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Mid-infrared absorption spectroscopy in the “molecular fingerprint” region (λ = 

2.5–15 µm) is widely used for in situ analysis of chemical and biological samples. Due to 

the diffraction limit, traditional far-field techniques such as Fourier-transform infrared 

spectroscopy cannot take sample spectra with nanometer spatial resolution. To conduct 

nanoscale infrared measurement, in photoexpansion nano-spectroscopy, an atomic force 

microscope cantilever is used as a light absorption detector, in the way that the cantilever 

is deflected proportionally by the localized sample heating and expansion induced by 

infrared pulses. Previous studies of this new opto-mechanical technique demonstrated its 

powerfulness and simplicity, but relied on using high-power laser pulses to produce 

detectable cantilever deflection signal and it was difficult to measure ultra-thin samples 

below ~100 nm. In addition, the spatial resolution, though improved, is limited by the 

thermal diffusion length inside samples.  

This dissertation presents a set of experiments which have substantially improved 

photoexpansion nano-spectroscopy in terms of sensitivity and spatial resolution, and have 

explored other aspects of this technique. For the first time, high-quality photoexpansion 

spectra have been obtained from molecular monolayers using low-power infrared pulses 

from a tunable quantum cascade laser. The orders of magnitude improvement in 

sensitivity is due to the two methods we implemented: mechanical enhancement by the 
 vii 



cantilever resonance, and optical enhancement by the metalized cantilever tip. The spatial 

resolution is also improved and now only determined by the locally enhanced field below 

the tip. After that, the dissertation shows the spectral background signal, which comes 

from infrared absorption by the substrate and tip, can be suppressed using a second laser. 

We have also investigated the nonlinearity of tip-sample interaction, and are able to 

detect sample photoexpansion force at the heterodyne frequency. In the last part of this 

dissertation, we use our technique to image local optical energy distribution and ohmic 

heat dissipation of the metal nanoantennas.  
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Chapter 1  

Overview: Vibrational Nano-Spectroscopy 

 

It is critical for many applications to identify and analyze chemicals at the 

nanoscale. Traditional far-field vibrational spectroscopy is a powerful analytical tool but 

only achieves diffraction-limited spatial resolution. The work presented in this 

dissertation focuses on developing a new nano-spectroscopy technique which is capable 

of characterizing infrared (IR) absorption of individual molecules non-invasively under 

ambient conditions.   

     

1.1 MOLECULAR VIBRATION AND FINGERPRINT 

 

Molecules are the building blocks of chemicals. They are composed of atoms and 

held together by chemical bounds. Due to its multiple degrees of freedom, a molecule can 

vibrate in many ways at different resonant frequencies, e.g. stretching, twisting and 

wagging, which are referred to as vibrational modes [1]. The molecular vibrational 

frequencies lie within the range of approximately 20–120 THz, corresponding to mid-IR 

wavelength λ = 2.5–15 µm (or expressed in wavenumber 𝜐̅𝜐  = 667–4000 cm-1). The 

specific values also depend on the mass of atoms and strength of bonds (single, double or 

triple). Therefore vibrational frequencies are unique parameters for each type of molecule 

and can be used as molecular fingerprint for chemical identification.  

 1 



 

Figure 1.1: Vibrational energy level diagram for an asymmetric diatomic molecule at 
the ground electronic state, with the transitions via IR absorption (red arrow) 
and Raman scattering (purple arrow) illustrated.   

 

To further explain molecular vibration, we start from the simplest case, an 

asymmetric diatomic molecule. Its vibrational energy level diagram at the ground 

electronic state (𝐸𝐸0 ) is schematically shown in Fig. 1.1. The horizontal coordinate 

represents the separation between the two atoms, and the vertical coordinate is the energy 

level. The potential energy curve (blue) is formed as the consequence of interatomic 

attractive and repulsive interaction, with its second derivative being the effective spring 

constant of the chemical bond. Inside the potential curve, there exist multiple vibrational 

states (𝑛𝑛0,𝑛𝑛1, 𝑛𝑛2 …). The width of each state stands for the range in which the two atoms 

are allowed to separate during vibration (stretching in this particular case), and it 

increases with the mode number. The center of each state (𝑟𝑟0, 𝑟𝑟1, 𝑟𝑟2 …) stands for the 
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equilibrium position, in other words is the ‘volume’ of the molecule. A notable feature of 

this potential curve is it’s asymmetric, which results in the right-shift of the central 

position (molecular expansion) once the molecule is excited to a higher vibrational state. 

This simple fact is the starting point of the spectroscopy work presented in this 

dissertation. In the next section, we will discuss several optical techniques that can excite 

and detect molecular vibrations. 

 

1.2 VIBRATIONAL SPECTROSCOPY 

 

A vibrational mode can be excited optically when a molecule is polarized by the 

oscillating electric field of incoming light at its vibrational frequency. In this case the 

energy of a mid-IR photon is absorbed, and the molecule jumps to higher energy state 

from the ground state. This transition is illustrated by the red arrow in Fig. 1.1, with the 

possibility described by the IR absorption cross section 𝜎𝜎𝐼𝐼𝐼𝐼, which is typically on the 

order of 10-18–10-21 cm2 molecule-1 [2]. Another related parameter used at macroscopic 

scale is the absorption coefficient 𝛼𝛼 = 𝑁𝑁𝜎𝜎𝐼𝐼𝐼𝐼, where N is the molecule number density in 

[molecule cm-3]. The absorption coefficient 𝛼𝛼 is also proportional to the imaginary part 

of refractive index 𝜅𝜅 by 

 4π κα
λ
⋅

=  (1.1) 

where λ is light wavelength. Equation (1.1) can be deduced from the definition of 

electromagnetic plane wave   

 
2 21( )

2
0 0 0

i n i d i nddikdE e E e E e e
π πk α
λ λ

+ −
= = ⋅  (1.2) 
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where E0 is the amplitude of electric field, k is the wave vector, 𝑛𝑛 + 𝑖𝑖𝑖𝑖 is the complex 

refractive index, and d is the wave propagation distance. From Eq. (1.2), we know that 𝛼𝛼 

represents the attenuation constant for light intensity and its value can be determined 

experimentally according to the Beer–Lambert law     

 0
d

dI I e α−=  (1.3) 

where Id and I0 are the transmitted and incident light intensity, respectively.  

A plot of the absorption coefficient as a function of light wavelength 𝛼𝛼(𝜆𝜆) 

represents an IR absorption spectrum, on which one could see many peaks (or dips) 

corresponding to the excited vibrational modes of a molecule. For solids samples in 

which molecules have complicated structure and strongly interact with each other, closely 

neighboring absorption peaks are broadened to form wide absorption bands, while for 

simple gas molecules there are sharp and isolated absorption lines shown on the 

spectrum. 

For practical IR spectra acquisition, Fourier transform infrared (FTIR) 

spectroscopy [3] has been the most widely used technique. Absorption spectra of 

numerous chemicals have been collected to establish extensive reference databases. FTIR 

is based on the interference detection over wide spectral range simultaneously. The light 

source is a Globar usually made of SiC. When electrically heated up to over ~1300 K, it 

emits similar to black-body radiation which covers all the IR wavelengths with moderate 

intensity. This broadband beam then splits into two paths. On one path, light is partially 

absorbed by the sample through transmission or reflection, while on the other path 

(reference path), light is reflected by a fast moving mirror. In the end, the two beams 

interfere at the photodetector position. At each mirror position, constructive interference 

only occurs for some wavelengths. By recording the photodetector signal as a function of 
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mirror positons, which are then Fourier transformed to the wavelength domain, an IR 

absorption spectrum is obtained. On the FTIR spectrum, the vertical coordinate stands for 

the absorbance that is defined by 

 10
0

log 0.43dIA d
I

α= − ≈ ⋅ ⋅  (1.4) 

Compared to the monolithic spectrometer, FTIR has the advantages of fast spectra 

acquisition and better signal-to-noise ratio improved by a factor of √N, where N is the 

number of repeated measurements [3]. 

Vibrational transitions via IR absorption must obey selection rules [2], which 

prohibits IR spectroscopy from probing all the vibrational modes. For instance, nonpolar 

molecules do not have IR active modes [2]. A complimentary optical method to excite 

molecular vibration with different selection rules is Raman scattering. This process 

occurs when high-energy photons (from near-IR to ultraviolet) are inelastically scattered 

by the molecules. First, oscillating electric field of incident light polarizes a molecule at 

very high frequency to a virtual energy level (see the purple arrow in Fig. 1.1). Then it is 

possible for this molecule polarization to couple with the vibrational states different from 

the initial state. If that happens, photons will be re-emitted but with the energy differs by 

the exact amount needed to excite that vibration mode. Since most molecules occupy the 

ground vibrational state by Boltzmann distribution, usually the scattered photons have 

lower energy (Stokes scattering). Raman scattering is a very inefficient process with the 

typical Raman cross section σRaman being only ~10-30 cm2 molecule-1 [2]. One advantage 

of Raman spectroscopy is it uses one monolithic laser source to excite all the allowable 

vibrational modes of molecules. To form a Raman spectrum, the scattered photons which 

have different wavelengths are dispersed to a photodetector array (CCD or CMOS) by a 
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diffraction gating, so that each detector element records light intensity at the perspective 

wavelength simultaneously.  

  

1.3 CURRENT NANO-SPECTROSCOPY TECHNIQUES 

 

In conventional spectroscopy, light is focused onto a sample in free space by lens 

or focusing reflector. Due to the far-field diffraction limit [3], the dimension of the 

focused spot, which determines lateral resolution for spectral measurement, cannot be 

smaller than approximately λ/2n, where n is the refractive index. This prohibits powerful 

chemical analysis of FTIR and Raman from being applied on nanoscale research objects, 

for example investigating how drug molecules target and react inside a diseased cell. 

Other important nano-samples in material and life sciences include but not limited to 

carbon nanotube (5–50 nm in diameter), copolymer (<50 nm in domain spacing), protein 

(<50 nm in diameter), virus (20–400 nm in diameter) and DNA strands (only 2.5 nm in 

diameter). Vibrational spectroscopy technique with nanometer spatial resolution (nano-

spectroscopy) therefore is highly desired. In this section, we briefly discuss current nano-

spectroscopy techniques which include tip-enhanced Raman Spectroscopy (TERS), 

scattering-type near-field scanning optical microscopy (s-NSOM), and IR 

photoexpansion nano-spectroscopy (also termed as AFM-IR). All of the three techniques 

operate by using a sharp scanning probe whose dimension is only 5–30 nm in radius 

(usually an atomic force microscopy (AFM) tip). The spectral signal comes from local 

tip-sample interaction, and by raster scanning the sample at selected wavelengths, 

chemical images can be generated. 
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Currently, TERS [4–8] is the only vibrational spectroscopy technique that has 

been demonstrated with single-molecule sensitivity, despite the fact that 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is by 

many orders of magnitude lower than 𝜎𝜎𝐼𝐼𝐼𝐼. Such extreme sensitivity benefits from the 

unique signal enhancement mechanisms that are not available with mid-IR absorption 

measurement. First, local plasmon resonance is excited in the metallized AFM tip in the 

visible range. The tip, in the first-order approximation, can be treated as a metal sphere 

with complex permittivity 𝜀𝜀𝑀𝑀  surrounded by the dielectric medium with 𝜀𝜀𝐷𝐷~1 . The 

metal sphere’s polarizability will reach a maximum value when 𝑅𝑅𝑅𝑅(𝜀𝜀𝑀𝑀) = −2𝜀𝜀𝐷𝐷 

(Clausius–Mossotti relation) [9,10], which can only be satisfied in the visible range 

contributed from the interband transition of electrons. Second, the tip enhancement works 

twice for both the incident and the Raman scattered photons. As a result, the Raman 

signal is proportional to the fourth power of the enhancement of local electric field 

|𝐸𝐸/𝐸𝐸0|4. In contrast, the dependence is only |𝐸𝐸/𝐸𝐸0|2 for mid-IR absorption.   

S-NSOM [11–14] is the most common technique for mid-IR spectroscopy and 

microscopy at the nanoscale. This technique can produce chemical images in mid-IR with 

spatial resolution of ~λ/300 or better from samples as thin as a monolayer. In s-NSOM, 

incident light induces a strong electric dipole in a metalized AFM tip, which in turn 

induces an image dipole in the local sample, whose polarizability is a function of its 

complex permittivity 𝜀𝜀𝑠𝑠. The local 𝜀𝜀𝑠𝑠  is then encoded in the far-field radiation of the 

coupled tip-sample dipoles (referred to as the tip signal) and measured by a 

photodetector. Because the tip signal has highly nonlinear dependence on the tip-sample 

separation, despite being very small, it can be distinguished from the strong background 

light scattered by the tip shaft and the nonlocal sample, via tapping the tip at frequency ω 

but demodulating the photodetector signal with sophisticated homodyne- or heterodyne-

based optical setups. From the collected s-NSOM amplitude and phase signal, the 
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imaginary part is computed, which approximates the imaginary part of refractive index 𝜅𝜅  

under the low resonance approximation [12,15].   

IR photoexpansion nano-spectroscopy, which is presented in this dissertation, is 

the third technique. Its principle is based on the simple facts that a sample will experience 

quick thermal expansion upon IR pulse excitation, and the induced expansion force 

acting on an AFM tip will lead to the cantilever deflection with an amplitude proportional 

to sample’s absorption. By reading cantilever deflection from the built-in position 

detector of AFM when scanning laser wavelength, one obtains a photoexpansion 

spectrum which is equivalent to a mid-IR absorption spectrum. The challenge of this new 

opto-mechanic approach is to make thin sample expansion detectable while not causing 

photothermal damage. The first demonstration carried out in 2005 by Dazzi. et al. [16] 

used high power laser pulses yet could only be applied to relatively thick samples (on the 

order of 100 nm). With some tricks we have developed in this dissertation [17,18], now 

this technique is capable of acquiring monolayer expansion signal from a sample area of 

sub 100 nm2. Photoexpansion nano-spectroscopy also features simple setup without using 

an external mid-IR photodetector (which works at the cryogenic temperature).    

 

1.4 DISSERTATION OVERVIEW 

 

The dissertation is organized as follows. 

