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Absorber design for CO2 capture with amine solvents is complicated by the 

presence of temperature gradients and multiple rate controlling mechanisms (chemical 

reaction and convective mass transfer). The development of rigorous rate-based models 

has created the opportunity to study the performance limiting mechanisms in detail. A 

structured approach was developed to validate absorber models, identify limiting 

phenomena, and develop configurations that specifically address limiting mechanisms. A 

rate-based model utilizing concentrated aqueous piperazine (PZ) was the focus of model 

validation and process development.  

The model was validated using pilot plant data, matching the number of transfer 

units (NTU) within + 1% while identifying a systematic bias (loading measurement) 

between the model and pilot plant data. The validated model was used to define limiting 

cases (isothermal and adiabatic absorbers) to study the effects of operating conditions on 

the formation of temperature-induced mass transfer pinches. The method allowed for 

screening of intercooling benefits – high CO2 applications (15% - 27% CO2) require 

intercooling over the entire practical loading range for PZ and benefit significantly from 

simple in-and-out intercooling with limited additional benefit expected from advanced 

design.  Low CO2 (4% CO2) applications are expected to benefit the most from improved 
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intercooling, but also have the largest operating window without the need for intercooling 

(< 0.22 mol CO2/mol alkalinity for 8 m PZ).  

An analogous approach was developed to study rate mechanisms. A mass transfer 

parameter sensitivity analysis approach was developed to identify the relative 

contribution to overall mass transfer resistance of each mechanism as a function of 

operating conditions and position in the absorber column. The pseudo-first order and 

instantaneous reaction asymptotic solutions to the reaction-diffusion problem were used 

to define a dimensionless parameter that quantifies the approach of the modeling results 

to the limiting conditions and was found to be predictive of the relative liquid film 

resistance (diffusion vs. reaction) at all conditions. The results of the analysis indicated 

that the absorber is strongly diffusion controlled, has limited gas-film resistance, and that 

equilibrium constraints at the rich end of the absorber (depletion of free amine) 

significantly increase diffusion limitations.   

 Finally, the validation and mechanistic studies provided the basis for four new 

absorber configurations: 1) integration of a spray nozzle in the intercooling loop, 2) 

solvent recycle intercooling, 3) integrated flue gas and solvent cooling functions, 4) 

hybrid intercooling (high intensity contacting with intercooling). Each approach coupled 

mass transfer enhancement with intercooling and provided new degrees of freedom for 

operation and design of absorbers for CO2 capture.   
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Chapter 1:  Introduction and Background 

1.1 STATUS OF CO2 CAPTURE 

The Kyoto Protocol, adopted in 1997, signaled a potential consensus for 

international policy action to address climate change and initiated extensive research into 

greenhouse gas management (GHG) management and mitigation strategies. Early 

research on climate stabilization scenarios proposed the application of carbon capture and 

storage (CCS) to fossil fuel electricity generation as a critical component (or “wedge”) 

required to achieve near term emissions reductions. In particular, the need to scale-up 

well-developed existing technologies was emphasized as a necessary part of any GHG 

mitigation strategy (Pacala & Socolow, 2004).  

In response to this emphasis on near-term emissions reductions, capture 

applications focused on flue gas from coal-fired power plants due to the dominant 

position of coal in electricity generation markets. As Figure 1-1 depicts, coal accounted 

for over 50% of electricity generation in the United States (U.S.) in 2000 with the 

electricity generation sector accounting for 35% of all CO2 emissions in the U.S (U.S. 

Energy Information Administration, 2014).  
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Figure 1-1: Electricity generation by fuel source in the United States, 1990 – 2040 

(U.S. Energy Information Administration, 2014) 

Furthermore, coal was expected to remain the dominant fuel in the electricity 

generation sector due to the large existing stock of coal-fired power plants and the 

abundance of relatively cheap domestic coal in the U.S. In response, capture technology 

was developed targeting flue gas concentrations representative of coal-fired boilers (12-

15 mole % CO2). The technology options for capture can be broadly classified into post-

combustion, pre-combustion, and oxy-combustion technologies. Post-combustion 

technology was recognized as the most realistic option to retrofit existing coal-fired 

power plants since pre-combustion and oxy-combustion require major 

rebuild/modification of the combustion portion of the process and are better suited for 

long-term new build plants (Deutch & Moniz, 2009). Additionally, absorption-stripping 
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with amine solvents was identified as the most established technology in post-combustion 

capture based on extensive development in industrial processes (Rochelle, 2009). A 

technical review of 95 post-combustion capture research projects confirmed the 

prominence of absorption-stripping  (60% of all projects) at all levels of development, but 

particularly for technologies approaching commercial deployment (Bhown & Freeman, 

2011). The focused research efforts with amine scrubbing have reached demonstration 

scale on power plant flue gas with the operation of capture from a 110 MW slipstream 

from the SaskPower Boundary Dam coal-fired power plant (Massachussetts Institute of 

Technology, 2015).  

However, recent developments in climate change policy, prevailing economic 

conditions, and the electricity generation sector in the United States have led to re-

evaluation of mitigation strategies. First, the absence of comprehensive climate change 

legislation or associated market incentives for carbon capture has led to a focus on CO2 

capture for utilization (e.g. enhanced oil recovery (EOR), sale to secondary use markets) 

to offset costs associated with capture and transport of CO2. The aforementioned 

Boundary Dam project includes EOR and sale of CO2 to secondary markets, and sale of 

by-products to address project costs. While power plants such as Boundary Dam 

represent ideal application of capture process, large scale projects will generally lack 

sufficient access to economic incentives without government regulations or markets. 

However, smaller scale projects have introduced a wide variety of CO2 sources as 

potential capture targets with potentially favorable economics. For example, the M.I.T. 

Carbon Capture and Sequestration Technologies Program cites projects for capture from 

steel, cement, refineries, ethanol/methanol production, and natural gas processing among 

others (Massachussetts Institute of Technology, 2015). These sources include a wide 

range of CO2 flue gas concentrations, approaching 30 % CO2 in some cases.  
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More significantly, the electricity generation sector in the United States has 

undergone a drastic shift due to large-scale extraction of natural gas from shale 

formations. Figure 1-1 also illustrates the increasing role of natural gas combustion in the 

electricity generating sector from 2009 forward. Despite lower CO2 emissions from 

natural gas combined cycle (NGCC) facilities compared to coal-fired boilers (higher 

plant efficiencies, lower C:H ratio in the fuel), large-scale deployment of NGCC power 

plants is inadequate as a mitigation strategy. Methane leakage during natural gas 

production and displacement of renewable energy technology would further reduce 

limited GHG emissions benefits realized via fuel switching (Shearer, et al., 2014).  

Meaningful emissions reductions from continued expansion of NGCC would therefore 

require CCS for NGCC plants as well. NGCC plants present a unique set of design 

challenges with large flue gas volumes and dilute CO2 concentrations (3–5 mol% CO2), 

when compared to coal-fired boilers.  

The post-combustion capture technology that has been developed to target coal-

fired boilers can be readily adapted to alternate flue gas sources as a tail-end technology. 

Thus, while coal-fired boilers will remain an important target of capture technology, 

amine scrubbing technology should be customized for a variety of flue gas sources to 

account for the range of projects that may be dictated by local economic incentives or 

policy requirements. The wide range of CO2 concentrations and sources as potential 

targets for CO2 capture have generated a need for systematic evaluation of capture 

process development as a function of flue gas conditions and validation of model 

predictions and processes over a wide-range of operating conditions. The broad design 

and development of technology also promises to yield insights regarding general design 

procedures, the fundamental phenomena governing capture process performance, and the 
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effect of operating conditions on the cost of capture when a process is optimally designed 

for its application. 

1.2 AMINE SCRUBBING PROCESS DESIGN AND MODELING 

Even as capture technology approaches commercial scale for power generation 

systems, active research continues in the development of new solvents, process 

configurations, process control, optimization, system modeling, and economics. 

Development and use of rigorous process models underlies many of these research areas. 

Figure 1-2 depicts a simple absorption-stripping process configuration to illustrate the 

primary unit operations that must be modeled.  

 

 

Figure 1-2: Simple Absorption-Stripping Process Flow Diagram 
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In the basic absorption-stripping process, flue gas enters the bottom of the packed 

absorber column after passing through pre-treatment processes (flue gas desulfurization, 

direct contact cooling, etc.). The flue gas counter-currently contacts a lean solvent that is 

fed at the top of the absorber and absorbs CO2 as it moves down the column. The 

scrubbed gas passes through a water wash (not pictured, nominally located in the top of 

the absorber) to recover amine in the gas phase and is vented to the atmosphere. The rich 

solvent leaves the bottom of the absorber where it is pumped through a cross-exchanger 

where it is heated by the hot lean solvent returning from the stripping process. The rich 

amine is fed at the top of the stripper, where it counter-currently contacts hot vapor 

moving up the stripper column from the reboiler. The vapor strips CO2 from the solvent, 

passes through a condenser to remove water, and is sent to the compression system for 

transport and storage. The stripped, or lean, solvent leaves the reboiler and is re-

circulated to the absorber after being cooled in the cross-exchanger and trim cooler.  

