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The main objectives of this work were the development of the partitioning 

interwell tracer test for estimation of nonaqueous phase liquid (NAPL) saturation 

in saturated porous media, performance assessment of surfactant enhanced aquifer 

remediation using partitioning tracers and screening and selection of 

environmentally acceptable surfactant solutions for surfactant enhanced aquifer 
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The first step in screening partitioning tracers involved performing several 

batch experiments to determine partition coefficients of about 28 alcohols and 10 

NAPLs. Partitioning tracer tests were performed to estimate NAPL saturation in 

soil packs with known amounts of NAPL. A close match between NAPL 

saturation estimates based on mass balance and partitioning tracers was obtained 

in column experiments with several NAPLs thus validating the partitioning 

interwell tracer test as an effective tool for estimating residual NAPL saturation. 

The next step involved the development of laboratory procedures for designing 

field partitioning tracer tests. Two field partitioning tracer tests were designed 

using these procedures. The first field test was a partitioning interwell tracer test 

(PITT) performed by The University of Florida and EPA at the Operational Unit 1 

site at Hill Air Force Base, Utah and the second test was the PITT performed by 

INTERA Inc. at the Operational Unit 2 site at Hill Air Force Base, Utah. 

Surfactants were selected by performing phase behavior experiments with 

surfactant, NAPL, alcohol, electrolyte and water mixtures. The surfactants used 

were the anionic surfactants, sodium diamyl sulfosuccinate, sodium dihexyl 

sulfosuccinate and sodium dioctyl sulfosuccinate. Surfactant solutions with low 

viscosities and quick equilibration times were selected for use in soil column 

experiments. Alcohols such as isopropyl alcohol and secondary butyl alcohol 

were used to minimize gel/liquid crystal formation and emulsions and to lower 

equilibration times. These favorable characteristics were confirmed by 

measurement of low pressure losses (hydraulic gradients) across the soil packs 

during surfactant flooding in several column experiments. The effect of the 

addition of polymer to the surfactant solution on surfactant remediation was 

IX 



investigated by performing several surfactant remediation experiments with 

surfactant, alcohol and polymer solutions. Based on all the column experiments, a 

laboratory procedure for designing field surfactant enhanced aquifer remediation 

tests was developed. This was used to design a surfactant flood at Hill AFB, site 

Operational Unit 2. 

Both the laboratory and field results showed that with the proper surfactant 

selection, laboratory procedures and process design, more than 99% of the 

DNAPL can be removed from sandy/gravely soil of the type found in Hill AFB, 

Utah. This is a much more favorable result than previously reported and a strong 

indication that surfactant remediation is a viable alternative, perhaps the best 

alternative for these very difficult DNAPL sites. Partitioning tracers and other 

site characterization played a key role in this success and were an integral part of 

all this research. 

The main contributions of this work were the validation the PITT for 

estimation of NAPL saturations and performance assessment of surfactant 

remediation and development of laboratory procedures for selection of both 

partitioning tracers and surfactants for application in field PITT and SEAR 

operations. 
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Chapter 1: Introduction 

The research presented in this work was part of the ongoing surfactant 

enhanced aquifer remediation (SEAR) research at the University of Texas at 

Austin. The main focus of this work was the application of partitioning tracers for 

estimation of nonaqueous phase liquid (NAPL) saturation in contaminated regions 

and use of surfactant solutions to remediate contaminated soil. The fundamentals 

of applying surfactant technology for SEAR applications were adapted from 

lessons learned from enhanced oil recovery (EOR) research (Pope and Wade, 

1995). In the following sections, the motivation for this work, review of previous 

and ongoing work and a description of all the Chapters is provided 

1.1 MOTIVATION 

Water is a precious resource. It is used for a variety of applications such 

as household use, irrigation, hydroelectric power and most industrial processes. 

About one fifth of the freshwater is supplied from groundwater sources (Solley et 

al., 1988). Groundwater sources are sometimes contaminated by a variety of 

pollutants, both organic and inorganic. The inorganic contaminants usually 

consist of heavy metal ions. Chief among the organic contaminants are 

chlorinated hydrocarbons and petroleum hydrocarbons. 

In this work the terms nonaqueous phase liquid (NAPL) and contaminant 

are used extensively. The term contaminant refers to a chemical species that is 

unwanted in a given environment. When this species contaminates air or water, it 

is termed contaminant. Contaminants can exist in air, water, surfactant solutions 

I 



and as an adsorbed component on surfaces. The term NAPL refers to a separate 

nonaqueous liquid phase. This can be either one contaminant or a mixture of 

several chemical species. When the term NAPL is used, it means that there is a 

residual saturation of the nonaqueous liquid. The term concentration is used to 

characterize contaminant quantity in a given phase and saturation is used to 

characterize NAPL quantity as a function of pore volume. 

When the density of an organic contaminant is greater than 1, it is termed 

dense nonaqueous phase liquid (DNAPL). Similarly if the density of the 

contaminant is less than 1, it is termed light nonaqueous phase liquid (LNAPL) 

(Villaume, 1985; USEPA 1991). Chlorinated hydrocarbons such as 

tetrachloroethylene (PCE), trichloroethylene (TCE), carbon tetrachloride (CTET) 

etc. are common DNAPLs and jet fuel, gasoline, diesel etc. are common LNAPLs. 

Contamination problems due to LNAPLs are usually limited by the low 

density of the contaminants which cause them to float on water. LNAPLs are 

easier to characterize than DNAPLs because of their buoyancy. The presence of 

LNAPLs in water is usually characterized by odor and taste at typical 

groundwater levels. On the other hand, contamination of groundwater by 

chlorinated hydrocarbons are not limited by the water table. They are common 

contaminants because they exhibit (Pankow and Cherry, 1996): 

1. low liquid viscosities (less than 1 cp) and low interfacial tensions which 

help movement into the subsurface. 

2. high volatilities which enables gases to move into the unsaturated zone. 

3. low absolute solubilities which limit pump and treat methods. 
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4. high solubilities (ppm levels) relative to drinking water standards (ppb 

levels). 

5. low degradabilities. 

Due to all these properties, chlorinated hydrocarbons can penetrate the soil 

and contaminate groundwater. Once these NAPLs penetrate the soil, they are held 

in place in the form of NAPL blobs or ganglia by capillary forces (Hunt et al., 

1988a,b; Kueper, 1989). This process of entrapment of NAPL in the subsurface is 

similar to trapping and release of oil in natural petroleum reservoirs. The factors 

which affect trapping and mobilization of oil in porous media are described by 

Stegemeier ( 1977) and Lake ( 1989) among many others. The trapped blobs or 

ganglia remain as sources of contaminant for indefinite time periods in subsurface 

soils and present a long term threat to groundwater quality as they slowly dissolve 

into groundwater (Schwille, 1988; Mackay and Cherry 1989; Abriola, 1989; 

Mercer and Cohen, 1990). In some instances the DNAPL may accumulate in 

depressions and on top of low permeability formations in the form of pools. In 

order to eliminate continual contamination of groundwater by slow dissolution of 

NAPL blobs and pools by flowing water, the source of contamination must be 

removed. 

A figure showing the geological cross section of a DNAPL contaminated 

aquifer is given in Figure 1.1. This is a cross section of a DNAPL contaminated 

site Operational Unit 2 at Hill Air Force Base, Utah. A lower confining aquitard 

can be seen in Figure 1.1. Above the lower confining aquitard there is a 

permeable sand gravel layer. DNAPL was detected as a pool on top of the 

aquitard in both the depressions observed in Figure 1.1 (Radian, 1993, Brown, 
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1997). Laboratory experiments were carried out in this work to design a 

partitioning tracer test and surfactant flood at Hill Operational Unit 2 to remediate 

DNAPL from the smaller depression seen in Figure 1.1. 

One of the oldest technologies to remediate these NAPL blobs is the pump 

and treat method. This involves pumping of contaminated water from the 

contaminated zones followed by treatment of the contaminated water at the 

surface by air stripping, steam stripping, charcoal filtration and various other 

means. The recovery of contaminant by pump and treat is dependent on the mass 

transfer rates between the NAPL and the water flowing across the NAPL-water 

interface. Remediation of NAPL-contaminated aquifers is limited by parameters 

such as flow rates, NAPL composition and mass transfer rates (Gellar and Hunt, 

1993). These mass transfer rates are in tum dependent on the surface area 

available for mass transfer (Powers et al., 1991). The dissolution of NAPL under 

pseudo-steady state and transient conditions has been measured by Powers et al., 

(1992; 1994). The dissolution kinetics of DNAPL pools was studied by Whelan 

et al., (1994) who showed that DNAPL mixtures exhibited lower aqueous 

solubilization than respective aqueous solubility of the contaminants. Pulsed 

pumping was shown to enhance aqueous contaminant concentrations. Low 

aqueous solubilization of DNAPL mixtures has also been attributed to dilution 

effects (Jackson and Mariner, 1995) caused by hydrodynamic dispersion, mixing 

of contaminated and uncontaminated water, mixing in the extraction system and 

volatilization of volatile organic carbon compounds during pumping operations. 

These dilution effects can affect remediation operations adversely. A multiphase 

flow and transport model for simulating NAPL intrusion, attainment of immobile 
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state, dissolution and transport in the aqueous phase in both homogeneous and 

heterogeneous porous media was developed by Mayer and Miller (1996). The 

model was used to show the importance of porous media heterogeneity on the 

NAPL dissolution process. 

The effectiveness of pump and treat is greatly limited by extremely low 

solubilities of the contaminants in water and low groundwater velocities (Mackay 

and Cherry 1989; Fountain et al., 1991). Based on the equilibrium solubilities of 

the NAPL in water, it takes several years to several decades to remediate typical 

contaminated zones (Kueper et al., 1993). This is compounded by the fact that 

the rate of recovery of NAPL decreases as the NAPL blobs get smaller and hence 

the area available for dissolution is reduced (Powers et al., 1991). For a given 

porous medium, the only way to increase the NAPL recovery is by either 

increasing the injection rates which increase the viscous forces on the NAPL and 

cause mobilization of NAPL or, lowering the interfacial tension between NAPL 

and water (Hunt et al., 1988a,b). In practice, increasing the injection rate 

sufficiently high to mobilize NAPL is not feasible (Conrad and Wilson, 1992). 

Surfactant remediation is one of the emergent technologies being 

developed to remediate contaminated soil. Surfactants can be used to vastly 

increase the solubility of the contaminants in water, hence the potential for 

increasing the rate of NAPL dissolution (Fountain et al., 1991, 1996). Surfactants 

also lower the interfacial tension at the water-NAPL interface which if sufficiently 

low will result in mobilizing the NAPL (Fountain et al., 1991). The goal of 

surfactant enhanced oil recovery is to achieve ultra-low IFT so that the oil can be 

economically recovered with a small amount of surfactant that mobilized the 
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residual oil very efficiently. However, mobilization of DNAPL in aquifers in not 

always desirable because of concerns of downward migration (Fountain et al., 

1991; Pankow and Cherry, 1996). 

Before the DNAPL can be removed, it must be located in the subsurface, 

and this turns out to be very difficult in many cases (Mackay and Cherry, 1989). 

In the last 15 years of hydrogeological practice, several methods have been 

developed for characterizing dissolved-phase plumes of contaminants. 

Conventional coring methods provide point measurements of contaminant 

concentrations and require interpolation of often sparsely distributed data to 

estimate total NAPL volumes in the flow domain. The number of sampling 

locations is usually limited by cost, including the high cost of obtaining the cores 

and subsequent laboratory analysis for contaminant concentrations. There are 

several other limitations to coring methods that are site specific and will not be 

discussed here, but are nevertheless serious problems under some circumstances. 

Studies of residual DNAPL distribution in heterogeneous, sandy aquifer materials 

indicate that cores are unlikely to provide reliable estimates of the volume of 

DNAPL at the field scale because the representative elementary volume of 

residual DNAPL appears to be much larger than that provided by cores (Mayer 

and Miller, 1992). It has now become desirable to move away from reliance on 

core samples alone to estimate DNAPL volumes in the subsurface and to use 

interwell tests to estimate the residual or pooled DNAPL volumes over 

meaningful distances (Jin et al., 1995; Wilson and Mackay, 1995). The use of the 

partitioning interwell tracer test (PITT) to detect and estimate NAPL saturation 
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was described by Jin et al. (1994), Jin (1995), Jin et al. (1995) and Whitley et al. 

(1995). 

Tracers are chemicals that can be added to fluids in small concentrations 

and used to follow their movement without affecting their physical properties. 

Partitioning tracers are tracers which have the ability to partition between two 

distinct phases. In case of saturated zone partitioning tracer tests, tracers which 

can partition between NAPL and water are used and in case of vadose zone 

partitioning tracer tests, tracers which can partition between NAPL and gas phase 

are used. 

The PITT consists of simultaneous injection of several tracers with 

different partition coefficients an one or more injection wells and measurement of 

tracer concentrations in one or more extraction or monitoring wells. The non

partitioning or conservative tracers move at the velocity of the carrier phase 

(water or gas). Due to partitioning of the partitioning tracer molecules between 

the carrier phase and NAPL, the partitioning tracers are retarded. This retardation 

is proportional to the volume of NAPL and the partition coefficient. The NAPL 

saturation can be measured using the difference between the retention times of the 

partitioning and non-partitioning tracer and the partition coefficient. This can be 

used for estimation of NAPL saturation before any remedial action is initiated and 

for performance assessment of remediation. 

In all field applications of chemical flooding, performance is limited by 

the dilution of the injected fluids and bypassing of some zones due to 

heterogeneities. It is extremely important to minimize these effects in order to 

minimize costs and maximize performance. In the oil industry, polymers have 
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been used extensively to improve oil recovery (Lake, 1989 and Sorbie, 1991). 

The use of mobility control with either polymer or foam also has applicability to 

aquifer remediation (Pope and Wade, 1995). 

From the above discussion it can be seen that partitioning tracers are 

applicable in locating NAPL contaminated zones and estimation of NAPL 

saturation and surfactants are applicable in remediation of these contaminated 

zones. Polymers have potential to maximize partitioning tracer and surfactant 

performance by providing mobility control. However before this work, laboratory 

procedures had not been perfected to perform partitioning tracer tests both for 

estimation of NAPL and performance assessment of remediation. Also, in earlier 

studies with surfactants, the main focus was on contaminant removal and no 

attention was paid to factors such as comparison of hydraulic conductivities 

(permeabilities) before and after remediation. Polymer had not been extensively 

used in many laboratory experiments with DNAPLs and especially field 

contaminants. Parameters such as partitioning tracer adsorption and surfactant 

adsorption by field soil were not quantified. 

In this work, a systematic approach for performing soil column 

experiments is discussed. The goals of this study were; 

(1) development of laboratory procedures for performing partitioning tracer 

tests. 

(2) development of experimental procedures for selection of suitable 

partitioning tracers for use in field partitioning interwell tracer tests. 

(3) development of broad guidelines for screening of surfactant solutions 

using performing phase behavior experiments. 
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(4) development of experimental procedures for successful application of 

surfactants for remediation of soils contaminated with common NAPLs. 

(5) procedures for selection of suitable surfactant/polymer solutions for use in 

laboratory column experiments and field surfactant applications. 

Parameters such as tracer adsorption, surfactant adsorption in field soil 

from Hill AFB were measured. The soil column hydraulic conductivities before 

and after surfactant remediation were measured and surfactant solutions that 

restored the soil to very nearly its original condition i.e. condition before 

contamination were identified. 

1.2 LITERATURE REVIEW 

In pursuance of the objectives outlined earlier the literature review was 

divided into three broad areas. The first area is partitioning tracers, the second 

area is surfactant phase behavior and the third area is soil column experiments and 

field tests. All these are reviewed in the following sections. 

1.2.1 Partitioning Tracers 

Nonaqueous phase liquids (NAPLs) exist in many unsaturated (vadose) 

and saturated zones. NAPLs are found in a wide variety of hydrogeological 

environments beneath federal facilities throughout the U.S. Of paramount 

concern are NAPLs which are denser than water (DNAPLs), in particular 

chlorinated hydrocarbons such as trichloroethene (trichloroethylene, TCE), 

tetrachloroethene (tetrachloroethylene, perchloroethylene, PCE), carbon 

tetrachloride (CTET) and polychlorinated biphenyls (PCBs), which have been 

identified beneath many DOE facilities. Also of concern are light NAPLs 
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(LNAPLs) such as fuel hydrocarbons like jet fuel (JP4). Quantifying the amount 

and spatial distribution of NAPL trapped in porous media at hazardous waste sites 

is of great importance in determining its environmental impact and in selecting 

appropriate remediation alternatives. A major portion of this work will focus on 

the issue of DNAPL characterization, although the methodology is just as 

applicable to LNAPLs as to DNAPLs. 

The concept of the use of partitioning tracers for estimating residual oil 

saturation was described by Cook (1971) and Deans (1971). This involved the 

comparison of the mean residence times of partitioning and non-partitioning 

tracers. The use of a partitioning tracer for reservoir evaluation has been 

discussed by Casad and Gant (1989). In their work, they recommended 

iodoethanol radiolabeled with 131 I as a partitioning tracer. Extensive work in the 

area of single well tracer tests was done by Tomich et al., 1973; Sheely, 1978; 

Sheely and Baldwin, 1982 Descant, 1989 and Ferriera et al., 1992. Interwell 

partitioning tracer tests have been studied and applied by Allison et al., 1989; 

Causin and Rochon, 1989; Wood, 1990; Lichtenberger, 1991; Tang and Harker, 

1991a,b; and Tang, 1992; and Tang et al., 1995; and Zemel, 1995. 

Procedures for measuring the partition coefficients under reservoir 

conditions are described by Knaepen et al. (1990). They used a technique called 

flow injection analysis (FIA) in which brine with a known initial concentration of 

a partitioning tracer is continuously circulated through a cell filled with oil until 

equilibrium is established. Using the partitioning coefficients measured using this 

technique, the residual oil saturation estimates were accurate to within± 8%. The 

use of perfluorocarbon gas phase partitioning tracers to determine residual oil 
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saturation was demonstrated by Dugstad et al., 1993. They used 

perfluoromethylcyclopentane and perfluoromethylcyclohexane. Negligible 

retention of these tracers was observed in pure Ottawa sand. Slight retention was 

observed when clay was added to Ottawa sand. Both the above perfluorocarbon 

tracers were also used by Ljosland et al., 1993 for reservoir characterization. 

The main advantage of performing a partitioning interwell tracer test is 

that the sample volume is large compared to cores or well logs, which provide 

saturation estimates very near the wellbore only. The selection of partitioning 

tracers for an interwell test is described by Tang and Harker (1991a). Some field 

applications of partitioning tracers by the petroleum industry have been described 

by Tang et al. (1991b) and Tang (1992). The application of tracers for 

characterizing oilfield reservoirs was described by Maroongroge, 1994 and 

Maroongroge et al. (1995). 

The applicability of the partitioning tracer interwell test (PITT) to estimate 

NAPL saturation is described by Jin et al. (1994), Jin et al. (1995) and Jin (1995). 

The theory behind the PITT and the use of the method of moments to estimate the 

residual NAPL saturation has been discussed in detail by Jin (1995). The method 

of moments is based on using the residence times of the partitioning and non

partitioning tracers and the partition coefficient of the partitioning tracer to 

measure NAPL saturation. 

The application of partitioning tracers to characterize NAPL saturation in 

vadose zones has been described by Whitley et al. (1995), Studer et al. (1996) and 

Whitley (1997). Laboratory experiments were carried out to measure partition 

coefficients for several perfluorocarbon tracers between TCE and air. These 
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partition coefficients were used to determine residual TCE saturations in a NAPL 

PITT (Studer et al. 1996). 

The design of a partitioning tracer test for field application has been 

described by Pope et al. ( 1994) in which several laboratory experiments and 

computer simulations were carried out to design a field PITT at Hill Air Force 

Base, site Operational Unit 1, Annable et al. (1994; 1996). In this study, 1-

hexanol and 2,2-dimethyl-3-pentanol were used as partitioning tracers and ethanol 

and bromide were used as conservative tracers. 

Sulfur hexafluoride has been used as a conservative tracer by Wilson and 

Mackay (1993; 1996) and as a partitioning tracer by Wilson and Mackay (1995) 

in soil column experiments to determine residual saturations of trichloroethylene, 

o-dichlorobenzene and dichloromethane. In this work there was no discussion of 

parameters such as residence times for obtaining good NAPL saturation estimates. 

Tracer recoveries were not computed. Only one partitioning tracer was 

recommended as a candidate. For a successful field test several tracers with a 

range of partition coefficients will be required. In this work results with several 

partitioning tracers are presented. Several tracers are recommended as candidates 

for use in field tracer experiments. A field partitioning tracer test using sulfur 

hexafluoride as a partitioning tracer was conducted by Nelson and Brusseau 

(1996) to detect NAPL. Very poor tracer recoveries ranging from 4.5% to 73.5% 

were obtained suggesting poor hydraulic control and possibility of nonequilibrium 

mass transfer between the tracer and NAPL. 

Partitioning tracers were extensively used by Shotts ( 1996) to determine 

DNAPL saturation in soils contaminated by TCE and Hill DNAPL and for 
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performance assessment of surfactant remediation. Based on several experiments 

conducted in this work NAPL Partitioning Interwell Tracer Tests were designed at 

Hill AFB, site Operational Unit 1 (Pope et al., 1994a,b) and site Operational Unit 

2. These will be discussed Chapters 8,9 and 10. Some results from the field 

partitioning tracer test at Hill OU2 are given in Brown (1997). 

1.2.2 Phase Behavior Experiments 

For application of surfactants for NAPL remediation in aquifers, several 

experiments should be carried out to identify suitable surfactant solutions 

applicable for specific NAPLs. Depending on the type of remediation required 

different types of surfactant solutions will be required. In case of enhanced oil 

recovery (EOR) operations and mobilization dominated SEAR operations it 

would be advantageous to use a Winsor type ID surfactant solution. On the other 

hand, in instances where a solubilization type SEAR operation is required, a 

Winsor type I system would be more applicable. In most cases, field NAPL is a 

mixture of several species. Hence in order to design a suitable surfactant solution, 

a good understanding of surfactant phase behavior with different organic species 

is required. In order to develop a good understanding of surfactant phase behavior 

with organic species several experiments have to be carried out. All the 

experiments performed to characterize surfactant solutions for use in NAPL 

recovery can be termed phase behavior experiments. Phase behavior experiments 

with surfactant, water, alcohol, polymer and electrolyte are extremely important in 

both surfactant enhanced aquifer remediation (SEAR) and enhanced oil recovery 

(EOR) applications for selection of optimal surfactant solutions. 
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Some of the earliest work with surfactant phase behavior was done by 

Winsor (1954), who defined the various phase environments observed once 

surfactant, water and oil were mixed (Winsor type I, II and III systems). Winsor 

type I systems are typically oil in water microemulsions, Winsor type II systems 

are typically inverted or water in oil microemulsions. The behavior of surfactants 

and microemulsions is described by Bourrel and Schechter (1988). A good 

discussion of surfactant behavior is also presented in Rosen (1988). 

The applicability of Winsor type III surfactant systems to EOR operations 

has been investigated by performing phase behavior studies to develop phase 

diagrams. The objectives were to obtain a good understanding of surfactant phase 

behavior with regard to various parameters such as salinity, alcohol, electrolyte 

etc. The applicability of ternary diagrams to design EOR floods and the effect of 

parameters such as salinity, alcohol concentration and electrolyte on phase 

behavior was investigated by Healy and Reed (1974). A correlation of the IFT 

between the microemulsion and excess phases and solubilization parameter was 

observed by Reed and Healy (1977). The applicability of phase diagrams for 

better understanding of the mechanisms of chemical flooding and applicability of 

these in laboratory chemical floods was described by Nelson and Pope (1978). 

They also defined the three types of phase environments (type II- corresponding 

to a Winsor ~ype I, type III corresponding to a Winsor type III and type II+ 

corresponding to a Winsor type II system). 

A theoretical model that correlates solubilization parameter to IFT was 

developed by Huh (1979). This is a very useful tool in screening surfactant 

solutions for EOR operations as the solubilization parameters of various 
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surfactant solutions can be easily measured and this number can be used to 

estimate the IFf between oil and surfactant solutions. 

The application of surfactant phase behavior for use in enhanced oil 

recovery (EOR) was described by Pope and Baviere (1991). Since earlier work 

was aimed towards EOR type operations, extensive work to understand phase 

behavior of surfactants with oil to identify surfactant solutions with low interfacial 

tensions was carried out by Salager et al. (1979). They also developed concepts 

relating the optimal salinity of a surfactant formulation to an equivalent alkane 

carbon number (EACN), surfactant characteristic type and cosolvent/alcohol type. 

The advantage of the EACN concept is that complex mixtures of hydrocarbons 

can be assigned one equivalent alkane carbon number and surfactants solutions 

can be suitably designed. This is very useful in selecting surfactants for sites 

where the organic phase is composed of several different species of contaminant. 

Typically surfactant solutions that produced well defined middle phase 

microemulsions were considered suitable for use in enhanced oil recovery 

operations since ultra low interfacial tensions were observed in the three-phase 

region (Reed and Healy, 1977). 

In order to use surfactant solutions in field EOR and SEAR applications, 

surfactant solutions with minimal gel/liquid forming tendencies have to be 

identified. In order to minimize liquid crystal formation, cosolvents or co

surfactants are added. Middle phase microemulsions could be produced by 

addition of suitable co-surfactants (Asgharian et al., 1991; 1992) or cosolvents or 

alcohols (Lalanne-Cassou et al., 1987). 
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Extensive computer modeling is necessary for design of field scale SEAR 

and EOR operations. Hence mathematical models are required for modeling 

surfactant phase behavior. A thermodynamic model for modeling the phase 

behavior of micellar systems was developed by Prouvost et al. (1985). This was 

used to model phase volume diagrams, salinity requirement diagrams and ternary 

diagrams. Since most surfactant solutions require the presence of a cosolvent a 

thermodynamic model was developed by Prouvost et al. ( 1985) for modeling the 

behavior of alcohol partitioning between various phases. A physical property 

model was developed by Camilleri et al. (1987) for modeling surfactant floods 

and comparing results with experimental data. This is used in UTCHEM 

(Delshad et al., 1996), a compositional simulator which can model surfactant 

flooding. 

The basic principles from this surfactant enhanced oil recovery research 

were adapted to design and perform phase behavior experiments with chlorinated 

hydrocarbons by Baran et al (1994a,b,c; 1996a,b,c), Jin (1995) and Shotts (1996). 

One of the important contributions from the Baran et al. (1994b, 1996b) work was 

mixing rules for the hydrocarbons (Salager et al., 1979) were found applicable to 

chlorinated hydrocarbons. Similar studies with mixed chlorinated hydrocarbons 

were also carried out by Shiau et al. (1996) who proposed a non-ideal mixing 

model to predict behavior for binary and ternary systems. 

In order to quantify the properties of surfactants to remediate the NAPLs, 

several batch studies have been carried out to quantify parameters such as 

solubilization ratio, solubilization, temperature dependence, salinity dependence 

etc. (Edwards et al. 1991b; West, 1992; Martel et al., 1993; Baran et al. 
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1994a,b,c, Diallo et al., 1994). Several phase behavior studies were carried out to 

identify surfactant solutions which produced Winsor type III microemulsions with 

chlorinated hydrocarbons (Baran et al., 1994a,b,c), jet fuel (Baran et al., 

1996a,b,c). Ternary diagrams were used by Martel et al. (1993) to study 

surfactant behavior and select surfactants (Martel and Gelinas, 1996). 

Phase behavior experiments were extensively carried out by Jin (1995) 

with PCE to select suitable solutions to perform column experiments. Similar 

studies were carried out by Shotts (1996) with TCE and Hill DNAPL for 

screening surfactant. A summary of some of the surfactants used in earlier 

remediation research is presented in Tables 1.1 and 1.2. 

In this work, phase behavior experiments were carried out with PCE, TCE, 

jet fuel (JP4) and Hill DNAPL. Surfactant solutions that showed excellent 

potential in terms of contaminant solubilization, minimal gel forming tendencies, 

good behavior over a range of temperatures, well defined three phase region, good 

behavior in the presence of both calcium and sodium ions and quick 

equilibration/coalescence times were identified as possible candidates for use in 

SEAR operations. The effect of parameters such as alcohol, polymer, electrolyte 

and temperature was evaluated. A detailed description of these selection 

requirements for surfactants is presented in Chapter 10. 

1.2.3 Soil Column Experiments 

The approach taken in this study was to select surfactant solutions based 

upon phase behavior experiments. These solutions were then used to remediate 
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soil columns contaminated by various NAPLs. This approach was highly 

successful. 

The ability of surfactants to remediate organic contaminants from soil has 

been investigated extensively. One dimensional and two dimensional studies 

were conducted by The Texas Research Institute (1979, 1985) to remove 

entrapped gasoline from soil columns and containers using surfactant solutions. 

The recovery of gasoline was about 80%. Zeigenfuss (1987) conducted similar 

studies on gasoline entrapped in soil columns. No significant removal of gasoline 

was observed but plugging of soil columns was observed in many cases. 

Ellis et al. ( 1986) performed soil column experiments to evaluate the use 

of nonionic surfactants for cleaning soil contaminated by PCBs, petroleum 

hydrocarbons and chlorophenols. Between 60.8% and 68% of the PCBs was 

remediated in two experiments after ten pore volumes of surfactant and ten pore 

volumes of water. The efficiency of three alkylphenolethoxylate surfactants and 

two alkyl ethoxylate surfactants in removing anthracene and biphenyl from a solid 

surface was evaluated by adsorbing the contaminant from synthetic groundwater 

on to the solid and desorbing using surfactant solutions in synthetic groundwater 

(Vigon and Rubin, 1989). They observed that greater than 0.1 % by weight 

surfactant solutions were needed to obtain significant improvement in chemical 

desorption. 

Sodium dodecyl sulfate (SDS) was used by Gannon et al. ( 1989) to 

remediate soil columns contaminated by dichlorobenzene (DCB), naphthalene and 

biphenyl. About 65%-90% of the DCB and 90-95% of the naphthalene was 

recovered in these experiments. In all these experiments, 250 g of soil was 
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remediated by more than 1,000 ml of SDS. This corresponds to between 15 to 20 

pore volumes of surfactant. Abdul et al. (1990) evaluated the performance of 

ethoxylated alcohols, ethoxylated nonylphenols, sulfates and sulfonates to 

remediate automatic transmission fluid (ATP) from sandy soil. Between 33% and 

84% of the ATP was recovered depending on the surfactant used. In these 

experiments, 100 ml of surfactant solution was used to remediate 5 g of 

contaminated soil. More studies conducted by Ang and Abdul ( 1991) 

demonstrated that 55% and 73% of the ATP could be recovered using alkyl 

polyoxyethylene glycol after 28 pore volumes of surfactant washing. 

Peters et al. ( 1992) screened several surfactant solutions for their 

effectiveness for remediating diesel fuel from contaminated soil. Total petroleum 

hydrocarbon (TPH) recoveries ranged from 60%-90%. Similar work was carried 

· out by Fountain et al. (1991) who remediated PCE pools from sand boxes using 

surfactant solutions. The objective of these experiments was solubilization of the 

PCE pool and surfactant solutions with IFTs of about 2.5-5.0 dynes/cm were used. 

However emulsion production was observed in these experiments. 

Surfactant flushing was successfully employed to enhance the recovery of 

dodecane (Pennell et al., 1993) and PCE (Pennell et al., 1994; Jin, 1995). 

Between 90% and 99% of the PCE was recovered as a result of surfactant 

flooding (Pennell et al., 1994; Jin, 1995). Similar results were reported by Shiau 

et al. (1994) who recovered up to 99% PCE from contaminated soil columns. 

In recent work Bourbonais et al. ( 1995) showed that surfactants recovered 

up to 90% of the total petroleum hydrocarbons (TPHs) from contaminated soil. 

However they identified problems such as mobilization of fines, difficulty in 
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removing surfactant residue from soil and surfactant precipitation during 

surfactant use. A lowering in hydraulic conductivity up to two orders of 

magnitude was observed by Allred and Brown (1995) when surfactants were 

flushed through saturated soil columns. Similar results were reported by Renshaw 

et al., (1997) who proposed that reduction in hydraulic conductivity 

(permeability) could be attributed to surfactant adsorption by organic clays in the 

soil. 

From the above discussions it is evident that surfactants have potential for 

remediating sites contaminated by organic compounds. However there are many 

potential problems (Harwell, 1992, West and Harwell, 1992) that have to be 

overcome for successful implementation of surfactants in field trials. These 

problems include surfactant loss by liquid crystal formation, partitioning into a 

trapped phase, coacervation of surfactant and precipitation of surfactants 

especially in the presence of calcium ions. In the review of applicability of 

surfactants in subsurface remediation by West and Harwell (1992), the above 

mentioned potential problems with surfactants have been described. Some of 

these problems are surfactant loss by adsorption or by precipitation. The authors 

are of the opinion that adsorption losses could be significant in case of nonionic 

surfactants and that anionic surfactants are susceptible to precipitation. Other 

problems include the possibility of coacervation of surfactant, partitioning of 

surfactant into the oil phase and chromatographic separation of surfactant 

mixtures into individual surfactant components. The authors have also concluded 

that surfactant remediation depends on selecting surfactants for optimum 
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efficiency by minimizing sorption losses, precipitation, phase changes, 

environmental acceptability and balanced biodegradation. 

Results from this work will show that by careful experimentation and a 

good understanding of surfactant phase behavior we can identify surfactants that 

will fulfill most of the above mentioned (demanding) criteria and be used in 

remediation applications. Problems such as precipitation could be avoided by 

using a surfactant which shows good behavior in the presence of calcium ions. 

Surfactant loss by adsorption could be minimized by using anionic surfactants. 

The addition of alcohols (cosolvents) will also minimized adsorption of 

surfactant. The surfactants used in this work had very low adsorption, of the 

order of 0.3 mg . The loss of surfactant by partitioning into the oil phase could be 
g 

minimized by ensuring that Winsor type II behavior is not observed in the 

subsurface. Problems such as plugging can be avoided by using surfactants that 

show low coalescence times and minimal gel/liquid crystal forming tendencies. 

Addition of adequate amounts of cosolvent will also minimize gel/liquid crystal 

forming tendencies and lower coalescence times. In this work it will be shown 

that proper surfactants are selected for remediation, up to 99.9% of the NAPL can 

be recovered by surfactant flooding and the soil can be restored to its original 

condition. 

1.2.4 Field Studies 

Surfactants have been employed in field trials to remediate zones 

contaminated by NAPLs. Some early studies were carried out by Nash et al. 

( 1987) who used surfactants to wash soil contaminated by a mixture of jet fuel, 
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waste oils and a variety of solvents at Volk Field Air National Guard Base, WI. 

Several surfactants were used to wash seven test cells. Severe plugging and 

permeability reduction was observed in many test cells and insignificant 

quantities of NAPL was recovered. Alkaline polymer surfactant mixtures (APS) 

principles were used by Trost et al., 1989, to remediate viscous oil from an 

industrial plant site in Florida. A total of 65% of the oil was removed after two 

alkaline polymer floods. A similar field project was carried out by Pitts et al. 

(1993) who used an alkaline polymer surfactant mixture to remediate wood 

treating oil from alluvium at a wood treating facility at Laramie, Wyoming. This 

field test was designed after performing several corefloods in which the 

performance of ethoxylated nonylphenol with 1,050 mg/I xanthan gum and 

sodium dodecyl benzene sulfonate with 1,050 mg/I xanthan gum were evaluated. 

In laboratory experiments, residual oil saturations of 0.01 were achieved after 

polymer surfactant flooding. In the field tests sheet piling was used to confine the 

test cells in which polymer surfactant flooding was carried out. The polymer 

surfactant flood reduced the oil saturation from 0.203 to 0.032 after three pore 

volumes of alkali-surfactant-polymer flooding. This corresponds to 84% oil 

recovery. 

Based on the experiments conducted in this work a surfactant flood to 

remediate DNAPL was performed at Hill Air Force Base. This flood was the first 

surfactant flood performed to remediate a DNAPL pool in an unconfined site. 

The DNAPL saturation was reduced from 0.036 to 0.0004 by surfactant 

remediation (Brown et al., 1996b). This corresponds to 99% DNAPL recovery. 
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No sheet piling was used to confine the aquifer. Such high recovery was obtained 

in the absence of polymer. 

Surfactants have also been used for recovering DNAPLs by Fountain et al. 

(1993, 1994, 1996) at two field sites (CFB Borden and Corpus Christi). At 

Borden the DNAPL was PCE and at Corpus Christi, the DNAPL was carbon 

tetrachloride. The PCE pool at the base of the aquifer at Borden was about 50 cm 

at the beginning of the test and this was reduced to less than 5 cm after surfactant 

remediation. Subsequent excavation showed that almost all the PCE had been 

remediated after 14 pore volumes of surfactant flushing .. However final PCE 

saturation estimates were not obtained. The average PCE concentrations in the 

effluent declined from about 199 mg/l to less than 30 mg/l after surfactant 

flushing. Similar results were observed by Fountain et al. (1993) at Corpus 

Christi where the carbon tetrachloride concentrations declined from an average of 

790 mg/l to less than 10 mg/I based on core data in the center of the treated area. 

Again an estimate of the percentage of DNAPL recovered was not obtained. In 

comparison, at the surfactant enhanced aquifer remediation demonstration at Hill 

Air Force Base (designed as a consequence of this work ), about 99% of the 

DNAPL was recovered after less than three pore volumes of surfactant flooding 

(Brown et al., 1996b ). The total contaminant concentration at the central 

monitoring well was only 30 mg/l down from about 1,000 mg/l before surfactant 

remediation. 

For successful design of field SEAR projects extensive computer 

modeling has to be carried out in addition to laboratory experiments. The 

modeling and design of surfactant enhanced aquifer remediation has been 
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discussed by Brown (1993; 1997), Brown et al.,_ (1994), Freeze et al. (1994) and 

Brown et al., (1996a). A description of UTCHEM the compositional simulator 

used for modeling surfactant flooding is given in Delshad et al. (1996). 

1.3 REVIEW OF CHAPTERS 

A brief description of all the equipment and chemicals used is given in 

Chapter 2. A description of all the experimental procedures is detailed in Chapter 

3. In Chapter 4, data analysis techniques are discussed. Various calculations 

needed for performing experiments are also described. In Chapter 5, a description 

of phase behavior experiments is provided. The results from phase behavior 

experiments are discussed in Chapter 6. A description of static partition tests is 

provided in Chapter 7. Static partition coefficients of several alcohols with 

various NAPLs is presented. A description of all the soil column experiments, 

experimental results and discussion of experimental results are presented in 

Chapter 8. A discussion of error analysis of experimental measurements is 

presented in Chapter 9. A description of experiments leading towards selection of 

partitioning tracers and surfactants for field design is presented in Chapter 10. 

Finally, conclusions and future work are presented in Chapter 11. 

24 



Table 1.1: Nonionic surfactants used in remediation literature 

Chemical Description Trade Name Reference 

Nonionic Surfactants 

Alkyl polyglucamides -- Baran et al., l 996c 

Ethoxylated (20) Sorbitan Mono- Tween 80 Pennell et al., 
oleate 1993 

Ethoxylated (20) Sorbitan Mono- T-Maz Shiau et al., 1993, 
oleate 1995 

Ethoxylated nonylphenol lgepal West, 1992 

Ethoxylated tetramethyl decynediol Surfynol 485/13 Peters et al., 1992 

Ethylene oxide adducts of fatty Witconol SN-70 Abdul et al., 1990 
alcohols 

Ethoxylated alcohol Adsee 799 Ellis et al., 1985 

Neodol 

Ethoxylated nonylphenol Arkopal N-100 TRI, 1985 
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Table 1.2: Anionic surfactants used in remediation literature 

Chemical Description Trade Name Reference 

Anionic Surfactants 

Sodium dihexyl sulfosuccinate Aerosol MA-SOI Shotts, 1996, 
Baran et al. 1996, 

Sodium diamyl sulfosuccinate Aerosol A Y-100 Jin, 1995, Pennell, 
1994 

Sodium dioctvl sulfosuccinate Aerosol OT 

Lauryl alcohol ethersulfate GenepolLRO Martel et al. 1996 

Secondary alkane sulfonate Hostapur SAS 

Sodium mono and dimethyl Shiau et al. 1994 
napthalene sulfonate 

Sodium dodecyl sulfate 

Alkvl diphenyl oxide sulfonates DOWFAX Rouse, 1993 

Phosphate ester of nonylphenol Rexophos 25-97 Fountain et al., 
ethoxylate 1992 

Sodium polyacrylate CyanamerP- Peters et al., 1992 
35(L)15 

26 



iD in 
.c ~ I 

al '5 ~ c 0 
UJ .2 

0 
Cl.I 
UJ .. .. 
0 
t; 
() 

'61 
~ 
Cl.I 

C!) 

~ 
• 

"~ ] 
,§ 

i l .:: 
11 
!i 

• ~ 

io 
I m 
z 
0 "' - ~ .... 
0 
UJ 
ti) 

ti) 
ti) 
0 
a: u 

i 
... 
i 

!:! ,.. ,.. .. 
~ ... 

~ i .. 
~~ 

~ 
:5 .. ,.. 
~ .. a .. 
8 

,.. 
~ ~ .. .. d 

l mi~ 
m 

= ~ z ~ ... 
0 0 0 

.. g 0 e ¥i ~ 
,.. e E E ... .. C> C> ... ... ... ... ... ... ... ~ .. .,, 

(O"ISIC IHI) N0!.1 Y "313 
j·j~lml 

Figure 1.1: Geological cross section of a DNAPL contaminated site 
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Chapter 2: Equipment and Materials 

The equipment and materials used in this research can be divided into 

several categories. Equipment used for performing experiments such as pumps, 

pressure transducers, solution reservoirs etc.; equipment used for analytical work 

such as gas chromatographs, liquid scintillation counter, spinning drop 

tensiometer etc. and various chemicals used during the experiments such as 

surfactant, alcohols and solvents are described. A brief description of these is 

presented in the following sections. 

2.1 INJECTION PuMPS 

The fluid injection was carried out using Beckman Model 1 OOA solvent 

metering pumps. This pump is a dual piston pump capable of providing constant 

flow rates from 0.01 ml/min to 9.99 ml/min and a maximum pressure drop of 

10,000 psig The uniform flow rate was achieved by means of two cam driven 

reciprocating pistons, each of which displaces 0.1 ml per stroke. Experimental 

fluids can be pumped directly through the pump unless the fluids are considered 

corrosive. 

2.2 SOLUTION COLUMNS 

Glenco glass columns made of borosilicate glass with polypropylene 

collars and Teflon end pieces were used as solution reservoirs for water, tracer 

solution and solvents. The columns are 5.0 cm diameter and 60 cm long with a 

pressure rating of 80 psig Whenever tracer was stored in the column, a 5 cm 

diameter, 2.5 cm long Teflon piston with two Viton 0 rings fitted into grooves cut 
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around the circumference separated the forcing fluid from the injected fluid in the 

column. The columns were purchased from VWR Scientific. 

2.3 FLUID RESERVOIRS 

Temco fluid reservoirs, model CC-20, made of Lexan polycarbonate with 

Teflon pistons, were employed. These columns were used as storage reservoirs 

for surfactant solutions during surfactant flushing. These columns had a capacity 

of 2,000 ml and were rated to 100 psig 

2.4 GLASS COLUMNS 

The glass columns used for preparing soil packs for all the experiments 

were purchased from KONTES. The columns were non jacketed, 4.8 cm 

diameter and either 15 cm or 30 cm long. An adjustable end piece with a Viton 0 

ring was used to confine the soil. These columns were rated up to 15 psig The 

columns came with 20 µm polyethylene filters. These were replaced with 

stainless steel screens. 

2.5 STAINLESS STEEL SCREENS 

Stainless steel (304 ss) screens were used to contain the sand in the 

column. The screens used were #60 mesh (250 µm opening) and #150 mesh (99 

µm opening). 

2.6 STEEL COLUMNS 

The steel columns were custom made using a 1 inch outside diameter 

stainless steel pipe as a column and using 1 inch Swagelok fittings as the end 

pieces. The 1 inch piece was connected to a 1/2 inch fitting which was finally 

connected to a Swagelok connector capable of supporting 1/8 inch tubing. A 
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brass piece was machined into all the Swagelok end pieces to reduce the end 

volume. Two 30.5 cm long and one 75.0 cm long columns were constructed for 

experimental work. 

2.7 TUBING 

Nylon tubing was used for most of the experimental work due to its 

flexibility and ability to handle relatively high pressures. The tubing was rated to 

a burst pressure of 1,500 psig The tubing was 1/8 inch OD and 1/16 inch ID. The 

commercial name for the tubing is Nylaflow. In some experiments, 1/8 inch OD 

and 1/16 inch ID 304 stainless steel tubing was used for experimental work. 

2.8 FRACTION COLLECTORS 

Instrument Specialties Company, (ISCO) fraction collectors were used for 

collection of effluent samples during tracer tests and surfactant tests. An ISCO 

model 1850 with a capacity of 140 tubes and model RETRIEVER II with a 

capacity of 116 tubes were used for all the experiments. The fraction collectors 

were programmed such that each test tube collected effluent samples for a fixed 

time and the rack was moved to position a new test tube below the effluent 

sampling port for the next sample to be collected. Sample volumes and sampling 

times varied depending on the pore volume of the soil pack and the rate of 

injection. 

2.9 PRESSURE TRANSDUCERS 

Differential pressure transducers were used to measure pressure drops 

across the soil packs during the surfactant flood. In all the initial experiments, 

Validyne DP15 variable reluctance differential pressure transducers were used. 
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Deflection of the diaphragm caused by an applied differential pressure is 

converted to an output voltage which is measured by the carrier demodulator. 

The transducers have bleed screws on the side of the body to allow them to be 

filled with mineral oil. A bypass valve is located between the high pressure and 

low pressure lines to allow the transducers to be zeroed. 

In the later experiments, differential transducers with solid state sensors 

(made by Cole Parmer) were used. In these transducers, differential pressure 

across the high pressure end and the low pressure end was converted into 4-20 

mA current. Using an appropriate resistor, this current was converted into a 0-10 

m V output which was calibrated to a pressure reading and printed by the digital 

chart recorder. 

2.10 CARRIER DEMODULATOR 

A Validyne model CD-19 carrier demodulator was used with a model 

MCI module case. The demodulator was used to convert the AC output from the 

transducer to a DC voltage which was carried to a chart recorder. 

2.11 CHART RECORDER 

A Tracor Westronics DDRlO digital chart recorder was used to record 

pressure data. The output from the carrier demodulator for the Validyne 

transducers an:d the direct output from the Cole Parmer transducers was converted 

into a pressure drop. The pressure drop was logged by printing out the pressure 

drop at preset time intervals. 
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2.12 PRESSURE GAUGES, VACUUM GAUGES 

Vacuum and pressure gauges used in this work were diaphragm analog 

gauges (Royal brand) manufactured by Weksler instruments. The vacuum gauge 

was capable of measuring up to 30 inches of mercury and 15 psid. Pressure 

gauges capable of measuring up to 100 psid were also used. 

2.13 BALANCES 

Balances were used for mixing solutions, determining pore volumes of soil 

packs and weighing columns to estimate NAPL saturation. The various balances 

used were the Mettler Pl lN series, (0-10,000 g), the Mettler P1200 series, (0-

1,200 g), the Mettler PN323 series, (0-320 g), the Sartorius type 3862, (0-16,000 

g), the Sartorius type 1475 (0-4,240 g) and the Sartorius type 1574, (0-420 g). 

The Mettler balances were analog balances and the Sartorius balances were digital 

balances. 

2.14 GAS CHROMATOGRAPH (VARIAN 3400) 

The alcohol tracer analysis and some contaminant analysis was carried out 

using a Varian model 3400 equipped with a Varian autosampler model 8000. The 

samples were passed through a 60 m long, 0.53 mm diameter, 5.0 mm thick 

bonded poly (5% diphenyl, 95% dimethyl siloxane) megabore capillary column 

(made by SUPELCO). A flame ionization detector was used to detect the 

alcohols. Detection limits of 10 mg/I for the alcohol tracers, PCE and TCE were 

obtained. A Varian integrator model 4290 was used to integrate the 

chromatography curves. 
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2.15 GAS CHROMATOGRAPH {VARIAN 3400CX SPME) 

Head space analysis was used for analyzing TCE concentrations m 

effluents of column experiments. The gas chromatograph used for the head-space 

analysis was a Varian Model 3400CX equipped with a Model 8200 Auto-sampler 

with the Solid Phase Micro Extraction (SPME) adapter and an electrolytic 

conductivity detector. Control was through the Varian SPME software running 

on a Digital desktop computer. The SPME fiber used was a nylon fiber with a 

100 micrometer coating of polydimethylsiloxane as the absorbent. TCE was 

adsorbed by the SPME fiber and was later desorbed and separated on a 60 meter 

long J&W DB-5 poly(5%-diphenyl-95%-dimethylsiloxane) megabore column. 

Detection limits of up to 1 mg/I TCE were obtained. 

2.16 GAS CHROMATOGRAPH {BUCK SCIENTIFIC) 

Some tracer analysis was also carried out using the Buck Scientific gas 

chromatograph manufactured by SRI. This GC was equipped with a flame 

ionization detector (FID), thermal conductivity detector (TCD) and electron 

capture detector (ECD). Only the FID was used for the alcohol and contaminant 

analysis. In this GC, a carbowax 30 m long, 0.5 mm diameter, 1 µm film 

thickness capillary megabore column was used. In addition a DYNATECH 

Precision Sampling Corporation model 31 lH autosampler modified by SRI was 

used for continuous analysis of samples. Detection limits of up to 1 mg/I of 

alcohols was obtained using this GC. 
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2.17 LIQUID SCINTILLATION COUNTER 

A Beckman Liquid Scintillation Counter model LS 9800 was used to 

measure radioactive 3H and 14C concentrations. The counter has a capacity of 

300 samples and is equipped with a control keyboard, printer, three count 

channels, 10 user programs, CRT display, H#, quench compensation factor, two 

phase warning monitor, single, dual and triple label disintegrations per minute 

(DPM) programs. 

Liquid scintillation samples were prepared by adding 0.25 ml of the 

sample to 5 ml of liquid scintillation cocktail. Liquid scintillation cocktail used 

was Ready-Solv HP, made by Beckman. 

Samples were counted for 2 minutes for two radioactive isotopes, 3H and 

14C and values of disintegrations per minute (DPM) were printed for each sample. 

2.18 COUETTE VISCOMETER 

A Contraves Low Shear 30 (LS 30) viscometer was used to measure bulk 

viscosity. The LS 30 is a Couette type viscometer that analyzes the shear stress 

between a cup and a bob. The stress is convertedinto a viscosity. The instrument 

is designed to measure viscosity over shear rates ranging from 0.0174 to 128.5 

sec-1. About 1 ml of fluid is required for each measurement. 

2.19 FILTER PRESS 

Filtration was done using a FANN model 12 BL filter press. This press is 

of stainless construction with several openings. The fluid was stored in a stainless 

steel cup with a Viton 0 ring, which was clamped to the filter press. Polymer 
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solutions were filtered using a 1.2 µm filter paper at 10 psid. Water was filtered 

using a 0.45 µm filter paper at 10 psid. 

Filters were manufactured by Millipore. These filters were made of a 

cellulose acetate, cellulose nitrate mixture. The diameter of the filters is 47 mm. 

Two sizes, 1.2 µm opening and 0.45 µm opening were used. 

2.20 SPINNING DROP TENSIOMETER 

Low interfacial tensions were measured using a spinning drop tensiometer 

model 300 manufactured at the University of Texas at Austin. The spinning drop 

technique was used in obtaining interfacial tension by measuring the shape of a 

drop of liquid in a more dense liquid contained in a rotating horizontal tube. 

2.21 WATER DEIONIZER 

A NANOPURE system with a recirculation pump, remote dispenser, 

resistivity monitor and on/off standby membrane switches was use to supply 

deionized water for all the experiments. Distilled water was fed into the system 

and deionized water was obtained at the outlet. The system has three pre-filters 

and one post filter. The pre filter was made of cellulose acetate fibers with a pore 

size of 5 µm and the post filter had a pore opening of 0.45 µm to remove 

particulate matter and microorganisms. 

2.22 PH METERS 

A ORION Research model 701/digital IONAL YZER with a pH 

combination electrode was used to measure pH of some aqueous samples. 
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2.23 OTTA WA SAND 

The Ottawa sand was obtained from U.S. Silica at Ottawa Illinois. The 

commercial name for the sand was F-95. The sand was obtained in 50 lb bags 

from the supplier. More than 99% of the sand particles were between 600 µm 

(#30 mesh) and 38 µm (400 mesh) with an average size of 170 µm. 

2.24 GLASS PIPETTES FOR PHASE BEHAVIOR 

Glass pipettes with 5 ml total volume (manufactured by Baxter) and 10 ml 

total volume (PYREX brand manufactured by Coming) were used for phase 

behavior studies. The pipettes used were borosilicate glass, serological, sterile 

pipettes. The pipettes were calibrated down to 0.1 ml. The ends were sealed 

using a butane burner. 

2.25 GLASS VIALS WITH ALUMINUM LINED CAPS 

Glass screw vials with solid caps (manufactured by SUPELCO) were used 

for storing surfactant and tracer samples produced during experiments. The vials 

were sealed with solid aluminum foil lined caps. Vials with total volumes of 8 ml 

and 22 ml were used for all the experiments. 

