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Abstract 

 

Simulation  Evaluation  of  Emerging  Estimation  Techniques  for  

Multinomial  Probit  Models 

 

Priyadarshan Nandkumar Patil, M.S.E. 

The University of Texas at Austin, 2016 

 

Supervisor:  Chandra R. Bhat 

 

A simulation evaluation is presented to compare alternative estimation techniques for a 

five-alternative multinomial probit (MNP) model with random parameters, including 

cross-sectional and panel datasets and for scenarios with and without correlation among 

random parameters. The different estimation techniques assessed are: (1) The maximum 

approximate composite marginal likelihood (MACML) approach; (2) The Geweke-

Hajivassiliou-Keane (GHK) simulator with Halton sequences, implemented in conjunction 

with the composite marginal  likelihood (CML) estimation approach; (3) The GHK 

approach with sparse grid nodes and weights, implemented in conjunction with the 

composite marginal  likelihood (CML) estimation approach; and (4) a Bayesian Markov 

Chain Monte Carlo (MCMC) approach. In addition, for comparison purposes, the GHK 

simulator with Halton sequences was implemented in conjunction with the traditional, full 

information maximum likelihood approach as well. The results indicate that the MACML 

approach provided the best performance in terms of the accuracy and precision of 

parameter recovery and estimation time for all data generation settings considered in this 



 vi 

study. For panel data settings, the GHK approach with Halton sequences, when combined 

with the CML approach, provided better performance than when implemented with the full 

information maximum likelihood approach, albeit not better than the MACML approach. 

The sparse grid approach did not perform well in recovering the parameters as the 

dimension of integration increased, particularly so with the panel datasets. The Bayesian 

MCMC approach performed well in datasets without correlations among random 

parameters, but exhibited limitations in datasets with correlated parameters.  
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1 INTRODUCTION 

Two general econometric model structures have been commonly used in the literature 

for random utility maximization (RUM)-based discrete choice analysis. These are: (1) 

the mixed multinomial logit (MMNL) model (McFadden and Train, 2000) and (2) the 

multinomial probit (MNP) model (Daganzo, 1979). 

The MMNL model is typically estimated using the MSL approach, whose 

desirable asymptotic properties are obtained at the expense of computational cost 

(because the number of simulation draws has to rise faster than the square root of the 

number of observations used for estimation). Unfortunately, in situations where the 

dimensionality of integration is high, such as when spatial/social dependencies are of 

interest or when considering multi-level (e.g., intra- and inter-individual) unobserved 

variations in parameters, the computational cost to ensure good asymptotic estimator 

properties can be prohibitive or, sometimes, simply impractical. Moreover, the MSL 

estimation and inference can be affected by simulation noise, which might cause 

problems ranging from non-convergence to inaccuracy and/or non-inversion of the 

Hessian of the log-likelihood function. Yet, the MSL continues to be the inference 

approach of choice for MMNL model estimation. 

In contrast to the MMNL model, the MNP model has seen relatively little use 

in the past couple of decades, mainly because its likelihood function involves a 

truncated multivariate integral (i.e., the cumulative multivariate normal (MVN) 

function) that is generally more difficult to evaluate using simulation methods 

compared to the untruncated multivariate integration in the MMNL model. Many 

studies in the 1990s and earlier on estimating MNP focused on simulation-based 

estimation, leading up to important advances, including the well known Geweke-

Hajivassiliou-Keane (GHK) approach. These studies (for example, Hajivassiliou et al., 

1996) demonstrated that the GHK outperformed many other simulation based 

approaches at that time. As a result, the GHK approach is by far the most commonly 

used to estimate MNP models. It is worth noting, however, that the GHK is an MSL 

inference procedure and faces the same problems discussed above in the context of the 

MSL estimation of the MMNL model. The dimensionality of integration in the MNP 

model choice probability expressions depends on the number of choice alternatives (and 
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the number of choice occasions per individual in the case of panel data with a general 

error structure specification). Therefore, the computational cost increases significantly 

as the number of choice alternatives (or the number of choice occasions per individual) 

increases. Besides, the GHK simulator is perceived to be relatively more difficult to 

understand and implement than the MSL simulator for the MMNL (see Train, 2009). 

Despite the considerations discussed above, there has been continued interest in 

MNP for a variety of reasons. The MNP model can indeed be more parsimonious 

(computationally) than the MMNL in many situations, such as when the number of 

random coefficients is much more than the number of alternatives (and when the 

random coefficients are normally distributed). This is because the MNP likelihood 

function can be expressed as an integral whose dimensionality does not depend on the 

number of random coefficients in the specification. Besides, in some contexts, the MVN 

distributional assumption of the MNP may carry better appeal than the extreme value 

(or multivariate extreme value) distribution used in logit-based models. For example, 

in social or spatial interaction models, it is much easier to specify parsimonious 

correlation structures using the MNP kernel than the logit kernel, primarily because of 

the conjugate nature of the multivariate normal distribution under affine 

transformations. This is reflected in the almost exclusive use of the MNP kernel for 

discrete choice models with spatial/social dependence (see a review in Bhat, 2015). 

Moreover, more recently, there has been a renewed excitement in revisiting the 

estimation of MNP models using a variety of different methods to approximate or 

simulate the MVN integrals. Most of these methods can be classified into one of the 

following three broad categories, each of which is discussed in the following section: 

(1) Improvements to numerical quadrature methods such as the sparse grid integration 

(SGI)-based quadrature methods advanced by Heiss and Winschel (2008) and Heiss 

(2010), (2) Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) method, which combines the use of analytic approximations to the MVN 

integral, as opposed to simulation or numerical evaluation, with a composite marginal 

likelihood (CML) framework and (3) Advances in Bayesian Markov Chain Monte 

Carlo (MCMC) methods, particularly those using data augmentation techniques 

(McCulloch et al., 2000; Imai and van Dyk, 2005). 
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1.1 The Current Research 

Given the increasing interest in MNP models and the emergence of new methods to 

estimate these models, it is timely to evaluate and compare the performance of different 

estimation methods available in the literature. Most techniques mentioned above have 

been compared with traditional frequentist simulation-based approaches, particularly 

the simulation-based GHK approach (Heiss, 2010; Abay, 2015) or the mixed probit 

MSL approach (Bhat and Sidharthan, 2011). Some efforts have solely focused on the 

accuracy of evaluating MVN integrals without examining parameter estimation 

(Sándor and András, 2004; Connors et al., 2014). To our knowledge, little exists on a 

comprehensive comparison of the recently emerging methods for MNP estimation in 

terms of different metrics of importance – the accuracy of parameter recovery, precision 

of parameter recovery, and the estimation time. The objective of this thesis is to fill this 

gap. Specifically, the following approaches to estimate MNP models are compared: 

(a) The MACML approach (as in Bhat, 2011);   

(b) The SGI-based quadrature method embedded into the GHK approach, labeled the 

GHK-SGI method, and used in conjunction with the CML estimation approach;   

(c) The GHK-simulator using quasi Monte Carlo draws from Halton sequences (Bhat, 

2001; Bhat, 2003), labeled the GHK-Halton method in the rest of the thesis. This 

method was used in conjunction with the traditional, full information maximum 

likelihood (FIML) approach as well as the CML approach; and  

(d) The Bayesian MCMC approach with data augmentation (as in McCulloch et al., 

2000).  

To undertake the comparison among these approaches, simulation experiments were 

conducted with synthetic datasets for a five-alternative MNP model with five random 

coefficients (in the rest of this thesis, the number of choice alternatives is denoted by I 

and the number of random coefficients is denoted by K; so I=5 and K=5), for scenarios 

with and without correlation among random parameters, and for both cross-sectional 

and panel data settings in an aspatial context. For panel (or repeated choice) data, five 

choice occasions per individual were simulated. Subsequently, the relative merits of the 

different estimation techniques for MNP model estimation were evaluated. 
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In addition to the above discussed methods, Heiss’s (2010) modified version of 

the GHK-SGI method was explored, where he implements the SGI in conjunction with 

an efficient importance sampling (EIS) technique in the GHK approach. However, our 

experiments with this approach were not successful, with most estimation attempts 

encountering convergence problems. After a brief description of this method in Section 

2.1.3, the reasons why the method may not have worked in the context of this study are 

discussed. 

A few important caveats here in terms of our study. In our simulation design, 

independence in the utility kernel error terms across alternatives at each choice occasion 

is assumed. Technically, in the cross-sectional case, one can then view the model as a 

mixed multinomial probit (MMNP) model for estimation in which the likelihood 

function was written as the product of univariate cumulative normal functions 

integrated over an untruncated )1( K -dimensional (i.e, 6-dimensional) integral space 

(see Equation (2) in Bhat and Sidharthan, 2011). However, the estimation is easier done 

using the traditional MNP model basis that involves only a truncated (I-1)-dimensional 

(i.e, 4-dimensional) integral space (see next section). So, the MNP model basis was 

used. In the panel case, with a general error structure with individual-specific 

heterogeneity, choice occasion heterogeneity (or intra-individual variations in taste 

sensitivity across choice occasions), as well as a general covariance structure across the 

utilities of alternatives at each choice occasion, the result is an (I-1)*5-dimensional (i.e., 

20-dimensional) integral for evaluating MNP probabilities in the likelihood function. 