In Chapter 2, we introduce some basic mechanics of AFM cantilever which is 

related to photoexpansion measurement. We first discuss the origin of sample 

photoexpasion force. Upon force action, the cantilever starts to oscillate. We then explain 

how the cantilever oscillation is monitored and calibrated in an AFM system. After that, 
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different cantilever resonant modes are examined, in particular those excited when the tip 

is in contact with sample surface. To know the detection limit of AFM, cantilever thermal 

noise is briefly discussed in the last section. 

Chapter 3 reports the first experiment to improve photoexpansion sensitivity by 

matching IR pulses from a quantum cascade laser (QCL) with the cantilever resonance. 

Photoexpansion spectra are acquired with low sample heating. A harmonic oscillator 

model is used to estimate cantilever deflection amplitude when in resonance.    

Chapter 4 reports the first experiment to demonstrate monolayer sensitivity by 

employing both cantilever resonance enhancement and tip enhancement. Detailed 

analysis of tip enhancement in mid-IR region is provided.  

In Chapter 5, we propose to use a second QCL to suppress high background 

signal presented in the monolayer spectra acquired in Chapter 4. This method could help 

to demonstrate higher detection sensitivity in the future.  

In Chapter 6, we explore the nonlinear interaction between sample 

photoexpansion and cantilever’s self-oscillation, and are able to generate sample 

photoexpansion signal at the heterodyne frequency. 

Chapter 7 demonstrates that photoexpansion microscopy can be used for mapping 

local light intensity distribution and ohmic heating of plasmonic metasurface.  

Chapter 8 concludes the work presented in this dissertation and briefly discusses 

the future of this technique. 
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Chapter 2  

AFM Basics for Photoexpanison Measurement 

 

2.1 INTRODUCTION 

 

Upon mid-IR photon absorption, molecules transit into an excited vibrational 

state. In a very short time (~ 10 ps [19]), the excited vibrational mode non-radiatively 

dissipates into other vibrational modes of lower energies as well as to vibrational and 

kinetic modes of the surrounding molecules and the substrate. Because of the 

anharmonicity of molecular vibrations as illustrated in section 1.1, the effective 

molecular volume increases. On a macroscopic scale this leads to sample’s thermal 

expansion. 

At the time of photoexpansion, if an AFM tip is in contact with the sample, an 

expansion force will be exerted on the tip and results in cantilever deflection. Though 

AFM is a sensitive instrument, it is still difficult to measure the cantilever deflection 

caused by thin film (<1 µm) photoexpansion. The linear thermal expansion coefficient for 

typical polymers is on the order of 10-4 K-1 [20]. This means for a 100 nm-thick film if 

heated by 10 K, the expansion is only 1 Å. In principle, in order to have a detectable 

photoexpansion signal, the expansion force needs to do a work to the cantilever at least 

greater than the thermal noise energy kBT. Much effort of this dissertation has been put 

to generate adequately large photoexpasion force from ultra-thin samples for the given 

laser power, and efficiently translate the sample photoexpansion to AFM cantilever 

deflection. Before we discuss those results, it is necessary to introduce some basic 

cantilever mechanics related to the photoexpansion measurement. The topics include the  
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Figure 2.1: (a) Mechanism of AFM cantilever deflection during sample 
photoexpansion. Blue solid curve shows the dependence of the interaction 
force between the sample surface and the AFM cantilever tip on tip-surface 
distance (z). Red dashed curve is shifted along z-axis by sample 
photoexpansion ∆δ. FT is the photoexpansion force acting on the AFM 
cantilever; z0 is the position of the AFM cantilever in contact mode. The 
figure is not drawn to scale. (b) Illustration of contact between a tip and an 
elastic sample plane. The repulsive tip-sample force is generated by the 
sample indentation δ.    

 

origin of photoexpanison force, cantilever resonances, the effect of sample coupling on 

the cantilever behavior and lastly cantilever’s thermal noise. 

 

2.2 ORIGIN OF PHOTOEXPANSION FORCE 

 

The origin of photoexpansion force can be explained intuitively in Fig. 2.1(a). 

The blue curve represents the dependence of tip-sample interaction force F on their 

separation z, with z0 being the equilibrium position of the AFM tip in contact mode. Upon 

IR pulse excitation, sample photoexpansion happens on a time scale much shorter than 

the mechanical response time of the AFM cantilever (~5 µs). This means the tip’s 
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position does not change immediately after photoexpansion. Thus the force curve is 

shifted along z-axis to the red one by the amount of sample expansion ∆𝛿𝛿. As a result, 

the tip feels a larger repulsive force at z0 and the difference FT is the photoexpansion 

force.  

Next, we quantify the photoexpansion force. Here we consider the tip as a rigid 

sphere with radius R, and the sample as an elastic plane (see Fig. 2.1 (b)). According to 

the Derjaguin-Muller-Toporov (DMT) model [21,22], the AFM tip has adhesive elastic 

contact with the sample surface. That is to say when in contact, the middle part of the tip 

feels repulsive force due to sample’s elastic deformation, while the outside wall of the tip 

(which is not in direct contact) is attracted to the sample by van der Waals force. The 

total tip-sample interaction force is given by  

 * 1/2 3/2
0 02

0

4( ) ( )          ( )
3 6

HRF z E R a z z a
a

= − − ≤  (2.1) 

where 𝑎𝑎0 is introduced as the effective intermolecular distance. It means at 𝑧𝑧 = 𝑎𝑎0, the 

tip just jumps out of the contact with sample surface, hence 𝐹𝐹(𝑎𝑎0) = −𝐻𝐻𝐻𝐻/6𝑎𝑎02 

represents the pull-off force from sample adhesion. 𝛿𝛿 = 𝑎𝑎0 − 𝑧𝑧  stands for the 

indentation. 𝐸𝐸∗  and 𝐻𝐻  are the reduced Young’s modulus and Hamaker’s constant, 

respectively. These two parameters are determined by material. As we can see from Eq. 

(2.1), the interaction force has nonlinear dependence on the indentation 𝛿𝛿 . Assuming 

sample expansion ∆𝛿𝛿  is much smaller than 𝛿𝛿 , the photoexpansion force 𝐹𝐹𝑇𝑇  can be 

derived from Eq. (2.1) in the first-order approximation to be 

 * 1/2 1/22TF E R δ δ≈ ∆  (2.2) 

By plugging typical parameters into Eq. (2.2), we find 𝐹𝐹𝑇𝑇 is on the order of 100 pN.   
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2.3 DETECTION AND CALIBRATION OF CANTILEVER DEFLECTION 

 

 

Figure 2.2: Schematic of AFM configuration. The cantilever deflection is measured by 
an optical level system which is composed of a visible laser beam and a 
position sensitive photodetector (PSPD). 

 

The photoexpansion force pushes an AFM cantilever up to produce an initial 

cantilever deflection. The cantilever then undergoes linear oscillation around its 

equilibrium position. In AFM, cantilever motion is measured by the optical level system 

in which a visible laser beam is reflected from the backside of the cantilever to a position-

sensitive photodetector (PSPD) (see Fig. 2.2). The change of beam reflection angle thus 

is proportional to the cantilever deflection.  

PSPD is composed of four independent photodiodes (marked by ‘1–4’) with each 

responding differently to its overlap with the laser beam spot. By doing some math, the 

PSPD Voltage VPSPD can quantify either flexural (𝑉𝑉1 + 𝑉𝑉2 − (𝑉𝑉3 + 𝑉𝑉4), ‘A-B’ signal) or 

torsional ( 𝑉𝑉1 + 𝑉𝑉3 − (𝑉𝑉2 + 𝑉𝑉4) , ‘C-D’ signal) deflection of the cantilever. When 
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performing photoexpansion spectroscopy/microscopy with IR pulses, the AC component 

of VPSPD represents sample absorption signal while the DC component is used as the 

contact-mode feedback to scan sample topography.          

It is worth noting that what the optical level directly measures is not the cantilever 

deflection amplitude but the cantilever inclination (namely “optical sensitivity” [23]). 

Under the static condition, i.e. when the cantilever is deflected by a constant force, these 

two quantities are linearly related by [24] 

 
2 ( )( )
3
L dz Ldz L

dx
=  (2.3) 

where L is the cantilever length, so 𝑑𝑑𝑑𝑑(𝐿𝐿) stands for cantilever deflection amplitude at 

the tip end and 𝑑𝑑𝑑𝑑(𝐿𝐿)/𝑑𝑑𝑑𝑑 stands for cantilever inclination, according to the coordinate 

system shown in Fig. 2.2. 

Practically, the calibration between PSPD voltage VPSPD and cantilever deflection 

amplitude 𝑑𝑑𝑑𝑑(𝐿𝐿) can be obtained by performing a force-distance curve measurement on 

hard sample surface, e.g. Si wafer. During the force curve acquisition, the cantilever is 

brought into contact with sample by the piezoelectric transducer, with VPSPD being 

recorded as a function of the piezo position. The dependence will be linear in the contact 

region because the hard sample surface does not deform. On the other hand, the piezo 

positon change during contact is considered to be the same as 𝑑𝑑𝑑𝑑(𝐿𝐿), so a calibration 

coefficient in [nm V-1] between VPSPD and 𝑑𝑑𝑑𝑑(𝐿𝐿) is established. This number, however, 

is only valid for the first bending mode of the cantilever in free space. To deduce the 

deflection amplitude in a photoexpasion experiment, in which the cantilever is in contact 

with sample and usually operated at the second or higher-order bending mode, we need to 

discuss the cantilever resonances first. 
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2.4 CANTILEVER BENDING MODES 

 

2.4.1 In free space 

Here we only discuss rectangular-shaped cantilevers. A typical contact-mode 

AFM cantilever used in our experiments has the dimension of L × w × t = 450 × 50 × 2 

µm and a spring constant of 0.2 N m-1 (ContGB-G, Budget Sensors). Neglecting the tip 

mass, the AFM cantilever is treated as a homogeneous rectangular beam with one end 

fixed and the other end (tip end) free-standing or coupled to sample surface. As long as 

𝑡𝑡 ≪ 𝑤𝑤, the cantilever’s flexural deflection is described by the Euler–Bernoulli equation 

[25] using the coordinate system illustrated in Fig. 2.2   

 
4 2

4 2 0z zEI A
x t

ρ∂ ∂
+ =

∂ ∂
 (2.4) 

where E is the Young’s modulus of cantilever material (usually made of Si or Si3N4), ρ is 

the mass density, A = wt stands for the cross-section area, and I = wt3 / 12 is the area 

moment of inertia. To solve Eq. (2.4), one could assume a general solution with the 

harmonic time dependence as 𝑧𝑧(𝑥𝑥, 𝑡𝑡) = 𝑧𝑧(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, so that the spatial and time variables 

are separated. The analytical spatial solution of Eq. (2.4) is quoted [25] as  

 

0( ) ((cos cosh )

cos cosh (sin sinh ))
sin sinh

n n n n

n n
n n

n n

z x z x x

L L x x
L L

β β

β β β β
β β

= −

+
− −

+

 (2.5) 

where zn
0 and 𝛽𝛽𝑛𝑛 are the vibrational amplitude and the wave number at the nth bending 

mode, respectively. In the case of free-standing tip end, the corresponding boundary 

conditions are 
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 (2.6) 

which yields the characteristic equation of βn to be  

 cos cosh 1 0n nL Lβ β + =  (2.7) 

The solutions for Eq. (2.7) are obtained numerically. β1L = 1.875, β2L = 4.694 and β3L = 

7.855 for the first three bending modes. With these, the resonant frequencies are readily 

given by 

 
2

2 1/2

( )
2 ( / )

n
n

Lf
L A EI

β
π ρ

=  (2.8) 

The cantilever shapes for the first three bending modes in free space are plotted in 

Fig. 2.3(a) by using Eqs. (2.5) and (2.7). The respective resonant frequencies are 

calculated using Eq. (2.8). It is noted that the optical sensitivity (slope at the tip end) 

increases with the mode number. But in the experiment, VPSPD may also be affected by 

the reflected laser beam position on the cantilever. The beam spot size is about 30 µm in 

diameter in our AFM system. When operating at higher-order mode, one should avoid 

aligning the beam to the minimum slope region. 

To excite cantilever bending modes, it is required that the input energy has 

Fourier components at those resonant frequencies. There are three types of excitation in 

the photoexpansion measurement. First, the 𝑘𝑘𝐵𝐵𝑇𝑇 energy a cantilever acquires from room 
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Figure 2.3: Cantilever resonances in free space. (a) Cantilever shape for the first three 
bending modes calculated using Eqs. (2.5) and (2.7). The corresponding 
eigenfrequencies are calculated using Eq. (2.8) for a ContGB-G cantilever. 
(b) Measured noise spectrum of that cantilever.  

 

temperature will excite all the resonant modes, which contributes to the thermal noise. 

Figure 2.3 (b) shows the noise spectrum of a ContGB-G cantilever measured in free 

space, with the resonance frequencies close to the calculated value in Fig. 2.3(a). Second, 

pulsed expansion force that is repeated much slower than the cantilever resonances will 

also excite all the modes. This case corresponds to when a mid-IR source with low pulse 

repetition frequency is used. Since the vibrational energy of the cantilever due to the 

force action is distributed to all the modes, it is not efficient. And third, particular 

cantilever mode is excited by expansion force directly repeated at that mode’s frequency. 

This case corresponds to when a mid-IR source with high and adjustable pulse repetition 

frequency is used. 

Another two important cantilever parameters related to photoexpansion 

measurement are the effective spring constant 𝑘𝑘𝑛𝑛 and the cantilever quality factor (Q-
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factor). The static spring constant is calculated by 𝑘𝑘1 = 𝐸𝐸𝑤𝑤3𝑡𝑡/4𝐿𝐿3 [25]. At higher order 

modes, the effective spring constant becomes 𝑘𝑘𝑛𝑛 = (𝑓𝑓𝑛𝑛/𝑓𝑓1)2 ∙ 𝑘𝑘1, where fn is given in Eq. 