2.26 MICROPIPETTES 

Two micropipettes, 0-1,000 µl adjustable (PIPETMAN brand) and 250 µI 

fixed (EPPENDORF brand) were used for making up LSC and GC samples 

during experiments. 
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2.27 ALCOHOLS AND SOLVENTS 

Several alcohols were used in this work. Isopropanol (2-propanol) was 

used in large quantities and was purchased from EM Science. The 2,4-dimethyl-

3-pentanol was purchased from ACROS Chemicals. All the other heavier 

alcohols used in the partitioning tracer work were purchased from Aldrich 

Chemicals. 

The solvents, tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,2-

dichloroethane (DCA) were purchased from Aldrich Chemicals. The jet fuel was 

obtained from March AFB and the Hill OUl LNAPL and Hill OU2 DNAPL were 

obtained from Hill AFB. 

2.28 SURFACTANTS 

The surfactants used in this study were sodium diamyl sulfosuccinate, 

sodium dihexyl sulfosuccinate and sodium dioctyl sulfosuccinate. The surfactants 

were purchased from CYTEC Chemicals, NJ. The sodium dihexyl sulfosuccinate 

is commercially available as Aerosol MA-80I and is 80% active. The sodium 

diamyl sulfosuccinate is sold as 100% active Aerosol A Y-100 or 65% active 

Aerosol A Y-65 and the sodium dioctyl sulfosuccinate is sold as the 100% active 

Aerosol OT-100. The chemical structures for these surfactants are presented in 

Figures 2.1through2.3. 
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Figure 2.1: Chemical structure of sodium diamyl sulfosuccinate 
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Figure 2.2: Chemical structure of sodium dihexyl sulfosuccinate 
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Figure 2.3: Chemical structure of sodium dioctyl sulfosuccinate 
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Chapter 3: Experimental Procedures 

Many experimental procedures were perfected during the completion of 

this work. All the procedures used during the course of this work are described 

below. 

3.1 PHASE BEHAVIOR 

Phase behavior procedures were similar to the procedures used by Baran et 

al. (1994a,b,c and 1996a,b,c) and Jin (1995). All these experiments were carried 

out at surfactant concentrations greater than the CMC of the surfactant and at 

different temperatures depending on site specific requirements. For several phase 

behavior experiments using the contaminant from Hill OU2, the experiments were 

carried out in a water bath at 12.2°C. 

The procedure involved mixing two ml of NAPL with two ml of aqueous 

surfactant solution (with cosolvent when applicable) in a five cc pipette. The ends 

were heat sealed to prevent loss due to volatilization. When the NAPL was jet 

fuel, the ends were sealed with a cork stopper. After pouring the NAPL and 

surfactant, the relative levels of both the aqueous and oleic phases were measured 

to obtain an accurate measurement of the actual volume of NAPL and aqueous 

surfactant solution. The pipette was mixed vigorously by hand and allowed to 

equilibrate for several hours. For the experiments conducted at 285.2 K, the 

samples were placed in a test tube rack and placed in a water bath. The samples 

were allowed to equilibrate for 12 hours, mixed vigorously and placed in the 

water bath. This was done to ensure that the NAPL and surfactant were given 
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sufficient time to cool down to the desired temperature. The phase volumes were 

visually examined every 24 hours until equilibrium was reached. Once 

equilibrium was reached, the phase volumes were noted down and solubilization 

parameters and solubilization ratios were calculated. 

3.2 STATIC PARTITION COEFFICIENT TESTS 

In all the initial experiments with many NAPLs, a 10 ml aliquot of a 1,000 

mg/I aqueous standard was placed in a separatory funnel with 10 ml of the NAPL. 

These samples were prepared in triplicate The samples were thoroughly shaken 

for one hour, allowed to separate for 1 hour and re-shaken. This was repeated 

twice to ensure that the samples were at equilibrium. The samples were then 

allowed to separate for at least 12 hours, were drained into centrifuge tubes and 

centrifuged at approximately 1,000 g for 1 hour to allow a complete separation of 

the phases to occur. Three aqueous aliquots on duplicate aqueous samples were 

then analyzed with a gas chromatograph for a total of six measurements of the 

alcohol concentrations in the aqueous phase. One set samples were allowed to 

equilibrate for 36 hours and the aqueous samples were analyzed to ensure that 

equilibrium between the aqueous and nonaqueous phases was reached. This 

procedure was found to be effective to accurately measure partition coefficients 

less than 15. 

For heavier alcohols with higher partition coefficients, all the alcohol 

tracer would partition into the nonaqueous phase leaving extremely low 

concentrations of the alcohol in the aqueous phase. Hence, for tracers with higher 

partition coefficients, 3 ml of NAPL was mixed with 18 ml of aqueous standard in 
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a 24 ml vial and sealed with aluminum lined caps. The samples were gently 

shaken and the procedures outlined earlier were repeated. 

3.3 SOIL COLUMN PREPARATION WITH CLEAN OTTAWA SAND 

Preparation of the soil columns with clean Ottawa sand for column 

experiments involved many experimental procedures. The soil was washed to 

remove any organic impurities and packed at a specific rate to ensure uniform 

packing. The various procedures were are given in the following sections. 

3.3.1 soil washing 

The sand was mixed with hydrochloric acid (4 N) and settled for 5 hours. 

The acid was drained and the sand was washed with deionized water until the pH 

of the sand was 7. The sand was put in an oven for 24 hours at 55°C until the 

sand was completely dried. 

3.3.2 determination of end volume in column 

The end pieces of columns were fitted with tubing and valves and weighed 

dry. The lines were filled with water. The weight of the end pieces saturated with 

water was measured. The end volume was calculated based on the difference 

between the weight of the saturated and dry end pieces. 

3.3.3 soil packing 

The empty column and fittings were weighed before addition of sand. The 

packing apparatus and column were mounted making sure that the column was set 

vertically as shown in Figure 3.1. Three 304 stainless steel mesh screens were 
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used to hold the sand in place. The two screen sizes are 60 mesh (250 µm) and 

150 mesh (99 µm). Two 60 mesh screens and one 150 mesh screen were used to 

confine the sand. The sand was contained in a separatory funnel reservoir and 

allowed sand to fall out at a slow rate into the column. The column was vibrated 

using a vibrating jig and packed at a rate of approximately 1 cm (of height in 

column) per minute for the 2.21 cm diameter steel columns and 0.5 cm (of height 

in column) per minute for the 4.8 cm diameter glass columns was used while 

packing. In experiments POL YTCE#l and POL YTCE#3, a set of layered screens 

(7 sets of 1.5 mm openings spaced approximately one inch apart) were used to 

ensure uniform flow of sand into the column. The sand flow was stopped when 

sand reached the required level. For glass columns, a small piece of Teflon heat 

shrink tubing was attached to the inlet end piece so that sand would not get inside 

the gap of the end piece (as shown in Figure 3.2). When steel columns were used, 

this step was omitted. The sand pack length was measured and the end pieces 

were adjusted into place. The packed column was weighed with sand for 

calculation of porosity and pore volume. 

3.4 SATURATION OF CLEAN OTTAWA SAND 

Once the soil packs were prepared, they had· to be pressure tested and 

vacuum tested for leaks. In order to do this, the columns were hooked up to a 

testing set up as shown in Figure 3.3. An air pressure of about 10-15 psi was 

applied and the column was allowed to sit for 2 hours. If a drop in pressure of 

greater than 0.5 psi was observed after 2 hours, the all the fittings were tightened 

and process was repeated. This was done to ensure that the column remained leak 
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free during the course of the experiments. After this a vacuum of about 29 inches 

mercury was pulled on the column for 30 minutes. The column was allowed to sit 

for 2 hours and the vacuum gage readings were taken again to ensure that a good 

vacuum seal was obtained for the column. 

A carbon dioxide tank was hooked to the column and carbon dioxide was 

flushed through the column for 30 minutes with 1 psi differential pressure across 

the column. The column was sealed and hooked up to the saturation apparatus 

shown in Figure 3.4. The water used for saturation was deionized and de-aired 

water. The water was de-aired by pulling a vacuum for 30 minutes. Argon was 

used as the forcing fluid to drive the water into the sand due to its slight solubility 

in water. A back pressure regulator was used to provide 10 psi back pressure on 

the soil pack. The water was flowed into the column at about 3 to 5 cc/min Every 

column was flushed with 5 to 6 pore volumes of de-aired water (300 - 800 cc 

depending on the pore volume). The column was weighed after saturation to 

calculate the pore volume and porosity. 

3.5 COLUMN PREPARATION WITH FIELD SOIL 

The procedures with field soil were slightly different. Usually field soil 

samples are not dry and usually contain gravel and stones, which were sometimes 

greater than 5 cm in diameter. Field soil is generally obtained in SOLINST cores 

or loose field soil in bottles or jars collected during drilling operations. 

While working with field soil samples, all the work was performed in a 

fume hood. Proper gloves were always worn. Care was always taken to 

minimize contact with the soil and fluids. With field cores having high hydraulic 
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conductivities, 4.8 cm diameter glass columns were used. The contents of the 

SOLINST core was slowly emptied into the glass column by using a steel piston 

to force out the contents of the SOLINST into the glass column. The soil in the 

glass column was compacted by tapping the glass column slowly. Large cobbles 

and stones, (greater than 2 cm diameter) were removed to ensure that no large 

spaces remained in the soil pack. Once the desired soil pack length was obtained, 

the end pieces were adjusted into place and the column was ready for saturation. 

3.6 SATURATION OF FIELD SOIL 

When field soil was used, a vacuum could not be pulled on the soil pack 

since this would cause volatilization of any volatile organic compounds present in 

the soil. The soil pack was hooked up to the saturation apparatus as show in 

Figure 3.4. In case of field cores from Hill OUl, about 1,000 ml of de-aired 1,000 

mg/I NaCl was injected into the pack with 10 psi back pressure using the same 

procedures as discussed earlier. For field soil packs from Hill OU2, groundwater 

from Hill OU2 was used to saturate the soil cores. 

3.7 NAPL INJECTION PROCEDURES 

The procedures employed for saturation of the soil packs with NAPL are 

the same for packs with Ottawa sand and field soil. The column was hooked up to 

the saturation setup as shown in Figure 3.5. A setup for DNAPL injection into a 

soil pack is shown in Figure 3.5. NAPL was stored in 5 cm diameter, 60 cm long 

chromatography columns. Water was injected into the chromatography column 

storing the NAPL and used as the forcing fluid to force the NAPL into the soil 
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pack. The NAPL was injected into the soil pack from the bottom for DNAPLs 

and from the top for LNAPLs. This was done to ensure gravity stable 

displacement of the water. An injection rate of 1 ml/min was used for the 2.21 cm 

diameter steel columns and a rate of 3.0 cc/min was used for 4.8 cm diameter 

columns. NAPL was injected continuously into the column until no water 

production was observed. The pressure difference at steady state was measured 

using a differential pressure transducer to calculate the end point relative 

permeability of the NAPL. 

3.8 WATER INJECTION PROCEDURES 

In order to reach residual NAPL saturations, the soil packs were flushed 

with several pore volumes of water. The setup was similar to the setup shown in 

Figure 3.5. Water was injected from the top for DNAPLs and from the bottom for 

LNAPLs. Injection rates of 1.0 ml/min for 2.21 cm diameter columns and 3.0 

ml/min for 4.8 cm diameter columns were used during the waterflood. Water was 

injected into the column until no NAPL observed in the effluent. The pressure 

difference across the column at residual NAPL saturation was measured to 

calculated the end point relative permeability to water. The soil pack was 

weighed and the difference in weights between the uncontaminated and 

contaminated soil pack and the density of the NAPL was used to calculate the 

residual NAPL saturation. 
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3.9 MIXING OF ALCOHOL TRACERS 

Tracers were mixed using weight measurements. For example to get a 

2,000 mg/l solution of isopropanol in water, 0.5 g of isopropanol was weighed 

into a 250 ml Erlenmeyer flask. Water was then added to make the total volume 

to 250 ml. 

3.10 MIXING OF RADIOLABELED TRITIUM TRACER 

In order to radiolabel tracer solutions, all the alcohols were mixed to the 

desired concentration. The activity of the tritium was 1 mCurie/ml. Since 

2.2X109 DPM equals 1 m Curie, to obtain 100 cc of 200,000 DPM/ml tritium, 

0.009 ml of 1 mCurie/ml tritium stock was added to 100 ml of alcohol tracer 

solution. Since this quantity is so small, variations in injected tritium 

concentration can be observed in all experiments. 

3.11 MIXING OF SURFACTANT 

Surfactant mixing was always carried out using weight measurements. To 

obtain a 8% aqueous surfactant solution using the commercially available sodium 

dihexyl sulfosuccinate (called MA-801, 80% active surfactant), 100 g of surfactant 

was added to 900 g of deionized water. To obtain a 8% surfactant, 8% 

isopropanol and 1,000 mg/l NaCl aqueous solution, 100 g of the commercial 

sodium dihexyl sulfosuccinate, 80 g of isopropanol, 1 g of NaCl and 819 g of 

deionized water were mixed up. 
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3.12 MIXING OF SURFACTANT ALCOHOL POLYMER SOLUTIONS 

The procedures for mixing up xanthan gum polymer are described in detail 

in Garver (1988), Wreath (1989), Wang (1995) and Shotts (1996). The xanthan 

gum was obtained as a thick broth. The broth (commercial name FLOCON 

4800C) was supplied by OFPG (Oil Field Products Group). The broth was 12.3% 

active. This broth was used for preparing a stock solution of 1 % by weight 

xanthan gum and 2% by weight sodium chloride. The water used for mixing up 

polymer was filtered using a 0.45 µm filter paper to remove bacteria and 

undissolved solids and clay dust etc. The stock was further diluted to prepare the 

surfactant solutions. In order to mix up 250 g of polymer stock, 20.33 g of broth, 

5 .00 g of sodium chloride and 224.67 g of deionized water were mixed. In all 

experiments performed with Hill OU2 soil and Hill OU2 DNAPL, filtered Hill 

source water was used instead of deionized water. Hill source water is the tap 

water available at Hill Air Force Base with 115 mg/l TDS (see table 10.2). 

Polymer broth was added first with care being taken not to allow any broth 

accumulation on the side of the blending jar then mixed in a Waring blender on 

high for 2 minutes. The solution prepared was labeled, 1 % xanthan gum and 2% 

sodium chloride. 

In order to get 500 g of 8% sodium dihexyl sulfosuccinate, 8% 

isopropanol, 5,850 mg/l NaCl and 500 ppm xanthan gum, 25 g of polymer stock, 

50 g of 80% active commercial sodium dihexyl sulfosuccinate (MA-801), 40 g of 

isopropanol and 2.43 g of NaCl were added to a conical flask and stirred using a 

magnetic stir bar for about 2 hours, then filtered in a filter press using a 1.2 µm 
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Millipore filter at 20 psid. This was the final surfactant/alcohol/polymer solution 

used for injection into contaminated soil columns. 

3.13 GAS CHROMATOGRAPH CALIBRATION FOR ALCOHOL TRACERS 

For calibration of the alcohol concentrations in the gas chromatograph, 

stock solutions of the alcohols were mixed up. For example, for mixing up 

standards for isopropanol, 2 g of isopropanol was added to a calibrated 1 liter 

Erlenmeyer flask Deionized water was added to make up the volume to 1 liter. 

This solution was labeled 2,000 mg/I isopropanol. Serial dilutions were then 

performed to obtain 1,000, 500, 250 and 125, 50, 25 mg/L for each set. Standards 

were always run in duplicate. 

3.14 GAS CHROMATOGRAPH CALIBRATION FOR CONTAMINANTS 

Gas chromatograph calibrations were obtained for PCE, TCE and Hill 

DNAPL. No calibration curves could be obtained for jet fuel. The procedures for 

developing calibration curves for contaminants are similar to the procedures used 

for alcohols. The procedures varied slightly depending on the type of gas 

chromatograph used. 

For the Varian 3400 gas chromatograph, the microemulsion samples could 

not be injected into the gas chromatograph due to the possibility of plugging of 

the chromatography column by the surfactant. Hence calibration curves used 

were in the range of 100 mg/I to 1,000 mg/I of trichloroethylene or Hill 

contaminant. 
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The procedure involved in mixing 2.5 g of contaminant in a 250 ml 

Erlenmeyer flask and making up the total volume to 250 ml by adding 4% sodium 

dihexyl sulfosuccinate with 10,000 mg/I NaCL This was labeled 10,000 mg/I 

contaminant. By serial dilution with water, 1,000, 500, 250, 125 mg/I standards 

were prepared. 

For the Varian 3400cx gas chromatograph, fluid was not injected into the 

column. A head space analysis was used for contaminant analysis. Using this gas 

chromatograph, high contaminant concentrations (15,000 mg/I) could be analyzed 

directly. Calibrations had to be run at different surfactant concentrations as the 

concentration of the contaminant in the head space varied with changes in the 

surfactant concentration in the microemulsion. 

The procedure involved mixing 12.5 g of contaminant in a 250 ml 

Erlenmeyer flask and making up the total volume to 250 ml by adding 8% sodium 

dihexyl sulfosuccinate with 10,000 mg/I NaCL This was labeled 50,000 mg/I 

contaminant. Serial dilutions were performed using an 8% sodium dihexyl 

sulfosuccinate with 10,000 mg/I sodium chloride solution to obtain 10,000, 7500, 

5,000, 2500, 1,250 mg/I contaminant concentrations. The same process was 

repeated for other surfactant concentrations. 

In order to prepare standards at low concentrations, 0.25 g of contaminant 

was mixed with deionized water in a 250 ml Erlenmeyer flask and the total 

volume was made up to 250 ml. This was labeled as 1,000 mg/I contaminant. 

Using serial dilutions with water, 500, 250, 125, 25, 1 mg/I standards were 

prepared. 
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Figure 3.1: Set up for packing soil columns. 
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Figure 3.2: Teflon tubing used in glass columns to prevent movement of sand. 
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Chapter 4: Data Analysis Techniques 

Several techniques were used for data analysis. The theoretical equations 

that were used to determine permeability, pore volume and saturations for soil 

column experiments and the solubilization ratios and contaminant solubilization 

in phase behavior experiments are presented in this Chapter. 

4.1 PHASE BEHAVIOR: MEASUREMENT OF SOLUBILIZATION RATIOS 

When surfactant is mixed with oil (NAPL) and water above its CMC 

under certain conditions of temperature etc., a stable phase called microemulsion 

forms. The volume of oil divided by the volume of surfactant in the 

microemulsion is defined as the oil solubilization ratio for Winsor type I behavior. 

The volume of water divided by the volume of surfactant in the microemulsion is 

defined as the water solubilization ratio for Winsor type II behavior. Both ratios 

apply for Winsor type ID behavior. 

4.1.1 volumetric measurements of solubilization 

In Figure 4.1, a typical example showing a Winsor type I surfactant 

system with DNAPL is shown. The volume of DNAPL solubilized can be 

measured by measuring the change in the interface reading in the graduated 

pipette. The DNAPL solubilization parameter can be calculated using, 

v 
(j = ___N_ 

o Vs 

cr0 = NAPL solubilization parameter 

(4.1) 
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V N = Volume of NAPL solubilized 

Vs = Volume of surfactant 

In Figure 4.2, a typical example showing a Winsor type II surfactant 

system with DNAPL is shown. The volume of water solubilized can be measured 

by measuring the change in the interface reading in the graduated pipette. The 

water solubilization parameter can be calculated using; 

v 
O' --YL w-

Vs 

cr w = water solubilization parameter 

V w =Volume of water solubilized 

(4.2) 

Both the above equations are used when there is no alcohol in the 

surfactant solution. When alcohol is present in the surfactant solution, the alcohol 

partitions between the surfactant micelles, oil and water. Due to partitioning of 

alcohol into the oil phase the apparent volume of oil solubilized based on volume 

measurements has to be corrected to calculate the correct oil solubilization 

parameter. 

In order to account for alcohol partitioning into the oil we must consider 

the alcohol partition coefficient between the oil and water, K~, and the alcohol 

partition coefficient between the water and surfactant micelles, K~. Both these 

are defined as follows, 
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(4.3) 

(4.4) 

Performing a mass balance on the alcohol, 

v A = v~ + v~ + v:_ = v~ + c:_v w + K~ c:_v s (4.5) 

(4.6) 

Using the above equations the volume of alcohol in oil can be derived as, 

(4.7) 

In all our phase behavior experiments, the volume of surfactant is usually 

small and V w = V 0 • Hence the above equation can be rewritten as, 

Vo_ Va 
a - 1 

1+ 0 

Ka·Pa 

(4.8) 

Hence the actual volume of oil solubilized after accounting for alcohol 

partitioning is, 
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(4.9) 

In our experiments isopropanol was used as the cosolvent. The partition 

coefficient of this alcohol with TCE is less than 0.1 and alcohol partitioning into 

the oil was not significant at concentrations of alcohol less than 4%. However at 

higher alcohol concentrations and with heavier alcohols (with higher oil-water 

partition coefficients), equations 4.7 and 4.9 must be used to calculate oil 

solubilization. 

Generally, the solubilization of the contaminant by the surfactant solution 

is required for designing a surfactant flood. The contaminant solubilization can 

be calculated as follows: 

(4.10) 

4.1.2 GC measurement o ofubilization 

omatograph was also used to measure contaminant concentration 

m microemulsion in some phase behavior experiments. When these 

measurements were made, experimental techniques to inject surfactant-TCE 

mixtures in to the GC had not been perfected in our laboratory. Hence dilution by 

water was used in all samples prior to GC measurement. Samples with expected 

contaminant concentrations less than 50,000 mg/I were diluted on a 1 :50 basis and 
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samples with contaminant concentrations greater than 50,000 mg/I were diluted 

on a 1 :200 basis. The expected contaminant concentrations were based on 

volume measurements. A comparison of volume measurements, volume 

measurements corrected for alcohol concentration and gas chromatograph 

measurements of Hill contaminant is presented in Figure 4.3. The surfactant 

mixture used here is 4% by weight sodium dihexyl sulfosuccinate, 4% IPA and 

500 mg/I xanthan gum. 

From the plot it can be seen that there is a good match between 40,000 

mg/I and 60,000 mg/I. At higher contaminant concentrations some scatter can be 

observed. This can be attributed to dilution errors. Some scatter can also be 

observed in concentrations less than 40,000 mg/I. Volume measurements are not 

very accurate at contaminant concentrations less than 40,000 mg/I and GC 

measurements should be used to measure contaminant concentrations less than 

40,000 mg/I. 

4.2 POROSITY AND PORE VOLUME DETERMINATION 

The porosity and pore volume of the soil columns were determined by 

mass balance measurements. The weight of the dry unsaturated columns was 

measured after pulling a vacuum and removing all air from the columns. The 

weight of the column was measured after complete saturation with water. The 

porosity and pore volume of the soil pack were calculated using the following 

formula: 

Wsat -Wdrv 
<!>=----·-=--' 

1tr2L 
(4.11) 
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Wsat - W dry 
Vp=----.;._ 

Pw 

4.3 PERMEABILITY DETERMINATION 

(4.12) 

Darcy's law was used to calculate the permeability of soil packs. Water 

was flowed into the saturated soil pack until steady state was reached. The 

pressure was measured and the flow rate was changed. This was done for several 
A<I> 

flow rates and plotted as shown in Figure 4.4. The slope of the - curve was 
AQ 

determined by regression. At steady state, Darcy's law can be written as, 

k= QµL 
M<I>· J 

From Delshad (1990), the potential drop can be defined as; 

A<l>j = ApT -(Pj -Px)gh for flow upwards into the column 

A<l>j = ApT + (Pj -Px)gh for flow downwards into the column 

(4.13) 

(4.14) 

(4.15) 

In all permeability measurements, a differential pressure transducer was 

used to measure ApT across the soil column Since the fluid lines were filled with 

water and the fluid flowing through the column was water, A<l>j was always equal 

to ApT. The permeability of the sand pack was measured by using the calculated 
A<I>· 

value for the slope of __ J , the length of the soil pack, cross sectional area of the 
AQ 
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soil pack and viscosity of water. Using lab units of ~ for flow rate, cp for 
mm. 

viscosity, cm for length, cm2 for cross sectional area and psid for pressure drop, 

the permeability in Darcies is given by, 

k(Darcy) = 0.242 QµL 
M<I>· J 

4.4 ESTTh1ATION OF RESIDUAL NAPL SATURATION IN SOIL PACKS 

(4.16) 

After the NAPL flood and the waterflood, the NAPL saturation can be 

calculated by performing a volume balance or a mass balance. Volume balance 

involves in using the volume of water produced during the NAPL flood and the 

volume of NAPL produced during the waterflood to compute the residual NAPL 

saturation. Mass balance involves using the difference in weight of the 

contaminated soil pack at residual NAPL saturation and the clean uncontaminated 

soil pack saturated with water. The density difference between the NAPL and 

water is used to estimate the residual NAPL volume. 

The following equations were used to estimate the residual NAPL 

saturation by volume balance. 

(4.17) 

V NAPL = V wp - V np (4.18) 
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The following equations were used to estimate the residual NAPL 

saturations by mass balance: 

(4.19) 

V _ ( W sn - W sat ) 
NAPL - PN-Pw 

(4.20) 

4.5 PERFORMANCE ASSESSMENT OF SURFACTANT USING MASS BALANCE 

Performance assessment of surfactant remediation was done using mass 

balance measurements. The percentage of NAPL removed by surfactant 

remediation was calculated using the following equations: 

Np = ( W sn - W sf) 

PN-Pw 

VNAPL -NP 
fN =----=-

P VNAPL 

4.6 STATIC PARTITION COEFFICIENT CALCULATION 

The static partition coefficient can be defined as, 

K
. _ Ci,NAPL 
l-

ei.Water 
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In all the laboratory work, the concentration of the tracers in the aqueous 

phase was measured. The concentration of the tracers in the nonaqueous phase 

was estimated by performing a mass balance between the mass of tracer injected 

in the aqueous phase and mass measured in the aqueous phase after equilibration. 

The static partition coefficient was calculated from the following formula: 

Ki = V w ( Ci,I -1) 

VN Ci.Water 

4.7 METHOD OF MOMENTS TO ESTIMATE PORE VOLUME, NAPL 
SATURATION 

(4.24) 

The method of moments is a very powerful mathematical technique to 

calculate various physical quantities. For example, the center of mass in a body 

can be calculated using the first moment and the center of percussion can be 

computed using the second moment. Similarly the concepts of moment analysis if 

applied to flow in porous media can help us compute some physical quantities. It 

has been shown by Himmelblau and Bischoff ( 1968) that for a single-phase 

nonreactive flow in a packed bed, the pore volume is given by the dimensionless 

mean residence time or first temporal moment calculated from the tracer response 

resulting from the imposition of an idealized instantaneous tracer pulse (the Dirac 

delta function) into the vessel entrance stream. 
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00 

f tnCn(tn)dtn 
-t -~o ____ _ 
D --oo 

f Cn(tn)dtn 
0 

C al
. d . C-Co 

D = norm 1ze tracer concentration = -c-. 
1
-_---""C-

1, 0 

t 

f qdt 

tn =normalized time or pore volumes injected= -0 -
V P 

(4.25) 

(4.26) 

(4.27) 

It is convenient to work in terms of volumes and concentrations instead of 

normalizing all the parameters. The above equation can be expressed as, 

00 

f VC(V)dV 
V=-o ___ _ 

00 

f C(V)dV 
0 

(4.28) 

If the input tracer has finite slug size V ds, the pore volume is given by, 

V =V- Vds 
p 2 (4.29) 
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If one conservative tracer is flowing through a porous medium, the pore 

volume of the porous medium is given by the above equations. 

In a soil pack with NAPL at an average residual saturation SN, and two 

tracers flowing through it with partition coefficients Kk,w and K~.w (Jin, 1995): 

(4.30) 

1 when KNw =0 . 

(4.31) 

The detailed description and derivation of the method moments used in 

this work is given in Jin (1995). The above equation can be rewritten in terms of 

volumes as, 

(4.32) 

1 when KN,w =0 

(4.33) 
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If one of the tracers is a partitioning tracer and the other one 1s a 

nonpartitioning tracer then, 

(4.34) 

The mass of tracer recovered (Mi) in a tracer test can be calculated from 

the zeroth moment as follows: 

(4.35) 

In order to estimate the NAPL volume accurately, the tracer response 

curves should be complete, because much of the information is contained in the 

tail of the response curves. Unfortunately, the tracer response curves are often 

incomplete either due to the dilution of the tracer concentration below the 

detectable limit or to the limitation of the duration of the tracer test, or for some 

other reason. However, the tracer response curves can be extrapolated with an 

exponential function provided the duration of the test is sufficient to establish this 

decline (Pope et al., 1994, Jin, 1995). The first moments of the tracer response 

curves can be obtained by dividing the data into two parts. The first part 

represents the data from zero to the time tb where it becomes exponential, and the 

second covers the exponential part in which it goes from tb to infinity. After time 

tb, the tracer response is assumed to follow an exponential decline given by: 
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where Ila is the slope of the straight line when the tracer response curves 

are plotted on a semi-log scale, and Cb is the tracer concentration at time tb. A 

typical example of extrapolation of tracer data is presented in Figure 4.5. By 

integration of the above the first moment can be rederived as (Jin, 1995): 

tb 

J tCdt + a(a + tb)Cb 

t = -"o'-------
00 

J Cdt+acb 
0 

(4.37) 

When volumes are used instead of time, the above equation can be 

rewritten as: 

vb 
f VCdV +a(a+ Vb)Cb 

v = _o""--------
00 

J CdV +acb 
0 

(4.38) 

The estimation of NAPL saturations is significantly improved by 

extrapolation. In confined column experiments conducted in this work, 

extrapolation did not significantly change the NAPL estimates. In field situations 
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where the system is unconfined and many streamlines do not make it to the 

production wells, extrapolation of data is an excellent tool to improve the 

estimates of NAPL saturations. 
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Figure 4 .1: Calculation of Oil Solubilization Ratios in type I systems 
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Figure 4.2: Calculation of Water Solubilization Ratios in type II systems 
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Chapter 5: Surfactant Phase Behavior Studies 

Surfactant enhanced aquifer remediation (SEAR) describes the application 

of surfactants for the recovery of NAPLs from contaminated aquifers. Surfactants 

have been used for enhanced oil recovery by the oil industry for more than 30 

years. However, the application of surfactants for remediation involves a variety 

of new conditions and criteria, so careful experiments have to be carried out 

identify suitable surfactants for specific NAPLs and specific aquifer conditions. 

The first and very important step in identifying suitable surfactants is to conduct 

appropriate phase behavior experiments. 

Surfactants both increase the solubilization of NAPL constituents and 

lower the IFT between the NAPL and water. Phase behavior experiments are 

extremely important to identify surfactant solutions with suitable characteristics 

such as solubilization ratio and contaminant solubilization, quick equilibration 

times with absence of liquid crystals. In this Chapter, a brief introduction to 

surfactants and their behavior is presented. 

5.1 DESCRIPTION OF SURFACTANTS 

Surfactants or surface active agents are amphiphiles or amphiphilic 

compounds characterized by possessing in the same molecule, two distinct groups 

which differ greatly in their solubility relationship (Winsor, 1954). This tendency 

for surfactant molecules is responsible for their tendency to concentrate at 

interfaces. Surfactants possess a characteristic structure that consists of molecular 

components that have little attraction for the organic solvent that are called 
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lyophobic and components that have a strong attraction for the organic solvent 

that are called lyophilic group (Myers, 1988). When the solvent is water, the 

terms lyophobic and lyophilic can be replaced by hydrophilic and hydrophobic. 

Due to this unique amphiphilic nature, surfactants are used for a wide 

range of commercial applications like, enhanced oil recovery, pharmaceutical 

applications, lubrication etc. (Myers, 1988). A description of surfactant types, 

properties, behavior, characteristics and applications is given in Rosen (1988). A 

more detailed description of the thermodynamics of micelle formation and 

description of various parameters that affect micelle formation, microemulsion 

formation and surfactant phase behavior is given Bourrel and Schechter (1988). 

In order to use surfactants for EOR operations, a good understanding of 

surfactant properties such as micellization, oil solubilization have to be quantified. 

In addition, the effect of temperature, pressure, cosolvent, electrolyte, polymer, 

surfactant adsorption, cation exchange, surfactant-rock interactions etc. also have 

to be understood and well defined before application of surfactants in field EOR 

operations. Some of the above are discussed in Bourrel and Schechter ( 1988). A 

procedure for designing EOR processes is described by Pope and Baviere (1991). 

They recommended that the physicochemistry of surfactant solutions (outlined 

above) should be used as a basis for designing field surfactant floods for EOR. 

The lessons learned during surfactant applications to EOR can be used for 

surfactant enhanced aquifer remediation (Pope and Wade, 1995). The objective 

of surfactant enhanced aquifer remediation is to recover greater than 95% of the 

contaminant and restore the soil to its original condition. However, improper 

application of surfactants in remediation applications can cause several problems 
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like plugging as observed by Zeigenfuss (1987), reduction in hydraulic 

conductivity observed by Allred and Brown (1995) and mobilization of fines 

(Bourbonais et al., 1995). Some of these problems that can be faced during 

surfactant remediation are surfactant losses by adsorption, precipitation, liquid 

crystals, coacervation and partitioning into the trapped NAPL (Harwell, 1992). 

Many concepts discussed in EOR literature are directly applicable to 

remediation of aquifers by surfactants. Problems like plugging could be attributed 

to pore plugging caused by liquid crystal formation and gel formation. 

Reductions in hydraulic conductivities can be caused by surfactant precipitation 

due to surfactant rock interaction. Cation exchange in which calcium ions in 

clays are replaced by sodium ions can cause mobilizati~:m of fines as the clays are 

not held in place by monovalent sodium ions. Most of these mechanisms were 

well described by EOR literature. One of the objectives of this work was to use 

the concepts described in the EOR literature to screen surfactants suitable for 

SEAR applications. 

The basic nature of surfactant molecules is given in Figure 5.1. An 

anionic surfactant (sodium dihexyl sulfosuccinate) and a nonionic surfactant 

molecule (2,4,5-trimethyl-heptyl-polyglucoside) are presented in Figure 5.2. The 

most common surfactants are substantially soluble in water. The water solubility 

is affected by the length of hydrophobic tail, the nature of head group, the valency 

of counterions and solution environment (Myers, 1988). In general surfactants can 

be divided into four main classes depending on_ the type of the hydrophilic groups. 
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5.1.1 Anionic 

Surfactants with a negatively charged hydrophilic group such as carboxyl 

(RCQQ-M+), sulfonate (RS03-M+) and sulfate (ROS03-M+) are classified as 

anionic. Examples of commercial anionic surfactants are sodium dihexyl 

sulfosuccinate (Baran et al., 1996b), sodium dodecyl sulfate (Shiau et al., 1994), 

alkyl diphenyl oxide sulfonates (Rouse et al., 1993) and phosphate ester of 

Nonylphenyl ethoxylate (Fountain, 1992). 

5.1.2 Cationic 

Surfactants with a positively charged hydrophilic group such as quaternary 

ammonium halides (R4N+c1-) are classified as cationic. 

5.1.3 Nonionic 

Surfactants with a hydrophilic group has no charge but derives its water 

solubility from highly polar groups such as polyoxyethylene or polyol groups are 

classified as nonionic. Some commercial examples are ethoxylated (20) sorbitan 

mono-oleate (Pennell et al., 1994), ethoxylated nonylphenol (TRI, 1985), alkyl 

polyglucamides (Baran et al., 1996c). 

5.1.4 Amphoteric or Zwitterionic 

Surfactants that have both positive and negative charges such as 

sulfobetaines RN+(CH3)2CH2CH2S 0 3- are classified as amphoteric or 

zwitterionic surfactants. 
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5.2 REVIEW OF SURFACTANT BEHAVIOR 

Due to the unique amphiphilic nature of the surfactant molecules, they 

tend to aggregate at the interfaces of two fluids. This is responsible for a 

reduction in the free energy of the system in which they interact. The primary 

mode of energy reduction is adsorption of the surfactant molecules at all the 

available surfaces. One physical manifestation of lowering of free energy is the 

formation of crystals or precipitation of surfactant from solution. Another 

physical manifestation is the formation of micelles or molecular aggregates. If 

surfactant is dissolved in water at concentrations greater than the CMC, the 

surfactant exists almost entirely as micelles (Bourrel and Schechter, 1988; Rosen, 

1988; Lake, 1989). The micelle may be looked upon as a crystalline hydrate or a 

solid crystal so that the energy change in going from the crystal to the micelle is 

less than the change in going from the crystal to the monomeric species in 

solution. The formation of micelles greatly increases the solubility of the 

surfactant in water. The critical micelle concentration and is associated with a 

sudden decrease in interfacial tension, electrical conductivity, increase in 

detergency etc. For this and other reasons, all experiments done as part of this 

research on surfactant remediation were done at concentrations much higher than 

theCMC. 

Most surfactants used in commercial applications are usually water 

soluble. The solubility of anionic surfactants generally increases with 

temperature. In case of ionic surfactants, the solubility undergoes a sharp change 

at a temperature called Krafft point at which the solubility of the surfactant equals 
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its CMC. Surfactants are usually used above their Krafft points (Rosen, 1988). 

Nonionic surfactants do not exhibit Krafft point, instead they become less soluble 

as temperature increases. The sudden onset of turbidity of a nonionic surfactant 

solution raising the temperature)s called the cloud point. At a higher temperature 
/ 

the solution tends to separate Into two phases. One of the phases is surfactant-rich 

whereas in the other phase the surfactant concentration is usually very small 

(Bourrel and Schechter, 1988). For remediation applications surfactants should 

be used below the cloud point. 

The hydrophobic groups are generally more varied than the hydrophilic 

groups and include long chain alkyl groups, branched chain alkyl groups, 

alkylbenzenes, alkylnapthalenes, polydimethylsiloxanes, polyoxypropylene glycol 

derivatives, etc. Considering the possible permutations and combinations of all 

the above groups, a good understanding of surfactant behavior is required for 

selection of the best surfactants for rapid screening including which phase 

behavior experiments to perform and how to properly interpret them. 

5.2.1 Microemulsions 

The term microemulsion is frequently confused with emulsions or 

macroemulsions. Ordinary emulsions or macroemulsions must be distinguished 

from microemulsions. Macroemulsions are unstable. Macroemulsions are 

composed of drops of one liquid phase interspersed within a second immiscible 

liquid phase. The drops will coalesce into bigger drops and eventually fall out of 

the emulsion. The larger drops will fall faster and eventually two separate 

immiscible phases separated by an interface will appear. Microemulsions are 
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thermodynamically stable and are composed of submicroscopic structures which 

are so small that Brownian motion keeps them suspended, and coalescence of the 

drops leads to an increase in free energy. Thus the free energy of a 

microemulsion is at a minimum and the system is thermodynamically stable 

compared to macroemulsions which are thermodynamically unstable (Bourrel and 

Schechter, 1988). 

As only anionic surfactants were used in this work, subsequent discussions 

will emphasize anionic surfactants. When a surfactant, water and NAPL (oil) are 

mixed and allowed to equilibrate, two or more phases may appear and in many 

cases most of the surfactant will reside in one of the phases together with various 

proportions of oil and water. When certain criteria are met, this phase is called a 

microemulsion. At low electrolyte concentrations, a Winsor type I system with an 

oil in water microemulsion is formed. As the electrolyte concentration is 

increased, the system changes from a Winsor type I (type II-) to a Winsor type III 

to a Winsor type II (type II+) system with an inverted microemulsion or a water in 

oil microemulsion. An illustration of surfactant phase behavior and transition 

between the three types of systems with anionic surfactants is presented in Figure 

5.3. 

Winsor type I behavior is characterized by swollen micelles surrounded by 

water. The organic species (hydrocarbon or chlorocarbon) is dissolved in the 

interior of the micelles. Winsor type II behavior is characterized by swollen 

inverted micelles with the water dissolved in the center of the micelles. For the 

type III microemulsions, the structure cannot be easily defined but is thought to be 

bicontinuous (Bourrel and Schechter, 1988). 
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When a surfactant solution and an oil are mixed to form a microemulsion, 

there is coalescence of microemulsion and excess phases. When two drops 

approach each other, the liquid film of continuous phase separating the two drops 

will become thinner. If the film becomes thin enough, coalescence will occur 

(Bourrel and Schechter, 1988). Any mechanism that slows the rate of thinning 

will slow down the rate of coalescence. When two microemulsion drops approach 

each other and the liquid film separating them thins, the surfactant molecules in 

the interface separating the drops will be displaced thus slowing the coalescence 

rate. This slowing is more likely when the microemulsion is the continuous 

phase. In many instances, a mixture of microemulsions and excess phases can 

form macroemulsions. In these macroemulsions, the micellar phase 

(microemulsion) is the continuous phase and would lead to a slower coalescence 

rate. Coalescence rates can be increased by increasing the fluidity of interfaces. 

This can be brought about by addition of alcohol or cosolvent which adsorbs at 

the water-oil interface and increases the fluidity. This increased fluidity causes 

breakup of macroemulsions and reduces coalescence times. Other factors which 

enhance fluidity of interfaces are higher temperature and branching in the 

surfactant tail. 

Depending on a large number of factors, including the structure of the 

surfactant molecule, the temperature and the presence or absence of certain 

additives some intermediate liquid-crystalline phases may appear (Bourrel and 

Schechter, 1988). Stable macroemulsions can be associated with liquid

crystalline structures. In some instances liquid crystals are used to produce stable 

macroemulsions (Bourrel and Schechter, 1988). Hence an increase in the fluidity 
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of the water-oil interface would decrease stable macroemulsion formation and 

also minimize liquid crystal or gel formation. This can be achieved by adding 

alcohol, increasing temperature and increasing branching in the surfactant tail. As 

microemulsion transition from a Winsor type I to type III to type II is observed, 

the viscosity of the micellar phase has been observed to show discontinuities. 

Higher viscosities and sometimes non Newtonian behavior are observed at the 

type I to type III transition and type III to type II transition (Bourrel and 

Schechter, 1988). In order to minimize excessively high viscosities alcohol can 

be added (Read and Healy, 1977). 

From the above discussion on microemulsions it can be seen that a good 

understanding of microemulsion behavior is paramount for surfactant selection for 

field EOR and SEAR applications in order to prevent undesirable problems such 

as pore plugging and loss of hydraulic conductivity which could be caused by low 

coalescence times and liquid crystal formation. 

5.2.2 Solubilization parameter and contaminant solubilization 

The solubilization parameter is defined as the ratio of the volume of 

NAPL or water dissolved to the volume of surfactant present. If V 0 , V w are the 

volume of NAPL and water dissolved by the surfactant and Vs is the volume of 

surfactant then the NAPL and water solubilization parameters (solubilization 

ratio) are defined by the following equations; 

v cr = _Q_ 
o Vs 

(4.1) 
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(4.2) 

Typically, for anionic surfactants with chlorinated solvents like TCE, low 

values of oil solubilization are observed at low electrolyte concentrations. Higher 

values of solubilization ratio are observed at optimal salinity. The water 

solubilization ratio decreases as the electrolyte concentration is increased. The 

electrolyte concentration at which the volume of oil solubilized equals the volume 

of water solubilized is termed the optimal salinity. Optimal salinity also refers to 

a point where the oil solubilization parameter and water solubilization parameter 

are equal and in case of nonionic surfactant, optimal salinity may refer to a 

temperature or a surfactant blend which gives rise to optimal conditions. Optimal 

salinity is a very important and useful reference point for any surfactant and 

should be measured even if there is no interest in using the surfactant at optimal 

salinity. Surfactants at optimal salinity are usually associated with ultra-low 

interfacial tensions and mobilization of residual oil for enhanced oil recovery 

(EOR). EOR surfactants at optimal salinity typically reduce the IFT to 10-3 

dyne/cm or less (Pope and Baviere, 1991). 

A typical example is shown in Figure 5.4. As seen in Figure 5.4, the oil 

solubilization ratio increases from 0.2 to about 6.2 and the water solubilization 

ratio decreases from 7 to 2.8. The optimal salinity is at about 11,250 mg/I NaCl 

and the solubilization parameter is about 5 at optimal salinity. More results will 

be presented in the next Chapter. For a given surfactant and oil, the optimal 

salinity can be reached by changing electrolyte concentration, temperature or 
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concentration of cosolvent (alcohol). The optimal salinity is also a weak function 

of pressure, but this is not relevant to low pressure aquifer applications of 

surfactant. Nonionic surfactants are generally insensitive to electrolyte 

concentrations, but optimal salinity can be reached by changing the temperature 

or by blending suitable combinations of surfactants with different molecular 

structures. 

Contaminant solubilization is defined as milligrams of contaminant 

dissolved in liters of solution. A measure of contaminant solubilization is a 

preliminary indication of the possible effectiveness of the surfactant. Typically, 

the solubility of contaminant in the aqueous phase is increased by a factor of 10-

1,000 on addition of surfactant. A typical example is presented in Figure 5.5 for a 

surfactant formulation with contaminant from the Hill Operational Unit 2 site at 

Utah. The solubility of the contaminant increases from about 20,000 mg/I to 

600,000 mg/I by increasing the electrolyte concentration from 3,000 mg/I to 

12,000 mg/I. This corresponds to a change from a Winsor type I surfactant 

system to a Winsor type III surfactant system. 

5.2.3 Volume fraction diagrams 

Surfactant phase behavior can also be presented in the form of volume 

fraction diagrams (Shiau, 1994 and Jin, 1995). In case of anionic surfactants the 

volume fractions of various phases are plotted against the electrolyte 

concentration. In these experiments, the water oil ratio, surfactant concentration, 

temperature and cosolvent concentration were fixed. Only the electrolyte 

concentration was varied. Volume fraction diagrams for nonionic surfactants can 
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be generated by fixing the total surfactant concentration and varying the fractions 

of the individual surfactants, or by varying temperature. A good insight on the 

behavior of the surfactant is obtained by looking at the volume fraction diagrams. 

The activity of the surfactant can be inferred from the relative fractions of the 

microemulsion formed. The transition from a Winsor type I system to a Winsor 

type III to Winsor type II system can be observed. An illustration showing a 

volume fraction diagram and corresponding phase behavior samples are shown in 

Figure 5.3. The oleic phase is always shown in the top left hand comer and the 

aqueous phase is shown in the bottom right hand comer. A good example with 

Hill DNAPL and sodium dihexyl sulfosuccinate is presented in Figure 5.6. The 

volume fraction of the microemulsion and oleic phases are observed to be almost 

equal at low electrolyte concentrations. This is because of low solubilization 

parameters at low electrolyte concentration. As the transition to the three phase 

region is approached a significant increase in the volume fraction of the 

microemulsion phase is observed. The fraction of oil or NAPL is observed to go 

to zero at the transition point from a Winsor type III system to a Winsor type II 

system. 

5.2.4 Ternary diagrams 

Ternary diagrams are an excellent way of characterizing surfactant phase 

behavior. When oil, water and surfactant are mixed together and allowed to 

equilibrate, the phase behavior will involve at least three components. When 

anionic surfactants are used, pressure, temperature and electrolyte concentration 

are fixed. Ternaries have been used to represent compositions, and functions of 
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compositions like dilution paths (Read and Healy, 1977; Nelson and Pope, 1978, 

Lake, 1989). A surfactant -water-oil system can form two or more phases. A 

ternary representation of phase diagrams is presented in Figures 5.7 through 5.9. 

In Figure 5.7 a Winsor type I system is presented. Since the overall composition 

is inside the binodal curve and the tie lines have negative slope, it is a two phase 

system (type II-). Similarly in Figure 5.8 and Figure 5.9, Winsor type III and 

Winsor type II (type 11+) systems are presented. The respective oil , water and 

rnicroemulsion volume fractions are also defined in Figures 5.7 through 5.9. 

When we perform phase behavior experiments, the overall composition is known 

and phase volume fractions can be measured at equilibrium. Using these, tie lines 

and a binodal curve can be drawn. An example of a ternary diagram with 

tetrachloroethylene and a mixture of sodium diarnyl sulfosuccinate and sodium 

dioctyl sulfosuccinate is presented in Figure 5.10. From Figure 5.10 it can be 

seen that the surfactant solution forms a Winsor type I system at the given 

electrolyte concentration, pressure and temperature. 

5.2.S Interfacial tensions (IFT) 

Due to the amphiphilic nature of surfactants and their tendency to 

aggregate at interfaces, the addition of surfactant will bring about a reduction in 

interfacial tensions between aqueous phases and nonaqueous phases. IFT 

measurement is required to determine the trapping number make a prediction of 

the remediation regime (mobilization or solubilization). The effect of trapping 

number on surfactant remediation has been extensively discussed by Jin (1995). 

A spinning drop tensiometer (Cayais et al., 1978) was used to measure IFT' s. IFT 
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measurements are time consuming and have a high degree of uncertainty. Hence 

an easier technique for estimating IFT is useful and is discussed next. 

The interfacial tensions can be correlated with the solubilization 

parameters (Read and Healy, 1977). A qualitative illustration showing the 

correlation between phase behavior and IFT' s is presented in Figure 5 .11. In 

Figure 5.5 it can be seen that there are two interfacial tensions, one between the 

microemulsion and oil and the other between the microemulsion and water. The 

interfacial tensions between the aqueous phase and microemulsion phase and 

nonaqueous phase and microemulsion phase are equal at optimal salinity. A 

theoretical relationship to predict IFT and solubilization parameter has been 

developed by Chun Huh (1979) and verified by Glinsmann (1979), Graciaa et al. 

(1981) and Delshad (1981). The IFT can be estimated using the following 

relation; 

c 
y=

(j2 
(5.1) 

Based on regression with a large number of measurements with 

hydrocarbons, the value for C has been estimated to be about 0.3. The main 

advantage of this correlation is that difficult IFT measurements can be replaced by 

easier phase behavior experiments. It can also be used to smooth experimental 

data, spot large errors and as guide to additional measurements. 
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5.3 SURFACTANT APPLICABILITY 

Anionic surfactants are most commonly used for enhanced oil recovery by 

the petroleum industry (Lake, 1989; Pope and Baviere, 1991). This is because of 

low adsorption on reservoir rocks, availability and low cost. The low adsorption 

of anionic surfactants is because of negatively charged hydrophilic groups, which 

get repelled by the negatively charged surfaces of clays in the subsurface at 

typical pH's of 6 to 8 for oilfield brines 

For applicability in NAPL recovery operations the surfactants must have 

the following characteristics (Pope and Wade, 1995): 

• solubilization potential 

• phase behavior 

• environmental acceptability 

• viscosity of surfactant solutions 

• coalescence behavior 

• cost and availability 

• transport characteristics in porous media 

• stability 

• sorption characteristics 

As in EOR applications, phase behavior is the most important requirement 

for SEAR applications as solubilization, coalescence behavior, liquid crystal 

forming tendencies, microemulsion viscosity and IFTs can be related to phase 

behavior. Historically EOR surfactants were mixed with alcohols or cosolvents to 

minimize coalescence times, liquid crystal formation and microemulsion 
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viscosity. At higher temperatures or with surfactants having sufficiently branched 

tails this was not necessary, but SEAR applications are usually at lower 

temperatures and addition of alcohol would greatly assist in minimizing many of 

the above mentioned problems. 

Once the phase behavior screening is completed and an acceptable 

surfactant has been identified, the next step in the screening process is to test the 

transport characteristics of the surfactant in a porous medium (soil column 

experiments). This was done with many surfactants identified in this work. 

Column experiments can help determine the transport characteristics of the 

surfactant, measure surfactant adsorption and evaluate surfactant performance in 

terms of the final in oil/NAPL saturation after surfactant flooding. Other 

parameters such as surfactant rock interaction and effect of surfactant remediation 

on hydraulic conductivity of the soil can also be studied. Column experiments 

and discussion of column experiment results are presented in Chapter 8 and 

Chapter 9. 
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Hydrophilic head group 
Hydrophobic tail group 

Figure 5 .1: Nature of surfactant molecule 
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CH3 
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H~H-CH2CH--CH--CH0H3 

1.4 

2,4,5-Trimethyl-heptyl-polyglucoside (Nonionic) 

Figure 5.2: Examples of anionic and nonionic surfactants 
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Figure 5.3: Phase behavior of anionic surfactants 
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Figure 5.4: Solubilization parameters plotted against electrolyte concentration 
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Figure 5.5: Contaminant solubilization plotted against electrolyte concentration 
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Figure 5.6: Volume fraction diagram for a surfactant formulation 
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Type I 

Oil=a/(a+b) 

Microemulsion 
=b/(a+b) 

Surfactant 

Water 

Overall Composition 

Figure 5.7: Type I ternary with oil, water and surfactant (reproduced from 
Nelson and Pope, 1978). 
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Type Ill 

Oil=a/(a+b) 

Microemulsion 
=e/(e+f) 

Water=d/( c+d) 

Surfactant 

Water Oil 

Overall Composition 

Figure 5.8: Type ill ternary with oil, water and surfactant (reproduced from 
Nelson and Pope, 1978). 
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Microemulsion 
=c/(c+d) 

Water=d/( c+d) 

Surfactant 

Water 

Overall Composition 

Figure 5.9: Type II ternary with oil, water and surfactant (reproduced from 
Nelson and Pope, 1978). 
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Figure 5.10: Ternary diagram of a surfactant formulation 
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Figure 5.11: Illustration showing the relation between phase behavior and 
interfacial tensions between microemulsions and excess water and 
oil phases. (illustration based on Figure in Baran et al., 1994b) 
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Chapter 6: Phase Behavior Results 

In this Chapter, phase behavior results are presented in the form of volume 

fraction diagrams, solubilization ratio plots and contaminant solubility plots. The 

effect of contaminant type, electrolyte type, alcohol type and concentration, 

polymer and temperature on the phase behavior will be discussed. 