1.2.1 Absorber Development for CO2 Capture 

The design and development of the absorber unit operation will be the primary 

focus of this work. The process description in the preceding discussion highlights the role 

of the absorber in overall process design. Absorber design is a balance between mass 

transfer requirements (e.g., packing or other internals) and energy costs of system (lean 

loading and solvent circulation). There are two aspects of absorber design for CO2 

capture with amine solvents that add significant complexity to the modeling and design 

process. First, the CO2 absorption process is rate-based where physical mass transfer and 

chemical reaction are both significant (reaction-diffusion problem) in determining overall 

mass transfer resistance. Therefore, equilibrium design procedures are inadequate and the 
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data requirements (quantity and quality) and modeling complexity increase significantly 

as each underlying mechanism must be represented accurately to model the coupled 

absorption problem.     

Secondly, the reaction between amines and CO2 generates heat in the solvent, 

coupling heat and mass transfer, and invalidates the significant simplification of an 

isothermal absorber. The heat generated in the solvent is transferred between the phases 

by water – this process leads to a temperature maximum (or bulge) in the absorber. The 

temperature bulge in the absorber can limit overall absorption capacity and rates by 

introducing a temperature-induced equilibrium constraint on the process. Properly 

modeling and understanding the effects of the temperature gradients in the absorber is 

essential to design and optimization of the absorption process.  

Prior research in absorber modeling has focused extensively on model 

development to provide tools to adequately represent the aforementioned phenomena in 

the absorber.  However, rigorous model development built on high quality experimental 

data does not ensure that the absorption process is accurately represented. In addition, a 

rigorous model does not imply that optimal absorption process design is obvious or 

trivial; in fact, the rigorous representation ensures that many additional variables are 

represented that ultimately influence process design and development.  Therefore, this 

work will shift to a focus on absorber process design by validating and applying an 

existing modeling framework. Specifically, the work will focus on concentrated 

piperazine (PZ) due to extensive prior development of the solvent. Previous researchers 

developed the thermodynamic and kinetic framework (Cullinane, 2005), (Hilliard, 2008), 

(Plaza, 2011), (Frailie, 2014) required to model PZ processes and began the effort of 

evaluating process configurations and costs (Plaza, 2011), (Frailie, 2014).  The 

“Independence” solvent model was developed in Aspen Plus® which allows 
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implementation of a rate-based absorber model to account for the effects of mass transfer 

with chemical reaction, heat transfer, column internals, and hydraulics (Frailie, 2014). 

The use of a rigorous modeling framework will facilitate a systematic study of absorber 

performance to guide process development as a function of operating conditions and 

equipment specifications.  

1.3 RESEARCH OBJECTIVES 

The following research objectives will detail the approach used to validate a 

rigorous model, use the model to develop insights regarding mechanisms controlling 

process performance, and developing novel absorber designs driven by the newly 

developed mechanistic understanding. The over-arching goals of the research are to use a 

rigorous rate-based model of a packed absorber column utilizing amine-based solvents to 

accomplish the following: 

1) Connect absorber performance results to the fundamental mass transfer, 

thermodynamic, and kinetic properties that form the basis of the model. Identify 

limiting phenomena for absorber performance. 

2) Generalize absorber performance as a function of operating conditions and 

solvent characteristics. 

3) Develop new process designs over the entire range of relevant applications and 

conditions based on findings of the previous two steps.   

An important extension of these goals is to yield insights beyond the model and 

solvent system studied by defining approaches to evaluate rate-based models, identifying 

mechanisms that are generally important to amine scrubbing absorption processes, and 

providing performance generalizations as a function of operating conditions and 
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equipment specifications that extend to other amine/solvent systems.  Several research 

activities have been outlined to achieve these broad objectives.  

Absorber Model Validation: Pilot Plant Data Reconciliation 

The rate-based absorber model is built from the bottom-up using experimental 

data to regress the mass transfer, kinetic, and thermodynamic parameters used in the final 

absorber model. The model in this state only represents the experimental data and may be 

connected semi-empirically to expected performance in an operating column. Data from a 

pilot scale column can provide a means to validate or correct the model to improve 

prediction of large-scale performance results (packing required, CO2 absorbed, etc.). 

Validation of the absorber model with pilot plant data will require the following: 

1) Pilot plant data from a range of operating conditions and equipment 

configurations that cover relevant design conditions for the field. 

2) Error quantification for the pilot plant data itself (random error in the pilot 

measurements). 

3) Minimization of error between model predicted and pilot plant measured 

results by allowing model adjustments.  

Process Development: Parameter Sensitivity Analysis 

Mass transfer performance in the absorber is dictated by coupled differential 

equations for mass transfer with chemical reaction and heat transfer subject to constraints 

imposed by phase and thermal equilibria. The parameters defining the transport, kinetic 

and thermodynamic models are not explicitly varied in process optimization, but 

understanding the relative importance of each of the fundamental contributions to mass 

transfer rates can guide design and development of absorbers. Furthermore, sensitivity 

analysis of parameters in the underlying models allows comparison of model behavior to 
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theoretical understanding of the process and can identify limitations or shortcomings of 

the overall absorber model. The following tasks are proposed to achieve the stated goals 

of parameter sensitivity: 

1) Parameter selection will include identification of parameters with large 

inherent uncertainty in measurement (e.g., mass transfer coefficients), 

parameters identified through pilot plant analysis, and parameters expected to 

be significant from theoretical understanding of the process and literature 

review.   

2) Sensitivity analyses will include systematic evaluation of selected parameters 

over a range of relevant operating conditions and applications to identify 

important parameters as a function of the design choices and constraints. This 

includes evaluation of parameter sensitivity as a function of position within 

the column itself as process conditions (e.g., loading, temperature, driving 

forces) can vary widely in the absorber. The results will guide development 

and optimization of novel process design as a function of the specific 

conditions for operation. 

Process Development: Maximizing Solvent Capacity and Process Screening 

Absorber design can be viewed as a trade-off between capital costs (packing 

requirement) and energy performance (measured as solvent circulation rate for the 

absorber). The development of new absorber configurations is driven by maximizing 

solvent capacity with the minimum packing requirement. To develop new absorber 

designs to achieve this goal, a screening method is proposed to identify operating 

conditions where new designs may provide large benefits and to rank designs relative to a 
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common baseline. An adiabatic absorber and isothermal absorber (bounding cases) will 

be used to develop a screening method for new designs. 

1) Minimum solvent rate analysis will be used to evaluate the base case 

absorber designs in the limit of “infinite packing” to determine the maximum 

solvent capacity or best energy performance for each design at a given 

operating condition. 

2) Evaluation of the packing requirement as a function of solvent rate 

(moving away from the limiting minimum solvent rate case) will identify 

mass transfer limitations in the base case designs.  

Process Development: Novel Configuration Development 

Flow sheets will be developed for a series of representative capture application 

cases (e.g. NGCC, coal-fired boiler, steel blast furnace) using results from preceding 

activities. The focus of flow sheet development will be intercooling configurations and 

hybrid contacting (i.e., use of different mass transfer contacting methods based on the 

operating conditions of the column or in a portion of the column). The goal will be to 

develop absorber design targeted for specific process conditions and limiting phenomena 

for the equipment and solvent system. The tasks required for this activity include: 

1) Identification of potential flow sheets including discrete design choices (e.g., 

intercooling vs. no intercooling) based on the preceding screening work. 

2) Development of incremental economic analysis to narrow the window of 

operating conditions and equipment specifications. 

3) Systematic comparison of novel designs to baseline flowsheets to quantify 

performance improvement and provide fundamental explanations for the 

predicted benefits. 
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Chapter 2: Model Validation – Pilot Plant Analysis1 

An important aspect of process model development is validation of the model 

with pilot scale data. Rate-based absorber models are developed from the bottom-up 

based on experimental scale data representing the underlying thermodynamic, kinetic, 

and transport properties that govern mass transfer with chemical reaction. The accuracy 

and validity of the experimental data and the ability of the model to properly represent 

the data do not constitute validation of the model for purposes of process design and 

development. Pilot scale (or larger) data tests the ability of the model to represent process 

performance as predicted by the interaction of all of the underlying phenomena the model 

was designed to represent. In addition, the model may not adequately capture all 

phenomena relevant for true process conditions and scale, and the pilot plant data 

provides an opportunity to “tune” and adjust the model to represent process performance.  