(2.8). So the cantilever becomes stiffer at higher modes, which means smaller cantilever 

deflection amplitude upon the same force action. Q-factor characterizes the ability of a 

cantilever to build up resonant deflection amplitude, and is determined by the energy loss 

due to various mechanisms, including air damping and support loss when in contact with 

the sample, so 1 𝑄𝑄⁄ = 1 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄ + 1 𝑄𝑄𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄ + 1 𝑄𝑄𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒⁄  [26]. 
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Figure 2.4:  Cantilever resonances when in contact with the sample. (a) The vertical and 
lateral tip-sample interactions are approximated with the effective spring 
constants k* and k*Lateral.  (b) Cantilever shape for the first three bending 
modes when k*/k1=1,000, calculated using Eqs. (2.5) and (2.10).   

 

2.4.2 In contact with sample 

 

To measure sample photoexpansion, the AFM tip needs to be in contact with the 

sample. The tip-sample interaction force F(z) (Eq. (2.1)) results in an effective spring 

𝑘𝑘∗ = −𝑑𝑑𝑑𝑑(𝑧𝑧)/𝑑𝑑𝑑𝑑 attached to the cantilever with its physical picture presented in Fig. 

2.4(a). In this case, the boundary conditions changes to [25]  
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Accordingly, the characteristic equation for the wavenumber 𝛽𝛽𝑛𝑛 becomes 

 3
1
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−
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 (2.10) 

The 𝛽𝛽𝑛𝑛𝐿𝐿 values solved by Eq. (2.11) are larger than those of the free space case 

given by Eq. (2.6), and increase with 𝑘𝑘∗. For example, when 𝑘𝑘∗/𝑘𝑘1 = 1,000, we have 

β1L = 3.917, β2L = 7.007 and β3L = 10.012. This leads to two consequences: 

(a) Cantilever shape is changed. Using Eq. (2.6) with new 𝛽𝛽𝑛𝑛𝐿𝐿, the first three 

bending modes are plotted schematically in Fig. 2.4(b). As we can see, due to the tip-

sample interaction, the tip end of the cantilever is effectively clamped.    

(b) Cantilever resonances shift to higher frequencies according to Eq. (2.7). These 

are referred to as contact resonances. The frequency of n-th order contact resonance is 

between the n-th and (n+1)-th order free resonances [25]. Using the expression of tip-

sample interaction force in Eq. (2.1), the effective spring constant can be expressed as 
* * 1/2 1/22k E R δ= . One may expect that the contact resonant frequency will increase with 

the indentation 𝛿𝛿 (caused by stronger AFM setpoint force). In the experiments, 𝑘𝑘∗ is 

also affected by the adhesion force. That happens when the tip oscillates away from the 

sample surface. Figure 2.5 shows a force-distance curve measured on PMMA polymer 

film, in which the adhesion force reads to be 30 nN, while the setpoint force used is 10 

nN. For an inhomogeneous sample, adhesion can vary point by point due to different 

chemical composition or morphology, so is the contact resonance frequency. In addition, 

when the tip is raster scanning sample surface in the contact mode, the lateral force 

interaction is approximated with another effective spring constant 𝑘𝑘∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  (see Fig. 

2.4(a)), which will also shift cantilever resonance frequencies.      
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Figure 2.5: AFM Force-distance curve measured on a 300 nm-thick PMMA film. 
Sample adhesion force Fpull-off and contact mode setpoint force Fsetpoint are 
compared. 

 

2.4.3 Deduce cantilever deflection amplitude in contact resonance  

In our photoexpansion measurement, the cantilever typically operates at the 

second bending mode. To determine the deflection amplitude, we need to compare the 

slope of the tip end for the first free bending mode with the slope of the tip end for the 

second bending mode in contact with the sample. The procedure is described as follows.  

For the first free bending mode of the cantilever, the cantilever shape is given by 

Eq. (2.6) with β1L = 1.875. For the second bending mode in contact with the sample we 

need to take into account the force constant of the tip-sample interaction k*. Its value 

could be experimentally deduced by the resonant frequency shift from free space to 

sample contact. For a ContGB-G cantilever, we observe the frequency of the second 

bending modes shifts from ~90 kHz to ~200 kHz, which results in k* = 200 N m-1 and 

β2L ≈ 7 according to Ref. [25]. Since the PSPD voltage is only determined by the slope of 

the cantilever, we obtain  
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Figure 2.6: Comparing the cantilever deflection amplitude between the first bending 
mode in free space (black) and second bending mode in contact with the 
sample (red), with the same PSPD output voltage (slope of the tip end). 
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where K is the proportionality constant between PSPD voltage and the slope of the tip 

end i
i

x L

dz z
dx =

× . The derivatives can be calculated from Eq. (2.5). Comparing the 

derivatives in Eq. (2.11), we then obtain that z1 cantilever deflection in the first bending 

mode produces the same PSPD signal as the second bending mode with z2 ≈ z1/35 

deflection. This is also illustrated in Fig. 2.6 where the two modes have the same slope 

and the respective deflection amplitude z1 and z2 are compared. Finally, with the known 
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optical sensitivity obtained in section 2.3, we are able to convert PSPD voltage to the 

deflection amplitude z2 in nm. 

 

2.5 CANTILEVER THERMAL NOISE 

 

In thermal equilibrium, each cantilever mode has a mean thermal energy of 

1/2kBT = 13 meV [27], which makes the cantilever oscillate at a small amplitude. This 

limits the lowest signal level one could detect from AFM. The thermal noise amplitude at 

the n-th order bending mode is quoted [27] as 

 4
1

12
( )

B
n

n

k Tz
k Lβ

=  (2.12) 

Two conclusions could be made from Eq. (2.12): 

(1) Thermal noise is smaller for stiffer cantilevers as 𝑧𝑧𝑛𝑛 ∝ (𝑘𝑘1)−1/2. k1 is mainly 

determined by the ratio of cantilever width to the length as discussed 

previously.   

(2) Thermal noise drops quickly when the cantilever is in contact with sample or 

at higher order resonance. In both cases, the value of βnL increases and 

𝑧𝑧𝑛𝑛 ∝ (𝛽𝛽𝑛𝑛𝐿𝐿)−2. For a ContGB-G cantilever, k1 = 0.2 N m-1, 𝛽𝛽2𝐿𝐿 ≈ 7 (second 

contact resonance), hence we have z2 ≈ 10 pm. 
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Chapter 3  

Cantilever Resonance Enhanced IR Nano-Spectroscopy with QCL 

 

3.1 INTRODUCTION 

 

A sharp AFM tip alone does not necessarily guarantee nanometer spatial 

resolution for IR photoexpansion measurement. In 2000, Anderson [28] first proposed to 

use an AFM cantilever in contact mode as a light absorption detector. In his 

demonstration, the cantilever deflection followed the slowly-changed sample surface 

deformation induced by a FTIR broadband source chopped at 3 Hz. Nanoscale chemical 

characterization, however, is not likely to be achieved on his setup, because the long-time 

radiation (0.15 sec) will result in a considerably long thermal diffusion length which kills 

the spatial resolution. In that case, the cantilever could be deflected due to the heat 

diffused from the non-local sample.  

The key to achieve nanoscale resolution with an AFM tip is to heat the sample 

with short IR pulses, usually from a laser. Thermal diffusion length Ld is determined by 

sample’s heat diffusivity and the light pulse width as 

 d
kL
C

τ
ρ

= ⋅  (3.1) 

where k, ρ, and C are the thermal conductance, mass density and heat capacity of the 

sample, respectively, and τ is the duration of light pulse. For typical polymers k = 0.5 
  
 
Portions of this chapter have been published in Lu, F. & Belkin, M.A. Infrared absorption nano-
spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers, Opt. Express 19, 
19942 (2011). 
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W m-1 K-1 and ρC = 2 J cm-3 K-1 [20], we then have Ld < 100 nm for sub-100 ns pulses. 

In this regard, conventional mid-IR laser sources like CO2 laser and optical parametric 

oscillator (OPO) which can output 10 ns-long pulses are good candidates. They have 

been successfully employed to perform nanoscale IR photoexpansion spectroscopy 

[16,29,30] and the broadly tunable OPO has been integrated into a commercial AFM-IR 

system (nanoIRTM, Anasys Instruments). However, the disadvantage of using these lasers 

is they have very low pulse repetition frequency compared to the AFM cantilever 

resonances, so the detection sensitivity is limited.  

In this chapter, we focus on improving the photoexpansion sensitivity with 

cantilever resonance enhancement. This is achieved when the sample is illuminated by IR 

pulses from a quantum cascade laser (QCL) repeated precisely at the cantilever resonant 

frequency. We can acquire high-quality absorption spectra with much lower sample 

heating than that induced by a CO2 laser or OPO.  

 

3.2 PROTOTYPE OF PHOTOEXPANSION NANO-SPECTROSCOPY  

 

The first demonstration of nanoscale photoexpansion spectroscopy was carried 

out by Dazzi, et al. [16] in 2005 using a CO2 laser and a free electron laser (FEL). The 

commercialized setup based on their approach is shown in Fig. 3.1(a). Thin film samples 

are prepared on top of a ZnSe prism (IR transparent, refractive index n ≈ 2.4), and 

illuminated by a broadly tunable OPO in its evanescent field. The OPO outputs pulses at 

1 kHz repetition frequency. Each pulse excitation gives the AFM cantilever initial 

momentum to oscillate around its equilibrium position (see Fig. 3.1(b)). Due to air 

damping, the cantilever undergoes ring-down oscillation. The recorded deflection signal 
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Figure 3.1: Setup and signal extraction in prototype photoexpansion nano-spectroscopy. 
(a) Schematic setup. (b) Recorded cantilever ring-down oscillation induced 
by one mid-IR pulse. (c) Corresponding frequency domain signal by 
applying Fourier transform on (b). (d) Absorption spectrum obtained via 
tuning the laser wavelength. This set of figures was acquired from Anasys 
Instruments. 

 

is then Fourier transformed to the frequency domain in Fig. 3.1 (c) where we can see that 

all the cantilever bending modes are excited and they are on the order of 100 kHz. To 

generate an IR absorption spectrum, a band pass filter is usually applied to one bending 

mode and the mode amplitude is recorded as a function of the OPO wavelength (Fig. 

3.1(d)).  

This approach has relatively low detection sensitivity because of two aspects. 

First, as we can see from Fig. 3.1(b), the amplitude of cantilever ring-down oscillation 

drops quickly to the noise level in about 0.3 ms, but the period between two IR pulses is 

as long as 1 ms. This results in a low and noisy time-averaged cantilever signal. Second, 

the cantilever vibrational energy induced by laser pulses is distributed to all the cantilever  

modes, but only one mode is used to contribute to the sample signal.  
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Effort has been made for improving this prototype approach. Felts, et al. [31] 

reported that the cantilever vibrational energy is more likely to be distributed to the 

lower-order resonances for large-volume samples and distributed to higher-order 

resonances for small-volume samples, so averaging the cantilever deflection signal in a 

proper time and frequency window can help to improve the signal-to-noise ratio.  

Nevertheless, due to the inherent disadvantage of using slowly repeated IR pulses, 

only relatively thick samples (~15 nm thick or thicker [31]) produced detectable 

cantilever deflections, even when the mid-infrared laser power was close to thermal 

sample damage. In particular, pulse fluencies of about 0.18 J cm-2 from FEL [16,32] or 

OPO [30] were previously used. Not only that high-fluence pulse requirement results in 

bulky optical sources, but up to 50 K of temperature change [33] will likely lead to 

sample damage, especially for biological samples.  

 

3.3 THEORY OF CANTILEVER RESONANCE ENHANCEMENT 

 

Our idea of improving photoexpansion sensitivity is to move the IR pulse 

repetition frequency in resonance with the AFM cantilever resonant mode. In this case, 

the cantilever ‘integrates’ contributions from many of light pulses, and its response is 

enhanced by a Q-factor of the cantilever which may be over 5 × 103 in air [34] or above 

105 in vacuum [35]. This approach requires us to use QCL as the mid-IR source. QCL is 

electrically pumped semiconductor laser, so its pulse repetition frequency can be adjusted 

up to MHz range simply by injecting different current pulses.  

Behavior of cantilever resonant vibration can be describe by a damped harmonic 

oscillator model 
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where 𝑧𝑧(𝑡𝑡) is the deflection amplitude, 1(2 )Qζ −=  is the damping coefficient with Q 

being the quality-factor of the mode, 𝜔𝜔0 is the resonant frequency,  𝑚𝑚 = 𝑘𝑘/𝜔𝜔0
2 with 𝑘𝑘 

being the force constant of the cantilever when in contact with sample, and 𝑓𝑓(𝑡𝑡) is the 

applied external force. Since the sample heating and cooling happen in a time scale much 

shorter than the cantilever response time in our experiments, the expansion force applied 

to the cantilever may be represented as a train of delta functions 
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n
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∞

=

= −∑  (3.3) 

where 0 ( )absI F t dt= ∫  is impulse from the absorption-induced mechanical force on the 

tip and 02 /T π ω=  is laser pulse repetition period. To solve Eq. (3.2), we apply Laplace 

transform L{...}  to both sides and assume (0) 0z = , we then obtain 
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where ( ) { ( )}z s z t= L . Next, to know time dependent cantilever deflection ( )z t , we 

perform inverse Laplace transform to Eq. (3.4) so 
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Convolution theorem yields 
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and  
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Inserting Eqs. (3.7) and (3.8) into Eq. (3.6) we have 
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Finally since 0 2Tω π= , the stable equilibrium solution for /t T ζ≥  is found to be 
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Equation (3.10) allows us to calculate the amplitude of the cantilever deflection if 

the period T, quality factor Q, force constant k and initial momentum I0 are known. Here 

we give a simple estimation based on the experimental conditions. We usually operate the 

AFM cantilever at its second bending mode around 200 kHz (T = 5 µs), and the Q-factor 

is experimentally observed to be ~100. The effective force constant k can be linked to k1 

using an equivalent point-mass model as described in Ref. [36], where k1 = 0.2 N m-1 is 
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Figure 3.2: Comparing cantilever oscillation at the second bending mode at 200 kHz 
excited by (a) 1 kHz pulses (off resonance) and (b) 200 kHz pulses (on 
resonance).  