6.1 PHASE BEHAVIOR RESULTS 

The contaminants covered in this study were tetrachloroethylene (PCB), 

trichloroethylene (TCE), jet fuel (JP4) and Hill OU2 DNAPL from the Hill OU2 

site at Hill AFB, Utah. The surfactants used in the study were sodium diamyl 

sulfosuccinate (C5), sodium dihexyl sulfosuccinate (C6), sodium diheptyl 

sulfosuccinate (C7) and sodium dioctyl sulfosuccinate (CS). Isopropanol (IPA, 

IP A), ethanol and secondary butyl alcohol (SBA) were used as the cosolvents to 

minimize gelling problems and reduce equilibration times. The surfactant 

structures are presented in Chapter 2. 

6.1.1 PCE 

The initial phase behavior work with PCB focused on repeating some of 

the work done by Jin (1995) and confirming and extending his results. A 

summary of all the phase behavior experiments carried out with PCB is presented 

in Table 6.1. 

6.1.1.1 Salinity Scans 

Phase behavior experiments were conducted with 4% by weight sodium 

dihexyl sulfosuccinate and PCB using both NaCl and CaCl2 as the electrolyte. 
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The sodium dihexyl sulfosuccinate used here was commercially available as MA-

80I from CYTEC. The volume fraction diagrams are plotted in Figures 6.1 and 

6.2. The PCE and water solubilization parameters and PCE solubilization were 

plotted against electrolyte concentration. The results are plotted in Figures 6.3 

through 6.6. The optimal salinities are about 5.5% by weight NaCl and 4.5% by 

weight CaCl2, respectively, and the corresponding solubilization parameters are 

1.2 and 1.0. Similar experiments were carried out by Baran et al., (1994a) who 

performed phase behavior experiments with 2% by weight sodium dihexyl 

sulfosuccinate. This corresponds to a PCE solubilization of about 650,000 mg/I. 

A comparison of GC measurements and volumetric measurements to calculate 

contaminant solubilization is given in Chapter 4 and later in this Chapter. Thus, 

even though a solubilization ratio of 1.2 is not very high for a good surfactant, the 

enhancement of the solubility of PCE is still very substantial since it is on the 

order of a 2,000 fold increase. However, 5.5% by weight NaCl (- 55,000 mg/I) is 

considered higher than desirable for use in a remedial flood. Furthermore, 

precipitation of the surfactant was observed in aqueous surfactant solutions at 

optimal salinity and this increases the chances that pore plugging might occur. 

The optimal salinity for the 2% by weight sodium dihexyl sulfosuccinate was 

4.1 % by weight NaCl and 2.4% CaC}i. 

Similar phase behavior experiments were also carried out using a solution 

of 2% by weight diamyl sulfosuccinate and 2% by weight dioctyl sulfosuccinate 

using NaCl as the electrolyte. The volume fraction diagram, solubilization 

parameter and contaminant solubilization data are plotted in Figures 6.7 through 

6.9. The optimal salinity is about 8,500 mg/I NaCL The solubilization parameter 
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is 7.5 and the PCE concentration is about 700,000 mg/I at optimum salinity. The 

volume fraction of the middle phase microemulsion at optimum salinity is about 

0.3, which is twice that of the volume fraction of the type III microemulsion with 

sodium dihexyl sulfosuccinate. This is attributed to a the longer hydrophobe of 

sodium dioctyl sulfosuccinate. The lower optimal salinity and higher 

solubilization parameter would make sodium dioctyl sulfosuccinate more 

attractive as a candidate for application in contaminant remediation. However, 

after performing column experiments (see Chapter 8) in which sodium dioctyl 

sulfosuccinate was used without any cosolvent, gelling behavior was observed 

and sodium dioctyl sulfosuccinate was not used in subsequent phase behavior 

experiments without cosolvents. 

6.1.1.2 Ternary Diagram 

In order to obtain a better understanding of the surfactant phase behavior 

with PCE, experiments were conducted to construct a ternary diagram. The 

surfactant solution used was a 1: 1 mixture of sodium diamyl sulfosuccinate and 

sodium dioctyl sulfosuccinate. The electrolyte used was CaCl2 and the electrolyte 

concentration in the water was set at 500 mg/I. Phase behavior experiments were 

conducted at different surfactant concentrations and different PCE concentrations. 

The volumes of individual phases were measured and a binodal curve was drawn 

as shown in Figure 6.10. The tie lines were drawn using the overall composition 

and assuming that the tie lines all originate from the lower right comer. This is 

justified because the microemulsion is type I and the solubility of the water and 

surfactant in PCE is extremely small. The height of the binodal curve was 0.18. 
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The height of the binodal curve is a very important parameter to be used in 

modeling surfactant enhanced aquifer remediation (Brown, 1993; Brown et al., 

1994). 

6.1.2 TCE 

Similar phase behavior studies were conducted with TCE. Again, the 

work was divided into phase behavior experiments aimed toward generating 

volume fraction diagrams and experiments to obtain ternary diagrams. A 

summary of all the phase behavior work conducted is presented in Table 6.2. 

6.1.2.1 Salinity Scans 

Phase behavior experiments were conducted with 8% by weight sodium 

dihexyl sulfosuccinate and TCE using both NaCl and CaCl2 as the electrolyte. 

The volume fraction diagrams are plotted in Figures 6.11 and 6.12. The TCE and 

water solubilization parameters are shown in Figures 6.13 and 6.14 and TCE 

solubilization in Figures 6.15 and 6.16. The optimal salinities are about 11,000 

mgfl NaCl and 5,000 mg/I CaC}i respectively and the solubilization ratios at 

optimal salinity about 6 and 8. This corresponds to a TCE solubilization of about 

700,000 mg/I. This microemulsion showed low equilibration times even with 

CaCI2 and did not exhibit any precipitation or gelling problems. Additional phase 

behavior experiments with TCE were conducted by Shotts ( 1996) concurrently 

with this work. A discussion on coalescence, emulsion formation and 

equilibration times is presented in later sections. 
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6.1.2.2 Ternary Diagrams 

A ternary diagram for 1,000 mg/1 NaCl (type I) is shown in Figure 6.17. 

The maximum height of the binodal curve at this salinity is 0.14. 

6.1.3 Hill DNAPL 

A lot of phase behavior experiments were performed with Hill DNAPL 

from the Operational Unit 2 site at Hill AFB Utah. The composition of the Hill 

DNAPL is described in Chapter 10. TCE was the primary component in the 

DNAPL. Since the solvents at Hill Air Force Base were primarily used as 

degreasers, the DNAPL was black in color (due to the presence of dissolved 

grease). The density of the DN APL is 1.383 glee. The interfacial tension varied 

between 4 to 7 dyne/cm. These appear to be the first time that DNAPL from a 

field site has been used in a surfactant study since no other data could be found in 

the literature. These phase behavior data were used to develop several volume 

fraction diagrams. A summary of the phase behavior experiments carried out with 

Hill DNAPL is presented in Table 6.3. 

6.1.3.1 Salinity Scans 

The main objective of performing several phase behavior studies was to 

identify surfactant solutions with suitable solubilization parameters and low 

equilibration times for use in the surfactant flood at Hill OU2 AFB in Utah. 

Several phase behavior studies were carried out with 500 mg/I xanthan gum 

polymer. This was done to quantify surfactant-DNAPL behavior in the presence 

of xanthan gum polymer. The main advantage of using polymer in a field 

surfactant flood is a better sweep of layers with low permeabilities. Some phase 
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behavior was carried out by Shotts (1996) in which 4% by weight sodium dihexyl 

sulfosuccinate and 8% by weight IPA were mixed in Hill source water. One set 

of experiments was carried out with 500 mg/I xanthan gum and the other set was 

carried out with O mg/I xanthan gum. These results showed no effect of the 

xanthan gum polymer on the phase behavior within experimental error. In both 

instances, the optimal salinity was between 9,800 mg/I NaCl and 10,400 mg/I 

NaCl. The solubilization parameter at optimal salinity was about 4.0. This result 

is in agreement with observations made with TCE with and without polymer. 

The volume fraction diagrams for 4% by weight sodium dihexyl 

sulfosuccinate, 4% by weight IPA, 500 mg/I xanthan gum and NaCl in Hill source 

water and 4% by weight sodium dihexyl sulfosuccinate, 4% by weight ethanol, 

500 mg/I xanthan gum and NaCl in Hill source water are plotted in Figures 6.18 

and 6.19. The solubilization parameters and contaminant solubilization are 

plotted in Figures 6.20 and 6.21. Satisfactory behavior was observed in all the 

samples in terms of equilibration times and absence of liquid crystals, emulsions 

and gels. The equilibration times were less than 15 hours for all samples The 

samples at optimal salinity reached equilibrium in less than 12 hours. The 

optimal salinity was about 11,500 mg/I with both alcohols. The solubilization 

parameter at optimal salinity was about 5.2 and this corresponded to a 

contaminant solubilization of about 700,000 mg/I. Since phase behavior results 

with IPA and ethanol were similar in terms of solubilization and equilibration 

times, it can be concluded that either IP A or ethanol could be used as a cosolvent. 

Phase behavior studies were also conducted using 8% by weight sodium 

dihexyl sulfosuccinate, 8% by weight IPA and 500 mg/I xanthan gum using both 
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NaCl and CaC}i as the electrolyte mixed in Hill source water. Hill source water 

was the tap water available at Hill Air Force Base. The composition of Hill 

source water is given in Table 10.2. The phase behavior for the 8% by weight 

sodium dihexyl sulfosuccinate, 8% by weight IPA, and 500 mg/I xanthan gum 

using NaCl was conducted at both 12.2°C and 23°C. Groundwater temperature at 

Hill Air Force Base was 12.2°C. 

The volume fraction diagrams for 8% by weight sodium dihexyl 

sulfosuccinate, 8% by weight IPA, 500 mg/I xanthan gum and NaCl at 23°C and 

12.2oc and 8% by weight sodium dihexyl sulfosuccinate, 8% by weight IPA, 500 

mg/I xanthan gum and CaCI2 at 23°C are plotted in Figure 6.22. The optimal 

salinity is decreased from 8,300 mg/I at 23°C to 5,850 mg/I at 12.2°C when NaCl 

was the electrolyte. When CaCh was the electrolyte, the optimal salinity was 

4,650 mg/I at 23°C. 

The electrolyte concentrations were normalized using the optimal salinity 

for all the above results and the solubilization parameter data are shown in Figure 

6.23. Contaminant solubility data for these experiments (in relation to normalized 

electrolyte concentration) are plotted in Figure 6.24. A solubilization parameter 

of between 3.6 to 4.4 was measured at optimal salinity for the three solutions. 

This corresponds to a solubilization between 425,000 mg/I to 475,000 mg/I 

contaminant. The data from these phase behavior experiments were used by 

Brown et al. ( 1996a,b) to design the field tests at Hill AFB OU2. 

Additional phase behavior studies were performed with 8% by weight 

sodium dihexyl sulfosuccinate, 4% by weight IPA, NaCl and Hill source water 

and 8% by weight sodium dihexyl sulfosuccinate, 2% by weight IPA, NaCl and 
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Hill source water at different temperatures. This was done for fine tuning the 

SEAR design at Hill OU2. The electrolyte concentration was normalized by 

using the optimal salinity at each temperature. The volume fraction diagrams as a 

function of normalized electrolyte concentration are plotted in Figures 6.25 and 

6.26. The solubilization parameters are plotted in Figures 6.27 and 6.28. The 

contaminant solubilization data are plotted in Figures 6.29 and 6.30, which show 

that as the temperature decreases, a decrease in optimal salinity is observed. The 

solubilization parameter at optimal salinity for the solution with 2% by weight 

IPA was about 6.0 at 23°C and the solubilization parameter at optimal salinity for 

the solution with 4% by weight IPA was 5.4 at 23°C. The contaminant 

solubilization was 600,000 mg/I for the surfactant solution with 4% by weight 

alcohol and 675,000 mg/I with 2% by weight alcohol. 

A discussion of all the phase behavior data described in this work and 

Shotts ( 1996) will be presented later in this Chapter. 

6.1.4 JP4 

Many surfactant phase behavior experiments were performed with jet fuel. 

The jet fuel was obtained from March AFB. Some phase behavior using JP4 has 

been described by Baran et al. (1996b). A summary of all the phase behavior 

experiments performed in this study is described in Table 6.4. 

6.1.4.1 Salinity Scans 

The main objective of performing phase behavior experiments with jet 

fuel was to identify surfactant solutions exhibiting Winsor type ID behavior. This 
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type of behavior gives low interfacial tensions that cause mobilization of the 

LNAPL in soil column studies. 

In many phase behavior experiments conducted without cosolvent, 

formation of extremely thick gels and macroemulsions were observed. No 

measurable solubilization was observed (by reading volumes only) in phase 

behavior samples containing: 

1. 4% by weight sodium dihexyl sulfosuccinate 

2. 3.6% by weight sodium dihexyl sulfosuccinate and 0.4% by weight 

sodium dioctyl sulfosuccinate 

3. 2.8% by weight sodium dihexyl sulfosuccinate and 1.2% by weight 

sodium dioctyl sulfosuccinate. 

For the surfactant solution containing 2.0% by weight sodium dihexyl 

sulfosuccinate and 2.0% by weight sodium dioctyl sulfosuccinate, no measurable 

solubilization was observed for NaCl concentrations from 0 to 2,000 mg/I. The 

samples however exhibited thick emulsions. Similar results were observed in 

phase behavior studies with: 

1. 2.8% by weight sodium dioctyl sulfosuccinate and 1.2% by weight sodium 

dihexyl sulfosuccinate 

2. 3.6% by weight sodium dioctyl sulfosuccinate and 0.4% by weight sodium 

dihexyl sulfosuccinate solutions. 

The macroemulsion problems were observed to increase as increasing . 

fractions of the sodium dioctyl sulfosuccinate were blended in. No coalescence 

was observed after 10 days. This is attributed to the increase in the surfactant tail 

length and lack of branching of sodium dioctyl sulfosuccinate. The length of the 
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hydrophobic tail of the sodium dioctyl sulfosuccinate molecule is greater than the 

length of the hydrophobic tail of the sodium dihexyl sulfosuccinate molecule and 

has less branching. 

In order to eliminate the excessive gel/macroemulsion formation, a new 

surfactant, sodium diheptyl sulfosuccinate was used. This surfactant was 

synthesized by Weerasooriya (1994). In the initial phase behavior studies with 

the sodium diheptyl sulfosuccinate, the surfactant solutions containing 2 % by 

weight sodium diheptyl sulfosuccinate and 2 % by weight secondary butyl alcohol 

by weight were used. Two sets of experiments were performed. In the first set, 

NaCl was the electrolyte and in the second set a mixture of NaCl and CaCl2 at a 

9: 1 ratio was used. The total electrolyte concentration was varied from 1,000 

mg/l to 9 ,000 mg/l. In both sets of samples, thick macroemulsions were observed 

after 24 hours of equilibration. In the second set of samples, the sample with 

9,000 mg/l total electrolyte (8,100 mg/l NaCl and 900 mg/l CaCl2) exhibited three 

phase behavior with an oil solubilization ratio of 6.25 and water solubilization 

ratio of 7.25. Samples were observed to coalesce after 7 to 10 days. Based on 

these results, it was decided to increase the alcohol concentration to minimize 

gel/macroemulsion formation. 

In subsequent phase behavior studies, an electrolyte mixture containing a 

9: 1 mixture of NaCl and CaCl2 was used with all the surfactant solutions. Phase 

behavior studies were carried out using 2% and 4% by weight sodium diheptyl 

sulfosuccinate solutions. The alcohol concentration was varied from 5% by 

weight to 8% by weight. 
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The volume fraction diagrams for 2% sodium diheptyl sulfosuccinate with 

5% SBA and 8% SBA are plotted in Figure 6.31. The oil and water solubilization 

parameter data are plotted in Figure 6.32. The optimal salinity increased from 

11,500 mg/I to 13,500 mg/I when the alcohol concentration increased from 5% to 

8% by weight. The solubilization parameter at optimal salinity decreased from 

4.5 to 4.0 when the alcohol concentration was increased from 5% to 8% by 

weight. 

Similarly, the volume fraction diagrams for 4% by weight sodium diheptyl 

sulfosuccinate with 6% by weight SBA and 8% by weight SBA are plotted in 

Figure 6.34. The solubilization parameter data and contaminant solubilization 

data are plotted in Figures 6.35 and 6.36. The optimal salinity increased from 

12,000 mg/I to 13,000 mg/I when the alcohol concentration was increased from 

6% to 8% by weight. The contaminant solubilization parameter was 4 at optimal 

salinity in both cases. 

In all these experiments, no evidence of gel or liquid crystal formation was 

observed. The viscosities of the aqueous surfactant solutions were measured as an 

additional peformance measure of the acceptability of these mixtures. The 

viscosity of a few aqueous solutions of 4% by weight sodium diheptyl 

sulfosuccinate and 8% by weight secondary butyl alcohol at varying electrolyte 

concentrations are plotted in Figure 6.37. The viscosities varied between 1.5 to 

2.0 cp and Newtonian behavior was observed. Both these are indications that no 

significant gel or liquid crystal problem existed for these compositions. This was 

considered an acceptable viscosity for injection into the subsurface. However 

column studies are still needed as a final check since problems can still occur 
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despite these favorable screening results e.g. gels can form at lower oil 

concentrations than tested here. 

Since sodium diheptyl sulfosuccinate was not commercially available, it 

was decided that a 1: 1 mixture of sodium dihexy 1 sulfosuccinate and sodium 

dioctyl sulfosuccinate be tested in phase behavior experiments. Phase behavior 

experiments were conducted with a surfactant solution consisting of 2% by weight 

sodium dioctyl sulfosuccinate, 2% by weight sodium dihexyl sulfosuccinate, 8% 

by weight secondary butyl alcohol and electrolyte consisting of a mixture of 9: 1 

NaCl and CaC}i by weight. The volume fraction diagram for the solution is 

plotted in Figure 6.38. The solubilization parameter data are plotted in Figure 

6.39 and contaminant solubilization data are plotted in Figure 6.40. A complete 

volume fraction diagram was not obtained as enough jet fuel was unavailable to 

complete the phase behavior experiments. The optimal salinity was estimated by 

extrapolation as 14,000 mg/I of total electrolyte. The solubilization parameter at 

optimal salinity was estimated as 3.5 and this corresponded to a contaminant 

solubilization of 300,000 mg/I. The viscosity of the aqueous surfactant solution 

was measured at 11,000 mg/I total electrolyte concentration. The viscosities 

ranged between 1.5 and 2.0 cp for shear rates between 0.01 sec-1to100 sec-1. 

6.2 DISCUSSION ON PHASE BEHAVIOR 

Based on all the phase behavior experiments, several conclusions and 

inferences were drawn. During the course of this work and the work done by 

Shotts ( 1996), the effect of various parameters such as temperature, length of 
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surfactant hydrophobe tail, alcohol concentration and polymer were studied. 

These are described in the following sections. 

6.2.1 Comparison of Phase Behavior Results from Literature 

There are many techniques to analyze and discuss phase behavior results. 

In the petroleum literature, the term solubilization parameter is defined as the ratio 

of the volume of oil (or water) solubilized and the volume of surfactant (Bourrel 

and Schechter, 1988; Pope and Baviere, 1991). This is very useful as above the 

CMC the oil and water solubilization parameters are usually constant for a well 

behaved surfactant. Another advantage of using this approach is that the 

interfacial tensions between the microemulsion and excess water or oil phases can 

be estimated using the Chun Huh equation (Huh, 1979). 

Another technique to analyze phase behavior results is to present the 

solubilization in terms of a molar solubilization ratio (MSR). The molar 

solubilization ratio can be defined as the average number of molecules solubilized 

per micelle divided by the aggregation number (Edwards et al., 1991b). From the 

molar solubilization ratio we can calculate the micelle/aqueous phase partition 

coefficient can be calculated. Both the MSR and the micelle/aqueous phase 

partition coefficients can be derived using the following equations (Edwards et 

al., 1991): 

SN . -SN MSR = ,llllc ,cmc 

Csurf-CMC 
(6.1) 
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Xm = SN,mic - SN,cmc = _M_S_R_ 

Csurf - CMC + SN,mic - SN,mic 1 + MSR 
(6.2) 

(6.3) 

In this work, the phase behavior results are presented in terms of water and 

oil solubilization parameters. However, some comparisons were made with phase 

behavior results presented in the literature in order to compare the performance of 

sodium dihexyl sulfosuccinate with other surfactants used for remediation. The 

oil solubilization parameter for several surfactant solutions with various 

contaminants is given in Table 6.5. The molar solubilization ratios for some of 

the corresponding surfactant solutions are given in Table 6.6. Abbreviations, 

surfactant chemical names and some surfactant characteristics are given in Table 

6.7. 

From Table 6.5, it is evident that surfactant solutions with high molar 

solubilization ratios have high contaminant solubilization. It can also be seen that 

contaminant solubilization by sodium dihexyl sulfosuccinate is higher than other 

surfactants used in previous and concurrent work. Since sodium dihexyl 

sulfosuccinate is an anionic surfactant, an increase in the MSR was observed as 

more sodium chloride is added to the surfactant solution. This corresponds to a 

transition from Winsor type I to Winsor type III to Winsor type II behavior. High 

contaminant solubilization greater than 600,000 mg/I is due to the formation of 

middle phase microemulsions or presence of Winsor type ID behavior. 
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6.2.2 Coalescence Times and Liquid Crystal Formation 

One of the objectives of performing phase behavior experiments was to 

identify surfactants with low coalescence times since such behavior is one of the 

most importance indicators of good performance in field tests. Complications 

such as liquid crystal formation and macroemulsion formation have been 

observed by Reed and Healy ( 1977) and others testing surfactants for enhanced oil 

recovery and discussed by Bourrel and Schechter (1988) and Rosen (1988). As 

early as 1968, alcohols were used and patented by the oil company researchers for 

the explicit purpose of minimizing problems with gels and emulsions. The worst 

problems in this study were with jet fuel. Macroemulsion formation was observed 

and sample coalescence times were in excess of seven days for many samples. 

This behavior is undesirable as macroemulsions can lead to problems such as pore 

plugging in the subsurface. The desired behavior is for the emulsions to break 

and for clean micormulsions to form within a few hours of equilibration in an 

ushaken pipette. 

In phase behavior experiments conducted with TCE and sodium dihexyl 

sulfosuccinate, when surfactant and TCE were mixed a milky white emulsion was 

formed. These emulsions coalesced in less than 24 hours when no alcohol was 

added forming clear (with a bluish tinge) microemulsion phases. In experiments 

with Hill DNAPL, a chocolate brown emulsion was formed on mixing surfactant 

and DNAPL. After coalescence, a transparent golden brown microemulsion was 

observed. When Hill DNAPL was used, the emulsions were much thicker and in 

the presence of 2% by weight isopropanol they were observed to coalesce in less 
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than 24 hours at 23oc. When the alcohol concentration was increased to 4% 

isopropanol by weight, the coalescence time was reduced to less than 15 hours. 

Samples at optimal salinity were observed to coalesce in less than 4 hours. When 

polymer was added to the surfactant, coalescence times were slower but after 20 

hours no evidence of macroemulsions or liquid crystals were observed. 

Some surfactant solutions are prone to precipitation and liquid crystal 

formation in the presence of CaCii. Hence, it was important to use CaCl2 as the 

electrolyte to study the sensitivity of the surfactant solution to Ca++. When a 

sodium-rich anionic surfactant solution is injected into the subsurface, the sodium 

ions replace the calcium ions on the clay by cation exchange Hence, there is an 

overall movement of calcium ions from the clays to the micelles and replacement 

of the calcium ions by sodium ions on the clay. This causes an increase in the 

calcium ion concentration in the surfactant solution as the surfactant solution 

flows through the subsurface. The presence of calcium ions decreases the optimal 

salinity as observed earlier in phase behavior results with CaCl2. Hence, if 

enough calcium is released during surfactant flooding, the remediation regime 

may be shifted to Winsor type II (type II+). Type II behavior is undesirable since 

it promotes high surfactant retention in the form of microemulsion trapping. 

Phase behavior experiments with CaCl2 were performed in order to characterize 

the effect of CaCl2 on surfactant phase behavior and determine at what point type 

II behavior would occur. 
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6.2.3 Effect of Temperature 

Anionic surfactants are affected by changes in temperature. A higher 

probability of gel and liquid crystal formation and longer equilibration times are 

expected at lower temperatures. The optimal salinity of anionic surfactants such 

as alkyl sulfates or sulfonates increases as the temperature increases. This was 

observed in several phase behavior experiments with both TCE and Hill DNAPL 

using sulfosuccinates which are sulfonates. This type of behavior is caused by an 

increase in the relative solubility of the anionic surfactant in the aqueous phase 

compared to the solubility of the anionic surfactant in the nonaqueous phase as 

temperature is increased. Hence, more electrolyte is required to cause a phase 

change of the microemulsion from Winsor type I to Winsor type ID. 

In Figures 6.41 and 6.42, the effect of temperature on optimal salinity for 

surfactant solutions with TCE and Hill DNAPL is presented. As reported by 

Salager et al. (1979), a linear trend between the optimal salinity and temperature 

on a semi log plot is observed for both TCE and Hill DNAPL in both figures. 

In order to compare the phase behavior for a given anionic surfactant at 

different temperatures, the electrolyte concentration in the surfactant is 

normalized by the optimal salinity at a given temperature. The solubilization data 

are plotted against the normalized electrolyte concentration. Even though the 

optimal salinity changes as temperature varies, the phase behavior essentially 

remains unchanged. The relative width of the three phase region with respect to 

the optimal salinity remains constant. This is confirmed by results in Figures 6.27 

and 6.28 where the solubilization parameter data of Hill DNAPL with two 
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surfactants at different temperatures are plotted. Within experimental error, the 

data overlay each other. Similar overlap within experimental error is observed 

when the contaminant solubilization is plotted against normalized electrolyte 

concentration in Figures 6.29 and 6.30. 

This is very useful in designing field surfactant floods. The exact optimal 

salinity for a given surfactant at a required temperature can be deterinined using 

the correlation between optimal salinity and temperature. Using the normalized 

phase behavior diagrams, solubilization parameter data and contaminant 

solubilization can be determined at the required temperature. 

6.2.4 Effect of Alcohol Concentration 

Alcohol was used as a cosolvent in many surfactant solutions. The main 

purpose of the addition of alcohol was lowering the equilibration times of the 

microemulsions. This was attributed to alcohol partitioning between the oil, 

water and surfactant micelles. Heavier alcohols partition strongly to the oil and 

micelles and shift the phase behavior from type I to III or even II. In this work, 

heavier alcohols like pentanol and hexanol were not used as cosolvents. Instead, 

isopropanol, ethanol and secondary butyl alcohol were used. This was done 

mainly for elimination of gels/liquid crystals and not for lowering optimal 

salinity, although a slow decrease does occur. 

Also, a lower solubilization parameter and a corresponding reduction in 

contaminant solubilization was observed, which is consistent with the well known 

behavior in the EOR literature e.g. Salager et al. (1979). A good example is 

presented in Figure 6.43 (data from Shotts, 1996). The surfactant concentration 
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was fixed at 4 % by weight sodium dihexyl sulfosuccinate and the isopropanol 

concentration was varied between 0% and 8% by weight. Both the solubilization 

parameter and optimal salinity are observed to decrease linearly. The optimal 

salinity is lowered from 12,500 mg/l NaCl for the solution with no IPA to 5,000 

mg/l NaCl for the solution with 20% by weight IPA at 23°C. The solubilization 

parameter correspondingly decreased from 6.5 to 4.5. Similar results were 

observed for a solution of 8% by weight sodium dihexyl sulfosuccinate mixed in 

Hill source water and Hill DNAPL at different alcohol concentrations and 

temperatures as shown in Figure 6.44. It is seen that the behavior of the Hill 

DNAPL is similar to that of pure TCE. The optimal salinity for the 8% by weight 

sodium dihexyl sulfosuccinate decreased from 11,600 mg/lat 2% by weight IPA 

to 8,300 mg/I at 8% by weight IPA at 23°C. The solubilization parameter 

correspondingly decreased from 6.2 to 4.4 when the alcohol concentration was 

increased from 2% by weight to 8% by weight. 

The molecular weight of the alcohol significantly affects the type of phase 

behavior observed. Alcohols like methanol, ethanol and IP A that partition very 

slightly into contaminants like TCE, PCE and jet fuel do not cause significant 

reduction in the optimal salinity whereas heavier alcohols like secondary butyl 

alcohol, pentanol and hexanol will cause lower optimal salinity. This is attributed 

to the partitioning of the heavier alcohols between the aqueous and the oleic phase 

which causes a change in phase behavior. For a solution containing 3.6% by 

weight sodium dihexyl sulfosuccinate, 0.4% by weight sodium dioctyl 

sulfosuccinate, 8% by weight IPA and 500 mg/l xanthan gum, the optimal salinity 
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was 5,800 mg/l NaCl (data from Shotts, 1996). When the IPA was replaced with 

secondary butyl alcohol, the optimal salinity decreased to 5,200 mg/l. 

One exception in surfactant phase behavior on addition of alcohol was 

observed when experiments were carried out with jet fuel and the sulfosuccinate 

surfactants using secondary butyl alcohol as the cosolvent. The optimal salinity 

was observed to increase on addition of increasing amounts of SBA. For a 

surfactant solution with 2% by weight sodium diheptyl sulfosuccinate with 5% by 

weight SBA, the optimal salinity was at 11,500 mg/l electrolyte (90% NaCl and 

10% CaCl2). When the alcohol concentration was increased to 8% by weight the 

optimal salinity increased to 13,500 mg/I. The solubilization parameter was 

observed to decrease as expected. Thus, alcohols always decrease the optimal 

solubilization, but this is a favorable tradeoff provided problems with emulsions, 

gels and liquid crystals are eliminated. 

6.2.5 Effect of Electrolyte Type 

The effect of the type of electrolyte used for mixing the surfactant solution 

is extremely important. For a surfactant solution consisting of 2% by weight 

sodium diamyl sulfosuccinate and 2% by weight dioctyl sulfosuccinate with 

CaCh and PCE at 21°C, the optimal salinity was 1,200 mg/I (Jin, 1995). When 

the CaCl2 was replaced with NaCl, the optimal salinity was 9,000 mg/l. 

Similarly, the optimal salinity for a solution containing 4% by weight sodium 

dihexyl sulfosuccinate using PCE was observed to decrease from 5.5% to 4.5% 

when NaCl was replaced by CaCl2. Similar results were obtained with TCE 

where the optimal salinity for a surfactant solution containing 8% by weight 
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sodium dihexyl sulfosuccinate decreased from 11,000 mg/l with NaCl to 5,000 

mg/l with CaCl2. During phase behavior studies with 8% by weight sodium 

dihexyl sulfosuccinate, 8% by weight IPA and Hill DNAPL the optimal salinity 

decreased from 8,300 mg/l NaCl to 4,650 mg/l CaCii. This lowering of optimal 

salinity in the presence of CaCl2 is attributed to the divalent nature of the calcium 

ions as compared to the monovalent nature of sodium ions. 

6.2.6 Effect of Surfactant Tail Length 

The effect of surfactant tail length and branching on phase behavior is 

extremely important. Higher oil solubilities are caused by longer surfactant tails. 

This translates into higher oil solubilization parameters and lower optimal 

salinities. A longer surfactant tail also makes the surfactant solution more 

susceptible to liquid crystal formation. This is because longer surfactant tails tend 

to stack up to form liquid crystals. The sodium dihexyl sulfosuccinate used in this 

work was a twin tailed surfactant and hence minimal liquid crystal formation was 

observed in most experiments. 

The effect of the tail length on solubilization parameter and optimal 

salinity is shown in Figure 6.45. A surfactant solution containing 8% by weight 

surfactant, 8% by weight IPA and NaCl was used for phase behavior. The 

fraction of sodium dihexyl sulfosuccinate was increased from 0.5 to 1 in the 

surfactant mixture and correspondingly the fraction of sodium diamyl 

sulfosuccinate was decreased from 0.5 to 0. Sodium dihexyl sulfosuccinate has a 

longer tail than the sodium diamyl sulfosuccinate. A decrease in optimal salinity 

and increase in solubilization parameter is observed when the fraction of sodium 
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dihexyl sulfosuccinate in the surfactant solution is increased. The optimal salinity 

for a solution with 4% by weight sodium diamyl sulfosuccinate and 4% by weight 

sodium dihexyl sulfosuccinate was 10,400 mg/I NaCl with a solubilization 

parameter of 4.5. In comparison, for 8% by weight sodium dihexyl 

sulfosuccinate, the optimal salinity dropped to 7,400 mg/I NaCl and the 

solubilization parameter increased to 5.2. This is directly due to the increased 

surfactant tail length of the sodium dihexyl sulfosuccinate over the sodium diamyl 

sulfosuccinate. 

6.2. 7 Effect of Polymer 

The addition of polymer has many advantages for remediation. Due to the 

increased viscosity of the surfactant solution when polymer is added to it 

increased sweep efficiency is obtained. Increased sweep efficiency corresponds 

to a mitigation of aquifer heterogeneities. Almost all of the undesirable effects of 

heterogeneity can be eliminated if the viscosity of the displacing solution is 

sufficiently high (Lake, 1989; Sorbie, 1991; Pope and Wade, 1995). However, in 

order to use polymer successfully, several phase behavior experiments have to be 

carried out to quantify the effect of polymer on phase behavior, coalescence times, 

etc. The polymer used here was xanthan gum. Xanthan gum is a highly 

biodegradable commercial food additive. Many studies were carried out by 

Shotts (1996) in which phase behavior studies were conducted with surfactant 

solutions containing polymer and surfactant solutions without polymer. An 

example is presented in Figure 6.46 for a solution containing 4% by weight 

sodium dihexyl sulfosuccinate, 8% by weight IPA and NaCl with TCE with and 
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without 500 mg/I xanthan gum. A very close overlap is observed between both 

volume fraction diagrams indicating that addition of polymer did not cause any 

change in phase behavior. 

An important exception was observed when polymer was used in phase 

behavior experiments at the lower critical salinity, (transition between type I and 

III) where gel formation in the aqueous phase was observed Similar behavior was 

observed by Tsaur (1978) and Shotts (1996). This is due to the very high 

concentration of polymer in the aqueous phase at the lower critical salinity as 

microemulsion phase is just being formed. This behavior was minimized by 

addition of sufficient quantities of isopropanol. It can be avoided by changing the 

salinity and other variables as well. 

6.3 COMPARISON OF GC AND VOLUMETRIC MEASUREMENTS OF 
SOLUBILIZA TION 

The contaminant solubilization data presented in this work were calculated 

by volumetric measurements (discussed in Chapter 4). A comparison of 

volumetric measurements of Hill OU2 contaminant solubilization and gas 

chromatograph measurements of contaminant solubilization is made in Figures 

6.47 and 6.48. The surfactant mixture used in Figure 6.47 is 4% by weight 

sodium dihexyl sulfosuccinate, 4% IP A and 500 mg/I xanthan gum at different 

sodium chloride concentrations in Hill source water. A similar comparison is 

made in Figure 6.48 for the solubilization data at different surfactant 

concentrations and temperatures. In general the GC measurements are more 

accurate at low contaminant concentrations ( <20,000 mg/I) and the volumetric 

data are more accurate at high contaminant concentrations (>20,000 mg/I). Since 
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the volumetric measurements are both much faster and more accurate at the high 

contaminant concentrations of most interest in this study, this was the method 

used the most. 
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Table 6.1: Summary of phase behavior experiments with PCE. 

Surfactant solution Type of Experiment 
4% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, NaCl, scan 
4% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, CaC!i scan 
2% by weight Sodium diamyl Volume fraction diagrams, salinity 
sulfosuccinate, 2% by weight sodium scan 
dioctyl sulfosuccinate, NaCl 
1:1 sodium diamyl sulfosuccinate and Ternary diagram 
sodium dioctyl sulfosuccinate, CaC!i 

Table 6.2: Summary of phase behavior experiments with TCE. 

Surfactant solution Type of Experiment 
8% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, Na Cl, scan 
8% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, CaCli scan 
Sodium dihexyl sulfosuccinate, NaCl Ternary diagram 
Sodium dihexyl sulfosuccinate, NaCl, Ternary diagram 
IPA 

l 

!. 
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Table 6.3: Summary of phase behavior experiments with Hill DNAPL. 

Surfactant solution Type of Experiment 
4% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, 4 % by weight IP A, scan 
Na Cl, xanthan gum, Hill source water 
4% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, 4% by weight ethanol, scan 
NaCl, xanthan gum, Hill source water 
8% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, 8% by weight IPA, scan 
Na Cl, xanthan gum, Hill source water 
8% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, 2% by weight IPA, scan 
NaCl, Hill source water at different 
temperatures 
8% by weight Sodium dihexyl Volume fraction diagrams, salinity 
sulfosuccinate, 4 % by weight IP A, scan 
NaCl, Hill source water at different 
temperatures 
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Table 6.4: Summary of phase behavior experiments with Jet fuel. 

Surfactant solution Type of Experiment 
4% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate using NaCL 
3.6% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 0.4% by weight using NaCL 
sodium dioctyl sulfosuccinate 
2.8% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 1.2% by weight using NaCL 
sodium dioctyl sulfosuccinate 
2.0% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 2.0% by weight using NaCL 
sodium dioctyl sulfosuccinate 
2.0% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 2.0% by weight using NaCL 
sodium dioctyl sulfosuccinate 
1.2% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 2.8% by weight using NaCL 
sodium dioctyl sulfosuccinate 
0.4% by weight sodium dihexyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 3.6% by weight using NaCL 
sodium dioctyl sulfosuccinate 
2% by weight sodium diheptyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 5% by weight using NaCL 
secondary butyl alcohol 
2% by weight sodium diheptyl Salinity scan, volume fraction diagrams 
sulfosuccinate, 8 % by weight using 9:1, NaCl and CaCii. 
secondary butyl alcohol 
4% by weight sodium diheptyl 
sulfosuccinate, 6% by weight 

Salinity scan, volume fraction diagrams. 

secondary butyl alcohol 
4% by weight sodium diheptyl Salinity scan, volume fraction diagrams. 
sulfosuccinate, 8% by weight 
secondarv butyl alcohol 
2.0% by weight sodium dihexyl Salinity scan, volume fraction diagrams. 
sulfosuccinate, 2.0% by weight 
sodium dioctyl sulfosuccinate, 8% by 
wei~ht secondary butyl alcohol 
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Table 6.5: Comparison of solubilization parameters for several surfactants 

Surfactant Electrolyte NAPL Solubilization Solubilization 
·Concentration Parameter mg/I 
(mg/I) (cc/cc) 

8% MA-80I 1,000 mg/I TCE 0.31 35,000 
NaCl 

8% MA-80I 4,000mg/l TCE 0.47 52,000 
NaCl 

8% MA-80I 10,000 mg/I TCE 3.44 314,000 
NaCl 

8% MA-80I 11,750 mg/I TCE 9.84 965,000 
NaCl 

8%MA-SOI 7,500mg/l PCB 0.26 27,000 
NaCl 

8% MA-SOI 30,000 mg/I PCB 0.44 47,000 
NaCl 

8% MA-80I 52,500 mg/I PCB 1.09 618,000 
NaCl 

8% MA-SOI 67,500 mg/I PCB 1.21 772,000 
NaCl 

0.03% Tergitol no electrolyte Phenanthrene 43 
1.44% SDS 121 mg/I TCE 0.17 3,613 

TDS 
19.33% 121 mg/I TCE 0.01 4,000 
TMAZ2S TDS 
6.33% 121 mg/I TCE 0.17 15,727 
TMAZ20 TDS 
6.55% 121 mg/I TCE 0.23 21,803 
TMAZ60 TDS 
5% AOTand 121 mg/I TCE 594,000 
SMDNS TDS 
5% AOT and 121 mg/I PCE 619,000 
SMDNS TDS 
Rex op hos PCB 9,000 
25/97 
Alkasurf NPlO PCB 22,000 
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Table 6.6: Comparison of molar solubilization ratios for several surfactants 

Surfactant Electrolyte NAPL MSR Reference 
Concentration 
(mg/I) 

8% MA-80I 1,000 mg/I TCE 1.30 Dwarakanath, 1997 
NaCl 

8% MA-80I 4,000mg/l TCE 2.58 Dwarakanath, 1997 
NaCl 

8% MA-80I 10,000 mg/I TCE 11.84 Dwarakanath, 1997 
NaCl 

8% MA-80I 11,750 mg/I TCE 36.48 Dwarakanath, 1997 
NaCl 

8% MA-80I 7,500 mg/I PCE 0.80 Dwarakanath, 1997 
NaCl 

8% MA-80I 30,000mg/l PCE 1.38 Dwarakanath, 1997 
NaCl 

8% MA-80I 52,500 mg/I PCE 18.51 Dwarakanath, 1997 
NaCl 

8% MA-80I 67,500 mg/I PCE 23.13 Dwarakanath, 1997 
NaCl 

0.03% Tergitol no electrolyte Phenanthrene 0.16 Edwards et al., 1991 
1.44% SDS 121 mg/I TCE 0.39 Shiau et al., 1994 

TDS 
19.33% 121 mg/I TCE 0.45 Shiau et al., 1994 
TMAZ28 TDS 
6.33% 121 mg/I TCE 2.27 Shiau et al., 1994 
TMAZ20 TDS 
6.55% 121 mg/I TCE 3.15 Shiau et al., 1994 
TMAZ60 TDS 
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Table 6.7: Summary of abbreviations and surfactant characteristics 

Abbreviation Chemical Name Molecular CMC 

Weight (weight%) 

MA-801 Sodium dihexyl sulfosuccinate 388 0.2 

SDS Sodium dodecyl sulfate 288 0.03 

TMAZ28 POE(80) sorbitan monolaurate 3866 0.39 

TMAZ20 POE(20) sorbitan monolaurate 1266 0.13 

TMAZ60 POE (20) sorbitan monostearate 1310 
AOT Sodium dioctyl sulfosuccinate 
SMDNS 

sodium mono and dimethyl 

napthalene sulfonate 
Rex op hos 

nonylphenol ethoxylate 25/97 
phospate 

Alkasurf NPlO 
nonylphenol ethoxylate 
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Figure 6.13: Solubilization parameters for 8% by weight sodium dihexyl 
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Figure 6.16: TCE solubilization for 8% by weight sodium dihexyl 
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Figure 6.23: Solubilization parameters for 8% by weight sodium dihexyl 
sulfosuccinate, 8% by weight IPA and 500 mg/l xanthan gum in 
Hill source water at different temperatures. 
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Figure 6.24: Hill contaminant solubilization plotted for 8% by weight sodium 
dihexyl sulfosuccinate, 8% by weight alcohol and 500 mg/I 
xanthan gum in Hill source water at different temperatures. 
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Figure 6.25: Volume fraction diagram for 8% by weight sodium dihexyl 
sulfosuccinate, 2% by weight IPA in Hill source water at different 
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Figure 6.26: Volume fraction diagram for 8% by weight sodium dihexyl 
sulfosuccinate, 4% by weight IP A in Hill source water at different 
temperatures. 
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Figure 6.27: Hill contaminant and water solubilization parameters for 8% by 
weight sodium dihexyl sulfosuccinate and 2% by weight IPA. 
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Figure 6.28: Hill contaminant and water solubilization parameters for 8% by 
weight sodium dihexyl sulfosuccinate, 4% by weight IPA. 
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Figure 6.29: Hill contaminant solubilization for 8% by weight sodium dihexyl 
sulfosuccinate, 2% by weight IP A in Hill source water. 
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Figure 6.30: Hill contaminant solubilization for 8% by weight sodium dihexyl 
sulfosuccinate, 4% by weight IPA in Hill source water. 
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Figure 6.31: Volume fraction diagram for 2% by weight sodium diheptyl 
sulfosuccinate, secondary butyl alcohol. 
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Figure 6.32: Jet fuel and water solubilization parameters for 2% by weight 
sodium diheptyl sulfosuccinate, secondary butyl alcohol. 
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Figure 6.33: Jet fuel solubilization for 2% by weight sodium diheptyl 
sulfosuccinate, secondary butyl alcohol. 
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Figure 6.34: Volume fraction diagram for 4% by weight sodium diheptyl 
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Figure 6.35: Jet fuel and water solubilization parameters for 4% by weight 
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Figure 6.36: Jet fuel solubilization for 4% by weight sodium diheptyl 
sulfosuccinate, 2% by weight secondary butyl alcohol. 
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Chapter 7: Partition Coefficient Tests 

7 .1 INTRODUCTION 

Partitioning of a species 'i' can be described as mass transfer of the 

species between two distinct phases. When the partitioning species is a solute at a 

sufficiently low concentration that it does not significantly affect the properties of 

the solvents (density, viscosity etc.), then it is called a tracer. The subject of this 

research is the partitioning of chemical tracers between liquid phases. 

The partition coefficient of a tracer species 'i' between NAPL and water 

has been defined as, 

K . _ Ci,NAPL 
1-

ci,Water 
(4.23) 

Once tracer candidates are identified, partition coefficients should be 

measured to determine if they are in the given range for a given application. 

Static partition coefficient tests and dynamic partition coefficient tests can be 

performed to measure partition coefficients. Both these tests are described in the 

following sections. In this work, partition coefficients were measured by both 

static and dynamic methods. 

7 .1.1 Static Partition Tests 

As the name suggests, static partition coefficient tests are performed under 

static conditions. The tracer is usually mixed in the aqueous phase. Fixed 

volumes of aqueous phases (with tracer) and NAPL are mixed and allowed to 
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equilibrate. Ideally the concentration of the tracer is measured in both the phases 

after equilibration and the partition coefficient is computed. Static tests are easy 

to perform and many tracers can be screened at one time. The concentration of 

the tracers is often more difficult to measure in the NAPL than the water. Hence, 

the concentration of the tracers in the nonaqueous phase is often computed using 

mass balance. This can be difficult for tracers with extremely high partition 

coefficients. For tracers with high partition coefficients (>50), larger volumes of 

the tracer solution may be mixed with a smaller volume of NAPL to allow for 

more precise measurement of aqueous phase tracer concentrations. 

7 .1.2 Dynamic Partition Tests 

In this case a soil pack with a NAPL at a known saturation is flushed with 

a suite of tracers. Ideally one of the tracers is a conservative tracer with a 

partition coefficient of zero (for example tritiated water). The first moments of all 

the tracers and the known residual saturation are then used to compute the 

partition coefficient using the following equation; 

(7.1) 

The main advantage of a dynamic partition coefficient experiment is that 

the tracer concentrations do not need to be measured as accurately since the 

estimated partition coefficients depend on the separation of tracer pulses rather 

than absolute concentrations. The disadvantages are that dynamic tests are much 

harder to perform, take a much longer time to complete, need extremely accurate 
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measurement of residual NAPL saturation and in instances where the DNAPL is 

highly soluble in water (for example 1,2-Dichloroethane) the residual saturation 

will change significantly during a tracer test due to water flushing. However, it is 

very important to perform such tests to ensure that the tracers perform as expected 

in field soil and to check consistency and precision of the data. Furthermore, 

dynamic tests are needed to determine the minimum residence time required for 

equilibrium partitioning, which is a complex function of many variables such as 

temperature, wettability etc. 

7.2 RESULTS WITH VARIOUS NAPLS 

Partition coefficients for 28 alcohol tracer candidates were measured with 

10 NAPLs using both static partition coefficient tests and dynamic partition 

coefficient tests (column experiments). The measured K values were almost 

always within experimental error and hence the combined results are presented. 

The NAPLs were, tetrachloroethylene (PCE), trichloroethylene (TCE), 1,2-

dichloroethane (DCA), carbon tetrachloride (CTET), dichlorobenzene (DCB), 

1,1,1-trichloroethane (TCA), trichloromethane (TCM or chloroform), jet fuel 

(JP4), Hill OUl NAPL, Hill OU2 NAPL and a mixture of PCE and DCA. The 

partition coefficients for various NAPLs with various alcohols are presented in 

Table 7 .1 and Table 7 .2. 

7 .2.1 Mixture of PCE and DCA 

Field NAPLs are usually mixtures of various organic contaminants. In 

one contaminated field site at PPG Lake Charles Louisiana, it was known that 

PCE and DCA were the primary contaminants of concern. Hence partition 
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coefficients were measured at various fractions of PCE and DCA. The results are 

presented in Table 7 .3 and Figure 7 .1. The curve drawn is a smooth curve 

through all the points. 

7.3 APPLICATIONS OF PARTITION COEFFICIENT MEASUREMENT 

Based on the experimental measurement of these partition coefficients, 

the activity coefficients of the tracers in the nonaqueous phase can be computed. 

Using all this information, a suitable code for estimation of the activity 

coefficients of the tracers in the nonaqueous phase can be computed for various 

contaminant mixtures. The aqueous phase activity coefficient can be computed 

using (Wang et al., 1996); 

00 1 
Yi =-

x· 1 

(7.2) 

Using the aqueous phase and nonaqueous phase activity coefficients, 

partition coefficients for various NAPLs and NAPL mixtures can be computed 

(Wang et al., 1996). 

When the partition coefficients for the alcohol tracers are plotted against 

the solubility of the tracer in water, a linear trend can be observed. In Figures 7 .2 

and 7 .3, the partition coefficients are plotted against the solubility of the alcohols 

in water for alcohols with one branched methyl group. A similar plot in which 

partition coefficients are plotted against the solubility of the alcohols in water for 

alcohols with two branched methyl groups. In all these plots a linear trend can be 

observed for similar types of alcohols. This can be used as a quick and easy 
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method to make a preliminary selection of partitioning tracers with appropriate 

partition coefficients. For example, from Figure 7 .2, if a partition coefficient of 

100 is needed with trichloroethylene, then an alcohol with one branched methyl 

group and a solubility of 0.4% can be used. As there are a large number of 

alcohol isomers with various solubilities, a suitable alcohol can be identified and 

the partition coefficients predicted. 
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Table 7.1: Partition coefficients for several NAPLs 

Alcohol PCE TCE TCA CTET TCM JP4 DCB 

Ethanol 0.0 0.0 0.1 0.0 0.3 0.0 0.0 
Iso-Propanol 0.0 0.1 0.1 0.0 1.1 0.0 0.1 
1-Pentanol 1.4 3.8 3.1 1.9 10.8 0.9 2.2 
2-Methyl-2-Butanol 0.4 1.3 0.7 0.9 3.1 0.5 0.7 
1-Hexanol 6.8 18.6 15.2 11.0 57.5 4.0 13.2 
1-Heptanol 163.1 
2-Methyl-1-Pentanol 5.4 14.5 11.6 7.8 36.7 3.9 9.0 
3-Methyl-1-Pentanol 4.7 12.8 9.7 6.5 41.2 2.8 8.4 
2-Methy 1-2-Pentanol 2.6 6.3 5.1 3.4 19.7 1.7 3.4 
3-Methyl-2-Pentanol 6.2 11.3 8.2 5.9 32.5 2.8 6.0 
4-Methyl-1-Pentanol 5.7 16.0 12.8 8.5 58.9 3.7 9.2 
2-Methyl-3-Pentanol 5.2 13.2 9.7 7.7 32.6 4.3 7.1 
4-Methyl-2-Pentanol 3.8 10.2 7.4 5.1 30.2 2.3 4.9 
3-Methyl-3-Pentanol 2.2 4.5 4.4 3.3 18.3 1.5 3.2 
2-Ethyl-1-Butanol 9.6 13.0 10.8 7.5 37.3 3.4 7.7 
2,3-Dimethyl-2-Butanol 2.8 6.3 4.4 3.3 16.4 1.7 3.0 
3,3-Dimethyl-2-Butanol 4.5 9.6 8.9 6.5 31.5 3.2 5.8 
3,3-Dimethyl-1-Butanol 3.8 9.5 6.7 4.1 25.9 2.1 4.4 
3-Methyl-3-Hexanol 11.8 27.9 20.6 15.9 68.3 7.9 14.4 
2-Methyl-3-Hexanol 20.0 43.2 35.4 29.8 81.2 9.9 23.8 
3-Methy 1-2-Hexanol 19.2 56.9 42.2 30.0 12.4 29.3 
2-Methyl-2-Hexanol 10.9 28.1 21.8 16.1 70.1 7.8 14.9 
5-Methy 1-2-Hexanol 17.1 55.3 39.8 30.4 554.1 10.3 33.7 
3-Ethyl-3-Pentanol 13.9 31.9 23.9 17.1 99.2 8.3 16.4 
4,4-Dimethyl-2-Pentanol 22.6 51.3 37.6 24.7 12.0 22.1 
2,3-Dimethy 1-3-Pentanol 12.3 29.0 23.8 17.6 81.6 8.2 15.8 
2,4-Dimethyl-3-pentanol 38.2 
2,2-Dimethyl-3-Pentanol 26.4 80.2 45.1 39.1 292.5 19.2 32.4 
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Table 7 .2: Partition coefficients for several NAPLs 

Alcohol DCA OUl OU2 

Ethanol 0.0 0.0 
Iso-Propanol 0.0 0.1 
1-Propanol 0.2 
1-Pentanol 3.4 
1-Hexanol 28.4 4.4 30.2 
1-Heptanol 80.2 140.5 
2-Methyl-2-butanol 0.2 
2-Methyl-2-Pentanol 1.3 
3-Methyl-3-Pentanol 7.7 6.2 
2-Ethyl-1-Butanol 12.5 
2,3-Dimethyl-2-Butanol 1.5 
3-Methyl-3-Hexanol 5.5 
3-Methyl-2-Hexanol 12.8 
2-Methyl-2-Hexanol 6.0 
2,4-Dimethyl-3-Pentanol 49.9 
2,2-Dimethyl-3-Pentanol 12.9 68.3 

Table 7.3: Partition coefficients for PCE, DCA mixture 

PCE mole fraction DCA mole fraction Partition Coefficient 
0.000 1.000 6.4 
0.421 0.579 13.2 
0.685 0.315 19.0 
0.867 0.133 24.1 
1.000 0.000 28.4 
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Figure 7.1: Partition coefficients for a PCE, DCA mixture 
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Figure 7 .2: Partition coefficients of alcohol tracers with one branched methyl 
group plotted against solubility for several DNAPLs. 
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Figure 7.4: Partition coefficients of alcohol tracers with two branched methyl 
groups plotted against solubility for several DNAPLs. 
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Figure 7.5: Partition coefficients of alcohol tracers with two branched methyl 
groups plotted against solubility for several DNAPLs. 
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Chapter 8: Column Experiments, Description and Results 

Phase behavior experiments can be used to identify surfactants for use in 

remediation operations. But in order to use a surfactant solution in field SEAR 

operations, it is necessary to quantify the behavior of surfactants under dynamic 

conditions. This can be done in soil column experiments. Essential data that must 

be collected include recovery of the contaminant, hydraulic gradient (pressure drop) 

across the soil column during surfactant flooding and surfactant retention due to 

adsorption or other mechanisms. Surfactant solutions that exhibit high head losses 

during use in column experiments are usually associated with gels/liquid crystals or 

emulsions. These cause plugging of pore throats, loss of hydraulic conductivity 

and consequently high head losses. The main objective of this work was to identify 

surfactant solutions which exhibited good behavior under dynamic conditions and 

could be recommended for use in field applications. 