2.1 OVERVIEW OF PILOT PLANT DATA RECONCILIATION AND MODEL VALIDATION  

In general, data reconciliation can be described as a constrained optimization 

problem where measured values from a plant or experiment are adjusted to satisfy 

physical constraints (e.g., mass or energy balance). Data reconciliation can be coupled 

with model validation by using a model to represent the mass and energy balance and 

associated constitutive relationships describing the rate processes underlying the balance 

equations. This work proposes combined reconciliation and validation by using pilot 

plant data from the Separations Research Program (SRP) at the University of Texas at 

Austin and a rigorous rate-based absorber model built in Aspen Plus®.  

                                                 
1 This chapter includes a summary of two manuscripts and will reproduce significant portions of the 

documents with permission of the authors. See (Sachde, et al., 2013) (included in Appendix C) and (Zhang, 

et al., 2016).  
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 Within the literature, approaches to quantify model and pilot plant differences, 

define acceptable model predictions, identify sources of error in the model and pilot plant 

data, and correct models varies widely. The majority of model validation activities related 

to CO2 capture in literature perform a simple calculation of deviation between model 

predictions and pilot data for select material and energy balance results. A qualitative 

assessment usually determines the adequacy of the model prediction. While the use of 

this approach can be justified for general screening of multiple models/simulation 

packages or by a lack of data regarding measurement error, the method has several 

shortcomings when attempting to rigorously validate and improve models. Select 

examples from literature are highlighted here to demonstrate more rigorous methods of 

evaluating model performance with pilot plant data. 

Researchers at the Laboratory of Engineering Thermodynamics (LTD) at the 

University of Kaiserslautern in Germany evaluated a rate-based absorber model using 

data from several MEA campaigns at multiple pilot scales (von Harbou, et al., 2014). The 

authors found that specific conditions were very sensitive to changes in the input 

parameters and could not be adequately modeled with the exact reported values. In 

general, treating pilot plant model inputs (e.g., feed flows, temperatures, etc.) as 

deterministic values does not adequately account for the range of valid model results 

based on uncertainty in the inputs. Further, authors found that measurement error 

increased at larger scale facilities and reconciliation was not possible without explicit 

accounting of error at the larger scale plants.  

Additionally, the lack of error quantification in the pilot plant data eliminates the 

possibility of making a quantitative assessment about the adequacy of the model 

prediction (i.e., are the model predictions within the uncertainty in the measured data?).  

Work on reactive distillation at LTD incorporated a more rigorous approach to data 
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reconciliation and error analysis (von Harbou, et al., 2013). The authors used 

measurement error to identify variables with gross error (required a statistically 

significant change in the parameter value compared to the measured error to satisfy basic 

constraints of the pilot plant data i.e., mass and energy balance closure). The authors then 

used numerical perturbation of their model to propagate error to model predictions to 

make a quantitative assessment of model results.  

2.1.1 Proposed Reconciliation Method 

The current work proposes a data reconciliation and model validation procedure 

developed around the “Data-Fit” tool in Aspen Plus® which allows for simultaneous data 

reconciliation, gross error detection, and parameter estimation (i.e., model parameter 

corrections to fit pilot plant data). The objective function defined for the reconciliation 

tool is presented in Equation 2.1.  

 
2
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  2.1 

 

where, 

 Measured, i = Measured value input or result parameter, 

 Reconciled, i = Reconciled value of input or result parameter, 

 σi =  Variance of measured values from plant or experiment, 

 v = Vector of adjustable or varied parameters, 

 Input = Reconciled input parameters. 

 

The proposed method is a modification and extension on the approach used by 

Plaza for model reconciliation of pilot plant data from the Pickle Research Center (PRC) 
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plant operated by the Separations Research Program (SRP) facility at the University of 

Texas at Austin (Plaza, 2011). The approach can be summarized in the following steps: 

1) Error Quantification and Data Consistency Check: This step includes 

quantification of random error in all pilot measurements and inputs using the 

available replicate measurements. Basic material balance checks for the 

measured components (CO2 and PZ) will be performed to ensure internal 

consistency for data from the plant.  

2) Gross Error Detection: Prior to any adjustment of model parameters, the 

Aspen Plus® model will be used to reconcile the measured pilot plant data 

with model predictions based on the quantified uncertainty in step 1. Variables 

that require changes that are statistically different from the measured values 

will be identified as variables with gross error or bias.  

3) Data Reconciliation with Parameter Adjustment: If the model cannot be 

reconciled with pilot data within the measured uncertainty, adjustable 

parameters from the model will be added to the reconciliation process. 

However, only a single adjustment parameter will be added at once to prevent 

over-specification or interaction between adjustment parameters. Several 

cases will be run to generate a list of potential model adjustments required to 

reconcile the model with the pilot data.  

The goal of this systematic approach is to identify potentially problematic error 

inherent to the pilot plant data itself followed by identification of potential model 

adjustments that may illuminate physical explanations for any differences between the 

model and pilot plant.  
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2.2 PILOT PLANT AND MODEL OVERVIEW 

2.2.1 Pilot Plant Description 

The pilot plant at PRC consists of a full absorption-stripping process which has 

been operated with various amine solvents to capture CO2 from a synthetic flue gas. The 

basic absorber configuration at PRC is depicted in Figure 2-1. 

 

 

Figure 2-1: Absorber PFD for the pilot plant absorber column operated by the 

Separations Research Program at the University of Texas at Austin. Configuration 

based on the October 2011 campaign.  The column has an inner diameter of 0.43 m 

and a total of 6.1 m of packing evenly split in two beds and includes intercooling 

(with or without spray return) between the beds. Points 1 through 6 correspond to 

liquid/gas sampling or flow measurement points used in the material balance 

evaluation.  

The absorber at PRC includes two beds of packing (6.1 m total) with solvent 

intercooling capabilities. The intercooling function can be a simple “in-and-out” where 
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the solvent is cooled between the beds and returned to the bottom section liquid 

distributor or it can be returned via a spray nozzle into the underside of the top bed of 

packing (sprayed upwards). “Spray’ intercooling generates additional mass transfer area 

as part of the intercooling loop and acts a solvent recycle. The performance of the spray 

nozzle will be isolated after model validation.  

The rate-based model will be used to predict absorber performance (CO2 removal) 

based on the material balance measurements in Figure 2-1. Validation of material balance 

closure and quantification of the uncertainty associated with raw pilot plant data is 

discussed in Appendix C.  Campaigns utilizing piperazine (PZ) as the solvent are 

summarized in Table 2-1. 
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Table 2-1: History of Piperazine Pilot Plant Campaigns at SRP – Operating 

Conditions and Absorber Specifications   

 

Nov. 2008
1

Sept. 2010
1

Dec. 2010
1 Oct. 2011 Nov. 2013 Mar. 2015

Solvent 5 – 9 m PZ 8 m PZ 8 m PZ 3.6 – 3.8 m PZ 8 m PZ 5 – 8 m PZ

Lean 

Loading

(mol CO2 

/mol alk.)

0.25 - 0.33 0.21 - 0.30 0.25 - 0.30 0.24 - 0.26 0.22 0.18 - 0.26

Liquid  Rate 

(m3/hr)
2.7 - 4.1 1.8 - 5.9 1.8 - 5.9 2.7 2.5 - 5 1.6 - 3.2

Gas Rate
2 

(actual 

m3/min)

10 7 - 21 10 - 19 10 10 - 19 10 - 14

CO2 Gas 

Inlet

(mol%)

12% 12% 12% 12% 12% 6 - 12%

CO2 

Removal 

Spec

60 - 90% 80 - 93% 70 - 93% 70 - 90% 80 - 90% 70 - 97%

Column 

Inner 

Diameter

(m)

Packed 

Height

(m)

Packing

Type & 

Specific 

Area(m2/m3)

Structured 

205X
Hybrid 250 Hybrid 250

Structured 

350Z
Hybrid 250 Hybrid 250

Intercooling No Yes/No Yes
Yes (with 

Spray)/No 

Yes (with 

Spray)

Yes (with 

Spray)/No 

Interfacial 

Area Factor
1.17 + 0.15 1.02 + 0.16 0.72 + 0.13 N/A

CO2 

Multiplier
1.05 + 0.03 1.05 + 0.03 1.06 + 0.04 N/A

# of Runs

 Evaluated
14 12 9 11 4 21

Pilot Plant Campaigns

Proposed 

Model 

Adjustments

See Results

1: Campaigns evaluated by Plaza (Plaza, 2011)

2: Feed Gas  at ambient conditions (temperature and water content)

Absorber 

Specifications

Operating 

Conditions

0.43

6.1 (2 x 3.05)
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The focus of this work will be the final 3 campaigns which span the full range of 

operating conditions and include the spray intercooling feature for the first time.  

