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As an alternative to spherical harmonics in modeling the gravity field of the Earth, 

we built a multiresolution gravity model by employing spherical regularization wavelets 

in solving the inverse problem, i.e. downward propagation of the gravity signal to the 

Earth�s surface.  Scale discrete Tikhonov spherical regularization scaling function and 

wavelet packets were used to decompose and reconstruct the signal.  We recovered the 

local gravity anomaly using only localized gravity measurements at the observing 

satellite�s altitude of 300 km.  When the upward continued gravity anomaly to the 

satellite altitude with a resolution 0.5° was used as simulated measurement inputs, our 

model could recover the local surface gravity anomaly at a spatial resolution of 1° with 

an RMS error between 1 and 10 mGal, depending on the topography of the gravity field.  

Our study of the effect of varying the data volume and altering the maximum degree of 

Legendre polynomials on the accuracy of the recovered gravity solution suggests that the 

short wavelength signals and the regions with high magnitude gravity gradients respond 

more strongly to such changes.  When tested with simulated SGG measurements, i.e. the 

second order radial derivative of the gravity anomaly, at an altitude of 300 km with a 0.7° 

spatial resolution as input data, our model could obtain the gravity anomaly with an RMS 
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error of 1 ~ 7 mGal at a surface resolution of 0.7° (< 80 km).  The study of the impact of 

measurement noise on the recovered gravity anomaly implies that the solutions from 

SGG measurements are less susceptible to measurement errors than those recovered from 

the upward continued gravity anomaly, indicating that the SGG type mission such as 

GOCE would be an ideal choice for implementing our model.  Our simulation results 

demonstrate the model�s potential in determining the local gravity field at a finer scale 

than could be achieved through spherical harmonics, i.e. less than 100 km, with excellent 

performance in edge detection. 
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Chapter 1. Introduction 

 

 

For precise determination of the satellites� orbits around the Earth to support their 

numerous applications, it is extremely important to have an accurate model of the Earth�s 

gravity field.  In satellite geodesy, the conventional method has been the spherical 

harmonics approach.  The traditional spherical harmonics model of the gravity potential 

takes the following form: 
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where V  is the gravity potential,   is the Earth�s gravitational constant, R  is the 

equatorial radius of the Earth, r  is the satellite orbit radius from the Earth�s center of 

mass,   is the geocentric longitude (  20  ) and   is the geocentric latitude 

( 22
   ).  ),( nY , the spherical harmonics of degree n , is defined by 
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where   ,...,,,...,,  
110 n

nn
n
nnn SSCCC  are the normalized spherical harmonics coefficients and 

m
nP  is the normalized associated Legendre function of degree n  and order m. 

In the spherical harmonics model, the gravity potential can be determined by 

estimating the spherical harmonics coefficients 
m
nC  and 

m
nS  from satellite observations.  

Increasing the degree n  and the order m ensures more accurate evaluation of the gravity 

potential up to a certain degree, provided accurate data at sufficient resolution.   
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Constructing gravity models from satellite measurements using spherical 

harmonics, however, leads to several problems.  Two of the most frequently discussed 

problems are the cost of evaluating V , which grows rapidly with the increasing degree 

and order, and the model�s inadequacy in handling local problems.  

For a spherical harmonics model with degree and order N , the number of 

operations required to evaluate V  is proportional to 2N .  The estimation procedure using 

the satellite measurements requires the formation of correlation matrices whose size is 

roughly 
22 NN  , which are dense (full) because spherical harmonics coefficients are not 

associated with any particular spatial location, and therefore the number of operations 

needed to store and manipulate them grows rapidly as N  increases.  Since the spherical 

harmonics model is globally supported, it is impossible to increase resolution of the 

model without increasing the degree and order globally.  As evaluating the gravity 

potential at a fine scale requires estimating the coefficients with high degree and order, 

spherical harmonics model incurs a huge cost to perform such an operation.  In addition, 

it is extremely difficult, if not impossible, to adjust the spatial frequency content of a 

spherical harmonic expansion locally.  As a result, there is a difficulty in incorporating 

data from different sources (e.g. observations obtained near the Earth�s surface and those 

from satellites), due to the different spectral contents of the data. (Beylkin and Cramer, 

2002) 

Some of the aforementioned problems can be solved, however, especially for the 

satellite missions whose ground track covers the entire Earth almost uniformly such as  

the GRACE (Gravity Recovery And Climate Experiment) mission, where its covariance 

matrix is near diagonal instead of dense (Tapley, 2008).  Moreover, the introduction of 

fast processors and the implementation of parallel algorithms in recent years have 

reduced the cost and time of the operation associated with spherical harmonics 

expansions to high degree and order, and thus the spherical harmonics model still remains 

the best tool to obtain the global gravity solution by providing very good low frequency 

representation of the gravity field.  A recent gravity model, GGM02C from the GRACE 
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mission output, has recovered the global gravity field to approximately 7 mm geoid 

height RMS error at degree/order 70 (Tapley et al., 2005).  

Despite the certain achievements in the ability of the spherical harmonics model 

to represent the global gravity field, a number of the weaknesses, especially in treating 

local problems as discussed by Schneider (1997) and Beylkin and Cramer (2002), still 

remain: 

 

1. A local change in the measurements affects all coefficients of the global 

gravity field, which makes it difficult to handle local problems.  

2. Due to its global nature, the overall resolution that could be reached by the 

spherical harmonics model is limited by the most poorly sampled region, 

unable to take advantage of the regions with better measurements than others. 

3. Spherical harmonics provide localization only in the frequency domain, not 

in the space domain. 

4. Spherical harmonics show large oscillations in high degree coefficients. 

5. Spherical harmonics tend to smooth the high frequency signals. 

 

A multiresolution model of the gravity field, such as the spherical wavelets 

approximation, uses basis functions with localized support in both space and frequency 

domains and has several advantages over the spherical harmonics model in applications 

to local problems (Schneider 1997): 

 

1. Local changes in the parameters produce only local changes in the model.   

2. The inherent spatial localization nature of wavelets provides a strong local 

meaning to its coefficients.   

3. High frequency signals that the spherical harmonics model cannot process 

can be practically handled by wavelet approaches.   

4. Using the wavelets approximation, a finer scale gravity field determination 

can be achieved.  



 

4 
 

While spherical harmonics remains the tool of choice for applications requiring a 

global solution, we took the multiresolution model approach in order to overcome some 

of the spherical harmonics model�s weaknesses in handling local problems.  In this study, 

we aim to show that the spherical wavelets model can recover fine resolution gravity 

signals in the local region, using only localized measurements.  As Schneider (1997) 

showed in his study of the inverse problems in satellite geodesy, we employed scale 

discrete Tikhonov spherical regularization wavelets to derive an approximate solution to 

the inverse problem, i.e. the inverse of the upward continuation of the gravity potential, 

which is also interpreted as a downward propagation of the gravity measurements at the 

satellite altitude to the Earth�s surface.  We also derived the mathematical formulae to 

provide the optimal regularization parameters as well as the upward continuation 

equation.  Based on these equations and formulae we could build several numerical 

algorithms to test and evaluate our spherical wavelets model.  

In order to test our gravity model we first generated the gravity anomaly field on 

the Earth�s surface at a 0.5° resolution assuming a spherical Earth, based on GGM02 and 

EGM96 gravity models.  We then simulated the gravity field at the satellite altitude of 

300 km by upward continuation of the surface gravity anomaly.  The simulated at-altitude 

gravity data on the local region of interest was used as an input to be fed into the 

numerical algorithms to solve the inverse problem.  The localized solution thus obtained 

was compared to the initial surface gravity anomaly for the evaluation of the model.  In 

validating our spherical wavelets gravity model and the numerical algorithms, we studied 

the effect of varying the data volume and the maximum degree of Legendre polynomials 

on the accuracy of the recovered gravity anomaly as well as the impact of the 

measurement noise and the irregularity of the data arrangement.  

Unlike the traditional method to recover the surface gravity by finding the 

spherical harmonics coefficients that best fit the satellite�s orbit elements, our model 

requires different type of measurements at the satellite altitude: the radial derivatives of 

gravity or gravitational potential.  In the course of our study, we tested our model using 

two types of simulated gravity measurements at the satellite altitude: upward continued 
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gravity anomaly and the second order radial derivative of gravity anomaly, the former 

being a nominal data set to test the algorithms while the latter corresponding to the SGG 

(Satellite Gravity Gradiometry) measurements.  We excluded the SST (Satellite-to-

Satellite Tracking) measurements (i.e. the first order radial derivative of gravity potential 

or anomaly) from our tests because it is very difficult to separate the radial component 

from the inter-satellite range and its derivatives in a practical SST mission such as 

GRACE. 

 

This dissertation is arranged as follows: 

 

In Chapter 2, we will briefly review preliminary mathematics and the basics of 

multiresolution analysis as well as a cursory introduction to spherical wavelets, which is a 

necessary step to understand the contents that will be discussed in the following chapters.  

The theory of the inverse problem and the implementation of the spherical regularization 

wavelets as an approximate solution, treatment of local problems, the discrepancy 

principle and upward continuation will be discussed in Chapter 3.  In Chapter 4, we 

will look into the numerical aspect of implementing the spherical wavelets model in 

recovering the local gravity field.  Chapter 5 and Chapter 6 provide the simulation 

results of two local regions with different gravity gradients profiles.  The effect of the 

data volume and the degree of Legendre polynomials on the recovered gravity anomaly is 

also studied in Chapter 5.  In Chapter 7, we will review the results of the numerical 

simulation for a SGG type mission, which provides a more practical input format for our 

model.  We will also examine the impact of the measurement noise on the recovered 

gravity solution in Chapter 8.  In Chapter 9, we will study the surface gravity anomaly 

recovered from the data on a ground track rather than on a regular grid in order to 

understand the effect of irregularity in the data arrangement on the gravity solution.  

Finally, we will discuss the implications of the result and the application possibilities of 

the spherical wavelets model in Chapter 10. 
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Chapter 2. Preliminaries 

 

 

In this chapter, we will review the mathematical background that will lay the 

basic foundation for Chapter 3.  In section 2.1, the properties of spherical harmonics and 

Legendre polynomials and their roles in harmonic analysis will be reviewed.  The 

spherical pseudo-differential operators will be introduced in section 2.2 and section 2.3 

will provide a brief insight to multiresolution analysis.  In section 2.4, we will present 

both continuous and scale discrete spherical wavelets and their properties, which will 

allow an opportunity for a better understanding of the spherical regularization wavelets 

that we will discuss in the following chapter.  

 

 

2.1. Harmonic Analysis: Spherical Harmonics and Legendre 

Polynomials 

 

We start with harmonic analysis, focusing on spherical harmonics and Legendre 

polynomials.  The results and theorems in this section are based on Müller (1966) and 

Freeden (1979).  We followed the mathematical notations and definitions presented by 

Schneider (1997). 

Let )(2
L  be the Hilbert space with the inner product of two scalar functions 

R:F  and R:G  defined as 

 

                                    
 )()()(),(

)(2 ydyGyFGF


L       ,                                      (2.1.1) 

 

where d  is the surface-element on  , a spherical surface with the unit radius.  Then, 

)(2
LF  can be represented by a spherical harmonics expansion such that 
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 with coscos1 y , sincos2 y  and 

sin3 y , where m
nY  

is the conjugate of m
nY .  The function m

nP  in (2.1.4.b) is the 

associated Legendre function of degree n  and order mdefined as 
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is the Legendre polynomial of degree n , defined by Rodrigue�s formula.  

The system  jnY ,  is )(2
L - orthonormalized, with the following properties: 
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where 1aa , 0ab  if ba , is Kronecker delta.  The inner product of F  and G  in 

equation (2.1.1) is then represented as 
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Now let us consider a system on R , a spherical surface with the radius R .  Then 

)(2
RF L  can be represented by the spherical harmonics expansion as 
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where R
jnF ,  is the Fourier coefficient of F  and  R

jnY ,  is the spherical harmonics system 

that is )(2
RL - orthonormalized with the following properties:  
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Hence replacing R
jnF ,  in the equation (2.1.10) with the right-hand side of (2.1.11) yields, 
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Now let us examine some important properties of spherical harmonics and 

Legendre polynomials.  Consider the scalar functions   R 1 1,- :G  and 

  R 1 1,- :H  on a Hilbert space   1 1,- 2L .  Their inner product is defined as  
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Any function   1 1,- 2LG  can be represented by Legendre series as 
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By replacing )(tG  in (2.1.15) with the right-hand side of (2.1.16) and utilizing the 

orthogonal property of )(tPn  in (2.1.18), we obtain the norm of G  as 
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Now we introduce Funk-Hecke formula.  Let G  be a function on   1 1,- 2L  and 

0Nn .  Then, 
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holds valid for all     , 


.  In addition, nY , any spherical harmonics of degree n , 

satisfies 

 

                                      )()()()()( 
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for all   


. 

In order to examine the relation between the spherical harmonics and Legendre 

functions, we now define the spherical convolution of   1 1,- 2LG  and )(2
LF  

with respect to a unit sphere   as 
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which is of class )(2
L .  The spherical harmonics coefficients of the convolution of G  

and F  satisfy 
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Let    1 1,-   , 2
21 LGG .  Then the spherical convolution of 1G  and 2G  is of class 

  1 1,- C   (i.e. continuous on   1 1,- ) and its Legendre coefficients satisfy 
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Now let us introduce the Addition theorem, one of the most widely used formulas 

in numerical implementation of regularization methods.  For the orthonormal spherical 

harmonics system  jnY ,  on )(2
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2.2. Spherical Pseudo-differential Operators 

 

In this section, we introduce spherical pseudo-differential operators (hereafter 

SPDO), which is necessary to understand the inverse problem we will discuss shortly in 

Chapter 3.  The following definitions and results are based on Èskin (1981) and 

Svensson (1983), as presented by Schneider (1997). 

First, with a sequence of real numbers   ... 1, 0,| nAn , let us introduce the 

space   RnA ; å : 
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where F  being of class )(C  means being smooth and having derivatives of all orders.  

On   RnA ; å , the inner product and norm are defined as 
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The Sobolev space   RnA ; H  is the completion of the space   RnA ; å  under 

the norm (2.2.3) and 
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with )()( 2
0 RR  LH , the Hilbert space.  

Now let us consider a sequence of real numbers   )( n
  in Sobolev space that 

satisfies 
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for Rt .  Then the operator )()(: rtsRs  HH  defined as 
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is called the spherical pseudo-differential operator of order t , and   )( n
  is called the 

spherical symbol of  .  If  
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then (2.2.6) can be represented in a convolution form such that 
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is the C -kernel of the SPDO  , which is of class )()( Rr  CC .  Now by replacing 

),( yxK


  in (2.2.9) with the right-hand side of (2.2.10) we arrive at 
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The role of the SPDO in the inverse problem in satellite geodesy will be discussed 

in Chapter 3. 
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2.3. Basics of Multiresolution Analysis 

 

The wavelet transform, first proposed by Morlet as an alternative method to 

Fourier transform in seismic data modeling (Grossman and Morlet, 1984), has been 

recognized as a part of harmonic analysis (Meyer 1993).  Wavelets provide a 

mathematical tool to decompose a signal or a function into different frequency domains 

and to study each component with a resolution that matches to its scale (Daubechies, 

1992).  Multiresolution analysis, developed by Mallat (1989) and Meyer (1993) consists 

of a sequence of nested subspaces of different resolutions and uses discrete orthonormal 

wavelets as a tool to link the different resolution levels.  In this section, we review the 

basic theory of multiresolution analysis and wavelet transform.  The following definitions 

and notations are largely based on J. Gilbert (2001), Kaiser (1994) and Daubechies and 

Gilbert (1998). 

A multiresolution analysis (hereafter MRA) is a sequence of jV , which denotes 

nested subspaces of )(2 RL , satisfying the following properties: 

 

1. 1 jj VV     ,    Zj  . 

2. }0{



Zj

jV   ,    )(2 R
Z

L



j

jV  . 

3. For jVxf )(  , Zj ,  then 1)2(  jVxf
 
.  This relation is called the dilation 

property.  It implies that each successive jV  corresponds to a resolution 

increasing by a factor 2 from the previous level. 

4. For jVxf )(  , Zj ,  then jVkxf  )(  , Zk .  This relation is called the 

translation property. 

5. For 0)( Vxf 
  such that      ,   )( Z kkxf  is an orthonormal basis of 0V , 

then )(xf  is called a mother scaling function and  
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   ,   ,   )2(2 2 Zkjkxf j
j

 is an orthonormal basis of jV .  Any function in 

1 jj VV  can be expressed in terms of basis functions of 1jV . 

 

Now let us define a subspace jW  , the orthogonal complements of jV  in 1jV , by 

 

                              jjj VggfVfW      allfor    0,| 1       ,                              (2.3.1)  

 

which together with jV  constructs the MRA such that  

 

                                    jjj WVV 1       ,         jjj VVW 1 ┴      ,                           (2.3.2) 

 

where  denotes the orthogonal sum of subspaces.  MRA can also be decomposed as 

 

                                  11   jjj VWV  

                                       221   jjj VWW  

                                       ∙∙∙ 

                                       001 VWW j      

                                       ∙∙∙ 

                                       kkj VWW  1       .                                                 (2.3.3) 

 

Now we introduce the mother scaling function )(x  and mother wavelet )(x  

which satisfy the following properties with )(x  and )(x  respectively being the 

conjugate of )(x  and )(x : 

 

1. 2-scale dilation equations 
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k

k kxhx )2(2)(                                             (2.3.4) 

                                            



 dxkxxhk )2()(                                               (2.3.5) 

                                            





k

kh 1
2

                                                                  (2.3.6) 

 

2. wavelet equations 

 

                                             





k

k kxgx )2(2)(                                           (2.3.7) 

                                             k
k

k hg 


 1

1)1(                                                           (2.3.8) 

 

3. orthonormality 

 

                                            



 nmdxmxnx  )()(                                       (2.3.9) 

                                            



 nmdxmxnx  )()(                                    (2.3.10) 

                                            



 0)()( dxmxnx                                         (2.3.11) 

 

Then, the scaling function kj ,  , defined as a dilated-translated copy of a mother scaling 

function  , is represented as 

 

                                           )2(2)( 2
, kxx j

j

kj         ,         Zkj  ,       ,                 (2.3.12) 

 

and it forms an orthonormal basis of jV  .  The wavelet kj ,  , a dilated-translated copy of 

mother wavelet  , is similarly defined by 
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                                           )2(2)( 2
, kxx j

j

kj         ,         Zkj  ,       ,               (2.3.13) 

 

and is an orthonormal basis of jW . 

Now we decompose a signal into a set of scaling functions and wavelets.  Let us 

define an operator )()(: 22 RR LL jP  , the orthogonal projection of a signal f  onto 

jV  , by 

 

                                              





k

kjkjj ffP ,,  ,        ,                                            (2.3.14) 

 

where the coefficient in the sum is given by 

 

                                          



 dyyyff kjkj )()(, ,,        .                                     (2.3.15) 

 

Then, fPj  represents the coarse version of f  and it satisfies 

 

                                      ffPj
j




lim     ,    0lim 


fPj
j

       .                                   (2.3.16)                      

 

Similarly, the operator )()(: 22 RR LL jQ  , the orthogonal projection of f  onto jW  , 

is defined by 

 

                                              





k

kjkjj ffQ ,,  ,        ,                                         (2.3.17) 

 

where  
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 dyyyff kjkj )()(, ,,                                             (2.3.18) 

 

denotes the wavelet coefficient, and is called the wavelet transform.  We can interpret 

that fQ j  represents the fine details of the signal f  in 1jV  .  Now, we can construct the 

finer version of signal f  such that  

 

                                              fQfPfP jjj 1       ,                                                 (2.3.19) 

 

which is equivalent to (2.3.2) and represents the approximate solution of f . 
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2.4. Spherical Wavelets 

 

The essence of the wavelet analysis is to find the scaling and wavelet basis 

functions best fitting to the nature of the signals or functions of the problem we treat.  

Since the Earth�s surface is near spherical, the geodetic problems we are interested in 

have a spherical nature.  In this section, we introduce the spherical wavelets, with both 

continuous and scale discrete cases, which will lay the foundation for the understanding 

of spherical regularization wavelets we will discuss in Chapter 3.  The following 

definitions and properties of spherical wavelets are based on Freeden and Windheuser 

(1996, 1997) and Schneider (1997). 

