic. Therefore, it is imperative to

that new WLAN devices have the capability to support high data rates and

provide the best throughput performance.

Thesis Contributions: As the number of wireless devices continue to in-

crease, it is necessary that new protocols are developed to keep up with the

growing trend of wireless traffic. In this thesis, we approach these problems

from the context of rate adaptation and propose three new schemes which

i) reduce the energy consumption, ii) provide better delivery ratio estimates

for more accurate rate adaptation and iii) improve throughput by leveraging

retransmission.

Before, delving into details in the subsequent chapters, here we provide

a brief overview of each of these approaches.
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1.2 Minimizing Energy Consumption

Overview: Rate adaptation has been an active area of research for the

last decade. While most work has focused on selecting the rate to maximize

throughput, how to select data rate to minimize energy consumption is an im-

portant yet under-explored topic. This problem is becoming increasingly im-

portant with the rapidly increasing popularity of MIMO deployment, because

MIMO offers diverse rate choices (e.g., the number of antennas, the number

of streams, modulation, and FEC coding) and selecting the appropriate rate

has significant impact on power consumption.

While MIMO provides a large capacity gain, using multiple antennas

can consume significantly more energy, which is undesirable for mobile de-

vices [37]. For a fixed number of antennas, reducing the transmission time

always results in a decrease in energy consumption. But for the same trans-

mission time, the energy consumed by multiple antennas is much higher than a

single antenna. This is because MIMO transmission requires additional hard-

ware and RF chains for MIMO processing, which increases energy consump-

tion. On the other hand, using multiple antennas reduces transmission time

by allowing multiple data streams to transmit simultaneously. Hence, there is

a trade-off between minimizing the transmission time using multiple antennas

and the additional energy cost associated with using multiple antennas.

Figure 1.1 compares transmission time of a single antenna with that of

using two and three antennas. The plot is based on the transmitter energy

model for Intel 5300 WiFi card, which is presented in Section 3.1.2. The x-axis

3
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Figure 1.1: % reduction in transmission time for MIMO needed over SISO for
energy improvement.

shows transmission time of a single antenna transmission. The y-axis shows

the percentage of transmission time that two and three antenna MIMO trans-

missions must reduce in order for them to have the same energy as the single

antenna transmission. From the figure, we can see that for a single antenna

transmission time of 0.2ms, using 3 antennas is only beneficial if the transmis-

sion time can be reduced by more than 68%. In comparison, for transmission

time of 1.3ms, the number reduces to 50%. So in the best case scenario where

the three antenna MIMO transmission uses the same modulation and cod-

ing rate as the single antenna transmission but transmits three streams, the

transmission time will decrease by 66% and exceed the minimum required 50%

reduction in transmission time, therefore leading to energy saving.

Challenges: The above example indicates that there is no single setting

that minimizes energy in all cases and a single antenna does not always lead
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to minimum energy. The exact rate and antenna configuration that minimize

energy depends on a number of factors, such as channel condition, wireless card

energy profile, and frame size. Therefore it is essential to have a comprehensive

understanding about how energy consumption relates to these factors and

design a rate adaptation scheme that automatically selects the rate to minimize

energy according to the current network condition and wireless device.

Contributions: Our goal is develop a rate adaptation scheme which selects

rate to minimize energy. This requires developing an energy prediction model

which can be used by the rate adaptation scheme. In an effort to achieve this

goal, we make the following contributions.

• Energy Measurements: We conduct extensive measurements using dif-

ferent wireless cards to understand the relationship between the data

rate and resulting energy consumption. Our main observation is that

for a fixed number of antennas, the energy consumed in transmitting

or receiving a frame is proportional to the expected transmission time

(ETT) [24] (i.e., the total amount of time required to successfully deliver

a frame to the receiver), and the slope of the energy consumption versus

ETT depends on the number of antennas being used.

• Energy Model: Based on these insights, we develop a simple yet accurate

model to predict the energy consumption under different transmission

and reception configurations.
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• Rate Adaptation: We develop a model-driven rate adaptation scheme on

top of the model to select the rate that optimizes energy consumption.

Furthermore, we extend the rate adaptation scheme to support a trade

off between energy and throughput.

Finally, we use extensive trace-driven simulation and real testbed eval-

uation to show the energy savings of our schemes compared to the existing

approaches.

1.3 Delivery Ratio Estimation

Overview: The signal-to-noise ratio (SNR) is the gold standard metric that

captures the quality of a wireless link. However, it is well known that it lacks

predictable power; the performance of a wireless link under the same SNR

can be dramatically different. This significantly complicates a wide range

of wireless network management tasks, such as rate adaptation, scheduling,

routing, and diagnosis.

Recently, [38] shows that the fundamental reason that SNR fails to

predict wireless performance is frequency diversity. Due to frequency selective

fading and narrow-band interference, the signal-to-noise ratio across even a

20-MHz WiFi channel can vary significantly. The frequency diversity is only

going to increase, as the channel width further increases in order to satisfy

explosive growth of traffic demands. Based on this observation, [38] develops

a new metric, called effective SNR, which offers better predictability over SNR.
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Effective SNR is computed by first getting SNR across each OFDM subcarrier

based on Channel state information (CSI), then mapping SNR to BER for each

subcarrier, and finally finding the SNR that has the same BER as the average

BER across the subcarriers. Owing to its significant performance benefit over

SNR, effective SNR has become a widely adopted metric for wireless channel

quality and used as the basis for many recent rate adaptation schemes (e.g.,

[38, 34, 54, 82]).

While effective SNR improves over SNR, we find its accuracy in pre-

dicting wireless link performance is still inadequate. This is because effective

SNR only captures average BER before FEC decoding, but for wireless de-

coders, such as the widely used Viterbi decoder, not only does average BER

matter, but also the burstiness of the corruptions is important. For the same

average BER, if the corrupted bits are spread far enough apart, the decoder

may achieve 0 error. In comparison, the decoder will incur a higher error when

the corrupted bits are closer together.

A natural question is why we care about burstiness given that inter-

leavers are widely used in practical systems. However, we find that the stan-

dard interleaver used in 802.11 does not completely remove the burstiness of

corrupted bits. Using traces collected from WiFi networks using Intel WiFi

Link 5300 (iwl5300) IEEE a/b/g/n wireless network adapters, we show that

errors remain bursty even after interleaving. This is because the existing in-

terleaver spreads immediate neighbors to 4 subcarriers apart, which may still

experience correlated corruptions.
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Challenges: Based on these observations it is obvious that a new technique

is needed which can estimate the delivery ratio in the presence of bursty errors.

The key challenge is to design a technique which captures the burstiness at a

fine granularity but is computationally not too expensive to run. Furthermore,

it needs to be general and applicable to different Modulation and FEC coding

rates.

Contributions: We propose two delivery ratio estimation techniques that

capture the burstiness of errors. Furthermore, we apply our approach to de-

signing a better interleaver. Our contributions can be summarized as follow:

• We use measurement to show that wireless errors remain bursty even af-

ter applying the standard WiFi interleaver. This may lead to inaccurate

delivery rate estimation and sub-optimal performance in rate adaptation.

• We develop two complementary methods that compute frame delivery

rates in the presence of frequency diversity and bursty errors. The first

method gives insight into what leads to frame corruption, and the second

method is more efficient.

• We design a new CSI-aware interleaver to reduce bursty error and im-

prove decoding rate.

• We further develop a rate adaptation scheme based on our delivery rate

estimation. It is flexible and can support different interleavers.

8



• Using extensive evaluation, we show that both our delivery rate estima-

tion are accurate and significantly out-perform effective SNR. Moreover,

our interleaver and rate adaptation built on top of our estimation out-

perform existing interleaver and rate adaptation.

1.4 Smart Retransmission

Overview: Traditional rate adaptation schemes try to select the rate that

maximizes throughput for the ongoing transmission. If the transmission fails,

the rate adaptation treats the utility of the transmission to be 0 and discards

the entire frame. This usually results in conservative rate selection so that a

frame can be delivered in one attempt.

In reality, transmission failures occur due to a few bits in error and

most bits in a failed transmission are received correctly. A few schemes like

PPR [50] have been proposed, which use PHY-layer hints to identify the bits

that are likely to be in error and only retransmit those bits. However, PPR

does not provide a rate adaptation scheme. When traditional rate adaptation

schemes are used with PPR, they make rate selection so that the transmission

is successful in a single attempt thus negating an attempt any benefit from

PPR.

We observe that multiple transmissions associated with the same frame

should be considered as one unit and our goal is not to find the best for a sin-

gle transmission but to maximize the throughput for the successful delivery of

9



one frame. This means that one frame may be delivered over multiple trans-

missions. The transmission time depends on the data rate and the amount

of data being transmitted. One can transmit the frame at a higher rate for

the first transmission and then retransmit the corrupted bits in retransmission

and have a smaller transmission time than the frame transmitted at a low rate

in one transmission.

Challenges: Existing schemes (e.g., PPR [50] and SOFT [98]) show signifi-

cant performance benefit under a fixed data rate. However, their gain dimin-

ishes using the standard rate adaptation, which tends to pick a conservative

rate and leaves little opportunity for partial retransmission and combining.

The main challenge is to determine how partial retransmission and combining

should be incorporated with rate adaptation.

Contributions: We aim to design a rate adaptation scheme which leverages

partial retransmission to achieve higher throughput. In a effort to achieve this

goal we make the following contributions.

• We study different combining options and show combining after demod-

ulation but before FEC decoding achieves the best of both worlds – high

combining gain and high flexibility (i.e., supporting partial retransmis-

sions and different data rates for retransmissions). We further design a

practical approach to perform partial retransmission and combine bits

based on the log-likelihood estimation.
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• We develop a novel combining-aware rate adaptation scheme to effec-

tively harness combining gains by taking into account the utility of a

failed transmission and selecting the rate with the minimum total trans-

mission and retransmission time of a frame. Our approach uses the

standard data rates in IEEE 802.11 and is easy to deploy.

• We evaluate the performance of our scheme using trace-driven simula-

tion. We demonstrate its effective under static and mobile scenarios and

in the presence of interference.

1.5 Dissertation Outline

The outline of this proposal is as follows. In Chapter 2 we discuss the

related work. Chapter 3 describes a rate adaptation protocol, which uses our

energy model to minimize energy consumption. In Chapter 4, we propose two

schemes to estimate the delivery ratio of a frame with bursty errors. Further-

more, we design a new interleaver to reduce bursty errors. In Chapter 5, we

propose a rate adaptation protocol that utilizes partial retransmission and ag-

gressive rate selection to maximize throughput. Finally, Chapter 6 concludes

the dissertation.
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Chapter 2

Related Work

In this chapter, we discuss the related work in more detail. We present

the existing rate adaptation techniques for WLANs in section 2.1. In sec-

tion 2.2, we focus on the work related to energy consumption in wireless net-

works. Finally in section 2.3, we discuss the existing schemes, which use com-

bining and retransmissions to improve throughput performance of WLANs.

2.1 Rate Adaptation

Rate adaptation has received significant research attention in recent

years (e.g., [10, 13, 38, 43, 71, 86, 87, 94, 97]). There are a number of rate

adaptation schemes that use loss rates for rate selection. For example, Sam-

pleRate [10] uses probes to select the rate that minimizes the expected trans-

mission time. ONOE [71] in MadWiFi estimates long-term loss rate and uses

thresholding for rate selection. RRAA [97] uses a short-term loss rate estima-

tion for rate adaptation. MiRA [75] extends the loss rate based rate adaptation

to MIMO by proposing a ZigZag search method to find the rate to optimize

throughput.

Loss rates require a significant number of transmissions in order to

12



measure accurately, so it cannot keep up with the changing wireless channel.

Moreover, collisions and fading may both contribute to frame losses, and we

should only reduce data rate upon fading, but not upon collisions [96]. So

loss based rate adaptation require a scheme that can effectively distinguish

the reasons for the losses in order to be effective.

SNR-based schemes are attractive because one can select rate based on

SNR of a single frame instead of a large number of frames. The traditional

SNR based schemes [43, 102] use average SNR to select the data rate, and are

well known to yield inaccurate selection. More recently, [38] explains frequency

diversity is the main reason that makes average SNR fail to accurately predict

delivery rate. [38] proposes effective SNR, and shows it gives more accurate

prediction of link performance and develops a rate adaptation based on it.

Moreover, it only requires CSI, and CSI feedback is supported in the IEEE

802.11n standard. In addition, it not only supports SISO, but also supports

MIMO by using post-processed CSI after MIMO processing. Turborate [88]

extends the SNR based rate adaptation to multi-user MIMO scenarios.

There are also a number of approaches that leverage physical layer in-

formation. For example, SoftRate [94] develops a rate adaptation that uses

PHY-layer hint. [87] leverages the dispersion between the transmitted and

received symbols to derive the rate at which the packet could have been trans-

mitted.

All the above works, however, focus on maximizing throughput and

do not consider energy consumption. [56] is one of the few that considers
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energy in rate adaptation. It formulates the MIMO-OFDM minimum energy

link adaptation problem as a geometric programming (GP) problem with an

augmented parameter set under the control of the link adaptation protocol, but

they do not empirically measure or derive energy models for wireless adapters.

[60] also studies rate adaptation to reduce energy consumption. But unlike

our work, which optimizes power based on the energy model, [60] uses probes

to search for the rate that reduces energy.

Several rateless codes have also been proposed for wireless communica-

tion, such as LT [63], Raptor [89], Strider [34], and Spinal [77] codes. Some of

these rateless codes have been shown to approach the Shannon capacity in real

networks. However, the existing rateless codes have the following major limita-

tions. (i) Rateless code has high complexity. For example, Strider’s complexity

isKN where N is the length of the packet andK is the block size and typically

set to 33. Spinal code’s complexity is a combination of O((n/k)B ∗ L ∗ 2(k∗d))

hashes and O((n/k)B ∗ 2k) comparisons, where n is the total data, k is the

block size, B is the beamwidth (i.e., number of nodes kept at each step), d

is the depth of the tree, n/k is the size each packet, and L is the number of

packets transmitted before successful decoding. (ii) Rateless codes can incur

large delay since they may require lots of transmissions to successfully deliver

a frame and some of the rateless codes require block coding structure, which

further increases delay, and (iii) Rateless codes are hard to deploy since they

are significantly different from the modulation/demodulation schemes in the

existing wireless systems.

14



2.2 Energy Measurement, Modeling and Optimization

A number of recent works have focused on measuring and analyzing

the energy consumption of wireless cards and devices. Halperin et al. [37]

study power consumption of the iwlwifi under different transmit power levels,

card mode (e.g., sleep, idle, transmit, receive), the number of active antennas

and spatial streams, channel width and data rate. [2, 47] examine the power

consumption of various WLAN cards and their impact on the battery life of the

operating device. Feeney et al. [27] perform detailed measurement to obtain

the energy consumption of an IEEE 802.11 wirless interface operating in an ad-

hoc environment. Rice et al. [84] use a measurement framework to obtain fine-

grained traces of a phone’s power consumption, which are used to understand

how different aspects of an application impact power consumption. Ebert

et al. [78] measure the energy consumption of Aironet PC4800 wireless for

different transmission rates, RF transmission powers and packet sizes. While

the empirical observations works is insightful, they do not develop an energy

model.