2.2.2 Rate-Based Absorber Model Description 

The full details of the rate-based absorber model will not be repeated here and can 

be reviewed in Appendix C and subsequent chapters. The model consists of three major 

components: 

1) Solvent model (“Independence”): Developed by Frailie to represent 

concentrated PZ. Includes thermodynamics, kinetics and transport properties 

of the solvent (Frailie, 2014); 

2) Packing/Mass Transfer models: Liquid-film, gas-film, and effective area 

models developed as a function of packing type and operating conditions 

(Tsai, 2010) (Wang, 2015); 

3) Numerical integration scheme for rate-based absorber: Described in Appendix 

B. 

Parameters from the solvent and packing models will be considered when adjustment is 

required to match the pilot scale data.  

2.3 KEY RESULTS FROM DATA RECONCILIATION AND MODEL VALIDATION 

2.3.1 Identification of Systematic Bias via Data Reconciliation 

The data reconciliation process was used for two campaigns in Table 2-1: October 

2011 (see Appendix C) and November 2013. The process for previous campaigns 

allowed multiple model parameters to be adjusted simultaneously to fit the pilot plant 

data (area correction and CO2 multiplier in Table 2-1) (Plaza, 2011). The method was 

developed to correct the most probable sources of offset between the model and pilot data 
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beyond the uncertainty in the model inputs and results. However, as the table shows, the 

model corrections are not consistent between campaigns, and the area factor even 

changes the direction of model correction (increase and decrease of interfacial area 

required). This makes it difficult to identify trends in model corrections that might 

indicate a source of bias. The approach in the current work proposes using each 

adjustable parameter independently (only one adjustable parameter per reconciliation 

process). This produced a series of proposed model corrections that each provides a 

unique mechanistic or analytical explanation for the offset between the pilot plant and 

model (Sachde, et al., 2013).  The major finding of this process for the two campaigns 

(October 2011 and November 2013) was an apparent systematic bias between the model 

predictions and the pilot plant. Table 2-2 summarizes the independent interfacial area and 

CO2 corrections (adjustment to the lean solvent loading) required to fully reconcile the 

model with the pilot plant data (primarily CO2 removal).  

Table 2-2: Model Parameter Adjustments Required for November 2013 and 

October 2011 PZ Pilot Plant Campaigns 

Parameter 
Correction Factor:  

November 2013 

Correction Factor: 

 October 2011 

CO2 Correction (Lean 

Solvent Loading) 
1.073 + 0.013 1.075 + 0.011 

Interfacial Area 0.61 + 0.01 0.74 + 0.03 

Interfacial Area 

(Adjusted)** 
0.74 + 0.01 0.74 + 0.03 

** The adjustment to the area correction is required because the different packing types used in 

each campaign have different fractional or wetted areas available for mass transfer as predicted 

by interfacial area model. The adjustment normalizes the packing types to operate with the same 

fractional wetted area when operated at the same conditions. The result of the normalization is 

that both campaigns require an identical reduction (percentage or relative basis) in packing area to 

match the CO2 transfer rates measured in the pilot plant. 
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As indicated in Table 2-1, the two campaigns covered a wide range of operating 

conditions (solvent concentration, gas flow rates, CO2 removal) and different packing 

types. Therefore, the finding of identical corrections (albeit for a limited set of data) 

strongly suggest the presence of a systematic bias between the model and pilot plant data. 

  There are several items supporting the CO2 correction predicted by the 

reconciliation process. First, two researchers working independently on the stripping 

portion of the process for the October 2011 campaign arrived at a very similar correction 

for the model (5% correction to CO2 in the lean solvent) (Madan, et al., 2013) (Walters, 

et al., 2013).   Subsequently, a density correlation developed by Freeman (based on the 

same data used to develop the PZ solvent model) was modified for the presence of an 

inhibitor used in the pilot plant solvent (Freeman, 2011). The modified density model is 

presented in Equation 2.2 (Walters & Rochelle, 2012) (Song & Rochelle, 2015) . 
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2.2 

where: 

ρSOLN = Liquid mass density of loaded solution (kg/ m3); 

ρH2O = Reference density of water at temperature of loaded solution (kg/ m3); 

ρADJ = Loaded solution density adjusted for presence of inhibitor (kg/ m3); 

ci = Concentration of component i (mol/kg); 

ωInhibitor = Weight fraction of inhibitor in solution.  
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The updated model was used to provide predictions of CO2 loading at the pilot plant from 

inline density measurements. The result of this process yielded a systematic offset of 7% 

between the density predicted loadings (Equation 2.2) and the titration measured loadings 

at the pilot plant (Zhang, et al., 2016). Based on the consistent correction of CO2 required 

across different sources, the CO2 adjustment was selected as the primary method to 

correct for the bias between the model and pilot plant performance. The adjusted model 

can then be used to identify the impact of process modifications (e.g., spray nozzle return 

for the intercooling loop). The detailed results of the reconciled and adjusted model can 

be found in Appendix C (Sachde, et al., 2013).  

2.3.2 Quantifying the impact of spray intercooling 

A spray nozzle was added to the intercooling loop in the pilot plant to generate 

additional mass transfer area in the column. The solvent is pumped off of a chimney tray 

between the packed beds, through a heat exchanger to be cooled to approximately 40°C, 

and returned to the column via a spray nozzle. The nozzle generates mass transfer area by 

converting the kinetic energy of the solvent into “new” liquid surface (droplets of liquid) 

via pressure drop across the nozzle. In addition, the nozzle is oriented to spray upwards 

into the underside of the top bed of packing, generating additional mass transfer area 

through the process of impaction and drop break-up. This modification can be viewed as 

a “retrofit” option for processes where additional packing cannot be easily added to a 

column and additional mass transfer area is required to meet a performance specification.  

To model the effect of the spray nozzle, the following approach was 

implemented: 
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1) Correct the baseline model (without a spray nozzle) for systematic bias via the 

lean solvent CO2 correction. The model should now represent the general 

material and energy balance of the pilot plant without a spray nozzle. 

2) For pilot plant experiments with the spray nozzle, add an additional section of 

well-mixed packing with a pump-around (or recycle) to represent the spray 

nozzle section of the column. Create a new adjustable model parameter to 

represent the mass transfer area of the “spray” section in the model.  

3) Perform a full data reconciliation (to account for uncertainty in model inputs 

and measured results from the pilot plant) with the adjustable area of the spray 

nozzle accounting for performance differences not covered by the data 

reconciliation and the bias correction.  

This process yields an equivalent area of packing that represents the mass transfer 

performance of the spray nozzle. This area prediction was correlated (Figure 2-2) to the 

solvent mass flow rate through the spray nozzle (proxy for kinetic energy of the solvent) 
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Figure 2-2: Spray nozzle mass transfer area as a function of solvent mass flow rate 

through the spray nozzle.  The spray nozzle area is quantified and modeled as an 

equivalent wetted area of packing. Reproduced with authors’ permission (Sachde, et 

al., 2013). 

The area added by the spray nozzle corresponded to an addition of approximately 

5 – 20% additional packing to the pilot plant for October 2011 campaign (Sachde, et al., 

2013). The simple model connecting the kinetic energy of the solvent to the mass transfer 

area of the spray explains a majority of the variability in a limited data set. To further 

improve characterization of spray nozzle performance, a larger set of pilot data and a 

larger set of variables (surface tension of solvent, distance from nozzle to droplet impact 

site, etc.) could be used to develop a more detailed and robust spray nozzle model. 

However, the primary purpose of the current work is not to characterize the spray, but 
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rather to provide a method to estimate the contribution of the spray to the overall 

performance of the pilot plant.  