Let R),0(:  
be a positive weight function,  ),0(|    be a 

subfamily of   1 1,- 2L  and Zm , 1m , satisfying 

 

1.  
 


0

2
1)()(  dn     for    1 mn  , 

2.   


 




 

1

2
)()(

4

12

mn

dn
n


 


   for all    0  , 

3. 0)( 
 n   for mn  ..., 0,  (this condition must be omitted for 1m  ) . 

 

Then,  ),0(|    
with the following form 

 

                                           










1

)(
4

12

mn
nPn

n



      ,                                        (2.4.1) 

 

where nP
 
is Legendre polynomial of degree n , is called the scale continuous spherical 

wavelet of order m.  The spherical wavelet can be defined on R , where Ry 


 , by 

using the Addition theorem in (2.1.25) in the following way:  
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   .      (2.4.2) 

 

The wavelet transform    RRWT  ),0()(: 22 LL  is then defined as 
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      ,              (2.4.3) 

 

and we can now formulate the reconstruction formula: 

 

    )()()();(
0 ; yddyFWTF

R
R

R
y



 




  

            

    
)()()()()()(

0 ;; yddzdzFz
R R

R
R

yR
R

y



  




  

                               
 

    
   









 


R mn

n

j
R

R
jn

R
jn zdYzYdnzF

1

12

1
0 ,,

2
)()()()()()(



      .                           (2.4.4)

 

 

We used (2.4.2) and the orthonormality of the spherical harmonics in (2.1.7) to arrive at 

(2.4.4).  We now introduce the mother wavelet 1 , from which all other wavelets can be 

derived by rotation and dilation such that 
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      ,                                       (2.4.5) 

 

                                                      1;   DR R
y

R
y       ,                                               (2.4.6) 

 

where R
yR  represents the rotation operator and D  is the dilation operator. 

The (scale continuous) scaling function  ),0(|    
corresponding to the 

spherical wavelet  ),0(|    
is defined as  
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with 
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As with the wavelet, we can define the mother scaling function 1  and its rotated-dilated 

copies  R
y;   on R  by 
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and the reconstruction formula (2.4.4) can be reformulated in the following form: 
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Now we discretize the spherical wavelet to the continuous scale interval to obtain 

scale discrete spherical wavelet packets first by introducing a strict monotonously 

decreasing sequence  j  of real numbers satisfying  
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0lim 


j

j
           and      


j

j
lim       ,                           (2.4.12) 

 

and then by defining the spherical wavelet packet   | Z jp
j  

of order m as  
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with  
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The mother wavelet packet p
0  and its rotated-dilated copies  pR

yj
;

;   on R  is given by 
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and the reconstruction formula takes the following form 

 

                                   )()();( ;
; ydyjFWTF R

pR
yj

j

p

R



  






      ,                          (2.4.17) 

 

(Note that the integration over the scale interval   in (2.4.4) has been replaced with 

infinite summation over j  for the scale discrete case) with  
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As a last step, we define the scale discrete scaling function   | Z Jp
J  

by 
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and the mother scaling function p
0

 
and the rotated-dilated copies  pR

yJ
;
;   on R  in the 

following way 
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The reconstruction formula is then given by 
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Finally, we will derive the relation between the scale discrete scaling function and 

the wavelet packet.  Combining the reconstruction formula in (2.4.17) and (2.4.23) leads 

us to 
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It is easy to verify the following property by examining condition 1 in defining the scale 

continuous spherical wavelet and the definition of the scale discrete wavelet packet and 

scaling function in (2.4.14) and (2.4.20): 
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for 1 mn .  From (2.4.25) we finally arrive at 
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Now we are ready to introduce the scale discrete spherical regularization wavelets 

approximation as a solution to the inverse problem in the next chapter.  
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Chapter 3. Solving Inverse Problem by Spherical Regularization 

Wavelets Approximation 

 

 

3.1. Inverse Problem and Scale Discrete Spherical Regularization 

Wavelets 

 

In this section we follow Schneider�s (1997) approach to the inverse problem and 

its solution by employing spherical regularization wavelets, including definitions and 

notations. 

We begin by introducing an SPDO equation frequently encountered in satellite 

geodesy.  Let us consider an equation: 

 

                               )()( xGzF
r
R



     ,    rx 


  ,    Rz 


  ,    rR    ,                 (3.1.1) 

 

where R  is the surface radius of the spherical Earth, r  is the satellite�s orbit radius from 

the Earth�s center of mass, )(zF


 is the gravity potential at the Earth�s surface and )(xG


 

is the gravity measurements at the satellite�s altitude.  The equation (3.1.1) is a well-

posed problem, where a unique solution exists which is dependent continuously on the 

data in some reasonable topology, a definition forwarded by French mathematician 

Jacques Hadamard.  The SPDO 
r
R  in the equation (3.1.1) is of order   and takes a 

different form depending on the measurements and satellite mission type: direct upward 

propagation, Satellite-to-Satellite Tracking (SST) or Satellite Gravity Gradiometry (SGG).   

In direct upward propagation, the outputs are the gravity potential at the satellite 

altitude.  In an SST or SGG mission, the satellite measurements take the respective form 

of the first or second order radial derivative of the gravity potential (Vermeer, 1989; 
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Seeber 2003).  The corresponding spherical symbol of the SPDO for each type of mission 

is listed below: 

 

direct upward propagation operator:     
n

r
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n

r
R 










 )(                                  (3.1.2) 

SST operator:                                        
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SGG operator:                                          
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             (3.1.4) 

 

Now we consider the inverse of the equation (3.1.1), where the surface gravity 

anomaly or gravity potential is to be obtained from the satellite measurements, such that 

 

                               )()( 1 xGzF
r
R

 
     ,    rx 



  ,    Rz 


  ,    rR    .               (3.1.5) 

 

This equation is widely known as the inverse problem in satellite geodesy.  It is ill-posed 

due to the fact that    1
)(


 n
r
R , the spherical symbol of 

1


r
R , diverges exponentially as 

n  (Louis, 1989).  Since it is ill-posed, we regularize the SPDO to solve the problem.  

Let us consider an inverse operator )()(: 221
Rr

r
R 
 LL  and let 

  )(n
r
Rn


  be the spherical symbol of the SPDO 

r
R .  We can regularize the 

operator 
1


r
R  by introducing a regularizing filter )( nf   that satisfies: 
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3. cf n )(   for all 0  and 0Nn  . 

 

Now we define the operator )()(: 22
RrT  LL  by 
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      ,                               (3.1.6) 

 

which is the realization of the equation (2.2.6) for the inverse problem.  The operator T  

is called the regularization of the inverse operator 
1


r
R  (Louis, 1989) with )(1

nn f  


 

being its spherical symbol.  

Now, we solve the inverse problem using the wavelets approximation.  Let JF  be 

the regularized solution to (3.1.5) satisfying 

 

                                                 GF
r
RJ

J

1lim 


       .                                                    (3.1.7) 

 

JF  is also represented as 

 

                                                       GTF JJ        ,                                                        (3.1.8) 

 

where JT  is the regularization of 
1


r
R  of wavelet resolution level J  and )(

r
RG R  

(i.e. G  belongs to the range of 
r
R ).  Let us consider  )(| 

r
RGGTFV JJJ  R   that 

satisfies: 

 

1.   )(0 2
RJJ VV   L   for all JJ   , 
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2.    0)(|lim 
r
RGGTJJ R  , 

3.   )(  somefor    |)( 22 )(2

RJR
RJVFF 




LL LZ  . 

 

Then a collection of scale discrete regularization subspaces JV  is called a scale discrete 

regularization of multiresolution analysis (hereafter RMRA), and it satisfies 

 

                                             11   JJJ WVV     ,         ZJ     ,                                  (3.1.9) 

 

where 1JW  contains the �detailed information� of G  which corresponds to the 

regularization of wavelet resolution level J .  

Now let  p
J , ZJ , defined by 
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be a subfamily of   1 1,- 2L  that satisfies: 
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p
J

p
J n   for ZJ  and 0Nn  . 

 

Then  p
J  is called a scale discrete spherical regularization scaling function and 

  )(np
J



  denotes the Legendre coefficient of the spherical regularization scaling 

function.  In particular, if J  = 0, then 

 



 

31 
 

                                             n
p

n

p Pn
n

)(
4

12
0

0
0









 


                                               (3.1.11) 

 

is the scale discrete spherical regularization mother scaling function.  We define  pr
yJ

;
; 

and  pR
yJ

;
;

~
  , the rotated-dilated copies of p

0  respectively on r and R , where 

Ry 
 , as 
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We now employ (2.2.9) for the regularized problem (3.1.8).  For rx 


 and 

Rz 


, 
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where 
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                                         (3.1.15) 

 

is the C -kernel of the regularization operator JT .  We can replace pr
yJ

;
;   and pR

yJ
;
;

~
  in 

(3.1.15) with the right-hand side of (3.1.12) and (3.1.13), and by using the orthonormal 
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property of the spherical harmonics as presented in (2.1.7) we obtain the representation of 

),( zxK J



 analogous to (2.2.10): 
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The equation (3.1.16) implies that   2)(np
J



 corresponds to the spherical symbol of the 

regularization operator JT , providing the link between the regularized inverse problem 

and the spherical regularization scaling functions and wavelets.  The second line in 

(3.1.14) is also the reconstruction formula for the regularized solution of wavelet 

resolution level J . 

Along with the scale discrete spherical regularization scaling function, we 

introduce the scale discrete spherical regularization wavelet packet  p
j , which is 

defined by 
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with 
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being the Legendre coefficient of the spherical regularization wavelet packet.  The scale 

discrete spherical regularization mother wavelet p
0  

and its rotated-dilated copies 

 pr
yj

;
; 

 
and  pR

yj
;

;

~
   are defined in a similar way as in the scaling function: 
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Now let us consider the scale discrete RMRA: 
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We can use (3.1.14) to represent  )(| 000
r
RGGTFV  R  such that 
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and similarly, jW  is represented as 
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where  
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denotes the regularization wavelet transform of )(xG


.  
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By substituting (3.1.23) and (3.1.24) for 0V  and jW  in (3.1.22), we acquire the 

representation of scale discrete RMRA JV  and in turn obtain the approximate solution to 

the regularized problem as 
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which is the result of the decomposition and the reconstruction of the gravity signal in 

terms of spherical regularization scaling function and wavelet packets, and 
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is the regularized solution to the inverse problem (3.1.5). 
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3.2. Approximate Solution to the Inverse Problem and Tikhonov 

Spherical Regularization Wavelets 

 

In this section, we obtain the formula for the approximate solution to the inverse 

problem that can be realized in numerical implementation.  

Let JF , the regularized solution to the inverse problem of wavelet resolution level 

J , be represented as  
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where )(0 zF


 denotes the regularized solution of wavelet resolution level 0, which is the 

first term of the right-had side of the equation (3.1.26), and )(zd j



 is the added details at 

each wavelet resolution level j , whose sum over j  corresponds to the second term of 

the right-hand side of (3.1.26). 

Now we rewrite )(0 zF


 using the definition of pr
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;
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orthonormal property of the spherical harmonics in (2.1.7): 
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By utilizing (2.1.12), equation (3.2.2) yields, 
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       .              (3.2.3) 

 

Now by applying the Addition theorem (2.1.25) to (3.2.3), we get 
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Similarly, )(zd j
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Again, applying (2.1.12) to (3.2.5) yields, 
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By using the Addition theorem, we obtain  
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The equation (3.2.4) and (3.2.7) are of the form that can easily be realized in 

numerical algorithms.  By combining those two equations we acquire the approximate 

solution to the inverse problem (3.1.5) that is numerically implementable: 
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      ,            (3.2.8) 

 

for rx 


 and Rz 


, where N  denotes the maximum degree of Legendre 

polynomials. 

Now, we introduce the scale discrete Tikhonov spherical regularization scaling 

function and wavelet packet (Schneider, 1997), whose Legendre coefficients are to be 

used in (3.2.8) in solving the inverse problem: 
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where j  denotes the regularization parameter of wavelet level j , which is of great 

importance as it controls the regularization level as well as determines how much 
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�detailed information� will be added at each wavelet resolution level.  The method to find 

the optimal value of j  will be discussed in section 3.4. 

Recalling (2.2.6), (2.2.10), (3.1.6) and (3.1.16), the regularization filter )( nJ
f   

of wavelet level J  takes the form 
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                    for  ZJ   ,    0Nn   ,               (3.2.11) 

 

for the scale discrete Tikhonov spherical regularization scaling function and wavelet 

packets.  It is a simple task to confirm that )( nJ
f   

meets the properties of the 

regularization filter illustrated in section 3.1.
 
 

 Fig. 3.2.1 and Fig. 3.2.2 are the sample plots for the Legendre coefficient of scale 

discrete Tikhonov spherical regularization mother scaling function   )(0 np 
  (for j  = 0) 

and wavelet packet   )(np
j


  (for j  = 2, 4, 6), respectively employing the spherical 

symbol of the direct upward propagation operator 
n

n r

R








  and the SGG operator 

  
2

21

r

nn

r

R
n

n










 .  The regularization parameters used in the plots are: 0  = 

9.0×10
-2, 1  = 5.0×10

-2, 2  = 2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-4 and 

6  = 5.0×10
-5 for Fig. 3.2.1 and 0  = 2.0×10

-12, 1  = 7.0×10
-13, 2  = 2.0×10

-13, 3  = 

8.0×10
-14, 4  = 4.0×10

-14, 5  = 2.0×10
-14 and 6  = 5.0×10

-15 for Fig. 3.2.2.  The 

parameter choices for the Earth�s surface radius R  and the satellite�s orbit radius r  are 

R  = 6378136.3 m and r  = 6678136.3 m, assuming a satellite altitude of 300 km.  Either 

plot plainly exhibits the essential properties of the spherical regularization wavelets in 

frequency domain:  
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1. The scaling function and wavelet packets act as band pass filters for the 

gravity signal.   

2. As the wavelet resolution level increases, the wavelet filter moves toward the 

higher frequency (i.e. larger n ), correlating the wavelet level with the 

frequency of the signal. 

3. The amplitude of the Legendre coefficient of the wavelet increases with the 

wavelet level due to the ill-posed nature of the inverse problem (Schneider 

1997). 

 

In Fig. 3.2.3 and Fig. 3.2.4 are the sample plots for the scale discrete Tikhonov 

spherical regularization mother scaling function   n
p

n

p Pn
n

)(
4

12
0

0
0









 
   

(for j  = 0) 

and wavelet packet   n
p
j

n

p
j Pn

n
)(

4

12

0









 


  (for j  = 2, 4, 6) with respect to the 

angular distance from the location where the signal is to be decomposed and 

reconstructed, in both the direct and the SGG case, with the same regularization 

parameters as were used to plot Fig. 3.2.1 and Fig. 3.2.2.  The upper limit of the 

summation was set to be N = 600.  Either plot shows the wavelet�s localization property 

in space domain:   

 

1. The scaling function and wavelet packets exhibit localized support in scales. 

2. As the wavelet resolution level increases, the localization becomes stronger � 

the higher the wavelet level is, the finer scale localization of the signal occurs. 

3. The amplitude of wavelet increases with the wavelet level, attesting to the ill-

posed nature of the problem. 

 

The numerical solution to the inverse problem applying Tikhonov spherical 

regularization wavelet packets will be presented in later chapters.   
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Fig. 3.2.1. The plots of the Legendre coefficient of scale discrete Tikhonov spherical 

regularization scaling function   )(0 np 


 
( j  = 0) and wavelet packet   )(np

j


  ( j  = 2, 

4, 6) for the spherical symbol of the direct upward propagation operator 
n

n r
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 . 
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Fig. 3.2.2. The plots of the Legendre coefficient of scale discrete Tikhonov spherical 

regularization scaling function   )(0 np 


 
( j  = 0) and wavelet packet   )(np

j


  ( j  = 2, 

4, 6) for the spherical symbol of the SGG operator 
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Fig. 3.2.3. The plots  of the scale discrete Tikhonov spherical regularization scaling 

function   n
p

n

p Pn
n

)(
4

12
0

600

0
0








 
  

 and wavelet packet    n
p
j

n

p
j Pn

n
)(

4

12600

0








 


  for 

the direct upward propagation operator, with respect to the angular distance (in degrees) 
from the location where the signal is decomposed and reconstructed.    
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Fig. 3.2.4. The plots  of the scale discrete Tikhonov spherical regularization scaling 

function   n
p

n

p Pn
n

)(
4

12
0

600

0
0








 
  

 and wavelet packet    n
p
j

n

p
j Pn

n
)(

4

12600

0








 


  for 

the SGG operator, with respect to the angular distance (in degree) from the location 
where the signal is decomposed and reconstructed. 
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3.3. Local Gravity Solution 

 

Unlike the spherical harmonics representation of the gravity field where only one 

set of global solutions for the spherical harmonics coefficients is available, a wavelet 

model uses locally supported basis functions.  Our spherical regularization wavelets 

model allows us to locally solve the inverse problem to recover only the local gravity 

solution and to take advantage of the regions with better sampled measurements than 

others, which is one of the greatest advantages of the wavelet model and the focus of this 

study. 

Let us consider local regions on the spherical surfaces S
r  and S

R

~

 .  The 

regularization of the inverse problem for these local regions can be represented as 
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      ,                               (3.3.3) 

 

and JT  denotes the regularization of the inverse operator 
1


r
R  of wavelet resolution 

level J  (Schneider, 1997).  

Now the approximate solution to the inverse problem in (3.2.8) can be adapted for 

the local problem in the following way: 
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      ,           (3.3.4) 

 

which is the approximate local solution to the regularized inverse problem and the one we 

will utilize to recover the local surface gravity field in the following numerical 

simulations. 
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3.4. Choice of Regularization Parameter by Discrepancy Principle 

 

The Legendre coefficient of the spherical regularization scaling function and 

wavelet packet contains j , the regularization parameter of the wavelet resolution level 

j .  An optimal value for j  
can be determined by satisfying the Discrepancy principle 

(Morozov, 1966) in the following way:  
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      ,                           (3.4.1) 

                        

where G
 
is the gravity signal at the satellite�s orbit radius r  (the gravity measurements 

at the satellite�s altitude),   GTG
optJ

r
R 

   is the regularized signal of G  and 

  )()(: 22
RroptJ

T  LL  denotes the regularization of  the inverse operator 
1


r
R  of 

wavelet resolution level J  with the optimal regularization parameter  optJ .  Schneider 

(1997) used the Discrepancy principle to find the regularization parameter for scale 

continuous wavelets.  We are, however, required to find the formula for the scale discrete 

case because our regularized solution uses a scale discrete scaling function and wavelet 

packet for the numerical implementation purpose.   

Let us consider the spherical symbol of the operator  optJ
r
RT  .  In the preceding 

section 3.1, we defined   nn
r
R 

 )(  and from (3.1.16) we could determine 

    2)()( nnT p
JJ


 .  If we now define the spherical symbol    )(n
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in accordance with the scale discrete Tikhonov spherical regularization scaling function,  

       n
p
J nnT

optJoptJr
R 



2

)()(


  satisfies (2.2.7) and (2.2.8).  The operator  optJr
RT   is 

thus SPDO of order   and the function RrG :  can be represented by the 

following convolution form: 
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where   ),( yxK
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  is the C -kernel of  optJr
RT   defined by 
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Substituting (3.4.4) for   ),( yxK
optJ



  in the equation (3.4.3) and regrouping leads us to 
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Now applying (2.1.12) and the Addition theorem (2.1.25) to the equation (3.4.5) 

yields 
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and (3.4.1) thus becomes  
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    .    (3.4.7) 

 

In (3.4.7), we changed the upper limit of the sum from   to N  for numerical 

implementation.  Now by finding  optJ  that satisfies (3.4.7), we can obtain the optimal 

regularization parameter for an arbitrary wavelet resolution level J .  In practice, 

however, we set the largest value of  optJ  satisfying the condition (3.4.7) with a given 

  (e.g. 10% of the amplitude of G ) to be 0 , the regularization parameter for the 

mother scaling function p
0 .  Since the scaling function must satisfy the requirement 

     22

1 )(


 
p
J

p
J n , the regularization parameter at each successive wavelet level 

should be smaller than the previous one.  Therefore, the regularization parameters can be 

chosen as a set of monotonously decreasing sequence  j , starting from 0 . 
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3.5. Upward Continuation 

 

In numerical application, we often need to convert the original surface gravity 

anomaly or gravity potential to a certain form of gravity measurements at the satellite�s 

altitude according to the type of mission (e.g. second order radial derivative of gravity 

potential for SGG mission) in order to compare the recovered gravity solution to the 

original surface gravity data.  This process is called upward continuation, which is a well-

posed problem.  The obtained gravity measurement data at the satellite altitude is then 

used to recover the surface gravity solution by solving the inverse problem through the 

spherical regularization wavelet transform as explained in the section 3.1.  