In spirit, this general structure as the model basis for evaluating different estimation 

procedures has been assumed, even though simpler versions of this structure are used 

(that is, only assume individual-specific heterogeneity in the random coefficients) in 

the simulation design itself. Technically, in the panel case, assuming only individual-

specific heterogeneity simplifies the likelihood function when viewed as an MMNP 

model for estimation.1  

                                                 
1 This is because the individual likelihood function can be written as the product of univariate cumulative 

normals integrated over an inside untruncated one-dimensional integral (to obtain the choice occasion-

specific probability of the individual), followed by the product of all the choice occasion-specific 

probabilities across the choice occasions of the individual integrated over an outside untruncated K-

dimensional integral space (see Equation (4) in Bhat and Sidharthan, 2011). Obviously, this way of 

integral evaluation in our simulation setting using the MMNP model basis is much easier to estimate than 
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For all the frequentist approaches tested on panel data in this thesis (except one 

exception as discussed at the end of this paragraph), the CML estimation approach 

within the generic MNP model basis is considered, which reduces the dimensionality 

of integration by compounding (within each individual) all pairs (or couplets) of choice 

occasion probabilities. Doing so reduces the dimensionality of the MVNCD function 

to be evaluated in the CML function to )]1(2[  K  dimensions (that is, to an 8-

dimensional MVNCD function in the simulation case).  That is, all the frequentist 

approaches (the GHK-Halton, the GHK-SGI, and the MACML) are applied in the panel 

case using the CML estimation approach rather than the full maximum likelihood 

estimation approach (for the cross-sectional case, the CML and the full maximum 

likelihood estimation approaches collapse to being exactly the same).2 However, to 

examine the benefit of the CML-based approach for the GHK-Halton simulator (i.e., 

the GHK-Halton-CML approach), the performance of the traditional GHK-Halton 

simulator embedded within the full information maximum likelihood (i.e., the GHK-

Halton-FIML approach) was evaluated.  

  

                                                 
the 20-dimensional integral in the generic MNP model basis. However, the generic MNP model basis 

will be used here too as this is the conceptual (and general) basis for this study. 

2 In the CML approach for the panel case, all pairings of the couplet probabilities were considered within 

an individual (that is, all 10 pairings were considered across the five choice occasions of each individual; 

see Section 2 for details). However, the CML approach does not need all pairings. A subset of the authors 

is testing the consequence of using fewer pairings within each individual within the CML context (see 

Bhat, 2014 for additional details). Doing so can lead to substantial reductions in computation time beyond 

what is presented here for the MACML and other frequentist approaches. 
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2 THE MULTINOMIAL PROBIT MODEL 

The structure of the panel version of the MNP model is presented here. The cross-

sectional model corresponds to a panel with one choice instance per individual. Also, 

for ease in presentation, a balanced panel is assumed with all alternatives available at 

each choice instance for each individual.   

Let t  be the index for choice instance ),,...,2,1( Tt  q  be the index for 

individual ),,...,2,1( Qq  and i  be the index for choice alternatives ).,...,2,1( Ii   Next, 

write the utility that an individual q  derives from choosing alternative i  at choice 

instance t  as: 

 ,qtiqtiqqti ξU  xβ                                                                                                   (1) 

where 
qtix  is a )1( K  vector of exogenous attributes and 

qβ  is an individual specific 

)1( K  column vector of coefficients. Assume that 
qβ  is distributed multivariate 

normal with mean vector b and covariance matrix ,LLΩ   where L is a lower-

triangular Cholesky factor of Ω. That is, ,
~

qq βbβ   where ),(MVN~
~

Ω0
KKq

β  

where 
K

0  is a )1( K  vector of zeros. In this thesis, no correlation across random 

coefficients of different individuals was assumed ) , ),(Cov( qq  0qq ββ , and no 

variation in 
qβ  across different choice occasions of the same individual was assumed 

as well. In addition, the 
qtiξ  terms are assumed as IID normally distributed across 

individuals, alternatives, and choice occasions, with mean zero and variance 0.5.3  

With the notations as above, the utility expression in Equation (1) can be written 

as: 

)
~

(     where,        

)
~

(        

)
~

(

qtiqtiqqtiqtiqti

qtiqtiqqti

qtiqtiqqti

ξεε

ξ

ξU







xβxb

xβxb

xβb

                                                                     

 (2) 

                                                 
3 Some of these assumptions may be relaxed to generate a variety of spatial/local dependence or time-

varying coefficients (see Bhat, 2014).  
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Next, define the following vectors and matrices (where TIDEN  stands for the identity 

matrix of dimension T): 

,  vector])1[( ) ,..., ,(  ,  vector])1[( ) ,..., ,( 2121  TIIUUU qTqqqqtIqtqtqt UUUUU                 

  ),*5.0 ,(MVN~   vector],)1[(  ) ,..., ,( 11 IIIqtqtIqtqtqt Iξξξ IDEN0ξξ 

 vector],)1[(  ) ,..., ,( 21  TIqTqqq ξξξξ

,  where)*5.0,(MVN~
ITTITITITIq

IDENIDENIDENIDEN0 ξ

,matrix] )[(  ),...,,( ,matrix] )[(  ),...,,( 2121 KTIKI qTqqqqtIqtqtqt  xxxxxxxx and 

 vector].)1[(  ),...,,(

 and ),*5.0,(MVN~ , vector])1[(  ),...,,(

21

11





TI

Iεεε

qTqqq

IqtqtIIqtqtIqtqtqt

εεεε

xxεε IDENΩ0
 

Equation (2) may now be written in a compact form for all individuals and choice 

occasions as:  

 
qqq
εU  V , .

~
   and   where

qqqqqq
ξβxεbx V                                 (3)                                   

The distribution of  qε  may be expressed as:  ),(MVN~ qTITIq Ξ0ε  with 

 TIqqq IDENΩΞ *5.0 xx  and that of  qU may be expressed as: 

),(MVN~
qqTIq
ΞVU . 

Let individual q  be assumed to choose alternative 
qtm  at choice occasion t. Let 

 vector])1[( ),...,,( 21  Tmmm qTqqqm . To estimate the model, the likelihood was 

estimated that the utility differences (with respect to the chosen alternative) for all 

choice occasions are less than zero. To do so, define 
qM  as a   TIIT  )1(  block 

diagonal matrix, with each block diagonal being of size II  )1(  and containing the 

matrix
qtM . 

qtM  Itself is constructed as an identity matrix of size )1( I with an extra 

column of “-1” values added at the 
th

qtm  column. Then the construction of the 

likelihood expression for individual q (i.e. the joint probability of the sequence of 

choices ( qm ) made by the individual q) is given below: 
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qqqqqqqq

ITqqq

ITqq

qqL

VMBMB

0VM

0M













 and     where)(Pr       

))((Pr      

)(Pr     

)(Pr

)1(

)1(

εηη

ε

U

m

                                          (4) 

That is, 




q

q

qqq dfL

B

ηη
η

)(  where )( qf η  is the multivariate normal density function 

for a  ])1([ TIG   dimensional normal variate with mean 
)1( IT0  and covariance 

matrix   .qqqq MΞMΛ   To rewrite 
qL  in terms of the standard multivariate normal 

distribution, define 
qΛ

ω as the diagonal matrix of standard deviations of
qΛ . The vector 

qq
η

1

Λω  is standard multivariate normally distributed with correlation matrix

11* 
qq qq ΛΛ ωΛωΛ . Equation (4) may now be written as: 

];[Φ     

);(

*

*

qqG

qqGGq dL

q

q

ΛB

αΛ0

*

B
*



 



α                                                                    (5) 

where ];[ ..G  and ];[Φ ..G  are the standard MVN probability density and the MVNCD 

function of dimension G, respectively, and qq q
BωB Λ

* 1 . 

The dimensionality of the integration in Equation (5) is TI  )1( . Therefore, 

as the number of choice alternatives or the number of choice occasions per individual 

increases, the likelihood function becomes computationally expensive or in some cases 

infeasible to evaluate at a level of accuracy and smoothness needed for parameter 

estimation using traditional techniques.  

A potential solution to reduce the dimensionality of integration is to use the 

composite marginal likelihood (CML) approach, where the overall likelihood function 

is calculated as the product of low dimensional marginal densities (see Bhat, 2014). In 

the current context, the CML function for an individual q may be written as a product 

of the pairwise joint probabilities of the individual’s choices over all pairs of choice 

occasions (Bhat, 2011): 
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 


 


1

1 1

, ,Pr
T

t

T

tg

qgqtCMLq mmL                                       (6) 

To further develop the CML function above, define ,, '
ΔΛΔΛBΔB

qtgqqtgqtgqqtgqtg



 

qtgqtg
qtg

BωB
Λ



1*

, and ,11 
qtgqtg

qtgqtg ΛΛ

*
ωΛωΛ 


 where 

qtgΔ  is a )1()1(2  ITI -

selection matrix with an identity matrix of size ( 1I ) occupying the first ( 1I ) rows 

and the  thIt 1)1()1(  through  thIt )1(  columns, and another identity matrix 

of size ( 1I ) occupying the last ( 1I ) rows and the  thIg 1)1()1(  through 

 thIg )1(  columns. All other elements of qtgΔ take a value of zero. Then 
CMLqL ,

in 

Equation (6) may be written as: 

 


 


1

1 1

1)-(I2, ,Φ
T

t

T

tg

qtgqtgCMLqL *
ΛB


*                                                                           (7)    

Working with the above CML function helps reduce the dimensionality of integration 

from TI  )1(  (in the likelihood function of Equation (5)) to 21)-( I , thereby 

reducing the model estimation time substantially, and alleviating convergence and 

parameter recovery problems arising due to large dimensional integrals in the original 

likelihood function. Of course, if there is only one choice occasion, then the CML 

expression in Equation (7) collapses to the usual full-information likelihood based 

estimation approach. 

2.1 MNP Estimation Techniques 

In this section, the different approaches evaluated in this study for estimating MNP 

models are discussed. 

2.1.1  THE MAXIMUM APPROXIMATE COMPOSITE MARGINAL LIKELIHOOD 

(MACML) APPROACH 

Bhat (2011) proposed the MACML approach that utilizes a CML estimation procedure 

(Varin, 2008; Bhat, 2014) combined with an analytic approximation to evaluate the 

MVN cumulative distribution (MVNCD) function in MNP models. The analytic 

approximation he used is based on the decomposition of the multivariate integral into 

a product of conditional probabilities that are approximated analytically (see Solow, 
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1990; and Joe, 1995, though these earlier studies focused on the evaluation of a single 

MVNCD function, while Bhat proposed an approach to incorporate the analytic 

approximation in an estimation setting with multiple MVNCD function evaluations). 

There are at least two advantages of the MACML approach. First, using an analytic 

expression for the MVNCD function obviates the need for simulation. This also renders 

the approximated likelihood surface smooth and well behaved for optimization 

purposes. Second, the CML estimation technique helps in reducing large dimensional 

integrals (due to panel or repeated-choice data, or spatial/social interactions) into 

products of lower dimensional integrals. Bhat (2011) has additional detail on the 

mathematical formulation for this method.  

