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ABSTRACT 

Chemical treatments (usually polymer gels) are commonly used to 

improve the vertical conformaoce of oil reservoirs by selectively reducing 

the permeab i Ii ty in some zc:nes near the we 11. The resu I ts of such 

treatments have been sporadic and u~redictable. The objective of this study 

is to define those reservoir characteristics which lead to successful 

treatments and to provide guidelines for the application of conformance 

treatments by modeling them with a reservoir simulata-. 

The computer simulator is the BOAST model, a multiphase, three-

. dimensional finite differeoce model written by Fanchi J. R. et al. and 

released by the Department of Energy. It was modified in areas such as the 

restart procedure , the rate allocation scheme, condition of well constraint, 

interpretation of relative permeability and implicit rate calculation to meet 

the objectives of this study. 

Several cases have been run to identify the reservoir properties that 

stroigly influence the outcome of a cooformance treatment. These are the 

vertical permeability, the permeability thickness product cootrast between 

layers, the permeability cootrast, and the level of permeability reduction 

near the injection well. The results presented interpret the test cases and 

provide a basis for possible implementation of a successful cooformance 

treatment. 

Finality, a field case is presented in which actual reservoir 

properties were used to study a cooformance treatment. 
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CHAPTER I 

INTRODUCTION 

Because of the availability and relative ease of injection, water is 

frequently used in a flooding program to recover oil. However, sirce most 

reservoirs are normally ccmposed of strata possessing wide variaticns in 

permeability which give different levels of entry for water, when water is 

injected , it is not distributed uniformly and seeks the path of least 

resistarce to flow. Often, the main conductor of this injected water, called 

a thief zone, beccmes depleted sooner than the less permeable zones and 

allows more water flow at a higher rate. Ccnsequently, more and more 

water is injected throogh the thief zone while significant oil remains in the 

low permeability zone, resulting in a waterflood that is not efficient. 

Varioos treatments have been developed to redistribute the water 

injected to the zones containing most of the remaining oil when water no 

lCJ1Qer effectively displaces the oil during the life of waterflooding. These 

treatments generally attempt to restrict water flow into the main conductors 

of water by plugging these layers in the wellbore or deeper into the matrix. 

When treatments are performed within the wellbore, the sandface is 

simply shut-off by mechanical techniques shch as placing rubber sleeve over 

the thief zone or setting packer above and below the thief zone 1-3. When 

treatments are implemented deeper into the matrix, plugging materials shch 

as grarular leather, fibrous materials4-S, polymers and gels can be used _to 

reduce the permeability of thief zones6-11. 
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Chemical treatment(usually polymer gels) are commooly used to 

reduce the permeability of main conductors of water due to its attractive 

properties that allow them to be injected a CCX'lSiderable distance into the 

formation. 

In this thesis, we are ccrcemed more about polymer gel treatment 

near the we l lbore than the other treatment methods. However. due to the 

complexity of reservoirs, the results of field cases are' often sporadic and 

Ufl>redictable. Accordingly, attempts were made to investigate those 

reser\ioir characteristics which will lead to successful treatment. 

In this chapter, the vertical cmforman:e and permeability variation 

will be discussed first, followed by a literature survey of vertical 

confamarce treatment and related simulatioo studies. Finally, the objective 

of this thesis is presented. 

1. t Vertical Conformance 

Reservoir permeability variations result in different amount of 

water being injected into vertically distributed layers. This· relative 

distributioo is often qualitatively desaibed as vertical conforman:e. In 

homogeneous reservoir, the water is uniformly distributed and as a 

consequence, exhibits a perfect vertical conforman:e. On the other hand, a 

heterogeneous reservoir has poor vertical conforman:e, hen:e the water is 

distributed in a norunif orm fashion. 

In the predictions of waterflooding performance, the heterogeneity of 

a reservoir is often mesured quantitatively. Dykstra and Parsons 12 defined . 

a coefficient of permeability variation, V , to measure the degree of 

heterogeneity. The coefficient ranges from zero for homogeneous to one for 
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reservoir with extreme contrast in permeability among layers. Schmatz and 

Rahme 13 proposed the Lorenz coefficient of heterogeneity to characterize the 

permeability distribution. Analogous to permeability variation_V, the value 

of the Lorenz coefficient ranges from zero to one, with a uniform 

permeability reservoir having Lorenz coefficient of zero. Other approaches 

used to distinguish the heterogeneity quantitatively were done by Stiles 14 

and Miller and Lente 15 . 

1.2 Literature Survey of Vertical Conformaoce Treatments . 

Vertical conformance treatment methods are used to improve the 

vertical conformaoce of reservoirs. Its essential concept is to reduce the 

permeability of the thief zone and divert water into the zone containing most 

of the remaining oil. Materials such as polymers and gels which have 

chemical properties that allow them to be injected a considerable distaoce 

into the formation are applied. Systems which have been used irclude: 

polyacrylamide gets6-7, crosslinked biopolymer8, silica gels9, lignosulfooate . 

gels 10, ·and gelled furfuryl alcohol 11 . 

Various treatment methods are used in the oil industry. The 

polyacrylamide treatment(PAA) is most commonly used, for it possesses 

some attractive properties. 

Polyacrylamide is used as a water reduction agent in production 

well and a mobility control agent in the injection well because of its ability 

to reduce the permeability of porous rock 16. It is also used as a blocking 

agent due to its ab.i lity to be cross linked by some multivalent ions such as 

alumirum 17, or chromium 18 to form a stable gel. When PAA solution is 

crosslirted in situ to form gels, the rock permeability is reduced deliberately 



and therefore the following water injected after PAA placement will be 

diverted. Furthermore, the gellation time can be controlled through adjusting 

the pH of the solution 17 or the flow rate 18; this allows the mixture of 

polymer and crosslinking agents to travel deep inside the reservoir before 

gellation. The ability to considerably reduce rock permeability and to 

penetrate in-depth are reasons why PAA is commonly used in treatments. 

When a polymer gel treatment is applied • either the thief zone is 

isolated so that the high permeability zone is the only entry for the 

polymer 19-20, or all zones are open to enable the polymer to seek the path of 

least resistance to flow21. In addition, due to the reactivity between 

cross I inking agent and polymers, either alternative slug 17,22 or 

simultaneous injection method may be applied23 . When those reactions occur 

very fast, the polymers and crosslinking agents are injected with either 

small water spacers or a reducing agent in between so that the gellation is 

prevented until polymer and the crosslinking agent mix in the formation. On 

the other hand, polymer and crosslinking agents may be injected 

simultaneously, usually with the gellation chemically delayed until after the 

polymer is placed in the formation. 

The properties of PAA with crosslinking agents can be determined 

through laboratory tests and controlled by field operations, but the results of 

such a treatment are not always as successful as expected. Thus, there is a 

need to examine the factors that might affect the results or the treatment 

through the use of simulation. 



1.3 Literature Survey of Re lated S imu lat ion Work 

Some studies have been done by modeling the result on reservoir 

performance of profile control treatments. Luis F. Si lva24 et al. in 1971 

presented a method for predicting waterflooding performance in the presence 

of reservoir stratification and formation plu_gging, using a two-phase three­

dimensional reservoir simulator. Jn the case study of formation plugging, the 

high permeability strata was shut off as if a vertical conformance treatment . 
had been applied. They noted the ineffectiveness of formation plugging when 

crossflow exists in the reservoir. This implies that for near wellbore 

treatments to improve oi I recovery over a normal water flooding, there must 

be virtually· no crossflow in the reservoir. 

M. K. Abdo et a18. employed a two-dimensional polymer, salinity, and 

surfactant model to study the effects of profile control by complexed 

biopolymer. They showed that in a reservoir with non-communicating layers, 

the selective placement of a viscous complexed biq>olymer into the high 

permeability zone will cause an immediate response in the oil production 

rate, thus making the waterflood more effective. In the case of 

communicating layers, the oil production increase following polymer 

treatment is delayed and is less in magnitude than the non-communicating 

case. Based on their conclusions, it is possible to minimize the effect of 

communication as long as a more severe permeability reduction or a more in­

depth treatment by the polymer is placed. 

1.4 Objective of This Study 

In the previous simulation studies, the vertical permeability and an 

assumed shut-off layer were investigated in conformance treatment. But the 

5 



level of permeability reductioo affected by polyaaylamide was not fully 

simulated. Also. the vertical flow in the reservoir is limited ooly to two 

extreme cases. non-communicating and fully communicating cases. In this 

study. the following parameters were varied widely to more fully determine 

the reservoir and treatment characteristics necessary for a successful 

treatment: vertical permeability. level of permeability reduction, 

permeab i l i ty contrast bet ween layers. and permeability-thickness product 

contrast bet ween layers. 

To model this system. a black oil model was used to simulate a 

waterflood in a multi-layer reservoir with contrasting permeabilities in the 

various layers. At some point during the waterflood. the permeabi I ity of the 

high permeability zone is altered in the grid block at the injection well as if 

it were treated by polyacrylamide. The waterflood is then contiroed to an 

economic limit, and the results of oil recovery are compared with and 

without the hypothetical treatment. 

1.5 Outline of This Study 

A comprehensive model of polymer treatment was developed by using 

BOAST program in this work. and six chapters are included. 

Chapter I is the introduction. 

Chapter 11 desaibes the mathematical model used. 

Chapter lll discusses the selectioo of an appropriate black-oil model 

for use. The intercomp BET A 11 model and the DOE BOAST model were 

compared. BOAST was selected primarily because its codes could be 

modified to suit our needs. 

6 



·-·-

7 

Chapter IV discusses the assumptions and modifications needed to 

simulate a polymer conformance treatment with a black-oil model. 

Chapter V covers the results and discussion of the simulation runs. 

Severa 1 parameters that were thought important to the outcome of a 

conformance treatment were varied to determine their effect. The 

parameters that were investigated include the permeability contrast between 

zones, the vertical permeability, the zone thickness ratio, and the level of 

permeability reduction which is assumed to occur during treatment. 

Chapter VI is a field case study in which actual reservoir properties 

were used to study the effect of conformance treatment. The results of the 

treatment were interpreted in the end of this chapter. 

Chapter Vil is the ccn:lusion and recommendations of future areas 

where there is the need for further investigation ccn:erning conformance 

treatments. 



CHAPTER II 

MATHEMATICAL MODEL OF THE VERTICAL 
CONFORMANCE TREATMENT 

A comprehensive polymer treatment can be modeled by a black oil 

model if the actual PAA placement is simplified by artificially reducing the 

permeability around the wellbore in the simulation . Thus, the mathematical 

model for this study is based on the derivation of a black oil model. 

2. t Description of Mathematical Model 

The basic form of mass conservation equation for isothermal fluid 

flow in porous media is 

aw i /at + v· Ni = R I 

where W i is accumulation term defined by 

Wi= 27:1 6pjSjWjj+ (1-6)p5Wis 

N; is the flux term, defined by 

- L:l'1 ( - r." - ) N · = · 1 p-w · ·U · - tJp·S ·K • ·VW · · I 1: J I J J I I I J I I 

~ i is the source term, defined by 

R . = ~':' 1 •S ·T. + ( l -•)T . s I ~I= J J I 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

In a three phase, three component system, based on the following 

assumptions, eq.(2.1) can be split into equations representing each 

component. These assumptions ?'re: 

( 1) No mass transfer bet ween oil and water or bet ween water and 

gas. 

(2) Aqueous phase contains only water. 

(3) Oleic phase does not contain water. 
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(4) Gaseous phase contains only gas. 

(5) The system is isothermal . 

(6) No chemical reaction between fluids nor between fluid and 

rock. 

(7) No adsorption. 

(8) Darcy flow applicable. 