 

cantilever’s static spring constant. At the second bending mode, we obtain k/kc = 40.5 so 

k = 8 N m-1. Lastly, the initial momentum can be estimated by I0 = Fabs 𝜏𝜏, where 𝜏𝜏 = 160 

ns is the laser pulse duration. Fabs = 0.1 nN is obtained in section 2.2. Combing all these, 

we finally reach the cantilever deflection amplitude (at tip position) z = 0.08 nm. 

On the other hand, we can also use Eq. (3.9) to compare the transient oscillation 

(at 200 kHz) for the resonance enhanced method and the prototype method (with 1 kHz 

pulses). The calculation results are presented in Fig. 3.2. Note that the deflection 

amplitude of two figures is of the same arbitrary unit. If one integrates the deflection 

amplitude over time, the signal in the resonance enhanced method (Fig. 3.2(b)) is about 

200 times larger than that in the prototype method (Fig. 3.2(a)). The actual signal of the 

prototype method should be even smaller because here we assume all the pulse energy 

goes into the second bending mode of the cantilever, while in reality that mode only get a 

portion of the pulse energy (see Fig. 3.1(c)). Figure 3.2 (b) also shows that the stable 

deflection amplitude is established within 2Q number of light pulses (~1 ms).    
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Figure 3.3: External-cavity quantum cascade laser (EC-QCL). (a) Schematic of the 
wavelength tuning mechanism. The external cavity is formed by a 
diffraction grating and the laser chip. (b) A commercial EC-QCL from 
Daylight Solutions, with its dimension compared to a US quarter. This set of 
figures was acquired from Daylight Solutions.  

 

3.4 EXPERIMENT  

 

3.4.1 Mid-IR source: tunable Quantum Cascade Laser 

QCL is a new type of semiconductor injection laser [37] emitting mid-IR to THz 

photons. Today, pulsed mode mid-IR QCL routinely operates at room temperature with 

peak power on the order of watt and requires no external cooling. QCL has superlattice 

structure, in which IR photons are generated through the intersubband transition of 

conduction band electrons. The lasing wavelength is determined by the thickness of 

alternating semiconductor layers and therefore can be precisely engineered.  

Special superlattice design can enable QCL with a broadband gain [38–40]. In 

order to tune the emission wavelength over a wide spectral range for performing 

spectroscopy, the broad-gain QCL chip is usually coupled with a diffraction grating to 

form an external optical cavity as shown in Fig. 3.3(a), in the Littrow configuration. The 

wavelength in the external cavity is selected by the first order diffraction by  
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Figure 3.4: Power spectra of two commercial EC-QCLs available in the lab (from 
Daylight Solutions). MIRcat (blue) has four different QCL chips integrated. 

 

 2 sindλ θ=  (3.11) 

where θ is the angle between the laser beam and the grating normal, d is the grating 

period. This tuning mechanism requires accurate and stable grating positioning. A single 

EC-QCL can be tuned up to 15% of its central wavelength [38–40]. By combing multiple 

QCL chips designed for different wavelength, much wider spectral range is accessible.  

In our experiments, two commercial EC-QCLs (Uber TunerTM and MIRcatTM) 

from Daylight Solutions are used. They can be operated with 40–1,000 ns pulses and 10–

1,000 kHz repetition frequency. The spectral linewidth is about 1 cm-1. Their tuning 

range and output power are displayed in Fig. 3.4. The sharp power drops in the range of 

1500–1800 cm-1 is due to water vapor absorption in air [1]. To avoid the effect of strong 

water absorption on spectral measurement, one could simply choose to skip those 

wavelengths.    
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3.4.2 Experimental setup 

The goal of this experiment is to demonstrate that high-quality photoexpansion 

spectra can be obtained under cantilever resonance enhancement with low sample heating 

induced. We prepared two types of sample. One is spin-coated uniform photoresist 

polymer films (300 nm-thick SU-8 or LOR), and the other is 50 nm-thick SU-8 patterned 

in the UT Longhorn shape by e-beam lithography on top of 70 nm-thick LOR film (SU-8 

dosage for 50 kV e-beam is 5 µC cm-2). All the samples are on the undoped Si substrate, 

which has no free-carrier absorption in mid-IR. 

Figure 3.5 shows the experimental setup. The EC-QCL was operated with 40 ns 

light pulses and delivered approximately 100 mW of peak power (pulse energy of 4 nJ) to 

the sample surface from the bottom of the substrate. The pulse repetition frequency could 

be varied from 10 to 250 kHz. The beam was focused to a ~100 µm-radius spot using an 

AR-coated ZnSe lens with 2-inch focus length (not shown). The AFM cantilever 

(ContGB-G, Budget Sensors) had the first bending mode eigenfrequency of 

approximately 10 kHz with a Q-factor of ~50 in air and the second bending mode 

eigenfrequency of approximately 60 kHz with a Q-factor of ~100 in air. In contact with 

sample, these two resonances are shifted to higher frequencies. The AFM setpoint force 

was around 10 nN. The sample photoexpansion induced cantilever deflection was picked 

up by the PSPD and its ‘A-B’ signal was fed into a lock-in amplifier (Model 7265, Signal 

Recovery), which was referenced at the QCL pulse repetition frequency. The output of 

lock-in was photoexpansion signal.  
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Figure 3.5: Schematic of experimental setup for cantilever resonance enhanced 
photoexpansion spectroscopy using a tunable mid-IR QCL.  

 

The initial alignment of mid-IR beam to the tip-sample junction could be easily 

done if a visible tracer is used. Otherwise, one could use a piece of heat sensitive liquid 

crystal sheet to visualize the mid-IR beam. After the coarse alignment, the beam position 

was finely optimized by the lens according to the reading on the lock-in.     
 
 

3.5 RESULTS AND DISCUSSION 

 

Figure 3.6 shows the dependence of the photoexpansion signal on the repetition 

frequency of QCL pulses. It was obtained by scanning the pulse repetition frequency and 

recording the respective lock-in output. Two resonant peaks are clearly visible and they 

correspond to the first two cantilever bending modes. About 100 times enhancement in  
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Figure 3.6: The photoexpansion signal recorded as a function of the QCL pulse 
repetition frequency.  

 

the photoexpansion signal is observed as the repetition frequency of the QCL pulses was 

tuned to coincide with the second resonant frequency of approximately 155 kHz.  

To verify that the enhanced signal in Fig. 3.6 is useful for spectroscopy, we set the 

repetition frequency of QCL pulses at the high-frequency resonance 155 kHz (for larger 

Q-factor), tuned the emission wavelengths, and recorded the photoexpansion signal as a 

function of wavelength to produce photoexpansion spectra. The results are presented in 

Fig. 3.7 for 300-nm-thick SU-8 (black solid curve) and LOR (red solid curve) polymer 

films. The data was normalized to the QCL power output at different wavelengths. As we 

can see, the photoexpansion spectra are in nearly perfect agreement with mid-IR 

absorption spectra of the same polymers obtained in FTIR (dashed curves). To 

demonstrate the importance of resonant signal enhancement, next we tuned the repetition  
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Figure 3.7: Comparing photoexpansion spectra of SU-8 (black) and LOR (red) obtained 
when the cantilever was on (solid curves) and away from (dotted curves) the 
cantilever mechanical resonance. Square data points and solid curves are the 
photoexpansion spectra obtained with the laser repetition frequency set at 
the AFM cantilever second bending mode of 155 kHz. Dashed curves are 
the reference absorption spectra measured by FTIR. Dotted curves near 
zero-level are the photoexpansion spectra obtained with the laser repetition 
frequency set at 130 kHz, which are also zoomed-in in the inset. 

 

frequency of QCL pulses to 130 kHz (see Fig. 3.6), away from the AFM cantilever 

mechanical resonances and attempted to record the photoexpansion spectra of the same 

samples (dotted curves and the inset); in this case the spectral features were 

indistinguishable from the noise, as shown in the inset of Fig. 3.7.   
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Figure 3.8: (a) The AFM topographic image of the 50-nm-thick SU-8 pattern of a Texas 
Longhorn on top of a 70-nm-thick LOR film on an undoped silicon 
substrate. Inset: the zoom-in image of the section of the SU-8 pattern with 
four points marking the positions at which the photoexpansion spectra 
shown in (b-e) are taken. The separation between the adjacent points is 50 
nm. (b-e) Photoexpansion spectra (squares are data points, solid lines are for 
eye guiding) obtained at four sample points shown in (a). Dashed lines are 
FTIR absorption spectra of SU-8 (b,c) and LOR (d,e). (f) Photoexpansion 
image of Texas Longhorn pattern in (a) taken at laser wavelength of 1204 
cm-1. The image size is 128 by 128 pixels, each pixel correspond to a 50-
nm-by-50-nm square. 
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To experimentally demonstrate high spatial resolution, we carried out 

measurement on the ‘Longhorn sample’. Sample AFM topographic image is displayed in 

Fig. 3.8(a). We have measured a series of photoexpansion spectra at four points, each  

separated by a distance of 50 nm from its neighbor as shown in the inset to Fig. 3.8(a). A 

tunable QCL source operating in the range 1140-1205 cm-1 was used to obtain these 

spectra. The photoexpansion spectra are shown in Figs. 3.8(b-e), along with the FTIR 

spectra of SU-8 and LOR polymers. The spectra demonstrate that we can clearly 

distinguish the chemical composition of the SU-8-made Longhorn and the LOR 

background with better than λ/170 spatial resolution. The data also proves that our 

technique is capable of measuring spectra from thin samples (50 nm) and is able to 

identify chemical compounds. Finally, Fig. 3.8(f) shows the ‘photoexpansion IR image’ 

of the sample obtained by fixing the laser frequency at 1204 cm-1 and recording the 

photoexpansion signal during the AFM scan. As seen in Figs. 3.8(b-e), LOR polymer 

produces considerably stronger photoexpansion signal than the SU-8 pattern. As a result, 

the SU-8 pattern appears dark in Fig. 3.8(f). 

In this experiment, the sample heating induced by the QCL pulses was extremely 

low. This estimation is supported by the COMSOL simulation presented in Fig. 3.9. Two 

types of inhomogeneous samples are simulated with an absorbing compound either 

positioned on top of (Figs. 3.9(a,b)) or embedded within (Figs. 3.9(c,d)) a non-absorbing 

compound. The maximum sample temperature increase in both cases is limited to 10 mK. 

The sample cools down within a few microseconds, before the next QCL pulse arrives. 

The spatial profile of sample heating in Figs. 3.9 (c,d) also demonstrates high (~50 nm) 

spatial resolution of this technique, which agrees with the experimental results in Fig. 3.8. 

 

 38 



 

 

Figure 3.9: Simulations of the temperature distribution in inhomogeneous polymer 
samples before, during, and after a single laser pulse. The samples are 
assumed to be illuminated by a 100 mW 40 ns-square pulse, focused to a 
100 µm-radius area. (a) Temperature distribution at the very end of a laser 
pulse in a sample consisting of a SU-8 block (300 nm wide and 300 nm 
thick) placed on top of a 300-nm-thick layer of LOR on a silicon substrate. 
(b) Temperature variation along the dashed line in (a) before (0 ns), during 
(10 ns), and after (40 ns, 200 ns, and 5 µs) the laser pulse. (c) Temperature 
distribution at the very end of a laser pulse in a sample consisting of a SU-8 
block (300 nm wide and 300 nm thick) embedded within a 300-nm-thick 
layer of LOR on a silicon substrate. (d) Temperature variation along the 
dashed line in (c) before (0 ns), during (10 ns), and after (40 ns, 200 ns, and 
5 µs) the laser pulse. The SU-8 parameters are taken from Ref. [20]: thermal 
conductance κ = 0.3 W m-1 K-1, material density ρ = 1.2×103 kg m-3 and heat 
capacity C = 1.2×103 J kg-1 K-1; κ, ρ and C for are assumed to be the same 
for simplicity. The power absorption coefficient is set as 1.7×103 cm-1 for 
SU-8, according to the FTIR measurement at 1180 cm-1. For figure clarity, 
LOR is assumed to be non-absorbing. 
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3.6 CONCLUSION 

 

In this chapter, we have demonstrated a technique that allows performing 

photoexpansion spectroscopy at the nanoscale with low sample heating induced by low-

power light sources such as mid-IR QCLs. The approach is based on moving the 

repetition frequency of laser pulses in resonance with an AFM cantilever bending mode. 

The experimental setup is extremely simple to implement and operate.   
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Chapter 4  

Tip-Enhanced IR Nano-Spectroscopy on Molecular Monolayer  

 

4.1 INTRODUCTION 

 

One milestone for photoexpansion nano-spectroscopy is to achieve monolayer 

sensitivity under ambient conditions. With that, this technique can be readily applied to 

almost any organic sample. In Chapter 3, we enhanced AFM cantilever’s responsivity by 

moving QCL pulses in resonance with the cantilever bending mode. However, there is no 

much room for further improvement in this direction. As shown previously, Q-factors of 

the first two cantilever bending modes are 30–100 in air. Although higher Q-factor exists 

for higher-order resonance [25] and for stiffer cantilever (e.g., quartz tuning fork), the 

effective spring constant also becomes larger. There is a trade-off between these two 

factors and experimentally we did not observe much higher photoexpansion signal by 

operating at higher order cantilever mode or using other commercially available AFM 

cantilevers. Therefore, to make monolayer expansion detectable, one needs another signal 

enhancement mechanism.   

The strategy is to increase molecules’ mid-IR absorption hence thermal expansion 

with locally enhanced electric field provided by a metallic AFM tip. In this chapter, we 

show that the field enhancement in the nano-gap between a gold tip and gold substrate is 

sufficiently strong to produce a detectable monolayer expansion signal, yet without 

causing thermal damage to the sample. Tip enhancement on the other also improves the  
 
 
Portions of this chapter have been published in Lu, F., Jin, M. & Belkin, M.A. Tip-enhanced infrared 
nanospectroscopy via molecular expansion force detection, Nature Photon. 8, 307 (2014).  
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spatial resolution of this technique, which is no longer limited by the thermal diffusion 

length as in the previous chapter, but only determined by the dimension of ‘hot spot’ 

region below the tip. 