2.1.2 THE GHK-HALTON SIMULATOR 

The GHK approach starts with transforming the correlated error differences in an MNP 

model into linear functions of uncorrelated standard normal deviates using the 

Cholesky decomposition of the error difference covariance matrix. Doing so helps in 

recasting the MVNCD as a recursive product of univariate (conditional) cumulative 

normal distributions. This simulator is not discussed in any more detail, but refer the 

reader to Train (2009) for a good exposition of this method. The one difference from 

the discussion in Train (2009) is that the Halton approach is embedded to recursively 

simulate draws from the truncated regions (as discussed in detail in Bhat et al., 2010) 

instead of drawing from pseudo-Monte Carlo sequences in the traditional GHK-

simulation approach; therefore, the label GHK-Halton simulator. In addition, as 

indicated earlier, for panel data settings, the CML estimation approach (using Equation 

(7)) as well as the full information MSL (FIML) approach (using Equation (5)) in 

conjunction with the GHK-Halton simulator are considered.  

2.1.3 THE GHK APPROACH WITH SPARSE GRID INTEGRATION (GHK-SGI) 

Heiss and Winschel (2008) proposed a multivariate quadrature method using the 

concept of sparse grid integration (SGI) that has been gaining popularity for the 

evaluation of multidimensional integrals. SGI-based multivariate quadrature is similar 

to traditional quadrature, except that the multivariate node points at which the integrand 

is evaluated are chosen cleverly and sparsely (based on a tensor product rule from 

Smolyak, 1963) to avoid the curse of dimensionality from operating on a full grid of all 
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combinations of nodes in all dimensions. Heiss and Winschel (2008) describe this 

approach in detail and demonstrate the effectiveness of the approach in evaluating 

multidimensional integrals of up to 20 dimensions for MMNL (not MNP) parameter 

estimation. In the current chapter on MNP parameter estimation, the GHK-SGI 

approach is employed, where the SGI nodes and weights are used within the GHK 

framework, instead of drawing from Psuedo-Monte Carlo or Quasi-Monte Carlo 

sequences as in traditional GHK-simulation (see Abay, 2015 for a similar setup for 

multivariate binary probit models). Further, as indicated earlier, the CML estimation in 

conjunction with the GHK-SGI approach was used.  

2.1.4 THE GHK SIMULATOR WITH EFFICIENT IMPORTANCE SAMPLING AND 

SPARSE GRIDS  

The performance of quasi-random (e.g., Halton) sequence-based GHK simulation may 

be enhanced through the use of Efficient Importance sampling (EIS), a variance-

reduction technique based on the idea that a certain set of draws from a given sequence 

contribute more toward the approximation of the integral than other draws from the 

same sequence. If one can sample such ‘important’ values more frequently, the 

approximation will be quicker and more accurate. Hence, the key to importance 

sampling is to choose an auxiliary distribution (also called the importance sampler) 

which facilities easy sampling of important draws along with reducing the sampling 

variance (i.e., distance between the importance sampler and the initial sampler). In this 

context, Heiss (2010) proposes the use of a normally distributed importance sampler 

inside the GHK simulator along with a weighted least squares technique proposed by 

Richard and Zhang (2007) to minimize the sampling variance. Heiss (2010) provides 

Monte Carlo evidence that the resulting GHK-EIS-SGI approach offers better (and less 

computationally intensive) parameter recovery than the simulation-based GHK 

procedure in the context of panel binary probit models.   

A potential problem with the use of sparse grids in conjunction with importance 

sampling is that a significant percentage of sparse grid nodes might be associated with 

negative weights. And using negative weights within weighted least squares technique 

to minimize the variance (i.e., minimizing an objective function using negative weights) 

might lead to undue importance to the negative weights causing convergence issues 

during parameter estimation. This is a reason why our experiments to estimate MNP 
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models with Heiss’s (2010) GHK-EIS-SGI approach were not successful, with most 

estimation attempts encountering convergence issues. Two adhoc solutions were 

attempted to address this problem: (1) neglect all the SGI nodes with negative weight 

during the minimization of sampling variance, and (2) replace negative SGI weights by 

their absolute values. Neither of these approaches appears to guarantee a smooth 

estimation, as found in the current study.  Thus, the GHK-EIS-SGI approach was 

dropped in further investigations in this study. 

2.1.5 THE BAYESIAN MCMC APPROACH 

Advances in the Bayesian domain have led to efficient MCMC methods for estimating 

MNP models, particularly using the data augmentation technique. Application of the 

Bayesian method of estimation to MNP consists of a Markov chain Monte Carlo 

(MCMC) approximation of the posterior distribution of the model parameters. The 

basic idea is to augment the parameter space so that simulated realizations of the 

random utility are generated. Therefore, data augmentation in this case implies that the 

dependent variable (the utility function) becomes observable, making it possible to use 

standard Bayesian regression techniques for estimating both the population parameters 

and the random taste variations. Both McCulloch et al. (2000) and Imai and van Dyk 

(2005) follow this approach. However, the McCulloch et al. (2000) method 

incorporates the normalization for utility scale after the estimation is done. Imai and 

van Dyk’s (2005) method improved on this by considering the normalization for utility 

scale explicitly at the beginning of estimation (similar to the frequentist approach). In 

the current study, the performance of the McCulloch et al. (2000) method is evaluated 

and the Imai and van Dyk (2005) approach is left for future research.  
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3 DESIGN OF THE SIMULATION EXPERIMENT 

MNP models with five alternatives and five independent variables (and five random 

coefficients, one on each of the independent variables) are considered for the following 

four data generation processes: (a) Cross-sectional data without correlation among 

random parameters, (b) Cross-sectional data with correlation among random 

parameters, (c) Panel data without correlation among random parameters, and (d) Panel 

data with correlation among random parameters. 

Consider a “true” or underlying probit model according to the utility function: 

qtiqtiqqtiU  xβ  as in Equation (1). For all the datasets generated in this study, the 

values of each of the five independent variables 
qtix  for the alternatives are drawn from 

a standard normal distribution. Random coefficients are allowed on all the five 

independent variables in . qtix  That is, 
qβ  is a vector of normally distributed 

coefficients with mean .0}2.0,1.0,-2{1.5,-1.0, b  and covariance matrix Ω . For the 

case of uncorrelated random parameters, a diagonal covariance matrix is assumed with 

all the diagonal elements set to a value of 1, entailing the estimation of five diagonal 

elements (albeit all are of value 1). For the case of correlated random parameters, the 

matrix Ω  has the following positive definite non-diagonal specification with five 

diagonal elements and five non-zero off-diagonal elements, entailing the estimation of 

fifteen covariance matrix parameters:  































00.100.0   00.000.0   00.0  

00.000.1   33.050.075.0  

00.033.0   00.125.0   25.0  

00.050.025.000.1   50.0

00.075.0   25.050.0 00.1   

Ω  

Finally, each kernel error term qti  (q = 1, 2, …, Q; t = 1, 2, 3, ..., T; i = 1, 2, …, I) is 

generated from a univariate normal distribution with a variance of 0.5.  

For the cross-sectional datasets, a sample of 2500 realizations is generated of 

the five independent variables corresponding to 2500 individuals. For the panel 

datasets, a sample of 2500 realizations was generated of the five independent variables 

corresponding to a situation where 500 individuals each have five choice occasions for 

a total of 2500 choice occasions. These are combined with different realizations of qβ  
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and 
qti  terms to compute the utility functions as in Equation (1) for all individuals and 

choice occasions. Next, for each individual and choice occasion, the alternative with 

the highest utility for each observation is identified as the chosen alternative. This data 

generation process is undertaken 200 times with different realizations of the vector of 

coefficients 
qβ  and error term 

qti  to generate 200 different datasets for each of the 

four variants of MNP.  

For each of the above 200 datasets, the MNP was estimated using each of the 

estimation approaches. For the MACML approach, a single random permutation was 

used as discussed in Section 2.1.1. For estimating models with the GHK-Halton 

approach, 500 Halton draws were used. For the GHK-SGI approach, to keep the 

estimation times similar to the GHK-Halton approach, the MVN integral was computed 

over 351 and 589 supports points for cross-sectional and panel cases, respectively. For 

the Bayesian approach, 50,000 MCMC draws were used for all four cases with a burn-

in of the first 500 elements of the chain.4 Finally, for all the three frequentist methods, 

standard errors of parameter estimates (for each dataset) were computed using the 

Godambe (1960) sandwich estimator ( 11  JHH , where H is the Hessian matrix and J 

is the sandwich matrix). The Hessian and sandwich matrices were computed at the 

convergent parameters using analytic expressions that a. For the MCMC method, the 

standard errors  of the parameter estimates (for each dataset) were calculated as the 

standard deviation of the parameter’s posterior distribution at convergence. 

To measure the performance of each estimation method, performance metrics 

were computed as described below. 

                                                 
4 The issue of the number of iterations in the simulation chain prior to convergence to the joint posterior 

distribution of parameters (that is, the “burn-in”) has received quite a bit of attention in the Bayesian 

estimation literature, with no clear consensus regarding the number of iterations that should be considered 

as “burn-in”. While some studies (see, for example, Johndrow et al., 2013, Burgette and Reiter, 2013, 

Wang et al., 2014) use a specific number (such as 1,000 or 3,000 or 10,000) for burn-in iterations, others 

(see, for example, Zhang et al., 2008) use a specific percentage to arrive at this number (such as 1% or 

10% of the total number of iterations of the sampler used in the estimation). Some studies (see, for 

example, Gelman and Shirley, 2011) even question the use of burn-in iterations. While this “burn-in” 

issue is not addressed in the current study, we varied the burn-in from 500 to 1000 to 10,000 for a select 

sample of estimation runs across different data generation cases, and found little impact on the metrics 

used to assess accuracy and precision of parameter recovery. 
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(a) For each parameter, compute the mean of its estimates across the 200 datasets 

to obtain a mean estimate. Compute the absolute percentage (finite sample) 

bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB .  