Column experiments were also needed to establish the validity of the 

partitioning tracer test to estimate residual NAPL saturations before and after 

surfactant flooding to assess the performance of surfactant remediation. 

One of the main contributions of this work was the perfection of 

experimental techniques for performing partitioning tracer tests and surfactant 

remediation tests in columns packed with Ottawa sand and field soil. A total of 

fifteen experiments were performed. The contaminants used in these experiments 

were tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4), Hill 

Operational Unit 1 LNAPL (Hill OUl NAPL) from Hill AFB and Hill Operational 

192 



Unit 2 DNAPL (Hill OU2 DNAPL) from Hill AFB. PCE, TCE and Hill OU2 

DNAPL are DNAPLs and JP4 and Hill OUI NAPL are LNAPLs. 

A brief summary of column experiments showing the number of 

experiments performed and different NAPLs is given in Table 8.1. Soil column 

properties are given in Table 8.2. The preliminary work in all the experiments in 

terms of soil washing, soil packing and saturation with water is described in detail 

in Chapter 3. The description, results and discussion for all the column 

experiments are presented in the following sections. A discussion on error analysis 

of all experimental measurements and interfacial tensions is presented in Chapter 9. 

8.1 EXPERIMENTS WITH PCE 

A total of three experiments were performed with PCE. These experiments 

were experiments DW#l, DW#2 and DW#3. Experiments DW#l and DW#2 were 

low IFT mobilization experiments and experiment DW#3 was a higher IFT 

solubilization experiment. 

8.1.1 Experiment DW#l 

Experiment DW#l was the first experiment performed in this work. The 

objectives of this experiment were to gain experience in performing soil column 

experiments and to compare with the results obtained by Jin (1995). The 

experiment was divided into several parts: the initial tracer test, relative permeability 

measurement with PCE and water, tracer test at residual water saturation to estimate 

residual water saturation, tracer test at residual PCE saturation to estimate residual 

water saturation, surfactant flood for remediation of soil column and post surfactant 

tracer tests after surfactant flood for performance assessment. In all the other 
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experiments, the same sequence was followed. However relative permeability 

measurements were not carried out in the other soil column experiments. The soil 

column length, diameter, porosity and permeability are presented in Table 8.2. 

Initial Tracer Test 

The first part of the experiment was the initial tracer test. Tritium was used 

as the tracer. Tracer was injected until the measured tracer concentration in the 

effluent equaled the injected tracer concentration. In this experiment, the method of 

moments was not used to estimate pore volume. Material balance was performed 

by measuring the volume of fluid injected and volume of fluid produced. A 

summary of the initial tracer test showing the fluids used, the tracer concentration 

and pore volume estimates based on volume balance and the initial tracer test is 

given in Table 8.3. The tracer concentration history is plotted in Figure 8.1. Based 

on the initial tracer test, a pore volume of 93.0 cc was estimated compared to the 

pore volume of 87.4 cc based on volume balance. These do not agree very well. 

In subsequent experiments, the difference between the weight of the soil column 

before saturation with water and weight of the soil column after saturation was 

water was used for estimation of pore volume. This technique is termed mass 

balance in this work. 

Contamination of Soil Column and Relative Permeability Experiments 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting PCE into the column from the bottom. While injecting 

PCE, water was also injected and a steady state relative permeability experiment 

with PCE and water was performed. PCE and water were injected using two 
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different pumps at fixed flow rates. The samples were collected in graduated test 

tubes and the pressure drop at steady state was measured. The flow rates for both 

PCE and water were changed and the above procedure was repeated. The drainage 

and imbibition relative permeability curves were estimated based on steady state 

flow rates and pressure measurements. The rates used for both the drainage and 

imbibition relative permeability experiments are given in Table 8.4 and Table 8.5. 

Relative Permeability Experiments; Results 

Using Darcy's law at steady state, the relative permeability can be calculated 

by the following equation; 

(8.1) 

From Delshad (1990), the potential drop can be defined as; 

~<I> j = ~PT - (p j - Px )gh for flow upwards into the column (8 .2) 

~<l>j =~PT+ (Pj -Px)gh for flow downwards into the column (8.3) 

Also from the above, 

H 
Ho=

L 
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Using the above equations, the relative permeability was calculated at 

different saturations of PCE. The results for the drainage relative permeability 

experiment are given in Table 8.6. The saturations of the PCE phase and water 

phase were estimated using the difference between the amounts of PCE and water 

injected and produced. The drainage relative permeability is plotted in Figure 8.2. 

Imbibition relative permeability data are presented in Table 8.7. The 

imbibition relative permeability data are plotted in Figure 8.3. Since some errors 

were made in the volume measurements during the imbibition portion of the 

experiment, the errors in the saturations are unfortunately quite large and time did 

not permit a repeat of this experiment. Nevertheless some rough indication of the 

relative permeability was obtained and is useful. 

Tracer Test at Residual Water Saturation 

At the end of the drainage relative permeability test, a tracer test using 14C 

radiolabeled PCE was performed. A slug of PCE was injected followed by 

flooding with non-radioactive PCE. The details of this test are given in Table 8.8. 

The tracer concentration history is plotted in Figure 8.4. Enough non-radioactive 

PCE was not injected to characterize the complete tracer concentration history. 

Hence moment analysis could not be used for estimating residual water saturation. 

Tracer Test at Residual PCE Saturation 

At the end of the imbibition relative permeability test, the column was 

flooded with water to reach residual PCE saturation. At residual PCE saturation, a 

tracer test using tritium as tracer was performed. A slug of tritium was injected 
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followed by flooding with water. The details of this test are given in Table 8.9. 

The tracer concentration history at residual PCE saturation is plotted in Figure 8.5. 

Based on tritium data, an aqueous pore volume of 72 cc was calculated. Using an 

initial pore volume of 93.0 cc, a waterflood residual PCE saturation of 0.226 was 

calculated. 

Surfactant Flood to remediate PCE 

A solution of 2% sodium diamyl sulfosuccinate, 2% dioctyl sulfosuccinate 

with 500 mg/I CaCl2 was injected at an interstitial velocity of 0.15 m/day (0.3 

cc/min). This surfactant solution was a Winsor type I solution with a PCE 

solubilization parameter of 1.2 and PCE solubilization of 80,000 mg/I. The IFT 

between the microemulsion and excess PCE was 0.02 dynes/cm. A total of 1072.5 

cc (11.5 pore volumes) of surfactant solution was injected. The total PCE recovery 

was calculated by adding the volume of free PCE produced and PCE in 

microemulsion produced during surfactant flooding. A total of 16.4 cc of free PCE 

was produced during the surfactant flood. The volume of PCE in the soil column 

was estimated as 21 cc. Hence only 77.9% of the PCE was recovered. 

Out the total volume of PCE produced, 16.0 cc was mobilized as free PCE 

and 0.4 cc was solubilized. The term free PCE describes the PCE produced as a 

separate nonaqueous phase. The concentration of the PCE in the effluent was 

observed to fall below 200 mg/I (solubility of PCE in water) after four pore 

volumes of surfactant flooding. The PCE concentration history during the 

surfactant flood is plotted in Figure 8.6. 
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In this experiment, the pressure drop across the soil column during the 

surfactant flood was not measured. At 2.7 pore volumes of total production, the 

sampling interval was changed from 10 minutes to 16 minutes. An increase in PCE 

concentration in the effluent from 200 mg/l to 1,000 mg/l was observed. After 6.1 

pore volumes of total production, the pump was stopped for 66 hours. The PCE 

concentration in effluent was observed to increase from about 100 mg/l to 500 mg/I. 

The pump was stopped again for 11 hours at 8.2 pore volumes when the PCE 

concentration was observed to increase from 100 mg/l to 300 mg/l. 

After surfactant injection, about 1,300 cc (14 pore volumes) of water was 

injected at 0.15 m/day interstitial velocity (0.3 cc/min) to remove the surfactant. 

After 14 pore volumes of waterflooding, about 50 cc of water was injected at 3 

cc/min to determine the permeability of the soil column after remediation. The 

permeability at the end of the post surfactant waterflood was measured as 0.6 

Darcies compared to the initial permeability of 5.9 Darcies. This is probably due to 

plugging of the soil column by gel/liquid crystal formation. A summary of the 

surfactant flood for experiment DW#l is given in Table 8.10. 

Tracer Test After Surfactant to Estimate Residual PCE Saturation 

After 11.5 pore volumes of surfactant and more than 14.0 pore volumes of 

post surfactant waterflooding, tritium tracer was injected into the soil column to 

estimate the final residual PCE saturation. About 171.5 cc (1.8 pore volumes) of 

tracer was injected followed by 230 cc of water at an interstitial velocity of 1.5 

m/day (3.1 cc/min). This test was repeated by injecting 102.4 cc (1.1 pore 

volumes) of tracer followed by injecting 180 cc of water at 1.5 m/day (3.0 cc/min). 
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Both these tests are summarized in Tables 8.11 and 8.12. The tracer concentration 

histories from both these experiments are plotted in Figures 8.7 and 8.8 

respectively. The aqueous pore volume of the soil column was 20.5 cc for the first 

test and 10.5 cc for the second test. Both these values are much lower than the 

initial aqueous pore volume of 93.0 cc for the uncontaminated column. This shows 

that there was plugging of the soil column by surfactant. 

Discussion for Experiment DW#l 

Even though experiment DW#l was full of many errors and mistakes, 

useful observations, conclusions and inferences were drawn. The weight of the 

soil column was not used for estimating PCE saturation. Volume balance was the 

only means to estimate initial pore volume and residual PCE saturation. Hence an 

accurate determination of initial pore volume and residual PCE saturation was not 

obtained. In general, volume balance of DNAPL was prone to errors. A poor 

match of the initial pore volume estimate between volume measurement and the 

tracer measurements also led to errors in estimation of residual PCE saturation. The 

tracer estimate of pore volume was used for all calculations. 

In the initial tracer test, sampling and analysis was not carried out during the 

post tracer waterflood (carried out to recover tracer). Hence, the down sweep side 

of the tracer concentration history was not obtained. Sampling and analysis of 

tracer during this period would have enabled performing a moment analysis for a 

more accurate determination of the pore volume. Similarly during the tracer test at 

the end of the PCE flood, enough samples were not analyzed to characterize the 

complete tracer concentration history. A poor estimation of residual PCE volume 
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gave rise to poor estimation of PCE recovery i.e. 77 .9% recovery based on material 

balance estimates. 

During analysis of effluent samples during the surfactant flood, many 

observations were made. PCE concentration was observed to increase when 

sample size was increased from 3 to 7.8 cc. This increase in PCE concentration in 

the effluent when sample size was increased could not be explained. But the 

sudden increase observed when the pump was stopped two times was attributed to 

desorption of adsorbed PCE by the Teflon end pieces during the shut in period. 

This may also account for a persistent PCE tail of the order of 60 to 90 mg/I after 10 

pore volumes of flooding. 

A look at the final tracer breakthrough curves show early breakthrough 

times and small aqueous pore volumes. In the first post surfactant tracer the 

aqueous pore volume was 20.5 cc and in the second post surfactant tracer the swept 

volume was 10.5 cc. Both these numbers were substantially below the initial pore 

volume of 93 cc based on tracers. Based on these results and a final permeability 

measurement of 0.6 Darcies, it can be inferred that there was pore plugging by 

surfactant. This caused a reduction in aqueous pore volume of the soil pack. Pore 

plugging could have been caused by formation of gels and liquid crystals in the 

surfactant during the surfactant flood. 

8.1.2 Experiment DW#2 

In experiment DW#2, a stainless steel column was used to eliminate the 

plastic end pieces which have potential for adsorbing and desorbing chlorinated 

solvents such as PCE. In addition to volume balance (used in DW#l), the 
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difference in weight of the uncontaminated soil column and the contaminated soil 

column was used to estimate the residual PCE saturation (mass balance). In this 

experiment, a small slug of tracer was injected into the column followed by 

injection of water instead of injecting more than one pore volume of tracer. The 

method of moments was used to determine the pore volume. Alcohol partitioning 

tracers were used for the first time for estimation of residual PCE saturation. A 

surfactant capable of producing a Winsor type III microemulsion was used to 

remediate the contaminated soil column. The soil column length, diameter, porosity 

and permeability are presented in Table 8.2. 

Initial Tracer Test 

In this experiment, tritium, isopropyl alcohol (IPA) and 2,3-dimethyl-2-

butanol were used to estimate pore volume. About 3.8 cc of tracer solution was 

injected followed by a waterflood at an interstitial velocity of 11 m/day (1 cc/min). 

The residence time of the tracers was 0. 7 hours. The samples were analyzed using 

a gas chromatograph (GC) for the alcohols and liquid scintillation counter (LSC) 

for tritium samples. The method of moments was used to calculate pore volume of 

the soil column. The tracer concentration history is plotted in Figure 8.9. A 

summary of the initial tracer test is given in Table 8.13. 

An excellent match between pore volume estimates based on volume balance 

and tracers was obtained. The average pore volume based on tracers was 42.5 cc 

and the pore volume based on volume balance was 41.2 cc. The tracer recoveries 

were around 100% within experimental error. 
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Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting PCE into the column from the bottom until residual water 

saturation was reached followed by injection of water from the top of the column 

until residual PCE saturation was reached. The pressure gradient across the soil 

column at steady state during the PCE flood was 1.0 psi/ft (at 1 cc/min). The 

pressure gradient across the soil column at steady state during the waterflood was 

0.52 psi/ft (at 1 cc/min). The end point PCE relative permeability was measured at 

residual water saturation and the end point water relative permeability was 

measured at residual PCE saturation. A summary of contamination of the soil 

column is given in Table 8.14. A residual water saturation of 0.323 was reached at 

the end of the PCE flood and a residual PCE saturation of 0.202 (mass balance) 

was reached at the end of the waterflood. 

Tracer Test at Residual PCE Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column at an interstitial velocity of 0.6 m/day (0.05 cc/min) to measure residual 

PCE saturation. The injected tracers were tritium, IPA and 2,3-dimethyl-2-butanol. 

The mean residence time for tritium and IP A was 11.2 hours and for 2,3-dimethyl-

2-butanol it was 19 hours. The samples were analyzed using a gas chromatograph 

for the alcohol tracer concentrations and a liquid scintillation counter for tritium 

concentration. The tracer concentration history is plotted in Figure 8.10. The 

retardation of 2,3-dimethyl-2-butanol is observed in Figure 8.10. A summary of 

the partitioning tracer test is given in Table 8.15. 
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The residual PCE saturation based on partitioning tracers was calculated 

based on the retention time and the measured partition coefficient of the partitioning 

tracers. When tritium was used as the conservative tracer and 2,3-dimethyl-2-

butanol was used as the partitioning tracer, a PCE saturation of 0.195 was 

calculated. When IPA was used instead of tritium, a saturation of 0.175 was 

calculated. A summary of residual PCE saturation estimates based on mass 

balance, volume balance and partitioning tracers is given in Table 8.16. 

Surfactant Flood to Remediate PCE 

A solution of 2% sodium diamyl sulfosuccinate, 2% dioctyl sulfosuccinate 

with 1,300 mg/I CaCh was injected at 0.6 m/day (0.05 cc/min). This surfactant 

solution was a Winsor type ill solution with a PCE solubilization parameter of 12.5 

and PCE solubilization of about 1,000,000 mg/I. The IFf between the excess PCE 

and microemulsion was 0.01 dynes/cm. A total of 614.4 cc (14.7 pore volumes) of 

surfactant solution was injected. A total of 7. 7 cc of PCE was mobilized and 

produced as free PCE and 0.35 cc was solubilized in the microemulsion. Based on 

this, a total of98% PCE was recovered. About 94% of the PCE was mobilized and 

4% was solubilized. This experiment is summarized in Table 8.17. 

The PCE concentration history is plotted in Figure 8.11. The relative 

amount of PCE solubilized and mobilized and the total amount of PCE recovered as 

a function of pore volumes produced are plotted in Figure 8.12. Concentrations of 

PCE greater than 50,000 mg/I correspond to two-phase samples containing both 

microemulsion and free PCE. The maximum PCE concentration measured in the 

effluent was 850,000 mg/I compared to the equilibrium phase behavior value of 
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about 1,000,000 mg/l. The pump was stopped for 22 hours at 12 pore volumes. 

An increase in PCE concentration from about 130 mg/l to 330 mg/l was observed 

followed by a decline to about 130 mg/l. A persistent PCE tail on the order of 150 

mg/l was observed. This was greater than the PCE tail of about 60-90 mg/l in 

experiment DW#l. 

An attempt was made to measure pressure drops using a 5 psid and a 20 

psid Validyne transducer. The pressure drop went off range for both transducers. 

A 100 psid Validyne transducer was then used to measure the pressure drop. A 

pressure drop of 32 psi. was measured across the soil column during the surfactant 

flood. The column was then flushed with 500 cc (11.9 pore volumes) of 500 mg/l 

CaCl2. 

Since extremely high pressure drops were measured during the surfactant 

flood, the viscosities of the flooding surfactant solutions and the microemulsions 

were measured as an aid to understanding why the hydraulic gradient was so high. 

The viscosities of the aqueous surfactant solution and the middle phase 

microemulsion are plotted as a function of shear rate in Figure 8.13. The viscosity 

of the aqueous surfactant solution in non-Newtonian and high. Even at high shear 

rates, the viscosity is about 7-10 cp. The permeability of the soil after surfactant 

remediation was 1.5 Darcies compared to the initial permeability of 15.4 Darcies. 

Tracer test After Surfactant to Estimate Residual PCE Saturation 

After 14.7 pore volumes of surfactant and 11.9 pore volumes of post 

surfactant waterflooding, tritium tracer was injected into the soil column to estimate 

the final residual PCE saturation. About 4.3 cc (0.1 pore volumes) of tracer was 
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injected followed by a waterflood at an interstitial velocity of 0.6 mid (0.05 cc/min). 

The breakthrough of tracer in the post surfactant tracer occurred much earlier than 

tracer breakthrough in the initial tracer test. The results from this test are 

summarized in Table 8.18. The tracer concentration history is plotted in Figure 

8.14. The apparent aqueous pore volume of the soil column was 15.4 cc in this 

tracer test compared to an initial pore volume of 42.5 cc. This is clearly an 

indication of bypassing due to the plugging problem rather than the true pore 

volume. 

Discussion for Experiment DW#2 

The main improvement in experiment DW#2 was a good match between 

initial pore volume estimates using tracers and material balance measurements. The 

pore volume estimate based on mass balance and tracers agreed to within ±3.5%. 

Since no retardation of alcohol tracers was observed during the initial tracer test in 

clean Ottawa sand, it can be inferred that there was no measurable alcohol tracer 

adsorption. This was further validated by tracer recoveries which were 100±10%. 

This variation in tracer recovery was due to analysis error in the tracer injectate 

sample and some error associated with GC analysis. 

An excellent match was obtained between the volume balance estimate and 

mass balance estimate of residual PCE saturation. The residual PCE saturation 

based on mass balance was 0.181 compared to 0.208 using tritium and 2,3-

dimethyl-2-butanol. Only 57.3% 2,3-dimethyl-2-butanol was recovered during the 

tracer test but the estimate of residual PCE saturation was not affected by the low 

tracer recovery. 
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The PCE concentration history showed two separate peaks in experiment 

DW#2. This was attributed to poor design at the effluent end of the soil pack. The 

tubing from the column to the fraction collector had a loop which trapped the 

heavier PCE. When the loop was removed, the PCE trapped in the loop was 

produced giving rise to the second PCE peak. 

Based on contaminant recovery curves, more than 97.7% PCE was 

recovered by surfactant remediation. By comparing the PCE concentration history 

in experiment DW#l and DW#2 it is observed that the persistent PCE tail in 

experiment DW#2 has a higher concentration (130 to 160 mg/I) compared to 

experiment DW#l (60 to 90 mg/I). This result was observed despite the use of a 

steel column without any Teflon end pieces in experiment DW#2. This can be 

explained by the occurrence of a greater number of surfactant hemi-micelles due to 

an increased concentration of CaCl2 in experiment DW#2 (1,300 mg/Las opposed 

to 500 mg/L). Since a salinity gradient was not used to break up the hemi-micelles, 

PCE was retained in large hemi-micelles and slowly partitioned into the flowing 

surfactant thereby causing persistent PCE concentration in the effluent. A smaller 

increase in PCE concentration on stoppage of the pump was observed in experiment 

DW#2 compared to experiment DW#l. This is because the steel column had no 

Teflon end pieces to desorb any PCE. The small increase in PCE concentration 

was due to desorption of PCE by the nylon tubing between the column and the 

fraction collector. 

A look at the final tracer curve showed extremely small break through times 

and a smaller aqueous pore volumes. Based on an aqueous pore volume of 20.8 cc 

(lower than a pore volume of 42.5 cc) and a final permeability measurement of 1.5 
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Darcies, it can be inferred that there was pore plugging which caused reduction in 

aqueous pore volume through the soil pack. This was further substantiated by the 

non Newtonian behavior observed in Figure 8.13 between viscosity of the aqueous 

surfactant solution and shear rate. In general, surfactant solutions exhibiting non 

Newtonian behavior without addition of polymer are indicative of gel and liquid 

crystal formation. These gels and liquid crystals can cause pore plugging and 

excessive pressure drops and a reduction in aqueous volume as observed in 

experiments DW#l and DW#2. 

8.1.3 Experiment DW#3 

In experiment DW#3, both mass balance and partitioning tracers were used 

for performance assessment of surfactant remediation. The mass balance estimate 

of performance assessment was calculated by comparing the weight of the soil 

column before contamination (at 100% water saturation) and the weight of the soil 

column after surfactant remediation. Pressure drops were measured across the 

column during the surfactant flood. This number was converted into a hydraulic 

gradient and plotted against cumulative volume produced. The initial soil 

permeability before contamination of the soil column was compared to the 

permeability after surfactant remediation to assess efficacy of surfactant 

remediation. The soil column length, diameter, porosity and permeability are 

presented in Table 8.2. 

Initial Tracer Test 

In this experiment, tritium was used to estimate pore volume. About 4.4 cc 

of tritium was injected followed by a waterflood at an interstitial velocity of 11 
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m/day (1 cc/min). The samples were analyzed using a LSC. The tracer 

concentration history is plotted in Figure 8.15. A summary of the initial tracer test 

is given in Table 8.19. The pore volume based on tritium was 44.4 cc and the pore 

volume based on mass balance was 42.8 cc. 

Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting PCE into the column from the bottom until residual water 

saturation was reached, followed by injection of water from the top of the column 

until residual PCE saturation was reached. The end point PCE relative permeability 

was measured at residual water saturation and the end point water relative 

permeability was measured at residual PCE saturation. A summary of 

contamination of the soil column is given in Table 8.20. A residual water saturation 

of 0.392 was reached at the end of the PCE flood and a residual PCE saturation of 

0.181 (mass balance) was reached at the end of the waterflood. 

Tracer Test at Residual PCE Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column at an interstitial velocity of 1.5 m/day (0.15 cc/min) to measure residual 

PCE saturation. The injected tracers were tritium, IPA and 2,3-dimethyl-2-butanol. 

Sampling and analysis procedures were similar to procedures followed in 

experiment DW#2. The mean residence time for tritium and IPA was 3.6 hours and 

for 2,3-dimethyl-2-butanol it was 6.2 hours. The samples were analyzed using a 

GC for the alcohol tracer concentrations and a LSC for tritium concentration. The 
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tracer concentration histories are plotted in Figure 8.16. A summary of the 

partitioning tracer test is given in Table 8.21. 

The residual PCE saturation based on partitioning tracers was calculated 

based on the retention time of the partitioning tracers. When tritium was used as the 

conservative tracer and 2,3-dimethyl-2-butanol was used as the partitioning tracer, a 

PCE saturation of 0.208 was estimated. When IP A was used instead of tritium a 

saturation of 0.205 was estimated. A summary of residual PCE saturation 

estimates based on mass balance, volume balance and partitioning tracers are given 

in Table 8.22. 

Surfactant Flood to Remediate PCE 

A solution of 4% sodium dihexyl sulfosuccinate with 25,000 mg/l of NaCl 

was injected at 0.6 m/day (0.06 cc/min). The flow rate was increased to 1.2 m/day 

(0.12 cc/min) after 2.2 pore volumes of injection and increased to 2.4 m/day (0.24 

cc/min) after a total of 5.5 pore volumes of injection. This surfactant solution was a 

Winsor type I solution with a PCE solubilization parameter of 0.9 and PCE 

solubilization of 58,000 mg/l. The IFT between the microemulsion and excess 

PCE was 0.14 dynes/cm. A total of 557.5 cc (12.8 pore volumes) of surfactant 

solution was injected. A total of 1.3 cc of PCE was mobilized and produced as free 

PCE and 3.9 cc was solubilized in the microemulsion. Based on this, 17% of the 

PCE was mobilized and the rest was solubilized. The surfactant flood is 

summarized in Table 8.23. 

The PCE concentration history during the surfactant flood is plotted in 

Figure 8.17. In Figure 8.18, the relative amounts of PCE solubilized and 
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mobilized and the total amount of PCE recovered as a function of pore volumes 

produced are plotted in Figure 8.17. Concentrations of PCE greater than 50,000 

mg/I correspond to two-phase samples containing both microemulsion and PCE. 

The maximum PCE concentration measured in the effluent was 45,000 mg/I 

compared to the equilibrium phase behavior value of 58,000 mg/I. From Figure 

8 .17 it can be seen that about 70% of the PCE is recovered as a result of surfactant 

flooding. This number is incorrect as both partitioning tracers and mass balance 

measurements indicated better performance by surfactant flooding. In addition to 

material balance, partitioning tracers and mass balance were used for performance 

assessment of surfactant remediation. Based on mass balance (comparison of 

weights of the soil column before contamination by PCE and after surfactant 

remediation), 100.5% of the PCE was recovered. The final saturation of PCB after 

surfactant remediation was 0.004. 

From the PCE concentration history in Figures 8.17 and 8.18, a steady 

plateau in the PCE concentration of about 30,000 mg/I to 45,000 mg/I is observed. 

This is due to slow solubilization of the PCE ganglia in the Ottawa sand. After 5 

pore volumes, the PCE concentration was observed to rapidly decline to less than 

1,000 mg/I. Several effluent samples at the end of the surfactant flood could not be 

analyzed. The soil column was flushed with 227 cc (5.2 pore volumes) of 1,000 

mg/I NaCl after surfactant flooding. 

Since the pressure drops across the column for experiment DW#2 were 

extremely high and could not be measured during the surfactant flood, one of the 

main objectives of experiment DW#3 was to measure pressure drops across the soil 

column. Pressure drop was converted into a dimensionless hydraulic gradient and 
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plotted against the pore volumes. The hydraulic gradient during the surfactant flood 

is plotted in Figure 8.19. A quick look at the plot shows a lot of experimental noise 

as the transducers were not sensitive enough to measure such low hydraulic 

gradients during the surfactant flood. The average hydraulic gradient across the 

column was low, on the order of 0.05-0.10 in the beginning of the surfactant flood 

(A hydraulic gradient of 1 psi/ft = 2.3 mlm). The average hydraulic gradient was 

observed to increase from about 0.07 to 0.15 when the injection rate was increased 

from 0.06 cc/min to 0.12 cc/min. A hydraulic gradient of about 0.32 was measured 

at an injection rate of 0.24 cc/min. Once the waterflood was started, the hydraulic 

gradient declined to less than 0.15. Such low head losses can be attributed to low 

viscosity and minimal gel forming tendencies of the surfactant solution. 

The viscosity for the injected surfactant solution for experiment DW#3 is 

plotted in Figure 8.20. The viscosity of the injected surfactant is extremely low 

(about 1.3-1.4 cp) and independent of shear rate with the noise in the data at the 

very low shear stresses of these measurements. Even though the pressure 

measurements indicated low hydraulic gradients during the surfactant flood, more 

accurate pressure measurements are needed for proper understanding of the process 

of surfactant remediation. The permeability of the soil after surfactant remediation 

was 6.9 Darcies compared to the initial permeability of 7.3 Darcies. This shows 

that the soil column can be restored to very nearly its original condition after 

surfactant remediation since the these values are the same within experimental error. 
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Tracer Test After Surfactant to Estimate Residual PCE Saturation 

After 12.8 pore volumes of surfactant and 5.2 pore volumes of post 

surfactant waterflooding, a suite of conservative and partitioning tracers was 

injected into the soil column to estimate final residual PCE saturation. The tracers 

used were tritium, IP A and 2,3-dimethyl-2-butanol. About 6.4 cc of tracer solution 

was injected at an interstitial velocity of 1.5 m/day (0.15 cc/min) followed by 

flooding with 1,000 mg/l NaCL The effluent was analyzed for alcohols and tritium 

and the residual PCE saturation was calculated. The tracer concentration history for 

this tracer test is plotted in Figure 8.21. Negligible retardation of 2,3-dimethyl-2-

butanol is observed. This implies a low PCE saturation as a result of surfactant 

remediation. 

Tracer concentration histories for tracer tests before contamination of the 

soil column and after surfactant remediation are plotted in Figure 8.22. A very 

close overlap between initial tracer and post surfactant tracer is observed in Figure 

8.22. This means that the soil has been restored to very nearly its original condition 

after surfactant remediation. 

The final partitioning tracer test is summarized in Table 8.24. Based on the 

partitioning tracers, the PCE saturation after surfactant flooding was 0.005 

compared to a waterflood residual PCE saturation of 0.181. This corresponded to a 

recovery of 97 .2 % of PCE. A summary of the residual saturations after surfactant 

is given in Table 8.25. 
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Discussion for Experiment DW#3 

The pore volume estimates based on mass balance, volume balance and 

tracers in experiment DW#3 were in excellent agreement (within ±3.5%). The 

tracer recovery was consistent with recoveries observed in experiment DW#2. 

As in experiment DW#2, an excellent match was obtained between the 

volume balance estimate and mass balance estimate of residual PCE saturation. The 

partitioning tracer estimates of the residual PCE saturation agreed to within ±3% 

saturation of PCE. The recovery of all the tracers was low during the partitioning 

tracer test. Despite low tracer recovery the saturation estimation was in excellent 

agreement with mass balance estimates. 

From the PCE concentration history it can be seen that high PCE 

concentrations corresponding to free phase PCE were observed in the first pore 

volume. This was followed by a PCE concentration plateau of about 20,000 mg/l 

to 35,000 mg/l in the next four pore volumes. There was some delay in analyzing 

the samples in the first 2 pore volumes and this accounted for scatter observed in 

the experimental measurements. 

An increase in the flow rate did not change the effluent PCE concentration. 

The flow rate was changed two times during the surfactant and both times there was 

no change in the effluent PCE concentration. From this it can be inferred that there 

was equilibrium solubilization of the contaminant. The recovery of PCE based on 

the PCE concentration history curve was about 70%, but the recovery based on 

mass balance was 100.5%. PCE is a fairly volatile contaminant. The 

microemulsion samples produced during the surfactant were not analyzed 
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immediately. Typically the samples were allowed to sit in the tube rack in the 

fraction collector until a new rack moved into the sampling port. This caused 

additional delay in analysis of effluent samples. This delay in sample analysis 

caused PCE loss by volatilization. In addition, GC errors in PCE measurement 

could also account for under prediction of PCE recovery based on material balance. 

The recovery based on the weight of the soil column was used as primary means 

for performance assessment of surfactant remediation. This number was confirmed 

by partitioning tracers which estimated low PCE saturations after surfactant 

remediation. 

Based on the average residual PCE saturation of 0.005 calculated after 

surfactant flooding, the close match between the initial tracer concentration history 

and final tracer concentration histories and a close match between the initial 

permeability and final permeability after surfactant flooding it can be concluded that 

the soil pack had been restored to very nearly its original condition after surfactant 

flooding. 

Based on the plot showing the head losses across the soil column during 

surfactant flooding, it can be inferred that the surfactant solution used in this 

experiment did not cause any pore plugging and gelling problems. Gradients 

observed during the experiment (less than 0.3) are acceptable field hydraulic 

gradients. 

8.2 EXPERIMENTS WITH TCE 

A total of three column experiments were conducted with TCE as the 

contaminant. The first experiment was a solubilization-type experiment (DW#4). 
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The second experiment was a solubilization-type experiment with xanthan gum 

polymer and IP A used as a co-solvent (POL YTCE#l ). The final experiment 

(POL YTCE#3) was a mobilization type experiment aimed at quick remediation of 

contaminated soil. 

8.2.1 Experiment DW#4 

In experiment DW#4, a dynamic partition coefficient test was performed in 

which the partition coefficients of two alcohols, 2,3-dimethyl-2-butanol and 2-

methyl-2-hexanol were determined. The residence times of the tracers and known 

TCE saturation in the soil column were used to calculate the partition coefficients. 

These tracers were used in the subsequent column experiment to estimate residual 

TCE saturation. The ability of sodium dihexyl sulfosuccinate to remediate Ottawa 

sand contaminated by TCE was evaluated. Performance assessment of surfactant 

remediation was done by using partitioning tracers and mass balance 

measurements. The soil column length, diameter, porosity and permeability are 

presented in Table 8.2. 

Initial Tracer Test 

In this experiment, tritium was used to estimate pore volume. About 4.3 cc 

of tracer was injected followed by a waterflood at and interstitial velocity of 11 

m/day ( 1 cc/min). The samples were analyzed using a LSC. The tracer 

concentration history is plotted in Figure 8.23. A summary of the initial tracer test 

is given in Table 8.26. The average pore volume based on the initial tritium tracer 

was 43.0 cc. The pore volume based on mass balance was 40.4 cc and the pore 

volume estimate based on volume balance was 41.4 cc. 
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Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting TCE into the column from the bottom until residual water 

saturation was reached followed by injection of water from the top of the column 

until residual TCE saturation was reached. Both the TCE flood and waterflood 

were carried out at and an interstitial velocity of 11 m/day (1 cc/min). The pressure 

gradient across the soil column at steady state during the TCE flood was 0.99 psi/ft 

(at 1 cc/min). The pressure gradient across the soil column at steady state during 

the waterflood was 0.78 psi/ft (at 1 cc/min). The end point TCE relative 

permeability was measured at residual water saturation and the end point water 

relative permeability was measured at residual TCE saturation. A summary of 

contamination of the soil column is given in Table 8.27. A residual water saturation 

of 0.263 was reached at the end of the TCE flood and a residual TCE saturation of 

0.176 (mass balance) was reached at the end of the waterflood. 

Tracer Test at Residual TCE Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column to measure the partition coefficients of two alcohol tracers. The injected 

tracers were IPA, 2,3-dimethyl-2-butanol and 2-methyl-2-hexanol. Sampling and 

analysis procedures were similar to procedures followed in experiments DW#2 and 

DW#3. A total of 4.5 cc of tracer solution was injected followed by a waterflood at 

an interstitial velocity of 1.5 m/day (0.15 cc/min) . The tracer concentration 

histories were plotted Figure 8.24. A summary of the partitioning tracer test is 

given in Table 8.28. 
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The residual TCE saturation and the mean residence times of the partitioning 

tracers were used to compute the partition coefficients. A retardation factor of 2.39 

was measured for 2,3-dimethyl-2-butanol and a retardation factor of 7.17 was 

measured for 2-methyl-2-hexanol. This corresponded to a residence time of 11 

hours for 2,3-dimethyl-2-butanol and for 2-methyl-2-hexanol it was 33 hours. 

Based on these retardation factors, the partition coefficient for 2,3-dimethyl-2-

butanol was calculated as 6.3 and the partition coefficient for 2-methyl-2-hexanol 

was 28.1. The partition coefficients for both these alcohols determined by the 

partitioning tracer test are summarized in Table 8.29. 

Surfactant Flood to Remediate TCE 

A solution of 8% sodium dihexyl sulfosuccinate with 2,000 mg/NaCl was 

injected at an interstitial velocity of 1.3 m/day (0.13 cc/min). This surfactant 

solution was a Winsor type I solution with a TCE solubilization parameter of 0.5 

and TCE solubilization of 52,000 mg/I. The IFf between the excess TCE and 

microemulsion was 0.20 dynes/cm. A total of 361.3 cc (8.7 pore volumes) of 

surfactant solution was injected. A total of 0.3 cc of TCE was mobilized and 

produced as free TCE and the rest was solubilized in microemulsion. This 

experiment was a solubilization dominated experiment as less than 5% of the TCE 

was mobilized. After 2.4 pore volumes of total production there were some GC 

problems. Hence many samples could not be analyzed for TCE immediately after 

collection. TCE was lost by volatilization from these samples and this is reflected 

in the scatter observed in the TCE concentration in the effluent after 2.4 pore 

volumes. The surfactant flood is summarized in Table 8.30. 
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The TCE concentration history during the surfactant flood and the amount 

of TCE recovered are plotted in Figure 8.25. The maximum TCE concentration 

measured in the effluent was 32,000 mg/I compared to an equilibrium phase 

behavior value of 52,000 mg/I. From this Figure it can be seen that about 35 % of 

the TCE was recovered as a result of surfactant remediation. In addition to material 

balance of TCE using GC measurements, mass balance and partitioning tracers 

were used for performance assessment of surfactant remediation. Based on 

weighing the soil column before and after surfactant remediation, 100.0% of the 

TCE was recovered. Similar results were obtained from partitioning tracer results 

which showed that 96.9% of the TCE was recovered. 

Pressures were measured across the soil column during the surfactant flood 

and post surfactant waterflood in experiment DW#4. The hydraulic gradient across 

the soil column during the surfactant flood and post surfactant waterflood is plotted 

in Figure 8.26. In this experiment, the hydraulic gradient at the beginning of the 

surfactant flood was about 0.17. This increased to about 0.38 when breakthrough 

of TCE was observed. This was followed by a slow decline to 0.17. The 

hydraulic gradients were observed to increase when the pump was stopped two 

times during the surfactant flood. Once the pump was started again, the hydraulic 

gradient was observed to decline to lower values. Such increases in hydraulic 

gradient can be attributed to thixotropic behavior of the injected surfactant solution. 

This behavior must be avoided for successful application of surfactants in field 

applications as this behavior is usually associated with gels and liquid crystal 

formation. This behavior can be minimized by the addition of alcohol. This was 

done in subsequent experiments. The soil column was flushed with 200 cc ( 4.6 
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pore volumes) of 2,000 mg/I NaCL Once the waterflood was started, the hydraulic 

gradient declined to less than 0.25 after 4 pore volumes of waterflooding. Such 

low head losses can be attributed to the low viscosity of the injected surfactant 

solution. The variation of viscosity of the injected surfactant solution with shear 

rate for experiment DW#4 is plotted in Figure 8.27. The viscosity of the injected 

surfactant is low (about 1.5 cp) and constant with shear rate exhibited Newtonian 

behavior. This type of behavior is suitable for surfactant remediation. After 

surfactant remediation and post surfactant waterflooding, the permeability of the 

soil column was measured as 6.9 Darcies compared to the initial permeability of 7.3 

Darcies which is essential the same. 

Tracer Test After Surfactant to Estimate Residual TCE Saturation 

After 8.7 pore volumes of surfactant and 4.2 pore volumes of post 

surfactant waterflooding, a suite of conservative and partitioning tracers was 

injected into the soil column to estimate final residual TCE saturation. The tracers 

used were IP A, 2,3-dimethyl-2-butanol and 2-methyl-2-hexanol. About 6.4 cc of 

tracer solution was injected at an interstitial velocity of 1.5 m/day (0.15 cc/min) 

followed by flooding with 2,000 mg/I NaCL The effluent was analyzed for the 

alcohols and the residual TCE saturation was calculated. The tracer concentration 

history for this tracer test is plotted in Figure 8.28. Negligible delay of both the 

partitioning tracers is observed. This implies a low TCE saturation as a result of 

surfactant flooding. 

The final partitioning tracer test is summarized in Table 8.31. Based on 

partitioning tracers, the TCE saturation after surfactant flooding was 0.0054 
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compared to a waterflood residual TCE saturation of 0.176. This corresponded to a 

recovery of 96.9% of TCE. A summary of the residual TCE saturations after 

surfactant flooding is given in Table 8.32. 

Discussion for Experiment DW#4 

In experiment DW#4, the known saturation of TCE was used to estimate 

partition coefficients for two alcohol tracers, 2,3-dimethyl-2-butanol and 2-methyl-

2-hexanol. The partition coefficients measured in this experiment were used to 

estimate TCE saturations in the next experiment. A dynamic partition coefficient of 

6.3 was measured for 2,3-dimethyl-2-butanol compared to a static partition 

coefficient of 5.2. The static and dynamic coefficients for 2-methyl-2-hexanol were 

26.8 and 28.1 respectively. These discrepancies will be discussed in the section 

on error analysis in Chapter 9. 

During the surfactant flood, TCE concentrations of the order of 1,000 to 

1,400 mg/I were measured in the effluent before surfactant breakthrough. This 

corresponded to the equilibrium solubility of TCE in water. This also confirmed 

local equilibrium conditions. After surfactant breakthrough, TCE concentrations of 

about 20,000 mg/I were measured in the effluent. As in experiment DW#3, a 

decline was observed after about 4 pore volumes of flooding. The concentration 

history curve could not be accurately measured due to loss of TCE by volatilization. 

The samples were stored for more than 72 hours before analysis. This caused loss 

of TCE by volatilization and measurement of lower TCE concentrations in the 

effluent from the soil pack. This accounted for a recovery of only 35% of the TCE. 

However based on mass balance measurements, about 100% of the TCE was 
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removed from the column. In subsequent experiments, samples were stored in 

vials with aluminum lined caps to minimize losses by volatilization. 

A look at the hydraulic gradient graph showed an increase in hydraulic 

gradient until there was some TCE mobilization and surfactant breakthrough. This 

was followed by a decline to a lower hydraulic gradient. This decline would be 

expected as the relative permeability to the surfactant solution increased as the TCE 

was slowly being solubilized. The sudden increase in hydraulic gradient when the 

pump was stopped may be attributed to thixotropic behavior of the microemulsion. 

This kind of behavior can be eliminated by addition of sufficient quantities of 

alcohol (like IP A or ethanol) which break up gels and liquid crystals. 

An average residual saturation of 0.0054 was computed based on the post 

surfactant tracer results. This meant that almost all the TCE was removed from the 

soil column. This number compared well with mass balance estimates which 

indicated that 100.0% of the TCE was recovered. From the close match between 

the initial tracer and final curves and a close match between the initial permeability 

and final permeability, it can be concluded that the soil pack had been restored to 

very nearly its original condition after surfactant remediation. 

8.2.2 Experiment POL YTCE#l 

In experiment POL YTCE#l, a series of screens was used while packing the 

sand. This was done to ensure better packing. The main objective was the 

evaluation of a surfactant, alcohol, NaCl, xanthan gum polymer aqueous solution 

for remediation of a soil column contaminated with TCE. The performance of 2,3-

dimethyl-2-butanol and 2-methyl-2-hexanol as partitioning tracers for estimation of 
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TCE saturation was evaluated. Pressure drops were measured across the soil 

column during the surfactant flood and the post surfactant waterflood. Partitioning 

tracers were used for performance assessment and this number was compared to 

TCE recovery estimates obtained from mass balance of the column. The initial soil 

permeability before contamination of the soil column was compared to the final 

permeability after surfactant remediation to evaluate the efficacy of the 

surfactant/polymer solution. The soil column length, diameter, porosity and 

permeability are presented in Table 8.2. 

Initial Tracer Test 

In this experiment, tritium was used to estimate pore volume. About 16.4 

cc of tracer was injected followed by a waterflood at an interstitial velocity of 6.9 

m/day (3 cc/min). The samples were analyzed using a LSC. The tracer 

concentration history is plotted in Figure 8.29. A summary of the initial tracer test 

is given in Table 8.33. The pore volume based on tritium was 168.4 cc and the pore 

volume based on mass balance was 168.6 cc. 

Contamination of Soil Column 

Contamination procedures were the same as in experiment DW#4. The 

column was oriented vertically. Contamination of the soil column was carried out 

by injection of water from the bottom until residual water saturation was reached, 

followed by injection of water from the top of the column until residual TCE 

saturation was reached. In this experiment, the TCE flood for contaminating the 

soil column and waterflood to reach residual TCE saturation were carried out at an 

interstitial velocity of 6.9 m/day (3 cc/min). The pressure gradient across the soil 
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column at steady state during the DNAPL flood was 1.39 psi/ft (at 3 cc/min). The 

pressure gradient across the soil column at steady state during the waterflood was 

0.72 psi/ft (at 3 cc/min). The end point TCE relative permeability was measured at 

residual water saturation and the end point water relative permeability was 

measured at residual TCE saturation. A summary of contamination of the soil 

column is given in Table 8.34. A residual water saturation of 0.325 was reached at 

the end of the TCE flood and a residual TCE saturation of 0.198 (mass balance) 

was reached at the end of the waterflood. 

Tracer Test at Residual TCE Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column to evaluate the performance of partitioning tracers to estimate residual TCE 

saturation. About 16.7 cc of tracer solution was injected followed by a waterflood 

at an interstitial velocity of 1.8 m/day (0.8 cc/min). The tracers used were tritium, 

IPA, 2,3-dimethyl-2-butanol and 2-methyl-2-hexanol. Sampling and analysis 

procedures were similar to procedures followed in earlier experiments. The tracer 

concentration history is plotted in Figure 8.30. The mean residence time for tritium 

and IPA was 2.9 hours. For 2,3-dimethyl-2-butanol, it was 7.2 hours and for 2-

methyl-2-hexanol it was 14.4 hours. The samples were analyzed using a gas 

chromatograph for the alcohol tracer concentrations and a liquid scintillation counter 

for tritium concentration. This tracer test is summarized in Table 8.35. 

The partition coefficients calculated from the previous experiment 

(experiment DW#4) were used to compute residual TCE saturation. The average 

TCE saturation based on partitioning tracers was 0.199 and the residual TCE 
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saturation based on mass balance was 0.198. A summary of residual TCE 

saturation estimates based on mass balance, volume balance and partitioning tracers 

is given in Table 8.36. 

Surfactant Flood to Remediate TCE 

An aqueous solution consisting of 4% sodium dihexyl sulfosuccinate, 8% 

IPA, 500 mg/l xanthan gum polymer with 4,000 mg/l NaCl was injected at an 

interstitial velocity of 1.8 m/day (0.8 cc/min). This surfactant solution was a 

Winsor type I solution with a TCE solubilization parameter of 0.6 and TCE 

solubilization of 39,000 mg/l. The IFf between the microemulsion and excess 

TCE was 0.19 dynes/cm. A total of 2003.9 cc (11.9 pore volumes) of 

surfactant/polymer/alcohol solution was injected. A 5 psid V alidyne differential 

pressure transducer was used to measure pressure drops across the soil column 

during the surfactant flood and post surfactant waterflood. A polymer flood with 

500 mg/l by weight xanthan gum, 8% IPA and 500 mg/l NaCl was started after 

surfactant injection. Polymer was used to aid in the efficiency of displacing the 

surfactant solution from the soil column. The polymer solution was injected for 

approximately 330 cc (2.0 pore volumes). The column was weighed after the 

polymer flood. A waterflood using 500 mg/l NaCl was used to remove the 

polymer after 13.9 total pore volumes. The injection continued for approximately 

5,900 cc at which point the total amount of injected fluid through the soil column 

was approximately 50 pore volumes. The surfactant flood is summarized in Table 

8.37. 
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The TCE concentration history during the surfactant flood is plotted in 

Figure 8.31. This experiment was a solubilization-type experiment and less than 

3% of the TCE was mobilized. The maximum TCE concentration measured in the 

effluent was 38,000 mg/I. This number was in excellent agreement with the 

equilibrium phase behavior value of 39,000 mg/I. A plateau of TCE concentration 

of about 25,000 mg/I to 35,000 mg/I is observed for about 8 pore volumes. This is 

due to slow solubilization of the TCE ganglia in the Ottawa sand. A steady decline 

in TCE concentration from about 25,000 mg/I to about 30 mg/I is observed between 

8 and 12 pore volumes. The TCE concentration was observed to increase to about 

100 mg/I when the polymer flood was started. This is probably due to break up of 

hemi-micelles due to the salinity gradient caused by flooding with fresh water. 

An attempt was made to characterize the persistent TCE tail. Hence a water 

flood with 500 mg/I NaCl was continued after the alcohol/polymer flood and the 

TCE concentrations were measured and plotted against cumulative pore volumes 

(Figure 8.32). The TCE concentration was observed to drop to about 3 to 5 mg/I. 

The pump was stopped for 10 days and injection was restarted. The TCE 

concentration was observed to increase to greater than 1,000 mg/I. A decline in the 

TCE concentration was observed on continued flooding with water. This can be 

attributed to adsorption of TCE by Teflon end pieces in the soil column and nylon 

tubing during saturation of the column and desorption du_ring the waterflood. 

In order to characterize the gel forming tendencies of the surfactant/alcohol 

polymer/solution at various TCE concentrations, viscosities of the surfactant 

solution with varying amounts of TCE were measured as a function of shear rate. 

These viscosities are plotted in Figure 8.33. The viscosities are the same in the 
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whole range of TCE concentrations studied. Based on Figure 8.33, it can be seen 

that the viscosity of the all the solutions is the same within experimental error. 

Hence it can be inferred that there was minimal liquid crystal/gel formation with the 

surfactant solution used in this experiment. 

The pressure drops were measured across the soil column during surfactant 

flooding. The hydraulic gradient during the surfactant flood is plotted in Figure 

8.34. A steady increase in hydraulic gradient until surfactant/polymer breakthrough 

is observed. This was followed by a steady hydraulic gradient until 

polymer/alcohol injection which increased the hydraulic gradient. The hydraulic 

gradient declined rapidly after the start of freshwater injection to less than 0.2. 

Gradients observed in this experiment were low despite the use of the more viscous 

surfactant/alcohol/polymer solution. Gradients observed in this experiment were 

acceptable hydraulic gradients considering the increased viscosity of the surfactant 

polymer solution being injected into the soil column. The permeability of the soil 

after surfactant remediation was 4.9 Darcies compared to the initial permeability of 

5.8 Darcies. 

Tracer Test After Surfactant to Estimate Residual TCE Saturation 

After 11.9 pore volumes of surfactant/polymer/alcohol, 2.0 pore volumes of 

polymer/alcohol and 35 pore volumes of post surfactant waterflooding a suite of 

conservative and partitioning tracers was injected into the soil column to estimate 

the final residual TCE saturation. The tracers used were tritium, IP A, 2,3-

dimethyl-2-butanol and 2-methyl-2-hexanol. About 17 .5 cc of tracer solution was 

injected at an interstitial velocity of 1.8 m/day (0.8 cc/min) followed by flooding 
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with 500 mg/I NaCl. The effluent was analyzed for the alcohols and tritium and the 

residual TCE saturation was calculated. The tracer concentration history for this 

tracer test is plotted in Figure 8.35. Negligible delay of the partitioning tracers is 

observed in Figure 8.35. This implies a low TCE saturation as a result of 

surfactant remediation. 

The final partitioning tracer test is summarized in Table 8.38. The residual 

TCE saturation estimates based on partitioning tracers is given in Table 8.39. 

Based on the partitioning tracers the average TCE saturation after surfactant was 

0.00016. This corresponded to a recovery of 99.9% TCE. Based on mass balance 

measurements, 101.2 % TCE was recovered. These measurements are in excellent 

agreement. 