There has also been significant work recently that has focused on de-

veloping energy models based on emperical measurements. Carvalho et al. [15]

present a simple model for power consumption in 802.11 ad-hoc networks as

a function of the number of bytes and a constant radio overhead for all an-

tenna configurations. They also augment it to account for channel contention

costs. Balasubramanian et al. [4] present an empirical study of energy con-

sumption on mobile phones for 3G, GSM, and WiFi energy consumption, and
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formulate an energy model for WiFi based on the transfer energy cost (per

transfer size) and the maintenance cost of WiFi. Neither model considers the

effects of multiple antennas, data rate, and transmit power. Sesame [23] is a

system in which a mobile device creates its own energy model by using the

battery interface with high accuracy. The scheme does not specifically model

the energy consumption of the WiFi Adapter. Lochin et al. [62] use ACPI

BIOS measurements two develop two models for the energy consumption of

802.11 networks. Carroll et al. [14] provide a detailed analysis of the power

consumption of recent mobile phones. They also develop a power model of the

Freerunner device that can be used for a number of usage patterns. Based,

on these measurements they develop models to predict energy consumption

under different scenarios. Rantala et al. [83], develop an energy model based

on hardware measurements that allows the analysis and simulation of the en-

ergy efficiency of internet protocols ona wireless network interface. Garcia et

al. [30] provide a detailed measurement study of energy consumption of wire-

less devices at a per-frame granularity. They show that a substantial fraction

of energy is consumed across the protocol/implementation rather than dur-

ing actual transmission. Furthermore, the authors use the measurements to

develop an enery consumption model. The energy models developed in these

papers differ from ours since they do not consider the impact of multiple an-

tennas and MIMO transmissions. Furthermore, they also do not explicitly

consider the impact of rate adaptation.

Some works use analytical models to analyze and optimize the energy
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consumption in WLANs. Ergen et al. [25] derive formulas to contrast the

energy consumed in useful transmission and reception of data and the rest of

the energy wasted due to overhearing. Jung et al. [52] propose an optimization

of the power saving mechanism in which at the start of each beacon interval,

the power saving mode periodically wakes for a dynamically selected duration.

In Miser [81], Qiao et al.propose a scheme that minimizes the communication

energy consumption in 802.11a/h by combining transmit power control and

rate adaptation. Wang et al. [95] develop an anlytical model, which accounts

for contending nodes, contention window, packet size and channel conditions

to choose the optimum paramters to optimize the energy efficiency in WLANs.

Several works try to minimize time in idle listening mode. Rozner et

al. [85] use virtualization techniques and energy-aware scheduling algorithm to

reduce background traffic and allow 802.11 cards to enter Power Saving Mode

(PSM) to save energy by 70%. Jang et al. [51] propose an energy management

technique for 802.11n by configuring a client’s sleep duration and antenna

configuration.

Sleepwell [65] is a system that achieves energy efficiency by evading

network contention among multiple APs in the vicinity of a mobile client.

E-mili [103] is a scheme that reduces power consumed in idle listening by

down-clocking radio. Catnap [22] allows a device to sleep by combining small

gaps between packets into meaningful intervals, while [73] detects mobile

phone bugs that prevent the phone from sleeping. DozyAp [40] allows power-

efficient WiFi Tethering. Baiamonte et al. [3] identify the limitation of the
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current power saving mode (PSM) implemented in WLANs. They propose a

distributed access scheme, whick allows a station to enter a low power oper-

ational state during channel contention by exploiting virtual carriers sensing

and backoff functionality. Bruno et al. [12] define an p-persistent CSMA model

based analytical framework to study the theoratical performance bounds of en-

ergy consumption. They propose a a feedback-based distributed algorithm to

optimize the p parameter for optimal network performance. Chen et al. [17]

present a contention adaptation mechanism to improve the energy efficienct

of IEEE 802.11e EDCA by avoiding collisions and reducing the number of re-

transmissions. Garcia et al. [29] derive a closed-form expression for the optimal

configuration of WLANs with respect to energy efficient fair channel access.

All these works are complimentary to our work, which focuses on opti-

mizing MIMO transmissions to save energy.

2.3 Frame Combining and Partial Retransmissions

Several schemes have been proposed, which use spatial or temporal

diversity to achieve better throughput. MRD [69] leverages receptions re-

ceived at different APs to collectively recover the received frame. It considers

the bits that are different in different receptions as corrupted and exhaus-

tively searches over different combinations to find the one that passes CRC.

SOFT [98] improves over MRD by using PHY-layer hints and combining dif-

ferent receptions using weighted averages instead of exhaustive search. [33]

proposes a novel quantization scheme that allows different APs to efficiently
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share their received signals for combining. This is orthogonal to our focus.

[50] uses PHY-layer hint to identify data with low confidence and only re-

transmit these data. It develops a dynamic programming approach to balance

the feedback overhead and retransmission overhead. Unlike PPR, which com-

bines the high-confidence bits from different transmissions, we observe that

even low-confidence bits still contain useful information and further combine

these bits using log-likelihood estimation. SOFT [98] also has an extension to

exploit temporal diversity in the downlink by combining the original transmis-

sion and retransmission(s). However, it retransmits the entire frame instead

of performing partial retransmissions.

There has also been significant theoretical work related to combining

and partial retransmission. These techniques are usually grouped under Hy-

brid automatic repeat request (HARQ) systems. First ideas of incremental

redundancy date back to Wozencraft and Horstein [99, 100]. The idea of

combining was first proposed in 1977 by Sindhu [90]. Sindhu proposed to

store the received packets, and then combine it with additional copies of the

packet thus creating a more reliable single packet. Chase [16] extended the

idea for code-combining systems. Lin and Yu [61] introduced Type-II HARQ,

which alternates between message bits with Error Detection (ED) and er-

ror correction (FEC), thus creating the notion of incremental redundancy.

Since then, there have been innumerable works that have proposed some vari-

ation on packet combining and incremental redundancy. Some of these works

are [57, 70, 64, 91, 36, 58, 59]. A significant amount work has also been done
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in exploiting the diversity combining gains. Some of these schemes are repre-

sented by [67, 7, 68, 41].

While these works provide useful insights, they do not address the in-

teraction between combining, partial retransmissions, and rate adaptation in

WLANs.
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Chapter 3

Energy Aware Rate Adaptation

3.1 Energy Measurements and Model

3.1.1 Measurement Methodology

To derive power models, we conduct fine-grained power measurements

for the following wireless cards: (i) Intel 5300 N series wireless adapter [46], (ii)

Atheros 802.11n wireless adapter, and (iii) embedded IEEE 802.11b/a WiFi

device on a Windows Mobile smartphone with a single antenna. The first two

are commonly used in laptops and can transmit or receive using up to three

antennas. The third one is used to verify if the energy model carries over to

the embedded WiFi device on a phone. Since multi-antenna WiFi devices for

smartphones were not available in the market at the time of our study, we use

a single antenna device.

To measure the power consumption of the wireless adapter cards, we

use a desktop computer equipped with a PEX1-MINI PCI Express X1 Bus

0This chapter revises the following previously published material. Model-Driven Energy-
Aware Rate Adaptation. Muhammad Owais Khan, Vacha Dave, Yi-Chao Chen, Oliver
Jensen, Lili Qiu, Apurv Bhartia, Swati Rallapalli. ACM MobiHoc, Bangalore, India, August
2013. I was involved in development of the energy model and the implementation of the
rate adaptation scheme. Vacha Dave and Oliver Jensen performed the energy measurements.
Yi-Chao assisted in experimental evaluation. Swati Rallapalli and Apurv Bhartia collected
channel traces for simulation evaluation. Lili Qiu, my advisor, supervised the entire project.
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Figure 3.1: Circuit diagram of measurement setup for Intel card

to PCI MINI Bus adapter [74]. It allows us to bypass the PCI bus power

supply, and powers the wireless cards using an external source as shown in

Figure 3.1. We supply the power to the wireless card using a Monsoon power

monitor [79], which measures the current using a 56 milli-Ohm resistor. The

power monitor samples instantaneous power at the rate of one reading per

microsecond and returns a maximum power value for every 200µs period. We

measure energy consumption of the embedded wireless adapter in a mobile

phone by bypassing the battery and ground connector and supplying power to

the phone as a whole using the same power monitor.

To control the frames involved in transmissions and to avoid unexpected

frames, we use UDP packets, set retransmission threshold to zero, and turn off

RTS/CTS. We vary data rate and antenna configuration by modifying device

drivers of the Intel and Atheros cards. To force the phone into a particular

data rate, we use HostAP daemon [45] as our access point and let it advertise

only the required data rate in beacons.
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3.1.2 Measurement Based Model
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Figure 3.2: Measured energy consumption under different transmission con-
figurations as a function of ETT.

We collect and analyze power measurements from a variety of trans-

mission and reception configurations. We vary the frame size from 250 to

1500 bytes. For Intel iwl5300 card, we collect power measurements for all high

throughput (HT) 11n data rates using one, two, and three antennas supported

by the card. The same process is repeated for the Atheros card and the phone.

Figures 3.2 and 3.3 plot the energy consumption versus the expected trans-

mission time (ETT) [24], which is defined as the expected time required to

successfully transmit the frame from the source to the destination. ETT can
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be computed as

ETT =
s

r

1

1− p
,

where p denotes the frame loss rate, r denotes the data rate, and s denotes

the frame size. As we can see, in all the figures, the energy consumption is

proportional to the expected transmission time (ETT) [24].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5

E
ne

rg
y 

(J
)

Transmission Time (S)

3 Antennas,3 Streams
3 Antennas,2 Streams
3 Antennas,  1 Stream
2 Antennas,2 Streams
2 Antennas,  1 Stream
1 Antenna,  1 Stream

(a) Intel receiver

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

E
ne

rg
y 

(J
)

Transmission Time (S)

3 Antennas
2 Antennas
1 Antenna

(b) Atheros receiver

 0

 0.003

 0.006

 0.009

 0.012

 0.015

 0  0.003  0.006  0.009  0.012

E
ne

rg
y 

(J
)

Transmission Time (S)

1 Antenna

(c) Phone receiver

Figure 3.3: Measured energy consumption under different reception configu-
rations as a function of ETT.

The slope of the line depends on the number of transmitting and re-

ceiving antennas being used. This holds for all three cards we use.

Based on these observations, we develop simple energy models by per-
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Intel Atheros Phone
A 0.24× ntx + 0.425×MIMO + 1.02 0.38× ntx + 0.108 1.53
B 0.045× ntx + 0.108 0.040× ntx + 0.062 0.036
C 0.30× nrx + 0.61 0.142× nrx + 0.30 1.23
D 0.064× nrx + 0.167 0.048× nrx + 0.106 0.002

Table 3.1: Parameters in the energy models.

forming least-square fitting to find the coefficients that best match the energy

consumption of the different cards. The energy models are as follow:

Etx = A× ETT + B (3.1.1)

Erx = C × ETT +D (3.1.2)

where the parameters in the models A, B, C, D vary across different wireless

cards and are shown in Table 3.1.

We make several observations. First, the energy consumption is a linear

function of ETT, as mentioned earlier.

The slope depends on the number of transmitting or receiving antennas.

This is intuitive since using more antennas consumes more energy and the

amount of extra energy that is consumed relates to how long the antennas

are used. The y-intercept of the linear function reflects a constant processing

cost for each frame regardless of their duration. Second, the exact parameters

across different cards are similar but not identical. For example, the Intel

transmitter requires an additional parameterMIMO, which indicates whether

MIMO mode is enabled. This is a well documented anomaly of the Intel
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card, where two antennas turn on almost all the hardware required for three

antennas, with only 5% energy difference between two and three antennae

configurations. This is also reported in [37]. The model for the phone is

similar in spirit to the other cards. But since we do not have a smartphone

with an embedded MIMO enabled WiFi card, we cannot separate which parts

in A and B are from ntx and nrx. The values for the phone are higher than

those of the other two cards under 1 antenna because the measured energy

from the phone includes everything, such as display, CPU, as well as wireless

cards.

Third, the energy consumption depends on the number of antennas,

but not the number of streams. For example, as shown in Figure 3.3(a), the

energy consumption under 3 antennas using 1, 2, and 3 streams are identical

and overlap; similarly for 2 antennas using 1 and 2 streams. Finally, we note

that our receiver energy model is conservative (i.e., it may sometimes over-

estimate the energy consumption). This is because depending on where the

reception fails (e.g., if preamble detection fails, the receiver will stop further

processing the signals and the energy consumption is likely to be lower than

that of a successful reception). We conservatively assume every transmissions

(regardless failures or success) consumes the same amount of receiving energy.

Since preambles are quite reliable compared to data symbols, which may be

sent at a higher data rate, the approximation error is likely to be small.

Table 3.2 shows mean absolute percentage error (MAPE) of our energy
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Card transmission reception
Atheros 3.4% 1.3%
Intel 0.65% 1.4%
Phone 4.9% 3.6%

Table 3.2: Mean absolute percentage error of energy models.

models versus the measurement data, defined as

MAPE = mean(|x− x′

x
|),

where x and x′ are the actual and estimated energy consumption, respectively.

As we can see, the error is consistently below 5%, indicating a close match.

3.2 Rate Adaptation

In this section, we develop an energy aware rate adaptation protocol

based on the energy models. Our goal is to select the data rate for the next

transmission in order to minimize the energy consumption. In IEEE 802.11n,

the data rate is defined as Modulation and Coding Scheme (MCS), which

specifies the modulation, FEC coding, and antenna configuration. To achieve

this goal, the protocol first obtains Channel State Information (CSI) seen by

the receiver, then computes the delivery ratio and energy consumption under

different MCS, and selects the MCS that yields the lowest estimated energy.

Below we describe each step in detail.

3.2.1 Channel State Information

IEEE 802.11n standard specifies how to calculate and report CSI. The

CSI values are a collection of M × N matrices Hs, each of which specifies
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amplitude and phase between pairs of N transmit and M receive antennas

on subcarrier s. SNR and amplitude A have the following relationship:

SNR = 10log10(A
2/N), where N denotes the average power of white noise.

For example, Intel WiFi Link 5300 (iwl5300) IEEE a/b/g/n wireless network

adapters collects the CSI of each frame preamble across all subcarriers for up

to three antennas.

Using the CSI values, we calculate the post-processed SNR (pp-SNR)

values for each subcarrier under every supported transmission configuration.

The post-processed SNR is the SNR value obtained after MIMO decoding. In

MIMO, since a transmitted symbol is received on multiple antennas, the final

SNR experienced by the symbol is the combination of the multiple receptions

and the combined SNR dictates whether it will be decoded correctly. For

spatial multiplexing modes, we use a Minimum Mean Squared Error (MMSE)

equalizer to calculate the post-processed SNR. The SNR value for the mth

stream on subcarrier s after MMSE equalization can be written as:

SNRMMSE
m =

Es

NtN0

1
[

HHH +
(

Es

NtN0

)−1

I

]−1

m,m

(3.2.1)

where Es is the total transmission energy across all transmit antennas, Nt is

the number of transmit antennas, N0 is the noise power, H is the channel

matrix for subcarrier s (Hij is the channel coefficient of the j-th transmitting

antenna to i-th receiving antenna), I is an identity matrix, and HH is the

Hermitian transpose of H matrix. The pp-SNR expression in equation 3.2.1

is applicable for all cases, including when the number of spatial streams is
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equal to the number of transmit antennas (Nss = Nt) and when the number

of transmit antennas is less than or equal to the number of receive antennas

(Nt ≤ Nr). Hence, equation 3.2.1 is used for all receive diversity cases since

Nt < Nr is for receive diversity.