If a true parameter value is zero, the APB is computed by taking the difference 

of the mean estimate from the true value (= 0), dividing this difference by the 

value of 1 in the denominator, and multiplying by 100.                                                                        

(b) For each parameter, compute the standard deviation of the parameter estimate 

across the 200 datasets, and label this as the finite sample standard error or 

FSSE (essentially, this is the empirical standard error or an estimate of the 

standard deviation in finite samples). For the Bayesian MCMC method, the 

FSSEs are calculated as the standard deviation of the mean of the posterior 

estimates across different datasets.  

(c) For each parameter, compute the standard error of the estimate using the 

Godambe sandwich estimator. Then compute the mean of the standard error 

across the 200 datasets, and label this as the asymptotic standard error or 

ASE (this is the standard error of the distribution of the estimator as the sample 

size gets large). For the Bayesian MCMC method, the ASEs are computed as 

the standard deviation of parameter’s chain at the end of the convergence and 

then averaged across the 200 datasets.   

(d) For each parameter, compute the square root of mean squared error (RMSE) 

as  

 22)( FSSEValueTrueEstimateMeanRMSE   

(e) For each parameter, compute the coverage probability (CP) as below:  

 



N

r

r

X

r

XX

r

X

r

X
ttI

N 1

)ˆ(se*ˆ)ˆ(se*ˆ1
CP 


, 

where, CP is the coverage probability, r

X̂  is the estimated value of the 

parameter in dataset r, X  is the true value of the parameter, )ˆ(se r

X  is the 

asymptotic standard error (ASE) of the parameter in the dataset r, [.]I  is an 

indicator function which takes a value of 1 if the argument in the bracket is true 
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(otherwise 0), N is the number of datasets (200), and t  is the t-statistic value 

for a given confidence level .100)1(   CP values were computed for 80% 

nominal coverage probability (i.e., 20.0 ). CP is the empirical probability 

that a confidence interval contains the true parameter (i.e., the proportion of 

confidence intervals across the 200 datasets that contain the true parameter). CP 

values smaller than the nominal confidence level (80% in our study) suggest 

that the confidence intervals do not provide sufficient empirical coverage of the 

true parameter. 

(f) Store the run time for estimation, separately for convergence of the parameter 

estimates and for calculation of the ASE values necessary for inference.  
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4 PERFORMANCE EVALUATION RESULTS 

Table 1 presents an overall summary of the performance of all the estimation 

approaches considered in this study – MACML, GHK-Halton, GHK-SGI, and MCMC 

– for all four cases of the MNP data generation process – cross-sectional uncorrelated, 

cross-sectional correlated, panel uncorrelated, and panel correlated.5 Note that two 

different columns are reported for the GHK-Halton method for panel data settings. One 

of them corresponds to the traditional GHK-Halton-FIML approach and the other 

corresponds to the GHK-Halton-CML approach. 

For each of the estimation methods and data settings, the first block of rows in 

Table 1 presents the average APB value (across all parameters), as well as the average 

APB value computed separately for the mean (the b vector) parameters and the 

covariance matrix (the Ω  matrix) elements. The second and third blocks provide the 

corresponding information for the FSSE and ASE measures. The fourth block provides 

the RMSE and CP measures for all model parameters, and the final block provides the 

average model estimation run times across all 200 datasets, split by the time for 

convergence to the final set of parameters and the time needed for ASE computation in 

the frequentist methods. Several key observations from this table are discussed in the 

next few sections. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5 The detailed results for all the cases are available in the appendix at the end of the thesis as well as an 

online appendix at: http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/SimEval/Appendix.pdf.  

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/SimEval/Appendix.pdf
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Table 1: Overall summary of the simulation results 

  

Cross-sectional data, uncorrelated 

random coefficients 

Cross-sectional data, correlated 

random coefficients 
Panel data, uncorrelated random coefficients Panel data, correlated random coefficients 

MACML 
GHK-

Halton 

GHK-

SGI   
MCMC MACML 

GHK-

Halton 

GHK-

SGI   
MCMC MACML 

GHK-

Halton 

FIML 

GHK-

Halton 

CML 

GHK-

SGI  

CML 

MCMC MACML 

GHK– 

Halton 

FIML 

GHK-

Halton 

CML 

GHK-

SGI  

CML 

MCMC 

Absolute Percentage Bias (APB) 

All 

parameters 
2.64 3.89 3.05 3.45 3.16 4.25 3.72 16.43 3.08 7.53 4.49 28.15 8.23 3.62 8.43 6.14 33.09 20.42 

Mean 

parameters 
0.65 1.25 2.27 4.23 0.71 0.85 0.8 1.12 1.63 3.42 2.13 22.35 6.48 2.23 3.86 2.89 24.39 3.45 

Covariance 

parameters  
3.30 4.77 3.31 3.19 3.98 5.38 4.69 21.53 3.56 8.90 5.25 30.08 8.81 4.08 9.95 7.22 35.99 26.08 

Finite Sample Standard Error (FSSE) 

All 

parameters 
0.33 0.46 0.42 0.24 0.30 0.34 0.28 0.33 0.26 0.25 0.23 0.16 0.18 0.18 0.21 0.21 0.12 0.21 

Mean 

parameters 
0.22 0.28 0.26 0.25 0.28 0.32 0.26 0.35 0.19 0.21 0.19 0.14 0.17 0.19 0.22 0.22 0.13 0.23 

Covariance 

parameters  
0.37 0.52 0.47 0.24 0.31 0.35 0.29 0.32 0.28 0.26 0.24 0.16 0.18 0.18 0.20 0.20 0.12 0.2 

Asymptotic Standard Error (ASE) 

All 

parameters 
0.33 0.46 0.44 0.23 0.25 0.36 0.27 0.28 0.22 0.25 0.23 0.16 0.17 0.17 0.22 0.20 0.16 0.19 

Mean 

parameters 
0.24 0.30 0.28 0.23 0.27 0.31 0.28 0.31 0.16 0.20 0.19 0.15 0.16 0.20 0.19 0.21 0.17 0.18 

Covariance 

parameters  
0.36 0.51 0.49 0.23 0.24 0.38 0.26 0.27 0.24 0.27 0.24 0.16 0.17 0.16 0.23 0.19 0.15 0.19 

RMSE and Coverage Probability (CP) 

RMSE  0.345 0.466 0.429 0.360 0.309 0.429 0.373 0.541 0.291 0.384 0.318 0.560 0.386 0.316 0.395 0.343 0.631 0.507 

CP80% 92.12 89.95 90.47 90.14 88.28 86.49 86.12 57.25 80.42 63.73 74.01 52.46 59.23 75.86 58.17 71.53 49.55 55.46 

Computation Time (minutes) 

Convergence 

time 
0.72 1.06 0.86 5.31 2.07 2.79 2.66 6.44 5.88 13.42  6.75 14.48 7.02 8.73 24.53 9.76 27.36 8.97 

ASE 

computation 

time 

0.31 0.33 0.31 -- 0.41 0.38 0.36 -- 12.98 17.23  13.85 18.29 -- 14.36 20.45  17.53 22.01 -- 

Total runtime 1.03 1.39 1.17 5.31 2.58 3.17 3.02 6.44 18.86 30.65  20.60 32.77 7.02 23.09 44.98  27.29 49.37 8.97 
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4.1 Accuracy of Parameter Recovery 

The APB measures in the first block of Table 1 provide several important insights. The 

MACML approach outperforms other inference approaches for all the four cases of data 

generation. This underscores the superiority of the MACML approach in accurately 

recovering model parameters. In all inference approaches, the overall APB increases as we 

move from the cross-sectional to panel case, and from the uncorrelated to the correlated 

case. But, even here, the MACML shows the least APB dispersion among the many data 

generation cases, while the MCMC and GHK-SGI approaches show the highest dispersions 

among the data generation cases. The most striking observation is the rapid degradation of 

the MCMC approach between the uncorrelated and correlated random coefficients cases, 

for both cross-sectional and panel data sets. The MCMC has the worst APB of all inference 

approaches (and by a substantial margin) in the correlated random coefficients setting in 

the cross-sectional case, and the second worst APB in the correlated random coefficients 

in the panel case. In terms of the performance of the GHK-SGI approach, the most striking 

observation is the substantially poor performance of the GHK-SGI approach (in 

combination with the CML approach) in the panel cases relative to the performance of the 

GHK-SGI approach in the cross-sectional cases.6  

                                                 
6 This significant drop in the GHK-SGI performance from the cross-sectional to panel case may be attributed 

to one or more of three different factors: (1) due to an increase in the dimension of integration (recall that the 

panel models using the CML approach in this study involve 8-dimensional integrals, while the cross-sectional 

models involve 4-dimensional integrals), (2) due to the change in the nature of the dataset (cross-sectional to 

panel), and (3) due to any potential difficulty of using SGI approach in conjunction with the CML method. 

To disentangle these effects, additional simulation experiments were conducted with the GHK-SGI method. 

Specifically, models were estimated on simulated data for cross-sectional MNP with uncorrelated random 

parameters for seven choice alternatives (dimension of integration equals 6) and 9 choice alternatives 

(dimension of integration equals 8), respectively, with the same simulation configuration as discussed earlier. 

The overall APB values for the 6 and 8 dimensional integration cases (with the new cross-sectional data) 

were 6.59 and 12.30, respectively (and the overall APB for the 4 dimensional uncorrelated cross-sectional 

case is 3.05; see Table 1). These results indicate that the ability of the GHK-SGI method to recover true 

parameters degrades quickly after 4 or 5 dimensions (another recent study by Abay, 2015 confirms this trend). 

It is worth noting, however, that the panel data model integrals of 8-dimensions (as in Table 1) show a much 

poorer performance (APB values are around 30%) compared to cross-sectional data models of the same 

dimension. This could be due to evaluation of a greater number of 8 dimensional integrals in the panel 

datasets estimated using CML approach. That is, for a cross-sectional dataset with 2500 observations and 9 

alternatives, a total of twenty-five hundred 8-dimensional integrals were evaluated, while for a panel dataset 
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The APB values from the GHK-Halton approach for the cross-sectional cases are 

higher than (but in the same order of APB) as the other two frequentist (MACML and 

GHK-SGI) approaches for the cross-sectional cases. For the panel cases, as already 

discussed, an FIML version (labeled as GHK Halton-FIML in Table 1) as well as a CML 

version (labeled as GHK Halton-CML) of the GHK-Halton approach is implemented. Both 

these GHK Halton versions provide an APB that is higher than the MACML approach, but 

are superior to the GHK-SGI and MCMC approaches in terms of recovering parameters 

accurately. Between the FIML and CML versions of this GHK-Halton approach, the latter  

approach recovers the parameters more accurately; the APB for the GHK-Halton-FIML 

simulator is 30-50% higher than the GHK-Halton CML simulator. This is a manifestation 

of the degradation of simulation techniques to evaluate the MVNCD function as the 

number of dimensions of integration increases. The results clearly show the advantage of 

combining the traditional GHK simulator with the CML inference technique for panel data, 

although the MACML approach still dominates over the GHK-Halton CML approach.  