2.3.2.1 Screening Economic Evaluation of Spray Nozzle Benefits  

The mass transfer area generated by the spray (Figure 2-2) can be assigned a 

value by calculating the cost of purchasing an equivalent amount of packing. This 

approach neglects the detailed cost implications of installing packing vs. a spray nozzle, 

which may be a determining factor in the case of a retrofit application where significant 

modification of the column would be required to add packing. Nonetheless, the packing 

cost savings generated by the spray (or spray benefit) can be compared to the primary 

cost associated with generating the mass transfer area – the pumping costs associated 

with the pressure drop of the spray. If the incremental costs of the pressure drop outweigh 

the cost of purchasing an equivalent amount of packing, it provides an indication that 

spray nozzles are not an efficient way to generate mass transfer area in amine capture 

systems when compared to structured packing. Table 2-3 presents the data used to 

perform the incremental economic analysis.  
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Table 2-3: Assumptions for Incremental Economic Evaluation of Spray Nozzle 

Capital Cost Assumptions Operating Cost Assumptions 

Interest Rate Of Capital 12.50% Annual Operating Hours2 7446 

Amortized Lifetime (years) 15 Cost of Electricity ($/MWh)3 56.6 

Amortization Factor1 15% 

Overall Pump Efficiency4 55% 

Spray Nozzle Type5 
Full 

Cone, ¾” 

1: Amortization factor calculated from interest rate and loan term.  Provides (equal) 

annual payments when multiplied by principal. 

2: Capacity Factor = 85% (National Energy Technology Laboratory, 2010) 

3: 2012 Texas Industrial Average Cost of Electricity (U.S. Energy Information 

Administration, 2013) 

4:  Pump efficiency is average value over range of flow rates considered in this analysis 

based on the pilot plant pump curve.  

5: Nozzle from Spraying Systems Co.®, Spiral Jet® - 3/4HHSJX-SS120210 

 

The annualized capital (packing cost) and operating (pumping) costs were calculated by 

Equations 2.3 and 2.4. 

 

* . .* PackingAnnualized Packing Benefit UC Spray Eq Vol AF  2.3 

 1 1

 
  
   

n

i
AF i

i
  

 

where: 

UCPacking = Unit cost of packing ($/m3) – see Figure 2-3; 

Spray Eq. Vol. = Equivalent volume of packing required to replicate spray 

performance (m3) – see Figure 2-2. 

AF = Amortization factor (or annuity calculation); 
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i = Annual interest rate (as % or fraction) – See Table 2-3; 

n = Term of loan or project (years) – See Table 2-3; 
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where: 

UCElectricity = Unit cost of electricity ($/kWh) – see Table 2-3; 

spraym = Mass flow rate through spray nozzle (kg/s); 

ΔPNozzle = Pressure drop across the spray nozzle (Pa); 

ΔPHeight = Pressure drop for pumping head from liquid draw to nozzle (Pa); 

ρsolvent = Mass density of solvent (kg/m3); 

ηPump = Pump efficiency – See Table 2-3; 

 

The packing costs were calculated using data and a simple linear correlation from 

previous work by Tsai corrected to 2012 U.S. dollars (Tsai, 2010).  The original data and 

correlation from Tsai are shown in Figure 2-3. 
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Figure 2-3: Prediction of packing cost per unit volume from the packing specific 

area based on data collected by Tsai for 3 packing sizes (250, 500, 750 m2/m3) (Tsai, 

2010) 

The packing cost data by Tsai will represent a generic cost of packing used to assign 

value to the spray mass transfer area in this analysis. Ideally, a broader set of data would 

be used, but the data from Tsai provide relatively recent representative costs for the type 

of structured packing commonly used in CO2 capture applications.   

 Finally, the pressure drop for the spray nozzle was calculated from the following 

correlation developed from vendor data (Spraying Systems Co., 2012): 

 

20.0307*NozzleP Q   2.5 

where: 
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ΔPNozzle = Pressure drop across the spray nozzle, bar; 

Q = Volumetric flow rate (m3/s). 

 

The results of the analysis are presented in Figure 2-4.  

 

 

Figure 2-4: Net benefit of the mass transfer area generated by a spray 

As the results show, across the entire range of operating conditions at the pilot 

plant, the cost of pumping the solvent to generate the necessary pressure drop for the 

spray nozzle is consistently higher than the value of an equivalent amount of packing. 

The unit cost of packing (Figure 2-3) would need to increase by approximately 50% 

before the spray nozzle would become competitive in the operating range in Figure 2-4. 
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Therefore, the results indicate that generating mass transfer area via the spray is not as 

efficient purchasing packing. However, the analysis does not preclude the use of sprays 

as a retrofit option for constructed columns or as an option to provide design and 

operating flexibility in new columns (turn on and off as needed, limit need to “over-

design” packing). The analysis also does not consider the peripheral costs (packing 

support structures, liquid distributors, etc.) which might make a spray more attractive 

compared to packing in certain cases.  

2.4 USING THE CORRECTED MODEL TO PREDICT PILOT PLANT PERFORMANCE 

The final step of the validation process was to use the updated model to predict 

the performance of the March 2015 pilot plant campaign. This campaign included spray 

intercooling to validate the regressed spray nozzle model and a wide range of operating 

conditions (low lean loading, low flue gas CO2, high CO2 removal – see Table 2-1) not 

included in the original reconciliation and model adjustment process. This method of 

validation tests the robustness of the proposed model correction.  

 2.4.1 Summary of Model Prediction Results 

A full discussion of the model prediction results for the March 2015 campaign 

can be found in the work by Zhang (Zhang, et al., 2016). Results for model predictions of 

pilot plant performance, as quantified by the number of transfer units (NTU), are 

presented in Figure 2-5 and Figure 2-6 (NTU defined in Equation 2.6). 

 

2CO(1 )NTU ln f    2.6 

where: 

NTU = Number of transfer units; 

fCO2 = Fraction of CO2 removed. 
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Figure 2-5: Ratio of model-predicted NTU to pilot plant measured NTU (Equation 

2.6) as a function of measured NTU.  Data based on absorber gas-side CO2 material 

balance. Model predictions apply CO2 multiplier (1.07) to lean solvent to correct for 

model bias (Table 2-2). No data for run 4. Data from (Zhang, et al., 2016). 
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Figure 2-6: Ratio of model-predicted NTU to pilot plant measured NTU (Equation 

2.6) as a function of experiment number (or time).  Data based on absorber gas-side 

CO2 material balance. Model predictions apply CO2 multiplier (1.07) to lean solvent 

to correct for model bias (Table 2-2). No data for run 4. Data from (Zhang, et al., 

2016). 

  Figure 2-5 indicates the model does not have a clear systematic bias or trend as a 

function of the NTU, but tends to generally over-predict CO2 removal (mean ratio of 

predicted to measured NTU = 1.08).  

However, Figure 2-6 suggests that a time dependence or correlation exists within 

the data. The model exhibits a trend from slight under-prediction to over-prediction of 

CO2 removal. If the transition from run 11 to 12 is designated the midpoint of the 

campaign (no data for run 4), 8 of 10 runs are under-predicted in the first-half of the 
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campaign and 9 of 10 runs are over-predicted for the second half of the campaign. The 

most severe over-predictions also occur in a group from run 12 to 17. An investigation of 

operating conditions did not provide an additional correlation beyond the progression of 

time through the campaign. The campaign does contain several high CO2 removal cases 

(>93% CO2 removal, >2.66 NTU) that are outside of the range from which the model 

corrections were developed or any previous campaigns have operated (Table 2-1). 

Therefore, the potential for model error that was imperceptible at lower CO2 removal or 

issues with analytical measurements operating near detection limits can lead to issues that 

were not identified in prior campaigns. The high removal runs (2, 3, 5, 8, 12, 15-18) 

account for much of the scatter in the preceding figures.  However, as noted for Figure 

2-5, there is not a clear trend with the measured NTU, so the high removal cases alone do 

not explain the trend in time.  The high removal cases do provide an opportunity to 

investigate model performance at near pinched (small driving forces) conditions, where 

the vapor-liquid equilibrium aspects of the model become controlling.  

In general, the average error in the campaign is high compared to the error in the 

reconciled dataset from which the model adjustment was developed (October 2011 and 

November 2013 campaigns). In those original cases, the error in predicted vs. measured 

NTU was approximately 1%. While the error when using the model in a predictive 

fashion might be expected to be higher than when fitting the data to minimize the model 

error, the hypotheses of a single systematic bias as the main source of error is not strictly 

supported by the results of this final campaign unless the time-dependent trends can be 

explained.  
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2.4.2 General Absorber Performance Results from the Pilot Plant 

The March 2015 campaign also yielded an important insight for absorber 

performance as a function of piperazine concentration.  

Table 2-4: Parametric testing of solvent concentration (5 m vs. 8 m PZ) at the SRP 

pilot plant. All cases operated with spray intercooling. Reproduced with permission 

from authors (Zhang, et al., 2016). 

Test 
PZ 

(molal) 

Solvent 
Rate 

(m3/hr) 

Gas 
Rate 

(actual 
m3/min) 

Lean Loading  
(mol 

CO2/mol 
alk.) 

Lean 
P*CO2 

@ 

40°C 

Rich Loading  
(mol 

CO2/mol 
alk.) 