The calculation of pp-SNR for transmit diversity modes depends on the

mechanism used to achieve diversity. The two supported mechanisms in IEEE

802.11n are Space Time Block Coding (STBC) and Cyclic Delay Diversity

(CDD). For STBC, which provides full diversity, the pp-SNR can be calculated

as:

SNRSTBC =
Es

NtN0

Nr
∑

i=1

Nt
∑

j=1

|hij|2 (3.2.2)

where hij is the channel coefficient of the j-th transmitting antenna to i re-

ceiving antenna, Nt and Nr are the numbers of transmit and receive antennas,

respectively.

For CDD modes, the SNR can be estimated by [20]:

SNRCDD
s =

Es

NtN0

Nr
∑

i=1

∣

∣

∣

∣

∣

Nt
∑

k=1

hike
−j 2πs

Nfft
δcy(k)

∣

∣

∣

∣

∣

2

(3.2.3)

where δcy(k) is the delay defined by the IEEE 802.11n standard for cyclic delay

transmission for transmit antenna k. Nfft is the FFT size, and s is the subcar-

rier index. It should be noted that Equation 3.2.3 depends on the subcarrier

index.
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modulation BER

BPSK Q(
√
2snr)

QPSK Q(
√
snr)

QAM-16 3
4
Q(
√

snr/5)

QAM-64 7
12
Q(
√

snr/21)

Table 3.3: BER for different modulations as a function of SNR

3.2.2 Computing Loss Rate

To compute the loss rate, we first map the pp-SNR of each subcarrier

to the uncoded BER using the well-known relationship between SNR and BER

as shown in Table 5.1. Then to take into account the frequency diversity (i.e.,

SNR varies across different subcarriers), as [38] suggests, we compute average

BER across all the subcarriers. Next we derive the BER after FEC coding

using the error-probability upper bound defined for the Viterbi decoder to

map the uncoded BER to coded BER. The Viterbi decoder’s probability of

bit error is upper bounded as follows according to [80]:

BERcoded(ρ) =
∞
∑

d=dfree

ad.Pd(ρ) (3.2.4)

Pd(ρ) =











∑d
k=(d+1)/2

(

d
k

)

.ρk.(1− ρ)d−k, if d is odd
1
2
.
(

d
d/2

)

.ρd/2.(1− ρ)d/2

+
∑d

k=d/2+1

(

d
k

)

.ρk.(1− ρ)d−k, if d is even

(3.2.5)

where ρ is the uncoded BER, dfree is the minimal hamming distance between

two coded sequences, and ad is the number of incorrect paths of hamming

distance d that diverge from the correct path and then re-merge sometime
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later [35]. The coded BER value can then be used to approximate the frame

error rate (FER) as 1− (1−BERcoded)
L assuming independent bit error rate,

where L is the frame size.

To further enhance performance, Partial Packet Recovery (PPR) [50] is

proposed to let a receiver extract correct bits from a partially corrupted frame.

When PPR is used, our goal is to maximize the expected number of delivered

bits, which can be computed as (1−HeaderLoss)(1−BERuncoded)×L′, where

HeaderLoss is the loss rate of the frame header, L′ is the payload size, and

BERuncoded is uncoded BER. BERuncoded is used since the FEC is no longer

useful for a corrupted frame.

3.2.3 Estimating Energy Consumption

To accurately estimate the energy consumption, an AP or a back-end

server should keep a table of the energy models for commonly used WiFi cards.

Whenever a new client arrives, it checks the make and model of the wireless

card based on either explicit feedback or passive detection of 802.11 wireless

drivers[28] or fingerprinting techniques[72] using 802.11 protocol fields. For

example, “more fragments”, “retry”, or “power management” bits in the pro-

tocol field reveals the wireless card information. Then it computes ETT based

on frame loss rate and applies the corresponding energy model to derive the

energy consumption for the next transmission under different MCS. When a

client’s wireless card has unknown energy profile, it is possible to infer the

energy model based on data transmissions. For example, the AP can let the
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client report the energy consumption at a few data rates under different num-

bers of antennas to estimate the slope in the energy model. The model is

then inserted to the table and can be updated as more measurements become

available. As part of our future work, we plan to investigate how quickly we

can infer the energy model using such online measurement.

3.2.4 MCS and Antenna Selection

Based on the frame error rate calculated for all MCS, we identify the

MCS that have a reasonable delivery rate (e.g., 90% or above). Among these

MCS, we select the MCS that yields the minimum energy. Note that we can

easily incorporate different objectives in this process, such as minimizing en-

ergy or minimizing energy subject to throughput constraint (e.g., throughput

is within X% from the optimal throughput, where X is a configurable knob),

or other combinations of throughput and energy. In our evaluation, we also

consider several variants that jointly optimize energy and throughput.

3.3 Evaluation

3.3.1 Simulation

We first evaluate various rate adaptation schemes using trace-driven

simulation. We quantify the performance of different schemes in terms of

their energy consumption and throughput.
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Figure 3.4: Transmitter Energy comparison in static networks.

3.3.1.1 Simulation Methodology

We develop a simulator in python using the CSI traces. For each frame,

the data rate is selected according to different rate adaption schemes. Then we

determine if the frame is successfully received using pp-SNR and taking into

account FEC. The simulator also supports Partial Packet Recovery (PPR),

which uses uncoded BER to determine the number of bits correctly received.

We compare the following rate adaptation schemes:

• Sample Rate (SRate): Sample Rate [10] is a widely used rate adaptation

scheme. It probes the network at a random rate every 10 frames and selects

the rate that minimizes transmission time including retransmission time.
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Figure 3.5: Receiver Energy comparison in static networks.

Its goal is to maximize throughput without considering energy consump-

tion. We implement an extended version of Sample Rate which supports

MIMO transmission modes. The original Sample Rate starts at the highest

rate and reduces the rate based on channel conditions. We extend this idea

and start at the highest rate using all antennas and then reduce or increase

the MCS or the number of antennas based on throughput of the previous

transmissions.

• Effective SNR (EffSNR): [38] proposes selecting the data rate based on

effective SNR derived from the CSI values. It computes the post-processed

SNR for each subcarrier and maps it to BER. Then it calculates the average
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Figure 3.6: Transmitter Energy comparison in static networks using PPR.

BER across all subcarriers and converts the average BER to effective SNR

with the same BER. Effective SNR also aims to maximize throughput and

does not consider energy consumption.

• Maximum Throughput (MaxTput): Maximum Throughput rate adap-

tation uses the rate selection scheme in Section 3.2. Unlike energy mini-

mization scheme, it picks the MCS that maximizes throughput.

• Minimum Energy (MinEng): Minimum Energy is our proposed rate

adaptation scheme from Section 3.2. It picks the MCS that minimizes the

energy consumption while ensuring the frame delivery rate is above 90%.

• Minimum Energy with Throughput Constraint (ETputX): This
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Figure 3.7: Receiver Energy comparison in static networks using PPR.

scheme aims to select the MCS that minimizes the energy provided the

throughput is no less than X% of the maximum throughput. We vary X

to yield different variants. For example, ETput80 means minimizing energy

while ensuring throughput is at least 80% of the maximum throughput.

The energy consumption is derived using the energy models for Intel

and Atheros as described in Section 3.1.2. We collect three channel traces

from static environments, and another three traces from mobile environments

with human walking speed. The three mobile traces are collected in an office

environment using 1 moving receiver and 3 static senders. The three static

senders are 7m away from each other. Each trace corresponds to one of the

three senders transmitting while the receiver is moved at a walking speed.
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Figure 3.8: Transmitter Energy comparison in mobile networks.

We use Intel WiFi Link 5300 (iwl5300) IEEE a/b/g/n wireless network

adapters to collect the CSI of each frame preamble across all subcarriers. These

NICs have three antennas. We enable all three antennas at both the sender

and receiver. The modified driver [39] reports the channel matrices for 30

subcarrier groups, which is about one group for every two subcarriers in a 20

MHz channel according to the standard [1] (i.e., 4 groups have one subcarrier

each, and the other 26 groups have two subcarriers each). We use 1000-byte

packets and MCS-16, with a transmission power of 15 dBm. MCS-16 has 3

streams, so the NICs report CSI in the form of 3× 3 matrices for each frame.
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Figure 3.9: Receiver Energy comparison in mobile networks.

3.3.1.2 Simulation Results

Static networks: First, we evaluate the performance in static networks

using three traces collected in a static environment. Each trace contains 2000

CSI samples. Figure 3.4 plots the throughput and energy consumption for

the transmitter. As we can see, compared to the scheme that maximizes

throughput, the energy-aware rate adaptation scheme consumes 14-24% less

energy for the Intel card and 25-35% less energy for the Atheros card. The

throughput loss for both cards is 10-22%.

Compared with Effective SNR and Sample Rate, minimum energy re-

duces transmitter energy by 17-31% for the Intel card and 26-39% for the
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Atheros card while the throughput loss is 1-19%. The energy saving is higher

and throughput reduction is lower in the latter cases because Effective SNR

or Sample Rate are not optimal for either throughput or energy. ETputX bal-

ances the throughput and energy. For example, compared with the maximum

throughput scheme, ETput80, which minimizes energy while ensuring at least

80% of the maximum throughput, saves energy of up to 10% and 13% for the

Intel and Atheros transmitters, respectively, while reducing throughput within

1%. Moreover, OracleMinEng and OracleMaxTput know the exact CSI of the

next frame and eliminate the performance degradation caused by prediction

error. As we can see, the CSI prediction error causes only 1-2% more en-

ergy consumption and 1-2% throughput reduction, indicating the impact of

prediction error is small.

Figure 3.5 shows the performance results for the receiver. Compared

with the scheme that maximizes throughput, the energy-aware rate adaptation

scheme reduces the receiver’s energy by 25-35% for the Intel card and 30-37%

for the Atheros card at the cost of 10-26% throughput reduction.

Compared with Effective SNR and Sample Rate, minimum energy re-

duces receiver energy by 26-42% for the Intel card and 30-44% for the Atheros

card while the throughput loss is 1-23%. As before, ETputX balances energy

and throughput: ETput80 reduces energy by 10% and 13% for the Intel and

Atheros receivers, respectively, with almost no throughput loss. In addition,

compared with OracleMinEng and OracleMaxTput, MinEng incurs only 1-4%

more energy and 1-5% throughput loss.
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Figure 3.10: Number of antenna used in static networks.

Figure 3.10 shows the number of antennas used by each scheme. We

can see that the energy-aware rate adaptation tends to use one antenna to

minimize energy consumption. Meanwhile, it also uses two antennas in some

cases whenever the reduced transmission time can offset the additional energy

required by an extra antenna. The maximum throughput scheme, on the

other hand, does not care about the energy consumption and uses as many

antennas as possible to achieve better throughput. ETputX schemes try to
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balance MinEng and MaxTput schemes and the number of antennas they use

is between those used by the two schemes.

We also ran simulations using a Partial Packet Recovery(PPR). As

shown in Figure 3.6, in this case the energy-aware rate adaptation reduces the

transmission energy by 22-24% for the Intel card and by 40-42% for the Atheros

card. These energy savings are achieved at the cost of 26-28% throughput

reduction for both cards.

As shown in Figure 3.7, the energy savings for the PPR receiver are 26-

28% and 31-33% for the Intel and Atheros cards, respectively. The throughput

loss for these cards is 26-28%. To trade off between throughput and energy

savings, ETput80 saves energy by 9% and 21% for Intel and Atheros, respec-

tively. The throughput reduction is within 9%. Moreover, comparing PPR en-

ergy saving with non PPR energy savings, we see PPR based scheme improves

the energy by 6-23% by extracting correct symbols from partially corrupted

frames.

Mobile networks: Next we evaluate the different schemes using the three

mobile traces. Figure 3.8 and 3.9 summarize the results.

Compared with the scheme that maximizes throughput, minimum en-

ergy reduces transmitter energy by 15-21% for the Intel card and 22-29% for

the Atheros card. For both Intel and Atheros, the throughput loss is 3-10%.

Compared with Effective SNR and Sample Rate scheme, minimum energy re-

duces transmitter energy by 9-35% for the Intel card and 5-49% for the Atheros
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card. The throughput of minimum energy is higher than Effective SNR and

Sample Rate in some mobile traces since the latter two are not optimal for

throughput.

For the receiver, minimum energy reduces energy by 29-31% for the

Intel card and 32-34% for the Atheros card while reducing the throughput by

15-19% compared to maximum throughput scheme. Compared with Effective

SNR and Sample Rate scheme, minimum energy reduces receiver energy by 34-

40% for the Intel card and 36-41% for the Atheros card. To trade off between

throughput and energy savings, ETput80 scheme reduces the throughput by

2% compared to maximum throughput scheme while providing energy savings

of 16% and 18% for Intel and Atheros receivers, respectively. Compared with

OracleMinEng and OracleMaxTput, the CSI prediction error causes only 2-6%

more energy consumption and 3-6% throughput reduction. The degradation in

mobile traces is slightly larger than that in static traces as expected since the

channel variation in mobile traces increases the CSI prediction error. Never-

theless, the degradation in this case is still small. As in the static networks, the

energy-aware rate adaptation uses one antenna in most cases, and uses more

antennas to reduce transmission time if possible. The maximum throughput

scheme uses as many antennas as the channel condition allows.

Figure 3.11 and 3.12 further show the performance of various PPR

versions of rate adaptation schemes. In this case, the minimum energy scheme

reduces Intel transmitter energy by 26-28% and Atheros energy by 43-45%.

The throughput loss is 22-24%. For receiver, the energy savings for Intel are
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Figure 3.11: Transmitter Energy comparison in mobile networks using PPR.

30-32% and for Atheros are 34-36%. The throughput loss is 22-24%. Compared

with non-PPR counterparts, the PPR versions lead to 13-20% energy savings.

To balance the throughput and energy savings, ETput80 scheme reduces the

throughput by 8% while providing energy savings of 10% and 22% for Intel

and Atheros transmitters, respectively.

Impact of frame sizes: In order to take full advantage of the high data

rates offered by IEEE 802.11n, using large frames is strongly recommended.

Therefore, we further evaluate the impact of frame sizes. Figure 3.13 shows

the number of antennas selected by MinEng for the Intel card as we vary the

frame sizes from 1000 bytes to 5000 bytes. As we can see, MinEng always
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Figure 3.12: Receiver Energy comparison in mobile networks using PPR.

selects the one antenna rate for 1000-byte frames in our traces. However, as

the frame size increases, we see more transmissions use multiple antennas. For

5000-byte frames almost all transmissions use two antennas. This indicates as

frame size increases, it becomes more advantageous to use multiple antenna

rates to minimize energy.

Multiple antennas provide energy saving for larger frames because for

small frames the preamble transmission time dominates the total transmission

time. Hence, using multiple antennas only results in small reduction in ETT,

which does not offset the additional energy required to power up multiple

antennas. As the frame size increases, using multiple antennas leads to larger
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Figure 3.13: Number of antennas used for different frame sizes.

reduction in ETT, which more than offsets the additional energy required to

power up more antennas.

Other energy objectives: Our scheme is general and can easily support

other energy objectives. To give another example, here we consider minimizing

the total energy consumption from both sender and receiver, which is especially

interesting in ad-hoc networks where the sender and receiver are both mobile

nodes with limited energy.
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Figure 3.14 shows the performance of MaxTput and MinEng scheme

with different objectives in static traces. The performance of mobile traces is

similar and omitted for brevity. As it shows, MinEng leads to 19-30% total

energy saving with 10-26% throughput reduction. ETput80 balances the total

energy consumption and throughput, and reduces energy by 1-13% at a 1-2%

throughput loss. ETput60 reduces the total energy by 2-28% with a 5-9%

throughput reduction.
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Figure 3.14: Comparing total energy consumption in static networks.