The split of the APB by the mean and covariance parameters follow the overall 

APB trends rather closely. Not surprisingly, except for the MCMC approach with 

uncorrelated cross-sectional data, it is more difficult to recover the covariance parameters 

accurately relative to the mean parameters. For the frequentist methods, this is a reflection 

of the appearance of the covariance parameters in a much more complex non-linear fashion 

than the mean parameters in the likelihood function, leading to a relatively flat log-

likelihood function for different covariance parameter values and more difficulty in 

accurately recovering these parameters. But the most noticeable observation from the mean 

and covariance APB values is the difference between these for the MCMC method with 

correlated random coefficients. In fact, it becomes clear now that the substantially higher 

overall APB for the MCMC approach (relative to the MACML and GHK-Halton 

                                                 
with 500 observations with 5 choice occasions, a total of five thousand 8-dimensional integrals were 

evaluated. Therefore, it appears that the performance of the SGI method degrades quickly with the 

dimensionality of integration as well as with the number of integrals evaluated (in this case the number of 8-

dimensional integrals doubled due to the CML approach). However, further research is required to fully 

disentangle the impact of the nature of the dataset and dimension of integration on the performance of the 

SGI method.  
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approaches) for the correlated random coefficients case is primarily driven by the poor 

MCMC ability to recover the covariance parameters, suggesting increasing difficulty in 

drawing efficiently from the joint posterior distribution of parameters (through a sequence 

of conditioning mechanisms) when there is covariance in the parameters.   

In summary, from the perspective of recovering parameters accurately, the 

MACML outperforms other approaches for all the four data generation cases. The GHK-

Halton also does reasonably well across the board, with the GHK-Halton-CML doing better 

than the GHK-Halton-FIML for the panel cases. The GHK-SGI is marginally better than 

the GHK-Halton for the cross-sectional cases, but, when combined with the CML 

approach, is the worst in the panel cases. The MCMC approach’s ability to recover 

parameters is in the same range as the approaches involving the GHK-Halton for the 

uncorrelated random coefficients cases, but deteriorates substantially in the presence of 

correlated random coefficients (note also that 50,000 iterations are used in the MCMC 

approach in the current study, more than the 5,000-15,000 iterations typically used in 

earlier MCMC estimations of the MNP; see, for example, Chib et al., 1998; Johndrow et 

al., 2013; Jiao and van Dyk, 2015). 

4.2 Precision in Estimation Across Approaches 

The standard errors are considered next.. The FSSE values are useful for assessing the 

empirical (finite-sample) efficiency (or precision) of the different estimators, while the 

ASE values provide efficiency results as the sample size gets very large. The ASE values 

essentially provide an approximation to the FSSE values for finite samples. Table 1 

indicates that the MCMC estimator has the advantage of good efficiency (lowest FSSE and 

ASE) for the cross-sectional, uncorrelated random coefficients case, but the GHK-SGI 

wins the finite-sample efficiency battle (lowest FSSE) for all the remaining three cases.7 In 

                                                 
7 While the sampling distribution (whose standard deviation is represented by FSSEs) is not a Bayesian 

concept, one may invoke the Bernstein–von Mises Theorem (see Train, 2009, pp. 288) that the posterior 

distribution of each parameter converges to a normal distribution with the same variance as that of the 

maximum likelihood estimator (frequentist estimator, to be more inclusive) to use the FSSE values for 

assessing the empirical efficiency of the MCMC estimator. 
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terms of ASE, the MACML has the lowest value for the cross-sectional correlated case, 

while the GHK-SGI has the lowest value for the panel cases. Such a high precision in the 

estimates in the GHK-SGI, however, is not of much use because of the rather high finite 

sample bias (APB) in the parameter estimates of the GHK-SGI approach. In all cases, the 

MACML does very well too in terms of closeness to the approach with the lowest FSSE 

and ASE. Of particular note is that the MACML estimator’s efficiency in terms of both 

FSSE and ASE is better than the traditional frequentist GHK-Halton simulator for all cases, 

except in the panel data-uncorrelated random coefficients case. Additionally, the MACML 

estimator’s efficiency, while not as good as that of the MCMC in the two uncorrelated 

coefficients cases, is better than the MCMC for the two correlated coefficients cases.  

For all the frequentist methods, the FSSE and ASE values across all parameters are 

smaller in the presence of correlation among random parameters than without correlation. 

As can be observed from the third rows of the tables under FSSE and ASE in Table 1, this 

pattern is driven by the smaller FSSE and ASE values for the covariance parameters in the 

correlated case relative to the non-correlated case. As discussed in Bhat et al. (2010), it 

may be easier to retrieve covariance parameters with greater precision at higher values of 

covariance because, at lower correlation values, the likelihood surface tends to be flat, 

increasing the variability in parameter estimation. This trend, however, reverses for the 

MCMC method, with the FSSE and ASE values being higher in data settings with 

correlated random parameters than those with non-correlated random parameters, 

presumably for the same reason that the APB values in the MCMC method are very high 

in the correlated coefficients case relative to the uncorrelated coefficients case. Across all 

inference approaches, a consistent result is that the FSSE and ASE are smaller for the mean 

parameters than the covariance parameters. Also, the closeness of the FSSE and ASE 

values for the frequentist approaches suggest that the inverse of the Godambe sandwich 

estimator serves as a good approximation to the finite sample efficiency for the sample size 

considered in this study. The FSSE and ASE are also close for the MCMC approach.  

Overall, in terms of estimator efficiency, it appears that all inference approaches do 

reasonably well. There are also some more general takeaways from the examination of the 
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FSSE and ASE values. First, while the full-information maximum likelihood approach is 

theoretically supposed to be more asymptotically efficient than the limited-information 

composite marginal likelihood approach (see a proof for this in Bhat, 2015), this result does 

not necessarily extend to the case when there is no clear analytically tractable expression 

for the probabilities of choice in a discrete choice model. This is illustrated in the 

FSSE/ASE estimates from the GHK Halton-FIML and GHK Halton-CML approaches for 

panel data in Table 1, with the latter proving to be a more efficient estimator than the 

former. At a fundamental level, when any kind of an approximation is needed (either 

through simulation methods or analytically) for the choice probabilities, the efficiency 

results will also depend on how accurately the objective function (the log-likelihood 

function in FIML and the composite log-likelihood in CML) can be evaluated. The CML 

approach has lower dimensional integrals, which can be evaluated more accurately than 

the higher dimensional integrals in the FIML approach, and this can lead to a more efficient 

CML estimator (as is the case in Table 1). Second, the MACML estimator’s efficiency is 

consistently better than that of the GHK-Halton based simulator for the range of data 

settings considered in this study. In combination with the superior performance of the 

MACML in terms of parameter recovery, this lends reinforcement to our claim that 

accuracy of evaluating the objective function (as a function of the parameters to be 

estimated) does play a role in determining estimator efficiency. Third, while Bayesian 

estimators are typically invoked on the grounds of good small sample inference properties 

in terms of higher efficiency relative to frequentist estimators in finite samples, our results 

indicate that, at least for the sample size considered in this study, this all depends on the 

context and is certainly not a foregone conclusion empirically. For instance, while the 

MCMC approach leads to lower FSSE/ASE values than the MACML approach for the 

uncorrelated coefficients cases, the MACML leads to lower FSSE/ASE values than the 

MCMC approach for the correlated coefficients cases. 
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4.3 Root Mean Squared Error (RMSE) and Coverage Probability (CP) 

The RMSE measure combines the bias and efficiency considerations into a single metric, 

as discussed in Section 3. The results indicate that the MACML approach has the lowest 

RMSE values for all the four data generation cases. The GHK-SGI approach is the next 

best for the cross-sectional cases, but is the worst (and by a substantial margin) for the 

panel cases. The MCMC approach and the GHK-Halton approach are comparable to each 

other in the cross-sectional uncorrelated coefficients (first) case in Table 1, and both of 

these are also comparable to the performance of the GHK-SGI approach in this first case. 

For the panel uncorrelated coefficients (third) case, the MCMC has an RMSE value 

comparable to the FIML version of the GHK-Halton, but fares clearly worse than the CML 

version of the GHK-Halton. Of course, for both the correlated coefficients cases (second 

and fourth cases), the MCMC is not a contender at all based on our analysis.  

The coverage probability (CP) values help assess how the parameter estimates 

spread about the true parameter value. As one may observe from Table 1, all approaches 

provide good empirical coverage of the 80% nominal confidence interval in the cross-

sectional uncorrelated case (all the values are above 80%). The MCMC falls short in the 

cross-sectional correlated random coefficients case. For the panel cases, the MACML and 

the GHK-Halton CML approaches are the only two that cover or come very close to 

covering the 80% confidence interval, with the MACML clearly providing better coverage 

than the GHK-Halton CML. These results are generally in line with the RMSE value 

trends.  

Overall, based on the RMSE and CP values, the MACML approach is the clear 

winner across all data generation cases. In terms of stability in performance across all cases, 

the GHK-Halton turns out to be the second best inference approach in our results (when 

used in combination with the CML approach in the two cases of panel data). 

4.4 Computation Time 

The last block of Table 1 provides model estimation times (or run times) for different 

estimation methods explored in this study. The total run time for the frequentist methods 
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include both the time taken for parameter convergence as well as for the computation of 

asymptotic standard errors (ASEs) using the Godambe sandwich estimator. The run times 

reported for the MCMC approach does not include ASE computation; instead, it involves 

a simple standard deviation of the posterior distribution. The computer configuration used 

to conduct these tests is: Intel Xeon® CPU E5-1620 @3.70GHz, Windows 7 Enterprise 

(64 bit), 16.0 GB RAM. Also, all the estimations were performed using codes written in 

the Gauss matrix programming suite to ensure comparability.  