Subsequently, according to the mass fraction definition 

2:~ =1 w i J = I 
let i = 1 represent water 

2 represent oi I 

3 represent gas 

and j = 1 represent aqueous phase 

2 represent oleic phase 

3 represent gaseous phase 

Then, from assumption ( 1) and (2) 

W ~ t : 0; Wzt : 0, W31 : 0 

was obtained; 

from assumption ( 1) and (3) 

W 12 : 0, W32 + W22 : 1 

from assumption( 1) and (4) 

W33 : 1, W 13 : 0, W23 : 0 

arrd from assumption(2),(3),(4) 

Wis= 0 

In addition, assumption (6) makes eq.(2.4) 

Ri = 0 

(2.5) 
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Then, for each component, ircluding the production conservation equation for 

each component is: 

For water 

a1atc.-p1s1)• v·<p,u1) = Q1 (2.6) 

For oil 

For gas 

8/8t(; P3S3 + * J'2W32S2) + v·( P3U3 + J'2W32u2) = Q3 (2.8) 

According to the definition _ 

w22 =mass of oil I mass of oleic phase 

Similarly, 

= ( mass of oi I I standard volume of oi I )/ 

[( mass of oleic phase I volume of oleic phase) x 

(volume of oleic phase I standard volume of oi I)] 

= (f>2)scl P2B2 

W33 = (PJ)scRs/ P2B2 

• 

And because the mass fraction of oi I in oleic phase is equal to unity when 

reservoir condition approaches to standard condition, then 

W22 =1 

and 

lim P2B2 = (J'2)sclw22 =(J'2)sc 

T,p-+T sc.Psc 

and sirce gas is no longer soluble in oil when the condition is at standard 

condition: 

lim W32:: 0 

T,p-+T sc.Psc 

10 



Consequently, formation volume factors are brought into mass conservation 

equations and eqs.(2.6),(2.7),(2.8) become 

8/8t( -"S.1/B 1) + v·CU1/B ,) = q 1 · (2.9) 

8/8t( .ffS2/B2) + v·CU2IB2) = Q2 

8/8t( -"S3/B3 + .ffS2Rs) + v·(li3/B3•Rsli2IB2) = Q3 

From the assumption (8), the flux term is written as 

Li; = -:A;k'{vp; - p;gvD) 

(2.10) 

(2 .1 t) 

(2.12) 

Substitut~ it into eqs.(2.9),(2.10),(2.11) and change the notation of subscripts 

1,2,3 into w(water),o(oi l),g(gas) respectively, the final form of equation(2. t) 

becomes 

8/8t( -"Sw/Bw) - v·[ k A.w/BwCVPw - pwgvD) ] = Qw (2. 13) 

8/8t( -"So/Bo) - v·[ k' '.Ao/BoCVPo - PoQVD) ] = Qo (2.14) 

8/8t( .itS9/B9 + -"SoR 5/Bo) + v·[ k :A9/B9(Vpg - pggvD) 

(2.15) 

In order to solve these equations simultaneously, we also need to introouce 

the concept of cap i I lary pressure. 

Pcow =Po -pw 

Pcgo =Pg -po 

(2.16) 

(2.17) 
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The difference Pcow and Pcgo are the capillary pressure of oil-to-.vater and 

gas-to-oil phases.respectively. 

The saturation terms sum to unity 

50 + Sw + Sg = 1 

The compressibility terms are defined as 

Cr = ( 1 I .ff)(a .ff /8po) 

Cg = - ( 1 /Bg)(8Bg/8po) 

Cw= - ( 1 /Bw)(8Bw/8po) 

(2.18) 



Co= ( 1 /Bo)(8Bo/8po) + (B9/Bo)(8R5/8po) 

Ct = Cr + CoSo + CwSw + C959 

The final working equation for three-phase compressible fluid flow is 

rearranged from equations (2. 13),(2. 14),(2. 15),(2.16), and (2. 17) to 

(Bo -RsBg)[ tv·k '.Ao/Bo)(vpo - PoQvD) - qo J + 

Bw [ tv·k '.Aw/Bw)CVPw - PwQVD -Pcow) -qw 1 + 

Bgv·k [ AglBglvPo - pg~ -Pcgo) + Rs'.Ao/Bo 

CVPo - PoQVD) - Qg ] = •Ct8po/8t (2. 19) 

2.2 Finite Difference Eguations 

Using a block-centered grid system with backward difference in time, 

the partial differential equations of (2.13),(2.14) and (2.19) are approximated 

by the finite difference method as 

[ AA°"1 Ap" + 1 - AA°"1 A( fWO + Pcow )" - QwVB ] jj k 

= t/At [ (VpSw/Bw)" + 1 -(VpSw/Bw)" ]iik (2.20) 

[ AAiAp" + 1 -AAi A(poD )" - q0Ve ]iik 

= t /At [ (Vp So/Bo)" + 1 - (Vp So/Bo)" ] i; k (2.21) 

and 

(Bo-B~Rs)1;tc [ AAgAp" + 1 -AAg A(f)oD )"-q0Vs]iik 

+ (6°"1) iJ k [ AA°"1 Ap" + 1 
- t:.Aa. A( fWO + Pcow )" - QwVB ] i ; k 

(Bn) [ t::.A" Ap" + 1 + AR" Ao 11.pn + 1 + AA" A(p D + p )" + 9 i; K s s ~ 9 g ego 

-ARsA~po -q9Vs]iik 

(2.22) 
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where superscript n denotes properties evaluated at old time level and n+ t at 

new time level. The subscripts i,j,k denote the position of node in the grid 

block system and is shown as Fig.1. 



Fig. 1 NODE REPRESENTTATION OF GRID 
BLOCKS IN THREE DIMENSIONAL CASE 

I 
(iJ,k-1) 

~ 
(i.j+1~ 

-(H/(i -;5'-c;+IJ)<)-

/(iJ-1)<) 1 
(i,j,k+1) 

~ 
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The I inear difference operator used here is defined as 

AMP= Ax Mx P •.Av AAv P • AzMzp 

and 
AxA6x = A1-112.h1<(P1-1,j.1< -pi,J.1<) + A1+112.J.k(P1+112.J.1< -P1.i.1<) 

The transmissibility A is defined as 

2 (AxAy) i ,J ·I< k i-112 ,J ·I< A i-112 .J ·K 

(Ax i , ; , k • Ax ;-1 , ; .1e) 

where the interblock permeability is obtained by harmonic average as 

2 (k i 'j .l()(k i-1. j .1<) 

k i-1/2,j •K = -------------><-------

2.3 Description of Reservoir Modeling in Vertical Conformance Treatment 

As discussed in Chapter 1. a factor to affect the vertical 

conformance treatment might be the crossflow between layers of reservoir. 

A two dimension cross~ectional model is chosen so that concentration on the 

crossflow might be singled out in our study. 

The finite-difference technique of romerical solution of differential 

equations requires that the portion of the reservoir for our study be divided 

into grid blocks as shown in Fig.2. In this model. two wells are imposed on 

each .extreme side of the system, one of them being an injection well, the 

other a production well. Since we do not take polyacrylamide into account in 

the programming when simulating the treatment. the equivalent effect is set 

by artificially reducing the permeability of the grid block which contains an 
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injection well to a factor as though the permeability near the wellbore were 

reduced by polyacrylamide. 
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Chapter Ill 

SELECTION OF SIMULATOR 

Based on the assumptions made in previous dlapter, the black oil 

simulator is suitable for our purpose if we artificially reduce the· 

permeability in some grids at a certain time during the simulaticn Two black 

oil simulators, the lntercomp BETA ll and the DOE BOAST are available in the 

Department of Petroleum Engineering. Both are suitable for our needs and 

will be briefly introduced here. For detailed description, reader can refer to 

the user's marual of lntercomp BET A II 25 and BOAST26. 

3. 1 Description of the Simulators Available 

lntercomp BETA II block oil model is designed to simulate 

numerically two er three-phase compressible fluid flow in heterogeneous 

reservoir. Gas is assumed to be soluble in oil only. Numerical solutions may 

be obtained in one, two, or three spatial dimension, using either rectangular 

or cylindrical coordinates. 

With the finite .difference formulations, the program decouples the 

equations and solves either pressure equations implicitly and saturation 

equations explicitly (so-called IMPES) or both pressure and saturation 

equations implicitly (fully implicit). 

To solve the large system· of linear algebraic equations, several 

choices are available in BET A JI. Either direct or iteration methods can be 

used. In the direct method, the Gaussian elimination method is applied to 

17 
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solve a small system of equations. For large systems (fer example, three-

dimensional problem), an iteration method is used, in which both the 

successive overrelaxtion method (SOR) and the stroogly implicit procedure 

(SlP) are applied. 

Another simulator available in this Department· is the DOE BOAST 

simulator. BOAST is also designed to model isothermal, three phase 

compressible fluid flow of reservoir in up to three dimensions . It can be 

used in rectangular cocrdinates only. 

With IMPES formulation, BOAST solves the pressure implicitly and 

the saturation equation explicitly. 

Fa- the solution scheme, a band solver is used for small systems like 

the one dimensional problem, the 04 a-der scheme is used in intermediate 

systems su~ as two dimensional system, and an iteratim solution method 

(LSOR) is used for large two dimensional or three dimensional systems. 

Since both simulators are IMPES formulatioo simulators, the stability 

problem is commonly encountered when th~ transmissibility is estimated by 

an explicit method. In sueh a case, the mobility terms in system equations 

are treated at the old time level but the actual computation of pressure 

equations uses the new time level. Cooditional instability occurs if the 

product of the time step size and the flow velocity is greater than a grid 

block size31. Therefore, to ensure the stability and acaJracy of solutioo in 

the IMPES simulator, the maximum time step size used must be tested and 

selected cautiously· to ensure the stability of soluticn However, sometimes 

the well rate changes drastically between each time step, and use of man.rat 

selection of the time step size will jeopardize the results of simulation. 

Accordingly, to avoid the possible instability, the time step size may be 



adjusted through an automatic time step control. Both simulators have 

incorporated automatic time step control, where the users are able to choose 

eitr1er a maximum saturation or a maximum pressure change as the control 

parameter for adjusting the time step size. This option enables the 

automatic time step control to choose small time step sizes whenever 

conditions change drastically and large time step sizes in the case of 

condition where the changes in conditions are minimal, allowing the user to 

control either stability or computation time. 

3.2 Selection of Simulator 

BETA 11 and BOAST simulators have many similar features and both 

are suitable for our uses. According to the factcx-s corcerned such as 

( 1 )accessibility, (2)accuracy, and (3) computation time, BOAST simulator is 

chosen to use in our study. 

( 1) Accessibility 

The BETA II is a commercialized simulator, it is designed for users 

to easily use, but the source code is not accessible publicly. However, 

BOAST is a simulator publicly avai table, and its source code is easy to 

modify. 

(2) Accuracy 

Two cases extracted from the sample problem of BOAST's users 

manual were run to compare the simulation results between these two 

existing simulators, and when possible, with analytical solutions. 

(A) One dimensional waterflooding problem 

The one dimensional waterflood problem is often chosen as a test 

problem used to validate a simulator, because its results are easily compared 
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with analytical solutions from the Buckley-Leverett theory. In one 

dimensional water displacement, the water front velocity calculated from 

Buckley-Leverett equation is 

(dx/Clt)sw = (ut I 11) (df wldSw) 

which implies that the water front velocity is proportional to the first 

derivative of fractional flow with respect to the saturation of water front. 

Therefore, we can calculate the velocity analytically and then compare the 

results from both simulators. In the testing example 1, a one dimensional 

linear grid system is constructed as a model of a homogeneous, horizontal 

reservoir. Oil production is under a rate constraint of 600 STB per day from 

one grid block. The oil production is balanced by water injection under the 

rate constraint of 900 STB per day at the opposite end or the grid block 

system. The thickness of a grid block is· 20 feet. The grid size in y 

direction is 1320 feet. The porosity is 0.25 and the df /dsw calculated from 

the fractional flow curve is 1.91. Thus, with a total flow rate of 900 

STB/day, the velocity of the water front is 1.5 ft/day. By the 120th day and 

by the 3~0th day, the water front shou Id have advanced 180 rt (the ninth 

grid) and 540 ft (the 27th grid), respectively. 

The results at two different times for both simulators are shown in 

Fig. 3 and Fig. 4 where the water saturation profiles are plotted with some 

smearing against the analytical solution. There is not much difference 

between two profiles in each plot, but the smearing for Beta II simulator is a 

little larger. The smearing, due to numerical dispersion, which is attributed 

to the truncation errors, exists in all finite difference simulators. A higher 

order approximation, a moving point method, or a finite element method is 

helpful to minimize the smearing, but it is beyond the scope of this research. 
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(B)Cross-sectional model showing line-drive waterflooding of an 

undersaturated reservoir 

For practical reason, the cross-sectional problem is chose·n to single 

out the effects of flow in vertical direction. A linear grid with 20 blocks in 

x direction, S grid blocks in z direction was constructed. Each end grid block 

contains one well, and a vertical to horizontal permeability ratio of 0.1 was 

used. The performance of the production wet 1 is shown in Fig. 5. The 

av.erage pressure of the reservoir, production rate and water oil ratio are 

shown in Fig. 6, 7, 8, respectively. Although there is no analytical solution 

to be compared to, both simulators yield essentially identical results for a 

five layer cross-sectional system. 