Let us assume a spherical Earth.  The gravity potential or its derivative )(xU


 on 

the spherical surface r , where rx 


, can be propagated from )(zF


, the gravity 

potential on the Earth�s surface R , where Rz 


 and Rr  , through upward 

continuation by solving the following SPDO equation (Svensson 1983; Schneider 1997): 
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where 
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RA  is the SPDO of order   whose spherical symbol denotes: 
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              (3.5.4) 

 

Then the equation (3.5.1) can be represented by a convolution form such that 
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is the C -kernel of 
r
RA  (Schneider 1997). 

Now we take a similar approach as in section 3.2 and rewrite (3.5.5) as, 
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Therefore, by changing the limit of the sum from   to N , we obtain the following 

equation: 
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      ,                    (3.5.8) 

 

which is the formula to numerically obtain the gravity measurements at the satellite 

altitude by upward continuation. 
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Chapter 4. Numerical Aspect of Implementing the Spherical 

Wavelets Gravity Model 

 

 

We have developed three different algorithms � the solution to equation (3.2.8) 

and (3.3.4), the approximate solution to the inverse problem; for satisfying the inequality 

(3.4.7) to obtain the optimal regularization parameter; and for solving the equation (3.5.8) 

for the upward continuation.  In this chapter, we will discuss the numerical schemes for 

the surface integration presented in the aforementioned equations and the numerical 

implementation of the spherical wavelets gravity model for recovering the surface gravity. 

 

 

4.1. Numerical Integration Schemes 

 

In order to evaluate the surface integral, we built and tested several numerical 

integrators for the tabulated functions including the trapezoidal rule and Gaussian 

quadrature.  Gaussian quadrature rule approximates a definite integral to a weighted sum 

of the function values at specific points within the integral limit   1 1,-  as 
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where iw  is the weight at the point or abscissa ix .  For the integration over the interval 

]  , [ ba , it takes a more general form:  
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where )(xW  is a positive weight function.  Gaussian quadrature is designed to provide 

the freedom to choose not only the weighted coefficients, but also the location of the 

abscissas at which the function is evaluated by employing orthogonal polynomials to 

remove integrable singularities from the desired integral (Numerical Recipes, 1986).  One 

of the most commonly used weight functions is the Gauss-Legendre formula which is 

given by 
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                for       11  ix       ,             (4.1.3) 

 

where '
NP  is the derivative of Legendre polynomial of degree N , given N  abscissas to 

evaluate the integral.  The Gauss-Legendre formula scales the integration limit ]  , [ ba  to 

  1 1,-  and provides the abscissas and weights for Gaussian quadrature in the following 

way: 
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Gaussian quadrature, however, yields a high order-high accuracy result only when 

the integrand is very smooth (Numerical Recipes, 1986).  For the tabulated functions of 

our interest such as the gravity anomaly on evenly spaced grid points, which is not 

necessarily very smooth, we found the extended trapezoidal rule to be a better choice for 

the integration scheme.  

The most basic and crudest trapezoidal rule calculates a definite integral of 

function )(xf
 
by approximating 
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For M  evenly spaced abscissas the extended trapezoidal rule can be applied as  
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where ax 1  and bxM   (Numerical Recipes, 1986). 

One of the most commonly used algorithms for extended trapezoidal rule adds 

new mid-points to the previously defined grid points at each sequence and makes 

sequential calls that incorporates the information from previous calls and evaluate the 

integrand only at the new points necessary to refine the grid (Numerical Recipes, 1986).  

Fig. 4.1.1 shows how the new mid-points are added with respect to the previous points on 

the grid at each sequential call following the extended trapezoidal rule. 

 

 

 

          n  = 1 

   

           n  = 2 
   

           n  = 3 
   

           n  = 4 
     

      total after n  = 4 
 

 

Fig. 4.1.1. Added new mid-points with respect to the previous points on the grid at each 
sequential call.  After fourth call, the total number of points for evaluating the integral is 
9. (Numerical Recipes, 1986) 
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The extended trapezoidal rule adds new 22 n
 points at th'n  sequence and 

requires total 12 1 n
 evenly spaced grid points for the integration.  The integral is 

evaluated in the following way: 

 

                                                  21 2

)(

2

1





n

ab
ax       ,                                              (4.1.7) 

 

                                               21 2

)(
)1(






ni

ab
ixx       ,                                          (4.1.8) 

 

                                            
2

)()(
)(1

bfaf
abS


       ,                                         (4.1.9) 

 

                       












 
 






22

1
21 )(

2

)(

2

1
n

i
innn xf

ab
SS            for   .... 4, 3, 2,n       ,        (4.1.10) 

 

where nS  is the evaluation of the definite integral 
b

a
dxxf )(  after th'n call of the 

trapezoidal routine.  This algorithm is especially handy when one desires to evaluate the 

integral of an analytic function within a certain level of accuracy because it can be used 

repeatedly to refine the grid by adding new points until the desired level of accuracy   is 

achieved by satisfying the following condition: 

 

                                            1nn SS            for   .... 4, 3, 2,n       .                  (4.1.11) 

 

Our interest is to establish the integration scheme for the tabulated function 

    ..., 2, 1, , UNC MiiF   on a total of 12 1max 
NM  evenly spaced points, where 

)(iFUNC  denotes the th'i  function value in the array of the tabulated function of size M .  
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We recovered the integral for )(iFUNC  by applying the extended trapezoidal rule such 

that 
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The requirement of 12 1 n
 abscissas, however, is not an absolute condition to 

execute the extended trapezoidal rule.  In our simulation, we had the global data field and 

choosing a local region encompassing 12 1 n
 points along the either longitude or 

latitude for recovering surface gravity solution did not pose a problem.  In other 

situations where only a fixed number of data points are available, which do not 

necessarily satisfy the requirement of 12 1 n
 abscissas, we can take a direct approach to 

the extended trapezoidal rule in (4.1.6) by evaluating the integral in one single step 

instead of sequential calls of trapezoidal routine in the following way: 
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Now let us consider a two-dimensional surface integral of a function ),( f
 
on 

the spherical surface r , where   is the longitude (  20  ) and   is the latitude 

( 22
   ) in a spherical coordinate.  The surface integral can be broken down into 

two linear integrals: 
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The linear integral in the equation (4.1.16) and (4.1.17) then can now be evaluated by 

employing extended trapezoidal rule.  
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4.2. Numerical Implementation of the Spherical Wavelets Gravity 

Model 

 

From several preliminary tests with  simulated data sets (which do not necessarily 

represent the Earth�s geodetic signal), we have learned that when using the spherical 

wavelets model, the local surface gravity solutions recovered from the local satellite 

measurements can be nearly as accurate as those recovered from the global measurements 

if the local area where the gravity measurements are acquired is at least 70% larger in 

both longitudinal and latitudinal directions than the desired solution region. 

In order to test our numerical algorithms in a more realistic situation, we 

generated the Earth�s global surface gravity anomaly.  In geophysics, the gravity anomaly 

is defined as the difference between 
geoid

g


, the gravity on the geoid, and 
reference

g


, the 

normal gravity on the reference ellipsoid, in the following way: 

 

                   referencegeoid
ggg


 anomaly)(gravity         .                             (4.2.1) 

 

Gravity anomaly is often measured in a unit of mGal (milli-Galileo), where 1 mGal is 

equivalent to 10-5 m/s2 of acceleration.  The Earth�s surface gravity acceleration ranges 

between 976 and 983 Gal.  The standard choice of the reference ellipsoid is WGS84, an 

equipotential ellipsoid with the semi-major axis a  = 6378137.0 m, the reciprocal of 

flattening f/1  = 298.257223563, the theoretical gravity potential 0U  = 62636851.7146 

m2/s2 and the Earth�s gravitational constant   = 3986004.418×10
8 m3/s2 (NIMA 

Technical Report TR8350.2, 2000). 

The anomaly we generated, however, is not the actual gravity anomaly, but rather 

a spherical anomaly, or gravity disturbance, while the Earth as well as the reference 

system is assumed as a sphere with the same radius.  In computing the spherical surface 

gravity anomaly, we assumed the Earth is spherical with the radius R  = 6378136.3 m 
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(real Earth�s equatorial radius).  For a reference system, we used a sphere with the same 

radius R with the gravity potential on the surface 0V  = 
R


 = 62494814.0102 m2/s2, where 

 is the Earth�s gravitational constant defined in the WGS84 system.  We generated the 

surface gravity potential ),,( RV on a 720 × 360 evenly spaced longitude-latitude grid 

at a 0.5° resolution from the equation (1.1) and (1.2) using spherical harmonics 

coefficients of the gravity models GGM02C (with n , the degree and order of spherical 

harmonics coefficient, up to 200) and EGM96 (for higher n : up to 360).  The spherical 

surface anomaly was then computed by: 

 

                                 
R

V

R

RV
g 0

0

),,(



      ,                                             (4.2.2) 

 

where,    denotes geocentric longitude and   geocentric latitude. 

The anomaly at the satellite altitude h  = 300 km (i.e. the orbit radius r  = 

6678136.3 m) was generated in a similar way on a 720 × 360 grid, using the same 

spherical harmonics coefficients of the GGM02C/EGM96 hybrid model to compute 

),,( rV , the gravity potential at the orbit radius r , and rV , the gravity potential of the 

reference sphere at r  (the radial distance from the center of the reference sphere), as rV  

= 
r


 = 59687377.4200 m2/s2.  The anomaly at the satellite altitude was then computed in 

the following way: 

 

                                   
r

V

r

rV
g r

r 
),,( 

      .                                           (4.2.3) 

 

It is noteworthy that this at-altitude anomaly can also be obtained with an 

alternative method by applying a direct upward propagation operator (3.1.2) to the 

gravity anomaly itself in solving the upward continuation equation (3.5.8).  The upward 



 

59 
 

continued solution was then multiplied by a factor 
r

R
, because the upward continuation 

operator affects the gravity potentials and their difference, but not the radius of the sphere, 

which is set to be constant. 

The simulated at-altitude anomaly was then used as the simulated gravity 

measurements at the satellite altitude and the surface gravity anomaly was recovered by 

solving the inverse problem, which was multiplied by a factor of 
R

r
 in the final solution.   

Fig. 4.2.1 and Fig. 4.2.2 show the contour maps of the gravity anomaly at the 

Earth�s surface and at the altitude of 300 km.  Note how much fine details are lost as the 

gravity anomaly is smoothed out at altitude, giving another illustration to the nature of 

the ill-posed problem in treating the downward propagation of the gravity signals. 
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Fig. 4.2.1. Contour map of the global surface gravity anomaly at the resolution of 0.5°.  

Each contour represents 50 mGal of gravity anomaly difference. 
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Fig. 4.2.2. Contour map of the simulated gravity anomaly at the satellite altitude h  = 300 
km.  Each contour represents 3 mGal of difference. 
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In order to validate our gravity model and the numerical algorithms, we studied 

two different local regions, one is the area of 30.25°W ~ 109.75°W in longitude and 

24.75°S ~ 19.75°N latitude (Region I) and the other 160.25°E  ~ 100.25°W longitude 

(counterclockwise) and 24.75°S ~ 24.75°N latitude (Region II).  After the local surface 

regions of interest were chosen, the corresponding local gravity anomaly at the altitude of 

h  = 300 km was used to recover the local surface gravity signals.  In our simulations we 

chose the local area at the satellite altitude, from which the gravity measurement data is 

obtained to solve the inverse problem, to encompass 12 n  grid points along longitude 

and 12 1 n  points along latitude (e.g. 257 points through longitude and 129 points 

through latitude), where n is an arbitrary positive integer (except those of Chapter 9).  

The number of data points on the grid or abscissas was chosen such that it could be 

accommodated in the sequential scheme of the extended trapezoidal rule, as mentioned in 

section 4.1, although the restriction would not have been necessary if we employed the 

single-step extended trapezoidal routine.  We set N , the maximum degree of Legendre 

polynomials included in the solution to the inverse problem to be 300 as the default.  

The regularization parameters used in the spherical wavelet transform were 

obtained as follows.  We used (3.4.2) for the Legendre coefficient of the mother scaling 

function   )(0 np 

  and found 0  that satisfies the condition imposed by (3.4.7) within 

the error set to be 10% of the amplitude of G .  Since the recovered solution gets 

closer to the true gravity anomaly as the wavelet resolution level is added, we could 

perform our simulation in the following way:  Starting from 0 , generate a 

monotonously decreasing sequence of j  for each added wavelet resolution level j  and 

solve the inverse problem to recover the surface gravity anomaly for each wavelet level 

until the recovered gravity solution displays �forced� fine signals, which are induced by 

high frequency wavelets, interfering with the true gravity signals and causing the RMS 

error 
RMSJGG   to increase. 
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The flowcharts of the numerical algorithms for finding the optimal regularization 

parameter, solving the inverse problem, and performing upward continuation are 

provided in Fig. 4.2.3 to Fig. 4.2.5. 

Once the regularization parameters were determined and the local surface gravity 

anomaly was recovered from the gravity measurements at the satellite altitude by solving 

equation (3.3.4), the solution then was compared to the truth data, i.e. the surface gravity 

anomaly generated from GGM02C/EGM96 gravity models.  A mean filter was used to 

the truth data to obtain sF , the surface gravity anomaly at the different spatial resolutions, 

in the following way:  
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      ,                  (4.2.4) 

 

where iz


 and jz


 are the grid points on a 720 × 360 grid set, )( jzF


 is the surface gravity 

anomaly at jz


, sr  is the spatial resolution and sN  is the total number of grid points jz


 

that satisfies 
2
s

ji

r
zz 


 at a given surface position iz


.  We thus obtained the surface 

gravity anomaly at the spatial resolution of 1° to 5° to be compared to the recovered 

gravity solution with the different wavelet resolution levels. 
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Fig. 4.2.3. Flowchart for finding optimal regularization parameter  opt0  
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Fig. 4.2.4. Flowchart to recover the surface gravity anomaly )(zFJ
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Fig. 4.2.5. Flowchart for the upward continuation to obtain )(xG


, the simulated 
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We investigated the effect of changes in N , the maximum degree of the 

Legendre polynomials, on the recovered surface gravity anomaly, with both reduced ( N  

= 150) and increased value ( N  = 600) for the Region I.  We also studied how the volume 

of the gravity measurement data at the satellite altitude affects the accuracy of the 

recovered surface gravity.  

In addition to the numerical simulations for the cases where the upward 

propagated gravity anomaly at the satellite altitude was used as input data, we tested our 

gravity model for an SGG case.  We re-sampled the surface gravity anomaly on a 513 × 

257 longitude-latitude grid from the truth data set on a 720 × 360 grid by Gaussian 

smoothing and obtained the second order radial derivative of the gravity anomaly at the 

satellite altitude by the upward continuation of this new set of surface gravity data.  A 

local set of the SGG type data at the altitude of 300 km with a spatial resolution 0.7° was 

obtained in such a manner and was then used to recover the surface gravity anomaly for 

the local region corresponding to Region I.  

We also investigated the impact of the measurement noise on the recovered 

gravity solution.  We imposed Gaussian random noise on the gravity measurements and 

solved the inverse problem to recover the surface gravity anomaly.  Two sets of Gaussian 

random noise with varying amplitude, whose respective standard deviation is 0.1% and 

0.5% of that of the gravity measurements at the satellite altitude, were tested in the cases 

with both the upward propagated gravity anomaly and the SGG measurements.   

Finally, in order to understand the effect of irregularity in the measurement data 

arrangement on the gravity solution, we studied the surface gravity anomaly recovered 

from the at-altitude gravity measurement data on ground tracks rather than on a regular 

grid with the equal spacing along the longitude and latitude.  We generated two sets of 

ground track profiles of the Track A (ground tracks are separated by 1° with the data 

along the track 0.5° apart) and the Track B (ground tracks are 1.5° apart with the data 

along the track separated by 0.5°) and compared the result to the one obtained from the 

data set on a regular grid with 0.5° spacing in both longitudinal and latitudinal directions. 
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The block diagrams to summarize the numerical procedure for the simulations 

using either type of gravity measurements at the satellite altitude are provided in Fig. 

4.2.6 and Fig. 4.2.7.  Simulation findings and results will follow in the next five chapters. 
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Fig. 4.2.6. Numerical procedure for the simulation when using the upward propagated 
gravity anomaly as input data to recover the surface gravity anomaly. 
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Fig. 4.2.7. Numerical procedure for the simulation when using the simulated SGG 
measurements at the satellite altitude as input data to recover the surface gravity anomaly. 
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Chapter 5. Simulation Result: Region I (30.25°W ~ 109.75°W and 

24.75°S ~ 19.75°N) 

 

 

5.1. Region I  

 

Region I includes the Pacific � Central-South America where the Andes Mountain 

Range starts off the Pacific in the west and the Amazon Basin continues to the east 

toward the Atlantic.  The local surface gravity anomaly on a 160 × 90 grid for the region 

of 250.25° ~ 329.75° in longitude (equivalent to 30.25°W ~ 109.75°W) and -24.75° ~ 

19.75° latitude (24.75°S ~ 19.75°N) was recovered from the gravity anomaly data of the 

local region of 226.25° ~ 354.25° in longitude (5.75°W ~ 133.75°W) and -34.25° ~ 29.75° 

in latitude (34.25°S ~ 29.75°N) on a 257 × 129 regular grid at the satellite altitude of 300 

km.  This area was selected mainly because it contains regions with three distinct gravity 

profiles and thus was considered a good candidate to stress our model: the Pacific with 

the low gravity gradients, the Andes with high gradients and the Continental South 

America with medium strength gravity gradients.  The contour maps of the truth data at a 

resolution of 0.5° and the gravity anomaly at the satellite altitude of corresponding local 

area are shown in Fig. 5.1.1.  The 3-D surface plots are presented in Fig. 5.1.2.  

A mean filter was used to the truth data to obtain the surface gravity anomaly at 

the different spatial resolutions from 1° to 5° to be compared to the recovered surface 

gravity anomaly with the different wavelet resolution levels from J  = 0 to J  = 6.  The 

regularization parameters used in the simulation are 0  = 9.0×10
-2, 1  = 5.0×10

-2, 2  = 

2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-4 and 6  = 5.0×10
-5.  The maximum 

degree of the Legendre polynomials N  was set to be 300 throughout the simulation. 
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Fig. 5.1.1. The contour map of the surface gravity anomaly of the truth data at the 
resolution of 0.5° and the corresponding gravity anomaly at the satellite altitude h  = 300 
km with each contour respectively representing 20 mGal and 3 mGal of difference in 
gravity anomaly. 
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Fig. 5.1.2. 3-D surface plot of the surface gravity anomaly of the truth data at the 
resolution of 0.5° and the corresponding gravity anomaly at the satellite altitude h  = 300 
km to be used to recover the surface gravity anomaly by solving the inverse problem.  
The surface gravity information was smoothed out a great deal by upward propagation.
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Since the wavelet resolution level J  can be determined to an arbitrary degree � 

one can set a hundred different resolution levels or just one � and because how much of 

the fine details that can be added at each increased wavelet level depends on the 

regularization parameter j , we chose the parameters so that each wavelet resolution 

level corresponds to a spatial resolution: The gravity signal of J  = 0 corresponds to that 

of the spatial resolution 5°, J  = 1 to the resolution 4°, J  = 2 to 3°, J  = 3 to 2°, J  = 4 

to 1.5° and J  = 5 to 1°. 