 

4.2 TIP ENHANCEMENT IN MID-IR 

 

Here tip enhancement (or tip focusing) refers to lightning rod effect. The AFM tip 

is coated with a thin layer of gold with thickness greater than the skin depth. Upon p-

polarized light (electric field parallel with the tip axis) illumination, free conduction band 

electrons in the gold layer are polarized to concentrate at the tip apex, hence to form a 

highly localized field ‘hot spot’ below the tip. One could also say a strong electric dipole 

oscillating at the optical frequency is induced inside the tip. This phenomenon is more 

pronounced at longer wavelength (if not taking into account the local plasmon resonance 

in the visible range), because the tip becomes effectively sharper and free electrons can 

‘catch up’ the incident field (corresponding to larger negative permittivity).  

Figure 4.1(a) shows a three-dimensional COMSOL simulation of tip enhancement 

at the wavelength λ = 8 µm where the enhancement factor, defined for the light intensity 

𝐼𝐼/𝐼𝐼0, is as high as 1,200. The tip has a half-cone angle of 17o and tip radius of 25 nm. The 

simulation also indicates the dimension of ‘hot spot’ is about the same as the tip apex. In 

this configuration, the photoexpansion force acting on the tip is mainly contributed from 

the molecules inside the ‘hot spot’ region which experience much higher heating than the 

outside molecules. The sample thermal diffusion effect is minimized. 

The wavelength dependence of tip enhancement in the mid-IR region is calculated 

in Fig. 4.1 (b). Generally speaking, the enhancement increases with the wavelength. On  
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Figure 4.1: Simulation of gold tip enhancement in the mid-IR region. (a) Local intensity 
distribution around the tip at λ = 8 µm. The cone-shaped tip is 10 µm long 
and light is incident at 75o with respect to the tip axis. Simulation is 
performed with COMSOL in 3D. (b) Enhancement factor (I/I0) as a function 
of wavelength. The values in (b) are extracted at the position10 nm below 
the tip apex.  

 

the other hand, the AFM tip can also be considered as an optical antenna, so at some 

wavelengths there exist resonant oscillations of electrons [41], which contribute to the 

peaks shown in Fig. 4.1 (b). Specifically, the fundamental resonance for the tip simulated 

occurs at λ = 22 µm (not shown), and the peaks at λ = 5.5 µm and 8 µm are the high order 

resonances. The variation of enhancement in Fig. 4.1(b) needs to be included in spectrum 

normalization (in addition to laser output power), especially when spectroscopy is 

performed in a wide spectral range. In this simulation, the tip length is taken to be 10 µm, 

which is close to the actual length of the illuminated part of the tip in our experiments. 

This setting is necessary not only for predicting resonant wavelengths, but also because 

long tip provides more free electrons to contribute to the enhancement. 
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Figure 4.2: Simulation of tip enhancement in a 2-nm gap formed by the gold tip and the 
gold substrate at λ = 8 µm. (a) The gap is filled with air. (b) The gap is filled 
with an organic monolayer with the refractive index of 1.5 + i0.38. The inset 
of (b) is a SEM image of an actual tip used in the experiment. The modeling 
parameters for the tip and incident light are the same as those in Fig. 4.1.  

Furthermore, tip enhancement will boost by another two orders in the gap mode 

as shown in Fig. 4.2. The gap is formed by the gold tip and the gold substrate. The origin 

of this additional enhancement can be explained with an in-phase mirror dipole in the 

substrate induced by the tip dipole: when the gap separation is smaller than the tip ‘hot 

spot’ dimension, the polarization of the mirror dipole dramatically increases, as a result 

the electric field between the two dipoles is extremely strong. In Fig. 4.2(a) where the 

separation is only 2 nm (filled with air), the enhancement factor can be as high as 105. In 

this configuration, light that is reflected from the substrate to the tip may also contribute 

to the high enhancement. 

The actual experimental configuration with a monolayer sample is simulated in 

Fig. 4.2(b). Due to discontinuity of the refractive index, the ‘hot spot’ pattern changes 

and its dimension inside the monolayer has a diameter of ~10 nm. The simulated tip is 

compared to an actual tip used in our experiments with its SEM image shown in Fig. 

4.2(b). 
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4.3 MONOLAYER PHOTOEXPANSION 

 

In this section, following the simulation of tip enhancement in Fig. 4.2(b), we deal 

with monolayer sample heating and thermal expansion based on the experimental 

conditions. The sample is taken to be 2-nm thick. It is placed on top of a 40-nm-thick 

layer of gold on top of a 2-µm-thick layer of epoxy (the details of the substrate will be 

introduced later). The electric field amplitude in the incident mid-IR beam is chosen to 

correspond to a 100-µm-radius beam spot with 500 mW power in free space. The pulses 

are 160 ns long and repeated at the frequency of 200 kHz. For general consideration and 

without loss of much accuracy, the real part of refractive index n and thermal properties 

of the monolayer are set to be the same as those of a bulk polymer material in Ref. [20].  

The imaginary part of refractive index κ for monolayer varies significantly with 

wavelength. In order to have a typical value of κ for simulation, we focus on the CH2-

wagging mode of EG6-OH molecule. By comparing the strength of different vibrational 

modes in Ref. [42] and [43], we estimate that the absorption coefficient of the monolayer 

at CH2-wagging mode absorption peak is αabs = 6,000 cm-1 which corresponds to κ = 

0.38. 

All the material parameters are summarized in Table 4.1.  

 

Material 

n+iκ 
refractive 

index 
 at 8 µm 

k 
 thermal 

conductivity 
(W m-1 K-1) 

ρ  
density  
(kg m-3) 

C 
heat 

capacity 
(J kg-1 K-1) 

α 
linear thermal  

expansion  
coefficient (K-1) 

ν 
poisson's 

 ratio 

monolayer 1.5 + i0.38 0.1 1.2 x 103 1.2 x 103 10-4 0.35 
Au 8.5 + i46.4  315 1.93 x 104  0.13 x 103  0.14 x 10-4 0.42 

epoxy 1.5 0.1 1.2 x 103 1.2 x 103 10-4 0.35 

Table 4.1: Material parameters for simulating tip enhancement and monolayer heating. 
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Figure 4.3: Simulation of monolayer sample heating. (a) Temperature increase at the 
end of a 160 ns-long pulse in and around a monolayer sample below the 
AFM tip. The monolayer is assumed to have an absorption coefficient αth = 
6,000 cm-1 which corresponds to absorption in PEG and EG6-OH molecules 
at 1342 cm-1 (will be discussed in section 4.4). (b) Temperature variation 
along the blue dash line in (a) during (13 ns, 160 ns) and after (180 ns, 5 µs) 
the pulse. The sample is cooled to the room temperature before the next 
pulse arrives (assuming the repetition frequency of laser pulses is 200 kHz) 

 

Figure 4.3(a) presents the simulated temperature distribution in and around the 

monolayer sample at the end of a 160-ns-long light pulse. Sample heating is estimated to 

be below 6 K. The low value of simulated sample heating indicates that the spectral 

measurement should be repeatable over the same sample area without signal degradation. 

Fig. 4.3(b) plots the temperature increase in the monolayer at different times during and 

after the laser pulse. The results indicate, in particular, that sample heating and cooling 

time is much smaller than the laser pulse duration and that the sample maintains the same 

temperature during most the laser pulse. The spatial resolution in this configuration, if 

defined as the dimension of hot molecule region, is less than 20 nm.   
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Figure 4.4: Simulation of monolayer sample expansion. (a) Dependence of tip-sample 
distance change ∆δ due to sample expansion caused by a mid-IR pulse. (b) 
Histograms showing the accumulated sample expansion from the 
monolayer, substrate and tip for αabs = 0 cm-1 (left) and αabs = 6,000 cm-1 
(right). The incident IR pulse was assumed to have a peak power of 500 mW 
and to be focused to a 100-µm-radius spot for the simulations, similar to the 
experimental situation. 

 

Next, assuming bulk values of thermal expansion for all materials, we can 

calculate the laser-induced total tip-sample distance change Δδ and the contributions 

from each part (monolayer, tip and substrate). The results are shown in Fig. 4.4. We note 

that Δδ scales linearly with absorption in the monolayer (red line in Fig. 4.4(a)), with a 

significant background level due to residual light absorption in the gold-coated substrate 

and the AFM tip (see Fig. 4.3(b)). Because the optical properties of gold are virtually 

constant in the mid-IR spectral range, the background is expected to be spectrally flat in 

the measured spectrum. 
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4.4 EXPERIMENT 

 

4.4.1 Sample preparation 

We chose thiolate-bonded self-assembled monolayers (SAMs) as the testing 

sample, because they have high affinity to the surface of noble metal like gold [44]. 

Rundqvist, et al. [45] reveals that a homogeneous SAM is formed by the growth of sub-

monolayer islands first. Sample at this early stage is an excellent candidate for 

demonstrating high sensitivity and high spatial resolution of tip-enhanced 

photoexpansion nano-spectroscopy. In order to observe sub-monolayer morphology, the 

gold substrate itself has to be atomically flat. Direct e-beam deposited gold film has grain 

structure with the roughness of ~5 nm, which is bad since typical SAM molecules are 

only 1–5 nm long. Though through annealing, the deposited gold surface can have the 

atomically flat step-and-terrace structure [4], those substrates need to be stored in a 

nitrogen environment, as gold is likely to be contaminated quickly by the organic 

molecules in air. Instead we chose to fabricate the atomically flat template-striped gold 

(TSG) substrates. Its preparation requires more steps, but the process is highly 

reproducible and once completed the substrates can be kept in air for more than 6 months, 

as the gold surface will not be exposed until being used.  

TSG were fabricated according to Ref. [46] with some modification. The 

fabrication process is illustrated in Fig. 4.5. First, the 50 × 75 mm highest-grade V1 mica 

sheets (Ted Pella) were cleaved and immediately mounted in the chamber of an e-beam 

evaporation system with fresh facets facing down. A 40 nm-thick gold layer was 

deposited at the rate of 0.5 Å s-1 and a pressure of 8×10-6 mbar. The gold-mica sheets  
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Figure 4.5: Fabrication process of atomically flat template-stripped gold (TSG) 
substrate. 

 

were then annealed in an oven for 2 h at 300 oC in a nitrogen environment. The sheets 

were cleaved into smaller pieces (20 × 20 mm), with the gold surface glued onto silicon 

pieces of similar size using EPO-TEK 377 (Epoxy Technology), and cured on a hot plate 

at 150 oC for 1 h. To expose the gold surface, we simply broke the silicon substrate and 

carefully peeled the mica by hand. A large surface of gold was routinely obtained with 

very little mica residue. The conductivity was checked with an ohm-meter. The root-

mean-square roughness of the gold surface was measured to be ~3 Å for an area of 5 × 

2.5 µm by an AFM in tapping mode. Small holes on the gold films sometimes appeared 

due to a non-optimized procedure.  

On the TSG substrate, three SAM molecules were tested: Hydroxyl-terminated 

hexa(ethylene glycol) undecanethiol ‘EG6-OH’ (molecular formula: (HS(CH2)11(OCH-

2CH2)6OH, molecular mass: 468.69 Da) was purchased from Obiter Research; 

Poly(ethylene glycol) methyl ether thiol ‘PEG’ (HS(CH2)2(OCH2CH2)21OCH3, 1000 Da) 

and 4-nitrothiophenol ‘NTP’ (HSC6H4NO2, 155.17 Da) were purchased from Sigma-

Aldrich. All the materials were used as received.  
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Figure 4.6: Topographic measurement of monolayer samples. (a) EG6-OH after partial 
O2 plasma etching. The bright regions are EG6-OH monolayer while the 
dark regions are exposed gold. (b) Line-scan averaged within the red box in 
(a). (c) PEG monolayer islands self-assembled on gold after a short 
immersion time. Inset: line-scan along the blue line. 

 

Among them, EG6-OH and NTP molecules were used to form uniform SAMs, 

while PEG molecule was used to form sub-monolayer islands. To prepare a uniform 

SAM sample, the TSG substrate was immersed in a ~1 mM L-1 ethanolic solution for 24 

h and then rinsed with a copious amount of 200-proof ethanol and dried in a stream of 

nitrogen gas. To prepare a sub-monolayer island sample, the TSG substrate was 

immersed in a ~1 mM L-1 ethanolic solution for appropriate short periods and then rinsed 

and dried as above. 

Figure 4.6 shows SAM topography on the TSG substrate. To measure the 

thickness of uniform EG6-OH monolayer, the sample was partially covered by a piece of 

silicon and exposed to O2 plasma. Monolayer was removed from part of the sample and 

then AFM topographic scan was performed across the interface of SAM and exposed  
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gold (see Fig. 4.6(a)). The thickness was measured to be approximately 1.5 nm (see Fig. 

4.6(b)). We were not able to measure the thickness of NTP monolayer in this way as its 

thickness was below the topographic detection level of our system (0.5 nm). NTP 

thickness was estimated to be substantially smaller than 1 nm. The PEG sub-monolayer 

islands are clearly seen in Fig. 4.6(c). These islands were growing to connect with each 

other and their thickness was measured to be 2.5 nm (see the inset of Fig. 4.6(c)). Figure 

4.6 also indicates the ultimate flatness of the TSG substrate.  
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Figure 4.7: Schematic of the experimental setup for tip-enhanced photoexpansion nano-
spectroscopy on monolayer detection. P-polarized light pulses from a mid-
IR laser are focused on a sample. Cantilever deflection due to the molecular 
expansion force action is detected by a position-sensitive photodetector 
(PSPD). The PSPD signal is sent to the lock- in amplifier referenced by the 
laser pulse repetition frequency. The amplifier output is a measure of the 
cantilever oscillation amplitude at the lock-in reference frequency. 

 

4.4.2 Experimental setup 

The setup capable of measuring monolayer photoexpansion is schematically 

shown in Fig. 4.7. A tunable EC-QCL (Uber TunerTM, Daylight Solutions) was used as 

the mid-IR source with its power spectrum measured in Fig. 3.4. Light emission from 

QCL is inherently polarized along the superlattice growth direction [47]. By proper 

positioning, p-polarized light pulses were incident onto the sample at 75o with respect to 

the tip axis. The light pulses were 160 ns long and their petition frequency was carefully 

maintained to match the second bending mode of the AFM cantilever (ContGB-G, 

Budget Sensors). Cantilever deflection due to the molecular expansion force action was 
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detected by a PSPD. The PSPD signal was sent to a lock-in amplifier (SR844, Stanford 

Research Systems) referenced by the laser pulse repetition frequency. The amplifier 

output was a measure of the cantilever oscillation amplitude at the lock-in reference 

frequency. The whole system was placed on a vibration isolation stage but there was no 

acoustic enclosure.  