CO2 
Removal 

1 
5 

3.2 14.2 
0.235 107 0.347 80% 

8 0.236 85 0.329 75% 

2 
5 

3.2 9.9 
0.238 114 0.340 96% 

8 0.239 91 0.320 93% 

3 
5 

2.3 9.9 
0.221 83 0.374 94% 

8 0.225 68 0.333 91% 

 

The volumetric solvent flow rates are equivalent in Table 2-4, which indicates a 

larger mass flow rate for 8 m PZ (higher density) compared to 5 m PZ. In addition, the 

inherently larger solvent capacity of 8 m PZ (more amine circulating per mass of solvent) 

and the larger lean end driving forces for 8 m PZ in every test (as indicated by the lean 

equilibrium partial pressure in Table 2-4) indicate favorable conditions for 8 m PZ in 

terms of driving forces for CO2 absorption. However, in every case in the table, 5 m PZ 

outperforms 8 m PZ in terms of CO2 captured. The results indicate that the reduced 

viscosity of 5 m PZ has a strong impact on absorber performance. This provides 

preliminary evidence of the significance of the liquid-film physical mass transfer 

coefficient (kL) for absorber performance – results in Chapter 5 indicate that the model 

used in this work predicts significant resistance from kL. In addition, modeling results 

predicted significant performance benefits in the absorber with 5 m PZ (Sachde & 
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Rochelle, 2014). The pilot plant data provides the strongest evidence of the performance 

enhancement provided by reduced viscosity for amine solvents operating in the fast 

reaction regime.  

 

2.5 VALIDATING RATE PARAMETERS WITH PILOT PLANT DATA 

The focus in the preceding sections has been to use the model to match the 

performance of the absorber primarily in terms of the overall CO2 material balance (or 

CO2 removal). This was the motivation for only adjusting a single parameter to match 

pilot plant data. However, the pilot plant data includes a liquid-side CO2 (mid-loading) 

measurement at Point 6 in Figure 2-1. By adding this data, an additional degree of 

freedom is created via the second, separate material balance that can be performed around 

either half of the absorber column. However, there is no gas-side measurement in the 

pilot plant at this location to confirm the material balance closure as in the full absorber 

column balance, and liquid-side measurements have inherently larger uncertainty as part 

of the analytical methods to measure the CO2 content. Therefore, the reliability of this 

second material balance is questionable.  

Nonetheless, the additional degree of freedom allows an adjustment to fit the 

overall CO2 material balance (e.g., CO2 correction or area correction) and a separate 

adjustment to fit the independent material balance (or relative rates of CO2 removal in the 

top and bottom beds) around half of the absorber. The relative rates of CO2 transfer are 

most strongly impacted by the rate-parameters of the model – kinetics and physical mass 

transfer coefficients (see Chapter 5 for an extended discussion). Therefore, using the mid-

loading data, the rate parameters of the model can be validated (or adjusted). The mid-

loading data for the October 2011 campaign suggest that the removal on the lean-end 
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(top) of the absorber is over-predicted relative to the rich end of the column. This is 

consistent with liquid-film mass transfer coefficients that are too low (diffusion-limited 

system in the rich end - see Chapter 5 for sensitivity of model to kL and Appendix A for a 

possible explanation of under-reported kL measurements). As a result, the liquid-film 

mass transfer coefficients were increased by a factor of 3 (see Appendix A), while the 

mass transfer area was used to maintain the removal specification. The expectation of this 

approach was that the overall volumetric mass transfer coefficient (kL*a) would remain 

roughly constant.  The resulting area modification was a factor of 0.40 (or decrease by a 

factor of 2.5). Therefore, the new overall kLa (3*0.4 = 1.2) increased by 20% over the 

original values. The resulting mid-loading predictions are presented in Table 2-5 

Table 2-5: Comparison of mid-loading predictions for the October 2011 campaign – 

original reconciled values (via lean CO2 correction only) vs. updated values with 

new kL (3*base) and area (0.4*base) values.  

  
Delta Loading (Mid - Lean) 
(mol CO2/mol alkalinity) 

Predicted/Measured 

Run Measured Original Prediction Updated Prediction Original Ratio  Updated Ratio 

1 0.041 0.055 0.046 1.35 1.14 

2 0.046 0.099 0.048 2.17 1.04 

3 0.049 0.097 0.058 1.99 1.18 

4 0.046 0.097 0.053 2.10 1.14 

5 0.046 0.098 0.049 2.13 1.06 

6 0.040 0.103 0.058 2.55 1.44 

7 0.036 0.094 0.052 2.64 1.45 

8 0.038 0.057 0.048 1.49 1.27 

9 0.035 0.103 0.060 2.90 1.68 

10 N/A N/A N/A N/A N/A 

11 0.035 0.089 0.048 2.57 1.37 

 

The method improves mid-loading predictions significantly over the base case, 

but the model still systematically over-predicts the removal in the top portion of the 
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column. This method merits further consideration in future reconciliation as it represents 

an alternate source of bias that may be impacting model predictions and may provide a 

route to develop new mass transfer coefficient values for the amine scrubbing process.  

2.6 CONCLUSIONS 

The rigorous rate-based absorber model using aqueous piperazine as the solvent 

was validated and adjusted using pilot plant data from the Separations Research Program 

pilot plant at the University of Texas at Austin. A data reconciliation procedure was 

implemented to simultaneously account for the measurement uncertainty for the pilot 

plant measured inputs and to the model (flows, temperatures, etc.) and the uncertainty in 

the output metrics of the model (CO2 removal, outlet temperatures, etc.). In addition, an 

adjustable parameter was defined to allow fitting of the model to pilot data for any 

unexplained offset in the reconciliation process. The key findings of this reconciliation 

process can be summarized as follows:   

 A systematic bias between the model and pilot plant data was identified by a 

consistent model adjustment across two pilot plant campaigns covering a wide 

range of operating conditions and different types of packing. 

o The model bias could be corrected by an increase in the lean solvent 

loading of ~7% or by a 25% reduction in packing mass transfer area. 

o The CO2 correction had independent corroboration from separate stripper 

model validation and via a modified density-predicted loading. 

 The adjusted model was used in a second stage of data reconciliation to isolate the 

performance of a spray nozzle added to the intercooling loop in the pilot plant.  
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o The mass transfer area of the spray nozzle was regressed during the 

reconciliation process and correlated to the kinetic energy (via mass flow 

rate) of the solvent. 

o The spray nozzle added between 5 and 20% additional mass transfer area 

to the column measured as an equivalent packing area.  

o A screening economic analysis to compare the cost of the pressure drop 

through the spray nozzle to the value of the mass transfer area added 

(quantified via the cost of an equivalent area of structured packing) 

revealed that the spray nozzle pumping costs always outweigh the value of 

area generated and that the spray nozzle is only beneficial where a packing 

cannot be added (retrofit). 

 

The final approach to model validation consisted of using the adjusted model to 

predict the performance of a new pilot plant campaign.  

 The model predicted NTU with an average error of 22% and over-predicted NTU 

on average (mean ratio of predicted/measured = 1.08). 

 The data showed a correlation with time (i.e., experiment number) exhibiting a 

distinct shift from consistent under-prediction to over-prediction of CO2 removal 

half way through the campaign. The worst fit of individual experiments occurred 

together in a cluster of runs in the second half of the campaign.  

 A pilot plant parametric study of absorber performance as a function of PZ 

concentration revealed that 5 m PZ significantly outperformed 8 m PZ in terms of 

mass transfer rates, indicating a strong impact of viscosity on absorber 

performance and the potential importance of liquid-film physical mass transfer in 

amine absorbers.  
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2.6.1 Open Research Issues 

 The operation of the absorber at high CO2 removal conditions provides an 

opportunity to validate different absorber performance mechanisms related to 

operating near a pinch (small driving forces). Specifically, equilibrium constraints 

become controlling at pinched conditions and provide an opportunity to validate 

model VLE. Further validation of the model is need at these conditions.  

 The spray nozzle model developed in this work is largely empirical and is coupled 

to the packing mass transfer models used in the regression process (spray 

represented as a packed bed). If the spray nozzle continues to be used as a 

component of the pilot plant (or other modeling activities), the spray model 

should be de-coupled from packing models by regressing a combined kLa to 

represent the true performance of the spray as a function of operating conditions.  

 Mid-loading measurements (or similarly, mid-column gas measurements) create a 

new degree of freedom for model validation of the absorber via a secondary 

material balance around half of the absorber. This new degree of freedom can be 

used to validate rate mechanisms in the absorber by considering the relative rates 

of CO2 absorption in each half of the column and identifying the controlling 

mechanism in the model which can be used to fit the new pilot plant data point. 