Fig. 5.1.3 to Fig. 5.1.14 show the comparison between the recovered surface 

gravity anomaly at each wavelet resolution and the truth data at its corresponding spatial 

resolution both in contour maps and 3-D plots.  In all of the contour maps, each contour 

represents 20 mGal of difference in gravity anomaly.  As is expected from wavelet theory, 

finer details are recovered as the wavelet resolution level J  increases, until high 

frequency wavelets produce �forced� fine signals over the area with low-medium 

strength gravity gradients to interfere with the real gravity signals (i.e. J  = 6 in this case), 

as is shown in Fig. 5.1.15. 
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Fig. 5.1.3. The contour map of the truth data at the spatial resolution 5° and the recovered 
gravity anomaly for the wavelet resolution level J  = 0, with each contour representing 
20 mGal difference in gravity anomaly.  The RMS error in the region is 2.3 mGal and the 
mean error magnitude is 1.5 mGal. 
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Fig. 5.1.4. 3-D surface map of the truth data at the spatial resolution 5° and the recovered 
gravity anomaly for the wavelet resolution level J  = 0. 
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Fig. 5.1.5. The contour map of the truth data at the spatial resolution 4° and the recovered 
gravity anomaly for the wavelet resolution level J  = 1.  The RMS error in the region is 
2.6 mGal and the mean error is 1.7 mGal. 
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Fig. 5.1.6. 3-D surface map of the truth data at the spatial resolution 4° and the recovered 
gravity anomaly for the wavelet resolution level J  = 1. 
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Fig. 5.1.7. The contour map of the truth data at the spatial resolution 3° and the recovered 
gravity anomaly for the wavelet resolution level J  = 2.  The RMS and mean error in the 
region is reduced to 3.5 mGal and 2.1 mGal, respectively. 
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Fig. 5.1.8. 3-D surface map of the truth data at the spatial resolution 3° and the recovered 
gravity anomaly for the wavelet resolution level J  = 2. 
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Fig. 5.1.9. The contour map of the truth data at the spatial resolution 2° and the recovered 
gravity anomaly for the wavelet resolution level J  = 3.  The RMS error in the region is 
5.0 mGal and the mean error is 3.0 mGal. 
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Fig. 5.1.10. 3-D surface map of the truth data at the spatial resolution 2° and the 
recovered gravity anomaly for the wavelet resolution level J  = 3. 
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Fig. 5.1.11. The contour map of the truth data at the spatial resolution 1.5° and the 

recovered gravity anomaly for the wavelet resolution level J  = 4.  The RMS error in the 
region is 5.2 mGal and the mean error is 3.1 mGal. 
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Fig. 5.1.12. 3-D surface map of the truth data at the spatial resolution 1.5° and the 

recovered gravity anomaly for the wavelet resolution level J  = 4. 
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Fig. 5.1.13. The contour map of the truth data at the spatial resolution 1° and the 
recovered gravity anomaly for the wavelet resolution level J  = 5.  The RMS error in the 
region is 5.9 mGal and the mean error is 3.5 mGal. 
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Fig. 5.1.14. 3-D surface map of the truth data at the spatial resolution 1° and the 
recovered gravity anomaly for the wavelet resolution level J  = 5. 
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Fig. 5.1.15. Contour and 3-D surface map of the recovered gravity anomaly for the 
wavelet resolution level J  = 6.  Note the interference caused by �forced� signals along 

the grid lines near the horizontal edges of the region. 
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The contour map and 3-D plots in Fig. 5.1.16 and Fig. 5.1.17 show JGG  , the 

surface gravity anomaly error at different spatial resolutions and wavelet levels.  With the 

truth surface gravity anomaly at each spatial resolution, the wavelet solution that yields 

the least RMS error was chosen for the plot, i.e. the solution with J  = 5 for 1° resolution, 

J  = 4 for 1.5° resolution, etc.  In both of the pictures, the error plots are arranged in the 

following order: error map with the spatial resolution of 1° at the top left, 1.5° top right, 2° 

middle left, 3° middle right, 4° bottom left and 5° bottom right.  As is obvious from the 

error plots, the surface gravity anomaly error decreases as the spatial resolution increases.  

Comparing the contour map of the error to the contours of the initial surface gravity 

anomaly in Fig. 5.1.1 (top figure) reveals that the largest errors come from the area with 

the high gravity gradient signals (i.e. along the Andes Mountain Range), while modest 

errors are observed from the area with moderate gravity gradients (the Continental South 

America including the Amazon Basin) and the smallest errors from the low gravity 

gradients region (the Pacific), implying a strong correlation between the error and the 

gravity gradients � the higher the magnitude of the gravity gradient, the larger the error of 

the recovered solution. 
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Fig. 5.1.16. Contour map of the surface gravity anomaly error in different spatial and 
wavelet resolution levels.  Each contour represents 3 mGal of difference in the error.  The 
wavelet resolution level J  was chosen at each spatial resolution that yields the least 
RMS error. 
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Fig. 5.1.17. 3-D surface gravity anomaly error plots in different spatial and wavelet 
resolution levels.  The wavelet resolution level J  was chosen at each spatial resolution 
that yields the least RMS error. 
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Table 5.1.1 and Table 5.1.2 summarize the results.  Bold faced numbers indicate 

the minimum RMS and mean error magnitude for the wavelet resolution level J  at each 

spatial resolution.  The RMS error in the overall region ranges between 5.9 mGal at the 

resolution 1° and 2.3 mGal at the resolution 5°.  The significant difference between RMS 

and mean error at each spatial resolution suggests that the error is not evenly distributed 

throughout the region. 

Table 5.1.3 to Table 5.1.8 provide RMS and mean error of the sub-regions: 

278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° latitude, 304.25° ~ 329.75° in 

longitude and -14.75° ~ 19.75° latitude and 250.25° ~ 275.25° in longitude and -20.75° ~ 

4.75° latitude, respectively representing the area with high, moderate and low magnitude 

gravity gradients.  As mentioned above, the RMS error is the largest in the region with 

high gravity gradients (ranging from 9.6 mGal at the resolution 1° to 3.8 mGal at the 

resolution 5°) and the smallest with the low gradient signals (from 1.0 mGal at the 

resolution 1° to 0.5 mGal at the resolution 5°). 
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Table 5.1.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data.  Bold faced 
numbers indicate the minimum RMS error for the wavelet resolution level J  at each 
spatial resolution. 
 
 

 
Table 5.1.2. The mean surface gravity anomaly error 

meanJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data.  Bold faced 
numbers are the minimum mean error for the wavelet level J  at each spatial resolution. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.37 21.27 17.93 14.65 13.43 

1.0° 20.51 18.78 16.06 11.11 7.65 5.87 8.36 

1.5° 17.26 15.35 12.38 7.33 5.19 6.96 10.88 

2.0° 14.13 12.05 8.93 4.97 6.45 10.32 14.26 

3.0° 8.05 5.64 3.46 8.11 13.30 17.88 21.21 

4.0° 4.29 2.63 5.37 12.78 17.89 21.81 24.42 

5.0° 2.29 4.44 9.23 16.61 20.92 23.97 26.17 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 15.29 14.60 13.41 11.31 9.65 8.12 7.88 

1.0° 10.98 10.08 8.60 6.04 4.32 3.46 4.89 

1.5° 9.36 8.36 6.78 4.18 3.06 3.98 6.18 

2.0° 7.79 6.67 5.01 2.95 3.73 5.70 7.96 

3.0° 4.69 3.35 2.11 4.59 7.26 9.59 11.54 

4.0° 2.61 1.65 3.16 7.12 9.75 11.71 13.24 

5.0° 1.45 2.62 5.33 9.35 11.48 12.85 14.16 
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Table 5.1.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude: the region with 

high gravity gradients profile. 
 
 
 
 

 
Table 5.1.4. The mean surface gravity anomaly error 

meanJGG   in mGal for the sub-

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude. 
 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 48.70 46.29 42.49 35.24 29.46 23.69 21.04 

1.0° 34.90 31.88 27.18 18.58 12.67 9.55 13.04 

1.5° 29.38 26.06 20.96 12.17 8.60 11.64 17.70 

2.0° 24.06 20.45 15.11 8.23 10.88 17.37 23.53 

3.0° 13.64 9.47 5.79 13.81 22.59 30.27 35.56 

4.0° 7.17 4.31 9.13 21.79 30.43 37.02 41.14 

5.0° 3.77 7.58 15.71 28.29 35.62 40.78 44.25 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 31.98 30.47 27.77 22.87 19.13 15.49 14.04 

1.0° 23.52 21.59 18.29 12.47 8.71 6.68 8.70 

1.5° 20.11 17.97 14.48 8.57 6.18 8.04 11.62 

2.0° 16.78 14.34 10.69 5.97 7.91 11.81 15.50 

3.0° 10.06 7.10 4.29 9.93 15.62 20.22 23.33 

4.0° 5.42 3.25 6.64 15.49 21.07 24.89 27.23 

5.0° 2.85 5.59 11.41 20.36 24.83 27.47 29.38 
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Table 5.1.5. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude: the region with 

moderate gravity gradients. 
 
 
 
 

 
Table 5.1.6. The mean surface gravity anomaly error 

meanJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude. 
 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 14.03 13.36 12.24 10.43 9.01 7.75 7.90 

1.0° 9.81 8.94 7.49 5.25 3.75 3.17 5.23 

1.5° 8.29 7.33 5.74 3.47 2.60 3.48 6.05 

2.0° 6.86 5.83 4.17 2.50 3.20 4.96 7.40 

3.0° 4.04 2.87 1.75 4.05 6.37 8.40 10.36 

4.0° 2.25 1.43 2.74 6.27 8.55 10.27 11.81 

5.0° 1.35 2.23 4.68 8.21 10.10 11.40 12.73 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 9.75 9.20 8.37 7.13 6.20 5.45 5.76 

1.0° 6.91 6.22 5.22 3.71 2.74 2.34 3.74 

1.5° 5.87 5.12 4.02 2.53 1.95 2.61 4.46 

2.0° 4.89 4.10 2.97 1.87 2.32 3.61 5.46 

3.0° 2.94 2.08 1.35 2.85 4.45 6.01 7.63 

4.0° 1.68 1.11 2.04 4.38 5.96 7.29 8.65 

5.0° 1.06 1.70 3.43 5.78 7.08 8.08 9.30 
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Table 5.1.7. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude: the region with 

low gravity gradients. 
 
 
 
 

 
Table 5.1.8. The mean surface gravity anomaly error 

meanJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 3.98 3.90 3.79 3.53 3.31 2.96 2.81 

1.0° 2.24 2.11 1.94 1.56 1.28 0.99 1.39 

1.5° 1.78 1.62 1.42 1.01 0.83 0.93 1.65 

2.0° 1.45 1.28 1.08 0.75 0.84 1.24 2.00 

3.0° 0.90 0.72 0.65 0.89 1.41 2.01 2.69 

4.0° 0.61 0.52 0.72 1.27 1.80 2.30 2.86 

5.0° 0.49 0.61 1.01 1.61 2.05 2.42 2.93 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 2.21 2.14 2.06 1.91 1.81 1.67 1.78 

1.0° 1.32 1.20 1.08 0.86 0.72 0.61 1.05 

1.5° 1.12 0.98 0.84 0.62 0.53 0.60 1.15 

2.0° 0.95 0.81 0.65 0.48 0.53 0.74 1.31 

3.0° 0.63 0.47 0.40 0.58 0.83 1.14 1.64 

4.0° 0.42 0.33 0.47 0.81 1.08 1.33 1.75 

5.0° 0.32 0.41 0.68 1.06 1.27 1.44 1.80 
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5.2. Region I with Four Times the Volume of Input Data 

 

In order to study how the size of the local area at altitude, where the satellite 

gravity measurements are attained to solve the inverse problem, affects the accuracy of 

the recovered surface gravity, we increased the area of the input data 4 times (twice in 

longitude and twice in latitude) of the original one for the same solution region as in 5.1, 

i.e. 162.25° ~ 58.25° in longitude (counterclockwise) and -66.25° ~ 61.75° latitude, 

which is equivalent to 58.25°E ~ 162.25°E in longitude (clockwise) and 66.25°S ~ 

61.75°N latitude.  The gravity anomaly data at h  = 300 km on a 513 × 257 grid was used 

to recover the surface gravity for the Region I.  The maximum degree of Legendre 

polynomials N  was set to be 300 and the regularization parameters used are: 0  = 

9.0×10
-2, 1  = 5.0×10

-2, 2  = 2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-4 and 

6  = 5.0×10
-5, and all other parameters remained the same as in section 5.1.  The result 

follows below. 

Fig. 5.2.1 and Fig. 5.2.2 in the next pages are the contour and 3-D surface plots 

for the recovered surface gravity anomaly for wavelet resolution level J  = 5 and J  = 6.  

The gravity solutions at these two resolutions are the ones with the most improved results 

by the change in the input data. 
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Fig. 5.2.1. The contour map of the recovered gravity anomaly for the wavelet resolution 
level J  = 5 and J  = 6 with the 4 times more data volume.  �Forced� fine signals appear 

at J  = 6.  They are more prominent in the low gravity gradient region, in contrast to the 
high-moderate gravity gradient area. 
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Fig. 5.2.2. 3-D surface map of the recovered gravity anomaly for the wavelet resolution 
level J  = 5 and J  = 6 with the 4 times more data volume. 
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Table 5.2.1 in comparison to Table 5.1.1 shows that the RMS error has improved 

by 1.3 mGal at the resolution of 0.5° and 0.3 mGal at the resolution 1°, whereas the lower 

resolution signals were little affected by the change in the input data. 

 

 

 

 
Table 5.2.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data. 
 

 

 

Table 5.2.2 to Table 5.2.4 provide the RMS error of the recovered surface gravity 

anomaly with different wavelet resolutions at each spatial resolution.  It is noted that the 

increase of the volume of input data improved the accuracy significantly (by 1.8 mGal for 

the resolution 0.5° and by 0.4 mGal for 1°) in the region with high gravity gradients 

whereas it barely affected the accuracy in the region with low gravity gradients profile 

except for the solution with J  = 6.  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.38 21.28 17.96 14.59 12.18 

1.0° 20.51 18.78 16.06 11.13 7.66 5.56 5.96 

1.5° 17.26 15.35 12.39 7.34 5.16 6.61 9.07 

2.0° 14.13 12.05 8.94 4.97 6.41 10.05 12.88 

3.0° 8.05 5.64 3.46 8.10 13.25 17.66 20.22 

4.0° 4.29 2.62 5.36 12.77 17.84 21.62 23.55 

5.0° 2.29 4.44 9.23 16.59 20.88 23.80 25.38 
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Table 5.2.2. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude: the region with 

high gravity gradients profile. 
 
 
 
 

 
Table 5.2.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude: the region with 

moderate gravity gradients. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 48.70 46.29 42.50 35.27 29.52 23.66 19.29 

1.0° 34.90 31.88 27.19 18.61 12.72 9.11 9.34 

1.5° 29.39 26.06 20.97 12.20 8.58 11.07 14.89 

2.0° 24.07 20.45 15.12 8.25 10.82 16.92 21.39 

3.0° 13.64 9.47 5.79 13.78 22.49 29.87 33.97 

4.0° 7.18 4.32 9.12 21.76 30.34 36.66 39.77 

5.0° 3.78 7.59 15.71 28.26 35.53 40.45 42.99 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 14.03 13.36 12.23 10.43 9.00 7.63 6.94 

1.0° 9.80 8.94 7.48 5.24 3.72 2.88 3.78 

1.5° 8.28 7.33 5.73 3.46 2.55 3.23 4.92 

2.0° 6.85 5.82 4.16 2.49 3.16 4.78 6.49 

3.0° 4.03 2.86 1.73 4.04 6.34 8.30 9.72 

4.0° 2.23 1.41 2.73 6.26 8.53 10.18 11.25 

5.0° 1.32 2.22 4.67 8.20 10.08 11.32 12.21 
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Table 5.2.4. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude: the region with 

low gravity gradients. 
 

 

 

From the result, we can conclude that the increased volume of the input data 

improves the recovery of the gravity anomaly at finer resolutions as well as the recovery 

of the high gravity gradients signals.  It also appears that in an attempt to recover the fine 

details in the high gradient gravity anomaly, the wavelet solution with high resolution 

level (i.e. J  = 6) overcompensates the low gravity gradient region resulting in producing 

�forced� signals.  Table 5.2.4 confirms this: for the spatial resolution 0.5°, J  = 5 is a 

better solution than J  = 6 in the region with the low gravity gradient profile.  If the 

overcompensated region is removed, J  = 6 appears to successfully represent the gravity 

solution for the spatial resolution between 0.5° and 1°, which is a definite improvement 

over the solution in section 5.1. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 3.98 3.90 3.79 3.53 3.31 2.97 3.59 

1.0° 2.24 2.11 1.94 1.56 1.28 1.00 2.56 

1.5° 1.78 1.62 1.42 1.00 0.83 0.94 2.70 

2.0° 1.45 1.28 1.08 0.75 0.84 1.25 2.93 

3.0° 0.90 0.72 0.65 0.89 1.41 2.01 3.45 

4.0° 0.61 0.52 0.72 1.27 1.80 2.31 3.58 

5.0° 0.49 0.61 1.01 1.61 2.05 2.43 3.63 
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5.3. Region I with N  = 150 

 

In equation (3.2.8), the wavelet solution to the inverse problem takes the form of 

the summation of the surface integral up to the maximum degree of Legendre 

polynomials N .  In order to study the effect of N  on the recovery of the surface gravity 

anomaly, we reduced N  from 300 to 150.  We used the gravity anomaly data at the 

satellite altitude from the region of 226.25° ~ 354.25° in longitude (5.75°W ~ 133.75°W) 

and -34.25° ~ 29.75° in latitude (34.25°S ~ 29.75°N) on a 257 × 129 regular grid, the 

same region for the gravity data used in 5.1.  The regularization parameters used for the 

simulation are 0  = 9.0×10
-2, 1  = 5.0×10

-2, 2  = 2.0×10
-2, 3  = 6.0×10

-3, 4  = 4.0×10
-3 

and 5  = 2.0×10
-3. 

The contour and 3-D surface maps of the gravity anomaly for the wavelet 

resolution levels J  = 4 and J  = 5, the two with the result most affected by the change in

N , are shown in Fig. 5.3.1 and Fig. 5.3.2.  A notable difference compared to the results 

in section 5.1 is that the solution with the wavelet resolution level J  = 5 failed to recover 

the gravity anomaly for the spatial resolution of 1°.  The contour map Fig. 5.3.1 shows 

the interferences caused by �forced� fine signals for the wavelet resolution level J  = 5, 

indicating that the model is incapable of recovering the gravity signals finer than 1.5° 

resolution.  The gravity anomaly peaks shown in the 3-D surface map in Fig. 5.3.2 are 

not as sharply defined as is the case with N  = 300. 

The result is expected from the Fig. 3.2.1 and Fig. 3.2.2, the plots for the 

Legendre coefficient of the scale discrete Tikhonov spherical regularization scaling 

function and wavelet packets.  Higher wavelet level filters correspond to the larger degree 

of Legendre polynomials, and thus the small N  means the high level wavelet solution 

becomes unreliable. 
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Fig. 5.3.1. The contour map of the recovered gravity anomaly for the wavelet resolution 
level J  = 4 and J  = 5 when N  was set to be 150.  �Forced� fine signals along the grid 

lines are very prominent at J  = 5. 
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Fig. 5.3.2. 3-D surface map of the recovered gravity anomaly for the wavelet resolution 
level J  = 4 and J  = 5, with N  = 150.  
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As is confirmed in Table 5.3.1 in comparison with Table 5.1.1, the change in N   

appears to affect the shorter wavelength signals only.  The anomaly error has scarcely 

changed for the spatial resolution 3° ~ 5°, while it has increased significantly for the 

resolution 1° ~ 2°.  The RMS error increased by 5.8 mGal for the resolution 1°, by 2.8 

mGal for 1.5° and by 0.8 mGal for 2°. 

 

 

 

 
Table 5.3.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 5 for each spatial resolution of the truth data. 
 
 

 

Table 5.3.2 to Table 5.3.4 provide the insight of how the change in N  affected 

the result for the regions with different gravity gradients.  The change affected the region 

with the high gravity gradients most severely, while the effect is less noticeable for the 

region with low gravity gradients profile. 