Discussion for Experiment POL YTCE#l 

Based on partitioning tracers using dynamic partition coefficients measured 

in experiment DW#4, an average residual TCE saturation of 0.199 was calculated 

compared to a waterflood residual TCE saturation of 0.198 based on mass balance 

measurements. From this it can be concluded that partition coefficients can be 

accurately measured by performing a dynamic partition coefficient test as in 

experiment DW#4 provided that the rates are low enough that equilibrium 

partitioning occurs. 

During the surfactant flood, very uniform TCE concentrations on the order 

of 25,000 mg/I to 38,000 mg/I were measured in the effluent. This number is much 

closer to the equilibrium solubilization of 39,000 mg/I compared to earlier 

experiments. This could be attributed to the use of polymer. The increased 
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viscosity of the polymer causes better sweep of the contaminated regions and 

promotes more uniform conditions. The increase in TCE concentration when the 

surfactant flood was switched to an alcohol/polymer flood (in 500 mg/I NaCl) could 

be attributed to the breakup of hemi-micelles by the fresh water. This suggests that 

a fresh water flood following anionic surfactant flood may be good strategy in 

many cases. 

The sudden increase in TCE concentration to > 1,000 mg/I after 10 days of 

stopping can be attributed to desorption of TCE by the Teflon end pieces in the 

glass column. This also confirmed results observed in experiment DW#l. The 

persistent TCE tail even after 50 pore volumes could be attributed to desorption by 

the Teflon end pieces and nylon tubing. 

The increase in hydraulic gradient after injection of surfactant was due to the 

increased viscosity of the injected surfactant/polymer solution. Even though a 

hydraulic gradient of about 2 to 2.5 may be high for some shallow groundwater 

applications, it must be noted that injected solutions are subjected to high shear near 

the wellbore. Since xanthan gum polymer is shear thinning, this would translate 

into lower apparent viscosity of the injected solution and hence lower hydraulic 

gradients by a factor on the order of 2. The xanthan gum concentration could also 

be decreased if necessary to control viscosity of the injected polymer solution or the 

injection rate into the well could be reduced. The hydraulic gradient is observed to 

decline very rapidly on water injection. This is due to fingering and early break 

through of the water through the viscous polymer in the soil column. Displacement 

of polymer by water is an inefficient process and many pore volumes of water are 

required to flush the polymer out completely. 
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A close overlap of partitioning and nonpartitioning tracers was observed in 

tracer results after surfactant flooding. Based on the method of moments, an 

average residual saturation of 0.00016 was computed. This meant that almost all 

the TCE was removed from the soil column. This value is in excellent agreement 

with mass balance measurements which indicate that 101.2% of the TCE was 

recovered. From the close match between the initial and final tracer curves and a 

close match between the initial permeability and final permeability, it can be 

concluded that the soil pack had been restored to very nearly its original condition 

after surfactant polymer remediation. 

8.2.3 Experiment POL YTCE#3 

In experiment POL YTCE#3, the main objective was the evaluation of a 

surfactant, alcohol, sodium chloride solution for quick remediation of a soil column 

contaminated with TCE. The effect of Teflon end pieces and nylon tubing on the 

persistent release of TCE after surfactant remediation was studied by eliminating all 

the Teflon pieces and nylon tubing from the column. Pressure drops were 

measured across the column during the surfactant flood and the post surfactant 

waterflood. This was extremely important as this experiment was an ultra-low IFT 

experiment and mobilization of TCE was expected. Partitioning tracers were used 

only for performance assessment and this number was compared to the TCE 

recovery estimate obtained from mass balance on the column. The soil column 

permeability was measured after surfactant remediation and this number was 

compared to the initial permeability. The soil column length, diameter, porosity and 

permeability are presented in Table 8.2. 
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Initial Tracer Test 

In this experiment, tritium was used to estimate pore volume. The effluent 

was analyzed for tritium concentration using a LSC. About 11. 7 cc of tracer was 

injected followed by a waterflood at 17.6 rn/day (1.6 cc/min). The tracer 

concentration history is plotted in Figure 8.36. A summary of the initial tracer test 

is given in Table 8.40. The pore volume based on tritium was 103.4 cc and the pore 

volume based on mass balance was 101.1 cc. 

Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting TCE into the column from the bottom until residual water 

saturation was reached followed by injection of water from the top of the column 

until residual TCE saturation was reached. In this experiment, both the TCE flood 

for contaminating the soil column and waterflood to reach residual TCE saturation 

were carried out at 11 rn/day (1.0 cc/min). The pressure gradient across the soil 

column at steady state during the DNAPL flood was 0.79 psi/ft (at 1 cc/min). The 

pressure gradient across the soil column at steady state during the waterflood was 

0.56 psi/ft (at 1 cc/min). The end point TCE relative permeability was measured at 

residual water saturation the end point water relative permeability was measured at 

residual TCE saturation. A summary of contamination of the soil column is given 

in Table 8.41. A residual water saturation of 0.314 was reached at the end of the 

TCE flood and a residual TCE saturation of 0.163 (mass balance) was reached at 

the end of the waterflood. 
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Tracer Test at Residual TCE Saturation 

Tritium was used as a tracer to estimate the residual TCE saturation. The 

difference between the aqueous pore volume calculated from the initial tritium tracer 

test and the tritium tracer test at residual TCE saturation was used to estimate the 

residual TCE saturation. About 12.1 cc of tracer was injected followed by a water 

flood at an interstitial velocity of 16.5 m/day (1.5 cc/min). The samples were 

analyzed using a liquid scintillation counter for tritium concentration. This tracer 

test is summarized in Table 8.42. The tracer concentration history is plotted in 

Figure 8.42. The summary of residual TCE saturation estimates based on mass 

balance and tritium tracer is given in Table 8.43. Based on mass balance, the 

residual TCE saturation was 0.163. Based on tritium tracer it was 0.165. 

Surfactant Flood to Remediate TCE 

An aqueous solution of 4% sodium dihexyl sulfosuccinate, 8% IPA and 

9,350 mg/l NaCl was injected at an interstitial velocity of 1.4 m/day (0.13 cc/min). 

This surfactant solution was a Winsor type ID solution with a TCE solubilization 

ratio of 3.8 and a TCE solubilization of 516,000 mg/l. The IFT between the excess 

TCE and microemulsion was 0.02 dynes/cm. A total of 102 cc (1 pore volume) of 

this surfactant solution was injected followed by injection of 100 cc (1 pore 

volume) of 4% sodium dihexyl sulfosuccinate, 8% IPA and 500 mg/I NaCL This 

was followed by the injection of 200 cc (2 pore volumes) of 500 mg/l NaCl to 

remove surfactant. The column was weighed after the post surfactant waterflood 

and TCE recovery was estimated based on comparing the weight of the column 
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before contamination and the final weight after surfactant remediation. The 

surfactant flood is summarized in Table 8.44. 

The TCE concentration during the surfactant flood and the relative amount 

of TCE mobilized and solubilized during the surfactant flood is plotted in Figure 

8.38. About 16.1 cc of TCE was mobilized. This corresponded to 96% of the 

TCE initially present in the column. The high TCE concentrations on the order of 

106 mg/I correspond to free TCE produced during the surfactant flood. A sharp 

decline in TCE concentrations from 106 mg/I to about 1 ()4 mg/I at one pore volume 

of total injection is observed. This is due to mobilization of 96% of the TCE 

present in the column. Based on material balance estimates obtained from adding 

the volume of TCE mobilized and GC measurements, about 101.5% of the TCE 

was recovered. This is in agreement with mass balance estimates of TCE recovery 

which estimated that 100.0% TCE was recovered by surfactant flooding. 

In experiment POL YTCE#3 a persistent TCE concentration on the order of 

25-50 mg/I was measured at the end of the surfactant flood and post surfactant 

waterflood. Nylon tubing was used to connect the soil column to the fraction 

collector. The nylon tubing was replaced by stainless steel tubing and TCE 

concentration in the effluent was measured. The TCE concentration was observed 

to fall below 1 mg/I (detection limit for TCE in our GC). The pump was stopped 

for 2 days and water injection was resumed. No TCE could be measured in the 

effluent. Hence, it could be seen that surfactant remediation could reduce TCE 

concentration to less than 1 mg/I. Hence it can be concluded that the persistent TCE 

tail observed in earlier experiments was due to adsorption of contaminant by Teflon 

end pieces and nylon tubing. 
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The pressure drop was measured across the soil column during the 

surfactant flood and post surfactant waterflood. The pressure drops were converted 

into hydraulic gradients during surfactant flood and post surfactant waterflood. The 

variation of hydraulic gradient and TCE concentration during the surfactant flood is 

plotted in Figure 8.39. A low hydraulic gradient of the order of 0.1 was measured 

at the beginning of the surfactant flood. A steady increase in the hydraulic gradient 

to 0.6 was observed until TCE breakthrough. This was followed by a steady 

decline to a hydraulic gradient of 0.09. No evidence of gelling was observed as 

evidenced by low hydraulic gradients measured during surfactant flooding. This 

increase in hydraulic gradient was because of mobilization of TCE and multi-phase 

flow during the surfactant flood. Once all the mobilized TCE was produced, a 

decline in the hydraulic gradient was observed. After surfactant flooding and post 

surfactant waterflooding, the permeability of the soil column was 6.2 Darcies 

compared to the initial permeability of 6.8 Darcies which is essentially the same. 

Tracer Test After surfactant to Estimate Residual TCE Saturation 

After 2 pore volumes of surfactant and 5 more volumes of water, a suite of 

conservative and partitioning tracers was injected into the soil column to estimate 

the final TCE saturation. The tracers used were ethanol, 2,3-dimethyl-2-butanol 

and 3-methyl-3-hexanol. About 10.7 cc of tracer solution was injected at an 

interstitial velocity of 2.8 m/day (0.22 cc/min) followed by flooding with 500 mg/I 

NaCL The effluent was analyzed for alcohols and the residual TCE saturation was 

calculated. The tracer concentration history for this tracer test is plotted in Figure 
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8.40. Negligible delay of the partitioning tracers is observed. This implies a low 

TCE saturation as a result of surfactant flooding. 

The final partitioning tracer test is summarized in Table 8.45. A summary 

of the residual TCE saturations after surfactant flooding is given in Table 8.46. 

Based on the partitioning tracers, the TCE saturation after surfactant flooding was 

0.00025. This corresponded to a recovery of 99.8% TCE. 

Discussion for Experiment POLYTCE#3 

Compared to experiment POLYTCE#l, a very small amount, (only one 

pore volume) of surfactant was required to clean up the contaminated soil column. 

Hence it can be concluded that under proper design conditions, mobilization can be 

used as an excellent remediation alternative for cleanup of sites contaminated by 

NAPLs. The persistent TCE tails observed in previous experiments were attributed 

to adsorption by Teflon end pieces in glass columns and nylon tubing. Since the 

TCE concentration was measured to less than 1 mg/I after 2.5 pore volumes of 

flooding, it can be concluded that surfactant flooding can reduce contaminant 

concentrations to extremely low levels by eliminating the source of contaminant. 

As in previous experiments, low hydraulic gradients were measured during 

surfactant flooding. Low hydraulic gradients also signified the absence of 

significant emulsions, gels and liquid crystals. The hydraulic gradients were 

observed to track the remediation ofTCE closely. A decrease in hydraulic gradient 

when all the TCE was mobilized signified the removal of TCE and hence 

corresponded to an increase in permeability and decrease in pressure drops 

(hydraulic gradient). 
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An excellent match between the initial permeability and final permeability 

and a close match between TCE removal estimates based on mass balance and 

partitioning tracers suggested that the soil had been almost completely remediated 

and very nearly restored to its original condition. 

8.3 EXPERIMENTS WITH HILL OUl LNAPL 

A total of three experiments were conducted with Hill OUl LNAPL. All 

these experiments were partitioning tracer tests. In the first experiment, Ottawa 

sand was contaminated with Hill OUl LNAPL and performance of partitioning 

tracers to estimate a known residual LNAPL saturation was evaluated. The other 

two experiments used contaminated soil from Hill OUl. The main objective of 

these experiments was to select a suitable tracer combination for use in the field 

partitioning tracer test conducted by the University of Florida and EPA RS KERL 

during October, 1994. This was the first such test ever conducted. The complete 

design including computer modeling (Jin, 1995) was done by the University of 

Texas at Austin can be found in Pope et al. (1994). 

The site OU 1 at Hill Air Force Base has a number of contaminant sources 

located across the site. Several chemical disposal pits were used to dispose of 

aviation fuels (JP4) and chlorinated solvents (Annable et al., 1996). Up gradient of 

the cell is a fire training area which may also have contributed unextinguished fuels 

and combustion by products at the site. The resulting NAPL was lighter than water 

with a density of 0.89 glee, viscosity of 0.8 cp and was black in color. THe 

porosity of the aquifer was between 0.3 and 0.4. The LNAPL was composed of 

five main constituents, 1, 1, I-trichloroethane, toluene, 1,2-dichlorobenzene, n-
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decane, and naphthalene in addition to some dissolved grease, unextinguished fuels 

and combustion products at the site. 

8.3.1 Experiment OUDNAPLl 

In experiment OUDNAPLl, the main objective was the evaluation of the 

performance of several partitioning tracers for estimation of residual Hill OU 1 

LNAPL saturation. The dynamic partition coefficients of eight alcohol tracers were 

measured in two partitioning tracer tests conducted at residual Hill OUl LNAPL 

saturation in Ottawa sand. The dynamic partition coefficients for the alcohol tracers 

were calculated using the known LNAPL saturation and the mean residence times 

of the partitioning tracers in the soil column. This number was then compared with 

the static partition coefficients. In subsequent experiments the dynamic partition 

coefficient measured in experiment OUDNAPLl was used to estimate the residual 

LNAPL saturation in soil column. The soil column length, diameter, porosity and 

permeability are presented in Table 8.2. 

Initial Tracer Test 

A suite of alcohol tracers was injected into the soil column for estimation of 

pore volume in the uncontaminated soil column. The alcohol tracers used were 

IPA, 2,3-dimethyl-2-butanol and 2-methyl-2-hexanol. About 4.7 cc of tracer 

solution was injected followed by a waterflood at an interstitial velocity of 11 m/day 

(1 cc/min). The effluent was analyzed using a GC. A summary of the initial tracer 

test is given in Table 8.47. The tracer concentration history is plotted in Figure 

8.41. The pore volume based on mass balance was 43.0 cc and the average pore 

volume based on tracers was 45.2 cc. 
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Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting Hill OUl LNAPL into the column from the top until 

residual water saturation was reached followed by injection of water from the 

bottom of the column until residual LNAPL saturation was reached. In this 

experiment, both the LNAPL flood for contaminating the soil column and 

waterflood to reach residual LNAPL saturation were carried out at an interstitial 

velocity of 11 m/day (1 cc/min). A summary of contamination of the soil column is 

given in Table 8.48. A residual water saturation of 0.126 was reached at the end of 

the NAPL flood. Based on volume balance estimates a residual LNAPL saturation 

of 0.179 was reached at the end of the waterflood. 

First Tracer Test at Residual NAPL Saturation 

A suite of partitioning and conservative tracers was injected into the soil 

column to measure the dynamic partition coefficients of two alcohol tracers. IP A 

was used as the conservative tracer and 2,3-dimethyl-2-butanol and 2-methyl-2-

hexanol were used as the partitioning tracers. A total of 6.1 cc of tracer solution 

was injected followed by a waterflood at 2.3 m/day (0.24 cc/min). The tracer 

concentration history for this tracer test is plotted in Figure 8.42. A summary of the 

partitioning tracer test is given in Table 8.49. 

A retardation factor of 1.29 was measured for the 2,3-dimethyl-2-butanol. 

This corresponded to a residence time of 4 hours. For 2-methyl-2-hexanol, a 

retardation of 2.26 was measured. This corresponded to a residence time of 7 

hours. Based on these retardation numbers and a waterflood residual LNAPL 
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saturation of 0.179, the partition coefficient for 2,3-dimethyl-2-butanol was 

calculated as 1.3 and the partition coefficient for 2-methyl-2-hexanol was 5.8. The 

dynamic partition coefficients for both these alcohols are summarized in Table 8.50. 

A more detailed discussion on both static and dynamic partition coefficient tests is 

given in Chapter 9. 

Second Tracer Test at Residual NAPL Saturation 

In the second tracer test, a suite of partitioning and conservative tracers was 

injected into the soil column to measure the partition coefficients of three other 

alcohol tracers. Ethanol was used as the conservative tracer and 2-methyl-2-

pentanol, 2,2-dimethyl-3-pentanol and 3-methyl-2-hexanol were used as the 

partitioning tracers. A total of 8.4 cc of tracer solution was injected followed by a 

waterflood at an interstitial velocity of 2.3 m/day (0.24 c/min). The tracer 

concentration history for this tracer test is plotted in Figure 8.43. A summary of the 

partitioning tracer test is given in Table 8.51. 

A retardation factor of 1.28 was measured for the 2-methyl-2-pentanol. 

This corresponded to a residence time of 4 hours. For the 2,2-dimethyl-3-pentanol, 

a retardation of 3.81 was measured. This corresponded to a residence time of 12 

hours. For the 3-methyl-2-hexanol, a retardation factor of 3.18 was measured. 

This corresponded to a residence time of 10 hours. Based on these retardation 

factors and a waterflood residual saturation of 0.179, the partition coefficients for 

2-methyl-2-pentanol, 2,2-dimethyl-3-pentanol and 3-methyl-2-hexanol were 

calculated as 1.3, 12.9 and 10.0 respectively . The partition coefficients for both 

these alcohols are summarized in Table 8.52. 
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A comparison of the dynamic partition coefficients and static partition 

coefficients is given in Table 8.53. 

Discussion for Experiment OUDNAPLl 

The error analysis of both static and dynamic measurements of partition 

coefficients will be in Chapter 9. A comparison of static and dynamic partition 

coefficients showed a close match between both values within experimental error. 

A higher deviation was observed for 3-methyl-2-hexanol. This alcohol was not 

recommended for the field test at Hill OUl. Tracer recoveries were close to 100% 

for all tracers except the 2,2-dimethyl-3-pentanol in the second set of tracers. This 

could be attributed to a sudden decline in concentration observed in Figure 9.43 

after 130 cc of flooding. No reason was found to describe the observed behavior. 

Despite low recovery, an excellent match between the static partition coefficient and 

dynamic partition coefficient for 2,2-dimethyl-3-pentanol was observed. 

8.3.2 Experiment OUDNAPL2 

Contaminated field soil from Hill Air Force Base site Operational Unit 1 

was used in experiment OUDNAPL2. The soil was obtained from zones 16.25 ft 

to 16.50 ft and 16.50 ft to 16.75 ft from well Ul-145 (samples EPA007-1,2). A 

Kontes borosilicate column 4.8 cm diameter and 15 cm long was used with an 

adjustable plunger to apply some confining stress. A 99 µm stainless steel mesh 

was used to hold the sand in place. The column was saturated with 1,000 mg/I 

NaCl water. Soil packing and saturation procedures are described in Chapter 3. 

The tracers screened in experiment OUDNAPLl were used in experiment 

OUDNAPL2. The dynamic partition coefficients calculated in experiment 
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OUDNAPLl were used to compute the residual LNAPL saturation. Based on soil 

core data, the expected LNAPL saturations in contaminated field soil were between 

0.03 and 0.05. In order to obtain accurate results from partitioning tracer tests, 

retardation factors between 1.2 and 4.0 are required. Based on the expected 

residual LNAPL saturations, partition coefficients between 4.0 and 13.0 were used 

in soil column experiments. Since the initial LNAPL saturation of the soil cores 

was not known, 2,3-dimethyl-2-butanol, with a partition coefficient of 1.3 was 

used in experiment OUDNAPL2. The soil column length, diameter, porosity and 

permeability are presented in Table 8.2. 

First Tracer Test at Residual NAPL Saturation 

A suite of five tracers was injected into the soil column to estimate the initial 

aqueous pore volume and initial LNAPL saturation.. The tracers used were tritium, 

ethanol, 2,3-dimethyl-2-butanol, 2-methyl-2-hexanol and 3-methyl-2-hexanol. 

About 6.1 cc of tracer solution was injected followed by a waterflood at an 

interstitial velocity of 0.6 m/day (0.2 cc/min). A summary of the tracer test is given 

in Table 8.54. The tracer concentration history is plotted in Figure 8.44. The 

retention time was 3.9 hours for ethanol, for 2,3-dimethyl-2-butanol it was 4.1 

hours, for 2-methyl-2-hexanol it was 4.8 hours and for 3-methyl-2-hexanol it was 

5.6 hours. 

Based on the dynamic partition coefficients measured in experiment 

OUDNAPLl and the mean residence times for the tracers, an average residual 

LNAPL saturation of 0.035 was estimated. The residual saturation estimates based 

on the first set of partitioning tracers in experiment OUDNAPL2 are summarized in 
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Table 8.55. A negative saturation was obtained using tritium and 2,3-dimethyl-2-

butanol. This is because of low retardation caused by the low LNAPL saturation 

and low partition coefficient of the 2,3-dimethyl-2-butanol. 

Second Tracer Test at Residual NAPL Saturation 

After the initial tracer test, 1.7 cc of LNAPL was injected into the soil 

column at 0.2 cc/min followed by 85 cc of water at 0.4 cc/min. No LNAPL was 

produced in the effluent. The addition of 1.7 cc of LNAPL corresponded to an 

increase in the LNAPL saturation by 3.2%. Hence based on the average LNAPL 

saturation estimated by the initial tracer test and the volume of additional LNAPL 

added, the expected average LNAPL saturation before the second tracer test was 

0.067. 

A second suite of tracers was injected into the soil column. The tracers 

were tritium, ethanol, 2,3-dimethyl-2-butanol, 2-methyl-2-hexanol and 3-methyl-2-

hexanol. About 6.0 cc of tracer solution was injected followed by a waterflood at 

an interstitial velocity of 0.6 m/day (0.2 cc/min). A summary of the tracer test is 

given in Table 8.56. The tracer concentration history for this tracer test is plotted in 

Figure 8.45. The retention time was 3.9 hours for ethanol and tritium, for 2,3-

dimethyl-2-butanol it was 4.2 hours, for 2-methyl-2-hexanol it was 4.9 hours and 

for 3-methyl-2-hexanol it was 6.0 hours. 

An average residual LNAPL saturation of 0.060 was estimated from the 

moment analysis of the partitioning tracers in experiment OUDNAPL2. The 

residual saturation estimates based on the second set of partitioning tracers in 
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experiment OUDNAPL2 are summarized in Table 8.57. This number is in 

excellent agreement with the expected saturation of 0.067. 

Discussion for Experiment OUDNAPL2 

Dynamic partition coefficients used in experiment OUDNAPLl were used 

in estimating LNAPL saturation in experiment OUDNAPL2. A negative saturation 

difference was obtained in using the tritium and 2,3-dimethyl-2-butanol. This was 

due to the low partition coefficient of 2,3-dimethyl butanol and low saturation of 

LNAPL in the soil pack. This caused similar retention times for both tritium and 

2,3-dimethyl-2-butanol. As a rule, a retardation factor of greater than 1.2 is needed 

for obtaining a good estimate of residual saturation (Jin, 1995). Ethanol seemed to 

give better results as a conservative tracer. No reasonable explanation was found to 

explain this discrepancy. 

A look at the residual saturation estimates in the first and second tracer tests 

showed a standard deviation of ±2% LNAPL saturation. This is within the 

experimental error of the partitioning tracer test. The average expected LNAPL 

saturation before the second partitioning tracer test was 0.067. Based on the 

second set of partitioning tracers a value of 0.060 was calculated. This is an 

excellent estimate within experimental error. Since the standard deviation in the 

saturation estimate was ±2% LNAPL saturation, it can be concluded that the second 

partitioning tracer test accurately determined the residual LNAPL saturation. 

8.3.3 Experiment OUDNAPL3 

Contaminated field soil from Hill AFB site Operational Unit 1 was used in 

experiment OUDNAPL3. The soil was obtained from zones 17.00 ft to 17.25 ft 
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and 18.50 ft to 19.00 ft from well Ul-147 (samples EPA007-6,7). A Kontes 

borosilicate column 4.8 cm diameter and 15 cm long was used with an adjustable 

plunger to apply some confining stress. A 99 µm stainless steel mesh was used to 

hold the sand in place. As in experiment OUDNAPL2, the column was saturated 

with 1,000 mg/I NaCl water. The performance of 1-hexanol and 2,2-dimethyl-3-

pentanol for estimating LNAPL saturation was evaluated as both tracers were 

candidates to be used in the field partitioning tracer test at Hill AFB sit OUl. The 

soil column length, diameter, porosity and permeability are presented in Table 8.2. 

First Tracer Test at Residual NAPL Saturation 

A suite of four tracers was injected into the soil column to estimate the initial 

aqueous pore volume and initial LNAPL saturation. The tracers used were tritium, 

ethanol, 1-hexanol and 2,2-dimethyl-3-pentanol. Tritium and ethanol are 

conservative tracers. Hexanol and 2,2-dimethyl-3-pentanol are partitioning tracers 

under these conditions. About 7 .0 cc of tracer solution was injected followed by a 

waterflood at an interstitial velocity of 0.6 m/day (0.2 cc/min). A summary of the 

tracer test is given in Table 8.58. The tracer concentration history is plotted in 

Figure 8.46. The retention time was 5.4 hours for ethanol and tritium, for 1-

hexanol it was 7.1 hours, and for 2,2-dimethyl-3-pentanol it was 9.5 hours. 

Based on the dynamic partition coefficients measured in experiment 

OUDNAPLl and the mean residence times for the tracers, an average residual 

LNAPL saturation of 0.063 was estimated. The residual saturation estimates based 

on the first set of partitioning tracers in experiment OUDNAPL3 are summarized in 

Table 8.59. In Figure 8.46, a sudden decrease in the 2,2-dimethyl-3-pentanol 

243 



concentration was observed at 140 cc of total flooding. This was due to 

volatilization of the alcohol due to delay in analysis of samples. The partitioning 

tracer experiment was repeated. 

Second Tracer Test at Residual NAPL Saturation 

After the initial tracer test, another suite of tracers was injected into the soil 

column. The tracers were tritium, ethanol, 1-hexanol and 2,2-dimethyl-3-pentanol. 

About 6.3 cc of tracer solution was injected followed by a waterflood at an 

interstitial velocity of 0.6 m/day (0.2 cc/min). A summary of the tracer test is given 

in Table 8.60 The tracer concentration history is plotted in Figure 8.47. The 

retention time was 5.2 hours for ethanol and tritium, for 1-hexanol it was 6.9 

hours, and for 2,2-dimethyl-3-pentanol it was 9.5 hours. 

Based on the dynamic partition coefficients measured in experiment 

OUDNAPLl and the mean residence times for the tracers, an average residual 

LNAPL saturation of 0.061 was estimated. The residual saturation estimates based 

on the second set of partitioning tracers in experiment OUDNAPLl are summarized 

in Table 8.61. 

Discussion for Experiment OUDNAPL3 

In both sets of tracer tests in experiment OUDNAPL3, retardation factors of 

1.3 to 1.4 for the 1-hexanol and 1.8 to 1.9 for the 2,2-dimethyl-3-pentanol were 

observed. This corresponded to an average LNAPL saturation of 0.062. Tracer 

recoveries were excellent in the second set of partitioning tracers. Based on these 

retardation factors and excellent tracer recoveries, 1-hexanol and 2,2-dimethyl-3-
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pentanol were recommended as the partitioning tracers and ethanol was 

recommended as the conservative tracer for the field test at Hill OU 1. 

Overall Summary of OUl LNAPL Experiments 

Based on the results obtained from the partitioning tracer experiments 

performed with Hill OUl LNAPL and Hill field soil, the first field partitioning 

tracer test was designed and performed to estimate residual LNAPL saturations. 

This was a brilliant and innovative program in which column experiment results 

were used as modeling inputs for UTCHEM. Sensitivity analysis of various 

parameters on the field test was performed and the field test was designed based on 

the results obtained from soil column studies and extensive computer modeling. 

The design the field partitioning tracer test is described in Pope et al., (1994) and 

Jin ( 1995). The results of this field partitioning tracer test are described by Annable 

et al. (1994). 

8.4 EXPERIMENTS WITH JP4 

A total of two column experiments were conducted using jet fuel as the 

contaminant. Both these experiments were aimed towards mobilization of LNAPL 

(experiment DW#5 and JP4#2). Pressure drops were accurately measured during 

the surfactant flood to look for possible emulsion/gel/liquid crystal problems. In 

both these experiments, secondary butyl alcohol (SBA) was used as the co-solvent 

to avoid liquid crystal/gel formation. The jet fuel was obtained from March Air 

Force Base. It was golden yellow in color with a density of 0.76 glee. The 

viscosity of jet fuel was 0.8 cp. 
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8.4.1 Experiment DW#5 

In experiment DW#5, the performance of partitioning tracers for estimation 

of residual JP4 saturation was evaluated. A surfactant/alcohol solution was used to 

remediate the contaminated soil column. A Winsor type I surfactant solution was 

used in experiment DW#5. Pressure drops were measured during the surfactant 

flood and post surfactant waterflood and partitioning tracers were used for 

performance assessment of surfactant remediation. The soil column length, 

diameter, porosity and permeability are presented in Table 8.2. 

Initial Tracer Test 

A suite of alcohol tracers was used for estimation of pore volume in the 

uncontaminated soil column. The alcohols used were IPA, 2,3-dimethyl-2-butanol 

and 2-methyl-2-hexanol. The samples were analyzed using a GC. A total of 18.3 

cc tracer solution was injected followed by a waterflood at an interstitial velocity of 

3.5 m/day (1.6 cc/min). A summary of the initial tracer test is given in Table 8.62. 

The pore volume based on mass balance measurements was 101.1 cc and the pore 

volume based on tracers was 100.0 cc. The tracer concentration history is plotted 

in Figure 8.48. From Figure 8.48 a close overlap of both partitioning and 

nonpartitioning tracers is observed. This indicates negligible adsorption of alcohols 

by Ottawa sand. A more detailed analysis of alcohol adsorption is given in Chapter 

9. 

Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting JP4 into the top of the column until residual water saturation 
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was reached. This was followed by injection of water from the top of the column 

until residual JP4 saturation was reached. Both the JP4 flood and waterflood were 

carried out at an interstitial velocity of 6.9 m/day (3.0 cc/min). The end point jet 

fuel relative permeability was measured at residual water saturation and the end 

point water relative permeability was measured at residual JP4 saturation. A 

summary of contamination of the soil column is given in Table 8.63. A residual 

water saturation of 0.506 was reached at the end of the JP4 flood and a residual JP4 

saturation of 0.163 (mass balance) was reached at the end of the waterflood. 

Tracer Test at Residual JP4 Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column to evaluate the performance of partitioning tracers to estimate residual JP4 

saturation. The tracers used were IPA, 2,3-dimethyl-2-butanol and 2-methyl-2-

hexanol. About 17 .5 cc of tracer solution was injected followed by a waterflood at 

an interstitial velocity of 1.3 m/day (0.58 cc/min). The effluent was analyzed using 

a GC. This tracer test is summarized in Table 8.64. The tracer concentration 

history is plotted in Figure 8.49. Based on partitioning tracers, an average residual 

saturation of 0.178 was calculated compared to a waterflood residual saturation of 

0.163 based on mass balance. A summary of residual saturation estimates based on 

partitioning tracers is given in Table 8.65. 

Surfactant Flood to Remediate JP4 

A surfactant solution consisting of 0.6% by weight sodium dihexyl 

sulfosuccinate, 1.4% by weight sodium dioctyl sulfosuccinate and 2% by weight 

secondary butyl alcohol was injected at 1.3 m/day (0.56 cc/min). This surfactant 
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solution was a Winsor type I surfactant solution with a JP4 solubilization parameter 

of 2.8 and JP4 solubilization of 45,000 mg/I. A total of 296.2 cc (3.0 pore 

volumes) of surfactant was injected followed by injection of 500 cc (5 pore 

volumes) of 250 mg/I NaCl at 1.3 m/day (0.56 cc/min). The effluent could not be 

analyzed for JP4 concentration as analytical techniques for measuring JP4 

concentration in microemulsion had not been perfected. 

The surfactant flood is summarized in Table 8.66. A total of 9.3 cc of free 

phase jet fuel was mobilized. The pressure differential was observed to rise linearly 

throughout the surfactant flood. A hydraulic gradient of 30 was measured at 300 cc 

of total production when the surfactant flood was stopped. The waterflood was 

started and the hydraulic gradient was observed to drop to less than 1 after 15 cc of 

injection. This can be attributed to premature breakthrough due to a viscous 

fingering effect i.e. the fresh water flowing through the path of least resistance. 

The hydraulic gradient is plotted against cumulative volumes produced in Figure 

8.50. The viscosity of the injected surfactant solution is plotted in Figure 8.51. 

Non-Newtonian behavior is observed for the aqueous surfactant solution. 

Movement of sand grains was observed at the end of the surfactant flood 

and the beginning of the waterflood. Based on mass balance, 117% JP4 was 

recovered. 

Tracer Test After surfactant to Estimate Residual JP4 Saturation 

After 3 pore volumes of surfactant flooding and 5 pore volumes of 

waterflooding, a suite of conservative and partitioning tracers was injected into the 

soil column to estimate the final residual JP4 saturation. The tracers used were 
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ethanol, 2,2-dimethyl-3-pentanol and 1-hexanol. About 13.1 cc of tracer solution 

was injected followed by a waterflood at 1.3 m/day (0.56 cc/min). Early 

breakthrough of the tracer was observed. This can be attributed to possible 

plugging of the soil column caused by gelling and/or liquid crystal formation of the 

surfactant solution. The tracer concentration history is plotted in Figure 8.52. The 

aqueous pore volume of the soil column was about 8 cc compared to the initial pore 

volume of 101 cc, which clearly indicates plugging. This tracer test is summarized 

in Table 8.67. 

Discussion for Experiment DW#S 

In experiment DW#5, the performance of two alcohol tracers for estimation 

of JP4 saturation was evaluated. The tracers used were, 2,3-dimethyl-2-butanol 

and 2-methyl-2-hexanol. The average residual saturation estimated using 

partitioning tracers and mass balance agreed to within a saturation of ±0.015. From 

this it can be inferred that partitioning tracers are effective in determining residual 

JP4 saturations. 

A total of 13.1 cc of free JP4 was mobilized during the surfactant flood. 

Two samples showed three phase behavior. During the surfactant flood, an 

increase in the hydraulic gradient was observed during the surfactant flood. High 

hydraulic gradients were attributed to the formation of liquid crystals and gels in the 

surfactant solution. A surfactant solution consisting of a mixture of sodium dioctyl 

sulfosuccinate and sodium dihexyl sulfosuccinate was used in this experiment. 

Sodium dioctyl sulfosuccinate has a longer tail and less branching compared to 

sodium dihexyl sulfosuccinate. Surfactants with longer tails are more susceptible to 
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liquid crystal/gel formation. The formation of gels and liquid crystals caused pore 

plugging thereby leading to excessive hydraulic gradients during the surfactant 

flood. This was further confirmed by the aqueous pore volume of 8 cc measured 

by the final tracer test. In order to avoid plugging due to liquid crystal/gel 

formation, additional amounts of alcohol must be added. The addition of alcohol 

increases the fluidity of interfaces, increases the entropy and melts liquid crystals 

and gels. The hydraulic gradient was observed to decline rapidly once the post-

surfactant waterflood was started. This can be attributed to viscous fingering of 

water through plugged soil. 

8.4.2 Experiment JP4#2 

In experiment DW#5 excessive hydraulic gradients across the soil column 

were observed during surfactant flooding. An attempt was made to rectify this 

problem by using a surfactant solution with a higher concentration of co-solvent. 

The additional alcohol was aimed at minimizing liquid crystal/gel formation and 

prevention of plugging of the soil column by surfactant flooding. Partitioning 

tracers were used for estimation of jet fuel saturation and for performance 

assessment of surfactant remediation. Pressure drops were measured during the 

surfactant flood and post surfactant waterflood to look for possible gel/liquid crystal 

formation and measure the permeability of the soil column after surfactant flooding. 

The soil column length, diameter, porosity and permeability are presented in Table 

8.2. 
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Initial Tracer Test 

In this experiment, tritium was used to estimate pore volume. About 4.7 cc 

of tritium was injected followed by a waterflood at an interstitial velocity of 11 

m/day (1 cc/min). The effluent was analyzed for tritium concentration using a LSC. 

The tracer concentration history is plotted in Figure 8.53. A summary of the initial 

tracer test is given in Table 8.68. The pore volume based on tritium was 41.8 cc, 

the pore volume based on mass balance was 41.4 cc. 

Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting JP4 into the top of the column until residual water saturation 

was reached. This was followed by injection of water from the bottom of the 

column until residual JP4 saturation was reached. Both the JP4 flood and 

waterflood were carried out at an interstitial velocity of 11 m/day (1.0 cc/min). The 

end point jet fuel relative permeability was measured at residual water saturation and 

the end point water permeability was measured at residual jet fuel saturation. A 

summary of contamination of the soil column is given in Table 8.69. A residual 

water saturation of 0.338 was reached at the end of the JP4 flood and a residual JP4 

saturation of 0.151 (mass balance) was reached at the end of the waterflood. 

Tracer Test at Residual TCE Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column at to evaluate the performance of partitioning tracers for estimation of 

residual JP4 saturation. The tracers used were ethanol, 2,3-dimethyl-3-pentanol 

and 2-methyl-3-pentanol. About 4.9 cc of tracer solution was injected followed by 
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a waterflood at an interstitial velocity of 2.1 m/day (0.20 cc/min). The effluent was 

analyzed using a GC. The mean retention time was 3.0 hours for ethanol, for 2-

methyl-3-pentanol it was 5.1 hours and for 2,3-dimethyl-3-pentanol it was 8.3 

hours. This tracer test is summarized in Table 8.70. The tracer concentration 

history is plotted in Figure 8.54. Based on partitioning tracers, the average 

waterflood residual jet fuel saturation was 0.159 compared to a waterflood residual 

jet fuel saturation of 0.151 based on mass balance measurements. A summary of 

residual saturation estimates based on partitioning tracers is given in Table 8.71. 

Surfactant Flood to Remediate JP4 

A solution consisting of 2.0% by weight sodium dihexyl sulfosuccinate, 

2.0% by weight sodium dioctyl sulfosuccinate, 8% by weight secondary butyl 

alcohol, 11,700 mg/I NaCl and 1,300 mg/I CaCI2 was injected into the column at an 

interstitial velocity of 1.7 m/day (0.16 cc/min). This solution exhibited Winsor type 

ill behavior with a solubilization parameter of 2.2. The interfacial tension between 

the excess JP4 and microemulsion was not measured. A total of 242 cc (5.8 pore 

volumes) of surfactant was injected. This was followed by injection of 65 cc (1.6 

pore volumes) of 2.0 % sodium dihexyl sulfosuccinate 8% secondary butyl alcohol 

and 500 mg/I NaCl to remove sodium dioctyl sulfosuccinate from the soil column. 

Finally the column was flushed with 500 mg/I NaCl to remove surfactant. This 

was done because, sodium dioctyl sulfosuccinate was prone to forming gels at co

solvent concentrations of less than 2 weight %. Hence 1.6 pore volumes of a 

surfactant solution containing 2.0 % sodium dihexyl sulfosuccinate 8% secondary 

butyl alcohol and 500 mg/I NaCl was flushed through the soil column to remove the 
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sodium dioctyl sulfosuccinate. The surfactant was used to ensure complete 

dissolution of secondary butyl alcohol. The surfactant flood is summarized in 

Table 8.72. 

The viscosity of the aqueous surfactant solution was measured before 

injection to ensure that the solution exhibited a low viscosity Newtonian behavior. 

The variation of viscosity of the aqueous surfactant solution with shear rate is 

plotted in Figure 8.55. From the Figure it can be seen that the viscosity was 

observed to vary between 1.7 cp and 1.9 cp and exhibited Newtonian behavior. 

Low hydraulic gradients were measured across the soil column during the 

surfactant flood and post surfactant waterflood. The hydraulic gradients across the 

soil column during the surfactant flood and post surfactant waterflood are plotted in 

Figure 8.56. The hydraulic gradient was observed to increase steadily for the first 

1.2 pore volumes of production. This corresponded to the production of free JP4. 

This was followed by a decline to a hydraulic gradient of 0.2 at the end of the 

surfactant flood. A further decline of the hydraulic gradient was observed when the 

waterflood was started. The permeability of the soil after surfactant remediation 

was 6.9 Darcies compared to the initial permeability of 7 .3 Darcies. 

Tracer Test After surfactant to Estimate Residual JP4 Saturation 

A suite of conservative and partitioning tracers was injected into the soil 

column after the surfactant flood and post surfactant waterflood estimate the final 

residual jet fuel saturation. The tracers used were ethanol, 2-methyl-3-pentanol and 

2,3-dimethyl-3-pentanol. A total of 4.6 cc of tracer solution was injected followed 

by a waterflood at an interstitial velocity of 2.1 m/day (0.2 cc/min). Low 
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retardation of partitioning tracers was observed. The tracer concentration history is 

plotted in Figure 8.57. This tracer test is summarized in Table 8.73. Based on the 

partitioning tracers, a residual jet fuel saturation of 0.035 was measured after 

surfactant flooding compared to an average residual saturation of 0.027 based on 

mass balance. The residual saturation based on partitioning tracers is summarized 

in Table 8.74. 

Discussion for Experiment JP4#2 

In this experiment, the alcohol concentration was increased to 8% in the 

surfactant solution to minimize the gel/liquid crystal formation and high hydraulic 

gradients observed in experiment DW#5. The hydraulic gradients during the 

surfactant flood were low and no evidence of gel/liquid formation was observed. 

From this it can be concluded that addition of alcohol minimized gel/liquid 

formation and promoted quick coalescence and equilibration during surfactant 

flooding. However, all the JP4 was not recovered in this experiment. A residual 

saturation of 0.027 based on mass balance and a residual saturation of 0.035 based 

on partitioning tracers was estimated after the surfactant flood. Compared to NAPL 

recoveries in earlier and later experiments, this is a low recovery. No satisfactory 

reason could be found for this low recovery. Since the main object of this work 

was to focus on DNAPL removal, no further surfactant flooding experiments were 

conducted with jet fuel. 

8.5 EXPERIMENTS WITH HILL OU2 DNAPL 

Several column experiments were performed for the design of the Phase I 

pilot tracer/surfactant injection test and Phase II surfactant enhanced aquifer 
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remediation (SEAR) tests at the Operational Unit 2 site at Hill Air Force Base, 

Utah. Four experiments were performed by the author of this work and are 

described in the following sections and additional experiments were performed 

concurrently by Shotts (1996) due to the limited time of only a few months 

available to design these field tests during May and August of 1996. 

The soil samples as received in SOLINST cores contained numerous large 

cobbles and stones which were removed prior to packing the glass column ( 4.8 cm 

internal diameter). Sometimes it was necessary to use more than one sample for the 

soil column in order to obtain columns of sufficient length to do partitioning tracer 

and surfactant flooding experiments. In one experiment, HILLOU2#7, loose field 

soil stored in jars was used. The procedure for packing and saturating field soil is 

described in Chapter 3. 

All the soil column experiments conducted by the author used Hill field soil. 

Tracer tests were conducted to quantify tracer adsorption and determine minimum 

residence times required for obtaining meaningful results from partitioning tracer 

tests. Radio-labeled surfactant was used in three column experiments to quantify 

surfactant adsorption by Hill field soil. Finally both tracer tests and surfactant 

injection tests were conducted in a soil column at 12.2°C to study the performance 

of partitioning tracers and surfactants at groundwater temperature. Results from 

these experiments will be used in Chapter 10 for lab design of the field tests at the 

Operational Unit 2 site at Hill Air Force Base. 

The DNAPL at Hill Air Force Base, site OU2 was mainly comprised of 

chlorinated hydrocarbons such as trichloroethylene (TCE), tetrachloroethylene 

(PCE) and 1,1,1-trichloroethane (TCA). These solvents were used as degreasers 
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and disposed in shallow trenches. The average TCE concentration in the DNAPL 

was 73%, the average PCE concentration was 8%, the average TCA concentration 

was 14%, and the average Freon 113 concentration was 3%. The rest was made up 

of carbon tetrachloride, toluene and dissolved grease. The density of the DNAPL 

was 1.383 glee, the DNAPL was black in color and showed a strong tendency to 

form foam and emulsions when mixed strongly with water. The interfacial tension 

between the Hill DNAPL and water was between 4 and 7 dynes/cm. 

8.5.1 Experiment HILLOU2#3 

Experiment HILLOU2#3 was the first experiment conducted with 

contaminated Hill field soil. The main objectives were evaluation of performance of 

partitioning tracers for estimation of DNAPL in place and prevention of 

mobilization of free DNAPL during surfactant flood by using a surfactant solution 

with an appropriate interfacial tension between the microemulsion and excess 

DNAPL. 

Contaminated field soil from Hill AFB site Operational Unit 2 was used in 

experiment HILLOU2#3. The soil was obtained from zones 40 ft to 41.5 ft from 

well SB-205. The soil was a silty gravely soil. Large cobbles and stones were 

removed prior to packing. The porosity of the soil column was 0.453 and the 

permeability was 7 .1 Darcies. A Kontes borosilicate column 4.8 cm diameter and 

15 cm long was used with an adjustable plunger to apply some confining stress. A 

99 µm steel mesh was used to hold the sand in place. The soil column was 

saturated with ground water from Hill Operational Unit 2. Based on all the earlier 

soil column experiments it was determined that sodium dihexyl sulfosuccinate was 
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an excellent candidate surfactant to remediate soils contaminated by PCE and TCE. 

Since the Hill DNAPL was composed largely of PCE, TCE and other 

contaminants, it was decided to test the performance of sodium dihexyl 

sulfosuccinate with Hill DNAPL in phase behavior experiments and soil column 

experiments. 

In all the experiments, the terms Hill source water and Hill groundwater will 

be used. The term Hill groundwater refers to the groundwater from the Hill OU2 

and Hill source water refers to the tap water available at Hill Air Force Base. The 

composition of Hill groundwater and Hill source water is given in Tables 10.2 and 

10.3 in Chapter 10. The soil column length, diameter, porosity and permeability 

are presented in Table 8.2. 

Initial Tracer Test 

A suite of five tracers was injected into the soil column for estimation of 

DNAPL initially present in the soil. The tracers used were tritium, IP A, 3-methyl-

3-pentanol, 1-hexanol and 2,2-dimethyl-3-pentanol. About of 6.3 cc of tracer 

solution was injected followed by a waterflood at an interstitial velocity of 0.8 

m/day (0.35 cc/min). A summary of the tracer test is given in Table 8.75. The 

tracer saturation estimates based on partitioning tracers are summarized in Table 

8.76. An average DNAPL saturation of 0.011 was estimated based on partitioning 

tracers. The tracer concentration history is plotted in Figure 8.58. 

Contamination of Soil Column 

The column was oriented vertically. Hill DNAPL was injected into the soil 

column from the bottom at an interstitial velocity of 9.1 m/day (4.0 cc/min). A total 
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of 9.6 cc of Hill DNAPL was injected. This was followed by injection of water 

from the top of the soil column at an interstitial velocity of 9 .1 m/day ( 4.0 cc/min). 

A total of 1.2 cc of free phase DNAPL was produced. A residual DNAPL 

saturation of 0.089 was calculated based on the volume of DNAPL added during 

contamination of the soil column and the initial DNAPL saturation based on 

partitioning tracers. 

Surfactant Flood to Remediate DNAPL 

A solution consisting of 5% by weight sodium diamyl sulfosuccinate in Hill 

source water was injected into the soil column at an interstitial velocity of 2.2 m/day 

(0.24 cc/min) with the soil column oriented horizontally. A total of 148.8 cc (1.3 

pore volumes) of surfactant was injected followed by flooding with 120 cc (1.1 

pore volumes) of Hill source water. A small bank of DNAPL was observed but no 

free DNAPL was produced as the column was oriented horizontally. The IFT 

between the microemulsion and excess DNAPL was measured as 0.4 dyne/cm. 

Since the objective of this experiment was solubilization and since a bank of 

DNAPL was observed, no more work was carried out with this soil column. 

Discussion for Experiment HILLOU2#3 

The main objective of experiment HILLOU2#3 was to avoid mobilization of 

movement of free phase DNAPL. Since a bank of free phase DNAPL was 

observed, no more work was carried out in column HILLOU2#3. The formation 

of the free phase DNAPL bank was attributed to low IFT measured between Hill 

DNAPL and the surfactant solution. A more detailed discussion will be presented 

in Chapter 10 in the discussion of Capillary Desaturation Curves (CDC). 
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8.5.2 Experiment HILLOU2#5 

Column experiment HILLOU2#5 was performed in order to evaluate the 

adsorption of sodium dihexyl sulfosuccinate by Hill field soil using 14C labeled 

surfactant. This surfactant was prepared by Weerasooriya (University of Texas, 

1995). Surfactant concentrations were measured using a Beckman liquid 

scintillation counter. 

The performance of 2-ethyl-1-butanol and 1-pentanol to estimate residual 

DNAPL saturation was evaluated. These tracers were candidate tracers for use in 

the field test at Hill AFB. The ability of a surfactant/alcohol/polymer solution to 

completely remediate the contaminated soil column was also investigated by 

flooding the contaminated column using a solution consisting of 4% sodium 

dihexyl sulfosuccinate, 8% IPA, 500 mg/I xanthan gum, 10,600 mg/I NaCl in Hill 

source water. This surfactant solution exhibited Winsor type III behavior and was 

at optimal salinity. This was done to evaluate the performance of a 

surfactant/alcohol/polymer solution for remediating contaminated Hill field soil. 

Hence partitioning tracers were used to determine residual DNAPL saturations after 

surfactant remediation. This was done to assess performance of surfactant 

flooding. 

A 4.8 cm diameter, 15 cm long Kontes glass column was used with an 

adjustable plunger to confine the sand. SOLINST core from well SB-6, sample 

SB-609 from a depth of 43.8 ft to 44.3 ft and sample SB-606 from a depth of 42 ft 

were used in experiment HILLOU2#5. The soil used in this experiment was also 

silty gravely soil with some fine sand present. The soil packing procedures and soil 
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saturation procedures are described in Chapter 3. Hill groundwater (150 mg/I TDS) 

was used for initial saturation of the soil column. The soil column length, diameter, 

porosity and permeability are presented in Table 8.2. 

Initial Tracer Test 

A suite of tracers were used for estimation of DNAPL already present in the 

soil column. The tracers used were tritium, 1-pentanol, and 2-ethyl-1-butanol. 

About of 9.5 cc of tracer solution was injected followed by a waterflood at an 

interstitial velocity of 0.8 m/day (0.35 cc/min). The residence time was 3.8 hours 

for 1-pentanol and for 2-ethyl.;.1-butanol it was 5.9 hours. The tracer concentration 

history is plotted in Figure 8.59. The initial tracer test is summarized in Table 8.78. 

The residual DNAPL saturations based on partitioning tracers are given in Table 

8.79. A discussion on measurement of partition coefficients for alcohols between 

NAPLs and water is given in Chapter 7. The partition coefficients of several 

alcohols with Hill DNAPL are given in Table 7.2. An average residual DNAPL 

saturation of 0.129 was estimated based on partitioning tracers. 

Surfactant Flood to Remediate DNAPL 

Two surfactant injections were performed in experiment IIlLLOU2#5. The 

first surfactant flood was aimed at quantifying surfactant adsorption by Hill field 

soil. A 4% by weight sodium dihexyl sulfosuccinate mixed in Hill source water 

was injected into the soil column at an interstitial velocity of 1.2 m/day (0.5 

cc/min). The soil column orientation was horizontal. A total of 25.9 cc (0.47 pore 

volumes) of surfactant was injected. This was followed by flooding with 150 cc 
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(2.7 pore volumes) of Hill source water (110 mg/l TDS). The surfactant was 

radiolabeled with 14C and tritium was used as a conservative tracer. 

The oil solubilization parameter of this surfactant solution was 0.29 and this 

corresponds to a contaminant solubilization of 16,000 mg/I The interfacial tension 

between the microemulsion and excess DNAPL was measured as 0.2 dyne/cm. 

The surfactant flood is summarized in Table 8.80. 

Both the tritium and surfactant (14C) concentrations were measured using a 

liquid scintillation counter and a comparison of the tritium and surfactant 

concentration histories is plotted in Figure 8.60. A close overlap of normalized 

tritium and surfactant concentrations is observed in Figure 8.61. The surfactant 

concentration was observed to decline to less than 0.1 % after 180 cc of total 

production, which is less than the CMC of the surfactant of 0.2 weight%. About 

92.5% of the surfactant was recovered. The surfactant adsorption was calculated as 

0.313 mg/g from the mass balance. Based upon the simultaneous breakthrough of 

tritium and 14C as well as subsequent adsorption tests, the adsorption was probably 

even less than this low value (see Chapter 9). 