(3) Computation time 

In the two examples where direct methods were used, the simulators 

showed different computation times. The BETA II which was on CDC 

computer had a computation time of 10 micro second for each time step per 

grid block, while BOAST which was run on V~X computer had a computation 

time of 12 micro second for each time step per grid block. This difference is 

small enough to be ignored. 

From the comparisons mentioned earlier, the accuracy and 

computation time do not differ much for the two simulators. The BOAST was 

chosen simply because it was felt that there might be a need to modify the 

simulator in order to model vertical conformance treatment. 
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CHAPTER IV 

MODIFICATION OF BOAST 

Although many commonly encountered black oil reservoir simulation 

problems can be done by using BOAST, several modifications are needed to 

model a vertical conformance treatment. They are discussed in the following 

sections. First, a restart procedure was added to enable the program to 

change reservoir properties. Second, the rate allocation scheme was changed 

from a mobility method to a potential method to more realistically model 

well conditions. Third, the well constraint was modified to consider the 

injection well performance in the process. Fourth, a method to calculate the 

relative permeability of oil in a three-phase system was added to meet the 

requirement of input and interpretation of relative permeability data. Finally, 

a modification of source terms was incorporated to enable us to improve the 

stability of the pressure solution. As for their implementations, the first 

three modifications were used in the case studies discussed in Chapter V ; 

the last two modifications were specifically used in the field case study 

discussed in Chapter VI. 

4. 1 Restart Option 

To simulate a polymer conformance treatment with a black oil model, 

the permeability of the formation in· the grid block near the wellbore must be 
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artificially modified at a certain time according to criteria con:::eming the 

waterflood. Thus, interruption in the simulation is needed. As a cmsequence, 

a restart option was added to BOAST to enable us to stop the simulation, 

change reservoir properties, and then continue the waterflooding. The 

criteria most often used in waterflooding are (I) cumulative injected water. 

(2) elapsed time, and (3) water oil ratio were ircluded in the program to 

initiate the restart procedure. 

In order to enable the restart option to work, the sequence of i~ut 

data was changed and a subroutine REREAD was added in the program for 

retrieving the data . The sequence of i~ut data was rearranged as two 

sections: Non-recurrent and Recurrent sections. Non-recurrent section 

includes ( t) rock properties, (2) initial conditions, (3) PVT table of fluid, (4) 

reservoir dimensions, size, grid rumber. Recurrent section includes (t) well 

information, (2) time step size. 

For the convenience of implementation of the restart, all the data 

needed were separated into several files in sequence. Rock properties were 

stored in a file called • KPHI.DAT • initially, but were changed once the 

treatment started. The changed rock properties were created in the file • 

MODKPHl.OAT •. The file• MODKPHI.OAT • was in place of • KPHLDAT • after 

the treatment was assumed to take place. Besides. a specific file called • 

REST ART .DAT • was obtained as a result of the interruption simulation and 

applied in the contiruation of simulation with the • MODKPHl.DAT •. The 

initial reservoir conditions set in • INITIAL.DAT • with all the other data 

necessary were involved in • REBOAST .DAT •. When waterflood proceeded 

before the treatment, the data files used were KPH I.DAT. INITIAL.DAT, and 
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REBOAST .DAT; but when treatment started, the files used were MODKPH I.DAT. 

REST ART .DAT. and REBOAST .DAT. 

Several output files were also arranged to plot the saturation 

distribution, pressure distribution, production rate OJrve and production 

history, respectively. A brief description of the relationship between these 

files is incorporated in the flow chart of the simulation work in the 

appendix. 

4.2 Modification of Rate Allocation Scheme 

A well model is always ircorporated in the simulatioo to represent 

the source or sink terms. In an areal model problem, the well model is 

interpreted as a point source or sink term, but in a aoss-section model 

problem, the well model is interpreted as a line source or sink term . 
. 

Distributing different flow into different layer is necessary in the aoss-

section model. There are two different rate allocation methods in the 

literature27.28. the mobility allocation method and the potential allocatim 

method. 

(1) Mobility allocation method 

The BOAST simulator uses the mobility allocation method whidt 

assures that the difference of potential between the wellbore and a grid 

block is the same for all blocks communicating with a given well. The rate 

is therefore allocated to each zone according to the ratio of mobility in each 



zone. Under this assumption, the flow rate into each layer was distributed 

as 

QA. K = --------OT 

where 

0.00708 kh 

F K = ---------
In (0.121./ AxAy/rw) + s 

(2)Potential allocation method 

(4.1) 
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The potential method accounts for the fact that the potential · 

difference between the well and a grid block containing the well may differ 

in each layer so that the potential difference is taken into account and the 

flow rate entering into each layer is 

FK 2~ (:>.,a/B.-.)K A4> A.K 

a ... K=-----------ar (4.2) 

2i2~ FK ('.A ... IB,JK A4> A.K 

where A4> is the potential difference between wel !bore and grid block 

containing the well . 

These two equations will be the same if we crossed out the potential 

difference in eq.(4.2), which implies that the potential difference in each 

layer is the same for all layers. Intuitively, eq.(4.1) seems to be a special 

case of eq. (4.2). In fact, we may derive eq.(4.2) as a general equation used 

in dealing with the rate distribution. 

The basic equation describing the rate is 

QA.K = FK (p'k-P.-.ic) (:A.-.IB.-.)K (4.3) 



in terms of potential ¢>k =Pk + pgh 

eq.(~.3) becomes 

Q " k = F I< ( ¢i K - ¢i " k) (:>. "IB ") I< (4.4) 

By definition, the total .rate is equal to the sum of rate in each layer, 

so 

Or = 2'K 27 o,." (4.5) 

Substituting eq(4.4) to (4.5) 

Q " I< = 2~ 21 F k ( ¢i K -~ " I<) (:>. "IB ") k (4.6) 

and after combining and rearranging eq (4.4) and (4.6) 

the general equation 

F k 2:1 (:>.,_/B .-.)I< ~~ "k 

Q,_I< = -----------Qr 

is obtained. 

In a layered reservoir, the fluid flowing in vertical direction depends 

on the degree of communication with adjacent layers. If the adjacent !aye.rs 

are well-communicating, the fluid flows vertically easily; the resistan:e of 

fluid flow is low and as a result , the pressure difference in between will 

be small. Conversely, if the adjacent layers have poor communication or a 

lateral extent of shale in between, the fluid wi II hardly flow vertically; the 

resistan:e to flow is high and so is the pressure difference. To illustrate 

the different results of the pressure distribution, figures (9 to 16) were 

plotted. We can see that the pressure differeoce between two adjacent 

layers could range from hundreds psi to a few psi, with the largest 

differences existing in the non-communicating cases. However, a well 

incorporated in the reservoir is always assumed to be communicating. The 
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pressure difference in a interval should be approximated to a fluid density 

head when the fluid flows in the wellbore, if the viscous loss is neglected 

and the fluid density is constant. Therefore, in a layered reservoir with 

wells intersecting, the pressure differences between a certain point at the 

well and reservoir corresponding to the same depth as defined in eq.(4.2) will 

be quite different in each layer unless the reservoir has communication to 

the same degree as the we 11. 

Accordingly, the potential difference defined in eq.(4.2) is not always 

constant, and the mobility allocation method is not always suitable for cross­

sectional model unless the reservoir is • well communicating ". This 

observation has been reported by Nolen et at.28 in his water coning model. We 

also found that it was true for our simulation that the results can be 

different for the two rate allocation methods. Four cases were run where 

the vertical permeability was varied from case to case to single out the 

effect of the rate allocation method. The results shown in figures 17 to 19 

indicate that the difference between two methods is easily seen when 

vertical permeability is essentially zero, but the performance prediction is 

almost the same when vertical permeability equal to 20 md. In addition, the 

water oil ratio curve with vertical permeability equal to 10-{) md shown in 

Fig.20 rises rather fast when mobi 1 ity allocation method is used. It 

indicates that an early economic life of a production well is possible. 

In fact, in this study, vertical permeability is varied from case to 

case , and the horizontal permeability near the wellbore is also varied. All 

these changes will affect the pressure variation. Accordingly, the following 

changes were made to make rate allocation method suitable for our use in the 

cross-sectional model. 

41 



. 
0 

. 
0 

. 
0 

0 
0 

FIG. 17 COMPARISION OF RATE ALLOCATION SCHEME IN 
PRODUCTION HISTORY 
VERTICAL PERt.£ABILITY • 0.000001 UO 

m~-@te~-m POTENTIAL tETHOO 
~ H ~ MOBILITY t.£THOO 

42 

·-+--------.----------------------------------------00. oo 0.50 1.00 1.50 2.00 2.50 
WATER INJECTED (PV) 



. 
0 

0 
co . 
0 

. 
0 

0 
0 

fIG.18 C0"4PARISION OF RATE ALLOCATION SCHEME IN 
PRODUCTION HISTORY 
VERTICAL PERMEABILITY• 0.02 MO 

m~-t!!tm~-m POTENTIAL METHOD 
~ ~ ~ MOBILITY METHOD 

0.50 1.00 1.50 2.00 2.50 
WATER INJECTED {PV) 

43 



. 
0 

0 
CD 

0 

0 

0 

0 

0 
0 

fIC. 19 Cot.FARISION Of RATE ALLOCATION SCHEME IN 
PRODUCTION HISTORY 
VERTICAL PERMEABILITY• 20.0 MO 

19-.-..51!--m POTENTIAL METHOD 
)( >E >< MOBILITY KTHOO 

o.so 1.00 1.50 2.00 2.50 
WATER INJECTED {PV) 

44 

• 



0 
0 . 
0 .,, 

0 
0 

0 .. 
0 
HO 
t-0 
<c:> 
~,.., 

--' 
H 
Oo 

0 
~· 
w~ ..... 
~ 

0 
0 

0 

0 -
0 
0 

fIG.20 COMPARISION OF RATE ALLOCATION SCHEI.£ IN 
WATER OIL RATIO CURVE 
VERTICAL PER"4EABILITY • 0.000001 MD 

m e m POTENTIAL METHOD 
>t--+E--~ t..40BILITY METHOD 

o.so 1.00 1.50 2.00 2.50 
WATER INJECTED (PY) 

45 



0 
0 

0 

0 
It) 

0 
0 . 
0 
"lit' 

0 
HO 
t-0 
<· cr:g 
_, 
H 
Oo 

0 
a::.: • 
w~ ..... 
~ 

0 
0 

0 

0 -
0 
0 

FIG.21 COMPARISION OF RATE ALLOCATION SCHEME IN 
WATER OIL RATIO CURVE 
VERTICAL PERMEABILITY• 0.02 MO 

19~--t!lll-.....ilJ POTENTIAL METHOD 
~ M K MOBILITY t.E:THOO 

• 

0.50 1.00 1~50 2.00 2.50 
WATER INJECTED (PV) 

46 



0 
0 . 
0 
It') 

0 
0 . 
0 .. 

0 
1-10 
t-0 
<o 
~,., 

..J 
1-t 
Oo 

0 
~· 
I.LI~ .... 
~ 

0 
0 . 
0 -
0 
0 

FIC.22 COLPARISION OF RATE ALLOCATION SCHEME IN 
WATER OIL RATIO CURVE 
VERTICAL PERMEABILITY• 20.0 MD 

1!1-~11--m POTENTIAL METHOD 
~ )( )( MOBILITY METHOD 

0.50 1.00 1.50 2.00 2.50 
WATER INJECTED (PV) 

47 



As mentioned before, the basic equation describing rate is 

0.q~ = FK (p'f-p,_K) (A,_/B,_)K (4.3) 

and the sum of flow rate in each layer is 

or = i:i 2:~ a_..K (4.5) 

Whereas. the pressure in the wellbore is constrained by the well head 

density, so 

Pt= P~ + 2:~ =u(p~)m-t 112 (4.7) 

where p~ is the uppermost wellbore pressure, N = k-1 . 