Spatial 
Resolution RMS

GG 0  
RMS

GG 1  
RMS

GG 2  
RMS

GG 3  
RMS

GG 4  
RMS

GG 5  

1.0° 20.51 18.78 16.06 12.47 11.64 13.86 

1.5° 17.26 15.36 12.39 8.65 8.01 11.65 

2.0° 14.13 12.05 8.94 5.72 5.84 11.16 

3.0° 8.05 5.64 3.46 6.59 8.54 14.36 

4.0° 4.29 2.62 5.36 11.03 13.05 18.17 

5.0° 2.29 4.44 9.23 15.00 16.84 21.28 



 

106 
 

 
 

 
Table 5.3.2. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub- 

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude: the region with 

high gravity gradients profile. 
 
 
 
 
 

 
Table 5.3.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude: the region with 

moderate gravity gradients. 

Spatial 
Resolution RMS

GG 0  
RMS

GG 1  
RMS

GG 2  
RMS

GG 3  
RMS

GG 4  
RMS

GG 5  

1.0° 34.90 31.88 27.19 20.89 19.37 22.09 

1.5° 29.38 26.06 20.97 14.41 13.19 18.11 

2.0° 24.06 20.45 15.12 9.44 9.49 17.27 

3.0° 13.64 9.47 5.78 11.11 14.35 23.14 

4.0° 7.17 4.31 9.12 18.76 22.14 29.95 

5.0° 3.77 7.58 15.72 25.51 28.61 35.42 

Spatial 
Resolution RMS

GG 0  
RMS

GG 1  
RMS

GG 2  
RMS

GG 3  
RMS

GG 4  
RMS

GG 5  

1.0° 9.81 8.94 7.49 5.91 5.84 9.49 

1.5° 8.29 7.33 5.74 4.14 4.27 8.80 

2.0° 6.86 5.83 4.17 2.93 3.50 8.68 

3.0° 4.04 2.87 1.75 3.50 4.68 9.71 

4.0° 2.25 1.43 2.74 5.57 6.69 11.07 

5.0° 1.35 2.23 4.68 7.55 8.54 12.35 
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Table 5.3.4. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude � the region with 
low gravity gradients. 

Spatial 
Resolution RMS

GG 0  
RMS

GG 1  
RMS

GG 2  
RMS

GG 3  
RMS

GG 4  
RMS

GG 5  

1.0° 2.24 2.11 1.94 1.68 1.71 2.77 

1.5° 1.78 1.62 1.42 1.15 1.23 2.54 

2.0° 1.45 1.28 1.08 0.86 1.03 2.50 

3.0° 0.90 0.72 0.65 0.83 1.13 2.64 

4.0° 0.61 0.52 0.72 1.16 1.45 2.85 

5.0° 0.49 0.61 1.01 1.50 1.77 3.03 
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5.4. Region I with N  = 600 

 

In this case, we increased the maximum degree of Legendre polynomials N  from 

the baseline of 300 up to 600.  We employed the at-altitude gravity anomaly from the 

region of 226.25° ~ 354.25° in longitude (5.75°W ~ 133.75°W) and -34.25° ~ 29.75° in 

latitude (34.25°S ~ 29.75°N) on a 257 × 129 regular grid as was used in section 5.1.  The 

regularization parameters for the simulation are 0  = 9.0×10
-2, 1  = 5.0×10

-2, 2  = 

2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-4 and 6  = 5.0×10
-5. 

The contour and 3-D surface maps of the gravity anomaly for the wavelet 

resolution levels J  = 5 and J  = 6 are shown in Fig. 5.4.1 and Fig. 5.4.2.  When 

compared to the results in 5.1, the recovered gravity anomaly with J  = 6 exhibits less 

noticeable �forced� signals in the low gravity gradient region.  If the area near the 

horizontal edges with the interference signals is removed, this wavelet resolution 

represents the gravity solution with the spatial resolution between 0.5° and 1°. 
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Fig. 5.4.1. The contour map of the recovered gravity anomaly for the wavelet resolution 
level J  = 5 and J  = 6 when N  was set to be 600. 
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Fig. 5.4.2. 3-D surface map of the recovered gravity anomaly for the wavelet resolution 
level J  = 5 and J  = 6, with N  = 600. 
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Table 5.4.1 shows that the improvement in RMS error by increasing N  is very 

minimal except for the spatial resolution 0.5°.  It has improved by 0.5 mGal at the 

resolution of 0.5° when compared to Table 5.1.1, whereas the gravity signals in the other 

resolutions were little affected by the change in N . 

 

 

 

 
Table 5.4.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data. 
 

 

 

Table 5.4.2 to Table 5.4.4 provide the RMS error of the recovered surface gravity 

anomaly with different wavelet resolution levels at each spatial resolution.  As is the case 

with the increased data volume, the increase in N  improved the accuracy (by 0.7 mGal 

for the resolution 0.5°) in the region with high gravity gradients whereas the effect in the 

region with low gravity gradients profile are less noticeable.  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.37 21.27 17.93 14.64 12.90 

1.0° 20.51 18.78 16.06 11.11 7.65 5.86 7.58 

1.5° 17.26 15.35 12.38 7.33 5.19 6.95 10.33 

2.0° 14.13 12.05 8.93 4.97 6.45 10.31 13.83 

3.0° 8.05 5.64 3.46 8.11 13.30 17.87 20.92 

4.0° 4.29 2.63 5.37 12.78 17.89 21.81 24.16 

5.0° 2.29 4.44 9.23 16.61 20.92 23.97 25.93 
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Table 5.4.2. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude: the region with 

high gravity gradients profile. 
 
 
 
 

 
Table 5.4.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude: the region with 

moderate gravity gradients. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 48.70 46.29 42.49 35.24 29.46 23.68 20.37 

1.0° 34.90 31.88 27.18 18.58 12.67 9.53 12.02 

1.5° 29.38 26.06 20.96 12.17 8.60 11.63 17.00 

2.0° 24.06 20.45 15.11 8.23 10.88 17.36 22.99 

3.0° 13.64 9.47 5.79 13.81 22.59 30.26 35.20 

4.0° 7.17 4.31 9.13 21.79 30.43 37.01 40.82 

5.0° 3.77 7.58 15.71 28.29 35.62 40.77 43.94 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 14.03 13.36 12.24 10.43 9.01 7.74 7.34 

1.0° 9.81 8.94 7.49 5.25 3.75 3.15 4.39 

1.5° 8.29 7.33 5.74 3.47 2.60 3.47 5.38 

2.0° 6.86 5.83 4.17 2.50 3.20 4.95 6.84 

3.0° 4.04 2.87 1.75 4.05 6.37 8.40 9.96 

4.0° 2.25 1.43 2.74 6.27 8.55 10.27 11.47 

5.0° 1.35 2.23 4.68 8.21 10.10 11.40 12.42 
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Table 5.4.4. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude: the region with 

low gravity gradients. 
 

 

 

Recalling the result from section 5.3, it appears that the increase in N  from 150 

to 300 improved the accuracy of the recovered gravity anomaly significantly as well as it 

allowed the solution to recover shorter wavelength gravity signals.  When N  was 

increased to 600, however, the wavelet solution did not show noticeable improvement 

over the solution with N  = 300, even for the short wavelength signals with the exception 

of the slight enhancement for the 0.5° resolution.  The conclusion then follows that 

increasing the Legendre polynomial degree N  does not improve the gravity solution 

indefinitely, since there exists a limit in improving the spatial resolution by increasing 

wavelet level. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 3.98 3.90 3.79 3.53 3.31 2.96 2.61 

1.0° 2.24 2.11 1.94 1.56 1.28 0.99 0.93 

1.5° 1.78 1.62 1.42 1.01 0.83 0.93 1.31 

2.0° 1.45 1.28 1.08 0.75 0.84 1.24 1.71 

3.0° 0.90 0.72 0.65 0.89 1.41 2.01 2.49 

4.0° 0.61 0.52 0.72 1.27 1.80 2.30 2.67 

5.0° 0.49 0.61 1.01 1.61 2.05 2.42 2.74 
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Chapter 6. Simulation Result: Region II (160.25°E ~ 100.25°W and 

24.75°S ~ 24.75°N) 

 

 

Region II is the Pacific Ocean � a mainly low-moderate gravity gradient region 

except that South Solomon, New Hebrides and Tonga Trenches constitute sharp rises and 

plunges in the gravity anomaly in the south-west corner of the map and the Hawaiian 

Islands account for the sudden high rise in the north-west part and the tip of North 

America (Mexico) forms the peaks in the north-east corner of the area.  The local surface 

gravity anomaly on a 200 × 100 grid for the region of 160.25° ~ 259.75° in longitude 

(equivalent to 160.25°E ~ 100.25°W in counterclockwise) and -24.75° ~ 24.75° latitude 

(24.75°S ~ 24.75°N) was recovered from the gravity anomaly data of the local region of 

146.25° ~ 274.25° in longitude (146.25°E ~ 85.75°W counterclockwise) and -31.75° ~ 

32.25° in latitude (31.75°S ~ 32.25°N) on a 257 × 129 regular grid at the altitude of 300 

km.  The contour maps of the truth data at a resolution 0.5° and the gravity anomaly at 

the satellite altitude of corresponding local area are shown in Fig. 6.1.  The 3-D surface 

plots are provided in Fig. 6.2. 

Again, a mean filter was applied to the truth data to obtain the surface gravity 

anomaly at the different spatial resolutions from 1° to 5° to be compared to the recovered 

surface gravity anomaly with the different wavelet resolution levels from J  = 0 to J  = 6.  

The regularization parameters used in the simulation are 0  = 9.0×10
-2, 1  = 5.0×10

-2, 

2  = 2.0×10
-2, 3  = 3.0×10

-3, 4  = 1.0×10
-3, 5  = 6.0×10

-4 and 6  = 3.0×10
-4.  The 

maximum degree of the Legendre polynomials N  was set to be 300. 
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Fig. 6.1. The contour map of the surface gravity anomaly of the truth data at the 
resolution of 0.5° and the corresponding gravity anomaly at the satellite altitude h  = 300 
km with each contour respectively representing 20 mGal and 3 mGal of gravity anomaly 
difference.
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Fig. 6.2. 3-D surface plot of the surface gravity anomaly of the truth data at the resolution 
of 0.5° and the corresponding gravity anomaly at the satellite altitude h  = 300 km to be 
used to recover the surface gravity anomaly by solving the inverse problem.  The surface 
gravity information was smoothed out a great deal by upward propagation. 
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Fig. 6.3 to Fig. 6.8 compare the recovered surface gravity anomaly at the wavelet 

resolution levels J  = 3 to J  = 5 to the truth data at its corresponding spatial resolution 

of 2° to 1°.  In the contour maps, each contour accounts for 20 mGal of increment in 

gravity anomaly.  The regularization parameters were chosen so that each wavelet 

resolution level corresponds to the different spatial resolution: The wavelet resolution 

level J  = 0 corresponds to the spatial resolution 5°, J  = 1 to the resolution 4°, J  = 2 to 

3°, J  = 3 to 2°, J  = 4 to 1.5° and J  = 5 to 1°.  As mentioned in section 5.1, finer details 

are recovered as the wavelet resolution level J  increases up to J  = 5, even if some of 

the interferences from the �forced� signals were observed near the horizontal edges 

starting from the wavelet resolution level J  = 4.  Fig. 6.9 shows the interference is more 

prominent with the recovered gravity anomaly with the wavelet level J  = 6. 

Fig. 6.10 and Fig. 6.11 provide the contour map and the 3-D plots of JGG  , the 

surface gravity anomaly error, in different spatial and wavelet resolutions.  With the truth 

surface gravity anomaly at each spatial resolution, wavelet solution that yields the least 

RMS error was chosen to create the plot.  The error plots are arranged in the following 

order: error map with the spatial resolution of 1° at the top left, 1.5° top right, 2° middle 

left, 3° middle right, 4° bottom left and 5° bottom right.  It is apparent that the error 

decreases as the spatial resolution increases.  As is the case with Region I, here the largest 

errors also result from the area with the high gravity gradient signals (i.e. Southwestern 

Trenches and Hawaiian Islands), while the most of the ocean region with lower gravity 

gradients yields smaller errors. 
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Fig. 6.3. The contour map of the truth data at the spatial resolution 2° and the recovered 
gravity anomaly for the wavelet resolution level J  = 3.  The RMS error in the region is 
3.1 mGal and the mean error is 1.6 mGal. 
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Fig. 6.4. 3-D surface map of the truth data at the spatial resolution 2° and the recovered 
gravity anomaly for the wavelet resolution level J  = 3. 
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Fig. 6.5. The contour map of the truth data at the spatial resolution 1.5° and the recovered 

gravity anomaly for the wavelet resolution level J  = 4.  The RMS error in the region is 
3.8 mGal and the mean error is 2.0 mGal. 
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Fig. 6.6. 3-D surface map of the truth data at the spatial resolution 1.5° and the recovered 

gravity anomaly for the wavelet resolution level J  = 4. 
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Fig. 6.7. The contour map of the truth data at the spatial resolution 1° and the recovered 
gravity anomaly for the wavelet resolution level J  = 5.  The RMS error in the region is 
5.5 mGal and the mean error is 2.8 mGal. 
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Fig. 6.8. 3-D surface map of the truth data at the spatial resolution 1° and the recovered 
gravity anomaly for the wavelet resolution level J  = 5. 
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Fig. 6.9. Contour and 3-D surface map of the recovered gravity anomaly for the wavelet 
resolution level J  = 6.  The interference lines near the horizontal edges caused by 
�forced� fine signals are more prominent here. 
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Fig. 6.10. Contour map of the surface gravity anomaly error in different spatial and 
wavelet resolution levels.  The wavelet resolution level J  was chosen at each spatial 
resolution that yields the least RMS error.  Each contour represents 3 mGal of difference 
in gravity anomaly error.  
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Fig. 6.11. 3-D surface gravity anomaly error plots in different spatial and wavelet 
resolution levels.  The wavelet resolution level J  was chosen at each spatial resolution 
that yields the least RMS error. 
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The RMS and mean error magnitudes at each wavelet resolution level for 

different spatial resolutions are listed in Table 6.1 and Table 6.2.  The overall RMS error 

ranges between 5.5 mGal at the spatial resolution 1° and 1.3 mGal at the resolution 5°, 

while the mean error gradually decreases from 2.8 mGal at the 1° resolution to 0.7 mGal 

at the 5° resolution, with the large difference between the RMS and mean error indicating 

the uneven distribution of the error throughout the region. 

Table 6.3 to Table 6.6 provide RMS and mean error of the two sub-regions: 

160.25° ~ 195.75° in longitude and -24.75° ~ 7.25° latitude and 200.25° ~ 259.75° in 

longitude and -24.75° ~ 9.75° latitude, each representing the area with high and low 

magnitude gravity gradients.  As is observed in previous simulation results, the RMS 

error is the largest in the region with high gravity gradients (ranging from 10.6 mGal at 

the resolution 1° to 2.7 mGal at the resolution 5°) and the smallest with the low gradient 

signals (from 1.8 mGal at the resolution 1° to 0.5 mGal at the resolution 5°). 

In this simulation, the size of the at-altitude area, from which the gravity anomaly 

data is obtained to solve the inverse problem, is only 30% larger (in both longitudinal and 

latitudinal directions) than the local surface region for which we recovered the gravity 

anomaly.  The volume of the input data we used, hence, is far smaller than what is 

required to recover the solution as accurately as when the whole global data is used, 

which demands at least 70% larger (in both directions) than the local solution region, as 

we briefly mentioned in section 4.2.  This may explain the errors that are more prominent 

near regional boundaries at higher wavelet resolution levels seen in Fig. 6.5 to Fig. 6.9.      
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Table 6.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data. 
 
 
 
 
 

 
Table 6.2. The mean surface gravity anomaly error 

meanJGG   in mGal at the wavelet 

resolution level J  = 0 to J  = 6 for each spatial resolution of the truth data. 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 17.86 17.41 16.58 14.47 13.06 12.57 12.27 

1.0° 11.58 10.94 9.81 7.10 5.64 5.45 6.11 

1.5° 9.47 8.75 7.47 4.67 3.79 4.22 5.75 

2.0° 7.48 6.65 5.25 3.07 3.94 5.06 7.03 

3.0° 4.20 3.20 2.01 4.78 7.46 8.78 10.66 

4.0° 2.37 1.60 2.49 7.19 9.81 11.01 12.62 

5.0° 1.29 1.96 4.20 8.94 11.11 12.10 13.42 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 7.86 7.68 7.41 6.75 6.38 6.29 6.36 

1.0° 4.93 4.66 4.25 3.35 2.91 2.84 3.05 

1.5° 4.06 3.74 3.27 2.33 2.02 2.15 2.75 

2.0° 3.25 2.88 2.37 1.62 2.03 2.50 3.40 

3.0° 1.94 1.50 1.09 2.25 3.44 4.06 5.03 

4.0° 1.18 0.88 1.27 3.22 4.40 4.99 5.83 

5.0° 0.74 1.05 2.01 3.99 4.95 5.43 6.12 
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Table 6.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 160.25° ~ 195.75° in longitude and -24.75° ~ 7.25° in latitude: the region with 

high gravity gradients profile. 
 
 
 
 

 
Table 6.4. The mean surface gravity anomaly error 

meanJGG   in mGal for the sub-

region of 160.25° ~ 195.75° in longitude and -24.75° ~ 7.25° in latitude. 
 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 36.72 35.42 33.14 28.06 24.93 23.91 23.17 

1.0° 25.22 23.49 20.51 14.26 11.08 10.63 11.76 

1.5° 21.08 19.14 15.84 9.47 7.59 8.31 11.19 

2.0° 17.06 14.90 11.33 6.44 8.18 10.25 13.94 

3.0° 9.89 7.33 4.33 10.49 15.90 18.36 21.84 

4.0° 5.50 3.39 5.64 16.00 21.27 23.52 26.44 

5.0° 2.69 4.36 9.91 20.37 24.74 26.60 28.90 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 20.67 20.01 19.01 16.74 15.43 15.14 15.16 

1.0° 14.45 13.46 11.97 9.02 7.43 7.18 7.52 

1.5° 12.33 11.22 9.55 6.38 5.19 5.46 7.00 

2.0° 10.10 8.85 7.04 4.39 5.54 6.72 9.00 

3.0° 6.17 4.64 3.02 6.65 9.94 11.40 13.77 

4.0° 3.57 2.38 3.83 9.76 12.96 14.35 16.38 

5.0° 1.93 2.96 6.51 12.43 14.96 16.12 17.67 
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Table 6.5. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 200.25° ~ 259.75° in longitude and -24.75° ~ 9.75° in latitude: the region with 
low gravity gradients. 
 
 
 
 

 
Table 6.6. The mean surface gravity anomaly error 

meanJGG   in mGal for the sub-

region of 200.25° ~ 259.75° in longitude and -24.75° ~ 9.75° in latitude. 
  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 6.06 5.95 5.78 5.28 4.92 4.76 4.60 

1.0° 3.46 3.28 3.02 2.30 1.89 1.76 1.78 

1.5° 2.74 2.53 2.23 1.46 1.21 1.25 1.55 

2.0° 2.12 1.87 1.54 0.96 1.24 1.50 1.99 

3.0° 1.18 0.88 0.67 1.43 2.25 2.63 3.13 

4.0° 0.71 0.54 0.82 2.08 2.90 3.23 3.67 

5.0° 0.48 0.72 1.29 2.51 3.19 3.46 3.82 

Spatial 
Resolution 

mean
GG 0

 
mean

GG 1

 
mean

GG 2

 
mean

GG 3

 
mean

GG 4

 
mean

GG 5

 
mean

GG 6

 

0.5° 3.33 3.23 3.12 2.88 2.72 2.65 2.61 

1.0° 1.98 1.83 1.66 1.30 1.12 1.07 1.07 

1.5° 1.62 1.44 1.24 0.88 0.77 0.80 0.94 

2.0° 1.31 1.11 0.90 0.62 0.77 0.91 1.17 

3.0° 0.80 0.59 0.45 0.87 1.30 1.51 1.81 

4.0° 0.50 0.38 0.55 1.24 1.67 1.85 2.12 

5.0° 0.35 0.49 0.86 1.55 1.90 2.04 2.25 
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Chapter 7. Gravity Solution for SGG Mission 

 

 

7.1. A Brief Review of SGG Mission 

 

In SGG mission, the gravity signals at the satellite altitude are measured by the 

onboard gravity gradiometer in the form of the second order derivatives of gravity 

potential.  The basic idea of the gravity gradiometer is to measure the difference in the 

gravity acceleration (which forms the second derivative gravity gradient tensor known as 

Eötvös tensor) between the two accelerometers precisely located with respect to each 

other in the satellite-fixed reference frame.  SGG missions, however, have several issues 

to be solved (Seeber, 2003):  

 

1. The satellite, with the accelerometers in it, rotates.  

2. The satellite orbit needs to be precisely known. 

3. The orientation of the accelerometers and the satellite with respect to the 

external frame needs to be known. 