3.3.2 Testbed Evaluation

3.3.2.1 Implementation

We implement different rate adaptation schemes in the Intel WiFi link

5300 driver. We use the tool in [38] to extract CSI from the Intel card at

the receiver. The receiver uses the extracted CSI information to calculate

the throughput and energy consumption for each MCS. The receiver then

uses these calculated values to select the appropriate MCS and informs the

transmitter to use the selected MCS.
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We conduct testbed experiments using two desktop machines. For each

experiment, we send 200 UDP packets with 1000-byte payload. The experi-

ments are conducted in static and mobile scenarios. For mobile experiments,

initially the machines are placed close to one another and then the receiver is

moved away from the transmitter at a walking speed. For each configuration,

we report the average throughput and energy consumption across 10 runs for

static experiments and across 5 runs for mobile experiments.
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Figure 3.15: Comparison of performance of the static trace in the testbed.
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3.3.2.2 Testbed Results

Figure 3.15 shows the throughput and energy consumption for static

experiments. As we can see, MinEng reduces the energy consumption by 19%

for the transmitter and by 28% for the receiver. The throughput reduction is

24% for the transmitter and 22% for the receiver. ETputX smoothly trades-off

between the two objectives. For example, ETput80 reduces energy by 6% at

a 11% throughput loss for the transmitter. For the receiver, ETput80 reduces

the energy by 16% with a throughput reduction of 2%. Figure 3.16 shows the

number of transmit and receive antennas used during the experiment. Due

to the static channel, the schemes use the same MCS for most transmissions

which is expected. MinEng uses a single antenna at both the transmitter and

receiver to reduce energy. In comparison, MaxTput utilizes two and three

antennas to achieve higher throughput at the cost of additional energy.

Figure 3.17 shows how MCS changes over an mobile experiment for

MaxTput and MinEng. MCS 0 to 7 use 1 antenna, MCS 8 to 15 use 2 antennas,
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and MCS 16 to 23 use 3 antennas. In each case, the number of spatial streams

is equal to the number of antennas. In region 1, when the channel is good,

MaxTput transmits using all 3 antennas at MCS 22. Since MinEng tries

to minimize energy, it uses MCS 6, the highest 1-antenna rate that can be

supported by the current channel. MinEng saves 16.9% energy over MaxTput

in this region. As the receiver moves away from the transmitter, the channel

condition degrades and forces MaxTput to drop to MCS 14, while MinEng

continues to use MCS 6. The energy improvement reduces to 11.9% because

MCS 14 used by MaxTput consumes less energy than its previous MCS 22

due to a fewer number of antennas used. In region 3, MaxTput drops from

MCS 14 to MCS 12. Since MCS 12 still uses 2 antennas but takes longer to

transmit than MCS 14, MCS 12 consumes 15.5% more energy than MCS 14.

In comparison, MinEng continues to use MCS 6 and its energy saving jumps to

21%. In region 4, the MinEng drops to MCS 5, resulting in longer transmission

time. Since MaxTput still uses MCS 12, the energy saving of MinEng reduces

to 20.06%. It is interesting to note that even though the channel degrades

continuously, the energy savings do not follow the trend. In fact, region 2 has

the least gap between MaxTput and MinEng while region 3 has the highest.

In all cases, MinEng yields significant energy savings.
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Chapter 4

Delivery Ratio Estimation

4.1 Burstiness in Wireless Channel

4.1.1 Background

In OFDM, a channel is divided into multiple orthogonal subcarriers,

and the data is spread on to these subcarriers for simultaneous transmission.

Due to frequency selective fading and narrow-band interference, the SNR of

these subcarriers vary across different frequencies.

The IEEE 802.11n standard specifies how to measure and report chan-

nel state information (CSI). CSI is essentially a collection of Kt×Kr matrices

Hs, each of which specifies amplitude and phase between pairs of Kt transmit-

ting antennas and Kr receiving antennas on subcarrier s. SNR relates with

amplitude A as follows: SNR = 10log10(A
2/N), where N denotes the average

power of white noise. Following the IEEE 802.11n, wireless network adapters

(e.g., Intel WiFi Link 5300 (iwl5300)) report the CSI of a preamble in each

frame.

4.1.2 WiFi interleaver

According to the IEEE 802.11 standard, all data bits are interleaved by

a block interleaver with a block size corresponding to the number of bits in one
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OFDM symbol [1]. For simplicity, we consider interleaving in a single antenna

case for illustration, and a similar performance issue exists in MIMO cases. Let

NCBPS denote the block size, and NBPSC denote the number of coded bits per

subcarrier. The block interleaver is a two-step permutation procedure. The

first permutation step maps adjacent coded bits to non-adjacent subcarriers.

The second permutation maps adjacent coded bits alternatively to less and

more significant bits of the constellation to avoid long runs of low reliability

bits. Let k denote the index of the coded bit before the first permutation, i

denote the index after the first permutation, and j denote the index after the

second permutation. The two permutation steps are defined as follows, where

k = 0, 1, ..., NCBPS − 1, i = 0, 1, ..., NCBPS − 1, and s is determined by NBPSC

according to s = max(NBPSC/2, 1).

i = (NCBPS/13)(k mod 13) + floor(k/13) (4.1.1)

j = s× floor(i/s) + (i+NCBPS − floor(13× i/NCBPS )) mod s (4.1.2)

Figure 4.1 shows the standard interleaver for BPSK. IEEE 802.11n has

52 data subcarriers, so there are 52 BPSK symbols in each OFDM symbol.

The interleaver stripes 52 bits by placing them in a 4× 13 grid row-wise and

reading them column-wise so that adjacent bits are spread 4 subcarriers apart.

It is quite likely SNR at these subcarriers still experience similar performance,

thereby resulting in bursty errors. This effect persists under other modulation

schemes: the adjacent bits are still 4 subcarriers away and bursty errors still
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Figure 4.1: The WiFi interleaver for BPSK.

exist.

4.1.3 Trace collection

We analyze real WiFi traces to understand their burstiness after in-

terleaving. The traces were collected from WiFi networks using Intel WiFi

Link 5300 (iwl5300) wireless network adapters. Three channel traces are from

static environments, and another three traces are from mobile environments

with human walking speed. The three mobile traces are collected in an office

environment using 1 moving receiver and 3 static senders. The three static

senders are 7m away from each other. Each trace corresponds to one of the

three senders transmitting while the receiver is moved at a walking speed.

The NICs have three antennas, which are all enabled in our measurement.

The modified driver [39] reports the channel matrices for 30 subcarrier groups,

which is about one group for every two subcarriers in a 20 MHz channel ac-
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cording to the standard [1] (i.e., 4 groups have one subcarrier each, and the

other 26 groups have two subcarriers each). We use 1000-byte frames, MCS-

16, and a transmission power of 15 dBm. MCS-16 has 3 streams, so the NICs

report CSI in the form of 3×3 matrices for each frame. So altogether we have

traces of 27 static links and 27 mobile links.

4.1.4 Bursty errors

The IEEE 802.11n supports four types of FEC: 1/2 (i.e., half redun-

dancy), 2/3 (i.e., one third redundancy), 3/4, and 5/6. So we focus on these

FEC coding rates. Figure 4.2 plots CDF of the gap between two consecutive

errors. The gaps in the WiFi interleaver have skewed distribution, with a much

larger fraction concentrated on the lower end than the ideal interleaver, which

equally spaces the error across a frame. The gap in the ideal interleaver is

not a constant due to a varying number of errors in each frame. These results

show that the errors are still bursty under the WiFi interleaver.

4.2 Delivery Ratio Estimation Techniques

Motivated by the bursty errors despite the use of the standard WiFi

interleaver, in this section we develop two methods to estimate delivery rates

and explicitly capture the bursty errors. We focus on convolutional coding,

the default used in IEEE 802.11 a/b/g/n/ac. The convolutional code used in

WiFi takes data bits as input and generates coded bits that do not include

original data bits (i.e., non-systematic coding). Either all bits in a frame are
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decoded or nothing is decoded.

4.2.1 Method 1: Lookup Table Based Estimation

Our first scheme randomly samples the error patterns based on CSI,

data rate, and interleaver. To achieve high efficiency, we build a lookup table

that maps an error pattern in a sliding window to a delivery rate and then

online computes the frame delivery rate based on lookup results. Below we

describe the detailed scheme.

4.2.1.1 Random sampling

The success rate of Viterbi decoding is hard to model analytically

(e.g., [93, 101]). Instead, we can empirically compute the delivery rate for

a given CSI over many frames, and use the average delivery rate as the es-

timation. Specifically, we can generate frames with random payload, use the

current data rate (i.e., modulation scheme and FEC) and interleaver to map

bits onto subcarriers, corrupt the frames according to the CSI, and feed each

corrupted frame to the Viterbi decoder to derive the average frame delivery

rate after FEC decoding. Figure 4.3 shows the average estimation error across

different MCS and channel traces as we vary the number of frames sampled

from 10 to 500. As it shows, 100 sampled frames give a good balance between

accuracy and efficiency.
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Figure 4.3: Impact of the number of frames sampled.

4.2.1.2 Overview

In order to achieve high accuracy of delivery rate estimation, hundreds

of frames are required. It is too expensive to run Viterbi decoding on hundreds

of frames online. A natural approach is to run Viterbi decoding offline and

build a lookup table in advance. Note that this lookup table takes error

patterns as the input, so it is independent of wireless channel or hardware,

and we can use the same table across all devices under all channel conditions.

Specifically, the table includes whether decoding is successful for each

error pattern (e.g., 0 or 1 sequence where 0 indicates no error in the bit and 1

indicates an error). For example, one entry in the table for a given FEC may

have [110000011111000000, fail], which indicates that the frame decoding fails

if the bits in the frame (after de-interleaving at the receiver) has the corruption

pattern 110000011111000000. Note that we only consider the bit corruption

pattern, but not the content of the frame in order to determine whether it can
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be successfully decoded, because the frame content is not available a priori

and the impact of frame content on delivery rate is much less significant than

the error patterns.

A major challenge is what should be the index for the lookup table

in order to achieve high accuracy and efficiency. Using an error pattern for

an entire frame is prohibitively expensive since there are 2FrameSize error pat-

terns. We develop a sliding-window-based lookup table approach to enhance

efficiency. Specifically, the lookup table is built in advance, and a receiver

performs the following steps online:

1. uses the current data rate and interleaver to determine which subcarrier

each bit is assigned to;

2. estimates the SNR of each subcarrier using a preamble as usual;

3. determines BER or joint error probability based on the modulation and

SNR of the assigned subcarrier;

4. generates random samples of error patterns according to BER;

5. looks up tables to determine the decoding success rate for each error pattern

in a sliding window;

6. estimates frame delivery rate based on delivery rates of relevant sliding

windows for each sampled frame;

7. estimates the delivery rate as the average frame delivery rate over all ran-

domly sampled frames.
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Steps 1), 2), 4) and 7) are standard. Below we elaborate steps 3), 5),

and 6).

4.2.1.3 Mapping SNR to BER

Mapping SNR to BER is an important step in many wireless schemes,

including effective SNR. We improve the accuracy of existing mapping by

capturing that (i) different bit positions in QAM experience different BER

under the same SNR and (ii) there is correlation between BER of different

bits in the same symbol. This is an important contribution, and useful to

many wireless schemes, including other rate adaptation schemes.

Figure 4.4: Constellation points for QAM-16 with bits b1b2b3b4

We use the standard formulas to compute BER in BPSK and QPSK:

Q(
√
2snr) for BPSK and Q(

√
snr) for QPSK. To compute the BER of QAM
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(e.g., QAM-16 and QAM-64 used in IEEE 802.11n), we find that the stan-

dard formulas do not work for two reasons. First, different bits in QAM may

experience different BER. As shown in Figure 4.4, the symbols that differ in

bits 1 or 3 have larger minimum distance than those that differ in bits 2 or 4.

As a result, BERs of bits 1 and 3 are lower than those of bits 2 and 4. We

empirically find that the BERs of bits 1 and 3 match well with 1
2
Q(
√

snr/5),

and BERs of bits 2 and 4 match Q(
√

snr/5). The corresponding functions

for QAM-64 are 1
4
Q(
√

snr/21) for bits 1 and 4, 1
2
Q(
√

snr/21) for bits 2 and

5, and Q(
√

snr/21) for bits 3 and 6.
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Figure 4.5: Joint error probabilities of 2-bits.

Moreover, we find the bits in QAM have considerable correlation. Fig-
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ure 4.5 compares the joint error probability of two bits from real traces versus

estimation based on independence assumption. The estimated joint error de-

viates from the independence assumption for bits 1, 2 and bits 3, 4, whereas

the match is good for the other 2-bit combinations. The gap for bits 1,2 and

bits 3,4 indicate negative correlation between these bits. A closer look at Fig-

ure 4.4 reveals that if bit 1 is correct, bit 2 is incorrect when the received

symbol is over r/2 away from the transmitted symbol, where r is the horizon-

tal or vertical separation between two adjacent symbols; if bit 1 is incorrect,

bit 2 is incorrect when the received symbol is over r away from the transmitted

symbol. The same reasoning applies for bits 3 and 4. Moreover, using similar

analysis, we find that the bits 1 and 2 are independent of bits 3 and 4. Based

on these observations, we map SNR to joint error probability of bits 1, 2 and

bits 3, 4. This is achieved as follow: for each SNR, we generate random sym-

bols, go through modulation and demodulation to determine error patterns,

and then compute average probability of error patterns 00, 01, 10, and 11.

This yields a lookup table that maps SNR to the probability of having error

patterns 00, 01, 10, and 11. We conduct similar analysis for QAM-64, and

find bits 1, 2, and 3 are correlated, so are bits 4, 5, and 6, whereas bits 1, 2,

3 are independent of bits 4, 5, and 6. Therefore we generate a similar lookup

table that maps SNR to the probability of any 3-bit error pattern.
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4.2.1.4 Building a lookup table for a sliding window

Due to finite state space of the convolutional code, the impact of errors

does not propagate beyond a certain point. Therefore, we can use a sliding

window to capture impact of errors. The sliding window size depends on the

type of FEC. We empirically derive the window size for different FEC codes

by gradually increasing the window size until a further increase offers little

improvement in the delivery rate estimation. We find that the window size is

75 bits for 1/2 FEC, 50 bits for 2/3 and 3/4 FEC, and 40 bits for 5/6 FEC.

Therefore, instead of building a lookup table for entire frames, we build

a lookup table for a sliding window with different error patterns.

Pruning the table: Building a table for a sliding window is still too expen-

sive since there are 2winSize error patterns, where winSize is the sliding window

size. Interestingly, after analyzing the delivery rate of different error patterns,

we observe that whenever the number of errors is lower than lowThresh in the

window, the Viterbi decoding is always successful; whenever there are more

than highThresh errors, the decoding fails almost all the time; only when the

number of errors is in between, the decoding error varies according to the error

pattern. This is consistent with our expectation of FEC decoding.

We empirically find lowThresh are 5, 3, 2, and 2 for 1/2, 2/3, 3/4 FEC,

and 5/6 FEC, respectively, and the corresponding highThresh are 10, 5, 4 and

4, respectively. This suggests we can build lookup tables for the middle cases

(i.e., 5-10 errors for 1/2 FEC, 3-5 errors for 2/3 FEC, and 2-4 errors for both
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3/4 FEC and 5/6 FEC).

Taking into account position of the sliding window: For the middle

cases where the number of errors is not too high or too low, the decoding rate

depends on not only the error pattern but also the position of the window. For

example, when using 1/2 FEC, the decoding rate of an error pattern varies

according to whether the first error bit in the sliding window resides at an odd

or even offset in the original frame (not the offset in the sliding window).