This is particularly relevant for the validation or measurement of physical-liquid 

film mass transfer coefficients, which are difficult to measure and extrapolate 

from experimental conditions to conditions in an actual amine absorber. Initial 

attempts with the approach of varying the overall volumetric mass transfer 

coefficient (kLa) indicates significant improvement in model prediction of mid-
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loading compared to the base case, but still exhibits a consistent trend of over-

predication. 
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Chapter 3: Adiabatic Absorbers – Minimum Solvent Rates and Pinch 

Behavior 

CO2 capture with amine solvents results in the generation of a temperature 

maximum (or bulge) within the column due to heat released by absorption and reaction of 

CO2 and simultaneous transfer of water. The higher solvent temperature limits the 

maximum capacity of the solvent (as measured by the change in solvent loading for a 

given CO2 removal) and reduces average driving forces through the column. The reduced 

solvent capacity results in deterioration of the energy performance of the stripping system 

while the reduced driving forces can result in increased packing (capital cost) 

requirements in the absorber.  

Cooling the solvent at intermediate locations in the column (intercooling) to 

remove heat generated by CO2 absorption can mitigate the capacity and driving force 

limitations, but the conditions of absorber operation (CO2 concentration in flue gas, lean 

loading, L/G, etc.) dictate the potential benefit that may be extracted from the 

intercooling operation. Quantifying the potential benefits of intercooling and generalizing 

the trends in these benefits with operating conditions can allow absorber and intercooling 

design optimized for the specific operating conditions.  

This chapter will present a systematic evaluation of the potential solvent capacity 

benefits of intercooling benefits by considering the two important relevant limiting 

designs – adiabatic and isothermal absorbers. The analysis will be performed across a 

range of CO2 flue gas sources and operating conditions with the goal of providing 

fundamental explanations for deviation from isothermal (or ideal) solvent capacity and 

generalizing the results based on these underlying mechanisms.  The results will allow 

recommendations regarding the conditions for the application of intercooling and for 

development of improved intercooling design.  
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3.1 EVALUATION OF EXISTING LITERATURE 

3.1.1 Temperature Maxima and “Critical” L/G 

While the phenomena of temperature maxima in gas absorbers has been studied 

extensively for a variety of gas-liquid systems (e.g., physical absorption of ammonia in 

water (Bourne & von Stockar, 1974)), the results have not been generalized as a function 

of operating conditions, specifically in the context of amine-based absorbers for CO2 

capture applications. In addition, the basic phenomena of temperature-related mass 

transfer pinches (and associated increase in solvent circulation rates) is well-understood. 

However, linking process and operating conditions to the fundamental mechanisms and 

explaining process performance from this first-principles level has not been possible prior 

to the development of rigorous rate-based models such as the one utilized in this work.   

Kohl and Nielsen provide an extensive, but qualitative and general, discussion of 

thermal effects for amine-based systems used in gas treating (hydrocarbon) applications 

(Kohl & Nielsen, 1997). The authors describe the nature of the temperature bulge in 

columns as a function of amine type (rate of reaction with amines), operating conditions 

such as liquid-to-gas ratio (L/G), and discuss impacts on operation of amine absorbers. In 

addition, an empirical method is proposed to determine the distribution of reaction heat 

between the vapor and liquid phases. The goal of the work is not to develop detailed 

mechanistic explanations for the temperature effects on absorber performance, but rather 

to provide simplified design procedures and general operating guidelines to account for 

the temperature effects.  

Kvamsdal and Rochelle performed a detailed analysis of the effects of the 

temperature bulge on mass transfer performance of absorber columns using amine 

solvents for CO2 capture (Kvamsdal & Rochelle, 2008). The study introduced the concept 

of a “critical” liquid-to-gas ratio (L/G) where the temperature maximum occurs in the 
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middle of the column and the enthalpy leaving with the gas and liquid, respectively, are 

balanced. The authors systematically evaluated the effect of L/G on the magnitude and 

location of the temperature bulge in the column. Key observations included the shift of 

the temperature bulge from the lean end of the column, where enthalpy was primarily 

carried by the gas, to rich end of the column, where the enthalpy was primarily carried by 

the liquid, with a sharp transition in bulge location at the critical L/G. However, the 

authors evaluated the effect of L/G at a fixed lean loading and packing height, limiting 

generalization of results.  

Plaza extended the concept of a critical L/G by evaluating rich loading and 

solvent capacity as a function of lean loading for multiple solvents (monoethanolamine, 

potassium carbonate/piperazine, and piperazine) with a coal-fired boiler flue gas (12 

mol% CO2) (Plaza, 2011). The analysis identified a range of lean loadings where the 

temperature bulge limits solvent capacity and the critical L/G corresponding to a lean 

loading where the temperature bulge reaches a maximum and solvent capacity is 

expected to be the most severely limited. Plaza was also able to use column temperature 

and mass transfer profiles to qualitatively describe the phenomena underlying the trends 

in solvent capacity. Finally, the work included an empirical approach to predict the 

critical L/G based on the detailed modeling results.  

The current work will build on the concepts of the previous authors with a focus 

on systematically evaluating the process performance impacts (solvent capacity) of 

temperature effects in adiabatic absorbers as a function of operating conditions and flue 

gas CO2 concentration. The analysis will also generalize results as a function of the 

operating conditions, providing fundamental explanations for the link between process 

conditions and temperature limitations of absorber performance, and identify 

opportunities for intercooling implementation and development.  
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3.2 MODELING FRAMEWORK 

The absorber model used for the intercooling evaluation was implemented in 

Aspen Plus® in the RateSepTM module. The key components of the model are rigorous 

representations of solvent thermodynamics and kinetics, mass transfer and fluid 

mechanics in packing, and the physical properties of the system over the range of 

expected operating conditions.  

All of the subsequent analysis will utilize concentrated aqueous piperazine (PZ) 

as the solvent. The thermodynamic model for the PZ-H2O-CO2 system was developed 

from experimental amine pKa, CO2 solubility, heat capacity, speciation, and amine 

volatility data by regression of Gibbs free energy, enthalpy, heat capacity, and activity 

coefficient parameters within the electrolyte non-random two liquid (e-NRTL) 

framework (Frailie, 2014).  

The kinetics for the PZ model are described by the following reaction set: 

 

 𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍𝐻+ ↔  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍 3.1 

 𝑃𝑍𝐶𝑂𝑂− + 𝐻2𝑂 + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝐻𝐶𝑂3
−

 3.2 

 2𝑃𝑍 + 𝐶𝑂2 →  𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂− 3.3 

 2𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍(𝐶𝑂𝑂)2
2−

 3.4 

 

The first reaction is an equilibrium (proton transfer) reaction while reactions 2 through 4 

are reversible finite rate reactions where the corresponding reverse reactions complete the 

reaction set for PZ. Arrhenius rate expressions represent the rate constants for the kinetic 

reactions (including forward and reverse rates) where the pre-exponential and activation 

energy parameters were regressed from wetted wall column data collected over a range of 

temperatures, solvent concentrations, and loadings relevant for capture applications 



 45 

considered in this work. Finally, physical property models for binary diffusion 

coefficients, viscosity, and density were regressed as a function of amine concentration, 

loading, and temperature. For a detailed description of the “Independence” PZ model, see 

Frailie (Frailie, 2014). 

Mass transfer and area models were developed by Wang via regression of 

experimental data from a pilot scale column with a variety of random and structured 

packings (Wang, 2015). The area model developed by Wang is a modification of a model 

developed by Tsai (see Tsai for full theoretical and experimental details of the area 

model) (Tsai, 2010). 

3.3 ANALYSIS OVERVIEW AND METHODOLOGY 

Table 3-1 summarizes the conditions used for the evaluation of temperature-

related performance restrictions. The analysis was conducted for 50 - 95% removal of 

CO2 utilizing concentrated (5, 8 molal) piperazine (PZ) as the solvent. The lower end of 

the proposed lean loading ranges in Table 3-1 would lead to precipitation in practice with 

the PZ solvent (Freeman, 2011). However, the wide range is included as an extrapolation 

of the PZ model in an attempt to allow generalization of the results.  

Table 3-1: Summary of Intercooling Analysis Operating Conditions  

Flue Gas Source 

Inlet 

CO2  
(mol%) 

Lean Loading 

Range 
mols CO2/mols 

alkalinity 

Flue Gas Flow  
(kmol/s) 

Natural Gas Combined Cycle (NGCC) 4.1 0.10 - 0.30 31.2 

Coal-Fired Boiler 14.7 0.10 - 0.36 18.9 

Steel Blast Furnace 27 0.10 - 0.39 10.4 

Lean solvent and flue gas feed at 40°C for all cases. Flue gas saturated to water. 
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One of the major results developed from the analysis will be solvent capacity or 

the minimum solvent rate, which will be used interchangeably to describe the maximum 

liquid-phase loading (or total concentration of CO2 in all forms – see Equations 3.1- 3.4) 

that can be achieved before the solvent is saturated. Thus, for a given CO2 transfer rate 

from the gas, a lower solvent rate corresponds to higher solvent capacity by simple 

material balance on the absorber.  