The results in Table 1 shows that the convergence times for the MACML approach 

is the lowest for the cross-sectional datasets, with the time for ASE computation being 

about half of the convergence time for the uncorrelated random coefficients case and a fifth 

of the convergence time for the correlated random coefficients case. The other two 

frequentist approaches take about the same time as the MACML. However, the time for 

the Bayesian MCMC approach is substantially higher in the cross-sectional cases (about 

five times the MACML estimation time for the uncorrelated coefficients case and 2.5 times 

the MACML estimation time for the correlated coefficients case). As also observed by 

Train (2009), little change was found in the MCMC estimation time between the 

uncorrelated and correlated coefficients cases.  

For the panel cases, the MACML is the fastest approach in terms of convergence 

time, though the GHK-Halton implemented with the CML approach has a comparable 

convergence time. The other two frequentist approaches (GHK-Halton with FIML and the 

GHK-SGI CML) have a much higher convergence time relative to the MACML and GHK-

Halton CML approaches. The MCMC convergence times are in the same range as the 

MACML and GHK-Halton-CML. However, the MCMC has the advantage that the ASE 

estimates of parameters are obtained directly from the posterior distribution of parameters 

at convergence. For the frequentist methods, however, the ASE computation involves the 

computation of the inverse of the Godambe information matrix, which itself involves the 

computation of the Hessian matrix that is time consuming (the ASE computation time for 

the MACML approach, for example, is about twice the time needed for parameter 

convergence in the two panel cases). When the ASE computation time is added in for the 
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frequentist methods, the MCMC has a speed advantage by a factor of about 2.5 relative to 

the MACML. The problem, though, is that the MCMC fares much more poorly compared 

to the MACML (and GHK-Halton CML) approaches for panel data in terms of parameter 

recovery accuracy and precision, as evident in the RMSE and CP measures.   
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5 SUMMARY AND CONCLUSIONS 

Multinomial Probit (MNP) models are gaining increasing interest for choice model 

estimation in transportation and other fields. This study has presented an extensive 

simulation experiment to evaluate different estimation techniques for MNP models. While 

one cannot make conclusive statements applicable for all possible data generation settings 

in terms of number of choice alternatives, correlation structures, and sample sizes, the 

simulations undertaken do provide some key insights that could be used to guide MNP 

estimation. 

Overall, taking all the three metrics (accuracy and precision of parameter recovery 

and estimation time) into consideration, the MACML approach provided the best 

performance for the data generation settings examined in this study. These results indicate 

the promise of this approach for estimating MNP models in different settings. The GHK-

Halton simulation, when used in conjunction with the CML approach (for panel models), 

yielded the second best performance in recovering the parameters. On the other hand, the 

bias in parameter estimation was more than double that of the MACML approach when the 

GHK-Halton simulator was used in its original FIML form for panel data models. In fact, 

the GHK-Halton when combined with the FIML estimator for panel data sets was also less 

efficient than the GHK-Halton in conjunction with the CML estimator, highlighting the 

fact that the FIML estimator’s theoretical efficiency superiority over the CML estimator 

may not get manifested in empirical samples when the objective function to be maximized 

is analytically intractable. In such cases, the accuracy of evaluating the objective function 

is also important. In the current study, the CML involves lower-dimensional integrals than 

the FIML, and the ability to evaluate the lower dimensional integrals more accurately leads 

to more precision in the CML estimator relative to the FIML estimator. These results 

highlight the potential for gainful applicability of the CML approach with the traditional 

GHK simulator.  

The GHK-based sparse grid integration approach performed well in the cross-

sectional cases, but very poorly for panel datasets when combined with the CML approach. 

These results suggest that the approach may not be applicable for settings with higher than 
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5 dimensional integrals or panel data settings (see Abay, 2015 for a similar finding). The 

MCMC approach performed very well for the cross-sectional data without correlation in 

the parameters and appears to be a good alternative approach to use for such a data setting. 

But, even in this case, the MACML approach dominates in terms of accuracy and precision 

of parameter recovery, as well as has a speed advantage by a factor of about five relative 

to the MCMC approach. Our simulations also indicate a notable limitation of the MCMC 

approach in recovering MNP parameters in cases where the random coefficients are 

correlated (both in the cross-sectional and panel settings). This finding needs to be further 

investigated to examine ways to improve the MCMC method in the presence of correlated 

random coefficients.  

The results in this study are encouraging in that the emerging methods – MACML, 

CML, and MCMC – are making the estimation of MNP models easier and faster than 

before. But there is a need for continued simulation experimentation with these alternative 

methods to provide more general guidance under a wider variety of data settings, including 

different numbers of alternatives, different sample sizes, different numbers of repeated 

choice occasions in the panel case, a range of correlation structures across coefficients and 

choice occasions, and different numbers of exogenous variables and types of exogenous 

variables (including discrete and binary variables). Also, there are a variety of potential 

ways to improve upon the MACML and MCMC approaches in particular, such as 

alternative analytic approximations for the MVNCD function (see Trinh and Genz, 2015) 

in the MACML, and reducing MACML computation time by sampling pairings for an 

individual rather than using the full set of pairings as done here. Finally, future research 

needs to investigate ways to improve the MCMC performance in correlated random 

coefficients cases and consider Imai and van Dyk’s (2005) method of scaling utilities at 

the beginning of the estimation.  
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Appendix 

Table 2: Evaluation of the ability to recover true parameters for the cross-sectional diagonal case 

 
 

 

RMSE RMSE RMSE RMSE

Mean 
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Error
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Error

Root Mean 
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Error
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Square 

Error

Mean 

Estimate
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Asymptotic 
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Error
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Root Mean 

Square 

Error

Mean 

Estimate

Absolute 
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Bias
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Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

b 1 1.500 1.510 0.68% 0.202 0.183 0.209 1.518 1.23% 0.238 0.221 0.235 1.535 2.32% 0.186 0.174 0.196 1.442 3.89% 0.315 0.354 0.164

b 2 -1.000 -0.993 0.68% 0.274 0.252 0.264 -1.013 1.33% 0.369 0.346 0.347 -0.977 2.32% 0.334 0.299 0.308 -0.957 4.29% 0.175 0.189 0.258

b 3 2.000 1.988 0.60% 0.321 0.299 0.327 1.976 1.21% 0.304 0.290 0.307 1.956 2.18% 0.265 0.250 0.278 2.093 4.65% 0.213 0.229 0.233

b 4 1.000 1.006 0.61% 0.155 0.147 0.160 0.987 1.31% 0.346 0.306 0.309 1.021 2.11% 0.330 0.318 0.326 0.955 4.48% 0.143 0.148 0.274

b 5 -2.000 -2.014 0.71% 0.238 0.225 0.257 -1.977 1.16% 0.262 0.241 0.263 -2.048 2.41% 0.287 0.265 0.293 -1.923 3.85% 0.295 0.306 0.246

Ω11 1.000 1.028 2.81% 0.343 0.337 0.350 0.953 4.67% 0.536 0.578 0.574 0.962 3.77% 0.485 0.450 0.459 1.032 3.22% 0.146 0.147 0.385

Ω12 0.000 -0.030 3.04% 0.457 0.458 0.467 0.053 5.34% 0.579 0.599 0.593 0.034 3.41% 0.524 0.498 0.504 -0.027 2.71% 0.180 0.188 0.423

Ω13 0.000 0.040 3.96% 0.281 0.296 0.302 0.046 4.58% 0.480 0.496 0.491 0.034 3.44% 0.457 0.419 0.424 -0.038 3.83% 0.212 0.222 0.356

Ω14 0.000 -0.039 3.86% 0.405 0.397 0.405 0.046 4.58% 0.530 0.525 0.520 -0.028 2.85% 0.528 0.506 0.512 0.029 2.90% 0.303 0.317 0.430

Ω15 0.000 0.030 3.00% 0.279 0.299 0.305 -0.050 5.01% 0.529 0.563 0.558 0.028 2.85% 0.487 0.452 0.457 0.034 3.38% 0.240 0.252 0.384

Ω22 1.000 0.971 2.94% 0.417 0.427 0.440 1.047 4.72% 0.484 0.494 0.492 1.035 3.48% 0.510 0.504 0.513 0.965 3.53% 0.189 0.198 0.430

Ω23 0.000 -0.039 3.86% 0.448 0.460 0.469 0.050 5.01% 0.460 0.477 0.472 0.028 2.78% 0.544 0.526 0.532 0.026 2.55% 0.300 0.313 0.446

Ω24 0.000 0.031 3.14% 0.318 0.329 0.336 0.054 5.42% 0.494 0.526 0.520 -0.037 3.71% 0.421 0.408 0.412 -0.035 3.48% 0.289 0.306 0.346

Ω25 0.000 0.031 3.10% 0.333 0.327 0.334 0.044 4.39% 0.411 0.435 0.430 0.031 3.08% 0.449 0.442 0.448 0.036 3.63% 0.210 0.212 0.376

Ω33 1.000 0.962 3.80% 0.319 0.341 0.352 1.041 4.10% 0.465 0.491 0.490 1.032 3.21% 0.442 0.400 0.409 1.037 3.67% 0.161 0.158 0.344

Ω34 0.000 0.029 2.90% 0.283 0.281 0.287 0.040 4.01% 0.598 0.600 0.594 -0.034 3.38% 0.572 0.531 0.537 -0.027 2.68% 0.184 0.186 0.451

Ω35 0.000 0.031 3.10% 0.369 0.362 0.370 -0.049 4.87% 0.449 0.456 0.452 0.037 3.67% 0.523 0.515 0.521 0.034 3.45% 0.320 0.323 0.438

Ω44 1.000 1.026 2.64% 0.328 0.334 0.346 0.955 4.53% 0.521 0.529 0.526 0.968 3.24% 0.565 0.558 0.568 0.974 2.58% 0.203 0.208 0.476