This is illustrated in Figure 4.6, which shows the delivery rates of three

error patterns as we move the error patterns to start at varying locations from

30 to 40. As shown in Figure 4.6(a), the decoding rate of an error pattern with

5 erroneous bits represented by the black line in the figure is 0 if it starts from

an odd offset and 0.85 if it starts from an even offset. When using 2/3 FEC,

the decoding rate of an error pattern varies depending on the offset modular 3,

as shown in Figure 4.6(b). For instance, the decoding rate of an error pattern

represented by the red curve, which has 4 bits in error, is 0.75, 0, and 0.55,

respectively, as the offset modular 3 varies from 0 to 2. Similarly, the decoding

rate varies with the offset modular 4 for 3/4 FEC, and varies with the offset

modular 6 for 5/6 FEC. The cycles in the delivery rate patterns correspond

exactly to the number of bits in the puncturing pattern for each convolutional

code (e.g., 1/2 FEC has a puncturing pattern of [1 1], 2/3 FEC has a pattern

of [1 1 1 0], 3/4 FEC has a pattern of [1 1 1 0 0 1], and 5/6 FEC has a pattern

of [1 1 1 0 0 1 1 0 0 1]) [1].

Therefore, we maintain 2 lookup tables for 1/2 FEC, 3 lookup tables
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for 2/3 FEC, 4 lookup tables for 3/4 FEC, and 6 lookup tables for 5/6 FEC.

For each sliding window, we find the first error in the window, and identify its

offset in the original frame to select the appropriate table to look up.
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(d) 5/6 FEC

Figure 4.6: The decoding success depends on not only the error pattern in a
sliding window, but also where the error pattern starts in a frame. Different
curves correspond to different error patterns in a sliding window. They are
shifted to different offsets in a frame.

Supporting a large sliding window: Using the above techniques, we can

reduce the lookup tables for 2/3, 3/4, and 5/6 FEC to reasonable sizes. The
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sliding window for 1/2 FEC has 75 bits, and the number of errors in the middle

cases ranges from 5 to 10. The corresponding lookup table sizes are still too

large. To further reduce the table build-up time and storage cost, instead of

using a sliding window of 75, we split the window into two parts: 40 bits and

35 bits. We enumerate error patterns in the first 40 bits, but only consider the

number of errors in the next 35 bits (as opposed to the exact error patterns)

to reduce the cost.

This yields a 2-dimension lookup table, where the first dimension is

the error pattern in the first 40 bits and the second dimension is the number

of errors in the next 35 bits. In our implementation, the first window has

error patterns involving 4-7 errors, whereas the second window has up to 6

errors. To further reduce the overhead, we only consider the second window

when the first window has 4 or 5 errors. When the first window has 6 or 7

errors, the delivery rate is already low and the impact of the second window

is small. In this way, the total lookup tables for all FEC schemes is around 58

MB before compression and 8 MB after compression, which is quite affordable

(e.g., iPhone 5 and 6 have 1 GB RAM).

4.2.1.5 Estimating frame delivery rate

How to compute the delivery rate for a frame, which spans multiple

sliding windows? One approach is to approximate it using a product of delivery

rates over all sliding windows because all the sliding windows should succeed

in order for a frame to succeed. However, since the delivery rates over adjacent

65



sliding windows are not independent, this approximation is inaccurate.

To improve the accuracy, we avoid counting the same error pattern

multiple times as the window slides. More specifically, we move the starting

position of the sliding window to the first error and look up the delivery rate

based on the error sequence within this window. Next, we move the sliding

window to start from the next error. If any new error appears in the window,

we look up the probability of error for the new pattern. If no new errors appear,

we ignore the current sliding window and move the next sliding window to

start from the next error and repeat the process until we have gone over all

the errors. The product of delivery rates across all such windows gives us the

final frame delivery rate estimate.

4.2.2 Method 2: Machine Learning Based Estimation

Our second method uses machine learning to estimate delivery rate

based on the CSI. The advantage of this method is that the online computa-

tion is fast once we learn the function offline. Our main tasks involve selecting

appropriate features and machine learning algorithm. A natural choice of fea-

tures are SNR across all subcarriers. However, this requires us to learn a new

delivery rate function for each modulation and FEC. Moreover, mapping from

SNR to BER is quite involved, as shown in Section 4.2.1.3, and not easy to

learn. Since BER has more direct relationship with the frame delivery rate, we

leverage our domain-knowledge of mapping SNR to BER, as described in Sec-

tion 4.2.1.3, and use BER per bit as features to map to the frame delivery rate.
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Different bits have different BER due to different subcarriers they are assigned

to and different bit positions in the symbol. Due to the use of OFDM and

the nature of frequency diversity, BER per bit repeats every OFDM symbol.

So we use BER for each bit in an OFDM symbol as the features. We choose

neural network as the machine learning algorithm. The advantage of using

neural networks is that they can approximate any function with arbitrary ac-

curacy [19, 44], which is appropriate as the frame delivery rate functions are

non-linear.

We use a feedforward artificial neural network model called multilayer

perceptron (MLP) that maps a set of input data (BER per bit in our network)

onto a set of appropriate outputs (delivery rate in our network) [11]. An MLP

consists of multiple layers of nodes, where each layer is fully connected to the

next layer. The first layer of nodes is called input layer and the last layer

is called the output layer. The intermediate layers are called hidden layers.

Each node corresponds to a neuron, with a non-linear transfer (activation)

function. For our network, we use ‘mapminmax’ to normalize the inputs, use

‘sigmoid’ transfer function for hidden layers [42], and use ‘purelin’ as the output

transfer function. The neural network is trained using Levenberg-Marquardt

algorithm [31].

We use a large portion of training data to train multiple neural net-

works, each with different parameters, and then use the remaining portion of

the training data to compute the estimation error and select the neural net-

work that yields lowest error. This is possible since we know the ground truth

67



of all training data.

The remaining issue is how to generate the data for training. We use

both traces collected from real WiFi networks and synthetic traces generated

using IEEE 802.11n TGn channel model [26]. IEEE 802.11n channel models

has six profiles, including flat channel, indoor residential, residential/office,

typical office, large indoor and outdoor open spaces. We use all profiles to

generate channels to capture a wide range of wireless link conditions. These

traces generate SNRs across subcarriers, which we then use frame-level sim-

ulation to determine the frame delivery rate. To further speed up training

data generation, we also use lookup table based approach in Section 4.2.1 to

generate part of the training data, and find it is much faster than frame-level

simulation with only a slight increase in the error.

4.2.3 MIMO Extension

Both our estimation schemes can be applied to support MIMO as follow.

To support MIMO diversity, we use the CSI values to derive the post-processed

SNR (pp-SNR) values for each subcarrier under each supported transmission

configuration to capture the effect of MIMO processing. In MIMO, since a

transmitted symbol is received on multiple antennas, the final SNR experi-

enced by the symbol is the combination of the multiple receptions and the

combined SNR dictates whether it will be decoded correctly. We apply stan-

dard formulas to compute pp-SNR in MIMO based on the original CSI [55].

Then we derive BER according to pp-SNR as in Section 4.2.1.3, and apply
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the methods described in Section 4.2.1 and 4.2.2 to calculate the final frame

delivery rate.

In MIMO multiplexing, a sender stripes a large frame across multi-

ple antennas and transmits these multiple streams simultaneously. Different

streams experience different channel loss depending on their transmitter and

receiver pairs. Therefore, to support MIMO multiplexing, we determine to

which antenna and subcarrier each symbol is assigned based on a given in-

terleaver (e.g., WiFi interleaver) and calculate pp-SNR according to MIMO

multiplexing. The remaining process, including using pp-SNR to derive BER

and using BER to compute frame delivery rate, is the same as above.

4.3 Our New Interleaver

Next we propose a new interleaver that is CSI-aware. The receiver

feeds back the CSI according to the IEEE 802.11n standard. Instead of blindly

interleaving the bits regardless of the channel condition, the sender uses our

new interleaver to spread erroneous bits as far apart as possible to reduce

bursty errors and improve decoding rate. The interleaving pattern does not

need to be transmitted, since the receiver can derive it based on the most recent

CSI it fed back and was acknowledged. Since the interleaving computation is

very fast, the interleaving can be re-computed upon every CSI update.

Our interleaver sorts the bits in a decreasing order of BER. The bits

are spread onto the OFDM subcarriers to maximize the distance between the

high error bits as follows:
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• Following the standard interleaver, we create a table of size r × c, where

r is the number of bits per symbol based on the modulation and c is the

number of subcarriers.

• But different from the standard interleaver, we sort the bits and re-arrange

the sorted bits in column-wise from top to bottom in the table. For exam-

ple, the highest BER is at (1,1), the second highest BER is at (2,1), and

so on.

• Next we re-arrange the columns to maximize the distance between the

columns with high BER. We keep the first column at its initial location,

move the second column to the center column so that the distance between

the two highest BER columns are separated by c/2. Note that moving the

second highest error column to the last column is not good since it will

be close to the highest error bit in the next OFDM symbol. Then we use

the first, center, and last columns as anchors, and calculate the middle

columns between them and place the next two worst columns at these

column indices (e.g., the third worst column is moved to round(c/4)-th

column, and the fourth worst column is moved to round(3c/4)-th column).

This process continues recursively until all locations have been filled. In

this way, the columns with larger BERs have larger separation between

them. One caveat in this step is that since we observe the delivery ratio

depends on the exact offset as shown in Figure 4.6, we shift the columns

around to avoid occupying bad offsets. For example, for 1/2 FEC, errors at

even offsets yield much higher decoding failures than errors at odd offsets.
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So whenever the calculated offset is even, we shift it up or down by 1 column

as long as that column has not been occupied. If the nearby columns have

been both occupied, we just place it at the originally computed column.

Since we place columns in a decreasing order of BER, we minimize the

chance of placing the worst few bits at even offsets.

• Finally, we read the table row-wise and map the bits to the subcarriers

sequentially, where each subcarrier is assigned the number of bits the cur-

rent modulation can support. This step is similar to the standard WiFi

interleaver to reduce bursty errors.

4.4 Rate Adaptation

In this section, we develop rate adaptation that takes advantage of

our enhanced delivery estimation and interleaver. Our goal is to select the

data rate for the next transmission in order to maximize throughput or mini-

mize the energy consumption. To achieve this goal, the receiver first extracts

Channel State Information (CSI) from the preamble of the previous frame.

For each rate, it computes delivery ratio as described in Section 4.2 and de-

rives throughput. It then selects the rate that maximizes the total throughput

(i.e., maximizing the product of maximum capacity and the delivery ratio) and

feeds it back to the sender to use for the next transmission. To reduce com-

putation cost, we may search the data rates close to the current rate instead

of all possible rates.

Our rate adaptation works with both the standard WiFi interleaver
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and our enhanced interleaver. When our interleaver is used, we use CSI to

derive an appropriate interleaving as described in Section 4.3, based on which

we derive BER after de-interleaving, estimate frame delivery rate, and select

the rate that maximizes throughput.

Data rates not only affect the throughput, but also impact energy con-

sumption by changing the transmission or reception time. When energy is

used as an objective, we can compute energy based on our delivery model and

our energy model. Specifically, we first use the approaches in Section 4.2 to

compute the delivery rate and estimate expected transmission time (ETT),

which denotes how long it takes to successfully deliver a frame on average.

Then we plug ETT into the energy model from Section 3.1.2 to obtain the

transmission or receiving energy under a given data rate. Then we select the

data rate that results in the minimum energy.

4.5 Performance Evaluation

4.5.1 Evaluation Methodology

In this section, we use trace driven simulation for our evaluation, where

the traces are introduced in Section 4.1. We first compare the accuracy of our

delivery rate estimation with effective SNR. Then we compare our interleaver

with the WiFi interleaver. Finally, we compare the throughput and energy

of our rate adaptation with effective SNR when applied to either the WiFi

interleaver or our interleaver.
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4.5.2 Performance Results

Accuracy of delivery rate estimation: We first evaluate the accuracy

of our delivery ratio estimation by comparing with the ground truth. The

delivery ratio is estimated for a range of CSI from the collected traces. As in

the previous works (e.g., [9]), we uniformly scale CSI across all subcarriers to

maintain the same frequency diversity. We choose different factors for each

MCS (Modulation and FEC) in order to cover the complete range of delivery

ratio values from 0 to 100%. The ground truth delivery ratio is calculated by

transmitting and decoding 100 frames for each scaled CSI. The ground truth

is calculated for both the WiFi interleaver and our interleaver.

Figure 4.7(a) plots the CDF of delivery ratio estimation errors in all

traces, including 27 static and 27 mobile traces with different scaling factors

across all data rates using 20 MHz channel. Figure 4.7(b) summarizes the

results for 40 MHz channel. Both figures compare the delivery ratio estima-

tion errors of (i) effective SNR using the WiFi and our interleavers, (ii) lookup

table based estimation using the WiFi and our interleavers, and (iii) machine-

learning (ML) based estimation using the WiFi and our interleavers. The

training data for 20 MHz channels come from the ground truth, and those for

40 MHz channels come from the lookup table for faster training data genera-

tion.

We make several observations. First, our two delivery ratio estimation

schemes are both accurate for the WiFi and our interleaver. In 20 MHz chan-

nel, the average error of both our schemes is around 3%. The lookup scheme
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exceeds 10% error in only 4% of time, and the ML scheme exceeds 10% in

only 7% of time. For 40 MHz channels, the lookup scheme has an average

error of 4% for both interleavers, and the ML scheme has average errors of

7% and 4% for WiFi and our interleavers, respectively. The lookup scheme

exceeds 10% error in 7% and 5% of the cases for WiFi and our interleavers,

respectively. The ML scheme exceeds 10% error in 22% and 5% for WiFi and

our interleavers, respectively. The average error in ML is 3% higher than the

lookup scheme in 40 MHz channels using the WiFi interleaver in part due to

the error in the training data generated from the lookup tables (which can be

reduced by using frame-level simulation to generate training data). Its error

is almost the same as the lookup scheme in the other cases. Due to its fast

speed and similar estimation error, ML is a preferred scheme for practical use.

In comparison, the estimation error of effective SNR is much higher: its

average errors are 8% and 17% for the WiFi and our interleavers, respectively.

For 20 MHz channels, its estimation error exceeds 10% for 27% of the cases

for the WiFi interleaver and 50% for our interleaver. For 40 MHz channels,

its average errors increase to 10% and 25% for WiFi and our interleavers, re-

spectively. The number of cases where its error exceeds 10% is 37% for WiFi,

and 70% for our interleaver. There is much higher variability in effective SNR.

The error varies significantly across different channel widths, across different

interleavers, and even across different runs with the same settings. The effec-

tive SNR has larger estimation error with our interleaver because it is tailored

to the WiFi interleaver and cannot take advantage of an enhanced interleaver,
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whereas our estimation schemes can incorporate any interleaver as an input

to achieve high accuracy.
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Figure 4.7: Comparison of delivery rate estimation across all FEC.

Figure 4.8 compares the accuracy for each FEC separately in 20Mhz.

For each FEC, we consider only the modulations supported by IEEE 802.11n

for that FEC. Our two schemes have similar delivery ratio estimation error for

both the WiFi and our interleavers across all FEC. Their average errors are

between 2%–6%, and the percentage of cases exceeding 10% error are between

2%–17%.

In contrast, effective SNR has significant variation across FEC and

interleavers. For example, in 1/2 FEC, effective SNR yields an average error

of 11% and 42% of the time has error exceed 10% for the WiFi interleaver.