The soil column was kept horizontal during the surfactant flood and post 

surfactant waterflood to remove surfactant. No DNAPL was produced during these 

floods. The soil column orientation was switched to vertical and the soil column 

was flushed with 200 cc of 10,600 mg/I NaCl (3.6 pore volumes) to equilibrate the 

soil at the desired electrolyte concentration before injecting the second surfactant 

slug. This electrolyte concentration corresponded to the optimal salinity for 4% by 

weight sodium dihexyl sulfosuccinate, 8% isopropanol and 500 mg/I xanthan gum 

mixed in Hill source water. During this stage 5.4 cc of DNAPL was produced. 
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The second surfactant flood was performed using a 

surfactant/alcohol/polymer mixture to remediate the remaining DNAPL in the soil 

column. The performance of a surfactant/alcohol/polymer mixture for remediating 

the DNAPL contaminated soil column was evaluated. A total of 125.9 cc (2.3 pore 

volumes) of 4% by weight sodium dihexyl sulfosuccinate, 8% IPA, 10,600 mg/l 

NaCl, 500 mg/l xanthan gum was injected at an interstitial velocity of 1.2 m/day 

(0.5 cc/min). After the surfactant injection, the soil column was flushed with 100 

cc (1.8 pore volumes) of 150 mg/l NaCl and 150 cc (2.7 pore volumes) of 150 mg/l 

CaCli to remove the surfactant from the soil column. The second surfactant flood 

is summarized in Table 8.81. 

The solubilization parameter of this surfactant was 4.0 and this corresponds 

to a contaminant solubilization of about 500,000 mg/l. A total of 6.0 cc of DNAPL 

was produced during the second surfactant flood. Hence a total of 11.4 cc of 

DNAPL was produced as a result of surfactant flooding. Based on the initial tracer 

test, the DNAPL volume was estimated as 7 .2 cc, but after two surfactant floods a 

total of 11.4 cc of DNAPL was produced. This means that the initial partitioning 

tracer test under predicted the DNAPL saturation in the soil column. This is due to 

insufficient residence time for the partitioning tracers in the soil column and will be 

discussed later. 

The hydraulic gradient across the soii column was measured during the 

second surfactant flood. The hydraulic gradient is plotted against the cumulative 

volume produced in Figure 8.62. A hydraulic gradient between 0.5 and 0.9 was 

measured during this surfactant flood. When surfactant injection was stopped and 

injection of 150 mg/l NaCl was started, the hydraulic gradient was observed to 
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increase sharply. This is due to possible migration of fines due to the absence of 

calcium ions in the waterflood. The hydraulic gradient was observed to decrease 

when 150 cc of 150 mg/l CaCl2 was injected into the soil column. This will be 

discussed later. 

Tracer Test After Surfactant to Estimate Residual DNAPL Saturation 

After both the surfactant floods and the post-surfactant waterflood to 

remove surfactant, a suite of conservative and partitioning tracers was injected into 

the soil column to estimate the final residual DNAPL saturation. This was done 

because there was no other means to estimate DNAPL removal. Since the soil 

column was contaminated initially, mass balance measurements could not be used 

to estimate % DNAPL recovered. Recoveries based on GC measurements were 

generally prone to errors as observed in experiments DW#3 and DW#4. Hence 

partitioning tracers were employed as a means for performance assessment of 

surfactant flooding. The tracers used were tritium, 3-methyl-3-pentanol, 2,2-

dimethyl-3-pentanol and 1-hexanol. A total of 9.1 cc of tracer solution was injected 

followed by a waterflood at an interstitial velocity of 0.8 m/day (0.34 cc/min). The 

effluent was analyzed using a LSC and GC and the residual DNAPL saturation after 

surfactant flooding was calculated. The tracer concentration history is plotted in 

Figure 8.63. The tracer test is summarized in Table 8.82. The residual DNAPL 

saturation estimates based on partitioning tracers are summarized in Table 8.83. 

Negligible delay of the partitioning tracers can observed in Figure 8.63. Based on 

partitioning tracers a final DNAPL saturation of 0.0054 was calculated. This is a 

very low DNAPL saturation and indicated that the dihexyl sulfosuccinate was likely 
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to be a very good choice for use in the field tests at Hill OU2 and justified continued 

testing of it in the laboratory. 

Discussion for Experiment HILLOU2#5 

The average residual DNAPL saturation estimated by partitioning tracers 

was 0.129. This corresponded to 7.2 cc of DNAPL but 11.4 cc of free DNAPL 

was recovered. This discrepancy can be explained by possibility of DNAPL 

existing as a pool in the soil column. Here a pool is defined by the occurrence of a 

locally high DNAPL saturation. Hence, the process ofdetection by the partitioning 

tracers might have been limited by the diffusion time of partitioning tracers into the 

pool of DNAPL due to limited surface area of contact. The partitioning tracers had 

only 3.9 to 6 hours of residence time in the column. These results suggested that a 

longer residence time might be needed for the partitioning tracers. In experiments 

HILLOU2#7 and HILLOU2#8, this was evaluated by using a residence time 

between 19 and 42 hours for the partitioning tracers. 

The pressure drops suddenly increased when the waterflood ( 150 mg/I 

NaCl) was started. This could be attributed to the replacement of calcium ions by 

sodium ions in the clays. This replacement caused swelling and movement of 

clays. These clays probably migrated and blocked pore throats leading to decreased 

permeability and higher pressure drops (hydraulic gradients). The addition of 150 

mg/I CaCl2 probably reversed the swelling of clays and moved them away from the 

pore throats. Hence it can be concluded that for field application of surfactant 

flooding, the surfactant solution and the post surfactant waterflood must have a 

sufficient quantity of calcium ions to prevent ion exchange i.e. replacement of 
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calcium ions by sodium ions in clays. This ion exchange can cause fines 

production, pore plugging and high hydraulic gradients. 

8.5.3 Experiment HILLOU2#7 

In this experiment partitioning tracers were injected into uncontaminated Hill 

field soil in order to quantify tracer adsorption by field soil. In experiment 

HILLOU2#5, a close match between DNAPL saturation based on tracers and the 

volume of DNAPL recovered during surfactant remediation could not be obtained 

as partitioning tracers estimated the DNAPL volume as 7 .2 cc, but a total of 11.4 cc 

of DNAPL was mobilized. Since this was probably due inadequate residence times 

of the tracers in the contaminated soil column, the performance of 1-pentanol for 

estimation of residual DNAPL saturation was evaluated by increasing the residence 

time for the tracer. Heavier alcohols like 2,2-dimethyl-3-pentanol and 1-heptanol 

were used for performance assessment of surfactant remediation. Surfactant 

adsorption of a Winsor type III surfactant solution was quantified by using 

radiolabeled surfactant. 

A 4.8 cm diameter, 30 cm long Kontes glass column was used with an 

adjustable plunger to confine the sand. Loose soil samples from well SB-5, sample 

SB-505 from depths 35 ft to 41.8 ft were used in experiment HILLOU2#7. These 

samples were uncontaminated soil samples and were stored in glass jars. The soil 

column length, diameter, porosity and permeability are presented in Table 8.2. 

Initial Tracer Test 

In this experiment, a suite of partitioning tracers was injected into 

uncontaminated Hill field soil to quantify alcohol adsorption. The tracers used were 
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tritium, IPA, 3-methyl-3-pentanol, 2,2-dimethyl-3-pentanol and 1-hexanol. A total 

of 18.2 cc of tracer solution was injected followed by a waterflood at an interstitial 

velocity of 0.36 m/day (0.12 cc/min). The retention time for all the alcohols was 

19.4 hours. The tracer concentration history is plotted in Figure 8.64. Negligible 

retardation is observed for all tracers. Tracer adsorption by Hill field soil is further 

discussed in Chapter 9. The initial tracer test is summarized in Table 8.84. 

Contamination of Soil Column 

The column was oriented vertically. Contamination of the soil column was 

carried out by injecting Hill DNAPL into the column from the bottom until residual 

water saturation was reached followed by injection of water from the top of the 

column until residual DNAPL saturation was reached. The DNAPL flood was 

carried out at 9 m/day (3.0 cc/min). The waterflood was carried out at 27 m/day (9 

cc/min). A higher rate was used for the waterflood as the DNAPL was slowly 

being stripped and did not reach equilibrium at a waterflood flow rate of 3.0 cc/min. 

The pressure gradient across the soil column at steady state during the DNAPL 

flood was 0.83 psi/ft (at 3 cc/min). The pressure gradient across the soil column at 

steady state during the waterflood was 4.02 psi/ft (at 9 cc/min). The end point 

DNAPL relative permeability was measured at residual water saturation and the end 

point water relative permeability was measured at residual DNAPL saturation. A 

summary of contamination of the soil column is given in Table 8.85. A residual 

water saturation of 0.506 was reached at the end of the contaminant flood and a 

residual DNAPL saturation of 0.261 (mass balance) was reached at the end of the 

waterflood. 
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Tracer Test at Residual DNAPL Saturation 

Tritium and 1-pentanol were used for estimation of residual DNAPL 

saturation. A total of 29 .2 cc of tracer solution was injected followed by a 

waterflood at an interstitial velocity of 0.24 m/day (0.08 cc/min). Samples were 

analyzed using a LSC and GC. The tracer concentration history for this tracer test 

is plotted in Figure 8.65. The mean residence time for the 1-pentanol was 42 

hours. A retardation factor of 2.34 was measured for 1-pentanol. Based on the 

residence times of tritium and 1-pentanol, a DNAPL saturation of 0.255 was 

calculated compared to a DNAPL saturation of 0.261 based on mass balance. The 

tracer test at residual DNAPL saturation is summarized in Table 8.86. The residual 

saturation estimate based on tracers is given in Table 8.87. 

Surfactant Flood to Remediate Contaminant 

A surfactant solution consisting of 4% by weight sodium dihexyl 

sulfosuccinate (commercial name Aerosol MA-SOI), 4% IPA, 500 mg/I xanthan 

gum and 11,250 mg/I NaCl mixed in Hill source water was injected at an interstitial 

velocity of 1.2 m/day (0.5 cc/min). Xanthan gum polymer acts as a viscosifier. 

The increased viscosity of the polymer would help in mitigating aquifer 

heterogeneities. The performance of surfactant/polymer/alcohol solutions to 

remediate DNAPL contaminated field soil was evaluated in this experiment. The 

viscosity of the injected surfactant solution and post-surfactant polymer solution is 

plotted in Figure 8.71. The surfactant solution used in this experiment was a 

Winsor type III solution close to optimal salinity. For the first 150 cc of injection, 

the injection rate was only 0.6 m/day (0.25 cc/min). The surfactant was tagged 
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with 14C labeled sodium dihexyl sulfosuccinate at a 14C concentration of 13,027 

DPM/ml.. Tritium was used as a conservative tracer to measure retardation of 

surfactant by Hill field soil (concentration of 8,604 DPM/ml). 

A total of 300.7 cc (2.1 pore volumes) of surfactant was injected. This was 

followed by 377.3 cc (2.6 pore volumes) of 500 mg/I xanthan gum polymer in Hill 

source water to remove surfactant. The post-surfactant polymer flood with 500 

mg/I xanthan gum polymer mixed in Hill source water was used to provide a 

salinity gradient (Pope and Baviere, 1991). This is discussed later in this Chapter. 

The surfactant flood is summarized in Table 8.88. 

The solubilization parameter of this surfactant solution was 4.3. This 

corresponded to a contaminant solubilization of 600,000 mg/I in the middle phase 

microemulsion. The IFT measured between the microemulsion and excess DNAPL 

was 0.01 dyne/cm. A total of 26.8 cc of free DNAPL was produced during the 

surfactant flood. This corresponded to 73.6 % of DNAPL present in the soil 

column. The rest of the DNAPL was solubilized as microemulsion and produced. 

The relative percentages of contaminant produced as DNAPL and solubilized are 

plotted in Figure 8.66. 

For the first 105 cc (0.73 pore volumes) of production, DNAPL was 

produced. This was followed by production of three phase samples for the next 

160 cc (1.1 pore volumes) of production and then single phase samples. The 

tritium concentration was measured in the aqueous phase. The surfactant 

concentration was measured in aqueous and microemulsion phases. The 

comparison of the tritium concentration in the aqueous phase and the surfactant 

concentration in both the middle phase microemulsion and the aqueous phase is 
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plotted in Figure 8.67. Even though 4% surfactant was injected, surfactant 

concentrations of up to 16% were measured in the effluent microemulsion samples. 

When tritium and surfactant concentrations normalized by their injected values are 

plotted against cumulative volume produced, a close overlap is observed after 265 

cc (1.85 pore volumes) of production (Figure 8.68). 

In order to make more sense of this information, the recoveries of tritium 

and surfactant were plotted as a function of cumulative volume produced. This is 

plotted in Figure 8.69. A slight delay in surfactant recovery compared to tritium 

recovery is observed. This can be attributed to the concentration of surfactant in the 

middle phase microemulsion. However, after cessation in the production of middle 

phase microemulsion, both tritium and surfactant recoveries overlap within 

experimental error. 

Based on mass balance measurement, 100.4% of the waterflood residual 

DNAPL was recovered. Based on adding the volume of DNAPL mobilized and 

solubilized in the effluent samples, 98.4% DNAPL was recovered as a result of 

surfactant remediation. Based upon LSC measurement of the effluent samples, 

103.1 % tritium and 101.6% surfactant was recovered. From this it can be inferred 

that there is negligible adsorption of surfactant by Hill field soil. 

Pressure drops were measured across the soil column during the surfactant 

flood and converted into a hydraulic gradient. The hydraulic gradient during 

surfactant flood and post surfactant polymer flood for experiment HILLOU2#7 is 

plotted in Figure 8. 70. The hydraulic gradient at the beginning of surfactant 

injection was 0.23. When surfactant was injected into the soil column, the 

hydraulic gradient increased to a peak of 1.2 at about 170 cc ( 1.2 pore volumes) of 
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total production. DNAPL breakthrough was observed at 30 cc (0.21 pore volumes) 

of total production. At about 150 cc of total production, the injection rate was 

increased to an interstitial velocity of 1.2 m/day. A slow decline in the hydraulic 

gradient to 0.85 at 300 cc of total injection. 

A polymer flood with 500 mg/I xanthan gum in Hill source water was 

started at an interstitial velocity of 1.2 m/day after 2.1 pore volumes of 

surfactant/alcohol/polymer injection. The hydraulic gradient was further observed 

to decline to about 0.27 after a total of 500 cc of polymer flooding. This hydraulic 

gradient is about four times the expected hydraulic gradient with water flowing 

through the soil column at the same flow rate. Based on this it can be inferred that 

500 mg/I xanthan gum polymer is about 4 times as viscous as water. The 

viscosities of the aqueous surfactant solution and injected post surfactant polymer 

solution are plotted in Figure 8. 71. Viscosities of about 4 cp are observed at shear 

rates of 100 sec-I for both solutions. From this it can be inferred that for the Hill 

field soil used in experiment HILLOU2#7, the injected solutions would be 

subjected to a shear rates of about 100 sec-I. A permeability of 4.5 Darcies was 

measured at the end of the surfactant flood compared to the initial permeability of 

5.9 Darcies. 

Tracer Test After Surfactant to Estimate Residual DNAPL Saturation 

After 2.1 pore volumes of surfactant/polymer flooding and 2.6 pore 

volumes of polymer flooding, a suite of conservative and partitioning tracers was 

injected into the soil to estimate the final residual DNAPL saturation. The tracers 

used were tritium, 2,2-dimethyl-3-pentanol, 1-hexanol and 1-heptanol. The tracers 
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were mixed in 500 mg/l xanthan gum in Hill source water. About 14.6 cc of tracer 

solution was injected followed by flooding with 500 mg/I xanthan gum in Hill 

source water at an interstitial velocity of 0.4 m/day (0.14 cc/min). The effluent was 

analyzed for the alcohols and tritium using a GC and LSC and the residual DNAPL 

saturation was calculated. The final tracer concentration histories are plotted in 

Figure 8.72. Retardation factors between 1.01 and 1.02 were measured for the 

various partitioning tracers. Based on these retardation factors, an average residual 

DNAPL saturation of 0.00016 was estimated using partitioning tracers. This 

corresponded to a recovery of 99.9% DNAPL and is considered the most accurate 

of the three performance measures used. The final partitioning tracer test is 

summarized in Table 8.89. The residual DNAPL saturation estimates based on 

partitioning tracers are given in Table 8.90. 

Discussion for Experiment HILLOU2#7 

Based on the initial tracer concentration history curve in uncontaminated Hill 

field soil, negligible retardation of the tracers was observed. Based on it can be 

concluded that there is negligible adsorption of the alcohol tracers by Hill field soil., 

This is further explained in later sections. 

Based on the excellent match between the tracer estimate of residual DNAPL 

saturation and the mass balance estimate of residual DNAPL saturation it can be 

concluded that a residence time of 42 hours was sufficient for an accurate 

determination of residual DNAPL saturation. 

The surfactant concentration was reduced to less than 0.1 % after 2.1 pore 

volumes of polymer injection after the surfactant flood. In addition, about 101 % of 
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the surfactant and 103% of the tritium were recovered and based on this it can be 

concluded that there was negligible adsorption of the surfactant by the Hill field 

soil. 

The hydraulic gradients were low during the course of the 

surfactant/polymer flood and allowing for the enhanced viscosities due to the 500 

mg/l xanthan gum polymer. Low hydraulic gradients and absence of liquid 

crystals/gels/emulsions were due to the presence of 4% isopropanol. Also, the 

permeability of the soil pack after remediation (4.5 Darcy) was extremely close to 

the initial permeability (5.9 Darcy). Based on this information it can be inferred that 

the surfactant solution did not cause any problems such as pore plugging and that 

the soil was restored to very nearly its original condition after surfactant 

remediation. 

A close overlap of partitioning and nonpartitioning tracers was observed in 

the final tracer test. Based on the final partitioning tracer test and the method of 

moments, an average residual saturation of 0.00016 was computed. This 

remarkably low value indicated that this surfactant is extremely effective in 

removing essentially all the Hill DNAPL from Hill field soil. This highly favorable 

result was confirmed by still other lab tests and finally the field test. 

8.5.4 Experiment HILLOU2#8 

The objectives in experiment HILLOU2#8 were the same as in experiment 

HILLOU2#7. However, the whole experiment was carried out at 12.2°C rather 

than 23°C to evaluate the surfactant at groundwater temperature. 
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A 4.8 cm diameter, 15 cm long Kontes glass column was used with an 

adjustable plunger to confine the sand. Contaminated soil stored in SOLINST core 

from well SB-6, sample SB-610 from depths 44.3 ft to 44.8 ft was used. The 

surfactant concentration was increased to 8% by weight and the alcohol 

concentration was correspondingly increased to 8% by weight. The surfactant was 

radiolabeled with 14C to measure adsorption by field soil. The soil column length, 

diameter, porosity and permeability are presented in Table 8.2. 

Initial Tracer Test 

A suite of tracers was used for estimation of DNAPL already present in the 

soil column. The tracers used were tritium, 1-pentanol, and 2-ethyl-1-butanol. 

About 9.6 cc of tracer solution was injected followed by a waterflood at an 

interstitial velocity of 0.16 m/day (0.08 cc/min). The residence time was 18.2 

hours for 1-pentanol and for 2-ethyl-1-butanol it was 28.3 hours. The tracer 

concentration history is plotted Figure 8.73. The initial tracer test is summarized in 

Table 8.91. The residual DNAPL saturations based on partitioning tracers are 

given in Table 8.92. Based on partitioning tracers an average initial DNAPL 

saturation of 0.082 was estimated. 

Surfactant Flood to Remediate DNAPL 

The ability of a surfactant/polymer/alcohol solution to remediate 

contaminated Hill field soil was evaluated in this experiment. The optimal salinity 

for a surfactant solution containing 8% sodium dihexyl sulfosuccinate, 8% 

isopropyl alcohol, 500 mg/I xanthan gum mixed in Hill source water at 12.2oc is 

5 ,850 mg/I Na Cl. Hence a pre-flush with 110 cc ( 1. 6 pore volumes) of 5 ,850 mg/I 
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Na Cl was carried out to equilibrate the soil at the desired electrolyte concentration 

before injecting surfactant. In this phase, 0.5 cc of DNAPL was mobilized. A 

surfactant solution consisting of 8% by weight sodium dihexyl sulfosuccinate, 8% 

IPA, 500 mg/I xanthan gum and 5,850 mg/I NaCl in Hill source water was used to 

remediate the contaminated soil column. A total of 122.3 cc (1.8 pore volumes) of 

surfactant was injected at an interstitial velocity of 0.3 m/day (0.15 cc/min) 

followed by flooding with 180 cc (2.6 pore volumes) of 500 mg/I xanthan gum in 

Hill source water to remove surfactant. Both the partitioning tracer test and the 

surfactant flood were carried out at 12.2°C by placing the soil column in a water 

bath. A 0.3 m long coiled stainless steel tubing was used as a heat exchanger for 

cooling the injected surfactant solution. The surfactant flood is summarized in 

Table 8.93. 

The solubilization parameter of the surfactant solution was 3.8 and this 

corresponded to a solubilization of 425,000 mg/I in the middle phase 

microemulsion. The IFT measured for between the microemulsion and excess 

DNAPL was 0.01 dyne/cm. 

A total of 2.25 cc of free phase DNAPL was produced during the surfactant 

flood. This corresponded to 40.4% of the DNAPL in the soil column. Another 1.6 

cc of the DNAPL was solubilized in the microemulsion and produced as dissolved 

contaminant for a total of 3.85 cc. The contaminant concentration history during 

the surfactant flood and polymer flood are plotted in Figure 8.75. Since 0.5 cc of 

DNAPL was produced in the pre-flush, a total of 4.35 cc of DNAPL was recovered 

from the column. The concentration of the contaminant decreased to less than 10 

mg/I after 280 cc (4 pore volumes) of total flooding. The field DNAPL is a 
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complex mixture with three main components, PCE, TCE and TCA. A surfactant 

solution containing 8% sodium dihexyl sulfosuccinate and 10,000 mg/I NaCl was 

used to make stock solutions containing 50,000 mg/I, 40,000 mg/I, 30,000 mg/I, 

10,000 mg/I contaminant. By further serial dilution, standards containing 1,000 

mg/I, 500 mg/I, 250 mg/I, 125 mg/I and 10 mg/I of Hill contaminant were prepared. 

These samples were run through a GC and calibration curves corresponding to the 

TCE peaks were prepared. These standards were used to estimate contaminant 

concentrations in the effluent samples from the soil column. 

Radiolabeled surfactant was used for quantifying surfactant adsorption and 

surfactant recovery. A comparison of normalized tritium and surfactant 

concentrations is shown in Figure 8. 76. A close overlap between tritium and 

surfactant concentrations is observed in Figure 8.76. The surfactant concentration 

was observed to fall below 0.1 % concentration after 275 cc (4 pore volumes) of 

total flooding. This is below the CMC of the surfactant of 0.2 weight %. About 

96.0% of the surfactant was ·recovered compared to 99.0% tritium recovery. 

Two differential pressure transducers were used to measure the pressure 

drop across the soil column during surfactant flooding. Transducer 1 was designed 

to measure pressure in the range of 0 to 1 psi and transducer 2 was designed to 

measure pressures in the range of 0 to 5 psi. The pressures were converted into 

hydraulic gradients and the hydraulic gradient is plotted against the cumulative 

volume produced in Figure 8.77. The hydraulic gradient at residual DNAPL 

saturation at the beginning of the test was 0.13. When injection of surfactant was 

started, the hydraulic gradient increased to 0.25. DNAPL breakthrough was 

observed at 30 cc (0.4 pore volumes) of total production and the hydraulic gradient 
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increased to about 0.9 followed by a decline to 0.45 at 50 cc (0.7 pore volumes) of 

total volume produced. Based on the increased viscosity of polymer, a maximum 

gradient of about 0.8 was expected. The maximum gradient achieved during 

DNAPL mobilization during the surfactant flood was about 0.9. 

A sudden increase in hydraulic gradient to about 1.6 was observed. Since 

the column was placed in a water bath and the line connecting the water bath to the 

fraction collector was at room temperature, the change in the temperature caused 

phase separation of the microemulsion into excess DNAPL and microemulsion in 

the line connecting the soil column to the fraction collector. Since the DNAPL is 

much heavier than the surfactant solution, it was accumulated in the effluent line 

connecting the soil column to the fraction collector. This is shown in Figure 8.78. 

Such artifacts which can cause high gradients must be avoided. This accumulation 

of DNAPL in the line caused a higher hydraulic gradient. At 120 cc (1.7 pore 

volumes) of total volume produced, the column was briefly removed from the water 

bath and all the fluid (including the excess DNAPL) in the effluent line was drained. 

The soil column was placed in the water bath and injection was restarted. At this 

point the hydraulic gradient was observed to fall below 0.3. 

Tracer Test After Surfactant to Estimate Residual DNAPL Saturation 

After 1.8 pore volumes of surfactant flooding and 2.6 pore volumes of 

polymer flooding, a suite of conservative and partitioning tracers was injected into 

the soil column to estimate the final residual DNAPL saturation. The process of 

flushing out polymer from a soil column is a very inefficient process. This is 

because we are trying to flush a more viscous solution using a less viscous fluid. If 
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water is injected into a medium saturated with polymer, it would finger through and 

take many pore volumes to completely flush out the polymer. A partitioning tracer 

experiment conducted under such conditions would give erroneous results as the 

tracers will not flow through all parts of the porous medium due to viscous 

fingering. In order to prevent this, tracers were mixed in 500 mg/I xanthan gum in 

Hill source water. The tracers used were IPA, 2,2-dimethyl-3-pentanol, 1-hexanol 

and 1-heptanol. A total of 9.0 cc of tracer solution was injected followed by 

followed by flooding with 500 mg/I xanthan gum in Hill source water at an 

interstitial velocity of 0.22 m/day (0.11 cc/min). The effluent was analyzed for the 

alcohols and tritium using a GC and LSC and the residual DNAPL saturation was 

calculated. The tracer concentration is plotted in Figure 8.79. Negligible delay of 

the partitioning tracers is observed. An average residual DNAPL saturation of 

0.0015 was calculated based on partitioning tracers. This corresponded to a 

recovery of 98.1 % of the DNAPL initially present in the soil column. The final 

partitioning tracer test is summarized in Table 8.94. The residual DNAPL 

saturation estimates based on partitioning tracers is given in Table 8.95. 

Discussion for Experiment HILLOU2#8 

A residence time of 18 hours gave good results from partitioning tracer tests 

based on results obtained in experiment HILLOU2#8. A residence time of about 6 

hours did not give us good results in experiment HILLOU2#5. From these results 

it can be inferred that a residence time of 18 hours or greater for the partitioning 

tracers in the field would be likely to give us good results. 
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The lower temperature in experiment HILLOU2#8 did not pose any 

problems such as high hydraulic gradients. Hence, it can be concluded that a 

solution of 8% sodium dihexyl sulfosuccinate, 8% isopropanol, 500 mg/I xanthan 

gum, 5,850 mg/I NaCl in Hill source water at 12.2°C would be an excellent 

candidate for use in the SEAR demonstration at Hill AFB. In the first 50 cc of total 

injection, there was mobilization of DNAPL. The rest of the DNAPL was 

solubilized as microemulsion and produced. The contaminant concentration in the 

effluent was observed to fall below 100 mg/I after about 150 cc of total injection 

(2.2 pore volumes) and to less than 10 mg/I after 280 cc (4.1 pore volumes). 

For column HILLOU2#8, 96% of the surfactant was recovered compared to 

99% of the tritium. These are the same within experimental error. Based on this 

and all the previous experiments, it can be concluded that there is negligible 

adsorption of the surfactant by the field soil. A more detailed discussion of 

adsorption is given in Chapter 9. 

The 1-heptanol is slightly retarded in Figure 8.79. The retardation factors 

for the partitioning tracers varied between 1.06 and 1.14. Based on the method of 

moments, an average residual saturation of 0.0015 was computed. Although this is 

not as quite as good as experiment HILLOU2#7, this is still a good result. 

8.6 SUMMARY AND DISCUSSION OF EXPERIMENTS 

In this Chapter, partitioning tracer and surfactant flood results from many 

soil column experiments are presented. These columns are contaminated by PCE, 

TCE, JP4 and Hill field DNAPL. A comparison of results obtained from this work 

and results from earlier literature is presented in this section. 
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Many laboratory soil column studies have been conducted for evaluating the 

performance of surfactants to remediate NAPL contaminated soils. Ellis et al. 

(1986) recovered between 60.8% and 68% of polychlorinated biphenyls (PCBs), 

petroleum hydrocarbons and chlorophenols in two soil column experiments using 

nonionic surfactants. Gannon et al. (1989) recovered between 65% and 90% of 

dichlorobenzene (DCB) and 90% to 95% naphthalene by flushing soil with sodium 

dodecyl sulfate (SDS). Abdul et al. (1990) recovered between 33% and 84% of the 

automotive transmission fluid (ATF) using surfactants. More studies conducted by 

Ang and Abdul (1991) demonstrated that 55% and 73% of the ATF could be 

recovered using alkyl polyoxyethylene glycol after 28 pore volumes of surfactant 

washing. 

Peters et al. ( 1992) screened several surfactant solutions for their 

effectiveness for remediating diesel fuel from contaminated soil. Total petroleum 

hydrocarbon (TPH) recoveries ranged from 60%-90%. Similar results were 

reported by Bourbonais et al. (1995). 

Surfactant flushing was successfully employed to enhance the recovery of 

dodecane (Pennell et al., 1993) and PCE (Pennell et al., 1994; Jin, 1995). 

Between 90% and 99% of the PCE was recovered as a result of surfactant flooding 

(Pennell et al., 1994; Jin, 1995). Similar results were reported by Shiau et al. 

(1994) and Shiau (1995c) who recovered between 90% and 99% PCE and TCE 

from contaminated soil columns using both solubilization and mobilization 

experiments. 

In comparison to earlier literature, up to 99.9% of the NAPL has been 

recovered in several experiments conducted in this work. This is significantly 
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better than earlier results This recovery was based on both partitioning tracer 

results and mass balance measurements. These remarkably high recoveries have 

been reported for both TCE and Hill DNAPL. In earlier literature, column 

experiment results with field DNAPL showing recoveries up to 99.9% have not 

been reported. In addition to high recoveries, many new features about surfactant 

flooding have been highlighted. Some of these are discussed in the following 

sections. 

8.6.l Measurement of Hydraulic Gradients 

The measurement of pressure drops across the soil column during the 

surfactant flood is used to quantify surfactant behavior in the porous medium. 

Surfactant solutions which cause excessive hydraulic gradients are shown to cause 

problems such as plugging and lowering of permeability and hence are undesirable 

for use in remediation applications. In this work, surfactants which show low 

hydraulic gradients during surfactant flooding have been identified. When used in 

soil column experiments, these surfactants have shown very small permeability 

reduction and have restored the soil to very nearly its original condition. 

8.6.2 Use of Xanthan Gum Polymer 

Several column experiments with xanthan gum polymer in this work have 

shown that surfactant/polymer/alcohol solutions can be used to remediate DNAPL 

contaminated soil columns. The higher hydraulic gradients during the surfactant 

flood were consistent with the higher viscosity of the surfactant/polymer/alcohol 

solutions and no evidence of gels/liquid crystals/emulsions were observed. 
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8.6.3 Use of Alcohol as a Co-solvent 

In this work, alcohols have been used as co-solvents in many soil column 

experiments. The addition of alcohol as a co-solvent lowered the viscosity of the 

aqueous surfactant solutions, minimized gels/liquid crystals/emulsions and 

increased coalescence rates. In the experiments with jet fuel, the addition of alcohol 

eliminated high hydraulic gradients and plugging of the soil column. 

8.6.4 Salinity Gradient 

The main premise of using a salinity gradient is that it takes advantage of the 

favorable properties of the surfactant first at high salinity and then at low salinity. 

This is done by reducing the polymer flood salinity to below the lower critical 

salinity at which the phase behavior changes from type III to type I. This causes 

miscibility between the surfactant and polymer and a more effective flushing of the 

microemulsion and surfactant from the aquifer. A salinity gradient will also cause 

lower adsorption of surfactant if it is reversible with salinity. This was used in 

several soil column experiments in which a surfactant solution at a higher electrolyte 

concentration was flushed out with a surfactant solution at a lower electrolyte 

concentration. In experiments POL YTCE#3 and HILLOU2#7, up to 99.9% of the 

DNAPL was recovered as a result of surfactant flooding using the salinity gradient 

concept. 
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Table 8.1: Brief description of column experiment 

Experiment NAPL Column Comments 
type 

DW#l PCE Glass Surfactant 
DW#2 PCE Steel Partitioning tracers and surfactant 
DW#3 PCE Steel Partitioning tracers and surfactant 
OUDNAPLl Hill OUl Steel Partitioning tracers 
OUDNAPL2 Hill OUl Glass Partitioning tracers 
OUDNAPL3 Hill OUl Glass Partitioning tracers 
DW#5 JP4 Glass Partitioning tracers and surfactant 
JP4#2 JP4 Steel Partitioning tracers and surfactant 
DW#4 TCE Steel Partitioning tracers and surfactant 
POLYTCE#l TCE Glass Partitioning tracers and surfactant with 

polymer 
POLYTCE#3 TCE Steel Partitioning tracers and surfactant 
HILLOU2#3 Hill OU2 Glass Partitioning tracers and surfactant 

flood 
HILLOU2#5 Hill OU2 Glass Partitioning tracers and radiolabeled 

surfactant to measure adsorption 
HILLOU2#7 Hill OU2 Glass Partitioning tracers, radiolabeled 

surfactant with polymer 
HILLOU2#8 Hill OU2 Glass Partitioning tracers, radiolabeled 

surfactant with polymer at 12.2oc 
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Table 8.2: Brief description of column properties 

Experiment Length Diameter Porosity Permeability 
(cm) (cm) (Darcy) 

DW#l 13.18 4.80 0.390 5.9 
DW#2 30.50 2.21 0.352 15.4 
DW#3 30.50 2.21 0.381 7.3 
OUDNAPLl 30.50 2.21 0.380 7.2 
OUDNAPL2 9.20 4.80 0.291 7.3 
OUDNAPL3 10.2 4.80 0.366 8.7 
DW#5 15.00 4.80 0.372 7.1 
JP4#2 30.50 2.21 0.357 8.8 
DW#4 30.50 2.21 0.355 8.3 
POLYTCE#l 26.8 4.80 0.347 5.8 
POLYTCE#3 75.00 2.21 0.351 6.8 
HILLOU2#3 13.70 4.80 0.453 7.1 
HILLOU2#5 8.90 4.80 0.420 3.84 
HILLOU2#7 21.60 4.80 0.365 5.9 
HILLOU2#8 9.8 4.80 0.384 7.7 

Table 8.3: Initial tracer test summary for experiment DW#l 

Electrolyte Concentration 500 mg/I CaCl, 
Tracers Used Tritium 
Volume of Tracer Iniected 154.4 cc 
Injection Rate 4.0cc/min 
Iniected Tracer Concentrations 
Tritium 29, 504 DPM/ml 
% Tracer Recovered --
Pore Volume (tracers) 93.0 cc 
Pore Volume (volume balance) 87.4 cc 

Table 8.4: Flow rates during drainage relative permeability experiments 
forDW#l. 

PCE Flow Rate (cc/min) Water Flow Rate (cc/min) 
0.00 3.30 
0.50 2.65 
0.85 2.10 
1.20 1.60 
1.65 1.10 
2.10 0.50 
2.40 0.00 
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Table 8.5: Flow rates during imbibition relative permeability experiments 
forDW#l. 

PCE Flow Rate (cc/min) Water Flow Rate (cc/min) 
2.4 0.00 
2.20 0.45 
1.75 1.00 
1.35 1.50 
0.90 2.10 
0.55 2.65 
0.0 3.30 

Table 8.6: Drainage relative permeability curve for experiment DW#l. 

PCE flow rate Water flow rate Krw Kro Sw 
(cc/min) (cc/min) 

2.40 0.00 0.0000 0.0637 0.372 
2.10 0.50 0.0123 0.0511 0.439 
1.65 1.10 0.0264 0.0391 0.499 
1.20 1.60 0.0388 0.0288 0.540 
0.85 2.10 0.0549 0.0220 0.580 
0.50 2.65 0.0784 0.0146 0.630 

Table 8. 7: hnbibition relative permeability curve for experiment DW#l. 

PCE flow rate Water flow rate Krw Kro Sw 
(cc/min) (cc/min) 

0.00 3.28 0.1782 0.0000 0.774 
0.55 2.65 0.0977 0.0201 0.632 
0.90 2.20 0.0697 0.0282 0.580 
1.50 1.35 0.0361 0.0396 0.531 
1.75 1.00 0.0304 0.0526 0.500 
2.20 0.45 0.0137 0.0662 0.429 
2.40 0.00 0.0000 0.0637 0.372 
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Table 8.8: Tracer test summary at residual water saturation for experiment 
DW#l. 

Tracers Used 14C labeled PCE 
Volume of Tracer Injected 26.0 cc 
htjection Rate 2.6 cc/min 
Injected Tracer Concentrations 
14C 8,650 DPM/rnl 
Residual Water Saturation (tracer) --
Residual Water Saturation (volume) 0.372 

Table 8.9: Tracer test summary at residual PCE saturation for experiment 
DW#l. 

Tracers Used Tritium 
Volume of Tracer Injected 98.0 cc 
Injection Rate 3.0cc/min 
Injected Tracer Concentrations 
Tritium 18,916 DPM/rnl 
Residual PCE Saturation (tracer) 0.226 

Table 8.10: Surfactant flood summary for experiment DW# 1 

Surfactant Used 2% sodium diamyl sulfosuccinate, 
2% sodium dioctyl sulfosuccinate, 
500 mg/I CaCl2. 

Volume of Surfactant Injected 1072.5 cc 
Injection Rate 0.3 cc/min 
Phase Behavior Winsor type I 
PCE Solubilization 80,000mg/l 
Interfacial tension 0.02 dyn/cm 
Volume of PCE Mobilized 16.0 cc 
Volume of PCE solubilized 0.4 cc 
% PCE recovered 77.9 % 
Permeability After Surfactant Flooding 0.9 Darcy 
Initial Permeability 5.9 Darcy 
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Table 8.11: Tracer test summary for first tracer test after surfactant, 
experiment DW#l. 

Tracers Used Tritium 
Volume of Tracer lniected 171.5 cc 
Injection Rate 3.1 cc/min 
lniected Tracer Concentrations 
Tritium 20,840 DPM/ml 
Aqueous pore volume 20.5 cc 

Table 8.12: Tracer test summary for second tracer test after surfactant, 
experiment DW#l. 

Tracers Used Tritium 
Volume of Tracer Injected 102.4 cc 
Injection Rate 3.1 cc/min 
Injected Tracer Concentrations 
Tritium 20,840 DPM/ml 
Aqueous pore volume 10.5 cc 

Table 8.13: Initial tracer test summary for experiment DW#2. 

Electrolyte Concentration 500 mg/I CaCii 
Tracers Used Tritium, IPA, 2,3-Dimethyl-2-

butanol. 
Volume of Tracer lniected 3.8 cc 
Injection Rate 1.0 cc/min 
Injected Tracer Concentrations 
Tritium 154,880 DPM/ml 
IPA 6,836 mg/I 
2,3-Dimethyl-2-butanol 4,342 mg/I 
% Tracer Recovered 
Tritium 110.6 % 
IPA 107.9 % 
2,3-Dimethyl-2-butanol 112.7 % 
Pore Volume (tracers) 42.5 cc 
Pore Volume (volume balance) 41.2 cc 

286 



Table 8.14: Contamination summary, experiment DW#2 

Electrolyte Concentration 500 mg/l CaC}i 
PCE Injection Rate 1.0 cc/min 
Volume of PCE Injected 60cc 
Residual Water Saturation 0.323 
PCE Relative Permeability at Residual 0.216 
Water Saturation 
Water Injection Rate 1.0 cc/min 
Water Relative Permeability at Residual 0.179 
PCE Saturation 

Table 8.15: Tracer test summary at residual PCE saturation for experiment 
DW#2. 

Electrolyte Concentration 1,300 mg/I CaCl2 
Tracers Used Tritium, IPA, 2,3-Dimethyl-2-

butanol. 
Volume of Tracer Injected 3.7 cc 
Injection Rate 0.05 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 156,868 DPM/ml 
IPA (K=O.l) 7,629 mg/I 
2,3-Dimethvl-2-butanol (K=2.8) 5,283 mg/I 
% Tracer Recovered 
Tritium 103.8 % 
IPA 90.7 % 
2,3-Dimethyl-2-butanol (23DM2B) 63.5 % 

Table 8.16: Residual PCE saturation estimates based on partitioning 
tracers, experiment DW#2. 

Residual PCE saturation (Tritium, 0.195 
23DM2B) 
Residual PCE saturation (IPA, 0.175 
23DM2B) 
Residual PCE saturation (volume) 0.197 
Residual PCE saturation (mass) 0.202 
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Table 8.17: Surfactant flood summary for experiment DW#2. 

Surfactant Used 2% sodium diamyl sulfosuccinate, 
2% sodium dioctyl sulfosuccinate, 
1,300 mg/1 CaC}i 

Volume of Surfactant Injected 614.4 cc 
Injection Rate 0.05 cc/min 
Phase Behavior Winsor tvoe III 
PCB Solubilization 1,000,000 mg/I 
Interfacial tension 0.01 dyn/cm 
Volume of PCB Mobilized 7.7 cc 
Volume of PCB solubilized 0.35 cc 
% PCB recovered (material balance) 97.8% 
Permeability after Surfactant Flood 1.5 Darcy 
Initial Permeability 15.4 Darcy 

Table 8.18: Tracer test summary for tracer test after surfactant, experiment 
DW#2. 

Tracers Used Tritium 
Volume of Tracer Injected 4.3 cc 
Injection Rate 0.05 cc 
Injected Tracer Concentrations 
Tritium 38,337 DPM/ml 
Aqueous pore volume 15.4 cc 

Table 8.19: Initial tracer test summary for experiment DW#3. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used Tritium 
Volume of Tracer Injected 4.4 cc 
Injection Rate 1.0 cc 
Injected Tracer Concentrations 
Tritium 171,344 DPM/ml 
% Tracer Recovered 
Tritium 113.7% 
Pore Volume (tracers) 44.4 cc 
Pore Volume (volume balance) 42.8 cc 
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Table 8.20: Contamination summary, experiment DW#3. 

Electrolyte Concentration 500 mg/l NaCl 
PCE Injection Rate 1.0 cc/min 
Volume of PCE Injected 60cc 
Residual Water Saturation 0.392 
PCE Relative Permeability at Residual 0.354 
Water Saturation 
Water Injection Rate 1.0 
Water Relative Permeability at Residual 0.436 
PCE Saturation 

Table 8.21: Tracer test summary at residual PCE saturation for experiment 
DW#3. 

Electrolyte Concentration 25,000 mg/I NaCl 
Tracers Used Tritium, IPA and 2,3-Dimethyl-2-

butanol 
Volume of Tracer Iniected 7.4 cc 
Injection Rate 0.15 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 170,800 DPM/ml 
IPA (K=O.l) 4,260 mg/I 
2,3-Dimethyl-2-butanol (K=2.8) 2,170 mg/I 
% Tracer Recovered 
Tritium 77.5 % 
IPA 61.9% 
2,3-Dimethyl-2-butanol (23DM2B) 57.1 % 

Table 8.22: Residual saturation estimates based on partitioning tracers, 
experiment DW#3. 

Residual PCE saturation (Tritium, 0.208 
23DM2B) 
Residual PCE saturation (IPA, 0.205 
23DM2B) 
Residual PCE saturation (volume) 0.174 
Residual PCE saturation (mass) 0.181 
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Table 8.23: Surfactant flood summary for experiment DW#3. 

Surfactant Used 4% sodium dihexyl sulfosuccianate, 
25,000 mg/I NaCL 

Volume of Surfactant Injected 557.5 cc 
Injection Rate 0.06 cc/min for first 2.2 PV, 0.12 

cc/min for next 3.3 PV and 0.24 
cc/min for the rest. 

Phase Behavior Winsor type I 
PCB Solubilization 58,000 mg/I 
Interfacial tension 0.14 dyne/cm. 
Volume of PCB Mobilized 1.3 cc 
Volume of PCE solubilized 3.9 
% PCE recovered (material balance 70.0 % 
% PCE recovered (mass balance) 100.5 % 
% PCE recovered (tracers) 97.2 % 
Permeability after Surfactant Flood 6.9 Darcy 
Initial Permeability 7.3 Darcy 

Table 8.24: Tracer test summary for tracer test after surfactant, experiment 
DW#3. 

Electrolyte Concentration 1,000 mg/I NaCl 
Tracers Used Tritium, IPA and 2,3-Dimethyl-2-

butanol 
Volume of Tracer Injected 6.4 cc 
Injection Rate 0.15 cc/min 
Injected Tracer Concentrations 
Tritium 177,161 DPM/ml 
IPA 4,174 mg/I 
2,3-Dimethyl-2-butanol 2,174 mg/I 
% Tracer Recovered 
Tritium 96.6 % 
IPA 84.9 % 
2,3-Dimethyl-2-butanol (23DM2B) 59.6 % 
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Table 8.25: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment DW#3. 

Residual PCB saturation (Tritium, 0.007 
23DM2B) 
Residual PCB saturation (IPA, 0.003 
23DM2B) 

Table 8.26: Initial tracer test summary for experiment DW#4. 

Electrolyte Concentration 500 mg/l NaCl 
Tracers Used Tritium 
Volume of Tracer Injected 4.3 cc 
Injection Rate 1.0 cc/min 
Injected Tracer Concentrations 
Tritium 213,378 DPM/ml 
% Tracer Recovered 103.6 % 
Pore Volume (tracer) 43.0 cc 
Pore Volume (mass balance) 40.4 cc 
Pore Volume (volume balance) 41.4 cc 

Table 8.27: Contamination summary, experiment DW#4. 

Electrolyte Concentration 500 mg/l NaCl 
TCE Injection Rate 1.0 
Volume of TCE Injected 80cc 
Residual Water Saturation 0.263 
TCE Relative Permeability at Residual 0.286 
Water Saturation 
Water Injection Rate 1.0 cc/min 
TCE Saturation (mass balance) 0.175 
TCE Saturation (volume balance) 0.179 
Water Relative Permeability at Residual 0.306 
TCE Saturation 
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Table 8.28: Tracer test summary at residual TCE saturation for experiment 
DW#4. 

Electrolyte Concentration 2,000 mg/I NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 

2-Methyl-2-hexanol 
Volume of Tracer In1ected 4.5 cc 
Injection Rate 0.15 cc/min 
Injected Tracer Concentrations 
IPA 4,784 mg/I 
2,3-Dimethyl-2-butanol 4,736 mg/I 
2-Methyl-2-hexanol 3,597 mgll 
% Tracer Recovered 
IPA 92.1 % 
2,3-Dimethyl-2-butanol 82.2 % 
2-Methyl-2-hexanol 70.6 % 

Table 8.29: Dynamic partition coefficient estimates based on partitioning 
tracers, experiment DW#4. 

Tracer Partition Coefficient 
2,3-Dimethy 1-2-butanol 6.3 
2-Methyl-2-hexanol 28.1 

Table 8.30: Surfactant flood summary for experiment DW#4. 

Surfactant Used 8% sodium dihexyl sulfosuccinate, 
2,000 mg/I NaCl 

Volume of Surfactant In1ected 361.3 cc 
Injection Rate 0.13 cc/min 
Phase Behavior Winsor type I 
TCE Solubilization 52,000 mg/I 
Interfacial tension 0.20 dyne/cm. 
Volume of TCE Mobilized 0.3 cc 
Volume of TCE solubilized --
% TCE Recovered (mass balance) 100.0 % 
% TCE Recovered (tracers) 96.9 % 
Permeability after Surfactant Flood 7.1 Darcy 
Initial Permeability 8.3 Darcy 
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Table 8.31: Tracer test summary for tracer test after surfactant, experiment 
DW#4. 

Electrolyte Concentration 2,000 mg/I NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 6.4 cc 
Injection Rate 0.15 cc/min 
Injected Tracer Concentrations 
IPA 5,720 mg/I 
2,3-Dimethyl-2-butanol 4,711 mg/I 
(23DM2B) 
2-Methyl-2-hexanol (2M2HX) 5,742 m.e;/l 
% Tracer Recovered 
IPA 94.9 % 
2,3-Dimethyl-2-butanol 72.9 % 
2-Methyl-2-hexanol 68.5 % 

Table 8.32: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment DW#4. 

Residual PCE saturation (IPA, 0.0029 
23DM2B) 
Residual PCE saturation 0.008 
(2M2HX, 23DM2B) 

Table 8.33: Initial tracer test summary for experiment POL YTCE#l. 

blectrolvte Concentration 500 mg/l NaCl 
Tracers Used Tritium 
Volume of Tracer Injected 16.4 cc 
Injection Rate 3.0cc/min 
Injected Tracer Concentrations 
Tritium 212,470 DPM/ml 
% Tracer Recovered 105.1 % 
Pore Volume (tracer) 168.4 cc 
Pore Volume (mass balance) 168.6 cc 
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Table 8.34: Contamination summary, experiment POL YTCE#l. 

Electrolyte Concentration 500 mg/I NaCl 
TCE Injection Rate 3.0 cc/min 
Volume of TCE Injected 200cc 
Residual Water Saturation 0.325 
TCE Relative Permeability at 0.178 
Residual Water Saturation 
Water Injection Rate 3.0 cc/min 
Water Relative Permeability at 0.295 
Residual TCE Saturation 

Table 8.35: Tracer test summary at residual TCE saturation for experiment 
POLYTCE#l. 

Electrolyte Concentration 4,000 mg/I NaCl 
Tracers Used Tritium (K=O.O), IPA (K=O.l), 

2,3-Dimethyl-2-butanol (K=6.3) 
and 2-Methyl-2-hexanol (K=28.l) 

Volume of Tracer Injected 16.7 cc 
Injection Rate 0.80cc/min 
Injected Tracer Concentrations 
Tritium (0.0) 213,692 DPM/ml 
IPA (0.1) 3,206 mg/I 
2,3-Dimethyl-2-butanol (6.3) 2,980 mg/I 
2-Methyl-2-hexanol (28.1) 3,071 mg/I 
% Tracer Recovered 
Tritium 100.8 % 
IPA 120.3 % 
2,3-Dimethyl-2-butanol 134.8 % 
(23DM2B) 
2-Methyl-2-hexanol (2M2HX) 107.l % 
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Table 8.36: Residual TCE saturation estimates based on partitioning 
tracers, experiment POL YTCE#l. 

Residual TCE Saturation (tritium, 0.196 
23DM2B) 
Residual TCE Saturation (IPA, 0.197 
23DM2B) 
Residual TCE Saturation (tritium, 0.202 
2M2HX) 
Residual TCE Saturation (IPA, 0.202 
2M2HX) 
Residual TCE Saturation (mass 0.198 
balance) 
Residual TCE Saturation (volume 0.193 
balance) 

Table 8.37: Surfactant flood summary for experiment POL YTCE#l. 

Surfactant Used 4% sodium dihexyl sulfosuccinate, 
8% IPA, 4,000 mg/I NaCl 

Volume of Surfactant Iniected 2003.9 cc 
Post Surfactant Polymer Flood 330 cc of 500 ppm xanthan gum, 

500 mg/I NaCl 
Post Surfactant Water Flood 5,900 cc of 500 mg/I NaCl 
Iniection Rate 0.80cc/min 
Phase Behavior Winsor type I 
TCE Solubilization 32,000mg/l 
Interfacial tension 0.19 dyne/cm. 
Volume of TCE Mobilized < 0.1 cc 
Volume of TCE solubilized --
% TCE Recovered (mass balance) 101.2 % 
% TCE Recovered (tracers) 99.9 % 
Permeability after Surfactant Flood 4.9 Darcy 
Initial Permeability 5.8 Darcy 
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Table 8.38: Tracer test summary for tracer test after surfactant, experiment 
POLYTCE#l. 

Electrolyte Concentration 4,000 mg/I NaCl 
Tracers Used Tritium (K=O.O), IPA (K=0.1), 

2,3-Dimethyl-2-butanol (K=6.3) 
and 2-Methyl-2-hexanol (K=28.1) 

Volume of Tracer Injected 17.5 cc 
Injection Rate 0.80cc/min 
Injected Tracer Concentrations 
Tritium (0.0) 213,692 DPM/ml 
IPA (0.1) 2,795 mg/I 
2,3-Dimethyl-2-butanol (K=6.3) 2,407 mg/I 
2-Methyl-2-hexanol (K=28.1) 2,475 mg/I 
% Tracer Recovered 
Tritium 99.1 % 
IPA 107.4 % 
2,3-Dimethyl-2-butanol (23DM2B) 115.3 % 
2-Methyl-2-hexanol (2M2HX) 115.3 % 

Table 8.39: Residual saturation estimates after surfactant based on partitioning 
tracers, experiment POL YTCE#l. 

Residual TCE Saturation (tritium, 0.00036 
23DM2B) 
Residual TCE Saturation (IPA, 0.00010 
23DM2B) 
Residual TCE Saturation (tritium, 0.00013 
2M2HX) 
Residual TCE Saturation (IPA, 0.00005 
2M2HX) 
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Table 8.40: Initial tracer test summary for experiment POL YTCE#3. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used Tritium 
Volume of Tracer Injected 11.7 cc 
Injection Rate 1.6 cc/min 
Injected Tracer Concentrations 
Tritium 66,779 DPM/ml 
% Tracer Recovered 106.1 % 
Pore Volume (tracer) 103.4 cc 
Pore Volume (mass balance) 101.1 cc 

Table 8.41: Contamination summary, experiment POLYTCE#3. 