Substituting (4.7) to (4.3), we get 

a,.K = FK[ p~ + L~ =U(~)m-t112 -p.\K] (AJ,IB.a)K (4.8) 

With the total rate constraint eq(4.5), substituting eq(4.8) to (4.5), the total 

rate can be expressed in terms of p~ as 

Or = L:'K i:~ Fkf P~ + L:~ =u(~)m-tt.12 -P.1.1< 1 (:h,_/B.i.)1< 

(4.9) 

And then p~ can be solved as 

P~ =[Or + L:~ L:~ Fk(A,/B.i.)1<P.1.K- L:~L:~ =u(~)m+1.12 

1 r L:i L:~ F 1tA"1s ">K 1 C4.1 o) 

Finally the rate in each layer can be calculated from 

0.1.1< = FK (pt-P1.1<) (A,/B,JK (4.3) 

or essentially represented as the form of potential allocation method 

F K i:~ (A..1./B ,JK ~4> .I. k 

(4.2) 

i:ii:~ Fk (A.,/B.1.)k ~4> '-k 

There is a possibility that the injection well could be placed at a 

block where the relative permeability to injected fluid is zero such that the 

fluid is prohibited from flowing into the reservoir. The mobility term of 
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eq( 4.3) and in the numerator of eq( 4.2) are kept in a form of total mobi I ity 

rather than single phase mobi I ity so that even though the water inject ion 

well is placed at the block where the relative permeability of water is zero, 

water still can flow into the reservoir. This technique, somewhat, will affect 

the rate distribution initially; however, the impact will fade away as soon as 

the grid block containing the wet I is saturated with the injected fluid. 

4.3 Modification of Well Constrajnt 

Another feature added in BOAST is the ability to control injection 

rate based on a critical pressure. It is possible that the bottomhole flowing 

pressure for an injection well is beyond the formation fracturing pressure. 

In particular, after a simulated treatment has taken place, it is very often 

the case that injection pressure will become quite high if a constant rate 

• scheme is used. Thus, the program was modified so that when the critical 

pressure in the injection well (usually the fracturing pressure) is reached, 

the rate is reduced to maintain injection at a pressure lower than that 

critical pressure. 

In an injection well, to prevent the injection pressure from 

exceeding th~ fracturing pressure, the uppermost pressure of injection we! I p 

is always compared with the fracturing pressure corresponding to that depth, 

that is 

Allowable bottomhole pressure = Fracture gradient "Depth 

where fracture gradient is chosen depending on the particular problem. 

If the injection pressure is under the allowable bottom pressure, the 

injection well performs with a constant rate injection, otherwise , the rate 

will be reduced to satisfy the pressure constraint. 
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4..4 Calculation of Relative Permeability 

To simulate a two or three-phase fluid flow in a reservoir, the 

interpretation of permeabi I ity of each phase is important in terms of their 

effects in the simulation resu.lts. Previous studies 29.30,31 have shown that 

the relative permeability of water (gas ) can be interpreted as a single 

function of water saturation (gas saturation). For the oil relative 

permeability , i.t should be interpreted as a function of the oil saturation 

associated with other concurrent phases. In the original BOAST program , the 

way of inputing the relative permeability treats the oil relative permeability 

as a function of oil phase saturation only. Intuitively, this is true only for a 

two-phase system (either oi I-water or gas- oi I) . For a three-phase flow 

system, a more accurate method to interpret the oil relative permeability is 

needed. 

A method using two sets of two-phase data (water-oil and gas-oil) 

to predict the relative permeability is presented by Stone 31 . In his 

probability model, the relative permeability of oil is treated as a function of 

oil, water and gas saturation, while relative permeability of water is a 

function of water saturation alone, and relative permeability of gas is a 

function of gas saturation alone. To obtain the oil relative permeability , 

50 



the fluid saturations were first normalized as 

S~ :: (So - Sor) I ( 1 - Swc - Sor) 

S~ :: (Sw - Swc) I ( 1 - Swc - Sor ) 

Sg = S9 I (1 -Swc -Sor) 

where S~ + S~ + Sg = 1 

(4.11) 

( 4. 12) 

(4.13) 

The oil relative permeability in a three-phase system can be written 

as 

kro =SS $w $g (4.14) 

where ~w is determined from the equation (4.14) in a extreme case of Sg:: 

s9 =O, namely from a water-oil system data set. 

iw = krow/ ( 1 - 5~ ) (4.1S) 

Likewise, in case of Sw = Swc 

$ g = krog I ( 1 - S 9 ) ( 4. 16) 

With eqs. (4.11) to (4.16), the oil relative permeability in three 

phase system can be calculated as 

(So - Sor) ( 1 - Swc - Sor) 

kro = (krow)(krog) x -----------­

( 1 -Sor -Sw) ( 1 -Swc. -Sor -Sg) 

( 4. 17) 

where krow is a function of water saturation alone and is determined by a 

two phase experiment, while krog is a function of gas saturation only. 

According to eq. (4.17), knowing each phase saturation, the residual 

oil saturation and the comate water saturation, we can easily calculate oil 

relative permeability. Consequently, a subroutine FORKRO is coded. With an 

interpolation scheme, the calculation of kro was allowed in the simulator 

internally . Table 1 is an example illustrating the collection of kro where 

50 = 0.5 and various values of Sw and Sg are used. 
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TABLE 1 
EXAMPLE OF OIL RELATIVE PERMEABILITY 
at So= 0.5 with different values of Sw 
and Sg 

So Sw Sg Kro Krw Krg 

0.50 0.50 0.0 0.0157 0.250 0.0 
0.50 0.49 0.01 0.0164 0.2367 0.0 
0.50 0.48 0.02 0.0162 0.2233 0.0 
0.50 0.47 0.03 0.0153 0.2100 0.0 
0.50 0.46 0.04 0.0141 0.1955 0.0 
0.50 0.45 0.05 0.0121 . 0.1810 0.0 
0.50 0.43 0.07 0.0161 0. 1550 0.006 
0.50 0.42 0.08 0.0187 0.1440 0.009 
0.50 0.41 0.09 0.02 t 1 0.1330 0.012 
0.50 0.40 0.10 0.0233 0. 1220 0.015 
0.50 0.39 0.11 0.0266 0.1120 0.0215 
0.50 0.38 0.12 0.0296 0.1020 0.0280 
0.50 0.37 0.13 0.0323 0.0920 0.0345 
0.50 0.36 0.14 0.0350 0.0820 0.0410 
0.50 0.35 0.15 0.0374 0.0720 0.0475 
0.50 0.34 0.16 0.0406 0.0460 0.0540 
0.50 0.33 0.17 0.0496 0.0561 0.0605 
0.50 0.32 0.18 0.0640 0.0484 0.0670 
0.50 0.31 0.19 0.0777 0.0407 0.0735 
0.50 0.30 0.20 0.0910 0.0330 0.0800 
0.50 0.29 0~21 0.1081 0.0264 0.0895 . 

0.50 0.28 0.22 0.1264 0.0198 0.0990 
0.50 0.27 0.23 0. t 464 0.0132 0.1085 
0.50 0.26 0.24 0.1686 0.0066 0.1180 
0.50 0.25 0.25 0.1939 0.0 0.1275 



It is worthmentioning that this approach will reduce exactly to two­

pt1ase data only if the relative permeability at the end points is equal to 1, 

that is, 

krow(Swc) = krog (Sg= 0) = l 

Otherwise. kro will only approximate to a two-phase data. For instance, 

each value of the new generated relative permeability kro. shown in Table 2, 

is only equal to 0.982 of the two-phase value (krow or krog) shown in Table 

3. Nevertheless, since this slight difference will not significantly affect the 

simulation run, we ignore this deviation. 

4.5 Modification of the Source Terms 

When an lMPES formulation simulator like BOAST was used, one can 

control the stability of solution by adjusting the time step size. But, in the 

field case study (discussed in Chapter VI), the instabi I ity of pressure 

solution sti 11 occurred in the grid blocks near the well location, even when a 

very small time step size (less than 0.01 day) was used. By investigating the 

equation (4.9), we found that by handling the source terms implicitly, we 

were able to improve the stability of pressure solution and use a larger time 

step size. The last modification was then added to treat the source terms 

implicitly. 

Back to eq.(4.9), in order to calculate the bottomhole pressure, the 

pressure at a known time level n needs to be used. Pressure instability 

might occur if the rate calculation is coupled with pressure explicitly. To 

solve this problem, an implicit method for calculating the rate was 

investigated. The approach being used approximates the rate change over a 

time step size as : 
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TABLE 2 
EXAMPLE OF OIL RELATIVE PERMEABILITY 

in two extreme cases where Sg=O or Sw=Swc 
MMtHOUfM Sg = 0 MtOUOOOf 

So Sw Sg Kro Krw Krg 

0.75 0.25 0.0 0.9643 0.0 0.0 
0.70 0.30 0.0 0.5224 0.033 0.0 
0.665 0.335 0.0 0.2209 0.06 0.0 
0.65 0.35 0.0 0.1676 0.072 0.0 
0.60 0.40 0.0 0.0962 0. 122 0.0 

0.57 0.43 0.0 0.0579 0.155 0.0 
0.55 0.45 0.0 0.0393 0.181 0.0 
0.53 0.47 0.0 0.0285 0.21 0.0 

0.50 0.50 0.0 0.0157 0.25 0.0 
0.45 0.55 0.0 0.0069 0.313 0.0 
0.392 0.608 0.0 0.0 0.386 0.0 

.... ***** sw = swc ******* 
So Sw Sg Kro Krw Krg 

0.75 0.25 0.0 0.9643 0.0 0.0 
0.70 0.25 0.05 0.383 0.0 0.0 
0.65 0.25 0.10 0.3339 0.0 0.015 
0.55 0.25 0.20 0.216 0.0 0.08 

0.45 0.25 0.30 0.1718 0.0 0.175 

0.35 0.25 0.40 0.1227 0.0 0.295 
0.25 0.25 0.50 0.0756 0.0 0.41 
0 .. 15 0.25 0.60 0.0471 0.0 0.53 
0.05 0.25 0.70 0.0245 0.0 0.645 

0.006 0.25 0.744 0. 147 0.0 0.70 
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TABLE 3 
RELATIVE PERMEABILITY DATA 

****** WATER-OIL TABLE ****** 
Sw Krw Kr ow Pcow 

0.250 0.000 0.982 0.0 
0.300 0.0330 0.532 0.0 
0.335 0.06 0.225 0.0 
0.400 0.122 0.098 0.0 
0.430 0.155 0.059 0.0 
0.450 0.181 0.04 0.0 

0.470 0.210 0.029 0.0 
0.500 0.250 0.016 0.0 

0.550 0.313 0.007 0.0 

0.608 0.386 0.0 0.0 
1.000 t .000 0.0 0.0 

• 
tftftUUCM GAS-OIL TABLE ****** 

Sg Krg Krog Pcog 

0.0 0.0 0.982 0.0 
0.05 0.0 0.390 0.0 

0.10 0.015 0.340 0,0 

0.20 0.08 0.220 0.0 
0.30 0.175 0.175 0.0 
0.40 0.295 0. 125 0.0 
0.50 0.410 0.077 0.0 
0.60 0.530 0.048 0.0 

0.70 0.645 0.025 0.0 

0.744 0.700 0.015 0.0 

0.800 0.760 0.005 0.0 

0.850 0.825 0.0 0.0 

1.00 1.000 0.0 0.0 



8q,.18t :=: ( q~+ 1 -q~ )/At 

Since 

aq,/at = c aq,_/ap ) c ap1at ) ~ c aq,_1ap ) c p" .. 1 - p" )/ LH 

and 

q,_ I< = FI< ( X,_/B J. )I<( Pl 1< - Pt) 

where the sign convention is the same as in the BOAST . 