Ω45 0.000 -0.033 3.27% 0.455 0.446 0.456 0.053 5.29% 0.563 0.554 0.549 -0.034 3.41% 0.490 0.463 0.469 0.027 2.71% 0.258 0.273 0.393

Ω55 1.000 1.039 3.86% 0.424 0.453 0.467 1.051 5.09% 0.581 0.600 0.597 0.966 3.38% 0.411 0.406 0.414 0.965 3.54% 0.306 0.297 0.348

- 2.64% 0.330 0.333 0.345 - 3.89% 0.458 0.460 0.466 - 3.05% 0.438 0.418 0.429 - 3.45% 0.232 0.238 0.364

Parameter

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates

True 

Value

MACML Method GHK-MSL Method

0.19

100% 100%

Covariance matrix of the β  vector

Mean values of the β  vector

5.31

1.06

%  of Runs 

Converged

1.17

MCMC Method

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates

GHK-SGI Method

100%

1.39

0.27

Overall Mean Value 

Across Parameters

Mean Time

Std. dev of Time

1.03

0.14

100%
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Table 3: Evaluation of the ability to recover true parameters for the cross-sectional non-diagonal case 
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Standard 
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Root Mean 

Square 

Error

b 1 1.500 1.511 0.76% 0.346 0.369 0.378 1.513 0.88% 0.301 0.306 0.390 1.487 0.84% 0.364 0.328 0.439 1.482 1.18% 0.373 0.419 0.696

b 2 -1.000 -1.008 0.77% 0.236 0.234 0.240 -0.991 0.87% 0.311 0.318 0.397 -1.009 0.86% 0.218 0.209 0.280 -0.989 1.10% 0.259 0.291 0.482

b 3 2.000 1.986 0.71% 0.288 0.301 0.321 2.018 0.88% 0.334 0.353 0.457 1.984 0.81% 0.296 0.280 0.390 2.022 1.08% 0.222 0.243 0.438

b 4 1.000 0.993 0.66% 0.190 0.188 0.195 0.992 0.77% 0.302 0.323 0.403 0.992 0.77% 0.229 0.209 0.279 0.989 1.12% 0.391 0.442 0.726

b 5 -2.000 -2.013 0.67% 0.310 0.337 0.357 -1.983 0.86% 0.321 0.333 0.435 -2.015 0.74% 0.306 0.288 0.399 -2.023 1.13% 0.320 0.363 0.620

Ω11 1.000 1.043 4.34% 0.286 0.394 0.398 0.937 6.29% 0.401 0.356 0.443 1.046 4.64% 0.282 0.299 0.394 1.207 20.67% 0.308 0.353 0.585

Ω12 -0.500 -0.479 4.30% 0.192 0.267 0.268 -0.474 5.22% 0.480 0.445 0.549 -0.478 4.49% 0.319 0.360 0.466 -0.612 22.45% 0.263 0.304 0.498

Ω13 0.250 0.259 3.70% 0.153 0.203 0.203 0.262 4.99% 0.356 0.337 0.415 0.236 5.49% 0.209 0.224 0.289 0.308 23.31% 0.194 0.242 0.396

Ω14 0.750 0.780 3.94% 0.220 0.292 0.295 0.791 5.49% 0.318 0.297 0.370 0.778 3.75% 0.181 0.207 0.274 0.587 21.75% 0.267 0.336 0.550

Ω15 0.000 0.041 4.14% 0.305 0.420 0.419 0.059 5.86% 0.379 0.330 0.406 0.055 5.45% 0.299 0.318 0.411 0.224 22.39% 0.180 0.219 0.358

Ω22 1.000 0.957 4.34% 0.247 0.318 0.323 1.047 4.67% 0.364 0.335 0.419 1.040 4.03% 0.348 0.392 0.512 1.197 19.73% 0.231 0.283 0.474

Ω23 0.250 0.241 3.54% 0.318 0.426 0.425 0.264 5.49% 0.314 0.291 0.358 0.238 4.61% 0.186 0.202 0.261 0.311 24.54% 0.277 0.349 0.569

Ω24 -0.500 -0.477 4.66% 0.304 0.389 0.388 -0.522 4.41% 0.368 0.320 0.396 -0.522 4.46% 0.162 0.174 0.229 -0.601 20.24% 0.292 0.342 0.559

Ω25 0.000 0.043 4.26% 0.254 0.355 0.355 0.049 4.90% 0.345 0.308 0.380 0.054 5.39% 0.275 0.294 0.380 0.209 20.88% 0.273 0.330 0.537

Ω33 1.000 1.035 3.46% 0.159 0.208 0.216 1.051 5.11% 0.360 0.341 0.426 1.055 5.53% 0.222 0.236 0.315 1.197 19.73% 0.266 0.316 0.527

Ω34 0.330 0.317 3.82% 0.319 0.437 0.437 0.347 5.00% 0.363 0.327 0.404 0.315 4.55% 0.336 0.377 0.488 0.400 21.31% 0.261 0.307 0.501

Ω35 0.000 0.037 3.66% 0.176 0.228 0.227 0.061 6.08% 0.476 0.418 0.515 0.049 4.92% 0.218 0.245 0.316 0.213 21.31% 0.289 0.358 0.583

Ω44 1.000 1.041 4.14% 0.159 0.201 0.209 1.053 5.27% 0.434 0.385 0.480 0.952 4.78% 0.278 0.319 0.418 0.770 23.04% 0.354 0.422 0.691

Ω45 0.000 -0.037 3.70% 0.260 0.333 0.332 0.058 5.76% 0.466 0.434 0.534 -0.042 4.17% 0.320 0.354 0.457 0.172 17.22% 0.280 0.328 0.534

Ω55 1.000 1.037 3.66% 0.145 0.186 0.195 1.062 6.19% 0.352 0.321 0.403 1.041 4.13% 0.305 0.351 0.460 0.757 24.33% 0.250 0.302 0.497

- 3.16% 0.251 0.303 0.309 - 4.25% 0.358 0.341 0.429 - 3.72% 0.274 0.285 0.373 - 16.43% 0.279 0.328 0.541

100%

GHK-SGI Method

1.22

100%

6.443.17 3.02

0.45

100%

GHK-MSL Method

0.62

Overall Mean Value 

Across Parameters

Mean Time

Std. dev of Time

%  of Runs 

Converged

2.58

100%

0.38

Parameter
True 

Value

Parameter Estimates

Mean values of the β  vector

Covariance matrix of the β  vector

MCMC Method

Standard Error Estimates Parameter Estimates Standard Error Estimates Parameter Estimates Parameter EstimatesStandard Error Estimates Standard Error Estimates

MACML Method
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Table 4: Evaluation of the ability to recover true parameters for the panel diagonal case 
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Standard 
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Square 

Error

b 1 1.500 1.474 1.76% 0.123 0.145 0.182 1.448 3.47% 0.267 0.280 0.443 1.471 2.02% 0.207 0.199 0.294 1.841 22.76% 0.180 0.165 0.643 1.402 6.52% 0.188 0.199 0.441

b 2 -1.000 -1.016 1.60% 0.121 0.146 0.173 -0.962 3.79% 0.210 0.223 0.347 -1.020 2.02% 0.211 0.195 0.278 -0.756 24.35% 0.246 0.229 0.784 -1.063 6.33% 0.175 0.192 0.418

b 3 2.000 1.970 1.52% 0.246 0.297 0.352 2.066 3.29% 0.125 0.136 0.267 1.957 2.22% 0.131 0.123 0.222 2.428 21.39% 0.065 0.059 0.468 2.129 6.45% 0.147 0.155 0.410

b 4 1.000 0.982 1.76% 0.191 0.225 0.256 1.033 3.33% 0.200 0.205 0.324 0.977 2.38% 0.159 0.151 0.219 0.779 22.08% 0.090 0.084 0.318 1.065 6.45% 0.174 0.182 0.396

b 5 -2.000 -2.030 1.52% 0.120 0.137 0.192 -2.064 3.22% 0.197 0.206 0.357 -2.039 2.00% 0.292 0.281 0.414 -2.423 21.17% 0.168 0.163 0.707 -2.133 6.64% 0.115 0.122 0.360

Ω11 1.000 1.030 2.98% 0.249 0.277 0.313 0.902 9.82% 0.279 0.278 0.428 1.045 4.51% 0.263 0.268 0.373 1.318 31.82% 0.116 0.112 0.458 0.925 7.53% 0.216 0.239 0.506

Ω12 0.000 0.041 4.15% 0.141 0.165 0.182 -0.072 7.17% 0.339 0.314 0.474 0.045 4.51% 0.229 0.219 0.298 0.290 28.99% 0.210 0.208 0.701 0.108 10.79% 0.229 0.249 0.516

Ω13 0.000 -0.030 3.05% 0.206 0.251 0.277 0.072 7.17% 0.187 0.178 0.270 0.057 5.78% 0.202 0.197 0.268 -0.306 30.56% 0.100 0.099 0.339 -0.088 8.80% 0.225 0.241 0.498

Ω14 0.000 -0.041 4.11% 0.172 0.196 0.217 -0.074 7.43% 0.227 0.208 0.314 0.052 5.25% 0.143 0.149 0.202 0.299 29.93% 0.249 0.262 0.882 0.093 9.25% 0.239 0.257 0.531

Ω15 0.000 0.034 3.44% 0.312 0.352 0.388 -0.101 10.09% 0.236 0.237 0.359 0.043 4.35% 0.266 0.261 0.354 0.280 28.04% 0.188 0.187 0.633 -0.082 8.16% 0.091 0.096 0.199

Ω22 1.000 1.035 3.55% 0.301 0.336 0.376 1.102 10.17% 0.358 0.352 0.540 1.057 5.73% 0.275 0.270 0.375 1.268 26.78% 0.170 0.167 0.607 1.073 7.35% 0.095 0.096 0.235

Ω23 0.000 0.032 3.19% 0.321 0.389 0.429 -0.092 9.20% 0.209 0.209 0.316 0.053 5.36% 0.289 0.303 0.411 0.258 25.84% 0.161 0.168 0.566 0.095 9.52% 0.276 0.288 0.595