For our interleaver, the average error increases to 15%, and 53% of time has

error exceed 10%. For 3/4 FEC, the average errors of effective SNR become

4% and 28% for the WiFi and our interleaver, respectively; and the percentage

of cases over 10% error are 11% and 60% for the WiFi and our interleavers,
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(a) 1/2 FEC
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(b) 2/3 FEC
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(d) 5/6 FEC

Figure 4.8: Comparison of delivery rate estimation under different FEC.

respectively. The average errors for 5/6 FEC reduces to 4% and 5% for the

WiFi and our interleavers, respectively, and 14% and 18% of cases have errors

exceed 10% for the WiFi and our interleavers. Effective SNR sees lowest error

in 5/6 FEC because it can only tolerate very few errors and error patterns are

less important in this case.

In general, large variable errors in effective SNR introduce significant

uncertainty for wireless network optimization. In comparison, our estimators

are more stable across all scenarios. It can significantly ease network optimiza-

tion and management, and improve network predictability.
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Figure 4.9: Comparison of interleavers under all rates.

Comparison of interleavers: Figure 4.9 compares the performance of our

interleaver with the WiFi interleaver using all the traces across all data rates.

The throughput is obtained for each interleaver by transmitting and decoding

100 frames for each CSI. The throughput is calculated for a wide range of

CSI values as before. Overall, our interleaver increases the throughput over

the WiFi interleaver by 18% in 20 MHz channels, and by 23% in 40 MHz

channels. We expect the improvement will increase further as wider channels

are used (e.g., in IEEE 802.11 ac).

Figure 4.10 shows the interleaver performance for each FEC separately.

Our interleaver out-performs the WiFi interleaver by 8.5%, 13%, 37% and 3.5%

for 1/2, 2/3, 3/4 and 5/6 FEC, respectively. We see the highest improvement

in 3/4 because our interleaver does a good job in spreading errors apart. Since

1/2 FEC is able to tolerate more errors, it is more robust to bursty errors. At

the other end, 5/6 FEC incurs decoding failures even when there are only two

errors in a sliding window, which gives less opportunities for our interleaving

to optimize. In comparison, the error patterns matter more for 3/4 FEC, so it
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Figure 4.10: Comparison of interleavers under different FEC.

benefits most from spreading the most erroneous bits apart by our interleaver.
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Figure 4.11: Throughput comparison of rate adaptation schemes.
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Comparison of rate adaptation schemes: Finally, we evaluate the ben-

efit of our rate adaptation that leverages our delivery rate estimation and

interleaver. For ease of illustration, we select two links: a 20 MHz link and a

40 MHz link. The other links exhibit similar performance, and their results

are omitted in the interest of brevity. Figure 4.11 shows the rate curves of

each scheme for these links. We obtain the rate curves as follow. We impose

different scaling factors for each trace and obtain throughput from different

schemes. We then plot the sorted throughput for each scheme in the figure.

In all cases, the rate for the next transmission is selected using the CSI of the

previously received frame. Our scheme shows significant throughput improve-

ment around the rate transition regions (i.e., the boundary between two rates):

the improvement ranges between 5–40%. During the non transition regions

(i.e., the regions that are far from the boundaries), the improvement is much

smaller since the available rates are coarse-grained: two adjacent rates differ

by at least 3 dB and it is hard to get close to 3 dB gain just by improving de-

livery rate estimation and interleaving. The benefit of our scheme will increase

with more available rates. In addition, comparing the results from 20 MHz

with those from 40 MHz, we observe larger benefit of our rate adaptation in

40 MHz channels since our interleaver can spread high error bits farther apart.

Finally, we compare the energy consumption of rate adaptation. The

data rate affects energy by changing the time it takes to transmit or receive a

frame. The longer it takes, the more energy a sender/receiver will consume.

We assume the access point (AP) will run the rate adaptation scheme, regard-
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Figure 4.12: Transmission energy comparison of rate adaptation schemes.
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Figure 4.13: Receiving energy comparison of rate adaptation schemes.

less if the AP is transmitting or receiving. That is, if the AP is transmitting,

the AP selects the rate to reduce transmission time so that the receiving client

can save receiving energy; if the AP is receiving, the AP selects the rate and

feeds the selected rate back to the transmitting client to use for the next

transmission to save the client’s transmission energy.

We use the energy model in Section 3.1.2 to derive the client’s energy

consumption based on expected transmission time (ETT) under different rate
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adaptation schemes.

Figure 4.12 and 4.13 compare transmission and receiving energy of

different schemes, respectively. As we would expect, similar to the throughput

results, the energy improvement takes place around the rate transition regions,

where our rate adaptation reduces transmission energy by 7%–33% and reduces

receiving energy by 6%–32% over the effective SNR with the WiFi interleaver.
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Chapter 5

Rate Adaptation with Partial Retransmission

5.1 Retransmission Characterization

5.1.1 Motivation

Wireless channel condition is hard to predict due to mobility, dynamic

interference, and environmental changes. Therefore, transmission failures are

common in wireless networks. Traditional systems retransmit an entire frame

upon every failure. This is inefficient since a significant portion of bits may

have already been correctly received and retransmitting these bits is waste-

ful. Recognizing this inefficiency, PPR [50] proposes to extract physical layer

hints to determine if bits are correct and discards/retransmits the bits with

lower confidence. PPR is an interesting concept. Maximizing its full potential

requires addressing several important challenges.

• It is hard to tell exactly which bits are corrupted. In order to ensure all

incorrect bits are retransmitted, a conservative threshold has to be used.

0This chapter revises the following previously published material. Smart Retransmis-
sion and Rate Adaptation in WiFi. Muhammad O. Khan, Lili Qiu, Apurv Bhartia, Kate
Lin. IEEE ICNP, San Francisco, USA, November 2015. I was involved in the design and
implementation of the proposed rate adaptation and retransmission protocol. Apurv Bhar-
tia assisted in the evaluation of the proposed scheme. Kate Lin helped in project-related
discussions. Lili Qiu, supervised the entire project.
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Many bits below the threshold may well be received correctly. Completely

discarding them is wasteful. It would be beneficial if we can take a step

further by leveraging information from bits with lower confidence to fur-

ther reduce retransmission overhead. In other words, we should not only

support partial retransmission, but also combine bits from multiple failed

transmissions.

• We observe that a receiver decodes data by first demodulating the incoming

signals to bits and then performing FEC decoding, as shown in Figure 5.1.

Combining can be applied to the raw analog signal, the demodulated data

before FEC, or the FEC decoded data. Where should combining take place

to maximize the gain while achieving high flexibility?

Figure 5.1: Process of data decoding.

• How do partial retransmission and combining affect rate adaptation? Ex-

isting schemes (e.g., PPR [50] and SOFT [98]) show significant performance

benefit under a fixed data rate. However, their gains diminish under stan-

dard rate adaptation, which tends to pick a conservative rate and leaves

little opportunity for partial retransmission and combining. Therefore we
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should re-visit rate adaptation to take advantage of partial retransmission

and combining.

5.1.2 Our Approach

We seek to address these challenges in turn. We propose combining-

aware partial packet recovery in which we retransmit the bits with lower con-

fidence. For any bits that are received more than once, we combine them to

improve accuracy.

To maximize the combining gain, we examine how combining accuracy

changes when combining takes place at different stages. We find the combining

gain is highest when it is performed before FEC decoding. However, combining

analog signals has several limitations: (i) it is unclear how to combine signals

transmitted using different modulations or FEC codings since it requires con-

verting signals from one modulation/FEC coding to another before combining

and there is no known solution to perform such conversion while maintaining

the confidence of demodulated bits, and (ii) it is unclear how to combine sig-

nals from partial retransmissions because when different transmissions contain

different signals, the same bit may be spread over different parts of the signals

(e.g., a bit may be the first bit in a QAM-16 symbol during the first transmis-

sion, but the second bit in a QAM-16 symbol during the second transmission).

Bit position in a symbol is important since it affects the confidence level.

Therefore we propose combining the demodulated bits before FEC so

that it is independent of modulation, thereby simultaneously achieving high
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combining gain and flexibility. In particular, we estimate Log-Likelihood Ratio

(LLR) for each demodulated signal based on the signal-to-noise ratio (SNR)

obtained from the preamble. To support both partial retransmission and com-

bining, we use the LLR to determine which bit(s) before FEC are likely to be

corrupted and combine bits from multiple transmissions by adding up their

LLR and feeding the resulting LLR to a FEC decoder.

To maximize effectiveness, we observe that traditional rate adaptation

tries to select the rate that maximizes throughput of the current transmission,

where throughput is computed based on packet delivery rate. This essentially

means that utility is 0 when the current transmission fails.

This usually results in a conservative rate, which leads to successful

delivery of the frame in one try and leaves little opportunity for partial packet

recovery and combining. In order to fully take advantage of combining, the

rate adaptation design should be revisited. In particular, the use of combining

means that a failed transmission still conveys useful information by increasing

LLR and has positive utility. To capture this notion, we formulate a new rate

adaptation problem whose goal is to minimize the total time of the transmis-

sion and retransmissions to deliver a frame. This significantly changes the rate

adaptation problem. We develop a novel rate adaptation scheme to select the

rates for all the transmissions associated with a frame in order to maximize

throughput, or equivalently, to minimize expected transmission time. Our

main insight is that by leveraging combining, we can potentially use a more

aggressive data rate due to a much lower retransmission cost. This creates an
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opportunity for partial retransmissions and combining.

5.2 Signal Combining

Signal combining is a well-known technique in wireless communication

and is used to provide spatial and temporal diversity. Signal combining lever-

ages multiple receptions of the same data to get a better estimate of the re-

ceived signal. In this section, we first describe and compare different combining

approaches. Then we present our approach to combine partial retransmissions

while maximizing the combining gain.

5.2.1 Different Combining Schemes

Overview of three combining schemes: As mentioned in Section 5.1.1,

signal combining can be performed at various stages of decoding: (i) before

demodulation, (ii) after demodulation but before FEC decoding, and (iii) after

FEC decoding.

In (i), the same signal should be transmitted. The receiver computes

a weighted sum of the received signals, and then demodulates the resulting

signal as usual. It is commonly referred to as symbol combining. Figure 5.2

shows an example of (i), where two BPSK signals R1 and R2 are combined

and demodulated correctly to 1.

In (ii), a receiver first demodulates an analog signal into digital bits.

Based on the distance between the received signal and constellation point, the

receiver computes log-likelihood (LLR) value. LLR is the logarithm of the ratio
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Figure 5.2: Symbol combining.

of probabilities of a 0 bit being transmitted versus a 1 bit being transmitted

given a symbol r is received. The LLR for a bit b is computed as follows:

L(b) = log

(

Pr(b = 0|r = (x, y))

Pr(b = 1|r = (x, y))

)

(5.2.1)

where r is the received signal, (x, y) is the x and y coordinates of the

received signal in the constellation map, b is the transmitted bit. If we assume

the probabilities of all symbols are equal, the LLR of an AWGN channel is:

L(b) = log

(

∑

s∈S0(b)
e−

1
σ2 ((x−sx)2+(y−sy)2)

∑

s∈S1(b)
e−

1
σ2 ((x−sx)2+(y−sy)2)

)

(5.2.2)

where S0(b) and S1(b) are ideal symbols with bits 0 and 1 at the given

bit position b, respectively, and σ2 is noise variance of baseband signal and

can be obtained using the preamble. To combine multiple received data, the

87



receiver sums up LLR values from all the receptions and feeds the resulting

LLR to an FEC decoder (e.g., Viterbi decoder) to enhance the decoding rate.

There are two types of decoders: hard decoder, which takes a hard decision as

an input (e.g., 0 or 1), and a soft decoder, which leverages more fine-grained

LLR values to improve decoding accuracy.

Our scheme supports both hard decoder and soft decoder. We focus

on the hard decoder in our evaluation since its delivery rate can be estimated

accurately (which is required for rate adaptation) whereas our experiments

show that the delivery rate of a soft decoder (with or without combining)

depends on not only effective SNR but also the mapping between symbols and

SNR and is much harder to estimate. Therefore we defer our evaluation of the

soft decoder to our future work.

In (iii), a receiver performs FEC decoding on each received data sep-

arately and outputs LLR. Our evaluation uses Bahl Cocke Jelinek Raviv

(BCJR) Maximum a Posteriori (MAP) decoding algorithm [5, 6]. Its per-

formance is the same as Viterbi decoder when both use soft decoding, but

slightly worse than Viterbi when both use hard decoding. Then the receiver

adds up the LLR for each bit, and uses a thresholding to determine the final

value for the bit (e.g., the bit is 1 if the LLR sum is greater than 0, and 0

otherwise).

Comparison of the three combining schemes: We compare the combin-

ing gains using different schemes as follow. We first generate signals according

to a selected modulation. We then add AWGN noise to the signal whose mag-
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Figure 5.3: Hard combining gain comparison, where (i) combining before de-
modulation, (ii) combining after demodulation but before FEC decoding, and
(iii) combing after FEC decoding.

nitude is determined by SNR. We send each signal twice and then calculate

the bit error rate (BER) of each scheme over 320,000 bits.

Figure 5.3 compares different combining schemes using a hard decoder,

which uses 1/2 convolutional FEC code with BPSK, QPSK, QAM-16, and

QAM-64. Figure 5.4 summarizes the performance of different combining schemes

using a soft decoder.

In all cases, we observe (i) ≈ (ii) > (iii). (i) and (ii) perform similarly,
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Figure 5.4: Soft combining gain comparison, where (i) combining before de-
modulation, (ii) combining after demodulation but before FEC decoding, and
(iii) combing after FEC decoding.

and only occasionally (i) is slightly better than (ii). However, (i) is limited

by the constraint that the retransmitted symbols must be the same as the

original symbols. This implies that same set of symbols must be retransmitted

and the retransmissions should also use the same data rate (i.e., the same

modulation and FEC code) as the original transmissions. This severely limits

the applicability of symbol combining and makes it hard to support partial

retransmission and rate adaptation for retransmissions.
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On the other end, (iii) is completely independent of the data rate (i.e.,

modulation and FEC). Data transmitted using different rates can be easily

combined at the digital level. Moreover, it can easily support partial retrans-

missions. However, as shown in Figure 5.3 and 5.4, its combining gain is lower

than (i) and (ii) by up to 2 dB since it cannot leverage the FEC coding gain.

(ii) achieves the best of both worlds. Its combining gain is close to the

maximum combining gain: (ii) yields the same SNR gains for BPSK and QPSK

as (i), and is at most 1 dB lower than (i) under a higher order modulation.

Furthermore, (ii) is flexible and can support partial retransmissions and

different modulation as we will show in Section 5.2.2. Therefore we use (ii).

Note that (ii) gives the same gain as (i) under BPSK and QPSK, but is slightly

worse under QAM because demodulation is independent across different bits

in BPSK and QPSK, which makes combining before and after demodulation

equivalent in BPSK and QPSK, whereas demodulation of different bits is cor-

related in QAM and combining before demodulation allows a bit to benefit

from the combining gain from other bits in the same symbol, thereby improv-

ing demodulation success rate.

5.2.2 Combining Partial Retransmissions

Partial data retransmission is another technique used to reduce retrans-

mission overhead. In WiFi, it is common to have corrupted frames that have

a small number of erroneous bits. Therefore, retransmitting an entire frame is

wasteful. PPR [50] uses PHY-layer hints to identify the bits that are likely to

91



be in error and only retransmits those bits. The concept of PPR is interesting.

However, there are three major limitations of PPR.
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Figure 5.5: PPR false positive ratio.