 

4.5 RESULTS AND DISCUSSION 

 

4.5.1 Nano-spectra of monolayers 

The measured photoexpansion spectra on monolayers are displayed in Fig. 4.8 for 

EG6-OH (a) and NTP (b), respectively. The data were normalized to the QCL light 

intensity. Figure 4.8 also shows reference absorption spectra (red curves) collected by the 

mid-IR reflection-absorption spectroscopy (IRAS) for the same monolayer material on 

gold in Refs. [43,48]. The photoexpansion spectra are in excellent agreement with the 

absorption spectra, and some vibrational modes of these two molecules are clearly 

identified. For EG6-OH, the absorption bands centered at 1345 cm-1 and 1244 cm-1 

corresponds to CH2 wagging and twisting modes, respectively [43]. Owing to the limited 

tuning range of our QCL source, only part of the stronger C−O−C stretching band (peak 

at 1130 cm-1) was measured. For NTP molecules, a strong peak around 1339 cm-1, which 

corresponds to the symmetric NO2 stretching mode, can be clearly seen. We also 

observed a much weaker absorption band around 1175~1183 cm-1 due to vibration of the 

benzene ring. The NTP results demonstrate our ability to collect mid-IR spectra from 

small molecules. On the other hand, the experimental spectra show a flat background  
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Figure 4.8: Molecular force spectra of self-assembled monolayers on gold. (a) EG6-OH. 
(b) NTP. The blue circles are the measured data. The data points are 
connected by B-splines for eye-guiding. The red curves are the mid-IR 
reflection-absorption spectra of corresponding SAMs taken from Ref. [43] 
for (a) and from Ref. [48] for (b). The insets show molecular structure of the 
samples. 

 

with the signal-to-background ratio at the CH2 wagging band (Fig. 4.8(a)) to be ~1.7, 

which is in good agreement with the theoretical prediction of 1.5 obtained from Fig. 4.4. 

This background issue will be addressed later in Chapter 5. 
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High spatial resolution is demonstrated with a sample made of monolayer islands 

of PEG on TSG. PEG molecules have a backbone structure similar to that of EG6-OH 

with its CH2 wagging mode peaked at 1342 cm-1. The island height is ~2 nm as 

confirmed by the topographic measurement in Fig. 4.9(a). Figure 4.9(b) displays a 

topographic line scan along the blue arrow shown in Fig. 4.9(a). We positioned the AFM 

tip at different points along the line scan (marked with squares in Fig. 4.9(b)) and 

collected photoexpansion spectra at these locations. The results are shown in Fig. 4.9(c), 

where spectra are color-coded and numbered to correspond to the measurement position 

markers in Fig. 4.9(b). We can distinguish PEG islands from bare gold by monitoring the 

CH2 wagging band with a spatial resolution better than 30 nm. Figure 4.9(d) compares 

the dependence of the cantilever deflection signal along the line scan in Fig. 4.9(b) where 

the laser frequency is set to the 1342 cm-1 absorption line of PEG and to 1352 cm-1, away 

from the absorption line. As expected, the contrast between PEG and gold is only 

observed at 1342 cm-1.  

The mid-IR chemical mapping capability of PEG islands is demonstrated in Fig. 

4.9(e). For this case, we fixed the laser frequency at the PEG absorption peak at 1342 cm-

1 and recorded the AFM cantilever deflection amplitude as a function of tip position. The 

mid-IR mapping image shows a clearer contrast and more details, compared to the 

topographic image of the same sample section shown in Fig. 4.9(a). From the data shown 

in Fig. 4.9(f) as well as in Figs. 4.9(c,d), we estimate the spatial resolution of our 

technique to be better than 25 nm, likely limited by the apex size of the AFM tip used in 

our experiments.  

 55 



 

 56 



Figure 4.9: Demonstration of spatial resolution. (a) Topography of the PEG monolayer 
islands acquired in contact mode. (b) Topographic line scan along the blue 
arrow in a, showing the height of the monolayer islands to be ~2 nm. Square 
symbols mark positions where the photoexpansion spectroscopy 
measurements were performed. (c) Mid-infrared photoexpansion spectra 
taken at the positions indicated in (b). The curves are labelled and colored in 
accordance with (b). Spectra are offset vertically for clarity. (d) Cantilever 
deflection signal at different points along the topographic scan in (b) for the 
laser tuned to the 1,342 cm-1 PEG absorption line (black squares connected 
by a black solid line) and to 1,552 cm-1, away from the PEG absorption line 
 (orange circles connect by a dashed orange line). Data points are extracted 
from spectra in (c). (e) Mid-IR mapping of monolayer islands: the lock-in 
output is recorded as a function of tip position for the mid-infrared laser 
wavelength fixed at the PEG CH2 wagging absorption band at 1,342 cm-1. 
Bright regions are PEG molecules and dark regions are gold. The image has 
256 × 256 pixels and was obtained simultaneously with the topographic 
image in (a). The image was produced by raster scanning at a rate of 0.5 Hz 
with the lock-in integration time set to 3 ms. The total acquisition time was 
~5min. (f) Signal along the line scan shown with a red arrow in (e). Data 
indicate a spatial resolution of ~25 nm for the image in (e). 

 

We estimate that approximately ~300 molecules contribute to cantilever 

deflection in these experiments. This number is based on the simulated hot-spot diameter 

of approximately 10 nm (Fig. 4.2(b)) and the molecular density of 4 molecules nm-2 [44]. 

Given signal-to-noise ratio in the spectra shown in Fig. 4.8, we expect to be able to see 

strong absorption peaks from as few as 30 molecules below the tip.  

 

4.5.2 Cantilever deflection amplitude 

Experimentally, we excite cantilever at the second bending mode in contact with 

the sample. The cantilever deflection amplitude z2 may be determined from the AC 

amplitude of the PSPD voltage VPSPD as:  
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2

PSPDVz
η

=  (4.1) 

where η2 is the calibration coefficient that links VPSPD with the physical cantilever 

deflection amplitude z2.  

VPSPD can be determined by direct measurement of the PSPD output with an 

oscilloscope; it is also linked to the lock-in voltage as 2lock in PSPDV gV− = , where g is 

the lock-in gain coefficient. In our experiments, the maximum VPSPD at the second 

bending mode was approximately 200 mV.   

To determine η2, we compare the cantilever shape for the first bending mode in 

free space with the cantilever shape for the second bending mode in contact with sample, 

see Fig. 2.6. Their amplitudes are adjusted so that the slopes at the cantilever end section 

are the same. We then know that z1 cantilever deflection in the first bending mode 

produces the same PSPD signal as the second bending mode with z2 ≈ z1 /35 deflection. 

The calibration between z1 and VPSPD can be obtained through the force-distance curve 

measurement on a hard surface as discussed in section 2.3. Such measurement gave us 

VPSPD = 23 mV nm-1 × z1.    

Putting things together, we have 

 2 1

200 mV 0.25 nm
35 23 mV nm

z −= ≈
× ⋅

 

The theoretical value of z2 can be calculated using Eq. (3.10) which simplifies the 

cantilever as a harmonic oscillator. We use τ = 160 ns, T = 5 µs, experimentally-measured 

Q = 93 and k = 8 N m-1 (derived in section 3.3), but still need to find out the value of 

photoexpansion force Fabs in our experiments. To do that, we first calculate the tip 

indentation δ via Eq. (2.1). The values of reduced Young’s modulus E* and adhesion 
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force F(a0) for our monolayer samples are assumed to be the same as those measured in 

Ref. [49] for the CH3(CH2)17SH monolayer sample: E* = 5 GPa and F(a0) =10 nN. The 

assumption is reasonable because the tip radius used in our experiments (~25 nm) is 

similar to that used in Ref. [49] (~20 nm). Equation (2.1) then gives the sample 

indentation of δ ≈ 0.7 nm for the contact mode setpoint force F = 10 nN used in our 

experiments. Next, the total tip-sample distance change is calculated to be ∆δ ≈ 3.2 pm in 

Fig. 4.4, which corresponds to CH2 wagging mode of EG6-OH molecule with the 

absorption coefficient αabs = 6,000 cm-1. With all the parameters known in Eq. (2.2), Fabs 

= 0.13 nN is obtained. Inset it to Eq. (3.10), we have z2 = 0.1 nm, which is close to the 

experimentally-measured z2 ≈ 0.25 nm. The discrepancy between theory and experiment 

is likely stemming from uncertainty in the temperature change and photoexpansion of the 

sample as well as in the Young’s modulus of the sample. 

Besides Fabs, electromagnetic forces may also affect cantilever deflection [50]. 

We evaluated the optical force on the tip in COMSOL using Maxwell’s stress tensor for 

experimental conditions with 500 mW laser power focused onto a 100-µm-radius spot 

below the tip (cf. Fig. 4.2(b)). We obtained Fopt ≈ 0.3 pN ≪ Fabs. We also note that, 

unlike Fabs, Fopt is virtually independent of the absorption coefficient of the monolayer 

film. Thus, it is the mechanical force action on the AFM tip that produces spectral 

signatures in our experiments. 

 

4.5.3 Spectrum normalization 

The cantilever deflection signal output by the lock-in should be normalized by the 

local light intensity which equals laser output power (Fig. 3.4) times tip enhancement 

factor (Fig. 4.1(b)). This principle was implemented alternatively in our experiments that  
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Figure 4.10: Comparison of the background TSG spectrum (black) with the QCL power 
spectra taken by a MCT detector (red). 

 

the measured sample spectra were normalized by the spectrum taken on a clean TSG 

substrate. The photoexpansion signal on TSG substrate originates from the expansion of 

the substrate and the AFM tip due to residual broadband absorption of mid-IR light by 

gold (see Fig. 4.4 in the case of αabs = 0 cm-1). This normalization approach was verified 

in Fig. 4.10 where the spectrum on a TSG substrate (black curve) agreed with the laser 

power spectrum measured by a mercury cadmium telluride (MCT) detector (red curve). 

Note that the variation of enhancement factor in the spectral range of 1130–1370 cm-1 is 

small (cf. Fig. 4.1(b)). 

This approach can also help to overcome the beam steering issue. In some EC-

QCLs, the laser beam is emitted to slightly different directions at different wavelengths. 

As a result, the power spectrum received by AFM tip is not the same as the original 

power spectrum. Because cantilever deflection on a substrate only responds to the local 

light intensity below the tip, it is more accurate to do the normalization with the substrate 

spectrum if beam steering is an issue. 
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Figure 4.11: AFM topography scanning on PEG sub-monolayer islands sample before (a) 
and after (b) photoexpansion measurement carried out in Fig. 4.9. 

 

4.5.4 Sample damage 

Since monolayer heating is estimated to be below 6 K, it is unlikely to cause 

thermal damage to the sample. After performing all the photoexpansion measurement 

described in Fig. 4.9 on the PEG sample, we scanned the topography of the same sample 

area. The result is shown in Fig. 4.11. No damage was observed.  

 
  

4.6 CONCLUSION 

 

We have demonstrated that mid-IR vibrational spectra of molecular monolayers 

and monolayer islands could be collected under ambient conditions with high sensitivity 

and better than 25 nm spatial resolution by detecting the mechanical force exerted on an 

AFM tip by molecules excited with pulses of mid-IR radiation. Approximately 300 

molecules are interacting with the AFM tip in our experiments, and the set-up sensitivity 

is estimated to be ~30 molecules. Mid-IR spectra obtained by detecting mechanical 

molecular action show higher sensitivity than those obtained by the best s-NSOM 

systems [4,5] applied to similar or thicker samples.  
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Chapter 5  

Photoexpansion Background Suppression with Two QCLs 

 

5.1 INTRODUCTION 

 

In Chapter 4 we performed photoexpansion nano-spectroscopy on molecular 

monolayers by employing optical enhancement of metalized AFM tip as well as 

mechanical enhancement of cantilever resonance. The spectra shown in Figs. 4.9 and 

4.10 contain contributions from approximately 300 molecules under the AFM tip. This 

sensitivity may potentially be further improved to the single-molecule level, if one could 

suppress the high background presented in those spectra. The background signal, as 

analyzed in Fig. 4.4, comes from the light absorption and expansion by the gold substrate 

and gold tip.  

Our principle of suppressing background signal is to remove its periodicity from 

the laser pulse repetition frequency, as this is the frequency at which the cantilever 

deflection signal is extracted from the lock-in amplifier. We implement our strategy by 

using a second QCL (“suppression laser”). The wavelength of the suppression laser is set 

to be away from any sample absorption band, so it only induces background 

photoexpansion of the substrate and tip, but not of the sample. By turning on the 

suppression laser in proper ways, the Fourier component of cantilever deflection signal at 

the laser pulse repetition frequency will only contain the contribution from the monolayer 

expansion.  
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Figure 5.1: Two schemes of background suppression using two QCLs. (a) The 
suppression laser is operated in nearly cw mode (b) The suppression laser is 
operated in pulsed mode. The repetition frequency is same as that of the 
tunable laser, but two pulse trains have π phase delay. 

 

5.2 EXPERIMENT 

 

We propose two schemes of using suppression laser to remove background signal. 

In the first scheme, the suppression laser is operated nearly continuous-wave and being 

turned off only for a short moments in time when the other tunable laser is on, as 

illustrated in Fig. 5.1(a). For this case, the substrate and tip are continuously heated, 

while the monolayer sample only absorbs energy and is being heated up when the 

emission wavelength of the tunable laser overlaps with sample absorption bands. As a 

result, the periodic variation of expansion is purely from the sample and is extracted by 

the lock-in. However due to heat buildup inside the QCL chip for high duty-cycle 

operation, the laser output power cannot be maintained at a constant level. So this scheme 

is not easy to be implemented. 
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Figure 5.2: Schematic of the experimental setup for background-free photoexpansion 
nano-spectroscopy. QCL1 is the tunable laser and QCL2 is the suppression 
laser whose wavelength is fixed away from any sample absorption band. 
Two QCLs have the same pulse repetition frequency, by which the lock-in 
amplified is referenced. BS: beam splitter.  