Ω24 0.000 0.030 3.01% 0.216 0.242 0.267 0.092 9.20% 0.281 0.258 0.390 0.059 5.94% 0.190 0.197 0.268 0.353 35.29% 0.113 0.113 0.385 0.091 9.07% 0.121 0.129 0.267

Ω25 0.000 -0.043 4.25% 0.189 0.216 0.238 0.072 7.17% 0.363 0.353 0.533 0.050 5.04% 0.293 0.292 0.396 -0.293 29.30% 0.071 0.070 0.242 -0.082 8.16% 0.112 0.116 0.240

Ω33 1.000 1.036 3.62% 0.298 0.357 0.399 1.093 9.29% 0.272 0.268 0.417 1.047 4.72% 0.277 0.280 0.389 0.745 25.52% 0.257 0.249 0.848 0.907 9.34% 0.106 0.114 0.257

Ω34 0.000 -0.034 3.37% 0.222 0.267 0.295 0.074 7.43% 0.233 0.226 0.341 0.062 6.31% 0.243 0.250 0.339 0.340 34.03% 0.118 0.121 0.414 -0.080 7.98% 0.087 0.090 0.186

Ω35 0.000 0.039 3.90% 0.296 0.350 0.386 0.098 9.82% 0.210 0.195 0.295 0.048 4.83% 0.247 0.240 0.326 0.268 26.78% 0.077 0.080 0.274 0.084 8.44% 0.194 0.199 0.411

Ω44 1.000 1.038 3.79% 0.245 0.295 0.332 1.103 10.26% 0.209 0.201 0.319 0.947 5.36% 0.202 0.195 0.274 0.622 37.81% 0.130 0.127 0.445 1.095 9.52% 0.167 0.172 0.380

Ω45 0.000 -0.028 2.84% 0.186 0.210 0.232 -0.094 9.38% 0.329 0.328 0.495 -0.063 6.36% 0.223 0.230 0.312 -0.325 32.45% 0.205 0.202 0.682 0.085 8.53% 0.197 0.199 0.411

Ω55 1.000 1.041 4.15% 0.246 0.297 0.334 0.901 9.91% 0.316 0.295 0.453 1.047 4.72% 0.258 0.250 0.350 0.720 28.04% 0.236 0.235 0.803 1.097 9.70% 0.196 0.216 0.463

- 3.08% 0.221 0.256 0.291 - 7.53% 0.252 0.253 0.384 - 7.53% 0.229 0.234 0.318 - 28.15% 0.159 0.164 0.560 - 8.23% 0.170 0.181 0.386
Overall Mean Value 

Across Parameters

Mean Time

Mean values of the β  vector

Covariance matrix of the β  vector

Std. dev of Time

%  of Runs 

Converged

7.02

1.13

100%100% 100% 100%

20.6

3.58

100%

18.86 30.65 32.77

2.95 5.54 5.08

Parameter
True 

Value

Parameter Estimates Standard Error Estimates

MACML Method MCMC Method

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates

GHK-MSL Method GHK-SGI MethodGHK-CML Method

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates
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Table 5: Evaluation of the ability to recover true parameters for the panel non-diagonal case 

 

RMSE RMSE RMSE RMSE RMSE

Mean 

Estimate

Absolute 

Percentage 

Bias

Asymptotic 

Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

Mean 

Estimate

Absolute 

Percentage 

Bias

Asymptotic 

Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

Mean 

Estimate

Absolute 

Percentage 

Bias

Asymptotic 

Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

Mean 

Estimate

Absolute 

Percentage 

Bias

Asymptotic 

Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

Mean 

Estimate

Absolute 

Percentage 

Bias

Asymptotic 

Standard 

Error

Finite 

Sample 

Standard 

Error

Root Mean 

Square 

Error

b 1 1.500 1.467 2.21% 0.307 0.287 0.495 1.554 3.63% 0.171 0.196 0.403 1.545 2.85% 0.156 0.160 0.294 1.874 24.96% 0.145 0.111 0.710 1.558 3.86% 0.225 0.284 0.700

b 2 -1.000 -1.022 2.21% 0.168 0.158 0.279 -0.959 4.13% 0.188 0.220 0.421 -0.968 3.02% 0.134 0.148 0.253 -1.245 24.48% 0.157 0.120 0.643 -0.968 3.23% 0.167 0.225 0.544

b 3 2.000 2.042 2.10% 0.225 0.218 0.412 1.925 3.75% 0.113 0.139 0.331 2.061 2.93% 0.233 0.254 0.450 2.433 21.66% 0.174 0.132 0.877 1.932 3.40% 0.087 0.108 0.358

b 4 1.000 0.979 2.12% 0.183 0.178 0.307 0.960 4.01% 0.219 0.248 0.472 0.972 2.69% 0.242 0.249 0.411 0.746 25.43% 0.176 0.137 0.663 1.036 3.61% 0.223 0.281 0.677

b 5 -2.000 -1.950 2.51% 0.116 0.110 0.250 -1.924 3.78% 0.260 0.297 0.591 -2.062 2.96% 0.285 0.290 0.510 -1.491 25.43% 0.197 0.150 0.789 -2.063 3.16% 0.200 0.252 0.661

Ω11 1.000 0.954 4.59% 0.095 0.112 0.207 1.101 10.05% 0.291 0.255 0.489 0.936 6.87% 0.132 0.139 0.241 1.420 42.02% 0.098 0.081 0.517 1.290 29.03% 0.154 0.166 0.422

Ω12 -0.500 -0.521 4.18% 0.115 0.130 0.220 -0.448 10.33% 0.163 0.142 0.267 -0.530 6.40% 0.197 0.213 0.348 -0.694 38.84% 0.130 0.103 0.510 -0.627 25.37% 0.226 0.244 0.579

Ω13 0.250 0.241 3.58% 0.198 0.224 0.371 0.223 10.61% 0.260 0.230 0.428 0.230 8.51% 0.093 0.100 0.164 0.144 42.37% 0.179 0.141 0.654 0.198 20.92% 0.219 0.227 0.534

Ω14 0.750 0.775 3.30% 0.201 0.235 0.397 0.808 7.80% 0.271 0.231 0.438 0.801 7.42% 0.243 0.251 0.411 0.498 33.54% 0.147 0.116 0.551 0.950 26.67% 0.091 0.097 0.259

Ω15 0.000 0.043 4.35% 0.186 0.199 0.331 0.112 11.18% 0.249 0.212 0.394 0.071 7.73% 0.238 0.241 0.389 0.300 30.01% 0.218 0.180 0.837 -0.282 28.24% 0.178 0.190 0.448

Ω22 1.000 1.037 3.70% 0.219 0.253 0.430 1.095 9.49% 0.226 0.197 0.383 0.915 9.21% 0.258 0.281 0.463 1.417 41.66% 0.220 0.178 0.905 1.272 27.20% 0.148 0.158 0.406

Ω23 0.250 0.262 4.75% 0.156 0.171 0.284 0.276 10.24% 0.301 0.266 0.495 0.230 8.51% 0.173 0.177 0.287 0.179 28.25% 0.138 0.109 0.503 0.304 21.44% 0.235 0.255 0.601

Ω24 -0.500 -0.522 4.43% 0.222 0.243 0.406 -0.450 9.96% 0.189 0.163 0.306 -0.529 6.32% 0.167 0.172 0.282 -0.673 34.60% 0.074 0.060 0.329 -0.361 27.72% 0.170 0.183 0.432

Ω25 0.000 0.047 4.75% 0.207 0.226 0.374 -0.092 9.20% 0.303 0.273 0.507 0.069 7.42% 0.222 0.231 0.373 0.342 34.25% 0.253 0.199 0.923 0.209 20.92% 0.132 0.136 0.321

Ω33 1.000 1.034 3.38% 0.115 0.134 0.239 0.896 10.43% 0.207 0.173 0.335 1.068 7.34% 0.107 0.112 0.206 0.682 31.78% 0.070 0.054 0.302 1.248 24.84% 0.283 0.285 0.690

Ω34 0.333 0.344 4.35% 0.118 0.129 0.217 0.359 8.92% 0.164 0.143 0.269 0.305 8.12% 0.205 0.209 0.339 0.197 40.25% 0.135 0.108 0.500 0.235 28.76% 0.265 0.264 0.622

Ω35 0.000 0.041 4.14% 0.203 0.231 0.383 0.094 9.39% 0.160 0.135 0.251 0.080 8.67% 0.175 0.193 0.312 0.339 33.90% 0.113 0.093 0.439 0.267 26.67% 0.148 0.162 0.383

Ω44 1.000 0.958 4.18% 0.122 0.136 0.243 0.908 9.20% 0.250 0.223 0.424 0.931 7.50% 0.189 0.200 0.335 1.304 30.36% 0.113 0.092 0.541 0.718 28.24% 0.197 0.212 0.506

Ω45 0.000 -0.036 3.62% 0.091 0.107 0.177 0.113 11.27% 0.280 0.239 0.444 -0.060 6.48% 0.261 0.282 0.456 0.385 38.49% 0.179 0.143 0.669 -0.241 24.06% 0.193 0.196 0.460

Ω55 1.000 0.961 3.90% 0.153 0.172 0.299 1.112 11.18% 0.136 0.119 0.252 1.086 9.29% 0.191 0.199 0.338 1.395 39.54% 0.183 0.142 0.756 0.689 31.12% 0.211 0.225 0.538

- 3.62% 0.168 0.184 0.316 - 8.34% 0.222 0.214 0.395 - 6.14% 0.199 0.211 0.343 - 33.09% 0.157 0.125 0.631 - 20.42% 0.193 0.206 0.507

Parameter

MCMC Method

Parameter Estimates Standard Error Estimates Parameter Estimates Standard Error Estimates Standard Error EstimatesParameter Estimates Standard Error Estimates Parameter Estimates

True 

Value

GHK-SGI MethodMACML Method GHK-MSL Method GHK-CML Method

Parameter Estimates

44.98 49.37

Mean values of the β  vector

Covariance matrix of the β  vector

Overall Mean Value 

Across Parameters

8.97Mean Time 23.09

Std. dev of Time 3.58 7.82

%  of Runs 

Converged
100% 100%

Standard Error Estimates

100%

1.79

27.29

100%

8.37

100%

4.55
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