4. The measurements are susceptible to errors caused by the external forces (e.g. 

drag, radiation pressure, etc.) and the instrumental errors (e.g. drift, scale 

errors, etc.). 

5. Extremely high accuracy in the measurement is required. 

 

Let us consider an ideal configuration, where the gradiometer is in free fall within 

a satellite such that the axis of the accelerometer is always along the radial direction.  

Then the magnitude of the gravity acceleration a
 
measured at the accelerometers� 

location Ax


 
and Bx



 
can be defined as 
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where V  is the gravity potential and extf  is the radial component of the acceleration 

caused by external force.  The difference between (7.1.1) and (7.1.2) yields 
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where ABx  is the distance between Ax


 
and Bx

 .  (7.1.3) then leads to the following 

equation: 

 

                                   
)()()(

2

2

CMABBA xV
r

xxaxa





       ,                                       (7.1.4) 

 

where CMx


 
is the position vector of the center of mass of the two accelerometers with 

respect to the external frame. 

The equation (7.1.4) provides the second order radial derivative of the gravity 

potential on r , which can be used as an input signal G  in the equations (3.2.8) and 

(3.3.4), along with the spherical symbol of the SGG operator (3.1.4), to obtain the surface 

gravity potential.  
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7.2. Simulation Result (Region of 29.82°W ~ 109.82°W and 24.51°S ~ 

20.31°N) 

 

In order to test our gravity solution for the SGG type mission, we needed to obtain 

the second order radial derivative of the gravity anomaly at the satellite altitude.  We first 

re-sampled the global surface gravity anomaly on the 513 × 257 longitude-latitude grid, 

where the adjacent grid points are 0.7° apart along the longitude and latitude, from the 

truth data set on the 720 × 360 grid by applying Gaussian smoothing on each new grid 

point iz


 such that  
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where jy


 is the location of a grid point on the original 720 × 360 grid set, )( jyF


 
is the 

surface gravity anomaly at jy


, )( jg yw


 is the two-dimensional Gaussian filter, )( ig zF


 is 

the Gaussian-smoothed gravity anomaly at iz


, gr  is the Gaussian smoothing radius and 

g  is the standard deviation which is about 
3
gr  for the normal distribution.  For our 

purpose, we set  gr  = 0.7° and g  = 0.23°.  The number of grid points of 513 × 257 was 

chosen partly as a requirement for the extended trapezoidal rule employed in the surface 

integration routine within the upward continuation code as well as the fact that the grid 

points of this number would provide a more realistic resolution of the gravity 

measurement (i.e. 0.7°) for the real satellite mission than the 0.5° resolution grid we used 
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in the previous simulations.  For example, the GRACE mission could provide  ~ 1° 

spatial resolution data at the satellite altitude (Tapley, 2008).  The RMS value of the 

surface gravity anomaly (i.e. 32.3 mGal) obtained by this Gaussian smoothing and 

rearranging of the grid points for the Region I from the previous simulation falls between 

that of the gravity anomaly at 0.5° and 1° spatial resolution, 36.2 mGal for the former and 

29.7 mGal for the latter, indicating the spatial resolution of the initial surface gravity field 

in the SGG simulation to be about 0.7°.  

This new global surface gravity anomaly on 513 × 257 grid set was then used to 

obtain the second order radial derivative of the gravity anomaly for the local region of 

200.35° ~ 20.00° in longitude (20.00°E ~ 159.65°W clockwise) and -46.93° ~ 42.72° in 

latitude (46.93°S ~ 42.72°N) on a 257 × 129 evenly spaced grid at the satellite altitude of 

300 km by solving the upward continuation equation (3.5.8) with the SGG operator 

(3.5.4), and then multiplied by a factor 
r

R
 as is explained in section 4.2.  This simulated 

data set at the satellite altitude was used afterwards to recover the local surface gravity 

anomaly on a 115 × 65 grid for the region of 250.18° ~ 330.18° in longitude (equivalent 

to 29.82°W ~ 109.82°W) and -24.51° ~ 20.31° latitude (24.51°S ~ 20.31°N), which 

nearly coincides with the Region I in Chapter 5, by solving the equation (3.3.4), the 

local solution to the inverse problem, setting the spherical symbol of SGG operator (3.1.4) 

to be n  in the Tikhonov spherical regularization scaling function (3.2.9) and wavelet 

packet (3.2.10).  The solution was then multiplied by a factor 
R

r
 (see section 4.2).  

The contour maps of the surface gravity anomaly at a resolution of 0.7° and the 

second order radial derivative of gravity anomaly at the satellite altitude of corresponding 

local area are shown in Fig. 7.2.1.  The 3-D surface plots are presented in Fig. 7.2.2.  It is 

notable that the SGG measurement retains the topography of the surface gravity anomaly 

fairly well when compared to Fig. 5.1.1 and Fig. 5.1.2, where the gravity signal at the 

satellite altitude is of the form of gravity anomaly itself (i.e. direct upward propagation 

case).  The regularization parameters used in this simulation are 0  = 2.0×10
-12, 1  = 
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7.0×10
-13, 2  = 2.0×10

-13, 3  = 8.0×10
-14, 4  = 4.0×10

-14, 5  = 2.0×10
-14 and 6  = 

5.0×10
-15.  The maximum degree of the Legendre polynomials was set to be 300. 



 

136 
 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.2.1. The contour map of the surface gravity anomaly at the resolution of 0.7° 

(upper map), and the corresponding second order radial derivative of the gravity anomaly 
at the satellite altitude h  = 300 km obtained by upward continuation (lower map).  Each 
contour represents 20 mGal (upper) and 6.0×10

-11 mGal/m2 (lower) differences. 
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Fig. 7.2.2. 3-D surface plot of the surface gravity anomaly at the resolution of 0.7° and 

the corresponding second order radial derivative of the gravity anomaly at the satellite 
altitude h  = 300 km.  The SGG measurement (lower plot) retains the gravity topography 
of the Earth�s surface much more closely than in the direct upward propagation case. 



 

138 
 

In the SGG case, we found that it is not relevant to compare the recovered surface 

gravity anomaly with different wavelet resolution levels to the surface gravity anomaly 

with different spatial resolutions obtained by applying a mean filter to the truth data.  As 

shown in the direct upward propagation case in Chapter 5 and Chapter 6, the mean 

filter smoothes out the gravity signals as the spatial resolution gets coarser.  SGG 

measurements, however, contain a good deal of gravity detail which is reflected in the 

recovered gravity anomaly even at low wavelet resolution levels, i.e. less ill-posed 

compared to the direct upward propagation case.  Therefore only the direct comparison 

between the recovered gravity with different wavelet levels to the original surface gravity 

anomaly at the spatial resolution 0.7° was provided in the following results. 

Fig. 7.2.3 to Fig. 7.2.6 show the contour maps and 3-D surface plots of the 

recovered surface gravity anomaly at a spatial resolution of 0.7° with different wavelet 

resolution levels.  As in the previous simulations, the finer details are added to the 

recovered gravity anomaly as the wavelet level J  increases until J  = 6, where low to 

moderate gravity gradient signals are interfered with the �forced� fine signals induced by 

the high frequency wavelets. 

The contour map and the 3-D plots in Fig. 7.2.7 and  Fig. 7.2.8 show that 

JGG  , the surface gravity anomaly error, decreases as the wavelet resolution level 

increases up to J  = 5.  As discussed in the previous chapters, the majority of large errors 

come from the areas with high gravity gradient signals, once more suggesting a 

correlation between the error and the gravity gradients.  
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Fig. 7.2.3. Contour and 3-D surface map of the recovered surface gravity anomaly for the 
wavelet resolution level J  = 0.  
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Fig. 7.2.4. Contour and 3-D surface map of the recovered surface gravity anomaly for the 
wavelet resolution level J  = 2.  
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Fig. 7.2.5. Contour and 3-D surface map of the recovered surface gravity anomaly for the 
wavelet resolution level J  = 5.  
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Fig. 7.2.6. Contour and 3-D surface map of the recovered surface gravity anomaly for the 
wavelet resolution level J  = 6.  The interference from the �forced fine signals� produced 
by high frequency wavelets is prominent in the low to moderate gravity gradient region. 
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Fig. 7.2.7. Contour map of the surface gravity anomaly error JGG   at a spatial 

resolution 0.7° with different wavelet resolution levels.  The error decreases as the 
wavelet resolution level J  increases.  Each contour represents 3 mGal of difference in 
the error.  
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Fig. 7.2.8. 3-D plots of the surface gravity anomaly error JGG   at a spatial resolution 

0.7° with different wavelet resolution levels.  The error decreases as the wavelet 
resolution level J  increases. 
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Table 7.2.1 summarizes the result.  Bold faced numbers indicate the minimum 

RMS and mean error magnitude, 4.7 mGal and 3.5 mGal respectively, for the spatial 

resolution of 0.7°.  The SGG solution shows an improvement over the result from section 

5.1, where the RMS error is 13.4 mGal for the spatial resolution 0.5° and 5.9 mGal for 

the resolution 1°.  It is also a better result than that of section 5.2, the RMS error of which 

is 12.2 mGal for the resolution 0.5° and 5.6 mGal for the spatial resolution of 1°, where 

the local region at the satellite altitude, from which the gravity data was retrieved to solve 

the inverse problem, is larger than for this SGG case.  Considering the fact that there 

should exist an error in the upward continuation process to obtain the second order radial 

derivative of the gravity anomaly at the satellite altitude (especially the computational 

error in the surface integration) in addition to that in the process of solving the inverse 

problem to recover the surface gravity anomaly, the smaller magnitude of error in the 

gravity solution implies that more accurate gravity recovery can be achieved in SGG type 

missions.   

Table 7.2.2 to Table 7.2.4 provide RMS and mean error of the three sub-regions 

with different gravity gradient profiles: 278.25° ~ 299.75° in longitude and -24.75° ~ 

19.75° latitude, 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° latitude and 250.25° 

~ 275.25° in longitude and -20.75° ~ 4.75° latitude, respectively indicating the area with 

high, moderate and low magnitude gravity gradients.  The RMS error is the largest in the 

region with high gravity gradients (6.5 mGal) and the smallest with the low gradient 

signals (1.5 mGal).  Note that for the region with low gravity gradient profile, the gravity 

solution with lower wavelet resolution level (i.e. J  = 3 instead of J  = 5) yields a better 

result (see Table 7.2.4), suggesting a possibility of reducing the error in the recovered 

gravity signal by combining gravity solutions with different wavelet resolution levels for 

the regions with varying gravity gradients profiles. 
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Table 7.2.1. The RMS surface gravity anomaly error 

RMSJGG   and mean error 

meanJGG   in mGal at the spatial resolution  ~ 0.7° for the region of 250.18° ~ 330.18° 

in longitude and -24.51° ~ 20.31° in latitude.  Bold faced numbers indicate the minimum 
RMS and mean error magnitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7.2.2. The RMS surface gravity anomaly error 

RMSJGG   and mean error 

meanJGG   in mGal for the sub-region of 278.25° ~ 299.75° in longitude and -24.75° ~ 

19.75° in latitude: the region with high gravity gradients profile. 
 

J  RMSJGG   
meanJGG   

0 20.34 12.75 

1 14.11 8.52 

2 9.37 5.14 

3 7.21 4.17 

4 5.86 3.87 

5 4.65 3.49 

6 12.10 8.58 

J  RMSJGG   
meanJGG   

0 32.08 22.57 

1 22.25 15.12 

2 15.08 10.02 

3 11.43 7.71 

4 8.91 6.20 

5 6.51 4.78 

6 17.71 13.12 
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Table 7.2.3. The RMS surface gravity anomaly error 

RMSJGG   and mean error 

meanJGG   in mGal for the region of 304.25° ~ 329.75° in longitude and -14.75° ~ 

19.75° in latitude: the region with moderate gravity gradients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7.2.4. The RMS surface gravity anomaly error 

RMSJGG   and mean error 

meanJGG   in mGal for the sub-region of 250.25° ~ 275.25° in longitude and -20.75° ~ 

4.75° in latitude: the region with low gravity gradients.  

J  RMSJGG   
meanJGG   

0 14.35 11.76 

1 9.28 7.59 

2 4.60 3.22 

3 3.89 2.93 

4 3.67 3.01 

5 3.44 3.02 

6 9.58 7.69 

J  RMSJGG   
meanJGG   

0 3.82 2.96 

1 2.66 1.81 

2 1.69 1.02 

3 1.49 0.98 

4 2.02 1.79 

5 2.42 2.29 

6 5.43 4.29 
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Chapter 8. Effect of Measurement Noise on the Recovered Gravity 

Anomaly 

 

 

8.1. Noise and Errors in Satellite Remote Sensing Missions  

 

In a satellite remote-sensing mission, several factors can affect the accuracy of the 

gravity measurement � the error in the satellite tracking, external non-gravitational forces 

such as air-drag and radiation pressure, instrumental errors in the accelerometer and the 

gradiometer sensors, etc.  Before proceeding further in this chapter, we will first take a 

brief look at GOCE (Gravity Field and Steady State Ocean Circulation Explorer) to 

determine the expected measurement error magnitude in a SGG mission.   

GOCE satellite carries two primary payload: a Satellite-to-Satellite Tracking 

Instrument (hereafter SSTI) which incorporates a geodetic GPS (Global Positioning 

System) receiver for high-low tracking between the GPS satellites and the low-orbit 

GOCE satellite (mean orbit altitude of 250 km), and an Electrostatic Gravity Gradiometer 

(hereafter EGG) whose three-axis, six-accelerometer satellite gravity gradiometer 

provides the gravity gradient tensor as gravity measurements.  SSTI and EGG are 

complemented by two star trackers which provide precise knowledge of the orientation of 

the spacecraft with respect to the inertial reference frame.  The secondary payload 

consists of an array of Laser Retro-reflector (LRR) cubes, which provide ground-based 

tracking of the satellite by satellite laser ranging stations. (Drinkwater and Kern, 2006)  

GOCE satellite is also equipped with Drag-free Attitude Control System (DFACS) 

� consisting of Ion Propulsion Assembly (IPA) and magnetotorquers working as 

actuators as well as multiple sensors such as star trackers, a three-axis magnetometer, a 

digital sun sensor and a coarse Earth and Sun sensor � which is contrived to compensate  

for the external non-gravitational forces and to keep the accelerometer drag-free in the 

along-track direction (Drinkwater et al,. 2007). 
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Fig. 8.1.1. Level 1b GOCE gradiometry error budget (Drinkwater and Kern, 2006). 
  

 

The aforementioned equipment and sensors are designed to minimize the errors in 

the GOCE data, and the calibration and validation process assesses and quantifies 

uncertainties in the GOCE measurements to ensure the highest possible quality Level 1b 

data before it is fed into the Level 2 scientific data products.  The error budget and 

performance criteria for the Level 1b data products are illustrated in Fig. 8.1.1 and Fig. 

8.1.2 (Drinkwater and Kern, 2006).   

 



 

150 
 

 

 

 

Fig. 8.1.2. Individual contributions to the predicted total Gravity Gradient Trace (GGT) 
error, based on GOCE system simulations (Drinkwater and Kern, 2006).  
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The error budget was carefully assigned to meet the mission objectives 

(Drinkwater et al., 2007):  

 

1. Recovering the Earth�s gravity anomaly field with an accuracy better than 1 � 

2 mGal. 

2. Determining the geoid height with a radial accuracy better than 1 � 2 cm. 

3. Achieving both measurements at a spatial resolution of 100 km or less, i.e. 

degree and order higher than 200 in a spherical harmonics expansion. 

 

The calibration steps are taken to ensure the flight-ready accelerometer output is 

obtained to a certain level of accuracy with an absolute scale factor error within 1%, 

where the �scale factor� refers to the accuracy that the individual GOCE accelerometers 

measure accelerations and gravity gradients along each axis of the gradiometer 

(Drinkwater and Kern, 2006).   

As is apparent from a satellite missions such as GOCE, several components are 

known to contribute to the accelerometer error, such as accelerometer noise, quantization 

noise and baseline stability as well as the instrument-satellite coupling errors.  In this 

chapter, we will focus on the measurement error due to accelerometer noise, which is 

intrinsic to the instrument and thus impossible to avoid completely no matter how 

accurately the instruments are calibrated and the satellite and processing errors are 

compensated and corrected. 

In order to study the effect of the noise in the measurement data on the recovered 

gravity solution, we imposed Gaussian random noise on the gravity signal at the satellite 

altitude.  We generated a normalized Gaussian random noise whose mean is 0 and 

standard deviation is 1.  We then found the standard deviation of the magnitude of the 

gravity signal at the satellite altitude (i.e. the upward continued gravity anomaly or the 

second order radial derivative of it) and added the Gaussian random noise such that 
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                                                iGii NwxGxG   )()(


      ,                                      (8.1.1) 

 

where ix


 is the location at the satellite altitude, )( ixG


  
is the gravity measurement with 

Gaussian noise error at ix


, )( ixG


 is the error-free gravity signal at ix


, iN  is the 

Gaussian random noise, G  is the standard deviation of )( ixG


 and w  is the weight of 

the error.  We investigated two different circumstances, one with 0.1% of Gaussian error 

(i.e. w  = 0.001) and the other with 0.5% error (i.e. w  = 0.005) for the cases with both 

upward propagated gravity anomaly (i.e. the gravity measurement at the satellite altitude 

is the gravity anomaly itself) and the SGG measurement (i.e. the at-altitude measurement 

is the second order radial derivative of the gravity anomaly).  The magnitude of the 

standard deviation of the error imposed in this manner on the gravity measurements at the 

altitude of 300 km is equivalent to about 0.01 mGal (0.1% Gaussian error) and 0.05 mGal 

(0.5% Gaussian error) for the upward propagated gravity anomaly with a spatial 

resolution 0.5° and 0.7×10
-13 mGal/m2 (0.1% error) and 3.5×10

-13 mGal/m2 (0.5% error) 

for the SGG measurements with a resolution 0.7°. 

The simulation results are discussed in the following sections. 
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8.2. By Using the Upward Propagated Gravity Anomaly 

 

Fig. 8.2.1 to Fig. 8.2.6 compare the recovered surface gravity anomaly for the 

Region I (30.25°W ~ 109.75°W in longitude and 24.75°S ~ 19.75°N in latitude) with the 

wavelet resolution level J  = 3 to J  = 5, when 0.1% and 0.5% Gaussian random noise 

was imposed on the gravity anomaly at the satellite altitude h  = 300 km.  The 

regularization parameters used in both cases are the same as the ones in section 5.1, i.e. 

0  = 9.0×10
-2, 1  = 5.0×10

-2, 2  = 2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-

4 and 6  = 5.0×10
-5.  The maximum degree of the Legendre polynomials N  was set to 

be 300. 

 The result shows that the higher the wavelet resolution level is, the more 

significant the effect of the noise becomes to the recovered gravity anomaly, indicating 

the high frequency signals are more vulnerable to the measurement errors.  It is also very 

noticeable that the larger the amplitude of the measurement error is, the more corrupted 

the recovered gravity signal gets.  With 0.1% measurement noise, its effect on the gravity 

solution does not appear until J  = 4, while 0.5% noise starts to affect the recovered 

gravity signal from J  = 3.  The 3-D surface plots of the recovered surface gravity 

anomaly also indicate that the low-moderate amplitude gravity signals get more affected 

by measurement error. 