First, it is hard to determine an appropriate LLR threshold (after FEC

decoding) for deciding which bits are correct and which bits are in error. This is

because LLR threshold must be high enough that all bits in error are chosen to

be retransmitted. This is necessary because PPR selects bits for retransmission

after FEC decoding. However, if a large threshold is selected, a significant

number of bits that were received correctly also end up being retransmitted.

Figure 5.5 plots the false positive ratio (i.e., the ratio between the number of

bits that are correct but deemed in error versus the total number of actual

erroneous bits) versus the frame delivery rate. Each point in the curve is

generated by simulating 200 frame transmissions over a given SNR. For each

frame, we determine the LLR threshold (after FEC decoding) for which all

erroneous bits are selected for retransmission. For the selected threshold, we

determine the number of false positives and calculate the false positive ratio
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for that frame. Finally, we take the average of false positive ratios over all 200

frames and plot it against the delivery ratio of the 200 frames. We simulate

over a range of SNR values to generate the curve.

As we can see, the false positive rate can be very high. When the

delivery rate is 0.4 or lower, the false positive ratio is over 2, indicating that

we may retransmit over twice the number of erroneous bits. When the delivery

rate reduces further, the false positive ratio becomes 6 or higher.

Second, PPR discards the bits below the threshold. Given a significant

number of bits below the threshold may well be correct, it is important to use

these bits to improve decoding.

Third, PPR is applied after FEC decoding. As shown in Figure 5.3,

the benefit of combining after FEC is lower than the other alternatives.

Most importantly, PPR does not modify the rate adaptation and uses

the rate adaptation that is not aware of partial packet recovery. As a result, in

most cases the selected rate allows a packet to be delivered successfully in one

shot and gives little opportunity for partial packet recovery. Our evaluation

confirms this intuition and shows PPR performs similar to WiFi under the

existing rate adaptation.

Motivated by the benefit and limitations of PPR, we propose an ap-

proach to combine partial retransmissions. As PPR, we also identify likely

erroneous bits and perform partial retransmissions. Our approach differs from

PPR in the following ways. First, instead of using a fixed threshold to deter-
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mine if a bit is correct, we search for bits for retransmissions that maximize

throughput. Our approach does not require that all erroneous bits be retrans-

mitted since combining is done before FEC in our scheme and the FEC can

tolerate a few erroneous bits. We no longer need to select a threshold, but let

the rate adaptation scheme automatically balances the cost of retransmission

and delivery rate, as described in Section 5.3. Second, we do not discard bits

likely to be received in error. Instead, we combine all the received bits to

increase the data decoding probability. Third, we propose a combining aware

rate adaptation scheme, which explicitly takes into account partial retransmis-

sion and combining to select a more appropriate rate.

To reduce feedback overhead, we retransmit in a unit of OFDM sub-

carriers. Due to temporal stability within a subcarrier and frequency diversity

across subcarriers, symbols transmitted on the same subcarrier are likely to

experience similar SNR and symbols transmitted on different subcarriers tend

to experience different SNR. We compute Bit Error Rate (BER) of each sub-

carrier, and sort the subcarriers in an decreasing order of BER. Our rate

adaptation, described in Section 5.3, finds the worst k subcarriers for retrans-

mission (i.e., all bits on these subcarriers are retransmitted). The feedback

contains a bitmap of subcarriers, where 1 indicates the corresponding subcar-

rier requires retransmission. The transmitter concatenates all the bits required

for retransmission in the order of OFDM symbol index and then an increasing

order of subcarrier index, and maps them sequentially to all the subcarriers

during retransmissions. Since the receiver selects which bits to retransmit, it
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knows the mapping used by the transmitter.

The combining is performed by summing up the LLR values for any bit

that has more than one reception and feeding the resulting LLR values to the

Viterbi decoder. By leveraging information received previously despite having

low confidence, we can achieve high decoding rate and reduce retransmission

overhead.

5.2.3 Benefits of Combining

In general, combining is beneficial for three main reasons. First, com-

bining reduces retransmission cost and may potentially allow us to choose a

higher data rate. Since wireless losses are probabilistic, sometimes frames

can still be delivered successfully at a higher rate. Even when they are not

successfully delivered, the retransmission overhead is smaller and does not de-

grade throughput significantly. Second, combining is useful under frequent

fluctuations in the wireless channel (e.g., arising from mobility). Under un-

predictable wireless channel, losses are common. By leveraging information

from previously failed transmission, combining reduces the cost of failures.

Third, combining is also useful under dynamic interference due to reduced

retransmission cost in case of collision.

The same combining scheme works for all the scenarios. In all cases,

we use both preambles and data symbols to compute SNR for each subcarrier.

For the preamble, since we already know the reference symbol, we simply use

the distance between the expected and received constellation point to compute
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SNR. For the data symbol, since we do not know the ground truth, we use the

distance between the received and the few most closest constellation points to

derive SNR. Then we compute the variance σ2 = 1/SNR, and derive LLR as:

L(b) = log

(

∑

s∈S0(b)
e−

1
σ2 ((x−sx)2+(y−sy)2)

∑

s∈S1(b)
e−

1
σ2 ((x−sx)2+(y−sy)2)

)

. (5.2.3)

The LLR formula is general and applicable with or without interference,

since the variance in the formula captures background noise when there is no

interference, and captures both background noise and interference otherwise.

5.3 Combining-aware Rate Adaptation

5.3.1 Rate search

Traditional rate adaptation selects a rate to minimize the time for the

current transmission. That is, it treats each transmission and retransmission

as isolated units and picks a rate to optimize these individual units indepen-

dently. However, we observe that multiple transmissions associated with the

same frame should be considered as one unit and our goal is not to optimize

individual transmissions, but to optimize the entire process of successfully

delivering one frame.

The transmission time depends on the data rate used and the amount

of data to be transmitted. For example, one could either retransmit more data

bits at a higher rate (less reliably) or retransmit fewer bits but at a lower rate

(more reliably). Therefore our rate adaptation should search not only for the
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data rate used for each transmission but also how much data to retransmit

every time.

Figure 5.6: Rate search tree.

To make the search scalable and reduce feedback overhead, we retrans-

mit in a unit of subcarriers. It means that if a subcarrier is selected for

retransmission, then all the bits that are transmitted on that subcarrier dur-

ing the original transmission are retransmitted. To select the subcarriers for

retransmission, we calculate the average BER for each subcarrier, and then

sort the subcarriers in a decreasing order of BER. We incrementally add one

subcarrier at a time to retransmit, starting with the worst subcarrier (highest

BER). Each time we search over all the data rates and compute the expected

transmission time and delivery rate. If the delivery rate is below a threshold,

97



we repeat the search process for the next retransmission. This process con-

tinues until we populate the rate search tree. Figure 5.6 shows an example of

rate search tree, where each branch of the tree corresponds to a transmission

strategy. As it shows, the left-most branch corresponds to transmitting at the

rate of MCS[0] for the first time, transmitting the worst subcarrier in the first

transmission at the rate of MCS[0] for the second time, and transmitting the

worst subcarrier (after combining) at the rate of MCS[0] for the third time.

The branch terminates as soon as all the bits in a frame are successfully de-

livered or the maximum number of retransmissions is reached. Our evaluation

considers frame delivery rate over 99% or 2 retries as the stopping criterion.

Once we build the rate search tree, the best transmission strategy for a frame

is simply the branch that yields the minimum transmission time. It should

be noted that the BER based ordering of the subcarriers may change after

retransmission, as the receiver combines all the transmissions associated with

the same bit and re-sorts the subcarriers according to the average BER (after

combining).

The transmission time of each branch is calculated as:

TotalT ime =
∑

i

T imei =
∑

i

(sizei/ratei + overheadi) (5.3.1)

where sizei and ratei are size and data rate of the i-th transmission

and overheadi is the overhead of the i-th transmission. sizei depends on

the delivery rate after combining all transmissions that have occurred so far.

overheadi includes the header overhead and MAC overhead such as DIFS,
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modulation BER

BPSK Q(
√
2snr)

QPSK Q(
√
snr)

QAM-16 (bits 0 and 2) 1
2
Q(
√

snr/5)

QAM-16 (bits 1 and 3) Q(
√

snr/5)

QAM-64 (bits 0 and 3) 1
4
Q(
√

snr/21)

QAM-64 (bits 1 and 4) 1
2
Q(
√

snr/21)

QAM-64 (bits 2 and 5) Q(
√

snr/21)

Table 5.1: BER as a function of SNR for different modulation

SIFS, and feedback overhead. Our implementation has two types of feedback:

partial ACK and complete ACK. A partial ACK contains one OFDM symbol

to specify the bitmap of which subcarriers to retransmit and the data rate to

use for retransmission. A complete ACK is the same as a WiFi ACK.

5.3.2 Computing delivery ratio

An important step in rate search is to compute the delivery rate. We

compute it as follows.

• Derive uncoded BER (i.e., BER before FEC decoding): Our goal is to

compute the probability of each bit being in error after combining multiple

transmissions. To achieve this, we (i) derive SNR for each bit, (ii) sum up

the SNR of all the transmissions involving the same bit, and (iii) map the

combined SNR to BER using Table 5.1.

Below we elaborate step (i). For the received bits, we calculate the LLR

value for each bit using the expression (5.2.1). We then calculate the

99



probability of having an error in a received bit using:

Pb(k) =
1

(1 + e|sk|)
(5.3.2)

where |sk| is the absolute LLR value of bit k and Pb(k) is the probability

of bit k being in error [94]. We then use the inverse of the formulas in

Table 5.1 to map BER to SNR of individual bits.

Note that we calculate the BER separately for each bit location in a given

symbol. For example, each QAM-16 symbol has four bits b0, b1, b2 and b3.

As shown in Table 5.1, the BER experienced by b0 and b2 is different from

that of b1 and b3. This is because the way constellation points are located

as shown in Figure 5.7. Therefore, it is necessary to have a separate BER

estimate for each bit location to achieve high accuracy. We empirically

derive BER for QAM as shown in Table 5.1.

To compute the uncoded BER of future transmissions, which is required

for rate search, we use the channel state information (CSI) of the previous

frame to make prediction. The CSI consists of M × N matrices Hs, each

of which specifies amplitude and phase between pairs of N transmitting

and M receiving antennas on subcarrier s. The CSI is estimated using the

preamble of a frame, and allows us to compute SNR for each subcarrier.

For simplicity, we use the previous CSI for prediction. Alternatively, one

may also use exponential weighted moving average (EWMA) (i.e., y =

αx+ (1− α)y, where x is the current sample, y is the prediction) or Holt-

Winter algorithm [53] for prediction.
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Figure 5.7: Constellation points for QAM-16.

• Compute Effective SNR: We calculate the effective SNR by averaging BER

calculated in the first step and then mapping it back to the SNR for each

modulation using the procedure specified in [38].

• Lookup Delivery Ratio: We use a standard pre-computed lookup table

(e.g., as in [38]) to get the delivery ratio for each data rate based on the

effective SNRs calculated in the previous step. The table contains delivery

ratios for SNR values over a range of −10 to 30 dBs and packet sizes from

25 to 4000 bytes. The table is generated offline in Matlab by sending and

decoding 1000 packets for each SNR value over a flat fading channel. This

step is the same as [38].
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The above steps work for both SISO and MIMO. Also, the last two

steps can be replaced by the delivery ratio estimation techniques we propose

in Section 4.2, which will result in improved performance. The techniques in

Section 4.2 were developed after these evaluations.

Speed up: To enhance the efficiency of our search, we prune the search tree in

the following way. We perform breath-first search over the rate search tree and

keep the top M branches at each level in terms of throughput so far (computed

as the expected number of bits delivered so far divided by the transmission time

including the overhead), and prune all the other branches. We only explore

the top branches deeper. We control the value of M to balance the tradeoff

between the computation time and optimality. Our evaluation uses M = 4.

Furthermore, when we search for the number of subcarriers to retransmit, we

stop whenever adding a subcarrier to retransmit reduces throughput. Finally,

we limit the depth of a tree by looking ahead 2 transmissions.

Energy minimization: Our rate search is general and can be used to opti-

mize different objectives. In particular, we can use the same search algorithm

to minimize energy consumption. We use the energy model proposed in Sec-

tion 3.1.2 to compute the energy consumption. We compute ETT for each

transmission to derive energy and select the branch that leads to the lowest

energy. Our evaluation in Section 5.5 shows our approach saves considerable

energy.
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Supporting MIMO: Our rate search can support MIMO. There are two

differences in MIMO. First, there are more rates under MIMO, and the rate

search tree becomes larger. So careful pruning is important to keep com-

putation time low. For example, we can search around the neighborhoods

of the previous rates. Second, we use MIMO post-processed SNR (pp-SNR)

to compute the new delivery rate after performing a new retransmission un-

der MIMO. In spatial diversity, transmissions between different transmitter

and receiver antennas are spatially combined and we can apply the formulas

in [55] to compute pp-SNR. In spatial multiplexing, a sender stripes a large

frame across multiple antennas and transmits these multiple streams simulta-

neously. We derive BER for each subcarrier as usual, and compute effective

SNR by averaging BER over all subcarriers and all spatial streams. As the

data rate increases in MIMO, frame aggregation can be used (as usual) to

minimize MAC/PHY overhead in the retransmission.

5.4 Protocol Implementation

We implement our approach in USRP [92]. To reduce feedback over-

head, we let the receiver measure log-likelihood, perform rate search, and feed

back the selected rate to the sender. The receiver feedback not only includes

the data rate for retransmission but also which subcarriers to retransmit us-

ing a simple bitmap, where 1 at the i-th position indicates that the sender

should retransmit data that was sent on the i-th subcarrier in the original

transmission. To enhance reliability of feedback, we transmit the feedback at
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Figure 5.8: USRP implementation

the lowest data rate in our implementation.

As shown in Figure 5.8, the receiver processes the incoming signals as

follow. It first uses cross correlation to detect the beginning of an incoming

frame [32], corrects for frequency offset [32], estimates the channel coefficient

by dividing the received preamble by the known preamble. Then it uses the

same preamble to compute the noise variance, demodulates the analog signals

to digital bits, and derives LLR for each bit. It further combines the LLR

values for the bits that have been received earlier and passes to FEC decoder.

If it fails, the bits and their LLR values are stored for future combining.

Otherwise, they are delivered to the upper layer. Meanwhile, based on the

combined results and latest channel estimate, the receiver selects the rate as

described in Section 5.3.

Our implementation uses a bandwidth of 1 MHz, 80 OFDM subcarri-

ers, FFT window of size 128, cyclic prefix of 32 samples, and FPGA running
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at 100MHz. We use the convolutional coding implementation from the IT++

public library [49]. 2.49GHz frequency is used to avoid external interference

from the campus network. We modify the default GNU Radio OFDM imple-

mentation to realize symbol combining, receiver feedback, retransmission, and

rate adaptation.

5.5 Simulation Evaluation

5.5.1 Evaluation Methodology

In this section, we first use trace driven simulation to compare different

schemes in Matlab. In Section 5.6, we further compare using USRP implemen-

tation. We collect three channel traces from static environments, and another

three traces from mobile environments with human walking speed. The three

mobile traces are collected in an office environment using 1 moving receiver and

3 static senders. The three static senders are 7m away from each other. Each

trace corresponds to one of the three senders transmitting while the receiver

is moved at a walking speed.