Thus, 

(8q.J../8p)K = FK ( '.A,/B,_ )k 

Combining eqs.( 4. 18),( 4.19),( 4.2 t) and rearranging then , we obtain 

qi 11 - Qi 1< = F k ('.A ,/B 1)~ (p ~ 11 - P~ 1< ) 

or 

(4.19) 

(4.20) 

( 4.21) 

q~1 1 = q~I< +Fl< (X,_/8,_)~ (p~K 1 -p~K) (4.22) 

Now. if we return to the finite difference eq. (2.22) and rearrange it in the 

form as presented in the BOAST manual, it becomes 

(Bo-Bi Rio) i j K [ !.\Ag Apn + 1 + GOWT" - QVO ] i l I< 

+ (BC.,) i j K [ AAO,Ap" + 1 + GWWT" - QVW] i l K 

+ (B~)ijk [ AAiAp" + 1 + ARioA~pn + 1 + ARiwAC.,Ap" + 1 

+ GGWT" -QVG ]jjk 

= ( VpCt/6t)1;i,(P" + 1 -p" );;1< (4.23) 

where QVO, QVW, and QVG are terms of source-oil rate.water rate, and gas 

rate for each well, respectively. The definition of others is the same as in 

BOAST manual. 

According to eq.(4.22), we may treat · three source(rate) terms 

imp I icitly as follows: 

(4.24) 
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QVw't 1 = Q~ .. F K (AwlBw)~ ( p~+ 1 - p~ ) (4.25) 

QVG~+ 1 = QVG~ + F K (AglB 9)~ ( p~+ 1 - p~ ) (4.26) 

After substituting eqs. (4.24), (4.25), and (4.26) to eq. (4.23) and· rearranging 

it, we. can move the unknown pressure pn• 1 to the lefthand side of the 

equation, and move those known terms to the righthand side of the equation. 

The matrix form of the pressure system equation 

AT KP~::_1, + ASjp~::_\ + AWip~::_1, + ABKp~::_1, + ANjp1::_\ + AZip~~11 

+ Epnk = BijK (4.27) 

will become 

AT Pn+1 +AS p"+ 1 +AW pn+t +AB pn+t .. AN pn+1 +AZ pn+1 K K-1 i j-1 i i-1 K K-1 J j-1 i i-1 

+ (E-FCOEF)p~jk =Biik -FCOEFp~ik (4.28) 

where 

FCOEF = F K ·x ('.Ao/Bo + '.Aw/Bw + '.Ag/Bg)K 

Accordingly, we redefine the coefficients of the pressure equation as 

following: 

E" + 1 = E" - FCOEF . 

B" + 1 = B" - FCOEF x p0 

where n+ l indicates the new coefficient, whereas n indicates old 

coefficient. Within the program, these modified coefficients are calculated 

before the solver subroutine is called. And when the new pressure is 

calculated, the new rate qn+l is computed from eq.(4.22). However, 

observing from eq.(4.22) • the rate calculated might deviate from the 

prescribed one, and its deviation is proportional to the pressure change that 

takes place over a time step. To obtain an accurate rate, an iteration method 

is needed. Without iocorporating an iteration method to calculate the rate, 

we alternatively minimize the rate deviation by setting the pressure changes 
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over one time step in a reasonable range. Later on, we shall see this scheme 

works fine in the field case study-with the pressure stability being improved 

and the rate quite undeviated. 

4 .5 Summary of Changes to BOAST 

As discussed in this chapter. a restart option was adopted in the 

program with a subroutine REREAD to initiate a treatment study. A rate 

allocation method was modified in the subroutine ORATE for the purpose of 

obtaining more reasonable rates when high permeability contrast exists 

between zones. A method to calculate relative permeability of oil in a three­

phase fluid flow system was added in the subroutine FORKRO to enable us to 

simulate more practical problems. Finally. a modification of source terms 

was incorporated to enable us to improve the stability of solution. Several 

additional input and output files were created to' make the BOAST simulator 

more flexible and accessible. 
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CHAPTER V 

SIMULATION RESULTS OF CASE STUDIES 

After modifying the BOAST program, a comprehensive model for polymer 

treatment was set to test the sensitivity of vertical. conformaoce treatment 

results on various reservoir parameters. Based on a series of runs, it was found 

that many factors inf lueoce the outcome of a vertical conformance treatment. 

Some .of the factors were vertical permeability, permeability contrast, 

permeability thickness product contrast between layers. and the level of 

permeabi I ity reduction in the treated region. 

5.1 Model Used in Case Studies 

Studies have been made with a two-dimension cross-sectional model 

which is 400 ft horizontally and 20 ft thick with zero dip. A 20 by 2 grid 

system was used to model a two-layer reservoir with an injection well at one 

end, and a production well at the opposite end of the system, as shown in (Fig. 

2). A constant injection rate of 900 STB/day was employed initially at the 

injection well while the production well was at a constant bottom hole pressure 

of 4015 psi (the bubble point pressure). 

The reservoir was assumed to be under both cap i I lary and gravity 

equilibrium initially. Fluid and rock properties used in this model were taken 

from the BOAST user's manual (see Tables 4 to 7) where the properties of the 

fluid are fuoctions of pressure only. 
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TABLE 4 

RESERVOIR AND FLUID PROPERTIES 

Initial reservoir pressure 0 psla at 8330 ft. 
Injection well, rate constraint, STB/DAY 
Production wel I. pressure constraint. psta 
Rock compressibility. ps1-1 
Wei lbore radius, feet 
Capt llary pressure, psi 
Water density, lbm/cu ft 
Oil density, lbm/cu rt 
Runs are terminated at WOR at 10 

4990 
900 

4015 
3><10-6 
0.33 

0 
62.238 
46.244 

CTI 
0 



Reservo1r pressure 
C ps1a > 

147 
10147 
20147 
30147 
40147 
60147 
90147 

TABLE 5 

PVT PROPERTIES OF WATER 

Format1on Volume Factor 
CRB/STB> 

1.019 
1.016 
1.013 
1.010 
1.007 
1.001 
0.992 

V1scos1ty 
Ccp) 

0.500 
0.501 
0.502 
0.503 
0.505 
0.510 
0.520 

Ol -



Reservo1r pressure 
C ps1a > 

14.7 
1014.7 
2014.7 
3014.7 
4014.7 
6014.7 
9014.7 

TABLE 6 

PVT PROPERTIES OF OIL 

Format1on Volume Factor 
C RB/STB) 

1.062 
1.295 
1.435 
1.565 
1.695 . 
1.646 
0.579 

Vtscos1ty 
C cp > , 

1.040 
0.830 
0.695 
0.594 
0.510 
0.620 
0.740 

Ol 
N 

• 



TABLE 7 

RELATIVE PERMEABILITY DATA 

Sw Krw 

1.0 0.5 
0.9 0.4704 
0.8 0.2688 
0.7 0.1344 
0.6 0.0672 . 
0.5 0.0336 
0.4 0.0244 
0.3 0.0122 
0.2 0.0 
0.1 0.0 
0.0 0.0 

Kro 

0.0 
0.0 
0.00147 
0.00228 
0.0370 
0.0571 
0.134 
0.207 
0.604 
1.000 
1.000 

O> 
CA 
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To study the effect of permeability contrast, the high permeability zone 

which has a permeability of either 200 md or 1000 md was always at the top 

layer in the system, while the permeability of the bottom layer was 20 md. 

To study the effect of vertical permeabi I ity, a range of 10-6 md to 20 

md was used, but for each run the vertical permeability was constant throughout 

the whole reservoir. 

To study the permeability thickness product contrast, the total 

thickness of the reservoir was maintaif)ed at 20 feet. while the thickness of the 

high permeable zone was varied. The values of the high permeable zone 

thickness that were studied included 10, 9, 7, 5, and 3 feet. 

The vertical conformance treatment was assumed to have taken place 

when the top layer is at water breakthrough. As we can see from Tables 8 to 9, 

there is a large quantity of oil remaining in the bottom layer. Choosing water 

breakthrough arbitrarily as a restart criterion will help us observe the results 

of the treatment easily. The incremental oil recovery due to the treatment is 

def med as the difference between the oil recovery in a treatment case and a 

case where no treatment occurred at the restart. The permeability ifl the first 

gnd block of the top zone is Changed from the original a-.e to simulate the 

treatment in the vicinity of the injection well. 

5.2 Simulation Result and Discussions 

The effectiveness of a simulated treatment was determined by 

comparing the oil recovery in reservoir pore volumes at a WOR limit of 1 O. 

Also, the recovery for the base case was at this same water oil ratio limit. The 

base case is defined to be where there is no permeability modificatioo occurring 

during a complete simulation run. In the other cases the permeability of the 
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TABLE 8 
OIL REMAINING IN THE RESERVOIR WHEN 
WATER BREAKTHROUGH AT TOP LAYER 
(Permeability Contrast 1s 10 :1) 

Vertical Thickness . Oil saturation 

permeab i 1 i ty Top layer Bottom layer Top layer Bottom layer Average 

t ()-6 10 10 0.329 0.752 0.540 

0.02 10 to 0.334 0.744 0.539 

2.00 10 10 0.335 0.662 0.498 

20.0 10 10 0.449 0.626 0.486 

1 ()-6 7 13 0.329 0.752 0.604 

0.02 7 13 0.328 0.745 0.599 

2.00 7 13 0.335 0.667 0.550 

20.0 7 13 0.345 0.629 0.530 

1 O'"' 5 15 0.329 0.752 0.646 
. 

0.02 5 15 0.330 0.746 0.642 

2.00 5 15 0.335 0.666 0.583 

20.0 5 15 0.346 0.627 0.556 

1 ()"6 3 17 0.329 0.752 0.688 

0.02 3 17 0.329 0.746 0.683 

2.00 3 17 0.341 0.683 0.616 

20.0 3 17 0.362 0.621 0.582 
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TABLE 9 
OIL REMAINING IN THE RESERVOIR WHEN 
WATER BREAKTHROUGH AT TOP LAYER 
CPermeabtlity Contrast 1s 50: 1) 

Vertical Thickness on saturation 

permeab t 11 ty Top layer Bottom layer Top layer Bottom layer Average 

1 <>-' 10 10 0.348 0.787 0.567 

0.02 10 10 0.342 0.785 0.558 

2.00 10 10 0.348 0.766 0.557 

20.0 10 10 0.350 0.727 0.538 

1~ 7 13 0.348 0.788 0.634 

0.02 7 13 0.348 0.785 0.632 

2.00 7 13 0.346 0.766 0.619 

20.0 7 13 0.360 0.712 0.588 

10"" 5 15 0.348 0.788 0.678 

0.02 5 15 0.346 0.785 0.675 

2.00 5 15 0.345 0.766 0.660 

20.0 5 15 0.331 0.714 0.618 

10"' 3 17 0.348 0.788 0.722 

0.02 3 17 0.346 0.786 0.717 

2.00 3 17 0.349 0.767 0.704 

20.0 3 17 0.355 0.755 0.695 
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high permeable zone in the injection grid block was reduced to 1/10th, 1/100th, 

and 1/lOOOth of the original permeability. 

All the results are presented in tables 1 O to 18. Several factors that 

were considered to affect the treatment outcome are discussed below: 

( 1) Vertical Permeability 

Four different vertical permeabilities were used in this study where a 

vertical permeability of 10-6 md was defined to be a non-communicating 

stratified reservoir; and with the increase in vertical permeability, the degree 

of communication of adjacent iayers increases. A vertical permeability of 20 

md was defined to be a communicating reservoir. 

A low vertical permeability was found conducive to high incremental 

recovery from a water shut-off treatment (where the permeab i Ii ty in the treated 

zone is reduced to 1/lOOOth of original one). For a reservoir with layers of 

equal thickness which is also non-communicating, the incremental oil recovery in 

the treatment case was 0.195 pore volume (Table 10). However, as the 

reservoir becomes more communicating (vertical permeability increasing to 20 

md), the incremental oil decreases to 0.049 pore volume of incremental oil 

recovered after treatment. Table 15 shows a similar trend as the above case, 

but where the permeability contrast between layers was 50 to 1 instead of 1 O 

to 1 as in the above case (Table 10). 

Fig. 23 shows the decrease in incremental oil recovery observed as 

vertical permeability increases frir the cases of initial permeability contrasts 

between layers of ten to one and fifty to one. In both cases, incremental 

recoveries were high when vertical permeability were essentially zero (10-6md) 

and decreased contiruously as vertical permeabi I ity increased. This illustrates 

that the increase of vertical permeability results in the increased oil recovery 
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TABLE 10 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh = to reet ; T1ow = 1 O feet 
KMgh = 200 md ; KJow = 20 md. 