Table 8.2.1 and Table 8.2.2 respectively show the RMS surface gravity anomaly 

error 
RMSJGG   at the different wavelet resolution levels for each spatial resolution of 

the truth data with 0.1% and 0.5% Gaussian random noise imposed on the satellite 

measurement.  Comparison to Table 5.1.1 provides the observation that with 0.1% 

measurement noise the RMS error increases by 0.2 mGal for the spatial resolution 1.5°, 

1.9 mGal for the resolution 1° and 3.1 mGal for the resolution 0.5°.  With 0.5% noise the 

RMS error increases substantially: by 0.2 mGal for 2° resolution, 2.3 mGal for 1.5° 

resolution, 4.4 mGal for resolution of 1° and 5.7 mGal for the spatial resolution of 0.5°.  
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Fig. 8.2.1. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 3, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km. 
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Fig. 8.2.2. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 3, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km.   
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Fig. 8.2.3. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 4, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km. 
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Fig. 8.2.4. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 4, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km. 
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Fig. 8.2.5. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 5, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km. 
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Fig. 8.2.6. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 5, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the gravity anomaly at the satellite altitude h  = 300 km. 
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Table 8.2.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude when 0.1% of 
Gaussian random noise was imposed on the satellite measurement. 
 
 
 
 

 
Table 8.2.2. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude when 0.5% of 
Gaussian random noise was imposed on the satellite measurement.  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.37 21.27 17.97 16.57 35.86 

1.0° 20.51 18.78 16.06 11.11 7.76 9.74 34.19 

1.5° 17.26 15.35 12.38 7.32 5.37 10.46 34.85 

2.0° 14.13 12.05 8.93 4.97 6.63 12.97 36.01 

3.0° 8.05 5.64 3.46 8.12 13.40 19.56 39.26 

4.0° 4.29 2.63 5.37 12.79 17.97 23.22 41.10 

5.0° 2.29 4.44 9.23 16.61 20.99 25.25 42.18 

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.37 21.30 19.13 41.27 166.44 

1.0° 20.51 18.78 16.06 11.18 10.23 39.07 166.01 

1.5° 17.26 15.35 12.38 7.44 8.60 39.28 166.12 

2.0° 14.13 12.05 8.93 5.17 9.49 40.05 166.32 

3.0° 8.05 5.64 3.47 8.27 15.09 42.70 167.04 

4.0° 4.29 2.63 5.37 12.89 19.29 44.52 167.50 

5.0° 2.29 4.44 9.24 16.69 22.13 45.59 167.78 
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We also recovered the gravity solution for N  = 600 with 0.1% measurement 

noise to see if the increased maximum degree of Legendre polynomials would amplify 

the noise effect.  The regularization parameters were identical as in the N  = 300 case.  

Comparison between Table 8.2.1 and Table 8.2.3 confirms that the increased N  in fact 

reduces the RMS error in the recovered gravity anomaly, although the improvement is 

insubstantial.     

It appears that a little noise in the satellite measurement is amplified in the process 

of recovering the surface gravity anomaly.  It is more conspicuous in the direct upward 

propagation case where the surface gravity signal is smoothed out a great deal by upward 

continuation as is mentioned in the previous chapters. 

 

 

 

 
Table 8.2.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude when 0.1% of 
Gaussian random noise was imposed on the satellite measurement with the maximum 
degree of Legendre polynomial N  set to be 600.  
  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.37 21.27 17.97 16.56 35.68 

1.0° 20.51 18.78 16.06 11.11 7.76 9.74 34.02 

1.5° 17.26 15.35 12.38 7.32 5.37 10.45 34.70 

2.0° 14.13 12.05 8.93 4.97 6.63 12.96 35.85 

3.0° 8.05 5.64 3.46 8.12 13.40 19.55 39.12 

4.0° 4.29 2.63 5.37 12.79 17.97 23.22 40.96 

5.0° 2.29 4.44 9.23 16.61 20.99 25.25 42.04 
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8.3. By Using the SGG Measurements 

 

We studied the effect of the measurement noise on the recovered gravity solution 

using the SGG measurements.  Fig. 8.3.1 to Fig. 8.3.4 show the contour and 3-D surface 

maps of the recovered surface gravity anomaly for the local region of 250.18° ~ 330.18° 

in longitude (29.82°W ~ 109.82°W) and -24.51° ~ 20.31° latitude (24.51°S ~ 20.31°N), 

which is nearly equivalent to Region I, with the wavelet resolution level J  = 4 and J  = 

5 when 0.1% and 0.5% Gaussian random noise was imposed on the SGG measurements 

at the satellite altitude h  = 300 km.  The same regularization parameters in section 7.2 

were used in both cases: 0  = 2.0×10
-12, 1  = 7.0×10

-13, 2  = 2.0×10
-13, 3  = 8.0×10

-14, 

4  = 4.0×10
-14, 5  = 2.0×10

-14 and 6  = 5.0×10
-15.  The maximum degree of the 

Legendre polynomials N  was set to be 300. 

As is true in section 8.2, the direct upward propagation case, the result from the 

SGG measurements at the satellite altitude shows that the effect of the measurement error 

becomes more prominent in the gravity solution as the wavelet resolution level gets 

higher and thus more detailed, shorter wavelength signals are recovered.  The effect of 

the measurement noise starts to appear at J  = 5 with 0.1% measurement noise, while it 

starts to affect the recovered gravity anomaly at J  = 4 with 0.5% noise. 

Table 8.3.1 and Table 8.3.2 provide the RMS and mean surface gravity anomaly 

error for the noise-free, 0.1% and 0.5% of imposed measurement noise cases with the 

different wavelet resolution levels for the spatial resolution of ~ 0.7°.  It shows that with 

0.1% measurement noise the RMS error increases only by 0.1 mGal, whereas with 0.5% 

noise the RMS error increases by 1.7 mGal.  The mean error increases by 0.1 mGal for 

0.1% noise and 0.9 mGal for the 0.5% measurement noise case. 

Compared to the result from section 8.2, it is obvious that the SGG solution is less 

influenced by the measurement noise, which is possibly due to the fact that the SGG 

measurement at the satellite altitude contains a great deal of the detailed information of 
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surface gravity anomaly and not as smoothed out as in the direct upward propagation case 

and therefore not as susceptible to the signal amplification during the recovery process. 
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Fig. 8.3.1. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution J = 4, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the second order radial derivative of the gravity anomaly at the satellite 
altitude h = 300 km.  
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Fig. 8.3.2. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution J  = 4, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the second order radial derivative of the gravity anomaly at h  = 300 km. 
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Fig. 8.3.3. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution J  = 5, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the second order radial derivative of the gravity anomaly at the satellite 
altitude h  = 300 km.  
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Fig. 8.3.4. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution J  = 5, when 0.1% (top) and 0.5% (bottom) Gaussian random noise was 
imposed on the second order radial derivative of the gravity anomaly at h  = 300 km. 
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Table 8.3.1. The RMS error 

RMSJGG 
 
in mGal for the region of 250.18° ~ 330.18° in 

longitude and -24.51° ~ 20.31° in latitude, with zero, 0.1% and 0.5% Gaussian random 
noise respectively imposed on the satellite measurement. 
 

 

 
Table 8.3.2. The mean error 

meanJGG 
 
in mGal for the region of 250.18° ~ 330.18° in 

longitude and -24.51° ~ 20.31° in latitude, with zero, 0.1% and 0.5% Gaussian random 
noise respectively imposed on the satellite measurement. 

J  RMSJGG   RMSJGG   
with 0.1% Gaussian noise 

RMSJGG   
with 0.5% Gaussian noise 

0 20.34 20.34 20.34 

1 14.11 14.11 14.11 

2 9.37 9.37 9.37 

3 7.21 7.21 7.28 

4 5.86 5.88 6.34 

5 4.65 4.78 7.11 

6 12.10 12.98 25.83 

J  meanJGG   meanJGG   
with 0.1% Gaussian noise 

meanJGG   
with 0.5% Gaussian noise 

0 12.75 12.75 12.75 

1 8.52 8.52 8.52 

2 5.14 5.14 5.16 

3 4.17 4.18 4.34 

4 3.87 3.89 4.39 

5 3.49 3.56 5.54 

6 8.58 9.40 20.31 
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Chapter 9. Satellite Gravity Measurement Data on Ground Track 

 

 

9.1. Satellite Ground Track Data  

 

In previous chapters, we have studied the spherical wavelets gravity model based 

on the gravity measurement data arranged on a regular grid, i.e. evenly spaced grid both 

in longitude and latitude.  In a satellite mission where global coverage is required to map 

the gravity field of the Earth, such as GRACE and GOCE, the data can be arranged in 

such a manner in a certain period of time after the launch of the satellite.  The freely 

drifting ground track profile of GRACE enables sufficient global ground track density 

that is required to meet degree/order 180 solution to be obtained in over 30 days 

(Bettadpur and Watkins, 2000).  In the GOCE satellite�s sun-synchronous orbit, the 

ground track profile shows a 60-day repeat period, where the ground track density after 

two months ensures that the maximum separation of tracks is less than 40 km 

(Drinkwater et al., 2007).  Fig. 9.1.1 shows the sample ground track pattern for GOCE 

satellite.  In these satellite missions, once sufficient volume and resolution of data is 

obtained, a numerical scheme such as polynomial or cubic spline interpolation or data 

binning technique can be employed to arrange the data on a regular grid. 

There are certain occasions or specific regions, however, that arranging the 

measurement data on a regular grid is not easily achieved, e.g. when the region of interest 

does not have a dense enough ground track coverage during a given period of time.  In 

this chapter, we will study the gravity solution obtained from the measurement data on 

ground tracks, rather than on a regular grid. 

Since the measurement data along the track is dense and relatively regular, it is 

easily aligned on equally spaced points on the line by one of the aforementioned 

numerical schemes.  The same can be applied to the ground tracks, even if the tracks are 

farther separated and less dense than the data points along the track.  In this chapter, we 
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will study two different ground track profiles: Track A, where the ground tracks are 

aligned along the longitude lines at a 1° separation with the measurement data arranged in 

a 0.5° interval along the track, and Track B, with the same profile as Track A except that 

the ground tracks are 1.5° apart.  Note that the ground tracks can be aligned along either 

the longitude or the latitude by rotating the reference frame.  This will simplify the 

surface integration process in recovering the numerical solution.  Afterwards the 

coordinate system can be rotated back to the original reference frame.     

 

 

 

 

   

Fig. 9.1.1. GOCE ground track sampling pattern over Europe after 14 days of a 60-day 
repeat pattern (in the reference orbit configuration). The red line indicates the area within 
which the satellite is in line-of-sight contact with the Kiruna ground receiving station in 
northern Sweden (Drinkwater et al., 2007). 
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9.2. By Using the Upward Propagated Gravity Anomaly 

 

We built three data sets to test our gravity model on the region of 200.25° ~ 19.75° 

in longitude (19.75°E ~ 159.75°W clockwise) and -47.25° ~ 42.25° in latitude (47.25°S ~ 

42.25°N) at the satellite altitude h  = 300 km: a regular 360 × 180 longitudinal-latitudinal 

grid (0.5° separation along the longitude and the latitude), a 180 × 180 grid (1° separation 

in longitude and 0.5° in latitude) for Track A, and a 120 × 180 grid (1.5° separation in 

longitude and 0.5° in latitude) for Track B.  These three different sets of at-altitude 

gravity anomaly data were then used to solve the inverse problem to recover the surface 

gravity anomaly for Region I (30.25°W ~ 109.75°W in longitude and 24.75°S ~ 19.75°N 

in latitude) from the previous chapters.  Since the number of abscissas does not meet the 

12 n
 requirement (see section 4.1), we employed the single-step trapezoidal rule in the 

equation (4.1.14) as a numerical integration scheme.  The regularization parameters used 

in all three cases were the same as in section 5.1, i.e. 0  = 9.0×10
-2, 1  = 5.0×10

-2, 2  = 

2.0×10
-2, 3  = 4.0×10

-3, 4  = 1.0×10
-3, 5  = 2.0×10

-4 and 6  = 5.0×10
-5.  The maximum 

degree of the Legendre polynomials N  was 300. 

Fig. 9.2.1 and Fig. 9.2.2 are the contour and 3-D surface map of the recovered 

surface gravity anomaly for Region I at the wavelet resolution level J  = 4 

(corresponding to 1.5° spatial resolution) and J  = 5 (1° spatial resolution) from the data 

set arranged on the Track A.  The result shows the contours of the gravity anomaly field 

align along the ground tracks (along the longitude lines) from J  = 5.  The effect seems to 

be stronger in the high magnitude gravity gradient regions.   Fig. 9.2.3 and Fig. 9.2.4 are 

the result from Track B at the wavelet resolution level J  = 2 (corresponding to 3° spatial 

resolution) and J  = 3 (2° spatial resolution).  Here the effect of irregularity of the data 

point arrangement appears from a lower level of wavelet resolution.  
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Fig. 9.2.1. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 4 (top) and J  = 5 (bottom).  The gravity anomaly data at the 
satellite altitude h  = 300 km are arranged on Ground Track A where the ground tracks 
aligned along the longitude lines are separated by 1°. 
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Fig. 9.2.2. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 4 (top) and J  = 5 (bottom).  The gravity anomaly data at the 
satellite altitude h  = 300 km are arranged on Ground Track A where the ground tracks 
aligned along the longitude lines are separated by 1°.   
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Fig. 9.2.3. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 2 (top) and J  = 3 (bottom).  The gravity anomaly data at the 
satellite altitude h  = 300 km are arranged on Ground Track B where the ground tracks 
aligned along the longitude lines are separated by 1.5°.  
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Fig. 9.2.4. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 2 (top) and J  = 3 (bottom).  The gravity anomaly data at the 
satellite altitude h  = 300 km are arranged on Ground Track B where the ground tracks 
aligned along the longitude lines are separated by 1.5°. 
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Table 9.2.1 to Table 9.2.3 provide the RMS surface gravity anomaly error 

RMSJGG   at the different wavelet resolution levels for each spatial resolution for the at-

altitude gravity anomaly set on a regular grid, on Track A and on Track B, respectively.  

Comparing the result from Track A and Track B to that from the regular grid confirms 

that the higher the irregularity of the data arrangement on the grid (the farther the ground 

tracks are separated), the less fine spatial resolution of the gravity solution that can be 

recovered.  From the data set on the ground tracks that are 1° apart, the surface gravity 

anomaly could be obtained to the spatial resolution of 1.5°, while a far coarser resolution 

of 3° solution could be achieved form the gravity data on the ground tracks at a 1.5° 

separation. 

 

 

 

 
Table 9.2.1. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude with the gravity 
anomaly data at the satellite altitude arranged in a regular grid at a resolution 0.5° both in 

longitude and latitude.  
  

Spatial 
Resolution 

RMS
GG 0

 
RMS

GG 1

 
RMS

GG 2

 
RMS

GG 3

 
RMS

GG 4

 
RMS

GG 5

 
RMS

GG 6

 

0.5° 28.90 27.54 25.38 21.28 17.96 14.59 12.23 

1.0° 20.51 18.78 16.06 11.13 7.66 5.56 6.10 

1.5° 17.27 15.35 12.39 7.34 5.17 6.61 9.16 

2.0° 14.13 12.05 8.94 4.98 6.41 10.05 12.94 

3.0° 8.05 5.64 3.46 8.10 13.25 17.66 20.25 

4.0° 4.29 2.63 5.36 12.77 17.84 21.62 23.58 

5.0° 2.29 4.44 9.23 16.59 20.88 23.80 25.41 
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Table 9.2.2. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude with the gravity 
anomaly data at the satellite altitude arranged on Ground Track A where the ground 
tracks aligned along the longitude lines are separated by 1°. 
 
 
 

 
Table 9.2.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the region 

of 250.25° ~ 329.75° in longitude and -24.75° ~ 19.75° in latitude with the gravity 
anomaly data at the satellite altitude arranged on Ground Track B where the ground 
tracks aligned along the longitude lines are separated by 1.5°. 

Spatial 
Resolution RMS

GG 0  
RMS

GG 1  
RMS

GG 2  
RMS

GG 3  
RMS

GG 4  
RMS

GG 5  

0.5° 28.90 27.54 25.38 21.28 17.97 18.83 

1.0° 20.51 18.78 16.06 11.13 7.69 13.05 

1.5° 17.27 15.35 12.39 7.34 5.20 13.48 

2.0° 14.13 12.05 8.94 4.98 6.44 15.47 

3.0° 8.05 5.64 3.46 8.10 13.26 21.19 

4.0° 4.29 2.63 5.36 12.77 17.85 24.58 

5.0° 2.29 4.44 9.23 16.59 20.89 26.53 

Spatial Resolution RMS
GG 0  

RMS
GG 1  

RMS
GG 2  

RMS
GG 3  

0.5° 28.90 27.54 25.35 25.95 

1.0° 20.51 18.78 16.04 18.90 

1.5° 17.26 15.35 12.37 17.19 

2.0° 14.13 12.04 8.92 16.43 

3.0° 8.05 5.64 3.52 17.95 

4.0° 4.29 2.63 5.41 20.52 

5.0° 2.29 4.45 9.26 23.08 
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9.3. By Using the SGG Measurements 

 

By upward continuation of the global surface gravity anomaly on a 720 × 360 

regular grid with the SGG operator, we first generated three SGG data sets on the same 

area as described in section 9.2 (the region of 19.75°E ~ 159.75°W clockwise in 

longitude and 47.25°S ~ 42.25°N in latitude at the satellite altitude h  = 300 km): a 360 × 

180 regular grid with 0.5° spacing in longitude and latitude, a 180 × 180 grid (1° 

separation in longitude and 0.5° in latitude) for Track A, and a 120 × 180 grid (1.5° 

separation in longitude and 0.5° in latitude) for Track B.  These three data sets of the 

second order radial derivative of gravity anomaly were then downward propagated to 

recover the surface gravity anomaly for Region I (30.25°W ~ 109.75°W in longitude and 

24.75°S ~ 19.75°N in latitude).  Both the upward continuation process and the downward 

propagation, i.e. solving the inverse problem, required the implementation of the single-

step trapezoidal rule as a numerical integration scheme.  The regularization parameters 

used in this test are: 0  = 2.0×10
-11,  1  = 2.0×10

-12, 2  = 7.0×10
-13, 3  = 2.0×10

-13, 4  

= 8.0×10
-14, 5  = 1.0×10

-14 and 6  = 5.0×10
-15.  The maximum degree of the Legendre 

polynomials N  was set to be 300. 

Fig. 9.3.1 and Fig. 9.3.2 are the contour and 3-D surface map of the surface 

gravity anomaly for Region I at the wavelet resolution level J  = 3 and J  = 4 recovered 

from the data set arranged on Track A.  The alignment of the gravity anomaly contours 

along the ground track is apparent for J  = 4, especially in the regions with high 

magnitude gravity gradients.   Fig. 9.3.3 and Fig. 9.3.4 are the result from Track B at the 

wavelet resolution level J  = 1 and J  = 2.  As was the case in section 9.2, the effect of 

irregularity of the data arrangement appears at the lower level of wavelet resolution. 
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Fig. 9.3.1. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 3 (top) and J  = 4 (bottom).  The second order radial derivative of 
the gravity anomaly data at the satellite altitude h  = 300 km are arranged on Ground 
Track A where the ground tracks aligned along the longitude lines are separated by 1°. 
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Fig. 9.3.2. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 3 (top) and J  = 4 (bottom).  The second order radial derivative of 
the gravity anomaly data at the satellite altitude h  = 300 km are arranged on Ground 
Track A where the ground tracks aligned along the longitude lines are separated by 1°. 
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Fig. 9.3.3. The contour map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 1 (top) and J  = 2 (bottom).  The second order radial derivative of 
the gravity anomaly data at the satellite altitude h  = 300 km are arranged on Ground 
Track B where the ground tracks aligned along the longitude lines are separated by 1.5°. 
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Fig. 9.3.4. 3-D surface map of the recovered surface gravity anomaly for the wavelet 
resolution level J  = 1 (top) and J  = 2 (bottom).  The second order radial derivative of 
the gravity anomaly data at the satellite altitude h  = 300 km are arranged on Ground 
Track B where the ground tracks aligned along the longitude lines are separated by 1.5°. 
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In Table 9.3.1, the RMS of the surface gravity anomaly error at the spatial 

resolution of 0.5° is listed at each wavelet resolution level for the three data sets in our 

test.  As is true with the case when using the direct upward propagated gravity anomaly 

data, using SGG type data shows that the solution corrupts as the irregularity in the data 

arrangement increases.  As is discussed in Chapter 7, the wavelet level of the solution 

recovered from the SGG type measurement cannot be directly associated with the spatial 

resolution.  We instead applied a mean filter to the gravity solution with the wavelet 

resolution level yielding the least RMS error (i.e. J  = 5 for the gravity measurements on 

a regular grid, J  = 3 for the data arranged along Ground Track A and J  = 1 along 

Ground Track B) and compared them to the initial gravity anomaly field at each spatial 

resolution.  Table 9.3.2 shows the result: The SGG data on a 360 × 180 regular grid at a 

300 km altitude yields the short wavelength gravity solution with the RMS error of 9.2 

mGal for the spatial resolution 0.5° and 3.8 mGal for the 1° resolution (Note that it is a 

far better result to the case in section 9.2, when direct upward propagated gravity 

anomaly data was used) and the surface gravity anomaly recovered from the Track A are 

acceptable as a medium wavelength (1.5° ~ 3°) solution, while the result from Track B 

does not even qualify as a long wavelength solution. 