 

The second scheme employs the suppression laser being operated in pulsed mode 

with the pulse width and repetition frequency being the same as those of the tunable laser. 

The delay between the pulses of the suppression laser and the tunable laser is set to be 

half of the period, as illustrated in Fig. 5.1(b). The power of two lasers is balanced so that 

they will induce the same background signal. For this case, the Fourier component of the 

photoexpansion force on the AFM cantilever at the laser pulse repetition frequency will 

only contain the contribution from the sample photoexpansion as shown in Fig. 5.1(b). 

We tested the second scheme on the experimental setup shown in Fig. 5.2. Two 

identical electrical pulse trains with π phase delay were generated by a two-channel 

function generator (Teledyne Lecroy) and were used to drive two QCLs (Über TunerTM 

and MIRcatTM, Daylight solutions). The laser beams were combined through a beam 
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splitter and first focused onto a fast photodetector (PVM-10.6, time constant < 1 ns, 

Boston Electronics) that was placed at the tip position. The output signal of the 

photodetector was monitored on an oscilloscope, from which we confirmed that the two 

laser pulses indeed had the same pulse width and repetition frequency, and were delayed 

by half of the period. We finely optimized the beam overlap according to the signal on 

the photodetector. After that, the photodetector was removed and we proceeded to 

measure the sample. The laser pulses have width of 160 ns and their repetition frequency 

was carefully maintained at the second bending of the AFM cantilever (ContGB-G, 

Budget Sensors) at ~200 kHz, at which the cantilever deflection signal was extracted 

from the lock-in amplifier (SR844, Stanford Research Systems).    

 

5.3 RESULTS AND DISCUSSION 

 

Prior to collect the monolayer spectrum, a power calibration for the two QCLs 

was needed. This was to make sure that at each wavelength of the tunable laser, the 

pulses from the two QCLs would induce same amount of heat to the gold substrate and 

tip. The calibration was performed on a clean TSG substrate, with one representative 

result plotted in Fig. 5.3, in which we recorded the cantilever response on the lock-in as a 

function of the power of the tunable laser. (The power of the suppression laser is fixed.) 

The left-most data point corresponded to below-threshold operation of the tunable laser, 

so the lock-in output of 26 a.u. was due to the photoexpansion force induced by the 

suppression laser alone. With the increased power of the tunable laser, the lock-in signal 

reached a minimum of 2 a.u.. In this case, the gold substrate and tip were thermally  
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Figure 5.3: Cantilever signal recorded by lock-in as a function of the tunable laser 
power. The power was tuned via injecting different current. The power of 
the suppression laser was fixed. The dashed line is the calculated 
performance using Eq. (5.2) with 𝐷𝐷 = 0.5. 

 

expanding with the same amplitude at the second harmonic frequency of lock-in 

reference. The balanced power setting at this data point was saved for the future use on 

monolayer spectrum collection. Such calibration was carried out for each wavelength of 

the tunable laser. 

The necessity for delaying the two laser pulses by half of the period was justified 

in Fig. 5.4. In this measurement (also on the TSG substrate), we used the balanced power 

settings previously acquired in Fig. 5.3 so when the delay was exactly half of the period, 

the lock-in signal reached a minimum of 3 a.u.. With the delay deviated from half of the 

period, the lock-in signal increased, which means the photoexpansion force had more and 

more Fourier component at the lock-in reference frequency. The lock-in output a 

maximum signal of 60 a.u. when the two laser pulses overlapped.     
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Figure 5.4: Cantilever signal recorded by lock-in as a function of the phase delay 
between two laser pulses. The dashed line is the calculated performance 
using Eq. (5.2) with 𝑎𝑎 = 𝑏𝑏. 

 

The behavior captured in Figs. 5.3 and 5.4 can be explained with a simplified 

model, in which the light pulses from the two QCLs are represented by an impulse train  

 ( ) ( ( ) ( ( ) )
P Z

f t a t PT b t P D Tδ δ
∈

= ⋅ − + ⋅ − +∑  (5.1) 

where a and b stands for the power of the tunable laser and suppression laser, 

respectively. T is the pulse period and D is the delay between two pulses. The Fourier 

coefficient of Eq. (5.1) at the frequency ω = 2π/T is found to be 

 2i DS a be π
ω

−= +  (5.2) 

which represents the cantilever signal extracted from the lock-in. In Fig. 5.3, D = 0.5, so 

we have 𝑆𝑆 = 𝑎𝑎 − 𝑏𝑏. While in Fig. 5.4, 𝑎𝑎 = 𝑏𝑏, so we have 𝑆𝑆 = 1 + 𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋. These two  
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Figure 5.5: PEG monolayer spectrum acquired with (red) and without (black) the use of 
the suppression laser. The peak at 1342 cm-1 corresponds to the CH2 
wagging mode. 

  

expressions are plotted as the dashed curves in the respective figure, which have a good 

agreement with the experimental data. 

Lastly, we proceeded to the spectral measurement on the PEG monolayer. The 

sample preparation was described in section 4.4. PEG molecules have an absorption band 

around 1342 cm-1, corresponding to the CH2 wagging mode on its glycerine backbone. 

The measured photoexpansion spectra are shown in Fig. 5.5. First, we collected the 

spectrum with the tunable laser alone (black curve), the signal-to-background ratio in this 

case turned out to be 2. The spectrum was then re-taken with the suppression laser 

applying the previously saved balanced power settings for each wavelength. As expected, 

the result (red curve) shows that the background was reduced, and the signal-to-

background ratio was improved to be 6. 
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5.4 CONCLUSION 

 

We have demonstrated that the background signal presented in the monolayer 

photoexpansion spectra, which is due to mid-IR absorption by the substrate and tip, can 

be suppressed using two QCLs. The key is to remove the Fourier component of the 

background signal from the lock-in frequency. This method is useful for the future 

demonstration of higher detection sensitivity of photoexpansion measurement.  

 
  

 69 



Chapter 6  

Heterodyne Detection of Photoexpanison Force 

 

6.1 INTRODUCTION 

 

In the previous chapters, the photoexpansion force FT we discussed is the first-

order approximation of the tip-sample interaction force. The expression of FT is given by 

Eq. (2.2) which indicates FT is proportional to sample’s light absorption. This assumption 

was justified by comparing sample photoexpansion spectra to their FTIR absorption 

spectra with a good agreement (e.g. Figs. 3.7 and 4.10), and was also justified by the 

simulation in Fig. 4.4(a).  

The second-order approximation term of the interaction force has been paid little 

attention. It represents the nonlinear interaction between tip and sample, through which 

the sample absorption information can also be extracted. To explore that, one needs to 

oscillate the tip at a frequency different from the laser pulse repetition frequency. In this 

case, the tip-sample distance change will have contributions from both the tip position 

change and the sample photoexpansion, so that through the quadratic interaction a new 

force component at the heterodyne frequency will be generated. The concept has been 

similarly implemented in the nonlinear ultrasonic force microscopy [51–55] and scanning 

near-field ultrasound holography [56–58], in which the tip and the sample are vibrated at 

different ultrasonic frequencies.  

In this chapter, we explore the resonant heterodyne photoexpansion force. By 

carefully choosing the laser pulse repetition frequency and the tip oscillation frequency so 

that their difference (or sum) matches a cantilever resonant mode, the cantilever 

 70 



deflection due to heterodyne force action will be amplified by the cantilever’s Q-factor. 

We will demonstrate that the sample photoexpansion spectra obtained from heterodyne 

detection have the comparable signal-to-noise ratio and amplitude with those obtained in 

the previous chapters.  

 

6.2 THEORY 

 

To efficiently generate a heterodyne force component, it requires the tip-sample 

interaction maintained on the nonlinear curve plotted in Fig. 6.1 (black curve). Because 

this short-distance interaction only spans over ~1 nm, it is better to operate AFM in the 

contact mode rather than the tapping mode, as the tapping amplitude is usually > 10 nm.  

To understand the frequency mixing process, one can expand the tip-sample 

interaction force F(z) in a power series around the equilibrium position 𝑧𝑧0 

 
2

0 0 0( ) ( ) ( ) ( ) ...
2

F z F z F z F zδδ ∆′ ′′= + ∆ ⋅ + ⋅ +  (6.1) 

where ∆𝛿𝛿 = 𝑧𝑧 − 𝑧𝑧0 stands for the tip-sample distance change. The first term on the right-

hand side of Eq. (6.1) stands for the setpoint force in AFM contact mode. In the 

experiments, we usually take it to be ~ 10 nN. The second term has a linear dependence 

on Δδ, and it represents the conventional photoexpansion force discussed in the previous 

chapters [16–18], which is repeated at the laser pulse repetition frequency. Its magnitude 

is on the order of ~ 100 pN (see section 2.2). The third term which depends quadratically 

on Δδ is the source for the heterodyne force. Provided that Δδ is a linear combination of 

the piezo-driven tip oscillation ∆𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 at frequency 𝜔𝜔𝑝𝑝 and the local sample expansion 

∆𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 at pulse repetition frequency 𝜔𝜔𝑙𝑙 
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Figure 6.1: The dependence of tip-sample interaction force 𝐹𝐹(𝑧𝑧) (black curve) and 
heterodyne coefficient 𝐹𝐹′′(𝑧𝑧) (red curve) on the tip-sample separation z. 
The curves are plotted using Eq. (2.1) with the parameters: effective 
intermolecular distance a0 = 0.24 nm, Hamaker’s constant H = 14 × 10-20 J, 
tip radius R = 25 nm, and reduced Young’s modulus E*

 = 3 GPa.  

 

 tip sample . .p li t i tz e z e c cω ωδ − −∆ = ∆ + ∆ +  (6.2) 

The third term of Eq. (6.1) becomes 
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From Eq. (6.3), we find the heterodyne force to be  

 ( )
het 0 0 sample tip( ) ( ) p li tF z F z z z e ω ω− ±′′= ∆ ∆  (6.4) 

Eq. (6.4) indicates that the heterodyne force is proportional to the sample light 

absorption, and in principle can be amplified by the tip oscillation amplitude (heterodyne 

amplification).  
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Figure 6.2: Schematic of the experimental setup for photoexpasion nano-spectroscopy 
with heterodyne detection. The lock-in amplified is referenced at the 
difference frequency of laser pulse repetition and tip oscillation. FM: 
frequency mixer, BP: band pass filter.  

 

6.3 EXPERIMENT 

 

Heterodyne detection of sample photoexpansion was investigated on the setup 

shown in Fig. 6.2. The AFM was operated in contact mode. After initial approach 

(setpoint force ~10 nN), the cantilever (ContGB-G, Budget Sensors) was oscillated by the 

bimorph piezo with sinusoidal voltage applied from a function generator (Rigol). At the 

same time, the sample was illuminated by light pulses from an EC-QCL (Uber TunerTM, 

Daylight Solutions). The cantilever deflection was monitored by a position-sensitive 

photodetector (PSPD) and its output was sent into a lock-in amplifier (SR844, Stanford 

Research Systems). The lock-in reference was at the difference frequency of the two 

trigger signals (QCL and function generator), which was generated through an electrical 
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frequency mixer and band pass filter. By recording the lock-in output as a function of 

QCL wavelength, the sample photoexpansion spectrum was obtained with heterodyne 

detection. The sample was 300 nm-thick poly(methyl methacrylate) (PMMA)  patterned 

in the Texas-Longhorn shape (by e-beam lithography) on top of a 200 nm-thick uniform 

LOR film.  

The cantilever had the second bending mode at ~200 kHz. In order to have the 

heterodyne signal amplified by this mode, we set the tip oscillation frequency 𝜔𝜔𝑝𝑝  at 

~800 kHz and the laser pulse repetition frequency 𝜔𝜔𝑙𝑙 at ~600 kHz. Fine-tuning of 𝜔𝜔𝑝𝑝 

was performed to ensure the difference frequency ω− = ω𝑝𝑝 − ω𝑙𝑙  exactly matches the 

cantilever second bending mode.  

First, the generation of the heterodyne signal was verified in Fig. 6.3(a). We 

selectively turned on the laser and/or the tip oscillation, and recorded the corresponding 

cantilever response in the frequency domain. In this demonstration, the AFM tip was 

positioned on top of PMMA and the laser wavelength was moved to the carbonyl 

absorption peak at 1730 cm-1. Figure 6.3(a) confirmed that the heterodyne signal could 

only be generated when the light induced sample photoexpanison was interacting with the 

tip oscillation in the short-distance region.  

Figure 6.3(b,c) demonstrates the resonance enhancement by the cantilever second 

bending mode. We scanned one frequency (tip or laser pulse repetition frequency) while 

keeping the other fixed. In both cases, the lock-in signal got enhanced when the 

heterodyne force was repeated at the cantilever resonant frequency. 

According to Eq. (6.4), the heterodyne force can be amplified by the tip 

oscillation ∆𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡. This was demonstrated in Fig. 6.3(d) where we increased ∆𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 from 

zero (by applying voltage to the bimorph piezo) and observed that at first the lock-in 

signal was increased linearly. However, since the nonlinear tip-sample interaction only  
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Figure 6.3: Heterodyne signal generation and amplification. (a) Recorded cantilever 
responses in three cases: (top) only the laser was on, (middle) only the tip 
was oscillated, (bottom) both the laser and the tip oscillation were activated. 
The data was recorded with a spectrum analyzer. The QCL wavelength was 
tuned to PMMA’s carbonyl peak at 1730 cm-1. (b,c) Recorded heterodyne 
signal as a function of (b) the tip oscillation frequency and (c) the laser pulse 
repetition frequency. (d) Recorded heterodyne signal as a function of tip 
oscillation amplitude.  

 

happens near the sample surface (see Fig. 6.1), when ∆𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡 was further increased, the 

lock-in signal was decreased.     
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Figure 6.4: Heterodyne photoexpansion spectra with 100 nm spatial resolution. (a) Top 
view of the testing sample. (b) AFM topographic image (c,d) Heterodyne 
photoexpansion spectra (red curves) of LOR (c) and PMMA (d) taken at the 
two locations marked in (b) with 100 nm separation. QCL pulse repetition 
frequency was ~600 kHz and the tip oscillated at ~800 kHz. The lock-in was 
referenced at ~200 kHz. (e,f) Conventional photoexpansion spectra (blue 
curves) of LOR (e) and PMMA (f) taken at the same locations with QCL 
pulses repeated at ~200 kHz and without tip oscillation.   