Kz Cases Water tnjected Of I produced Incremental ofl -
CPV) CPV) CPV) 

Base 0.424 0.303 

Run I I .127 0.507 0.204 
10-6 

Run2 0.582 0.505 0.202 

Run3 0.516 0.498 0.195 

Base 0.889 0.392 

Run 1 I. 143 0.500 0.108 
0.02 

Run2 0.685 0.504 0. I 12 

Run3 0.539 0.503 0.111 

Base 0.498 0.370 

Runt 0.731 0.406 0.036 
2.0 

Run2 0.770 0.423 0.053 

Run3 0.767 0.426 0.056 

Base 0.808 0.442 

Run I 0.848 0.480 0.038 
20.0 

Run2 0.772 0.490 0.048 

Run3 0.760 0.491 0.049 



59 

TABLE 11 
Slf"ULATION TREATMENT RESULTS FOR CASE 

Thtgh = 9 feet ; TJow = 11 feet 
Khtgh • 200 md ; KJow • 20 md. 

Kz Cases Water tnjected Ofl produced Incremental otl 
CPV) CPV) CPV) 

Base 1.158 0.402 

Run 1 1.078 0.508 0.106 
10-6 

Run2 0.576 0.506 0.104 

Run 3 0.518 0.499 0.097 

Base 1.080 0.417 

Run 1 1.109 0.504 0.087 
0.02 

Run2 0.681 0.505 0.088 

Run3 0.639 0.504 0.087 

Base 0.742 0.398 

Run 1 0.915 0.431 0.036 
2.0 

Run2 0.896 0.438 0.040 

Run3 0.888 0.441 0.043 

Base 0.858 0.447 

Run 1 0.863 0.482 0.034 
20.0 

Run2 0.791 0.489 0.042 

Run3 0.781 0.490 0.043 
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TABLE 12 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 7 feet ; T1ow = 13 feet 
Kh1gh = 200 md ; Ktow = 20 md. 

Kz Cases Water tnjected Oil produced Incremental ofl 
CPV) CPV) CPV) 

Base 1.646 0.502 

Run I 0.966 0.507 0.005 
10-6 

Run2 0.568 0.507 0.005 

Run3 0.521 0.500 -0.002 

Base 1.460 0.488 

Run 1 0.996 0.503 0.015 
0.02 

Run 2 0.670 0.505 0.017 
' .... ' 

Run3 0.631 0.504 0.016 

Base 0.931 0.431 

Run 1 l.108 0.456 0.025 
2.0 

Run2 t.102 0.465 0.034 

Run3 t.004 0.466 0.035 

Base 0.952 0.466 

Run 1 0.873 0.485 0.019 
20.0 

Run2 0.817 0.490 0.024 

Run3 0.811 0.490 0.024 
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TABLE 13 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 5 feet ; Ttow = 15 feet 
Kh1gh = 200 md ; Ktow = 20 md. 

Kz Cases Water Injected 011 produced Incremental oil 
CPV) CPV) CPV) 

Base 1.385 0.507 

Run 1 0.857 0.507 0.000 
10-6 

Run2 0.559 0.505 -0.002 

Run3 0.525 0.505 -0.002 

Base 1.268 0.499 

Run 1 0.879 0.504 0.005 
0.02 

Run2 0.653 0.505 0.006 

Run 3 0.624 0.504 0.005 

Base 0.920 0.444 

Run 1 0.989 0.473 0.029 
2.0 

Run2 0.980 0.479 0.035 

Run 3 0.976 0.480 0.036 

Base 0.949 0.485 

Run 1 0.844 0.492 0.007 
20.0 

Run2 0.810 0.492 0.009 

Run3 0.806 0.494 0.009 
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TABLE 14 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 3 feet ; TJow = 17 feet 
Khigh = 200 md ; Ktow = 20 md. 

Kz Cases Water injected OfJ produced Incremental oil 
CPV) CPV) CPV) 

Base 1.063 0.505 

Run 1 0.733 0.507 0.001 
10-6 

Run2 0.551 0.505 -0.001 

Run3 0.530 0.503 -0.002 

Base 0.991 0.500 

Run 1 0.760 0.504 0.004 
0.02 

Run2 0.632 0.505 0.005 

Run3 0.614 0.504 0.004 

Base 0.977 0.490 

Run 1 0.908 0.496 0.006 
2.0 

Run2 0.891 0.498 0.008 

Run3 0.887 0.499 0.009 

Base 0.804 0.496 

Run 1 0.745 0.498 0.002 
20.0 

Run2 0.734 0.499 0.003 

Run3 0.732 0.499 0.003 
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TABLE 15 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 10feet; TJow = 1 O feet 
Kh1gh = 1000 md ; K1ow = 20 md. 

Kz Cases Water injected o i 1 produced Incremental oil 
CPV) CPV) CPV) 

Base 0.273 0.261 

Run I 0.283 0.265 0.004 
10-6 

Run2 0.985 0.500 0.239 

Run3 0.550 0.506 0.245 

Base 0.275 0.264 
.. 

Run 1 0.280 0.265 0.001 
0.02 

Run2 1.073 0.499 0.235 

Run 3 0.683 0.504 0.240 

Base 0.299 0.272 

Runt 0.299 0.284 0.002 
2.0 

Run2 0.302 0.337 0.070 

Run 3 0.601 0.362 0.085 

Base 0.834 0.390 

Run 1 0.859 0.392 0.002 
20.0 

Run2 0.857 0.455 0.065 

Run3 0.850 0.470 0.080 
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TABLE 16 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 7 feet ; T1ow = 13 feet 
Kh1gh = 1000 md ; Klow = 20 md. 

Kz Cases Water injected 011 produced Incremental otl 
CPV) CPV) CPV) 

Base 0.201 0.188 

Run 1 0.223 0.199 0.01 t 
. ·- . ·-·------ - --1 o-6 - --·-· --

Run 2 0.845 0.504 0.316 

Run3 0.537 0.504 0.316 

Base 0.207 0.191 

Run 1 0.234 0.202 0.01 t 
0.02 

Run2 0.945 0.499 0.308 

Run3 0.665 0.504 0.313 

Base 0.341 0.276 

Run 1 0.380 0.286 0.010 
2.0 

Run2 0.644 0.308 0.082 

Run 3 0.646 0.321 0.095 

Base 0.968 0.361 

Run 1 0.931 0.371 0.010 
20.0 

Run2 0.904 0.434 0.073 

Run3 0.907 0.443 0.083 
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TABLE 17 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 5 feet ; T1ow = 15 feet 
Khigh = 1000 md ; KJow = 20 md. 

Kz Cases Water 1njected 011 produced Incremental on 
CPV) CPV) CPV) 

Base 0. 152 0.140 

Run 1 1.409 0.362 0.223 
10-6 

Run 2 0.763 0.507 0.366 

Run 3 0.536 0.504 0.364 

Base 0.159 0.143 

Run 1 1.351 0.355 0.212 
0.02 

Run 2 0.855 0.502 0.359 

Run 3 0.664 0.503 0.360 

Base 0.640 0.257 

Run 1 0.785 0.280 0.033 
2.0 

Run 2 0.835 0.336 0.089 

Run 3 0.831 0.336 0.089 

Base 1.077 0.353 

Run 1 0.968 0.369 0.016 
20.0 

Run 2 0.963 0.427 0.074 

Run 3 0.962 0.434 0.081 
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TABLE 18 
SIMULATION TREATMENT RESULTS FOR CASE 

Thigh= 3 r eet ; T1ow = 17 feet 
Ktl1gh = 1 ooo md ; KJow = 20 md. 

Kz Cases Water tnjetted 011 produced Incremental 011 
CPV> CPV) CPV) 

Base 0.089 0.088 

Run 1 1.776 0.502 0.414 
10-6 

·-·· ---·---·-· -----··· Run2 0.676 0.506 0.418 ---····-- . --·----·--

Run3 0.536 0.504 0.416 

Base 0.098 0.094 

Run 1 1.765 0.349 0.245 
0.02 

Run2 0.773 0.466 0.362 

Run 3 0.660 0.469 0.365 

Base 0.682 0.256 

Runt 1.069 0.346 0.090 
2.0 

Run 2 1.137 0.367 0.131 

Run 3 1. 135 0.395 0.139 

Base 0.677 0.324 

Run 1 1.050 0.409 0.085 
20.0 

Run 2 1.028 0.443 0.019 

Run 3 1.023 0.446 0.122 
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The notation used In tables from Table 8 to 18 are defined as: 
Base : Case without treatment 
Run 1 : Well treated by reduc1ng permeabt11ty to 1/1 Oth. 
Run 2 : Well treated by reducing permeability to 1/1 OOth. 
Run 3 : Well treated by reducing permeab111ty to 1/1 OOOth. 
Thigh : Thickness of top layer. 
T1ow : Thickness of bottom layer . 
Khigh : Horizontal permeability of top layer. 
Kiow : Horizontal permeab1ltty of bottom layer. 
Kz : Vertical permeab111ty. 
PV : Pore Volume . 

... 
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in the base cases where the vertical sweep efficiency was improved by the 

crossf low and, therefore, less benefit was obtained from vertical conformance 

treatment (Fig. 24, 25). 

(2) Permeability thickness Product Contrast 

The permeabi I ity thickness product also known as fluid conductivity 

plays a very important role on the allocation of the fluid between layers. In the 

case of water injection, the more contrast in permeability thickness product, 

the more irregular the distribution of water will be, and thus the injection 

profile is totally controlled by kh contrast initially. However, as water goes 

deeper into the reservoir, other characteristics of the reservoir could alter the 

water movement path and thus affect the displacement of oil by water. 

When significant crossflow could take place in a reservoir, the 

incrementa I oil recovery from a water shutoff treatment increased gradually and 

continuously as the _ratio of the permeability thickness product of the high 

permeability zone to that of the low permeability zone increased. This result is 

illustrated in Fig. 26 for cases where the permeability of the zones were 200 

md and 20 md, and the vertical permeability was 20 md. 

For the same reservoir except the degree of communicating being 

decreased, a similar result was found when vertical permeability is equal to 

0.02 md (see Fig. 27). 

A quite different response to permeability-thickness contrast was seen 

when kz = 1 o-6 md which is an assumed non-communicat inQ reservoir. There 

was very little incremental oil obtained when the ratio of the permeability­

thickness product of the high permeability zone to that of the tow permeability 

zone was less than 5.4 (see Fig. 28); for contrasts above this level, significant 

incremental recovery was obtained. This result is due in large part to the water 
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oil ratio limit used to determine ultimate recovery from the reservoir. With a 

WOR limit of 10, wt1en the high permeability zone is relatively thin, 

waterf loading can continue long after the high permeability zone has been 

depleted without the WOR reaching the value of 1 o. Tt1us, the base case 

recovery will be high resulting in low incremental recovery from a conformarce 

treatment. Fig. 29 and 30 illustrate the WOR curve variation during the 

waterflooding and treatment performance. With a thicker high permeability 

zone. as reflected in higher kh contrast, the water oil ratio reaches 1 O shortly 

after breakthrough in the high permeability zone, leaving a large incremental oil 

target for a conformance treatment. 

For cases with a permeability of 1000 md in the high permeability zone 

and 20 md in the low permeability zone. incremental oil recovery from a vertical 

conformarce treatment decreases as the permeability-thickness contrast 

between layers ircreased. With no crossf low (Fig. 31), high ircremental 

recoveries were obtained when the high k zone permeability was reduced to 

1I1 OOth or 1 I I OOOth of "its original value. The ircremental recovery decreased 

with increasing kh contrast because of ircreasing base case (no treatment) 

recovery as the high permeability zone became thicker where there also existed 

a high permeabi I ity contrast between layers. 

The same trend was observed (Fig. 32), fer the same high k contrast 

reservoir with an ircreasing crossflow, but with lower ircremental oil recovery. 

All incremental recoveries were lessened with the same reservoir, especially, 

for those cases exhibiting significant crossflow as shown in (Fig. 33). This is 

again due to higher recoveries from waterf loading without treatment. 
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(3) Permeability Contrast 

The layer permeability contrasts had a marted influence oo the 

crossflow. the lower permeability contrast will induce ma·e crossflow and thus 

improve the oil recovery at the water breakthrough and beyood. Fig. 23 is a plot 

showing that the high permeability cootrast results in high incremental oil 

recovery when the thicknesses of layers are equal. Ttie same situation happens 

in other cases that have unequal thickness ratio (Fig. 34 to 36). Although the 

incremental oil recovery decreases gradually in the case of permeability 

contrast being SO and increases continuously in the case or permeability 

contrast being 1 o. With a certain thickness ratio, the high k contrast results in 

high incremental oi I recovery (Fig. 34 to 36). 