Electrolyte Concentration 500 mg/I NaCl 
TCE Injection Rate 1.0 
Volume of TCE Injected 120cc 
Residual Water Saturation 0.314 
TCE Relative Permeability at Residual 0.351 
Water Saturation 
Water Injection Rate 1.0 cc/min 
Water Relative Permeability at Residual 0.491 
TCE Saturation 

Table 8.42: Tracer test summary at residual TCE saturation for experiment 
POLYTCE#3. 

Electrolyte Concentration 9,350 mg;/l NaCl 
Tracers Used Tritium 
Volume of Tracer Injected 12.1 cc 
Injection Rate 1.5 cc/min 
Injected Tracer Concentrations 
Tritium 66,779 DPM/ml 
% Tracer Recovered 
Tritium 106.3 % 

Table 8.43: Residual saturation estimates based on tritium tracer, 
experiment POL YTCE#3. 

Residual TCE Saturation 0.165 
(tritium) 
Residual TCE Saturation (mass 0.163 
balance) 
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Table 8.44: Surfactant flood summary for experiment POL YTCE#3. 

Surfactant Used 4% sodium dihexyl sulfosuccinate, 
8% IPA, 9,350 mg/I NaCl 

Volume of Surfactant Injected 102cc 
Post Surfactant Flood 4% sodium dihexyl sulfosuccinate, 

8% IPA, 500 mg/I NaCl 
Post Surfactant Water Flood 200 cc of 500 mg/I NaCl 
Injection Rate 0.13 cc/min 
Phase Behavior Winsor type ill 
TCE Solubilization 516,000 mg/I 
Interfacial tension 0.02 dyne/cm. 
Volume of TCE Mobilized 16.1 cc 
Volume of TCE solubilized 0.6 cc 
% TCE Recovered (mass balance) 100.0 % 
% TCE Recovered (tracers) 99.8 % 
Permeability after Surfactant Flood 6.2Darcy 
Initial Permeability 6.8 Darcy 

Table 8.45: Tracer test summary for tracer test after surfactant, experiment 
POLYTCE#3. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used Ethanol, 2,3-Dimethyl-2-butanol 

and 3-Methyl-3-hexanol 
Volume of Tracer Injected 10.7 cc 
Injection Rate 0.22 cc/min 
Injected Tracer Concentrations 
Ethanol (K=0.1) 1,212 mg/I 
2,3-Dimethvl-2-butanol (K=6.3) 1,129 mg/I 
3-Methyl-3-hexanol (K=27.9) 1,134 mg/I 
% Tracer Recovered 
Ethanol (Eth) 82.6 % 
2,3-Dimethyl-2-butanol 94.7 % 
(23DM2B) 
3-Methyl-3-hexai101(31v13IIX) 98.5 % 
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Table 8.46: Residual saturation estimates after surfactant based on partitioning 
tracers, experiment POL YTCE#3. 

Residual TCE Saturation (Eth, 0.00036 
23DM2B) 
Residual TCE Saturation (Eth, 0.00013 
3M3HX) 

Table 8.47: Initial tracer test summary for experiment OUDNAPLI. 

Electrolyte Concentration 500 mg/l NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 4.7 cc 
Injection Rate 1.0 cc/min 
Injected Tracer Concentrations 
IPA (K=O.O) 4,992 mg/1 
2,3-Dimethyl-2-butanol 4,906 mg/1 
2-Methyl-2-hexanol 4,899 mg/1 
% Tracer Recovered 
IPA 94.2 % 
2,3-Dimethyl-2-butanol 88.3 % 
2-Methyl-2-hexanol 94.6 % 
Average Pore Volume (tracers) 45.2 cc 
Pore Volume (volume balance) 42.7 cc 
Pore Volume (mass balance) 43.0 cc 

Table 8.48: Contamination summary, experiment OUDNAPLI. 

Electrolyte Concentration 500 mg/I NaCl 
NAPL Injection Rate 1.0 cc/min 
Volume of NAPL Injected 65cc 
Residual Water Saturation 0.126 
Water Injection Rate 1.0 cc/min 
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Table 8.49: First tracer test summary at residual NAPL saturation for 
experiment OUDNAPLl. 

Electrolyte Concentration 1,000 mg/I Na Cl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 6.1 cc 
Injection Rate 0.24 cc/min 
Injected Tracer Concentrations 
IPA (K=0.0) 5,625 mg/I 
2,3-Dimethvl-2-butanol 6,055 mg/I 
2-Methyl-2-hexanol 5,955 mg/I 
% Tracer Recovered 
IPA 87.5 % 
2,3-Dimethvl-2-butanol 93.9 % 
2-Methyl-2-hexanol 78.3 % 

Table 8.50: Dynamic partition coefficient estimates based on first set of 
partitioning tracers, experiment OUDNAPLl. 

Tracer Partition Coefficient 
2,3-Dimethyl-2-butanol 1.3 
2-Methyl-2-hexanol 5.8 

Table 8.51: Second tracer test summary at residual NAPL saturation for 
experiment OUDNAPLl. 

Electrolyte Concentration 1,000 mg/I NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 8.4 cc 
Injection Rate 0.24cc/min 
Injected Tracer Concentrations 
Ethanol 2,394mg/l 
2-Methyl-2-pentanol ( 2,115 mg/I 
2,2-Dimethyl-3-pentanol 2,080 mg/I 
3-Methyl-2-hexanol 1,530 mg/I 
% Tracer Recovered 
Ethanol 86.5 % 
2-Methyl-2-pentanol 97.0 % 
2,2-Dimethyl-3-pentanol 108.2 % 
3-Methvl-2-hexanol 53.0 % 
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Table 8.52: Dynamic partition coefficient estimates based on second set of 
partitioning tracers, experiment OUDNAPLl. 

Tracer Partition Coefficient 
2-Methyl-2-pentanol 1.3 
2,2-Dimethy 1-3-pentanol 10.0 
3-Methyl-2-hexanol 12.9 

Table 8.53: Comparison of partition coefficients from static partition 
coefficient tests and column experiments. 

Alcohol Static K DynamicK 
2,3-Dimethyl-2-butanol 1.5 1.3 
2-Methyl-2-pentanol 1.3 1.3 
2-Methyl-2-hexanol 6.0 5.8 
3-Methvl-2-hexanol 12.8 10.0 
2,2-Dimethyl-3-pentanol 12.9 12.9 

Table 8.54: First tracer test summary at residual NAPL saturation for 
experiment OUDNAPL2. 

Electrolyte Concentration 1,000 mg/I NaCl 
Tracers Used Tritium, Ethanol, 2,3-Dimethyl-2-

butanol, 2-Methyl-2-hexanol and 3-
Methvl-2-hexanol 

Volume of Tracer fujected 6.1 cc 
fuiection Rate 0.2 cc/min 
fujected Tracer Concentrations 
Tritium (K=O.O) 167,786 DPM/ml 
Ethanol (K=O.O) 3,127 mW! 
2,3-Dimethvl-2-butanol (K=l.3) 3,431 mg/I 
2-Methyl-2-hexanol (K=5.8) 3,051 m~/l 
3-Methvl-2-hexanol (K=l 0.0) 2,626 mg/I 
% Tracer Recovered 
Tritium (Tr) 107.7 % 
Ethanol (Eth) 79.9 % 
2,3-Dimethyl-2-butanol (23DM2B) 73.2 % 
2-Methyl-2-hexanol (2M2HX) 78.0 % 
3-Methvl-2-hexanol (3M2HX) 62.7 % 
Average Pore Volume (tracers) 50.4 cc 
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Table 8.55: Residual saturation estimates based on first set of partitioning tracers, 
experiment OUDNAPL2. 

Residual NAPL Saturation (Eth, 0.042 
23DM2B) 
Residual NAPL Saturation (Eth, 0.041 
2M2HX) 
Residual NAPL Saturation (Eth, 0.042 
3M2HX) 
Residual NAPL Saturation (Tr, -0.025 
23DM2B) 
Residual NAPL Saturation (Tr, 0.023 
2M2HX) 
Residual NAPL Saturation (Tr, 0.031 
3M2HX) 
Average NAPL Saturation 0.035 

Table 8.56: Second tracer test summary at residual NAPL saturation for 
experiment OUDNAPL2. 

Electrolyte Concentration 1,000 mg/I NaCl 
Tracers Used Tritium, Ethanol, 2,3-Dimethyl-2-

butanol, 2-Methyl-2-hexanol and 3-
Methvl-2-hexanol 

Volume of Tracer Injected 6.1 cc 
Injection Rate 0.2 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 167,786 DPM/ml 
Ethanol (K=O.O) 3,292 mg/I 
2,3-Dimethyl-2-butanol (K=l.3) 3,417 mg/I 
2-Methvl-2-hexanol (K=5.8) 3,056 mg/I 
3-Methyl-2-hexanol (K=lO.O) 2,276 mg/I 
% Tracer Recovered 
Tritium (Tr) 87.8 % 
Ethanol (Eth) 73.2 % 
2,3-Dimethyl-2-butanol (23DM2B) 89.2 % 
2-Methyl-2-hexanol (2M2HX) 73.1 % 
3-Methyl-2-hexanol (3M2HX) 57.4 % 
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Table 8.57: Residual saturation estimates based on second set of partitioning 
tracers, experiment OUDNAPL2. 

Residual NAPL Saturation (Eth, 0.085 
23DM2B) 
Residual NAPL Saturation (Eth, 0.061 
2M2HX) 
Residual NAPL Saturation (Eth, 0.066 
3M2HX) 
Residual NAPL Saturation (Tr, 0.006 
23DM2B) 
Residual NAPL Saturation (Tr, 0.039 
2M2HX) 
Residual NAPL Saturation (Tr, 0.051 
3M2HX) 
Average NAPL Saturation 0.060 
Expected NAPL Saturation 0.067 

Table 8.58: First tracer test summary at residual NAPL saturation for 
experiment OUDNAPL3. 

Electrolvte Concentration 1,000 mg/I NaCl 
Tracers Used Tritium, Ethanol, 1-Hexanol and 

2,2-Dimethyl-3-pentanol 
Volume of Tracer Iniected 7.0cc 
Iniection Rate 0.2 cc/min 
Iniected Tracer Concentrations 
Tritium (K=O.O) 137 ,085 DPM/ml 
Ethanol (K=O.O) 2,636 mg/I 
1-Hexanol (K=4.4) 2,335 mg/I 
2,2-Dimethyl-3-pentanol (K=l2.9) 2,421 mg/I 
% Tracer Recovered 
Tritium (Tr) 88.0 % 
Ethanol (Eth) 84.8 % 
1-Hexanol (lHex) 80.0 % 
2,2-Dimethyl-3-pentanol (22DM3P) 66.6 % 
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Table 8.59: Residual saturation estimates based on first set of partitioning tracers, 
experiment OUDNAPL3. 

Residual NAPL Saturation (Eth, lHex) 0.073 
Residual NAPL Saturation (Eth, 0.058 
22DM3P) 
Residual NAPL Saturation (Tr, lHex) 0.065 
Residual NAPL Saturation (Tr, 0.055 
22DM3P) 
Average NAPL Saturation 0.063 
Average Pore Volume (tracers) 68.3 cc 

Table 8.60: Second tracer test summary at residual NAPL saturation for 
experiment OUDNAPL3. 

Electrolyte Concentration 1,000 mg/l NaCl 
Tracers Used Tritium, Ethanol, 1-Hexanol and 

2,2-Dimethyl-3-pentanol 
Volume of Tracer Injected 6.3 cc 
Injection Rate 0.2 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 137 ,085 DPM/ml 
Ethanol (K=O.O) 2,636 mg/l 
1-Hexanol (K=4.4) 2,335 mg/l 
2,2-Dimethyl-3-pentanol (K=l2.9) 2,421 mg/l 
% Tracer Recovered 
Tritium (Tr) 100.2 % 
Ethanol (Eth) 92.4 % 
1-Hexanol (lHex) 95.6 % 
2,2-Dimethyl-3-pentanol (22DM3P) 104.4 % 

Table 8.61: Residual saturation estimates based on first set of partitioning tracers, 
experiment OUDNAPL3. 

Residual NAPL Saturation (Eth, lHex) 0.067 
Residual NAPL Saturation (Eth, 0.059 
22DM3P) 
Residual NAPL Saturation (Tr, lHex) 0.062 
Residual NAPL Saturation (Tr, 0.057 
22DM3P) 
Average NAPL Saturation 0.061 
Average Pore Volume (tracers) 67.6 cc 
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Table 8.62: Initial tracer test summary for experiment DW#5. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 18.3 cc 
Injection Rate 1.6 cc/min 
Injected Tracer Concentrations 
IPA 5,004 mg/I 
2,3-Dimethyl-2-butanol 4,977 mg/I 
2-Methyl-2-hexanol 5,626 mg/I 
% Tracer Recovered 
IPA 91.9 % 
2,3-Dimethyl-2-butanol 92.2 % 
2-Methyl-2-hexanol 91.4 % 
Pore Volume (tracers) 100.0 cc 
Pore Volume (mass balance) 101.1 cc 
Pore Volume (volume balance) 101.0 cc 

Table 8.63: Contamination summary, experiment DW#5 

Electrolyte Concentration 500 mg/I NaCl 
JP4 Injection Rate 3.0cc/min 
Volume of JP4 Injected 120cc 
Residual Water Saturation 0.506 
JP4 Relative Permeability at Residual 0.181 
Water Saturation 
Water Injection Rate 3.0 cc/min 
Water Relative Permeability at Residual 0.231 
JP4 Saturation 
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Table 8.64: Tracer test summary at residual JP4 saturation for experiment 
DW#5. 

Electrolyte Concentration 6,000 mg/I NaCl 
Tracers Used IPA, 2,3-Dimethyl-2-butanol and 2-

Methyl-2-hexanol 
Volume of Tracer Injected 17.5 cc 
Iniection Rate 0.58 cc/min 
Iniected Tracer Concentrations 
IPA (K=O.O) 4,857 mg/I 
2,3-Dimethyl-2-butanol (K=l.7) 4,671 mg/I 
2-Methyl-2-hexanol (K=7.8) 4,922 mg/I 
% Tracer Recovered 
IPA 103.1 % 
2,3-Dimethyl-2-butanol (23DM2B) 95.3 % 
2-Methyl-2-hexanol (2M2HX) 101.9 % 

Table 8.65: Residual saturation estimates based on partitioning tracers, experiment 
DW#5 -

Residual NAPL Saturation (IPA, 0.175 
23DM2B) 
Residual NAPL Saturation (IPA, 0.182 
2M2HX) 
Residual N APL Saturation (mass 0.163 
balance) 
Residual NAPL Saturation (volume 0.166 
balance) 
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Table 8.66: Surfactant flood summary for experiment DW#5. 

Surfactant Used 0.6% sodium dioctyl 
sulfosuccinate, 1.4% sodium 
dihexyl sulfosuccinate, 2% 
secondary butyl alcohol and 6,000 
mg/I NaCl 

Volume of Surfactant Injected 296.2 cc 
Post Surfactant Water Flood 500 cc of 250 mg/I NaCl 
Injection Rate 0.56 cc/min 
Phase Behavior Winsor type I 
JP4 Solubilization 45,000 mg/I 
Volume of JP4 Mobilized 9.3 cc 
Volume of JP4 solubilized --
% JP4 Recovered (mass balance) 117.0 % 
% TCE Recovered (tracers) --
Permeability after Surfactant Flood --
Initial Permeability 6.8 Darcy 

Table 8.67: Tracer test summary for tracer test after surfactant, experiment 
DW#5. 

Electrolyte Concentration 250 mg/I NaCl 
Tracers Used Ethanol, 2,2-Dimethyl-3-pentanol 

and 1-Hexanol 
Volume of Tracer Injected 13.1 cc 
Injection Rate 0.56 cc/min 
Injected Tracer Concentrations 
Ethanol (K=O.O) 2,973 mg/I 
2,2-Dimethyl-3-pentanol ( 19.2) 2,556 mg/I 
1-Hexanol (K=4.0) 2,540 mg/1 
Aqueous Pore Volume Sec 
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Table 8.68: Initial tracer test summary for experiment JP4#2. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used Tritium 
Volume of Tracer Iniected 4.7 cc 
Injection Rate 1.0 cc/min 
Injected Tracer Concentrations 
Tritium 141,970 DPM/mg/l 
% Tracer Recovered 
Tritium 100.1 % 
Average Pore Volume (tracers) 41.8 cc 
Pore Volume (mass balance) 41.4 cc 

Table 8.69: Contamination summary, experiment JP4#2. 

Electrolyte Concentration 500 mg/I NaCl 
NAPL Injection Rate 1.0 cc/min 
Volume of JP4 Injected 70cc 
Residual Water Saturation 0.338 
JP4 Relative Permeability at Residual 0.178 
Water Saturation 
Water Injection Rate 1.0 cc/min 
Water Relative Permeability at 0.281 
Residual JP4 Saturation 
Residual JP4 Saturation (mass 0.151 
balance) 
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Table 8.70: Tracer test summary at residual JP4 saturation for experiment 
JP4#2. 

Electrolyte Concentration 11,700 mg/I NaCl, 1,300 mg/l 
CaC12 

Tracers Used Ethanol, 2,3-Dimethyl-3-pentanol 
and 2-Methyl-3-pentanol 

Volume of Tracer Injected 4.9 cc 
Injection Rate 0.20 cc/min 
Injected Tracer Concentrations 
Ethanol (K=O.O) 12,557 mg/l 
2,3-Dimethyl-3-pentanol (K=8.2) 3,237 mg/l 
2-Methyl-3-pentanol (K=4.3) 3,193 mg/l 
% Tracer Recovered 
Ethanol (Eth) 129.9 % 
2,3-Dimethyl-3-pentanol (23DM3P) 106.1 % 
2-Methyl-3-pentanol (2M3P) 106.7 % 

Table 8.71: Residual saturation estimates based on partitioning tracers, 
experiment JP4#2. 

Residual JP4 saturation (Eth, 0.142 
23DM3P) 
Residual JP4 saturation (Eth, 2M3P) 0.177 
Residual JP4 saturation (volume) 0.155 
Residual JP4 saturation (mass) 0.151 
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Table 8.72: Surfactant flood summary for experiment JP4#2. 

Surfactant Used 2% sodium dihexyl sulfosuccinate, 
2% sodium dioctyl sulfosuccinate, 
8% secondary butyl alcohol and 
11,700 mg/I NaCl and 1,300 mg/I 
Ca Cb 

Volume of Surfactant Injected 242.0 cc 
Second Surfactant Injection 2% sodium dihexyl sulfosuccinate, 

8% secondary butyl alcohol and 
500 mg/I NaCl 

Injection Rate 0.16 cc/min 
Phase Behavior Winsor type ill 
JP4 Solubilization 230,000 mg/I 
Volume of JP4 Mobilized 4.9 cc 
Volume of JP4 produced as middle 0.8 cc 
phase microemulsion 
Residual JP4 Saturation after 0.023 
Surfactant (mass balance) 
Residual JP4 Saturation after 0.035 
Surfactant (tracers) 
Permeability after Surfactant Flood 6.9 Darcy 
Initial Permeability 7.3 Darcy 

Table 8.73: Tracer test summary for tracer test after surfactant, experiment 
JP4#2. 

Electrolyte Concentration 500 mg/I NaCl 
Tracers Used Ethanol, 2,3-Dimethyl-3-pentanol 

and 2-Methyl-3-pentanol 
Volume of Tracer Iniected 4.6 cc 
Injection Rate 0.20cc/min 
Injected Tracer Concentrations 
Ethanol (K=O.O) 12,767 mg/I 
2,3-Dimethyl-3-pentanol (K=8.2) 3,219 mg/I 
2-Methyl-3-pentanoi (K=4.3) 3,196 mg/I 
% Tracer Recovered 
Ethanol (Eth) 116.4 % 
2,3-Dimethyl-3-pentanol (23DM3P) 119.7 % 
2-Methyl-3-pentanol (2M3P) 108.1 % 
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Table 8.74: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment JP4#2. 

Residual JP4 saturation (Eth, 0.041 
23DM3P) 
Residual JP4 saturation (Eth, 2M3P) 0.029 
Residual JP4 saturation (mass) 0.027 

Table 8.75: Initial tracer test summary for experiment HILLOU2#3. 

Electrolyte Concentration Hill Ground Water 
Tracers Used Tritium, IPA, 3-Methyl-3-

pentanol, 1-Hexanol and 2,2-
Dimethvl-3-pentanol 

Volume of Tracer Iniected 6.3 cc 
Injection Rate 0.35 cc/min 
Injected Tracer Concentrations 
Tritium 72,084 DPM/mg/l 
IPA (K=O.l) 2,446 mg/I 
3-Methyl-3-pentanol (K=6.2) 2,253 mg/I 
1-Hexanol (K=30.2) 1,670 mg/I 
2,2-Dimethyl-3-pentanol (K=68.3) 1,679 mg/I 
% Tracer Recovered 
Tritium (Tr) 94.2 % 
IPA 91.2 % 
3-Methyl-3-pentanol (3M3P) 87.3 % 
1-Hexanol (lHex) 90.1 % 
2,2-Dimethyl-3-pentanol (22DM3P) 94.2 % 
Average Pore Volume (tracers) 113.7 cc 
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Table 8.76: Residual saturation estimates based on partitioning tracers, 
experiment HILLOU2#3. 

Residual Hill DNAPL saturation (Tr, 0.022 
3M3P) 
Residual Hill DNAPL saturation (Tr, 0.006 
22DM3P) 
Residual Hill DNAPL saturation (Tr, 0.001 
lHex) 
Residual Hill DNAPL saturation 0.026 
(IPA, 3M3P) 
Residual Hill DNAPL saturation 0.007 
(IP A, 22DM3P) 
Residual Hill DNAPL saturation 0.001 
(IPA, lHex) 
Average Saturation (tracers) 0.011 

Table 8.77: Surfactant flood summary for experiment HILLOU2#3. 

Surfactant Used 5% sodium diamyl sulfosuccinate 
in Hill source water. 

Volume of Surfactant Injected 148.8 cc 
Post Surfactant Injection 120.0 cc of Hill source water 
Injection Rate 0.24 cc/min 
Phase Behavior Winsor type I 
Contaminant Solubilization 5,000 mg/I 
lnterfacial tension 0.40 dyne/cm. 
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Table 8.78: Tracer test summary at residual DNAPL saturation for 
experiment HILLOU2#5. 

Electrolyte Concentration Hill source water 
Tracers Used Tritium, 1-Pentanol and 2-Ethyl-1-

butanol 
Volume of Tracer Injected 9.5 cc 
Injection Rate 0.35 cc/min 
Injected Tracer Concentrations 
Tritium (K=0.0) 78,713 DPM/ml 
1-Pentanol (K=3.9) 1,835 mg/I 
2-Ethyl-1-butanol (K= 12.5) 1,734 mg/I 
% Tracer Recovered 
Tritium (Tr) 93.9 % 
1-Pentanol (lPent) 95.5 % 
2-Ethyl-1-butanol (2E1B) 76.3 % 
Average Pore Volume (tracers) 55.3 cc 

Table 8. 79: Residual DNAPL saturation estimates based on partitioning 
tracers, experiment HILLOU2#5. 

Residual DNAPL Saturation (Tr, 0.147 
lPent) 
Residual DNAPL Saturation (Tr, 0.111 
2E1B) 

Table 8.80: Surfactant flood summary for first surfactant flood, 
experiment HILLOU2#5. 

Surfactant Used 4% sodium dihexyl sulfosuccinate 
in Hill source water 

Volume of Surfactant Injected 25.9 cc 
Tritium Concentration in Surfactant 133,587 DPM/ml 
14C Concentration in Surfactant 18,830 DPM/ml 
% Surfactant Recovered 92.5 % 
% Tritium Recovered 105.7 
Post Surfactant Waterflood 150 cc of Hill source water 
Injection Rate 0.50cc/min 
Phase Behavior Winsor type I 
Contaminant Solubilization 16,000 nig?l 
Interfacial tension 0.20 dyne/cm. 
Volume of DNAPL Mobilized 5.4 cc 
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Table 8.81: Surfactant flood summary for second surfactant flood, 
experiment HILLOU2#5. 

Surfactant Used 4% sodium dihexyl sulfosuccinate, 
10,600 mg/I NaCl, 500 ppm 
xanthan gum in Hill source water 

Volume of Surfactant Injected 125.9 cc 
Post Surfactant Flood 100 cc of 150 mg/I NaCl and 150 

cc of 150 mg/l CaCl2 
Injection Rate 0.50 cc/min 
Phase Behavior Winsor type ill 
Contaminant Solubilization 500,000 mg/I 
Volume of DNAPL Mobilized 6.8 cc 
% DNAPL Recovered (tracers) 98.2% 

Table 8.82: Tracer test summary for tracer test after surfactant, experiment 
HILLOU2#5. 

Electrolyte Concentration Hill source water 
Tracers Used Tritium, 3-Methyl-3-pentanol, 2,2-

Dimethyl-3-pentanol 
Hexanol 

Volume of Tracer Injected 9.1 cc 
Injection Rate 0.34 cc/min 
Injected Tracer Concentrations 
Tritium 89,991 DPM/ml 
3-Methyl-3-pentanol (K=6.2) 1,835 mg/I 
2,2-Dimethyl-3-pentanol (K=68.3) 1,985 mg/I 
1-Hexanol (30.2) 2,084 mg/I 
% Tracer Recovered 
Tritium (Tr) 82.6 % 
3-Methyl-3-pentanol (3M3P) 111.6 % 
2,2-Dimethyl-3-pentanol (22DM3P) 97.8 % 
1-Hexanol (lHex) 97.8 % 

Table 8.83: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment HILLOU2#5. 

Residual DNAPL Saturation (Tr, 0.0029 
3M3P) 
Residual DNAPL Saturation (Tr, 0.0069 
22DM3P) 
Residual DNAPL Saturation (Tr, 0.0066 
lHex) 
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Table 8.84: Initial tracer test summary for experiment HILLOU2#7. 

Electrolyte Concentration Hill Groundwater 
Tracers Used Tritium, IPA, 3-Methyl-3-pentanol, 

2,2-Dimethyl-3-pentanol and 1-
Hexanol 

Volume of Tracer In1ected 18.2 cc 
Injection Rate 0.12 cc/min 
In1ected Tracer Concentrations 
Tritium 71,340 DPM/ml 
IPA 2,442 mg/I 
3-Methyl-3-pentanol 2,179 mg/I 
2,2-Dimethyl-3-pentanol 1,404 mg/I 
1-Hexanol 1,625 mg/I 
% Tracer Recovered 
Tritium 106.2 % 
IPA 106.9 % 
3-Methyl-3-pentanol (K=6.2) 104.7 % 
2,2-Dimethyl-3-pentanol (68.3) 100.1 % 
1-Hexanol (K=30.2) 109.3 % 
Pore Volume Tracers 142.7 cc 

Table 8.85: Contamination summary, experiment HILLOU2#7. 

Electrolyte Concentration Hill Groundwater 
DNAPL Injection Rate 3.0cc/min 
Volume of DNAPL Injected 180cc 
Residual Water Saturation 0.506 
DNAPL Relative Permeability at 0.118 
Residual Water Saturation 
Water Injection Rate 9.0cc/min 
Water Relative Permeability at Residual 0.109 
DNAPL Saturation 
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Table 8.86: Tracer test summary at residual DNAPL saturation for 
experiment HILLOU2#7. 

Electrolyte Concentration Hill Groundwater 
Tracers Used Tritium and 1-Pentanol 
Volume of Tracer Injected 29.2 cc 
Injection Rate 0.08 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 84,688 DPM/ml 
1-Pentanol (K=3.9) 3,325 mg/I 
% Tracer Recovered 
Tritium (Tr) 95.7 % 
1-Pentanol (lPent) 71.7 % 

Table 8.87: Residual DNAPL saturation estimates based on partitioning 
tracers, experiment HILLOU2#7. 

Residual DNAPL saturation (Tr, 0.255 
lPent) 
Residual DNAPL saturation (Tr) 0.262 
Residual DNAPL saturation (volume) 0.254 
Residual DNAPL saturation (mass) 0.261 
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Table 8.88: Surfactant flood summary, experiment HILLOU2#7. 

Surfactant Used 4% sodium dihexyl sulfosuccinate, 
4% IPA, 11,250 mg/I NaCl and 
500 ppm xanthan gum in Hill 
source water 

Volume of Surfactant Injected 300.7 cc 
Tritium Concentration in Surfactant 8,604 DPM/ml 
14C Concentration in Surfactant 13,027 DPM/ml 
% Surfactant Recovered 101.6 % 
% Tritium Recovered 103.1 % 
Post Surfactant Flood 377.3 cc of 500 ppm santhan gum 

in Hill source water 
Injection Rate 0.25 cc/min for first 150 cc and 0.5 

cc/min for rest of the test. 
Phase Behavior Winsor type ill 
Contaminant Solubilization 600,000 mg/I 
Interfacial tension 0.01 dyne/cm. 
Volume of DNAPL Mobilized 26.8 cc 
% DNAPL Recovered (material 98.4% 
balance) 
% DNAPL Recovered (mass balance) 100.4% 
% DNAPL Recovered (tracers) 99.9% 
Permeability after Surfactant Flood 4.5 Darcy 
Initial Permeability 5.9 Darcy 
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Table 8.89: Tracer test summary for tracer test after surfactant, experiment 
HILLOU2#7. 

Electrolyte Concentration Hill source water 
Tracers Used Tritium, 2,2-Dimethyl-3-pentanol, 

1-Hexanol and 1-Heptanol 
Volume of Tracer Iniected 14.6 cc 
Iniection Rate 0.14 cc/min 
Injected Tracer Concentrations 
Tritium (K=O.O) 164,536 DPM/ml 
2,2-Dimethyl-3-pentanol (K=68.3) 2,002 mg/I 
1-Hexanol (K=30.2) 2,000mg/l 
1-Heptanol (K=140.5) 1,000 mg/I 
% Tracer Recovered 
Tritium (Tr) 105.0 % 
2,2-Dimethyl-3-pentanol (22DM3P) 71.7 % 
1-Hexanol (lHex) 84.8 % 
1-Heptanol (lHept) 87.4 % 

Table 8.90: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment HILLOU2#7. 

Residual DNAPL Saturation (Tr, 0.00016 
22DM3P) 
Residual DNAPL Saturation (Tr, 0.00013 
lHex) 
Residual DNAPL Saturation (Tr, 0.00020 
lHept) 
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Table 8.91: Tracer test summary at residual DNAPL saturation for 
experiment HILLOU2#8. 

Electrolyte Concentration Hill source water 
Tracers Used Tritium, 1-Pentanol and 2-Ethyl-1-

butanol 
Volume of Tracer Iniected 9.6 cc 
Injection Rate 0.08 cc/min 
Injected Tracer Concentrations 
Tritium 75,132 DPM/ml 
1-Pentanol (K=3.9) 4,144 mg/I 
2-Ethyl-1-butanol (K=12.5) 3,964 mg/I 
% Tracer Recovered 
Tritium (Tr) 109.9 % 
1-Pentanol (!Pent) 117.7 % 
2-Ethyl-1-butanol (2E1B) 97.l % 
Average Pore Volume (tracers) 68.2 cc 

Table 8.92: Residual DNAPL saturation estimates based on partitioning 
tracers, experiment HILLOU2#8. 

Residual TCE Saturation (Tr, lPent) 0.078 
Residual TCE Saturation (Tr, 2E1B) 0.085 
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Table 8.93: Surfactant flood summary, experiment HILLOU2#8. 

Surfactant Used 8% sodium dihexyl sulfosuccinate, 
8% IPA, 5,850 mg/I NaCl and 500 
ppm xanthan gum in Hill source 
water and 285.2 K. 

Volume of Surfactant Injected 122.3 cc 
Tritium Concentration in Surfactant 59,705 DPM/ml 
14C Concentration in Surfactant 38,346 DPM/ml 
% Surfactant Recovered 96.0 % 
% Tritium Recovered 99.0 % 
Post Surfactant Flood 180 cc of 500 ppm santhan gum in 

Hill source water 
Iniection Rate 0.15 cc/min 
Phase Behavior Winsor type ill 
Contaminant Solubilization 425,000 mg/I 
Interfacial tension 0.01 dyne/cm. 
Volume of DNAPL Mobilized 2.25 cc 
% DNAPL Recovered (tracers) 98.1% 
Permeability after Surfactant Flood 7.7 Darcy 
Permeability at Residual DNAPL 0.7 Darcy 
saturation 

Table 8.94: Tracer test summary for tracer test after surfactant, experiment 
HILLOU2#8. 

Electrolyte Concentration Hill source water 
Tracers Used IPA, 2,2-Dimethyl-3-pentanol, 1-

Hexanol and 1-Heptanol 
Volume of Tracer lniected 8.0cc 
Injection Rate 0.11 cc/min 
Iniected Tracer Concentrations 
IPA 2,718 mg/I 
2,2-Dimethv 1-3-oentanol 2,350 mg/I 
1-Hexanol 2,055 mg/I 
1-Heptanoi 1,375 mg/I 
% Tracer Recovered 
IPA 110.7 % 
2,2-Dimethyl-3-pentanol (22DM3P) 92.4 % 
1-Hexanol (lHex) 101.7 % 
1-Heptanol (lHeot) 121.4% 
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Table 8.95: Residual saturation estimates after surfactant based on 
partitioning tracers, experiment HILLOU2#8. 

Residual DNAPL Saturation (IP A, 0.0012 
22DM3P) 
Residual DNAPL Saturation (IPA, 0.0023 
lHex) 
Residual DNAPL Saturation (IPA, 0.0010 
lHept) 
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Figure 8.67: Comparison of tritium and surfactant concentration histories, 
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Figure 8.70: Hydraulic gradient across soil column during surfactant flood and 
post surfactant waterflood, experiment IIlLLOU2#7. 
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Figure 8. 72: Final tracer concentration histories, experiment HILLOU2#7. 
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Figure 8.73: Initiai tracer concentration histories, experiment HILLOU2#8. 
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Figure 8.77: Hydraulic gradient across soil column during surfactant flood and 
post surfactant waterflood, experiment HILLOU2#8. 
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Figure 8.78: Figure showing the artifact that caused high hydraulic gradients in 
experiment HILLOU2#8. 
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Chapter 9: Column Experiments: Discussion 

A description of all the column experiments, column experiment results and 

discussion of experimental results from column experiments were presented in the 

previous Chapter. In this Chapter, a section on error analysis has been added to 

estimate the accuracy of experimental measurements. A discussion of interfacial 

tensions between the excess NAPL and surfactant is also made in this Chapter. 

9.1 ERROR ANALYSIS 

One of the important contributions of this work was the development of 

laboratory techniques and expertise for development of the partitioning tracer 

technology for estimation of NAPL and performance assessment of surfactant 

remediation. In order to validate this new technology as a viable option for 

estimation of NAPL saturation, a thorough error analysis of all experimental 

measurements was made. This was carried out to improve estimation of parameters 

required for analysis of partitioning tracer test data (for e.g. partition coefficients). 

Two terms are widely used in discussions of reliability of data, precision 

and accuracy. Precision describes the reproducibility of results i.e. agreement 

between numerical values for two or more measurements. Accuracy describes the 

correctness of the experimental result. In trying to estimate residual NAPL 

saturations using partitioning tracers an error analysis had to be performed on 

various experimentally measured parameters. 

In order to estimate residual NAPL saturation using partitioning tracers, 

partition coefficients of alcohols have to be measured. This can be done by using 
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static partition coefficient tests and dynamic partition coefficient tests (Chapter 7). 

Both these measurements are affected by GC errors, volume measurement errors 

etc. Similarly for estimation of pore volume, errors in weight measurement and 

density measurement etc. would cause erroneous results. 

In the following sections the main sources of error in making residual 

saturation measurements will be discussed. 

9.1.1 Gas Chromatograph Errors 

GC errors can be broadly divided into two main areas: 

1 . GC errors in reproducibility 

2. GC errors in making standards 

The errors in reproducibility include errors in injection of samples into GC 

columns and errors in integration of GC chromatograms. This can be done by 

repeating GC analysis on one sample. For the Varian 3400 GC, the reproducibility 

was ±3.5% of the sample concentration. The detection limit was 10 mg/I. For the 

SRI GC, the reproducibility was ±3.0%. 

GC errors in making standards were attributable to the errors in mixing up 

weights of respective alcohols, weight of water and density of the tracer solution 

The calculations are presented in Appendix A. The errors in making up standards 

were about ±2.6%. The total error in the GC measurements is the sum of the 

reproducibility errors and errors in making standards. Hence, the total error in GC 

measurements was 6.1 %. 
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9.1.2 Errors in Pore Volume Measurement 

Pore volume estimation based on mass balance has been discussed in 

Chapter 4. The formula for determining pore volume is, 

Wsat - W dry 
Vp= 

Pw 
(4.5) 

The errors are in measuring the weights of the dry and saturated column and 

density of the saturating water. The calculations are presented in Appendix A. The 

average error in pore volume estimation was 0.5%. 

Pore volume can also be estimated using tracers. An error analysis was 

carried out by comparing the standard deviation between initial pore volume 

estimates based on tracers and estimates based on mass balance. The pore volume 

estimates based on tracers were within ±3.5% of pore volume estimates based on 

mass balance. 

9.1.3 Errors in Residual TCE Saturation Measurement 

The residual TCE saturation in a contaminated soil column can be computed 

using; 

(4.10) 

The errors are in measuring the weights of the dry and saturated column and 

density of the saturating water, density of NAPL and error in pore volume 
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estimation. The calculations are presented in Appendix A. The average error in 

pore volume estimation was 2.5%. 

9.1.4 Errors in Static Partition Coefficient Measurement 

The static partition coefficient has been defined in Chapter 4 as; 

K
. _ Ci,NAPL 
1 -

Ci, Water 

Ki = partition coefficient of tracer species 'i' 

(4.23) 

Ci,NAPL = concentration of tracer species 'i' in the nonaqueous phase at 

equilibrium. 

Ci, Water = concentration of tracer species 'i' in the initial water before equilibration 

with the NAPL 

In all the laboratory work, the static partition coefficient was calculated from 

the following formula; 

(4.15) 

V w = the volume of the aqueous phase 

Ci,I = the concentration of tracer component 'i' in the injected tracer. 
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The errors are in measuring the volumes of water and NAPL and GC errors 

in measurement of concentration. The calculations are presented in Appendix A. 

The average error in the static partition coefficients is estimated to be about 12%. 

9.1.5 Error in Saturation Estimation 

In order to estimate errors in saturation using partitioning tracers, a total of 

eleven experiments were evaluated. In these experiments, the residual NAPL 

saturations estimated using partitioning tracer results were compared with residual 

NAPL saturations using mass balance measurements. Results from three 

experiments were taken from Shotts (1996), results from one from Edgar (1997) 

and one from Ooi (1998) in addition to the six experiments from this study for a 

total of eleven experiments. The residual NAPL saturation was calculated using the 

following formula. 

(4.33) 

A standard deviation of 7.0% was observed between the residual NAPL 

saturations based on mass balance and residual NAPL saturation based on 

partitioning tracers. 

9.1.6 Estimation of Dynamic Partition Coefficients 

If a known saturation is used to estimate the dynamic partition coefficient of 

the tracer as discussed in Chapter 7 using the following formula; 
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(7.1) 

The source of errors will include the errors in the experimental first temporal 

moments of the concentration and the errors in VN = V p·SN but is still likely to be 

less than the average error in static partition coefficients of about 12%. This will be 

true if column experiments have been done with long enough residence times, good 

mass balance, no sampling mistakes and so forth. 

A refined estimate of the partition coefficients can be made by plotting the 

static and dynamic values as in Figure 9. I. In an ideal situation with zero errors, 

both static and dynamic partition coefficients should plot on the same 45° straight 

line. 

In Figure 9. I, a plot showing the comparison of static partition coefficients 

and dynamic partition coefficients for TCE is presented. In general an excellent 

match between the static partition coefficients and dynamic partition coefficients 

was observed. The measured value for the static partition coefficient of 2,3-

dimethyl-2-butanol was 5.2. The dynamic partition coefficients were observed to 

vary between 6.2 and 6.9. Similarly a dynamic partition coefficient of 100 was 

estimated for 1-heptanol. This was based on 2-D sand tank experiments conducted 

by Kostarelos (1997). In this experiment an estimate of TCE saturation based on 

mass balance could not be obtained since the tank is too big to weigh on a mass 

balance. This could account for error in estimation of dynamic partition 

coefficients. However in a later experiment conducted by Edgar (1997), a dynamic 
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partition coefficient of 153.7 was calculated. The standard deviation between the 

static partition coefficients and dynamic partition coefficients was 6.5%. 

Similar plots showing the comparison between static partition coefficients 

and dynamic partition coefficients for several alcohols with JP4, Hill OUI NAPL 

and Hill OU2 DNAPL are presented in Figures 9.2, 9.3 and 9.4. In general, an 

excellent match between static partition coefficients and dynamic partition 

coefficients was observed within experimental error. If a good match between 

static partition coefficients and dynamic partition coefficients is not observed, more 

experimental measurements have to be carried out to check the validity of previous 

results. For example, the column tests could be repeated at rates to check for 

adequate residence time to reach local partitioning equilibrium. 

Based on this analysis, the best estimate of partition coefficients were 

estimated for several alcohols with TCE. These results are given in Table 9 .1. 

9.2 TRACER ADSORPTION 

An attempt was made to quantify tracer adsorption in several soil column 

experiments. These experiments are experiment DW#5 in uncontaminated Ottawa 

sand and experiment HILLOU2#7 in uncontaminated Hill field soil, experiment 

PPG#5 (Shotts, 1996) in field soil from PPG site at Lake Charles Louisiana, 

experiment Plant 4#1 in field soil from AFB Plant 4 at Fort Worth (Shotts, 1996). 

The retardation due to sorption by field soil can be defined by (Fetter, 1993), 

(9.1) 
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Using IPA as the conservative tracer and the other tracers as partitioning 

tracers, the distribution coefficient can be measured. The distribution coefficient for 

several alcohols are summarized in Table 9.2. The measured values of Kct for all 

the soils are between 0.0001 and 0.002. For comparison the Kct of ethanol in Na-
2 

montmorillonite is on the order of 0.00015 cc/g (for a surface area of 0.6 ~, 
g 

Schwarzenbach, et al., 1993) and the Kd for tetrachloroethylene of 0.003 cc/gin 
2 

porous silica (surface area of 0.6 m , Schwarzenbach, et al., 1993). Significantly 
g 

different values for Kct in PPG soil were not observed for alcohols such as 1-

heptanol and 2,2-dimethyl-3-pentanol. 

The values of tracer adsorption computed from the Rf values vary between 

-100 µg/g and 5,000 µg/g (Table 9.3). This corresponds to a retardation factor of 

1.028. The error in the first moment of the tracer measurements is of the order of 

±3.5% and this corresponds to an adsorption of ±8,500 µgig. The values of 

adsorption measured by all the experiments is less than 8,500 µg/g. Hence it can 

be concluded that there is negligible adsorption of alcohol tracers by the different 

types of soils studied in this work compared to the retardation caused by very small 

saturations of NAPL in the same soils. 

9.3 SURFACTANT ADSORPTION 

In order to quantify surfactant adsorption in Hill field soil, radiolabeled 

surfactant was used in experiments HILLOU2#5, HILLOU2#6 and HILLOU2#8. 

Analysis was limited to experiments HILLOU2#5 and HILLOU2#8. 
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The retardation factors were calculated based on the difference in first 

moments between tritium and surfactant. The retardation factors and distribution 

coefficients ( Kct) of surfactant for both experiments HILLOU2#5 and HILLOU2#8 

are presented in Table 9.4. 

A high adsorption was measured in experiment HILLOU2#5. This 

experiment was the first experiment carried out with radiolabeled surfactant. Since 

a small amount of surfactant ( <0.5 PV) was injected, LSC errors dominated leading 

to a high tailing off of surfactant concentrations at the end of the surfactant flood. 

In experiment HILLOU2#8, a large amount of surfactant was injected (>2 PV) and 

this effect was not observed. Based on mass balance, 96% of surfactant was 

produced. Based on the retardation factor compared to tritium, a small adsorption 

(< 165 µgig) corresponding to a distribution coefficient (Kct) of 0.00017 was 

measured in experiment HILLOU2#8. In previous work carried out by Rouse et al. 

(1993), the value of adsorption was measured as 11,400 µgig. For alkyl diphenyl 

oxide disulfonates, the value of adsorption was measured as 1,600 µgig. The 

values of adsorption measured in both experiment HILLOU2#5 and HILLOU2#7 

were well below 0.1 cc/g. Based on these results, it can be concluded that there is 

negligible adsorption of surfactant by Hill field soil. 

9.3 INTERFACIAL TENSIONS 

lnterfacial tensions between the microemulsion and excess NAPL were 

measured. The Chun-Huh theoretical equation was also used to estimate the 

interfacial tension between the excess NAPL and microemulsion. The Chun-Huh 

equation can be written as follows: 
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c 
y=-

0"2 
(5.1) 

A comparison of interfacial tensions between excess NAPL and 

microemulsion for many surfactant solutions is given in Table 9.5. The interfacial 

tensions have been plotted as a function of solubilization parameter in Figure 9.6. 

A better match between the Chun Huh estimate of interfacial tension and measured 

values is observed at higher solubilization parameters (about 3 to 4). At lower 

solubilization parameters, a good match is not obtained. Interfacial tension 

measurements are very hard to perform and are associated with large experimental 

error. This may partly account for the results observed in Figure 9.6. 
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Table 9.1: Best estimates of partition coefficients. 

Alcohol TCE TCE 

best estimate static 

2,3-Dimethyl-2-butanol 5.8 5.2 

3-Methyl-3-pentanol 4.4 4.5 

1-Pentanol 3.8 3.8 

1-Hexanol 17.9 18.7 

2-Ethyl-1-butanol 12.8 13.0 

2-Methyl-2-hexanol 27.6 26.8 

1-Heptanol 158.4 163.1 

411 



Table 9.2: Distribution coefficients for several alcohols in different types of soil. 

Alcohol Kct (l/Kg) Kct (l/Kg) Kct (l/Kg) Kct (l/Kg) 

Ottawa Hill PPG Plant4 
0.00003 

2,3-Dimethyl-2-butanol 
-0.00011 0.00371 

3-Methyl-3-pentanol 
0.00295 -0.00018 0.00439 

1-Hexanol 
0.00016 

2-Methyl-2-hexanol 
0.00485 0.00292 

2,2-Dimethyl-3-pentanol 
-0.00203 

1-Heptanol 
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Table 9.3: Adsorption values for alcohols with different types of soil. 

Alcohol Adsorption Adsorption Adsorption Adsorption 

Ottawa Hill PPG Plant 4 

ugfg µgig µgig ul!fg 
28 

2,3-Dimethyl-2-butanol 
-112 3,705 

3-Methyl-3-pentanol 
2,947 -180 4,385 

1-Hexanol 
160 

2-Methyl-2-hexanol 
4,852 2,918 

2,2-Dimethyl-3-oentanol 
-2,032 

1-Heptanol 

Table 9.4: Surfactant adsorption by Hill field soil. 

Experiment Retardation Distribution Surfactant 
Factor Coefficient Adsorption 

Rr Kd µgig 

I/kg 
1.13230 0.02315 23,150 

HILLOU2#5 
1.00094 0.00017 165 

HILLOU2#8 
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Table 9 .5: Comparison of measured interfacial tensions and interfacial tensions 
estimated using the Chun Huh relation. 

Surfactant Solution NAPL Measured Estimated 
IFT IFT 

dvne/cm dvne/cm 
2% sodium diamyl sulfosuccinate, 2% PCB 0.02 0.20 
sodium dioctyl sulfosuccinate, 500 mg/l 
CaC!i 
2% sodium diamyl sulfosuccinate, 2% PCB 0.01 0.0002 
sodium dioctyl sulfosuccinate, 1,300 mg/l 
CaC!i 
4% sodium dihexyl sulfosuccinate, 25,000 PCB 0.14 0.37 
mg/lNaCl 
8% sodium dihexyl sulfosuccinate, 2,000 TCE 0.20 1.2 
mg/lNaCl 
4% sodium dihexyl sulfosuccinate, 8% IPA, TCE 0.19 0.83 
4,000 mg/l NaCl, 500 mg/I Xanthan gum 
4% sodium dihexyl sulfosuccinate, 8% IPA, TCE 0.02 0.02 
9,350 mg/l NaCl, 500 mg!l Xanthan gum 
5% Sodium diamyl sulfosuccinate in Hill Hill 0.4 57.39 
source water DNAPL 
4% sodium dihexyl sulfosuccinate in Hill Hill 0.2 5.67 
source water DNAPL 
4% sodium dihexyl sulfosuccinate, 4% IP A, Hill 0.01 0.02 
11,250 mg/l NaCl and 500 mg/l Xanthan DNAPL 
gum 
8% sodium dihexyl sulfosuccinate, 8% IPA, Hill 0.01 0.02 
5,850 mg/l NaCl and 500 mg/l Xanthan gum DNAPL 
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Figure 9 .1: Comparison of static and dynamic partition coefficients for TCE. 
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Chapter 10: Laboratory Selection and Design of 
Partitioning Tracer and Surfactant Injection Tests 

For successful field tests to be implemented, several tasks have to be 

completed. Laboratory studies have to be carried out in order to select partitioning 

tracers and suitable surfactant solutions. Numerical simulations have to be carried 

out using the measured lab parameters to design field tests. This work was part of 

a much larger research effort. A lot of the experimental work was aimed at 

determining various input parameters for UTCHEM (Delshad et al., 1996) to 

design for both partitioning tracer tests and surfactant injection tests. The 

applicability of UTCHEM to model field scale surfactant injection and partitioning 

tracer tests has been confirmed by (Brown, 1993, Brown et al., 1994; Freeze et al., 

1995; Brown et al., 1996a,b and Jin, 1995). A more detailed description of 

modeling of surfactant remediation using UTCHEM is presented in Brown ( 1997). 

One of the main objectives of this work was application of the partitioning 

tracer technology and surfactant technology for application in field partitioning 

tracer tests and field surfactant injection tests. In pursuance of these objectives, 

partitioning tracers were selected for two interwell partitioning tracer tests. The first 

test was conducted by EPA and the University of Florida at Hill Air Force Base, 

site Operational Unit 1. The second test was conducted by ~~TERA Inc. at P..ill ,A..ir 

Force Base, site Operational Unit 2. Laboratory procedures were developed for 

selection and solution of surfactant solutions for use in surfactant enhanced aquifer 

remediation at Hill OU2. 
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Soil samples from the field were usually in form of SOLINST cores and 

loose field soil stored in glass jars. The experimental approach for partitioning 

tracer selection was to perform partitioning tracer tests with field NAPL and Ottawa 

sand. This was followed by performing partitioning tracer tests in uncontaminated 

field soil to quantify tracer adsorption. After this partitioning tracer tests were 

performed in contaminated field soil with unknown NAPL saturation and the 

performance of partitioning tracers in estimating residual NAPL saturation was 

evaluated. 

During the surfactant selection phase, phase behavior experiments were 

performed with surfactant, alcohol, polymer and electrolyte. Surfactant solutions 

exhibiting low viscosities, quick equilibration times and well defined three phase 

regions were selected for use in soil column experiments. Several column 

experiments were performed both with Ottawa sand and Hill field soil. In the first 

stage, surfactant solutions were used to flood Ottawa sand contaminated with field 

DNAPL. The next step involved surfactant flooding field soil at residual DNAPL 

saturation. The final stage involved performing the surfactant flood at aquifer 

temperature. Surfactant adsorption was quantified by using radiolabeled surfactant. 

Pressure drop across soil packs was measured during surfactant remediation to 

ensure that the surfactant solution was not susceptible to gel/liquid crystal 

formation. Concurrently a biodegradation study was underway by Dr. Larry 

Britton of VISTA Chemicals to test the Aerosol MA-801 surfactant's rate of 

biodegradation at low concentrations of surfactant and contaminant expected after 

the field test. 
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A description of both the Hill OUl and the Hill OU2 sites are described in 

the following sections. 

10.1 HILL AFB: INTRODUCTION AND GEOLOGY 

Hill Air Force Base is located about twenty five miles north of Salt Lake 

City and five miles south of Ogden in a town called Layton. The base covers 

approximately 6,700 acres in Davis and Weber counties with the majority of the 

base in Davis county. The base is situated just west of the Wasatch mountains, on 

a plateau formed by the relict Weber delta approximately 300 feet above the valley 

floor. Surface elevations at Hill AFB range from 4,600 ft above mean sea level 

along the western boundary to about 5,000 ft above mean sea level near the eastern 

boundary. 

The climate at Hill AFB is semiarid with a mean annual precipitation of 20.1 

inches and an average temperature of 51°F. Average wind speed is about 4. 7 knots 

with reported gusts up to 90 knots. 

Hill AFB is located in a basin and range geologic setting, situated on the 

seismically active Wasatch Fault Zone, which has experienced more than 13,000 

feet of vertical displacement during its active lifetime. The dominant regional 

geologic structures in the area are horsts (uplifted crystal blocks) and grabens 

( downdropped crustal blocks) created by normal faulting associated with regional 

extensional forces. The Wasatch Range immediately east of the base and Antelope 

and Fremont islands in the Great Salt Lake are horsts. The area between is a graben 

basin that has been filled with a thick sequence of sediments eroded from the 

surrounding highlands. The depth to the bedrock in the basin ranges from 
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approximately 1,500 feet on the east side of the base to about 7 ,500 feet on the west 

side of the base. The plateau on which the base is situated is composed of deltaic 

sediments deposited by the Weber river as it entered the Lake Bonneville and older 

lakes. 