 

To verify that the heterodyne signal in Fig. 6.3 is useful for spectroscopy, we set 

the heterodyne frequency at the second bending mode of the cantilever, optimized the tip 

oscillation amplitude, tuned the laser emission wavelengths, and recorded the lock-in 
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output as a function of wavelength to produce heterodyne photoexpansion spectra. The 

results are presented in Fig. 6.4. The AFM tip was positioned at two locations across the 

interface of LOR and PMMA with a separation of 100 nm. The corresponding 

photoexpansion spectra (Fig. 6.4 (c,d)) are in good agreement with the absorption spectra 

measured by FTIR (dashed curve). At the same sample locations, conventional 

photoexpansion spectra were also collected (Fig. 6.4(e,f)) by directly matching the 

repetition frequency of laser pulses to the second bending mode and using it as the 

reference frequency of the lock-in. The heterodyne spectral have similar signal-to-noise 

ratio with that of the conventional spectral. The signal amplitude is smaller, but not by 

much (only a factor of ~2).   

 

6.4 CONCLUSION 

 

We have demonstrated a new technique to acquire sample’s photoexpansion 

spectra. It involves additional tip oscillation in contact mode. The spectral signal is 

extracted at the heterodyne frequency which is mixed by the frequencies of laser pulse 

repetition and tip oscillation due to the nonlinear tip-sample interaction. This new 

technique is promising for performing photoexpansion spectroscopy at a preferred 

cantilever resonant mode not accessible to the laser source.       
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Chapter 7  

Characterization of Plasmonic Metasurface 

 

7.1 INTRODUCTION 

 

In the previous chapters, we focused on using photoexpansion spectroscopy to 

identify organic compounds. In this chapter, we show that this technique can also be 

applied to characterize plasmonic metasurfaces. Metasurfaces have been explored 

extensively in recent years. They manifest extraordinary capability to control light 

transmission and phase within a thin layer of engineered nanoantennas whose thickness is 

only a fraction of the operation wavelength, therefore they are promising to substitute 

those conventional bulky optical components like lens [59,60], filter [61,62], waveplate 

[63] and nonlinear mixer [64,65], to name a few. Previously, metasurfaces were 

characterized only in the far field via transmission or reflection measurement. New 

techniques which can directly visualize light-matter interaction in the near field on 

nanoscale are highly desired for better understanding and better designing metasurfaces.  

The near-field properties of plasmonic nanoantennas include local optical energy 

distribution and associated ohmic heat dissipation. Currently, s-NSOM is the most 

successful technique to map nanoscale electric filed distribution in both amplitude and 

phase by employing optical interferometric measurement [11–14,66–69]. However, it 

cannot probe ohmic heating generated inside nanoantennas, which represents the main 

non-radiative loss mechanism of plasmonic metasurfaces.  

With photoexpansion microscopy, both of these two optical properties can be 

mapped on the nanoscale [70]. To image local optical energy distribution, one can coat 
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the metasurface with a thin layer of absorptive polymer, and observe cantilever deflection 

caused by the polymer expansion which is due to its absorption of the ‘hot spot’ energy. 

To image local ohmic heating in nanostructures, one can coat the metasurface with a thin 

layer of IR transparent polymer. In this case, polymer heating is produced entirely by 

ohmic dissipation in nanostructures. Using nanosecond light pulse excitation, the thermal 

diffusion length in the polymer is well below the critical dimension of metasurfaces; 

therefore polymer heating will be highly localized and reflect nanoscale optical 

properties. An alternative method of mapping ohmic heating is to directly observe 

cantilever deflection caused by the expansion of metal itself [71].  

 

7.2 EXPERIMENT 

 

The metasurface investigated in this work was designed and fabricated by Shvets 

group in the UT physics department. It features circular dichroism (CD) transmission in 

the mid-IR region. CD refers to different absorption of left-circularly polarized (LCP) 

and right-circularly polarized (RCP) light by the sample. In exists in chiral molecules 

(those cannot be superimposed with their mirror images) like DNA double helix and 

cholesteric type liquid crystal, but is only measureable for bulky samples. On a two-

dimensional metasurface with plasmon resonance excited in nanoantennas, CD is quite 

strong and according to Ref. [72] it originates from different ohmic heating induced by 

different local field distribution.  

The unit cell of the plasmonic metasurface is shown in Fig. 7.1(a), which consists 

of a vertical dipole antenna and a horizontal monopole antenna that is connected to a 

vertical plasmonic wire running across the entire metasurface. The nanoantennas are  
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Figure 7.1: (a) AFM topography scanning of the chiral metasurface. (b,c) Surface 
current (arrows) and color-coded amplitude (left panel) of the normal 
electric field Ez from COMSOL simulations of normally incident RCP (b) 
and LCP (c) light waves.  

 

made of 60-nm-thick gold on an IR transparent CaF2 substrate. Illuminating this 

metasurface with LCP/RCP light at the designed wavelength (λ ~ 9 µm) will excite 

different local filed distributions as simulated in Figs. 7.1(b,c), in which the strength of 

the red arrows is proportional to the induced current density (ohmic heating) in the 

nanoantennas.  

The metasurface is designed to work at the resonance of the monopole antenna. A 

notable difference between Figs. 7.1(b) and 7.1(c) is that the monopole antenna is ‘turned 

on/off’ by LCP/RCP light. This is due to the constructive/destructive interference of two 

oscillating currents in the monopole antenna: one is induced by the excited vertical dipole 

antenna through the air gap, and the other is induced by the incident light itself.      

To acquire the experimental evidence, we performed photoexpansion microscopy 

using the setup schematically shown in Figure 7.2. A pulsed mid-IR QCL (Daylight 

Solutions; tuning range 900–1200 cm-1) operating at 9.1 µm wavelength was used to 

illuminate the sample from below at the normal incidence. The light from the QCL, 

originally linearly polarized, was converted to LCP or RCP light using an achromatic  
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Figure 7.2: Schematic of experimental setup for mapping local optical energy 
distribution and ohmic heating on a chiral metasurface. The sample was 
illuminated by LCP/RCP light from a mid-IR QCL at normal incidence. 
QWP: quarter-wave plate. 

 

quarter-wave plate (2-IRPW-ZO-L/4-8000-C, Altechna). The laser was operated with 

200 ns pulses with the peak power of 300 mW at a repetition frequency of approximately 

180 kHz, in resonance with the second bending mode of the AFM cantilever (ContGB-G, 

Budget Sensors). The beam was focused to a 100 µm-radius spot using ZnSe lens with 

the convergence half-angle of 4o. The QCL pulse fluency on the sample surface is 

estimated to be approximately 1 kW cm-2. The cantilever deflection was measured by a 

position-sensitive photodetector (PSPD) and its output was sent to a lock-in amplifier 

(SR844, Stanford Research Systems) using QCL pulse repetition frequency as a 

reference. The lock-in integration time was set at 10 ms. The output from the lock-in  
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Figure 7.3: Photoexpansion microscopy measurements of circularly dichroic thermal 
expansion of the LOR-coated metasurface. (a,b) COMSOL simulations of 
the temperature increase distribution in the LOR film at the end of a square 
QCL pulse with time duration T = 200 ns and peak intensity I = 1kW cm-2 
tuned to λ=9.1 μm, corresponding to the experimental conditions. (c,d)  
cantilever deflection on top of a LOR-coated sample excited with RCP (c) 
and LCP (d) laser pulses at normal incidence through the CaF2 substrate. (e) 
Absorption spectrum of LOR polymer measured by FTIR. 

 

amplifier was used to form images of 64 × 64 pixels by raster scanning the sample at a 

rate of 0.2 Hz. 

First, the metasurface was spin-coated with a layer of 100-nm-thick LOR 

polymer, which has moderate absorption at the operation wavelength. In this case, the 

polymer heating and expansion was mainly produced by its absorption of locally 

enhanced optical energy around the nanoantennas induced by the incident light. As we 

can see from Figs. 7.1(b,c), under the LCP light illumination, the local optical energy is 

highest in the gap between two nanoantennas; while under the RCP light illumination, the 
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highest local optical energy is outside the vertical dipole antenna. These nanoscale 

features are correctly reflected on the polymer heating distribution which are simulated in 

Figs. 7.3(a,b). Figures 7.3(c,d) show the experimentally measured AFM cantilever 

deflection amplitude at different areas of the sample. The cantilever deflection is directly 

proportional to temperature increase in the sample during the laser pulse. The 

experimental data is in excellent agreement with theoretical predictions shown in Figs. 

7.3 (a,b). (Here, the two simulation figures share the same color bar, but the experimental 

images use different color bars). It is noted that in these images relatively high signal is 

also presented on top of the gold nanoantennas, which is due to the ohmic heat transfer. 

This mixed signal will disappear if the coating polymer is strongly absorptive.       
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Figure 7.4: Photoexpansion microscopy measurements of circularly dichroic thermal 
expansion of the polyethylene-coated metasurface. (a,b) COMSOL 
simulations of the temperature increase distribution in the polyethylene film 
at the end of a square QCL pulse with time duration T = 200 ns and peak 
intensity I = 1kW cm-2 tuned to λ=9.1 μm, corresponding to the 
experimental conditions. (c,d)  cantilever deflection on top of a 
polyethylene-coated sample excited with RCP (c) and LCP (d) laser pulses 
at normal incidence through the CaF2 substrate. (e) AFM topography 
scanning of the polyethylene-coated metasurface. 

 

Next, to map the pure local ohmic heat generation, we re-coated the metasurface 

with a layer of 100-nm-thick polyethylene via thermal evaporation. Polyethylene 

((CH2)n) has simple chemical structure which makes it an effectively mid-IR transparent 

material: in the wavelength range of 5–10 µm, light absorption only happens at ~6.8 µm 

due to the C– H bending vibration.  

With the polyethylene layer on top of the chiral metasurface, the polymer heating 

is produced entirely by the ohmic dissipation in the gold nanoantennas. Specifically, as 
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predicted in Figs. 7.1(b,c), under the LCP light illumination, the ohmic heat (i.e. the 

current density) is dominantly generated in the monopole antenna; while under the RCP 

light illuminating, the ohmic heat is dominantly generated in the dipole antenna. These 

nanoscale features were correctly reflected on the polyethylene heating distribution with 

the simulation results presented in Figs. 7.4(a,b). Because the thermal diffusion length in 

polyethylene is well below 100 nm during the laser pulse, heating is found to be highly 

localized and to closely follow the distribution of ohmic dissipation in the gold 

nanoantennas. Figures 7.4(c,d) show the corresponding experimental data. It confirms 

that the magnitude and spatial distribution of the ohmic heating of a chiral two-

dimensional metasurface dramatically depends on the handedness of light. 

The local ohmic heat dissipation can also be imaged by observing the expansion 

of gold itself. The simulation results of gold heating distribution presented in Figs. 

7.5(a,b) show that the temperature increase is up to ~1 K under the experimental 

conditions, which leads to gold expansion by ~0.8 pm. This is detectable in our setup. 

Figures 7.5(c,d) show the experimentally measured AFM cantilever deflection amplitude 

at different areas of the metasurface sample which has no polymer coating. In this case, 

the cantilever deflection is directly proportional to the temperature increase in gold 

during the laser pulse. The experimental data is in excellent agreement with the 

theoretical predictions shown in Figs. 7.5(a,b). 
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Figure 7.5: Photoexpansion microscopy measurements of circularly dichroic thermal 
expansion of the metasurface without polymer coating. (a,b) COMSOL 
simulations of the temperature increase distribution in the nanoantennas at 
the end of a square QCL pulse with time duration T = 200 ns and peak 
intensity I = 1kW cm-2 tuned to λ=9.1 μm, corresponding to the 
experimental conditions. (c,d)  cantilever deflection on top of the 
metasurface excited with RCP (c) and LCP (d) laser pulses at normal 
incidence through the CaF2 substrate. 

 

7.3 CONCLUSION  

 

We have demonstrated in this chapter that photoexpansion microscopy is a very 

versatile technique which is capable of imaging nanoscale optical energy distribution and 

ohmic heating of nanoantennas. This is facilitated by polymer coating on the device so 

that the local optical properties of nanoantennas are reflected on the heating and 

expansion of polymer. By far, photoexpansion microscopy is the only nanoscale tool to 

map local ohmic heating in metal nanoantennas.     
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Chapter 8 

Conclusion 

 

For the first time, monolayer sensitivity has been achieved in mid-IR 

photoexpanison nano-spectroscopy. The spectral signal is contributed by only ~300 

molecules below the AFM cantilever tip. The cantilever in our experiments not only 

works as a force detector which has resonant response to the molecular expansion, but 

also works as an optical amplifier to generate locally enhanced field. The highly sensitive 

yet simple experimental configuration employs a compact sized and broadly tunable QCL 

as the mid-IR source. The spectroscopy technique we improved in this dissertation is 

readily applied to a variety of nano-samples in chemistry and biology. 

In some cases, high spectral background is present due to the mid-IR absorption 

by the substrate and the AFM tip. We have demonstrated that the background signal can 

be removed from the lock-in detection by doubling its repetition frequency with 

additional substrate/tip heating and expansion induced by a second QCL.  

Heterodyne detection of photoexpanison force has been explored. The obtained 

heterodyne spectra with signal amplified by the tip oscillation are of similar quality to the 

traditional photoexpanison spectra. This new frequency mixing technique is potentially 

useful for operating at a preferred cantilever resonant mode with a pulse repetition 

limited laser source.  

Lastly, we have shown that photoexpansion microscopy can also be applied to 

image local optical energy distribution and ohmic heat dissipation of metal nanoantennas. 

This unique application makes our technique a versatile nanoscale tool for photonics 

research. 
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For the future, nanoscale characterization in the terahertz region (f = 1–10 THz) is 

particularly attracting. THz absorption spectroscopy can probe molecule’s rotational 

modes [2] and give details about fine structures of chemicals. Photoexpansion 

measurement which does not rely on an external photodetector is readily extended to this 

spectral range, once tunable THz-QCLs with adequate output power are available. 
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