(4) Level of Reduced Permeability 

Three levels of reduction are investigated through the whole study. For 

cases where the permeability contrast is 10, whether the reservoir is with or 

without crossflow. incremental oil recovery showed little sensitivity to the 

level of permeability reduction in the simulated treated regioo as the 

incremental recoveries were almost identical for permeability reduction of 

1/lOth to t/lOOth or the original permeability (see Fig. 26 and Fig. 28). 

However, as seen in Fig. 31 to Fig. 33, with a higher permeability contrast 50, 

a treated case of permeabi I ity or 1I1 Oth. was insufficient to significantly 

improve oil recovery. This indicates that to guarantee a successful treatment 

job, a high level reduced permeabi I ity is necessary for a high k contrast 

reservoir. For a low k contrast reservoir, the permeability reduced in treatment 

does not have to be lower than the lowest one. Several low level reduced 

permeability cases were studied. Fig. 37 shows that a low level permeability 

reduction will increase the oil recovery in a low k contrast reservoir. 
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FIG. 37 DEPENDENCE OF lNCREMENTAL OlL RECOVERY 
ON THE LEVEL OF REou:E.D PERMEAB lllTY 
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Jn several cases where the incremental recovery was found to be low. 

some possible benefits of a vertical conformance treatment were observed due 

to the fact that smaller volumes of injected water were needed to recover oi I. 

Table 19 i I lustrates the injected water volume, oi I recovery, and actual time 

needed to reach the water-oi I ratio I im it of 1 O in cases where the incrementa I 

oi I recovery due to treatment was less than 0.0 I reservoir pore volume. In 

every case, the water volumes injected are decreasing as the level of reduced 

permeab i Ii ty increases and the simulated treatments resu It in decreased water 

volumes to reach the ultimate oil recovery. Due to the lower injectivity after 

treatment, however, the time required to reach the final oil recovery was longer 

fcir the treated reservoir than the untreated reservoir. Therefore, unless water 

treat mg and I if ting costs were exceptionally high, it is not I ikely that vertical 

conformance treatments would be economically beneficial in these cases. 
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TABLE 19 
CUML.lATIVE PRODUCTION FOR LOW RECOVERY CASES 

Injected veter (p.v.) Produced otl (p,v,) 

untruud Ptr•••bllltJ reduction untruted P•rme1btlltJ r•ductlon unnut .. 
1/10 1/100 1/1000 1/10 1/100 1/1000 
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CHAPTER VI 

Field Case Study 

In this chapter we discuss a field case run in which actual reservoir 

properties were used. unlike the two-layer oil-water system reservoir 

studied in previous chapter, a five-layer three-phase system reservoir is 

modeled in this chapter with three major stages, depletion, waterflooding, 

and vertical conformance treatment . In the depletion stage, the system was 

dominated by two-phase (gas-oil) flow. Before and after the conformance 

treatment, the flow region of waterflooding was either three-phas~ flow or 

two-phase (water-oil) flow. During the whole simulation run, since the fluid 

flow region may change , the interpretation of relative permeability of each 

phase is very important in terms of their effects on the simulation results. A 

scheme to interpret the relative permeabi I ity of each phase in a three-phase 

system (discussed in section 4.4) is applied here. Besides, due to the 

instability of solution in this case run, a scheme to implicitly treat source 

term is applied as well (discussed in section 4.5). Realizing these two 

additional modifications were applied • we are able to discuss the 

implementation of the field case in the next section. and then present the 

resu Its and the discussions at the end. 

6. 1 Implementation of the Field Case 

Studies were made with a two dimension cross~ectional model. 
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The reservoir was 800 feet horizontally and 32 feet thick with zero dip. A 

1 O by 5 grid system was used as shown in Fig.38. The grid size in x 

direction is 80 feet for each grid. The width in y direction was varied at 25, 

88, 198, 342, 355, 355, 342, 198, 88, and 25 feet for each grid. The 

thickness in Z direction was· varied at 6, 8, 8, 6, and 4 feet for each layer. 

The horizontal permeabi I ity of each layer was 26, 102, 160, 360, and 2.4 md 

from top to bottom, and the vertical permeability was approximately zero. 

The reservoir was assumed to be in capillary and gravity equilibrium 

initially and then started to deplete. In the depletion stage, wells located 

at each end of the system started producing at a constant bottomhole 

pressure of 1300 psi and was foil owed by a stepwise decrease in bottomhole 

pressure until a pressure of 50 psi had been reached. In our simulation run, 

it was 300 days elapsed time from the very begiming. Then, one of the 

production wells was converted to an injection well with a constant rate of 

60 STB/DAY, while the other well remained at the same producing 

bottomhole pressure of 50 psi. Treatment around the injection well took 

place at an elapsed time of 1609 days (1309 days since waterflooding) at 

which time the water oil ratio in the production well had reached 20. To 

study the effect of conformance treatment, three different ratios of 

permeability reduction in two candidate layers were investigated. Following 

the treatment, waterflooding was continued to WOR value up to 25. Finally, 

the result of oil recovery was compared with the case in which there is no 

treatment throughout the simulation run. 

Fluid and rock properties used are listed in Tables 20 to 23 and Table 

3 , where two different sets of relative permeability were used in input 

instead of only one being used in the original BOAST program. 
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Fig. 38 Reservoir grid system for field case 
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TABLE 20 

RESERVOIR AND FLUID PROPERTIES 

lnit lat reservoir pressure, psi a at 3900 ft. 
Bubble point pressure, psia 
Injection wello rate constraint, STB/DAY 
Production well, pressure constraint, psla 
Rock compress lb II ity, psi-1 
Wei lbore radius, feet · 
Capt llary pressure, psi 
Water density, lbm/cu ft 
Oii density, lbm/cu ft 
Gas specif le gravity 

1405 
1405 

60 
50 

4x10-6 
0.33 

0 

66.800 
48.000 
0.0534 

-0 
vi 



TABLE 21 
PVT PROPERTIES OF OIL 

Reservoir Pressure Viscosity Formation Volume Factor Solution Gas Rat lo 
( psla) ( cp ) ( RB/STB) (cu rt/STB) 

50.0 2.52 1.030 5.00 
. 100.0 2.41 1.036 17.01 
200.0 2.25 1.046 43.00 
300.0 2.13 1.057 68.00 
400.0 1.97 1.069 93.00 
500.0 1.85 1.080 119.00 
600.0 1.74 1.091 145.00 

700.0 1.64 1.102 170.00 
800.0 1.56 1.114 196.00 
900.0 1.48 1.125 220.00 

1000.0 1.41 1.136 247.00 

1100.0 1.34 1.148 272.00 
1200.0 1.28 1.158 298.00 

1300.0 1.23 1.170 323.00 

1405.0 I 1.182 1.182 350.00 
1600.0 1.106 1.203 '400.00 
1795.0 1.045 1.225 150.00 
1990.0 1.000 1.247 500.00 

-0 
.A. 
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TABLE 22 
PVT PROPERTIES OF WATER 

Reservoir Pressure Viscosity Formation Volume Factor Solution Gas Ratio 
( psla) ( cp) (RB/ STB) (cu fl/STB) 

50.0 0.64 1.017 0.00 
1'405.0 0.64 1.01'4· 0.00 
2000.0 0.64 1.012 0.00 

-0 
U1 



Reservoir Pressure 
( psia ) 

TABLE 23 
PVT PROPERTIES OF GAS 

Viscosity 
( cp) 

Formation Volume Factor 
( RB/STB) 

---- --- -- --- ---i---- ----
50.0 0.0112 0.3302 

127.0 0.0113 a. 1291 
254.0 0.0115 0.0629 
382.0 a.a 111 0.0410 
510.0 0.0119 0.0301 
638.0 a.o 12.1 0.0236 
766.0 0.0 t 24 0.0191 
894.0 0.0128 C.0153 

1022.0 0.0132 a.o 140 
1150.a a.o 13,6 0.0124 
1277.a a.o t 40 0.0 I 07 
1405.0 o.a 145 a.0095 
2000.0 0.0168 0.0067 

~ 

0 
O'l 
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Seven runs were made in this field case. An auto timestep 

:ontroller was applied in all these runs. To minimize the problem of rate 

:onvergence and assure the stabi I ity of solution, the maximum pressure 

:hange per time step was set to 40 psi, and maximum saturation change per 

time step to 0.05. 

6.2 Results and Discussions 

The effectiveness of treatment in this f ie.ld case was determined by 

corn paring the oil recovery in stock tank barre I at water oi I ratio of 25 

between treatment cases and base case. The base case is defined as no 

permeability modification occurs during a complete simulation. Whereas in 

the other cases, the injection grid block(blocks) of the candidate 

layer(layers) is (are) reduced to 1/10th, 1/lOOth, 1/1000th of the original 

permeability. The candidate layers here are two highest permeability zones 

of 360 and 160 md. 

All the results are presented in Table 24, and several plots related 

to th(! comparison are discussed below. 

Fig. 39 to 41 represent the production history comparison for each 

case. lf we compare the resu It at a certain time after treatment, apparently, 

a two-layer treated case with a high level of permeability reduction 

increases the oil recovery but reaches the WOR limit sooner than a one-layer 

treated case. 

Fig. 42 to 44 show the oil rate change due to treatment. 

Consequently, we conclude that high reduction of permeabi I ity inereases 

the oi I rate immediately. 
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TABLE 24 
RESULTS OF CONFORMANCE TREATMENT JN THE FIELD CASE . 

Total Time Water Injected Oil Produced Oil Increment Average Injection Rate 

(DAY) ( STB) ( STB) ( STB) ( STB/DAY) 

case 1 

case 2 
case 3 
case 4 
case 5 
case 6 
case 7 

Note: 

2123.0 

2321.0 
2382.0 
2495.0 
2419.0 
2480.0 
2368.0 

108500.0 

120100.0 
123700.0 

130200.0 
125600.0 
129300.0 
122400.0 

case 1 None Treatment ( Base Case ) 

20350.0 

20990.0 640.0 

21060.0 710.0 

21640.0 1290.0. 

21490.0 1140.0 
21680.0 1330.0 
21510.0 1160.0 

case 2 Factor of permeabi llty reduction Is 1I1 Oth, 4th layer treated 

. 

case 3 Factor or permeability reduction Is 1/10th, 3rd and 4th' layers treated_ 
case 4 Factor of permeability reduction Is 1/lOOth, 4th layer treated 
case 5 Factor of permeability reduct ion Is 1I1 OOth, 3rd and 4th layers treated 
case 6 Factor of permeability reduction Is 1/lOOOth, 4th layer treated 
case 7 Factor of permeability reduction Is 1/lOOOth, 3rd and 4th layers treated 

59.5 

59.4 

59.4 
59.3 
59.3 
59.3 
59.2 

0 
()) 
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FIG. 39 COMPARISON OF PRODUCTION HISTORY BETYtEEN 
TV.O TREATMENT SCHEMES AND NONE TREATMENT CASE 
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PERMEABILITY REDUCTION IS FACTOR OF 10 

NO TREATMENT 
----- 4TH LAYER TREATED 
- - - - - - 3RD AND 4TH LAYER TREATED 

---· 

109 

0 o.oo 50.00 100. 00 150. 00 200.00 250.00 
* 1 0, TIME (DAYS) 



FIG. 40 COMPARISON OF PRODUCTION HISTORY BETYEEN 
TWO TREATMENT SCHEMES AND NONE TREATMENT CASE 
WATERFLOODING START AT 300.0 DAYS 
TREATMENT START AT 1609.0 DAYS (WOR•20.0) 
PERMEABILITY REDUCTION IS FACTOR OF 100 
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FIG. 41 COMPARISON Of PRODUCTION HISTORY BETV.EEN 
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f IG. 42 COMPARISON or OIL PRODUCTION RATE SETY£EN 
TWO TREATMENT SCHEMES AND NONE TREATMENT CASE 
WATERFLOODING START ~T 300.0 DAYS 
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rIG. 43 COMPARISON OF OIL PRODUCTION RATE BETYEEN 
TV.O TREATt.ENT SCHEMES AND NONE TREATMENT CASE 
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FIC. 44 Co...pARISON Of OIL PRODUCTION RATE BETVEEN 
TWO TREATUENT SCHEMES ANO NONE TREATMENT CASE 
WATERFLOOOING START AT 300.0 DAYS 
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Fig. 45 to 47 present the bottomhole pressure of the injection we! I 

after the waterf looding had started at the 300th day. Before the 300th day, 

the bottomhole pressure shown in these plots was of production well when it 

had not been converted into injection well. These plots also show that 

pressure of the injection well resulted from treatment will increase, and the 

more severe the reduction of pe~meability is, the higher the injection well 

pressure becomes. 