We use Intel WiFi Link 5300 (iwl5300) IEEE 802.11 a/b/g/n wireless

network adapters to collect the CSI of each frame preamble across all subcar-

riers. These NICs have three antennas. We use 802.11n, and enable all three

antennas at both the sender and receiver. The modified driver [39] reports the

channel matrices for 30 subcarrier groups, which is about one group for every

two subcarriers in a 20 MHz channel according to the standard [1] (i.e., 4

groups have one subcarrier each, and the other 26 groups have two subcarriers
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each). We use a transmission power of 15 dBm. Three MIMO streams are

sent, so the NICS report CSI in the form of 3× 3 matrices for each frame. In

our evaluation, we account for the SIFS/DIFS and feedback overhead, which

includes MAC-layer ACKs and feedback of which subcarriers to retransmit.

We compare the following approaches. All schemes except Smart and

SmartNoCombine use Effective SNR [38] based rate adaptation, which is state-

of-the-art rate adaptation scheme and is shown to capture frequency diversity

quite accurately. Effective SNR maps the SNR of each subcarrier to BER, av-

erages the BER across subcarriers, converts it back to SNR, and uses effective

SNR to look up the frame delivery rate table.

• WiFi: Whenever a frame does not pass CRC check, the entire frame is

retransmitted. The receiver discards a failed transmission, and decodes

a retransmission independently.

• SOFT: When a frame is corrupted, the entire frame is retransmitted.

It combines symbols from all transmissions using maximal ratio com-

bining (MRC) and then performs demodulation and FEC decoding on

the combined signals. If the combined result passes CRC, it is delivered

to the upper layer. Otherwise, an entire frame is retransmitted until it

succeeds.

• PPR: Low-confidence bits are retransmitted. The receiver uses a confi-

dence metric like LLR to extract the bits likely to be correct from each

reception and merges them together. Our implementation differs from
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the original PPR [50] in that (i) we use LLR values from demodulation

to identify the low-confidence bits and retransmit coded bits (i.e.. be-

fore FEC decoding), which is better than after FEC decoding (done in

PPR), and (ii) we retransmit in units of subcarriers to reduce feedback

overhead.

• Smart retransmission and rate adaptation (Smart): This is our main

approach as described in Section 5.3, which supports combining partial

retransmissions before FEC decoding and combining-aware rate adapta-

tion.

• SmartNoComb: This approach is the same as Smart, but only enables

partial retransmission and disables combining. The rate adaptation also

uses a similar tree-based rate search in Section 5.3 except that we do

not consider the combining gain (i.e., the retransmission bits are taken

as they are without combining with the previous receptions). The dif-

ference between PPR and SmartNoComb reflects the benefit of partial

retransmission aware rate adaptation, and the difference between Smart-

NoComb and Smart reflects the combining gain.

• SmartUnaware: This is the same as Smart Retransmission except that

the rate adaptation uses effective SNR per transmission and does not

optimize rate selection across multiple transmissions. This is a useful

reference for us to quantify the benefit of combining-aware rate adapta-

tion.
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5.5.2 Performance Results

Static networks: We first evaluate the performance using the static traces.

Since the channel is usually stable within a transmission time of a frame, the

SNR of preambles is used for trace-driven evaluation. This makes it easy to

use the same traces to evaluate different frame sizes. We scale the SNR across

subcarriers uniformly up and down to get a complete SNR range. In each run,

we transmit 400 frames. We multiply the symbols in a frame by the chan-

nel coefficients as specified in the CSI trace, and add appropriate amount of

Additive White Gaussian Noise (AWGN). The CSI traces are recorded assum-

ing that the noise variance is 1. The frame is then decoded. Based on the

scheme being evaluated, the appropriate rate adaptation scheme is called to

calculate the appropriate data rate for the next transmission. We use a max

retransmission count of 7, after which the frame is dropped.

Figure 5.9 compares our scheme with the existing schemes using 4000-

byte frames. This is a common setting for IEEE 802.11n, since frame aggre-

gation is turned on by default in commodity software drivers [8]. On average,

our scheme out-performs WiFi by 26%, SOFT by 23%, PPR by 19.5%, Smart-

NoComb by 3.5%, and SmartUnaware by 19.5%. These numbers indicate: (i)

Smart yields the best performance by using both combining and combining-

aware rate adaptation, (ii) SmartNoComb is the next best performer due to

its partial retransmission-aware rate adaptation, and (iii) WiFi, SOFT, PPR,

and SmartUnaware all perform similarly since the rate adaptation tends to

pick a rate that allows the transmission to be delivered successfully in one try
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Figure 5.9: Intel static traces with 4000-byte frames: the average throughput
of WiFi, SOFT, PPR, Smart, SmartNoComb and 17.7 Mbps, 18.1 Mbps, 18.67
Mbps, 22.31 Mbps, 21.59 Mbps and 18.67 Mbps respectively.

and leaves little opportunity for PPR, SOFT, and SmartUnaware to improve

further. Therefore combining-aware rate adaptation is essential to the perfor-

mance. Furthermore, if we consider the traces where 75% of the frames result

in retransmission, Smart shows 15% performance improvement over SmartNo-

Comb. This shows the combining provides significant benefit during retrans-

missions.

Note that the maximum frame size allowed in 802.11n is even larger:

up to 64 KB [66], and the gain of our scheme will increase further with the

frame size.

Figure 5.10 compares different schemes using 1000-byte frames. Our

schemes continue to perform the best. On average, it out-performs WiFi by

12%, SOFT by 10%, PPR and Unaware combining rate adaptation by 8%, and
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Figure 5.10: Intel static traces with 1000-byte frames: the average throughput
of WiFi, SOFT, PPR, SmartNoComb ,SmartUnaware and Smart are 16.72
Mbps, 16.93 Mbps, 17.36 Mbps, 18.38 Mbps, 17.35, and 18.65 Mbps, respec-
tively.

SmartNoComb by 1.5%. The reduced benefit is due to relatively larger MAC

overhead for a smaller frame size. Note that the selected rate curves contain

a few large jumps. This is because our static traces contain a few subcarriers

with very low SNR. Due to such strong frequency selectivity, 1/2 FEC with

higher modulation out-performs 3/4 FEC using lower modulation and the 3/4

FEC date rates never get selected.

Mobile networks: Next we compare the performance using the mobile

traces. Figure 5.11 shows the throughput under 4000-byte frames. As it

shows, on average, our scheme out-performs WiFi by 31.5%, SOFT by 22%,

PPR by 13.5%, SmartNoComb by 4.5%, and SmartUnaware by 13%. The

performance is consistent with the static traces: Smart continues to perform

the best, followed by SmartNoComb. The other four schemes perform similarly
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due to ineffective rate adaptation. Again, when we consider the traces where

75% of the frames are retransmitted, Smart out-performs SmartNoComb by

12%, which shows the benefit of combining especially during retransmission.

Compared with the static traces, the throughput curves of our mobile traces

are more smooth since QPSK with 3/4 FEC works sometimes and the rate

smoothly changes from QPSK 1/2 FEC to QPSK 3/4 FEC to QAM-16 1/2

FEC.
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Figure 5.11: Intel mobile traces with 4000-byte frames: the average throughput
of WiFi, SOFT, PPR, Smart, SmartNoComb and SmartUnaware are 25.55
Mbps, 27.59 Mbps, 29.62 Mbps, 33.62 Mbps, 32.16 Mbps and 29.76 Mbps
respectively.

Figure 5.12 further compares the performance using 1000-byte frames

in the mobile traces. On average, Smart out-performs WiFi by 19%, SOFT by

11%, PPR by 6%, SmartNoComb by 2%, and SmartUnaware by 5%. The rela-

tive rankings of different schemes remain the same: Smart and SmartNoComb

continue to perform well owing to their more effective rate adaptation.
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Figure 5.12: Intel mobile traces with 1000-byte frames: the average throughput
of WiFi, SOFT, PPR, Smart, SmartNoComb and SmartUnaware are 19.58
Mbps, 20.97 Mbps, 21.94 Mbps, 23.25 Mbps, 22.86 Mbps and 22.13 Mbps
respectively.

To further understand the dynamics of different schemes, we examine

the number of transmissions and data rates used by each scheme for 4000-byte

frames in the mobile traces. Figure 5.13(a) compares the number of trans-

missions under different schemes. As we would expect, all schemes except

SmartNoComb and Smart Retransmission complete most of their transmis-

sions in one try. Specifically, WiFi, SOFT, PPR and SmartUnaware complete

84-86% of the transmissions in 1 try. In comparison, since the rate adaptation

in Smart and SmartNoComb are both aware of partial retransmissions and

can select a more aggressive rate, they complete 60% and 66% of their trans-

missions in first try, respectively, and 37% and 29% in two tries. The 6% gap

between Smart and SmartNoComb shows that combining allows us to select

an even more aggressive rate, thereby achieving higher throughput.
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Figure 5.13: Comparison of numbers of transmissions and data rates in mobile
traces using 4000-byte frames.

Figure 5.13(b) further compares the data rates used in different schemes.

As we would expect, Smart and SmartNoComb tend to select higher rates,
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whereas the rates selected by the other four schemes are considerably lower.

For example, the median rate selected by Smart is over 50 Mbps, compared

to 30 Mbps in WiFi.

Under interference: Next we evaluate the performance under interference.

We select a trace of one link as the foreground traffic, and a trace of another

link as the interference and let these two transmissions collide randomly with

a varying probability. As shown in Figure 5.14, Smart out-performs the other

schemes under interference. The throughput gains over WiFi are up to 30%.

As before, SmartNoComb continues to perform well due to its effective rate

adaptation. The benefit of PPR and SmartUnaware over WiFi increases in

the presence of interference because interference allows them to perform par-

tial retransmissions more frequently. In comparison, the performance benefit

of SOFT is still limited because it retransmits complete frames even though

significant portions of the frames have already been received correctly.

Energy comparison: As mentioned earlier, Smart Retransmission can not

only improve throughput, but also reduce energy consumption since it reduces

transmission time. We assume the access point (AP) runs the rate adapta-

tion scheme, and quantify the energy consumption of a client that is either

transmitting to or receiving from the AP. Figure 5.15(a) and (b) compares

the average energy consumption of all schemes using 4000-byte frames in the

static and mobile traces, respectively. As we can see, in the static traces,

Smart reduces WiFi transmitter energy by 25%, SOFT by 18%, PPR by 15%,

SmartNoComb by 1%, and SmartUnaware by 15%. The receiver also shows
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Figure 5.14: Throughput under interference with interference link power scaled
down by 0.1 and collision probability is 10%.

similar energy savings. For mobile trace, the energy savings are 18% over

WiFi, 11% over SOFT, 8.5% over PPR, 7% over SmartUnaware and 3% over

SmartNoComb. Similarly, the Smart receiver consumes less energy due to

reduced reception time.

5.6 Testbed Experiments

Next we evaluate the performance of our scheme using USRP. We have

two USRP nodes serve as a transmitter and receiver, and the third USRP

node is used to inject narrowband interference. Both flows use 1 MHz channel.

The interference allows us to introduce frequency diversity (common in a 20

MHz WiFi channel) to a 1MHz USRP channel. The center frequency of the

interfering USRP is selected so that it partially overlaps with the foreground

flow for a given number of subcarriers. As in the simulation, we account for
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Figure 5.15: Energy consumption using Intel traces with 4000-byte frames.

the feedback overhead in the testbed experiments. We ignore the DIFS/SIFS

overhead since they are negligible compared to the data transmission time

under 1 MHz channel.

Varying Transmit Power: We first evaluate the performance of our scheme
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by varying the transmit power of the foreground flow through changing its TX

gain. The transmit power and bandwidth of the background interfering node

are both fixed. Figure 5.16(a) shows the average throughput of 1000-byte

frames using Smart, SOFT, and WiFi as we vary TX gains. For each TX

gain value, we average across five runs. Smart outperforms both WiFi and

SOFT by 11–52% due to its combining-aware rate adaptation and combining

gain. This effect is most prominent for Tx-Gain 15 when both WiFi and

SOFT transmit at MCS-3 while Smart transmits at MCS-5 during the first

transmission and uses the MCS-7 for retransmission, thereby achieving a much

higher throughput. SOFT performs similar to WiFi since the selected rate lets

most transmissions succeed in one try and there is little opportunity for SOFT

to leverage the combining gain.

Figure 5.16(b) shows the CDF of the number of erroneous bits in a

frame after the first and second transmissions for SOFT and Smart under Tx-

Gain 15. As mentioned above, Smart selects MCS-5 for the first transmission,

which results in more bits in error when compared to SOFT, which selects

MCS-3. However, the number of erroneous bits after the second transmission

drop quickly in Smart due to its effective combining and rate adaptation. The

numbers of erroneous bits in Smart and SOFT do not need to be zero in order

for a frame to be delivered successfully due to the use of FEC.

Varying Interference Bandwidth: Next we fix the transmit power and

the bandwidth of both transmitters, and vary the amount of the overlapping

bandwidth between the foreground and background flows by changing the
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Figure 5.16: Throughput under varying transmission power and CDF of num-
ber of erroneous bits in 1000-byte frames.

center frequency of the background interference. The center frequency of the

foreground flow is 2490MHz, and the center frequency of the background in-

terference varies from 2490.7MHz to 2490.6MHz to 2490.2MHz. These center
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frequencies correspond to an overlapping region of 30%, 40% and 80%.

Figure 5.17 compares the average throughput of Smart, SOFT, and

WiFi for these settings using 1000-byte frames. The throughput is averaged

over five runs. Smart again shows significant throughput improvement: it

outperforms WiFi and SOFT by 40%, 14% and 36% under these overlap set-

tings, respectively. The improvement is the largest when the number of bad

subcarriers is small because Smart needs to retransmit only a few subcarriers.

However, even when 80% of the subcarriers have interference, Smart is able to

out-perform WiFi by 36% due to its effective rate selection.
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Figure 5.17: Throughput under varying interference bandwidth.
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Chapter 6

Conclusion

The proliferation of wireless networks is resulting in an explosive growth

of wireless devices and traffic demands. Consequently, it is essential that the

protocols used by these devices are efficient and provide good performance.

The goal of this dissertation is to address these problems using rate

adaptation. We propose three schemes, which, i) minimize energy consump-

tion, ii) estimate delivery ratio in wireless channels with bursty errors and, iii)

maximize throughput using partial retransmission.

For i), we collect and analyze power measurements from different wire-

less cards and then derive energy models for transmission and reception.

Based on the models, we develop a model-driven energy aware rate adap-

tation scheme. Our energy models show an accuracy error that is consistently

below 5%. Furthermore, the simulation and experiments show that our rate

adaptation scheme reduces energy by 14-37% over the existing approaches.

In ii), we develop two complementary delivery rate estimation tech-

niques that explicitly take into account the bursty errors and improve estima-

tion accuracy. Our schemes exhibit an average error of 3% and exceed 10% in

only 4%–7% of the cases. In comparison, the existing state of the art technique
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(effective SNR) has an average error of 8− 17% and has error exceed 10% for

27%–50% of the cases. The improved accuracy of our estimator allows us to

more effectively optimize and manage wireless networks. We further develop

a new interleaver to reduce the bursty error, and a rate adaptation scheme

that incorporates both enhanced delivery rate estimation and interleaver. Our

evaluation shows these approaches are effective in improving the predictability,

throughput, and energy of wireless networks.

We achieve iii), by developing a combining-aware rate adaptation, which

effectively harnesses partial retransmission by identifying the utility in a failed

transmission and jointly optimizing with the transmission data rate to min-

imize the total transmission time for the frame. Our approach shows up to

32% throughput improvement over existing rate adaptation schemes and in-

creases the rate by 1 to 2 steps over the rate selected by the conventional rate

adaptation schemes.
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