Based on the results from this section as well as the previous one, we have come 

to the following conclusion: In recovering the surface gravity, the number of data points 

along one axis is required to be at least half of that along the other for a meaningful 

solution to be achieved, especially with the SGG type of measurements. 
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Table 9.3.1. The RMS error 

RMSJGG 
 
in mGal for the region of 250.25° ~ 329.75° in 

longitude and -24.75° ~ 19.75° in latitude at a spatial resolution 0.5°, with the second 
order radial derivative of the gravity anomaly measurement set on a regular grid (left), 
along Ground Track A (middle) and Ground Track B (right). 
 
 
 

 
Table 9.3.2. The RMS error  

RMSmeanJGG 
 
in mGal at different spatial resolutions.  

The gravity solution with the wavelet resolution level yielding the least RMS error in 
each case ( J  = 5 for the SGG measurement on a regular grid, J  = 3 along Ground Track 
A and J  = 1 along Ground Track B) was smoothed according to the spatial resolution. 
 

J  RMSJGG   RMSJGG   
Ground Track A 

RMSJGG   
Ground Track B 

0 35.46 35.46 35.45 

1 24.99 24.99 24.97 

2 19.29 19.31 28.07 

3 14.87 15.95 154.53 

4 12.70 32.63 539.02 

5 9.19 1003.55 4584.70 

6 9.26 2677.90 9079.93 

Spatial 
Resolution  

RMSmeanGG 5   
RMSmeanGG 3  

Ground Track A 
 

RMSmeanGG 1  

Ground  Track B 

1.0° 3.80 6.21 17.14 

1.5° 3.71 3.27 14.56 

2.0° 3.66 2.20 12.93 

3.0° 3.52 1.64 11.43 

4.0° 3.46 1.16 11.21 

5.0° 3.45 1.08 11.10 
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Chapter 10. Conclusions and Discussion 

  

 

Our study shows that the local surface gravity anomaly can be recovered from 

local gravity measurements at the satellite altitude by the spherical regularization 

wavelets approximation as a solution to the inverse problem, so long as the input data is 

arranged on a regular grid.  This restriction results from the fact that the solution to the 

inverse problem takes the convolution form on a spherical surface.  It is possible, 

however, to perform the surface integration on grid points unevenly distributed using 

Gaussian quadrature or the extended trapezoidal rule with an interpolation scheme, albeit 

with less accuracy.  The regularization of the inverse operator, and hence the employment 

of regularization wavelets, is essential in solving the inverse problem, as it is ill-posed. 

The scale discrete Tikhonov spherical regularization wavelets employed in our 

model exhibit the characteristics of band pass filters corresponding to the higher 

frequencies (higher degrees of Legendre polynomials) as the wavelet level increases (see 

Fig. 3.2.1 and Fig. 3.2.2).  The localization property of the wavelets suggests that the 

higher the wavelet level goes the stronger the localization in scale (see Fig. 3.2.3 and Fig. 

3.2.4).  This property accounts for the fact that there exists a limit in increasing wavelet 

level to gain finer details to the recovered signal.  When the wavelet�s localization goes 

further than the spatial resolution of the input data itself, the added details become noise, 

instead of real signal, rendering the solution meaningless.  The ill-posed nature of the 

inverse problem, as well as the computational limits, explains the noise appearing at a 

slightly lower wavelet level than defined by the localization limit.   

When using the upward propagated gravity anomaly at a resolution 0.5° at the 

altitude of 300 km as simulated input data � where solving the inverse problem becomes 

a direct downward propagation process � the simulation results from the two different 

local regions suggest that the local surface gravity anomaly can be recovered at the 

spatial resolution of 1° with an RMS error of 1 ~ 10 mGal, depending on the topographic 
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profile of the gravity field in the region.  The error decreases as the spatial resolution 

becomes coarser, down to 0.5 ~ 2 mGal at a resolution of 5°.  Another notable 

observation is that the spatial resolution is not the only factor on the recovered gravity 

solution error.  The local nature of the gravity gradients appears to be closely correlated 

to the achievable accuracy, i.e. the higher the magnitude of the gravity gradients, the 

larger the error.  Our investigation of the impact of differing the volume of input data and 

varying the maximum degree of Legendre polynomials on the accuracy of the recovered 

gravity solution implies that it is the short wavelength signals and the regions with high 

magnitude gravity gradients that are most influenced by such alterations. 

Our test results from the simulated SGG measurements at the satellite altitude 

indicate that the gravity solution can be obtained with good accuracy (with RMS error 1 � 

7 mGal at a resolution of 0.7°) by using the relatively detailed at-altitude (hence less ill-

posed) SGG signals.  The study of the effect of the measurement noise on the recovered 

gravity anomaly also implies that the SGG solution is less susceptible to measurement 

errors, attesting to the idea that the SGG type mission would be an ideal choice for 

implementing our spherical wavelets gravity model.  Our study on the impact of the 

irregularity in the arrangement of the measurement data indicates that the number of data 

points along one axis is required to be at least half of that along the other for an 

acceptable solution to be achieved. 

As our study focused on recovering the local gravity using only localized data, it 

became imperative to investigate the local solution of the same region recovered from 

different sets of input data.  Region I and Region II from our simulation share the region 

of 250.25° ~ 259.75° in longitude and -24.75° ~ 19.75° in latitude.  Since the latitudinal 

boundaries in Region II shows large error due to the lack of input data as explained in 

Chapter 6, we concentrated on the region of 250.25° ~ 259.75° in longitude and -19.75° 

~ 14.75° in latitude for comparison of the both solutions.  Fig. 10.1 shows the contours of 

the recovered surface gravity anomaly of the overlapping area of Region I and Region II 

at wavelet level J  = 4 (equivalent to 1.5° spatial resolution) since it is the highest 

wavelet level solution with  a common regularization parameter.  
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Fig. 10.1. The contours of the recovered surface gravity anomaly of the overlapping area 
of Region I (top) and Region II (bottom) for the wavelet resolution level J  = 4 
(equivalent to 1.5° spatial resolution).  Each contour represents 1 mGal of difference in 
gravity anomaly.  
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Fig. 10.2. The contours of the surface anomaly difference )IIRegion ()IRegion ( 44 GG 

for the wavelet resolution level J  = 4.  Each contour represents 0.05 mGal gravity 
anomaly difference. 
 
 
 

RMS of Signal   
RMS

G
5.1

  at 1.5°  spatial 

resolution 
5.03 mGal 

Error RMS  
RMSJGG 45.1 


  for Region I 8.00×10

-1 mGal 

Error RMS  
RMSJGG 45.1 


  for Region II 8.02×10

-1 mGal 

RMS
GG II)Region ()IRegion ( 44   9.04×10

-2 mGal 

 
Table 10.1. The properties of the surface gravity anomaly of the overlapping area (the 
region of 250.25° ~ 259.75° in longitude and -19.75° ~ 14.75° in latitude)  for the 
wavelet resolution level J  = 4.   
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Fig. 10.2 shows the contours of the surface gravity anomaly difference 

)IIRegion ()IRegion ( 44 GG   for the wavelet resolution level J  = 4 and Table 10.1 

lists the RMS of the gravity anomaly (from truth data), error RMS for Region I and 

Region II and the RMS of the gravity anomaly difference between the two solutions for 

the overlapping area.  According to the table, the RMS of the anomaly difference is 0.09 

mGal � well below the error range (about 10% of the surface gravity anomaly error).  

This indicates that the local gravity solution can be obtained with sufficient accuracy 

despite some differences in the input data, attesting to the validity of our gravity model.  

The wavelets model can provide a means to recover the gravity field on a specific 

local region using only local gravity measurements at the satellite altitude.  The accuracy 

of the solution for long wavelength gravity signals (≥ 500 km), however, might not offer 

an improvement over an already well-established spherical harmonics gravity model, 

while the solutions for short wavelength signals (≤ 200 km) could provide finely detailed 

information of the gravity field which a spherical harmonics model may not be able to 

recover.   

One notable way to improve our spherical wavelets gravity model�s accuracy is 

combining the wavelets solution with a well-established spherical harmonics model such 

as GGM03C and EGM08 as a priori.  Instead of using the gravity signal itself as input 

data, we would utilize the residuals between the actual measurements at the satellite 

altitude and the upward continued value of the gravity predicted from the well-

established gravity model.  The solution thus obtained then could be imposed on the 

surface gravity from the spherical harmonics model as added fine details.  Since the error 

level is somewhat proportional to the amplitude of the signal, using the residuals of 

gravity measurements will be able to lower the amplitude of the input signal by a 

considerable amount and the RMS error would be significantly smaller than expected 

when using the raw signals.  The resulting gravity solution could thus provide the short 

wavelength gravity signals and the fine details missing in the spherical harmonics gravity 

model. 
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If we seek to recover the finer scale local gravity field in a much smaller region, 

e.g. 2° × 2°, we will need the gravity measurements with very fine resolution at a very 

low altitude.  One of the advantages of the spherical wavelets approach is the capability 

to support such a mission since only local data is required to recover the gravity field in a 

target local region.  For this purpose, a special aircraft mission can be designed, but this 

will be left for future study. 

Since our model requires radial derivatives of the gravity potential, the satellite 

mission designed to directly obtain the radial component of the gravity gradients will be 

the most desirable in implementing our gravity model.  The GOCE mission, launched in 

March 2009, is an SGG mission that seeks to provide global and regional models of the 

Earth�s gravity field with high spatial resolution and accuracy.  As is briefly reviewed in 

Chapter 8, the gravity measurements from three pairs of EGG onboard the satellite will 

provide the radial component of the Earth�s gravity gradient tensor after Level 0 and 

Level 1a/1b processing (Drinkwater et al., 2003). After a 60-day repeat period the 

satellite�s ground track separation will be less than 40 km (~ 0.4° near the equator), hence 

ensuring the global coverage in a very fine scale.  GOCE aims to recover the Earth�s 

gravity field within the 100 km scale, i.e. ~ 0.9° resolution near the equator, with the 

gravity anomaly error about 1 � 2 mGal (Drinkwater et al., 2007).  Our test result using 

the simulated SGG measurements at a 0.7° resolution at the GOCE satellite�s orbit 

altitude of 250 km (see Table 10.2 � Table 10.5) shows 1 � 5 mGal of gravity anomaly 

error at a spatial resolution 0.7° (< 80 km on the equator).  When the Gaussian noise was 

imposed on the measurement data, RMS error increases slightly to 1 � 6 mGal for 0.5% 

Gaussian noise and 2 � 7 mGal for 1.0% noise. Considering these results and the fine 

spatial resolution of the gravity gradients data expected from the GOCE ground track 

profile (~ 0.5°), the resulting gravity solution from our spherical wavelets model will be 

able to meet or exceed the GOCE mission aim. 
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Presented in Table 10.2 to Table 10.5 are the RMS errors of the local gravity 

anomaly recovered from the simulated SGG measurements at a 0.7° resolution at the 

satellite altitude of 250 km (GOCE satellite�s mean orbit altitude) encompassing the local 

region of 159.65° ~ 20.00° in longitude (counterclockwise) and -46.93° ~ 42.72° in 

latitude.  The regularization used in the simulation are 0  = 1.0×10
-12, 1  = 7.0×10

-13, 2  

= 5.0×10
-13, 3  = 2.0×10

-13, 4  = 1.5×10
-13, 5  = 1.0×10

-13 and 6  = 9.0×10
-14.  The 

maximum degree of the Legendre polynomials N  was set to be 300.  

 

 

 

 
Table 10.2. The RMS surface gravity anomaly error 

RMSJGG 
 
in mGal for the region 

of 250.18° ~ 330.18° in longitude and -24.51° ~ 20.31° in latitude, with zero, 0.5% and 
1.0% Gaussian random noise respectively imposed on the satellite measurements. 

J  RMSJGG   RMSJGG   
with 0.5% Gaussian noise 

RMSJGG   
with 1.0% Gaussian noise 

0 12.20 12.19 12.19 

1 10.18 10.18 10.18 

2 8.52 8.52 8.53 

3 4.99 5.06 5.27 

4 4.09 4.27 4.74 

5 3.55 4.05 5.21 

6 3.70 4.30 5.66 
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Table 10.3. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 278.25° ~ 299.75° in longitude and -24.75° ~ 19.75° in latitude: the region with 

high gravity gradients profile, with zero, 0.5% and 1.0% Gaussian random noise. 
 
 
 

 
Table 10.4. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 304.25° ~ 329.75° in longitude and -14.75° ~ 19.75° in latitude: the region with 

moderate gravity gradients, with zero, 0.5% and 1.0% Gaussian random noise. 
 

J  RMSJGG   RMSJGG   
with 0.5% Gaussian noise 

RMSJGG   
with 1.0% Gaussian noise 

0 18.35 18.34 18.33 

1 15.41 15.39 15.38 

2 13.06 13.04 13.03 

3 7.88 7.89 7.99 

4 6.43 6.52 6.81 

5 5.39 5.76 6.67 

6 5.55 6.03 7.14 

J  RMSJGG   RMSJGG   
with 0.5% Gaussian noise 

RMSJGG   
with 1.0% Gaussian noise 

0 9.98 9.99 9.99 

1 8.00 8.01 8.02 

2 6.15 6.16 6.19 

3 2.55 2.69 3.07 

4 2.06 2.38 3.16 

5 2.24 2.97 4.45 

6 2.47 3.32 4.99 
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Table 10.5. The RMS surface gravity anomaly error 

RMSJGG   in mGal for the sub-

region of 250.25° ~ 275.25° in longitude and -20.75° ~ 4.75° in latitude: the region with 
low gravity gradients, with zero, 0.5% and 1.0% Gaussian random noise. 

 

 

As our model proves its capability to recover the fine scale local gravity solution, 

it is natural to speculate whether it can detect the time-varying gravity anomaly and water 

mass changes.  The water mass variability in particular regions such as the Amazon Basin 

has been of great scientific interest.  To investigate this prospect, we evaluated the error-

to-signal ratio of the Region I with the gravity solution obtained from simulated SGG 

gravity measurements at GOCE satellite�s mean altitude of 250 km.  Fig. 10.3 shows the 

distribution of error-to-signal ratio for the solution with the wavelet level J  = 4, where 

the mean value of the error-to-signal ratio is the minimum.  Although it is not as straight-

forward as the relation between the surface anomaly error and the magnitude of the 

gravity gradients, error-to-signal ratio also displays a certain degree of correlation with 

the gravity gradients � the region with high gravity gradients tends to yield high error-to-

signal ratio. 

  

J  RMSJGG   RMSJGG   
with 0.5% Gaussian noise 

RMSJGG   
with 1.0% Gaussian noise 

0 2.62 2.62 2.63 

1 2.34 2.34 2.37 

2 1.86 1.88 1.95 

3 1.10 1.38 2.01 

4 0.92 1.48 2.50 

5 1.02 2.06 3.74 

6 1.17 2.31 4.18 
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Fig. 10.3. The contours of the error-to-signal ratio for Region I at a 0.7° spatial resolution 

with the wavelet resolution level J  = 4. 
 
 
 
 

RMS

RMSJ

G

GG 5
  for the overall region 0.11 

RMS

RMSJ

G

GG 4
  for the Pacific Ocean 0.07 

RMS

RMSJ

G

GG 5
  for the Amazon Basin 0.11 

RMS

RMSJ

G

GG 4
  for the Amazon River 0.09 

 
Table 10.6. The ratio of RMS error to RMS of signal in different regions.   
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Table 10.6 provides the ratio of RMS error to RMS value of the signal for the 

chosen regions at a 0.7° spatial resolution, i.e. less than 80 km scale: the Pacific Ocean 

(255° ~ 270° in longitude, -15° ~ 5° in latitude), the Amazon Basin (290° ~ 310° in 

longitude, -15° ~ 0° in latitude) and the Amazon River vicinity (290° ~ 305° in longitude, 

-5° ~ 0° in latitude).  The ratios were computed from the gravity solution with the 

wavelet level yielding the least RMS error for each region.  According to the table, the 

error-to-signal ratio is about 10% of the magnitude of the signal in most of the regions, 

except the Pacific Ocean where the ratio is down to 7%.  This result implies that the 

gravity changes (whether seasonal or inter-annual) less than 10% of the gravity signal 

cannot be validly detected with our model.  For the Amazon Basin, the RMS of the 

surface gravity anomaly is 25 mGal indicating the gravity change less than 2.5 mGal on 

80 km scale is undetectable using our solution.  With the spherical harmonics gravity 

model, GRACE satellites could capture the changes in ground water with an accuracy of 

0.4 ìGal on the spatial scales longer than 1300 km (Anderson and Hinderer, 2005).  The 

Amazon Basin is one of the regions with largest inter-annual gravity changes (> 1 ìGal) 

on that scale.  Although we cannot directly compare GRACE�s large-scale gravity 

solution to our model�s fine-scale one, the criteria of 10% signal RMS seems too large for 

the realistic gravity changes despite the fact that the gravity changes on 80 km scale will 

be considerably larger than 1 ìGal on 1300 km scale.  However, there still exists a 

possibility that our model is capable of discerning fine-scale gravity changes in regions 

with very large water mass change if we can lower the error significantly by employing a 

priori solution as mentioned previously in this chapter.  Further study on this subject will 

be explored.    

Although our spherical regularization wavelets gravity model shows its strength 

in recovering local gravity on a fine scale, it must be pointed out that the downward 

propagation process in some way deteriorates the gravity measurements taken at satellite 

altitude due to its ill-posed nature, which means the surface gravity solution is not as 

accurate as the at-altitude gravity measurements.  Spherical harmonics gravity model, on 

the other hand, is free from this effect for it can compute the spherical harmonics 
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coefficients that best fit the orbit elements of the satellite at its altitude, fully capable of 

utilizing the integrity of the measurement data.  This is one of the advantages of spherical 

harmonics approach over our spherical wavelets method and must be taken into account 

in comparing the two different approaches regarding the determination of the gravity 

field. 

As previously mentioned, the most ready application of our model will be toward 

the SGG measurements from GOCE satellite.  The six accelerometers on board GOCE 

satellite can provide three components of the second derivative gravity gradients tensors 

(second order derivatives of gravity potential).  Our gravity model takes the radial 

component of the tensors as input in solving the inverse problem.  The other two 

components whose magnitude is not as significant as their radial counterpart, however, 

contain the regional non-radial topographic information of the gravity field.  A possible 

means to utilize these non-radial components of the gravity tensors is to exploit them to 

impose local corrections on the surface gravity solution obtained from the radial 

component.  Further study in this prospect will be left for the future work.  

Using the spherical wavelets gravity model, we could recover the local gravity 

anomaly to a fine level of spatial resolution on the order of a hundred kilometers or less 

(≤ 1°).  The model also exhibits superior performance in edge detection by accurately 

modeling the boundaries between the ocean and a sea cliff.  With its capability in 

recovering fine resolution gravity signals using only localized gravity measurements, the 

application potential of our spherical wavelets gravity model is extensive, including 

determination of the surface gravity potential and anomaly at finer scales than could be 

achieved by a spherical harmonics model approach.  Future study will be pursued to 

apply our wavelet solution in conjunction with the spherical harmonics model to GOCE�s 

EGG data in support of increasing the accuracy of our knowledge of the Earth�s gravity 

field. 
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