10.1.1 Hill OUl 

The contaminant in Hill OUI is an LNAPL. Operable Unit I (OUI) at Hill 

AFB has a number of contaminant sources located across the site. The remediation 

test cell is located hydraulically down gradient of two Chemical Disposal Pits 

(CDPs) which were used to dispose of predominantly aviation fuels (JP4) and 

chlorinated solvents in the 40's and the 50's. Also, up gradient of the cell is former 

Fire Training Area (FT A) which may have contributed unextinguished fuels and 

combustion byproducts to the site. The resulting NAPL is lighter than water and 

exists as a plume covering several acres, as evidenced by up to 0.4 feet of free 

product measured in wells. 

10.1.2 Hill OU2 

The contaminant in Hill OU2 is a DNAPL. Base records indicate that from 

1967 to 1975 the OU2 site known as Chemical Disposal Pit #3 was used to dispose 

of unknown quantities of TCE bottoms from a solvent recovery unit and sludge 

from vapor degreasers. There are also reports of the site receiving an unknown 

volume of plating tank bottoms in the early 1940's. The disposal area consisted of 

at least two disposal trenches at the site trending north-northwest which are 

estimated to have been approximately 6 feet deep. Size estimates based on 

geophysical surveys, aerial photo interpretations and soil boring data indicate that 
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two trenches were about 1 O feet wide and had lengths of approximately 50 and 100 

feet, respectively. 

10.1.3 Site Description, HILLOU2 

A detailed site description of only Hill OU2 was obtained as both the 

surfactant and partitioning tracers were selected by The University of Texas at 

Austin. The OU2 Site at Hill AFB and the locations of recovery Well U2-1 and the 

recently drilled SB series of borings are shown in Figure 10.1. Chemical disposal 

trenches, used for disposal of spent degreasing solvents, were located to the south 

of U2-1; the exact location is unknown. 

Depth to the water table (approx. 4670 ft MSL) is 20 ft to 25 ft below 

ground surface in the U2-1 area, and varies seasonally by several feet. The dotted 

line to the east and west of the pattern indicates an estimated contour line for the 

4670 ft MSL depth of the aquitard, the Alpine Formation, underlying the aquifer. 

The aerial extent of the saturated zone and the north-south alignment of the saturated 

zone trough or "channel" is indicated by the dotted line. The deepest part of this 

trough (presumably near the center) also determines the probable path of the 

DNAPL contaminant. Once the DNAPL migrated downwards to the aquitard (or 

any zone of sufficiently low permeability above the aquitard), the DNAPL migrated 

downslope along the trough, to the north and south of the trenches. 

DNAPL has been detected in pools both to the north (Well U2-1, U2-31, 

U2-32, SB-1, SB-6) and to the south (Well U2-34) of the disposal trenches. From 

October 1993 to June 1994, 23,000 gallons of DNAPL and over 1,000,000 gallons 

of contaminated groundwater were produced from these wells (Radian, 1994a) and 
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by the start of the AFCEE field tests in late 1995, the total volume of DNAPL 

treated at the Radian steam stripper was more than 32,000 gallons. 

During September and October 1995, the eight SB series wells were drilled 

by INTERA. DNAPL was detected in borings SB-1, SB-2, SB-5, and SB-6. The 

highest DNAPL saturations were measured in two wells (SB-1 and SB-6) in the 

center of the aquitard contour (presumably located in the deepest part of the 

channel). The other two wells drilled through the center of the channel, SB-2 and 

SB-8, had no samples measured in the aquifer just above the aquitard. Two of the 

SB wells encountered possible evidence of these trenches. In SB-6, the drilling log. 

noted "a dark reddish concretion" that may have been the remains of a rusted metal 

barrel, at 7.8 ft BGS (below ground surface). In SB-8, the drilling log noted a 

"white material in shoe - plastic drum" at 17.5 ft BGS. If the disposal trenches are 

within the pattern area, DNAPL may be located throughout the unsaturated zone in 

some areas, rather than only in the aquifer immediately overlying the aquitard. 

The measured TCE concentration in the DNAPL varies from 63% to 80%, 

averaging 73%. The 1,1,1 TCA concentration varies from 12% to 15%, averaging 

14%. The PCE concentration varies from 5% to 13%, averaging 8%. The Freon 

113 concentration varies from 0% to 7%, averaging 3%. Carbon tetrachloride, 

toluene, and dichloromethane are present in concentrations less than 1 % 

i0.2 PARTITIONING TRACER DESIGN AND SELECTION 

In order to use partitioning tracers for estimation of NAPL in place, several 

selection criteria have to be met (Tang and Harker, 1991a, Jin et al., 1995). The 

main requirements are: 
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1 . low detection limits on a gas chromatograph (or any other suitable method) 

2. Acceptable partition coefficients to obtain retardation factors between 1.2 

and 4.0 

3 . long term chemical stability 

4. family of compounds with similar properties 

5. negligible adsorption to the porous matrix 

6. low toxicity 

7. environmental acceptance and biodegradability 

8 . adequate water solubility 

9. cost effectiveness 

The tracers chosen consist of long chained aliphatic alcohols. The approach 

for selection of partitioning tracers for use in field tracer tests is described in the 

following sections. 

10.2.1 Partition Coefficient Tests to Measure Partition Coefficients 

In order to perform a partitioning tracer test, accurate measurement of 

partition coefficients is required. A definition of the partition coefficient is given in 

Chapter 7. Depending on the type of application and residual saturation of NAPL 

present in the contaminated area, a range of partition coefficients will be required. 

In general higher partition coefficients will be required for post surfactant P!'!"!'s to 

be used for performance assessment of surfactant flooding or co-solvent flooding 

etc. A retardation factor between 1.2 and 4.0 is a good rule of thumb for the 

appropriate range for most partitioning tracer tests, but the precise values should be 

optimized for each specific field test using a suitable model such as UTCHEM and 
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will vary somewhat depending on the accuracy of the analytical method etc. For a 

saturated zone, the retardation factor is related to the NAPL saturation SN by, 

(10.1) 

Both static and dynamic partition coefficient tests can be performed to 

determine the partition coefficients. For the Hill OUl PITT tracer selection, static 

partition coefficient tests were used for quick measurement of the partition . 

coefficients. Dynamic partition coefficient tests using Ottawa sand and field NAPL 

from Hill OUl were then performed to confirm the partition coefficients measured 

using the static tests and obtain better estimates of partition coefficients as discussed 

in Chapter 9. Since the partition coefficients measured using the static and dynamic 

partition coefficient tests agreed with each other within experimental error, only 

static partition coefficient tests were used to measure partition coefficients in 

subsequent experiments. The experimental details regarding static and dynamic 

partition tests are described in Chapter 7. The error analysis and accuracy of 

partition coefficients is discussed in Chapter 9. The partition coefficients for 

several alcohols with Hill OUl LNAPL and Hill OU2 DNAPL are presented in 

Table 7.3. 

10.2.2 Partitioning Tracer Tests in Clean Field Soil with Field NAPL 

The accuracy of NAPL estimation using a partitioning tracer test depends on 

accurate measurement of the retardation of partitioning tracers. In some instances, 

field soil may have sufficient organic matter to cause a significant level of 
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adsorption, retention and thus additional retardation of the alcohols. In this case, 

the NAPL saturation estimates may be incorrect if the retardation of the tracers due 

to adsorption by the soil is not factored into the calculations. 

In order to measure this retardation of the partitioning tracers by field soil, 

tracer tests can be conducted in uncontaminated field soil. The retardation can be 

calculated using the first moments. 

Uncontaminated field soil was not obtained from Hill OUI and hence no 

tracer experiments were performed to quantify adsorptive retardation. 

Uncontaminated field soil was obtained from Hill OU2. Tracer tests were 

conducted in soil columns packed with uncontaminated field soil from Hill OU2 

(experiments HILLOU2#7 and HILLOU2#4). Tritium and IPA were used as a 

conservative tracers and several other alcohol tracers were injected into the soil 

column and the response was measured. Based on the initial partitioning tracer test 

in uncontaminated field soil, the maximum adsorption of the tracers was less than 

5,000 µgig. This corresponds to a retardation of 1.028 and an apparent residual 

DNAPL saturation of 0.00075 and this number is well below the accuracy of tracer 

measurements (in other words, these values are considered noise). Based on this it 

can be concluded that there was negligible adsorption of these tracers by Hill field 

soil. The details of the experimental procedures and results are presented in 

Chapters 8 and 9. Negligible values of adsorption of tracers by the Hill field soil 

can be attributed to extremely low clay and organic content but these values were 

not measured. 
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10.2.3 Partitioning Tracer Tests in Contaminated Field Soil 

Once procedures for performing tracer tests in clean field soil were well 

defined, partitioning tracer tests were performed in contaminated field soil. Both 

contaminated field soil and clean field soil in which field contaminant was injected 

was used for performing partitioning tracer tests. 

Tracer selection was based on retardation factors. For PITT design for the 

Hill QUI test, the expected NAPL saturation was between 0.04 and 0.10. Based 

on this, and using a retardation factor between 1.2 and 2.5, partition coefficients in 

the range of 4.8 to 13.5 were required. Hence 1-hexanol, (K=4.4) and 2,2-

dimethyl-3-pentanol (K=l2.9) were suggested as candidates for the field test. 

Ethanol was chosen as a conservative tracer. 

At Hill OU2, the expected DNAPL saturation was between 0.03 and 0.07. 

Thus, using a retardation factor between 1.2 and 2.5, partition coefficients between 

2.7 and 19.9 were required. Hence, 1-pentanol (K=3.8) and 2-ethyl-1-butanol 

(K=l2.5) were suggested as candidates for the field tracer test. The swept pore 

volume at Hill OU2 is about 14,000 gallons. Assuming a saturation of 0.04, a 

DNAPL volume on the order of 560 gallons was estimated. The objective of 

remediation was 97 to 99% DNAPL recovery from this swept volume. This means 

that the residual DNAPL saturation after surfactant remediation would be on the 

order of 0.0004 to 0.001. The expected noise in the retardation factor was ±0.035. 

Using a DNAPL saturation between 0.0004 and 0.001 and a retardation factor of 

1.05, partition coefficients between 49 and 125 were needed. Hence 1-hexanol 

(K=30.2), 2,4-dimethyl-3-pentanol (K=49.9) and 1-heptanol (K=140.1) were 
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recommended as partitioning tracers for the post surfactant PITT for performance 

assessment. 

For the Hill OUl PITT design, soil packs in experiments OUDNAPL2 and 

OUDNAPL3 were packed with contaminated field soil. For the Hill OU2 PITT 

design, partitioning tracer experiments with Hill OU2 field soil were conducted in 

experiments HILLOU2#3, HILLOU2#4, HILLOU2#5, HILLOU2#7 and 

HILLOU2#8. 

In experiments OUDNAPL2 and OUDNAPL3, a residence time between 5 

hours and 10 hours was used for the partitioning tracer tests. In experiment 

OUDNAPL2, the tracer estimate of the average residual NAPL saturation increased 

from 0.035±0.009 to 0.060±0.016 when 1.7 cc of NAPL was injected into the soil 

pack. This corresponded to an increase in saturation of 0.032. Hence the average 

expected NAPL saturation during the second tracer test was 0.067. Hence it can be 

observed that the increase in the NAPL estimated using partitioning tracers is 

consistent the increase in saturation based on the volume of NAPL added. In 

experiment OUDNAPL3, the average NAPL saturation estimate was around 

0.063±0.008 in the first tracer test and 0.061±0.004 in the second tracer test, or 

about 7% uncertainty in the saturation. 

Experiment HILLOU2#1 was carried out to evaluate the performance of 

partitioning tracers in Ottawa sand Hill DNAPL. The average saturation based on 

mass balance was 0.245 and the average saturation based on partitioning tracers 

was 0.234±0.017. The DNAPL saturation based on mass balance and partitioning 

tracers agreed to ± 0.011. The standard deviation of saturation based on 

partitioning tracer measurements was 7%. Similar results were obtained for column 
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HILLOU2#4. In columns HILLOU2#1 and HILLOU2#4, a residence time of 9.2 

hours was used for the tracer test. In both columns, clean soil was saturated by 

flooding with DNAPL and following with a waterflood. In experiment 

HILLOU2#5, contaminated soil was used. This soil pack had a pool of DNAPL as 

opposed to a uniform DNAPL saturation. A residence time of between 5 to 9 hours 

for the partitioning tracers was seen to under predict the residual DNAPL 

saturation. This was remedied in experiment HILLOU2#8 with contaminated field 

soil when a residence time of 18 to 24 hours was used for the partitioning tracers 

and excellent results were obtained. In experiment HILLOU2#7, the residual 

saturation based on mass balance was 0.262 and the residual saturation based on 

partitioning tracers was 0.255. 

In experiments HILLOU2#1, HILLOU2#4, HILLOU2#5, HILLOU2#7 

and HILLOU2#8, partitioning tracers were used for performance assessment. The 

post surfactant DNAPL saturations were between 0.0002 and 0.001. The DNAPL 

saturation estimates after surfactant flooding agreed with estimates based on mass 

balance for experiment lllLLOU2#7 to within ±1 % of the total DNAPL recovered. 

10.3 RECOMMENDATIONS FOR FIELD TESTS 

10.3.1 HILLOUl 

Based on these laboratory results and the concurrent simulation study, 

ethanol, 1-hexanol and 2,2-dimethyl-3-pentanol were recommended as the tracers 

to be used in the PITT. Ethanol was the conservative tracer, 1-hexanol (K=4.4) 

and 2,2-dimethyl-3-pentanol (K=l2.9) were used as the partitioning tracers. A 

retardation factor of between 1.2 and 2.4 was expected. 
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10.3.2 Hill OU2 

Based on laboratory results, negligible adsorption was measured for 

partitioning tracers with clean Hill field soil. IP A, 1-pentanol and 2-ethyl-1-butanol 

were recommended as the tracers. Isopropanol was recommended as the 

conservative tracer, 1-pentanol (K=3.87) and 2-ethyl-1-butanol (K=12.5) were 

recommended as the partitioning tracers. For the post surfactant tracer flood for 

performance assessment of surfactant remediation, 1-propanol was recommended 

as the conservative tracer and 1-hexanol (K=30.2), 2,4-dimethyl-3-pentanol 

(K=49.9) and 1-heptanol (K=140.l) were recommended as the partitioning tracers. 

For the pre surfactant PITT, retardation factors between 1.1and1.8 were expected. 

10.4 SURFACTANT SELECTION AND DESIGN 

One of the main contributions of this work was the selection of a suitable 

surfactant solution for use in remediation of the Hill OU2 site at Hill AFB, Utah. 

Many phase behavior experiments and column experiments were carried out for the 

design of the surfactant flood at the OU2 DNAPL site at Hill AFB. The field test 

was divided into two parts, Phase I and Phase Il. Phase I consisted of the initial 

PITT and a small surfactant pre-test in one injector. Phase Il consisted of a second 

PITT, the surfactant flood in a 3X3 line drive well pattern and a final PITT in the 

same well pattern. The experimental procedures and experimental results for 

column experiments have been described in Chapters 4, 8 and 9. 

10.4.1 Phase Behavior 

The surfactants used in this study were anionic surfactants. Several phase 

behavior experiments were carried out with surfactant, alcohol, polymer and 
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electrolyte mixtures. Volume fraction diagrams were developed for various 

surfactant solutions by varying the electrolyte concentrations. The DNAPL 

solubilization ratios and DNAPL solubilization of various surfactant solutions were 

also measured. All experiments were carried out at surfactant concentrations greater 

than the CMC of the surfactant and at a temperature of 23°C but a few were done at 

the Hill OU2 groundwater temperature of 12.2°C. Hill OU2 groundwater and Hill 

OU2 source water (Tables 10.2 and 10.3) were used in column experiments and 

phase behavior experiments with either NaCl or CaCl2 added to these fresh waters 

in many of the Phase II experiments. 

The surfactants used in this study were sodium diamyl sulfosuccinate, 

sodium dihexyl sulfosuccinate and sodium dioctyl sulfosuccinate. The alcohols 

used were IPA and secondary butyl alcohol. The polymer used was xanthan gum 

and the additional electrolyte used was sodium chloride. Additional studies were 

carried out using CaCl2 as an electrolyte to look at the tolerance of the surfactant 

solutions to the presence of calcium ions (see Table 10.1). 

Volume fraction diagrams, contaminant solubility plots and contaminant 

solubilization ratios were plotted against electrolyte concentration (Chapter 6). 

Typically, for sodium dihexyl sulfosuccinate solutions, a contaminant solubilization 

ratio of about 0.3 was observed at lower electrolyte concentrations and a value of 

approximately 6 at the optimal salinity. These solubilization ratios translated into 

contaminant solubilities of about 20,000 mg/I at lower electrolyte concentrations 

and about 600,000 mg/I at optimal salinity. 

No NaCl was added the fresh tap water used as the source water for the 

Phase I test conducted in May of 1996. Contaminant solubilities were measured as 
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a function of surfactant concentration at 12.2°C. The results are presented in 

Figure 10.2. It can be seen that even in fresh water, the solubility of the 

contaminant is enhanced from about 1, 100 mg/I to about 78,000 mg/I by using a 

solution of 8% by weight sodium dihexyl sulfosuccinate. The interfacial tension 

between the Hill OU2 DNAPL and 8% sodium dihexyl sulfosuccinate was 

measured as 0.2 dyne/cm. This is much lower than the IFT of 7 dyne/cm measured 

between the DNAPL and water. These and other data were used in concurrent 

modeling studies. 

During the Phase I field test, the temperature of the effluent appeared to vary 

between 10°C to 27°C. These data were later found to be erroneous and the best 

estimates of groundwater temperature at the time is about 12.2°C. However, phase 

behavior studies using a solution of 8% sodium dihexyl sulfosuccinate, 4% IPA, 

NaCl in source water at 12.2°C, 15°C, 18oc, 21 oc and 23oc were conducted. 

The volume fraction diagrams and solubility plots are described in detail in Chapter 

6. The optimal salinity was plotted against temperature for 8% by weight sodium 

dihexyl sulfosuccinate and different alcohol concentrations as presented in Figure 

10.3. A linear trend in optimal salinity can be observed for the surfactant solutions. 

This plot was then used to determine the NaCl concentration to be used in the 

surfactant solution in the Phase II test once accurate subsurface water temperature 

measurements were obtained. 

10.4.2 Column Experiments 

In order to design successful tracer and surfactant field tests, it is extremely 

important to perform a variety of carefully designed laboratory experiments. In 
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addition to the obvious and commonly performed experiments to measure 

contaminant recovery from the soil, these laboratory experiments are needed to find 

out if there are any unexpected adverse interactions between the surfactant and the 

NAPL or soil, any plugging problems, adsorption and residence time requirements 

to avoid non-equilibrium effects. 

The approach followed for columns experiments was to first perform 

column experiments using clean Ottawa sand and field DNAPL since Ottawa sand 

is a very simple standard in our laboratory with very well known characteristics. 

The interaction between the surfactant and field DNAPL under dynamic conditions 

can be quantified by measuring the head loss during the surfactant flood and post 

surfactant waterflood. In the next phase, clean field soil saturated with field 

DNAPL was used and surfactants were used for remediating contaminated field 

soil. Partitioning tracers were flushed through clean field soil to find out if the 

tracers had a detectable adsorption on the soil (none did in this case). Experiments 

performed at local equilibrium conditions (no kinetic effects) are much easier to 

interpret and use for modeling and scaleup to the field so these were strongly 

preferred in this study. This requires slow flow rates and relatively long columns . 

In the final phase, contaminated field soil was used in soil columns. A summary of 

all the column experiments performed for design of the Phase I and Phase IT tests at 

Hill AFB is given in Table 10.4. A total of nine experiments were performed. 

Experiments HILLOU2#1, HILLOU2#2b, HILLOU2#2c and HILLOU2#4 have 

been described in Shotts (1996). All the other experiments have been described in 

Chapters 8 and 9. 
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In order to design the surfactant flood, parameters such as hydraulic 

gradient across the soil column during surfactant flooding, surfactant adsorption 

and the final residual DNAPL saturation are needed. The latter data can be used to 

estimate a capillary desaturation curve for the field soil and DNAPL by calculating 

capillary and Bond numbers. Each of these parameters and its role in the field 

design are discussed in the following sections. 

10.4.2.1 Hydraulic Gradient Measurement 

In many soil column experiments, induced hydraulic gradients were 

measured during the surfactant flood. These maximum measured hydraulic 

gradients were compared to the maximum allowable hydraulic gradient for the field. 

Hydraulic gradients in excess of 1.5 cm/cm in case of solutions without polymer 

were considered unsuitable for surfactant remediation. Solutions exhibiting such 

high gradients were considered susceptible to pore plugging due to gels, liquid 

crystals and emulsions. Hydraulic gradients across the soil packs when no polymer 

was used were always less than 0.3 cm/cm and in experiments with 

surfactant/polymer solutions, the induced gradients were between 0.8 to 1.2 

cm/cm. These hydraulic gradients were acceptable for the Hill OU2 tests. Lower 

gradients would be expected in the field as some of the head loss in column 

experiments occurs at the small entry and exit ports in the columns. 

A water containing only 150 mg/I NaCl was used to flush out the surfactant 

used in experiment HILLOU2#5. A sudden increase in the potential drop (head 

loss) was observed. Most if not all the calcium ions were likely exchanged by 

sodium ions on the clays during the surfactant flood and freshwater flood. This 
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probably caused movement of clays and pore plugging by fines or clays. When the 

column was flooded with water containing 150 mg/I CaC!i, this was reversed and 

potential drops declined to lower values. Hence, it can be inferred that in order to 

eliminate/minimize fines production and high hydraulic gradients during the 

surfactant flood and post-surfactant waterflood, adequate amounts of sodium and 

calcium ions must be present in the surfactant solution and post-surfactant 

waterflood. 

10.4.2.2 Surfactant Adsorption 

Surfactant adsorption was measured using a 14C labeled sodium dihexyl 

sulfosuccinate prepared at the University of Texas at Austin (Weerasooriya, 1995). 

Both tritium and the radiolabeled surfactant were injected into three soil columns 

(HILLOU2#5, HILLOU2#7 and HILLOU2#8) to quantify surfactant adsorption. 

The details are described in chapters 8 and 9. In all the experiments, HILLOU2#5, 

HILLOU2#7 and HILLOU2#8, 92.5%, 101 % and 96% surfactant was recovered 

compared to 105%, 103% and 99% tritium recovered from these experiments. 

Based on these results, it can be inferred that surfactant adsorption is negligible and 

would not cause any problems during the field test. Based on the retardation of the 

radiolabeled surfactant, low surfactant adsorption ( <200 µg/g) was measured in 

experiment HILLOU2#8. This value of adsorption is so low that it has negligible 

effect on the field test since 2.5 pore volumes of 8% surfactant were injected and at 

200 µgig soil, less than 1 % of the injected surfactant would be adsorbed. This was 

confirmed by the Phase I test. 
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Also, the surfactant concentrations below the CMC (about 0.2 weight%) 

were measured in all the experiments at the end of the final waterflood. Below the 

CMC, the surfactant is not active and can not cause unwanted mobilization of 

DNAPL so this was the desired state following the field tests. 

10.4.2.3 CDC Curves and DNAPL Recovery Mechanism 

To understand the capillary desaturation behavior of the DNAPL during 

surfactant displacements in sandpacks, the interfacial tensions between the Hill 

DNAPL and the various surfactant solutions were measured. The IFf between the 

Hill DNAPL and a solution of 4% sodium dihexyl sulfosuccinate in Hill source 

water was measured as 0.2 dyne/cm. For a solution of 5% sodium diamyl 

sulfosuccinate in Hill source water, the IFf was measured as 0.4 dyne/cm. These 

are type I solutions. For sodium dihexyl sulfosuccinate surfactant solutions with 

Hill DNAPL at optimal salinity, the IFf measured was about 0.01 dyne/cm. Based 

on these numbers, the trapping number (Jin, 1995; Pennell et al., 1996) was 

calculated for many column experiments and plotted as shown in Figure 10.4. 

From Figure 10.4 it can be seen that at the trapping number (sum of 

capillary number and bond number for vertical displacements) of about 1 o-4 in 

some of the Hill OU2 Phase I column experiments, mobilization occurred. The 

capillary desaturation curve for TCE and Ottawa sand is to the right of the Hill 

DNAPL data and mobilization would be expected only ifthe trapping number was 

greater than 10-3. For the Phase II test conditions, NaCl was added to the solution 

so the IFT was very low (0.01 dyne/cm) and complete desaturation occurred in 

these experiments for both Hill DNAPL and TCE (see points at trapping number of 
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10-2). Curves drawn through the data of Delshad (1990) and Pennell et al. (1996) 

are shown on Figure 10.4 for comparison with the data from this study. The 

differences in all these results are not fully understood but wettability is likely to be 

one important variable. TCE in Ottawa sand is almost certainly the non-wetting 

phase and water the wetting phase whereas the Hill DNAPL and soil may have been 

mixed wet. 

After performing several column experiments with a solution of 4% solution 

of sodium dihexyl sulfosuccinate in Hill source water, (experiments HILLOU2#1, 

HILLOU2#2b, HILLOU2#4, HILLOU2#5), a solution of sodium diamyl 

sulfosuccinate which has lower solubilization potential, was used with soil cores 

contaminated with DNAPL (experiments HILLOU2#2c and HILLOU2#3). 

Mobilization of DNAPL was observed in experiments HILLOU2#2c and 

HILLOU2#3. 

Sodium dihexyl sulfosuccinate was selected as the preferred surfactant to 

use at Hill OU2 for both the Phase I and Phase II field tests based upon its overall 

performance in column tests, its superior solubilization compared to sodium diamyl 

sulfosuccinate and other factors such as low cost and biodegradability. 

10.4.2.4 Performance Assessment 

In most of the soil columns, DNAPL saturations were reduced to almost 

zero after surfactant flooding or greater than 99% of the DNAPL initially present in 

the soil pack. When possible, these estimates were made based on the weight of 

the soil columns before contamination of the soil column by the DNAPL and the 

weight of the soil column after surfactant flooding (mass balance) as well as the use 
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of partitioning tracers. In instances where contaminated soil was used, partitioning 

tracers only were used for assessing remediation performance. A comparison of 

the DNAPL recovery based on mass balance and partitioning tracers is presented in 

Table 10.5. · Since contaminated soil columns were used in experiments 

HILLOU2#5 and HILLOU2#8, the residual saturation based on mass balance could 

not be obtained. Apparent residual DNAPL saturations on the order of 0.0004 such 

as in experiment HILLOU2#1 are so low as to be in the noise and correspond to 

99.9% removal of DNAPL. This very small amount of remaining contaminant in 

such a case is likely to be in some form other than trapped ganglia. In experiment 

HILLOU2#8, the final contaminant concentration in the effluent was less than 15 

mg/I. Lower concentrations could not be achieved due to the presence of Teflon 

end pieces and nylon tubing in the soil column which caused persistent tails on the 

order of 10 to 50 mg!l. 

10.4.2.5 Selection of a suitable surfactant solution 

In all column experiments through experiment HILLOU2#5 surfactant 

solutions containing 4% surfactant by weight were used for remediation. 

Subsequently 4% IP A as a cosolvent was used to minimize plugging problems and 

reduce equilibration times for the surfactant contaminant mixtures. The presence of 

alcohol lowers the density of the microemulsion. This is extremely important as a 

microemulsion containing 50,000 mg!l of TCE gas a density of about 1.02 glee 

which is high to promote downward migration. 

In an unconfined field test such as Hill OU2, any surfactant solution 

injected into the ground is greatly diluted by the groundwater. Hence, for good 

440 



... ;~; . . . 

"'! 

surfactant performance, a large amount of surfactant must be injected over a long 

period of time. This can be achieved by either injecting a lower concentration of 

surfactant for a relatively long period of time or a higher concentration of surfactant 

for a short period of time. In order to minimize the time for the test, a high 

surfactant concentration was used. 8% sodium dihexyl sulfosuccinate, 8% IPA, 

5,850 mg/I NaCl and 500 ppm xanthan gum polymer was tested in experiment 

HILLOU2#8. 

10.5 RECOMMENDATIONS FOR THE HILLOU2 PHASE I AND THE 
PHASE II TESTS 

Based on all the laboratory experiments and computer simulations (Brown, 

1997), a solution of 8% sodium dihexyl sulfosuccinate mixed in Hill source water 

was recommended as the surfactant solution to be used in the Phase I test. Due to 

Phase II budget constraints, the polymer was not used as originally recommended. 

The IPA concentration was lowered to 4% both to minimize problems with the 

steam stripper used to treat the effluent and the because without polymer the phase 

behavior was satisfactory with only 4% IPA. The optimum salinity for the final 

Phase II solution of 8% sodium dihexyl sulfosuccinate (10% by weight Aerosol 

MA-80I), 4% IPA at 12.2°C was 7,000 mg/I NaCl (added to Hill source water). 

Approximately 2.5 pore volumes of this solution was injected during Phase I and 

then flushed with about 8 pore volumes of fresh water. The final residual DNAPL 

saturation was only 0.0004 based upon the final PITT. 
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Table 10.1: Summary of phase behavior experiments performed with Hill 
DNAPL. 

% Surfactant % Alcohol Electrolyte Water XG T, (K) 
C5 C6 ppm 

0 4 8 (IPA) NaCl DW 500 296 
0 4 12 (IPA) NaCl DW 500 296 
0 8 8 (IPA) NaCl DW 500 296 
4 4 8 (IPA) NaCl DW 500 296 
0 4 0 (IPA) NaCl Ground 0 296 
0 4 8 (IPA) NaCl Source 0 296 
0 4 8 (IPA) NaCl Source 500 296 
0 4 4 (IPA) NaCl Source 500 296 
0 4 4 (Ethanol) NaCl Source 500 296 
0 8 8 (IPA) NaCl Source 500 296 
0 8 8 (IPA) NaCl Source 500 285.2 
0 8 8 (IPA) CaCl2 Source 500 296 
0 8 4 (IPA) NaCl Source 0 285.2 
0 8 4 (IPA) NaCl Source 0 288 
0 8 4 (IPA) NaCl Source 0 291 
0 8 4 (IPA) NaCl Source 0 294 
0 8 4 (IPA) NaCl Source 0 296 
0 8 2 (IPA) NaCl Source 0 285.2 
0 8 2 (IPA) NaCl Source 0 288 
0 8 2 (IPA) NaCl Source 0 291 
0 8 2 (IPA) NaCl Source 0 294 
0 8 2 (IPA) NaCl Source 0 296 
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Table 10.2: Cations in Hill groundwater and Hill source water 

Cations 

Aluminum 
Antimony 
Arsenic 
Barium 
Beryllium 
Boron 
Cadmium 
Calcium 
Chromium 
Cobalt 
Copper 
Iron 
Lead 
Magnesium 
Manganese 
Molybdenum 
Nickel 
Potassium 
Selenium 
Silicon 
Silver 
Sodium 
Strontium 
Thallium 
Vanadium 
Zinc 

Ground Water 
(mg/I) 

2.26 
< 0.1 
< 0.1 
0.1 

< 0.1 
0.276 
< 0.1 
13.9 
< 0.1 
< 0.1 
< 0.1 
2.88 
< 0.1 
11.5 

0.233 
< 0.1 
< 0.1 
11.2 
< 0.1 
11.1 
< 0.1 
97.4 
< 0.1 
< 0.1 
< 0.1 
< 0.1 

Source Water 
(mg/I) 

< 0.1 

73.2 

0.0277 

17.6 

2.18 

19.3 

Table 10.3: Anions in Hill groundwater and Hill source water 

I Anions 

Bromide 
Chloride 
Fluoride 
Sulfate 

Ground Water 
(mg/l) 

< 0.1 
37.9 

0.387 
2.05 
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Source Water 
(mg/I) 

24.5 

19.5 



Table 10.4: Summary of column experiments performed for Hill OU2 Phase I and 
Phase II tests. 

Experiment Soil Type Description 

HILLOU2#1 Ottawa Partitioning tracers, surfactant 
HILLOU2#2b Ottawa Surfactant 
HILLOU2#2c Ottawa Surfactant 
HILLOU2#3 Hill OU2 Partitioning tracers, surfactant 
HILLOU2#4 HillOU2 Clean field soil, Partitioning 

tracers, surfactant, polymer 
HILLOU2#5 HillOU2 Contaminated field soil, 

Partitioning tracers, 
radiolabeled surfactant, 
polymer 

HILLOU2#6 Ottawa Partitioning tracers, 
radiolabeled surfactant, 
polymer 

HILLOU2#7 Hill OU2 Clean field soil, Partitioning 
tracers, radiolabeled surfactant, 
palymer 

HILLOU2#8 Hill OU2 Contaminated field soil, 
Partitioning tracers, 
radiolabeled surfactant, 
polymer at 12.2°C 
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Table 10.5: Performance assessment of surfactant remediation 

Experiment Residual Saturation Residual Saturation 

(mass balance) (partitioning tracers) 

H1LLOU2#1 0.0004 0.0004 

H1LLOU2#4 -0.0007 0.0070 

H1LLOU2#5 -- 0.0054 

H1LLOU2#7 -0.0038 0.0002 

H1LLOU2#8 -- 0.0015 
' : 

t. 
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Figure 10.1: Plan view of Hill OU2. 
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Chapter 11: Summary, Conclusions and Future Work 

11.1 SUMMARY 

The main objectives of this work were development and perfection of 

experimental procedures for performing partitioning tracer tests for estimation of 

NAPL and performance of surfactant remediation and identifying suitable 

surfactant solutions for remediating soils contaminated by nonaqueous phase 

liquids. In pursuance of these objectives, the following were successfully 

accomplished: 

1. Static partition coefficients were measured for several NAPLs, namely 

tetrachloroethylene (PCE), trichloroethylene (TCE), jet fuel (JP4), 1,2-

dichloroethane, (DCA), 1, 1, I-trichloroethane (TCE), trichloromethane 

(TCM or chloroform), Hill OUl LNAPL and Hill OU2 DNAPL. A 

precise relation between the static partition coefficient for alcohol tracers 

and the solubility of alcohols in water was discovered. A very close match 

between partition coefficients measured using static experiments and 

dynamic column experiments was observed. Partition coefficients were 

also measured for a NAPL mixture consisting of DCA and PCE. 

2. Experimental techniques for performing partitioning tracer tests were 

developed by performing several column experiments to estimate residual 

NAPL saturation with NAPLs such as PCE, TCE, JP4, Hill OUl LNAPL 

and Hill OU2 DNAPL. The residual NAPL saturation based on mass 

balance and partitioning tracers were observed to agree to within ± 3 
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saturation percent m all column experiments. Despite low tracer 

recoveries in some column experiments, residual saturation estimates were 

still very good. 

3. Adsorption of partitioning tracers on Ottawa sand and Hill field soil was 

measured. The values of adsorption of partitioning tracers by Ottawa sand 

and three types of field soil were below the error of measurement of tracer 

tests. 

4. Partitioning tracers were used for performance assessment of surfactant 

remediation and NAPL saturation estimates after surfactant remediation 

based on mass balance measurements and partitioning tracers agree to 

within ± 1 saturation percent in all column experiments. 

5. Phase behavior experiments were conducted with PCE, TCE, JP4 and Hill 

OU2 DNAPL with water, alcohol and anionic surfactants. Mostly volume 

fraction diagrams were developed. Most of the work involved performing 

salinity scans at a fixed surfactant concentration and fixed temperature. 

Ternary diagrams were developed for PCE and TCE at 23°C using two 

different surfactant solutions. 

6. The effect of temperature, alcohol concentration, surfactant hydrophobe 

tail length, xanthan gum polymer and electrolyte type on phase behavior 

was investigated for TCE and Hill OU2 DNAPL. 

7. Surfactant solutions were successfully used to remediate soil columns 

contaminated by PCE, TCE, jet fuel and Hill OU2 DNAPL. More than 

99% of the NAPL was recovered in most of the column experiments. 
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8. Many surfactant flooding experiments were conducted with aqueous 

mixtures of surfactant, xanthan gum polymer and alcohols. 

9. Both mobilization and solubilization were explored as options for 

remediation of soil contaminated by NAPLs. 

10. Surfactant adsorption by Hill field soil was measured by using 

radiolabeled surfactant and less than 165 µg/g of surfactant was adsorbed 

by field soil from Hill AFB. 

11. Pressure drops across the contaminated soil columns were measured 

during surfactant flood and post surfactant flood and was used as a useful 

tool in surfactant selection. 

12. Experimental techniques for laboratory selection of partitioning tracers 

and surfactants for field applications were perfected. Both surfactant and 

partitioning tracer tests were carried out successfully at 12.2°C in the lab. 

13. Two field partitioning tracer tests (Hill OUl and Hill OU2) and one field 

surfactant enhanced aquifer remediation test (Hill OU2) were designed as 

a direct consequence of all the experiments performed in this work. 

11.2 CONCLUSIONS 

The conclusions that can be drawn from this work can be divided into two 

areas, namely partitioning tracer tests and surfactant floods. The most important 

conclusion is that partitioning tracers can be used to estimate NAPL saturations 

accurately. They can be used both to estimate residual NAPL saturation and for 

performance assessment of surfactant remediation by estimating residual NAPL 

volume after surfactant remediation. This conclusion was reached based on 
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excellent agreement between NAPL saturation estimated using mass balance and 

NAPL saturation estimated using partitioning tracers in several column 

experiments. Based on experimental work presented in this dissertation, the first 

field LNAPL partitioning tracer test was designed at Hill OUl and the first 

unconfined field DNAPL partitioning tracer test was designed. 

Laboratory experiments in this work have clearly demonstrated that by 

designing surfactant floods using a combination of phase behavior and column 

experiments, up to 99.9% of the contaminant can be recovered and final TCE 

concentrations in the water can be reduced to less than 1 mg/l after surfactant 

flooding. In some experiments such low TCE concentrations in the effluent water 

could not be measured because of the presence of nylon tubing and Teflon end 

pieces on the columns which caused persistent contaminant tails on the order of 

10 to 50 mg/l. Hence, for accurate evaluation of remediation experiments of 

chlorinate solvents, any column material that will adsorb/desorb the contaminant 

should be avoided. These results are much more favorable than others reported in 

the literature for pure contaminants such as TCE or PCE let alone field DNAPLs. 

The first field surfactant flood to remediate a DNAPL in an unconfined aquifer 

was designed as a result of the laboratory experiments performed in this work. A 

final DNAPL saturation of 0.0004 was achieved in the field site as a result of 

surfactant flooding. 

From this work it can be concluded that phase behavior experiments are a 

very important step to select surfactants with high contaminant solubilization, 

quick coalescence rates and minimal liquid crystal forming tendencies. Surfactant 

solutions that form liquid crystals or gels are often non-Newtonian and have high 
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viscosity and cause problems such as permeability reduction and plugging as 

evidenced from results in experiments DW#2 and DW#5. Co-solvents such as 

ethanol or isopropanol can be used to prevent such problems and promote 

equilibrium microemulsion behavior. Mass transfer kinetics greatly complicate 

the modeling and scaleup of surfactant remediation, thus it is of great advantage 

to use solutions that rapidly approach equilibrium behavior during the 

displacement in the aquifer. These experiments were used to seek out and find 

the sodium dihexyl sulfosuccinate/isopropanol mixture that performed so well in 

the Hill OU2 field tests. 

The use of xanthan gum polymer as a viscosifier helped in improving the 

rate of contaminant removal in solubilization experiments as the effluent 

contaminant concentration was closer to the equilibrium contaminant 

solubilization as observed in experiment POL YTCE#l. This is due to better 

contact between the trapped NAPL and the more viscous surfactant/alcohol 

solution containing polymer. No problems with polymer were observed in column 

experiments with both pure TCE and Hill DNAPL. No significant difference in 

the phase behavior was observed with such solutions when sufficient co-solvent 

was used. 

The measurement of hydraulic gradients during a surfactant flood is a very 

useful tool in quantifying surfactant behavior during transport in a porous 

medium. Surfactants that are more likely to form macroemulsions, gels and 

liquid crystals will cause high gradients during the surfactant flood and should be 

avoided. Acceptable surfactants will show low gradients during the surfactant 

flood. Low gradients and negligible permeability reduction with Ottawa sand and 
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Hill field soil were observed when sodium dihexyl sulfosuccinate was used with 

isopropanol as a cosolvent. 

The other more specific conclusions drawn are: 

1. Negligible adsorption of alcohol tracers by Ottawa sand and Hill field soil 

was observed in column experiments. 

2. A relationship between the partition coefficient and solubility of alcohol in 

water was observed for similar types of alcohols on a log-log plot. This 

was observed for straight chain alcohols, alcohols with one branched 

methyl group and alcohols with two branched methyl groups. 

3. Static and dynamic partition coefficients were observed to agree within 

experimental error. However dynamic partition coefficients were 

observed to give better residual saturation estimates when used in soil 

column experiments. 

4. Negligible adsorption of sodium dihexyl sulfosuccinate was observed on 

Hill OU2 field soil. 

5. Surfactant solutions with sodium dihexyl sulfosuccinate were found to be 

suitable for remediating soil columns contaminated with PCE, TCE and 

Hill OU2 DNAPL. When co-solvent was used with this surfactant, no 

decrease in permeability occurred after the surfactant floods and a low 

hydraulic gradient acceptable in most field tests was observed in all cases. 

6. Only about 1 pore volume of surfactant was required to remove almost all 

the DNAPL from soil columns when optimal salinity was used to give low 

IFT and mobilization of DNAPL. 
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7. Surfactant solutions with sodium dioctyl sulfosuccinate without cosolvent 

were prone to gel/liquid crystal formation with PCE and JP4. Excessive 

pressure drops were measured in two experiments where sodium dioctyl 

sulfosuccinate was used. 

8. The optimal salinity was observed to decrease as temperature was 

decreased for sodium dihexyl sulfosuccinate solutions with TCE and Hill 

OU2DNAPL. 

9. Addition of IPA can be used to decrease the optimal salinity for sodium 

dihexyl sulfosuccinate solutions with TCE and Hill OU2 DNAPL, but this 

was accompanied by a decrease in solubilization parameter. 

10. , The optimal salinity can be decreased and solubilization parameter can be 

increased by increasing the surfactant hydrophobe length, but a longer 

hydrophobe would mean a higher probability of gel or liquid crystal 

formation in surfactant solutions. 

11. Persistent tails of low concentration contaminant ("" 10 mg/l) were found 

to be caused by adsorption by Teflon end pieces and Nylon tubing and 

could be eliminated as a laboratory artifact by using all stainless steel 

columns. 

12. Xanthan gum polymer was used to improve the performance of the 

surfactant solutions by increasing its viscosity without unacceptable 

increases in hydraulic gradient. The viscosity of the surfactant solution 

increases about four fold when 500 mg/l xanthan gum is added to the 

aqueous surfactant solution at shear rates corresponding to interstitial 

velocities on the order of 10 ft/day. 

456 



.'.;· 

13. Xanthan gum or other suitable food-grade polymers should be used in 

future remediation field tests as a very inexpensive and simple method to 

mitigate the effects of heterogeneity at all scales in the aquifer as well as 

an aid in hydraulic control of the flood. This will reduce the amount and 

thus cost of the surfactant needed, shorten the time required to remediate 

the aquifer and improve the control of the flood. 

11.3 FUTURE WORK 

The following recommendations are made for future work: 

1. The accuracy of the partitioning tracer test can be improved by improving 

analytical techniques for the analysis of the tracers. 

2. The applicability of partitioning tracer experiments in fractured media 

should be investigated. 

3. More research should be carried out to quantify tracer adsorption. 

4. The use of perfluorocarbon tracers in saturated zone partitioning tracer 

tests should be investigated. 

6. More experiments should to be done with surfactant-polymer solutions to 

evaluate the applicability of other types of polymers besides xanthan gum. 

7. More research should be done to identify and test surfactant-cosolvent-

polymer solutions for use in fractured media. 
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Nomenclature 

A = cross sectional area of porous medium ( L2
) 

.!. = slope of the tracer response curves plotted on a semi-log scale ( T-1) 
a 

C = Chun Huh constant (which is actually a complex function given by Huh 

( 1979), but varies only a little for many cases of practical interest 

Cb= tracer concentration at time tb (ML-3) 

C0 = normalized tracer concentration 

Ci,NAPL = concentration of tracer species 'i' in the nonaqueous phase at 

equilibrium ( ML-3) 

Ci,I =the concentration oftracer component 'i' in the injected tracer (ML-3) 

Ci, Water =concentrations of tracer species 'i' in the aqueous phase at equilibrium 

(ML-3) 

C0 =Initial tracer concentration in porous medium (ML-3) 

Cs= Concentration of standard (ML-3) 

C~ =alcohol concentration in oil (ML-3) 

C:' =alcohol concentration in water (ML-3) 

C~ = alcohol concentration in surfactant micelles ( ML-3) 

d<I> =potential drop across porous medium at steady state (ML-IT-2 ) 

d<I> j = potential drop across porous medium for species 'j' (ML-IT-2) 

.6.pT = Pressure drop across the transducer (ML-IT-2 ) 

f N =fraction of NAPL recovered during remediation 
p 
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y = Interfacial tension ( MT-2) 

Yi =activity coefficient of tracer 'i' at infinite dilution 

H =Head loss across the porous medium (L) 

H 0 = hydraulic gradient across porous medium 

k =permeability of porous medium (L2
) 

kri =Relative permeability of phase 'i' 

Kd = Distribution coefficient and this is equal to the slope of the linear 

adsorption isotherm ( M-1L3) 

Ki =partition coefficient of tracer species 'i' 

Km = ratio of the mole fraction of the compound in the micellar pseudo-phase to 

the mole fraction of the compound in the aqueous pseudo-phase. 

Kk,w =partition coefficient for tracer species 'i' with NAPL and water 

K~ = partition coefficient of alcohol between oil and water 

K~ = partition coefficient of alcohol between surfactant micelles and water 

L =length of porous medium (L) 

Mi = mass of tracer injected (M) 

MSR = molar solubilization ratio 

µ=viscosity of flowing fluid (ML-lT-1) 

NP = volume of NAPL recovered during surfactant remediation ( L3) 

<!> = porosity of soil 

Q = flow rate through porous medium ( L3T-1) 

Qi =flow rate of phase 'i' at steady state (L3T-1) 

r =radius of soil column (L) 
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Rf = retardation factor 

Pa= density of alcohol (ML-3) 

Pb =bulk density of soil (ML-3) 

PN =density of NAPL (ML-3) 

Pw =density of water (ML-3) 

Pj =Density of fluid flowing through the core ( ML-3
) 

Ps =density of tracer solution (ML-3) 

Px =Density of fluid in the lines (ML-3) 

SN = residual saturation of NAPL in porous medium 

SN,cmc = apparent solubility of a contaminant in moles per liter at the CMC 

(Mol.L-3) 

SN,mic = apparent solubility of a contaminant in moles per liter at surfactant 

concentrations greater than the CMC (Mol.L-3) 

er = solubilization parameter 

ercme =contaminant solubilization in microemulsion (ML-3) 

ere =standard deviation in concentration (ML-3) 
s ' 

erw
1 

=standard deviation in weight of alcohol added (M) 

erw 
2 

= standard deviation in weight of water added (M) 

erp =standard deviation in density measurements ( ML3) 

erv = standard deviation in pore volume estimation ( L3) 
p 

erwsat =standard deviation in weight of saturated column (M) 

erw dry =standard deviation in weight of dry column (M) 

erPw =standard deviation in density measurements (ML-3) 
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O'sN =standard deviation in NAPL saturation. 

crw =standard deviation in weight of saturated column (M) sn 

crw = standard deviation in weight of dry column (M) 
sat 

O'p =standard deviation in density measurements (ML-3
) 

O'K =standard deviation in partition coefficient measurements. 
I 

crvw =standard deviation in measurement of water volume (L3
). 

O'y N = standard deviation in measurement of NAPL volume ( L3 
). 

0'0 = NAPL solubilization parameter 

crw = water solubilization parameter 

crc = standard deviation in measurement of concentrations measured using a GC 

tb = time at which tracer response becomes linear on a semi-log scale (T) 

t0 =normalized time or pore volumes injected 

ti= first temporal time moment of tracer species 'i' (T3) 

VA= volume of alcohol (L3) 

V~ = volume of alcohol in oil ( L3) 

v: =volume of alcohol in water (L3) 

V~ = volume of alcohol in surfactant ( L3) 

V ds = tracer slug size ( L3) 

V f = the cumulative volume at which the tracer test is terminated ( L3) 

V 0 =volume of oil (L3) 

Vme =Volume of microemulsion (L3) 

VN =Volume ofNAPL solubilized (L3) 

461 



VP =pore volume of soil pack ( L3) 

Vs = Volume of surfactant ( L3) 

V w = Volume of water solubilized ( L3
) 

V wa = molar volume of water 

V wp = volume of water produced during the NAPL flood ( L3) 

V np =volume ofNAPL produced during the waterflood (L3
) 

V NAPL =volume of NAPL at residual NAPL saturation (L3) 

V w =the volume of the aqueous phase ( L3) 

V = first temporal volume moment of soil column (L3) 

Vs = tracer slug size ( L3) 

v* =movable pore volume of soil medium (L3) 

Vi= first temporal volume moment of tracer species 'i' (L3) 

V f = the cumulative volume at which the tr~cer test is terminated ( L3) 

VP= first temporal volume moment of partitioning tracer (L3) 

V n = first temporal volume moment of conservative tracer ( L3) 
I 

V 0 = apparent volume of NAPL solubilized measured using volumetric 

measurements 

W dry = weight of dry column 

W sat = weight of saturated column 

W sn = weight of soil pack at residual NAPL saturation (M) 

W sf = weight of soil pack after surfactant remediation (M) 

w a = weight of alcohol added (M) 

W w = weight of water added (M) 
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xi =mole fraction of tracer 'i' in solution 

Xa = mole fraction of the contaminant in the aqueous pseudo-phase 

Xm = mole fraction of the contaminanant in the micellar pseudo-phase 

463 



Appendix: A 

GC ERRORS IN REPRODUCIBILITY 

The standards are mixed by weight using the following formula; 

Cs = Concentration of standard 

w a = weight of alcohol added 

W w = weight of water added 

Ps = density of tracer solution 

(A.1) 

The uncertainty in measurement can be estimated using the following 

formula; 

2 2 2 2 
crcs - O'wl crw2 CJ'p -----+--+-c; w[ w~ p2 

crc = standard deviation in concentration s 

crw1 =standard deviation in weight of alcohol added (5 mg) 

crw 2 = standard deviation in weight of water added (0.01 g) 

CJ'p = standard deviation in density measurements (0.005 glee) 

Using the above, crc = 0.026 or 2.6%. 
s 

ERRORS IN PORE VOLUME MEASUREMENT BY MASS BALANCE 

The formula for determining the pore volume of a soil pack is; 
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Wsat - W dry v =----"-
p Pw 

VP = pore volume of soil pack 

W sat = weight of saturated core 

W dry = weight of dry core 

(4.5) 

The uncertainty in measurement can be estimated using the following 

formula; 

av = standard deviation in pore volume estimation 
p 

CJw sat = standard deviation in weight of saturated column (0.01 g) 

aw dry =standard deviation in weight of dry column (0.01 g) 

CJPw =standard deviation in density measurements (0.005 glee) 

Using the above, CJy = 0.005 or 0.5% 
p 

(A.3) 

ERRORS IN RESIDUAL TCE SATURATION MEASUREMENT BY MASS BALANCE 

The formula for determining the pore volume of a soil pack is; 

(4.19) 
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SN = residual ~APL saturation 

W sn = weight of soil pack at residual N APL saturation 

PN = density of NAPL 

Pw = density of N APL 

VP = pore volume of soil pack 

W sat = weight of saturated core 

W dry = weight of dry core 

The uncertainty in measurement can be estimated using the following 

formula; 

(A.4) 

cr sN = standard deviation in NAPL saturation. 

crw =standard deviation in weight of saturated column (0.01 g) sn 

crw t =standard deviation in weight of dry column (0.01 g) sa 

crv =standard deviation in pore volume estimation (0.5% of pore volume) p 

O'p =standard deviation in density measurements (0.005 glee) 

Using the above, O"sN = 2.5% 

ERRORS IN STATIC PARTITION COEFFICIENT MEASUREMENT 

The formula for determining the static partition coefficient is; 
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(4.24) 

Ki =partition coefficient of tracer species 'i' 

Ci,DNAPL = concentration of tracer species 'i' m the nonaqueous phase at 

equilibrium. 

Ci, Water = concentrations of tracer species 'i' in the aqueous phase at equilibrium 

V w = the volume of the aqueous phase 

V N = the volume of the NAPL 

Ci,I =the concentration of tracer component 'i' in the injected tracer. 

The uncertainty in measurement can be estimated using the following 

formula; 

cr2. =(avw)2cr2 +(avN)2cr2 +(aci)2cr2. + 
Kl "OK Vw "OK VN "OK cl 

c aci,1 )2 cr2 
oK Ci,I 

crK. = standard deviation in partition coefficient measurements. 
1 

crvw =standard deviation in measurement of water volume (0.05 cc). 

crvN =standard deviation in measurement ofNAPL volume (0.05 cc). 

(A.5) 

crc =standard deviation in measurement of concentrations measured using a GC 

( 6.1 % of measured concentration). 

Using the above, the error varied between 10-12 % . 
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