Fig. 48 to 50 present the average reservoir pressure. They have the 

same trends as injection well bottomhole pressure. 

Fig. 51 to 53 are plots of water oil ratio changes. The water oil 

ratio decreased and then increased again. The degree of changes depends on 

the scheme of treatment. 

As shown in Table 24, oil recovery ·increases for each treatment 

case. When the level of permeability of reduction increased, the oil recovery 

increment increased as well. However, there is a little sensitivity among 

the high level permeability reduction cases, and the number of layers being 

treated P.lays a significant role in these cases. As seen in Table 24, case 3, 

a low level permeability reduction with two-layer treatment gains much more 

oil incremental than case 2, one-layer treatment; but case 4 and case 6, high 

level permeability reduction with one-layer treatment, gain a larger oil 

increment than case 5 and case 7. These differences resulted from the 

redistribution of water injected due to the conformance treatment. For a tow 

level conformance treatment, water can still enter the candidate zones. In 
the case of one layer (the highest permeability zone of 360 md), the dominant 

zones for water entry become the layers of 160 md and 102 md, and thus, the 

sweep in these zones is accelerated. It results in the water oil ratio 
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FIG. 48 COMPARISON OF BOTTOUHOLE PRESSURE BETY£EN 
TWO TREATLCENT SCHEUES ANO NONE TREATMENT CASE 
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FIG. 47 COLFARISON OF' SOTTOMHOLE PRESSURE BETYEEN 
TYtO TREATLENT SCHEIES AND NONE TREATMENT CASE 
WATERF'LOODING START AT 300.0 DAYS 
TREATMENT START AT 1809.0 DAYS (YtOR•20.0) 
PERIEABILITY-REDUCTION-IS f'ACTOR OF- 1000 

NO TREATIENT ----- 4TH LAYER TREATED 
~----- 3RD AND 4TH LAYER TREATED 

t ----.~-,,-

·...----------------------------------.~----------°o. oo 50.00 100.00 150.00 
TIME {DAYS) 

200.00 250.00 
• 10, 

118 



c c . 
.. 0 
can 
_,N 

• 
0 
0 

• 
0 
0 
N 

0 
0 
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increasing rapidly and oil recovery declining. But, in high level conformance 

treatment, when two layers are treated, the rema.ining layers of 26 md and 

102 md take in almost all the water. It prevents recovery of some remaining 

----- ------- - -oiHn layers of-high-permeability .- and the water oil ratio limit of 25 was - . 

reached soon. Therefore, the cases of two-layer treatment with high level 

permeabi I ity reduction gain less oi I recovery increment than cases of one­

layer treatment. Nevertheless, as far as the amount of injection water is 

concerned, the two-layer treatment scheme needs less water than one-layer 

treatment scheme . 

In the same table, the rightmost column shows the average rate for 

injection needed. As we claimed before, to get the rate as prescribed, rate 

convergeoce needs to be checked. Without incorporating an iteration method 

to calculate the rate, we alternatively minimize the rate deviation by setting 

the pressure change per time step size to 40 psi and obtain a good result. 

Because the average rate of 59 STB/DA Y compared to prescribed rate 60 

STB/DAY, the deviation is within an acceptable range. Besides, the average 

time step size also increased from 0.01 day to 1.0 day. 

From this case study, not only can we conclude that this reservoir is 

a good candidate for conformance treatment, but also we can apply several 

conclusions attained in Chapter V to confirm the following facts: 

( 1) This layered reservoir is a good candidate for conformance treatment 

due to its low vertical permeability. 

(2) This layered reservoir needs high level conformance treatment due to 

its high horizontal permeability contrast. 

(3) Though little sensitivity of oil increment exists among the high level 

conformance treatments, there is a significant difference in water injection. 
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Besides, we also found that : 

( 1) To simulate a three-phase fluid flow system, an approach to interpret 

the relative permeability of medium wetting phase (oil) is needed .. 

--c2rrohandre a severe permeab-ility contrast-problem-like this field case,------­

treating the source terms implicitly can improve the stability of pressure 

solution and enlarge the time step size from 0.01 day to 1.0 day. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The follow1ng conclusions have been drawn from th1s thesis: 

C 1 >The DOE BOAST program, w1th necessary mod1f1cations, was a useful 

tool for stud1ng vert1cal conformance treatments. 

(2) Two rate allocat1on methods were exam1ned, w1th the potent1al 

rate allocation method being chosen because 1t proved to be su1table for 

layered reservo1rs wh1ch have small vert1ca1 permeab111ty. 

('3) lmp11c1tly solv1ng the rate terms 1n a s1mulator wh1ch treats 

pressure expl1c1tly can 1mprove the solut1on stab111ty. 

(4) A low level of reservoir crossflow was conduc1ve to hlgh 

incremental on recovery from a vert1cal conformance treatment. Also, 

sign1ffcant 1ncremental recovery was obtatned 1n cases w1th relattvely hlgh 

vertical permeab111ty. 

CS> Incremental recover1es from a prof11e control treatment generally 

increased as the rat1o of the permeab111ty th1ckness product of the h1gh 

permeabf11ty zone to that of the low permeab111ty zone 1ncreased. For some 

cases w1th high permeab111ty contrast between zonesC50 to 1 ), this trend was 

reversed. 
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(6} Incremental recovery from a vert1cal conformance treatment 

1ncreased when the permeab111ty contrast between layers 1ncreased. 
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or no incremental recovery, smaller volumes of 1njected water were needed to 

recover a a given amount of ot 1 tn the treated case than 1n the untreated case. 

The benef1t of this reduced water volume 1s questionable because of the 

reduced inject1vtty of the treated well. 

(8) Incremental on recovery from a vertical conformance treatment 

was not sensitive to the level of permeabi11ty reduction in the treated zone as 

long as the treated permeab11tty was as low or lower than the permeabiltty of 

the low permeabi11ty reservoir layer. 

(9) The layered reservoir investigated 1n the field case is a good 

candidate for conformance treatment due to 1ts very low vertical permeability 

and hfgh horfzontal permeab11fty contrast. 

The conclusions forementioned are due to permeability reduction that 

is done arbitrarlly. For further 1nvestigat1on of polyacrylamide conformance 

treatments, th1s restriction needs to be relaxed -- a realistic placement needs 

to be modeled. Not only should the simulator be able to take into account the 

properties of the polymer soll!tion, the effects of degradation and retention of 

placement , but 1t should also be extended to simulate a three dimensional 

reservoir performance. 



NOMENCLATURE 

Symbol es 
------------ --·--·-------------~~-----··--·------------------.--·---- ~-- ------·------------~------------ -------- ---------·-···-- ------- -···- -------

AB coefficient of matrix formula for bottom side of grid 

M coefficient of matrix formula for east side of grid 

AN coefficient of matrix formula for north side of grid 

AS coefficient of matrix formula for south side of grid 

AT coefficient of matrix formula for top side ~f grid 

AW -coefficient of matrix formula for west side of grid 

Ag phase transimissibility of gas 

Ao phase transimissibility of oil 

Aw phase transimissibility of water 

B righthand side vector in matrix formula 

Bg formation volume factor of gas 

Bo formation volume factor of oil 

Bw formation volume factor of water 

Cg gas compressibility 

Co oil compressibility 

Cr rOCk compressib11 ity 

Ct total compressibility 

Cw water compressibility 

D depth 

E coefficient of matrix formula for center of grid 
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FCOEF modified coefficient 

Fk flow coefficient 

f w water fractional flow 

_ _______ __ _____ __ _ _ _ ___________ g _______ gravity constant_____ _ __ _ 

h layer thickness 

k absolute permeability 

k dispersion tensor 

krg relative permeability of gas 

kro relative permeability of oil in three-phase system 

krow relative permeability of oil in water-oil system 

krog relative permeability of oil in gas-oil system 

krw relative permeability of water 

Ni flux term of component i 

p 

Pcgo 

pressure 

cap i I lary pressure of gas to oil 

Pcow capillary pressure of oi I to water 

Pt bottomhole pressure at corresponding kth layer 

pr;' bottomhole pressure at uppermost layer 

q volumetric flow rate 

Q.a. k. volumetric flow rate for phase ,., in kth layer 

Or total volumetric flow rate 

QVG volumetric flow rate of gas 

avo volumetric flow rate of oil 

avw volumetric flow rate of water 

Ri source term for component i 

Rs so Jut ion gas oi I ratio 
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rw radius of wellbore 

s skin factor 

S~ normalized phase saturation 
--- --- ------- --- ----s9-------9as saroratiorf _______________________________________ ·-·-·- -·-·---- --· · 

S0 oi 1 saturation 

Sor residual oil saturation 

Sw water saturation 

Swc comate water saturation 

6t difference in time changes 

V5 bulk volume 

Vp pore volume 

u volumetric velocity 

UT total volumetric velocity . 

W·· I J mass fraction of component i in phase j 

W· I accumulation term of component i 

t:.x grid size in x direction 

6y grid size in y direction 

l::.z grid size in z direction 

Greek Symbols 

$w factor used to determine oil relative permeability in 

three phase system 

$g factor used to determine oil relative permeability in 

three phase system 

i specific gravity 

13 t 
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A mobility 

p density 

4> flow potential 

Operators 

- gradient operator v 
- divergence operator v· 

2: summation opreator 

a partial differentiation 

d total differentiation 

Subscripts 

component index or x-direction r1ode index 

j phase index or y-direction node index· 

k z-direct ion node index 

" phase index 

L total number of layers 

M tot a I number of phases 

s rock surf ace 

SC standard condition 

u uppermost node 

x x-direction 

y y-direction 

z z-direction 
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1,2,3 fluid 1,2,3 

Superscripts 

------------·------------------------·--------------------------- ------·--·--··--------~------------------------~---------------·------------· ---------- -----------------·--------

n old time I eve I 

~ 1 new time level 
w wellbore 
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The general flow diagram outlining the whole program is: 

Nonrecurrent Section 

- --- - ---- -- ---- ----- ---- -- . - --- -- - - --- --- - - ·---•-m-------•• ___ J_ ------- --·-----------·------ -•--------·-----------·----------------------------------- •- --·-··----·-----·----

11 REBOAST.DAT 11 RESTART.DAT 

Initial Run Restart Run 

Read in system dimensf on 

I 1 KPHl.DAT 

Read in permeability, porosity 

Calculate arid block oore volume 
and constant part of transimissibility 

. I 
Read fluid orooerties and relative 

permeability data . 

I I INITIAL.DAT 
Read in initial condition indicating 

the pressure and satuation d1str1but1on 

I 
Specify the solution method 

I 
Recurrent Sect ion 

I 1 MODKPHl.OAT 

Read in permeability changed 

I 1 REBOAST.DAT 

Read in 1nformation needed 

. I 
Recurrent Section 

Note : Contents of ...._ ___ __.I indicates the dataf ne to be needed 
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Recurrent Sect ion 

I 
Read 1n t1me step and we111nformat1on 

-,---··--·----·-----·---------··---·-··- -- ---- ·--------,---- -- -H- -----------·--·---------·- --- ---····-·------------·· 

I I 

• 

Rate constraint Pressure Constraint 

I I 
Calculate the uooermost 

we 1 lbore pressure 
Calculate rate allocated in 

each layer 

Exceed Not exceed 
I 

Fracturing pressure ( B ) 
I 

Pressure Constraint Calculate 
the rate of each layer 

I I 
I 

( B ) ( B) 

I 
Test for upstream direction 

Calculate and load coeff1c1ent of matr1x 

I 
Solve the pressure equations 

I 
Solve for 011 and water saturat1on equat1ons 

I 
Check the criteria for restart 

I 
Recurrent Section 

Restart Run 

Water ofl ratio 
reached 

I 
STOP 
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