For the range of conditions identified in the table, the solvent capacity for an 

adiabatic (no intercooling) absorber and an isothermal (“perfect” intercooling) absorber 

operated at 40 °C will be quantified. These designs represent limiting cases of absorber 

performance. The adiabatic absorber (limited by temperature-induced equilibrium 

constraints) represents minimum solvent capacity and the isothermal absorber represents 

the maximum solvent capacity for a given operating condition. Figure 3-1 illustrates the 

approach used in this analysis.  
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Figure 3-1: Example of design curves for packing-solvent rate trade-off.  Each curve 

(dashed = adiabatic, solid = isothermal) represents the packing requirement to 

achieve 90% CO2 removal for a fixed lean loading and given liquid to gas ratio 

(L/G). At each point, the lean loading, removal, and solvent rates are fixed, so a 

unique rich loading exists (secondary y-axis).  The horizontal asymptote is the 

minimum solvent rate (LMIN) or best energy performance achievable for a given 

absorber design.  

Each curve represents the packing required for a given liquid to gas ratio (L/G) 

for each absorber design moving from one asymptotic limit (vertical asymptote of infinite 

solvent rate and minimum packing) to another (horizontal asymptote of infinite packing 

and minimum solvent rate). In practice, the infinite solvent rate asymptote does not 

provide a physically meaningful or quantifiable limit as the packing will approach zero 

for all designs in this limit. The minimum solvent rate (LMIN) asymptote will be used to 

0.0

1.0

2.0

3.0

4.0

5.0

0 20 40 60 80 100

L/
G

 (
m

o
l/

m
o

l)

Total Packing Metal Area/G ( m2/mol/s)

Adiabatic (No Intercooling)

Isothermal (T = 40°C)

0.279

0.287

0.299

0.323

0.396

R
ich

 Lo
ad

in
g (m

o
ls C

O
2 /m

o
ls

alk.)

"Infinite" Packing Limit = 
Minimum Solvent Rate

Conditions
NGCC (4.1% CO2)

LLDG = 0.25 mols CO2/mols alk.
CO2 Removal = 90%



 48 

evaluate solvent capacity in this work. The LMIN for any absorption process can be 

defined as the solvent rate required to achieve a specific solute removal (or specific gas 

inlet and outlet compositions) for a given inlet solvent composition (loading) with infinite 

mass transfer area available. In practice, “infinite mas transfer area” is defined by adding 

a finite amount of packing to the absorber until the asymptote in Figure 3-1 is evident 

(cannot reduce the solvent rate further while achieving the removal specification). In 

addition, a mass transfer pinch (zero driving force) can be confirmed with operating and 

equilibrium curves for the absorber (discussed in subsequent sections).  

Lower values of LMIN are associated with better overall energy performance of the 

system (reduced sensible heat requirements in stripping system, enhanced rich loading to 

improve CO2/H2O selectivity in the stripping system, and reduced pumping costs across 

the entire system). The ratio of the adiabatic LMIN to the isothermal LMIN at each 

condition can serve as a screening tool for the conditions where cooling the solvent 

(intercooling) will be beneficial for energy performance. A high ratio indicates 

potentially significant benefits of intercooling. A ratio equal to (or approaching) unity 

indicates that the capacity benefits of intercooling are negligible or non-existent.   

The next chapter will consider mass transfer constraints or packing requirements 

to approach maximum solvent capacity. The “infinite” packing limit is not a practical 

operating condition due to potentially prohibitive packing costs and operational 

instability near pinched conditions. Therefore, to fully evaluate absorber designs, the 

trade-off between solvent rate and packing requirement must be explicitly quantified.  

3.4 MINIMUM SOLVENT RATE ANALYSIS 

Figure 3-2, Figure 3-3, and Figure 3-4 include the LMIN ratios for an adiabatic (no 

intercooling) absorber for all three flue gas sources in Table 3-1.  
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Figure 3-2: NGCC power plant flue gas (4.1% CO2). Ratio of the minimum solvent 

rate (“infinite” packing) achieved for an adiabatic absorber (no intercooling) to an 

isothermal absorber (40 °C) for 90% CO2 capture with 8 m PZ.  
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Figure 3-3: Coal-fired boiler flue gas (14.7% CO2). Ratio of the minimum solvent 

rate (“infinite” packing) achieved for an adiabatic absorber (no intercooling) to an 

isothermal absorber (40 °C) for 90% CO2 capture utilizing 8 m PZ. Points denoted 

by a red circle have corresponding equilibrium-operating line charts in Figure 3-5 

to Figure 3-8. 

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.15 0.2 0.25 0.3 0.35 0.4

L M
IN

/L
M

IN
, IS

O
TH

ER
M

A
L

Lean Loading (mol CO2/mol alkalinity)

LMIN, NO IC

COAL (14.7 % CO2)
8 m PZ

90% CO2 Removal 
"Infinite"Packing



 51 

 

Figure 3-4: Steel blast furnace flue gas (27% CO2).  Ratio of the minimum solvent 

rate (“infinite” packing) achieved for an adiabatic absorber (no intercooling) to an 

isothermal absorber (40 °C) for 90% CO2 capture utilizing 8 m PZ. 

  In all three cases, an intermediate range of loadings results in the largest ratios 

(largest deviation from an ideal isothermal absorber) and identifies conditions where the 

greatest energy benefits may be attained via intercooling. At extreme loadings (low and 

high) the ratios approach unity, indicating intercooling will provide limited benefits.  

  The data for each of the preceding figures along with relevant temperatures are 

included in Table 3-2 through Table 3-4 for reference throughout the following 

discussion.  
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Table 3-2: Summary of Minimum Solvent Analysis Results: NGCC (4.1% CO2), 

GINLET = 31.2 kmol/s, TGAS,IN = TLIQUID,IN = 40°C, 90% CO2 Removal, 8 m PZ. 

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate (LMIN/G) Rich Loading Temperatures 

Isothermal Adiabatic 
LMIN, 

ADIABATIC / 
LMIN, 

ISOTHERMAL 

Isothermal Adiabatic 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
mol/mol mol/mol mol CO2/mol alk.  °C 

0.15 21.89 0.60 0.61 1.02 0.395 0.391 55.9 42.7 53.3 

0.18 13.92 0.68 0.70 1.02 0.395 0.391 56.2 42.7 53.0 

0.21 8.24 0.79 0.81 1.03 0.395 0.390 56.6 42.6 52.6 

0.22 6.78 0.84 0.86 1.03 0.395 0.390 56.8 42.6 52.4 

0.22 6.78 0.84 1.36 1.62 0.395 0.328 59.5 44.0 52.0 

0.22 6.78 0.84 2.86 3.41 0.395 0.271 63.5 49.0 45.3 

0.225 6.10 0.86 3.06 3.54 0.395 0.273 63.8 49.4 43.6 

0.23 5.53 0.89 3.19 3.58 0.395 0.276 63.9 49.6 42.7 

0.24 4.47 0.95 3.35 3.53 0.395 0.284 63.7 49.7 41.3 

0.25 3.59 1.01 3.42 3.38 0.395 0.293 63.1 49.5 40.8 

0.27 2.29 1.18 3.54 3.01 0.395 0.311 61.5 49.0 40.3 

0.3 1.16 1.55 3.76 2.43 0.395 0.339 56.9 48.0 40.1 
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Table 3-3: Summary of Minimum Solvent Analysis Results: COAL (14.7% CO2), 

GINLET = 18.9 kmol/s, TGAS,IN = TLIQUID,IN = 40°C,  90% CO2 Removal, 8 m PZ.  

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate (LMIN/G) Rich Loading Temperatures 

Isothermal Adiabatic 
LMIN, 

ADIABATIC / 
LMIN, 

ISOTHERMAL 

Isothermal Adiabatic 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
mol/mol mol/mol mol CO2/mol alk.  °C 

0.15 78.76 1.94 1.96 1.01 0.422 0.420 76.0 42.7 68.3 

0.18 50.09 2.18 2.23 1.02 0.422 0.412 77.0 43.0 67.7 

0.19 42.45 2.27 3.73 1.64 0.422 0.332 79.8 52.2 62.9 

0.2 35.65 2.37 5.23 2.20 0.422 0.301 80.7 57.4 52.1 

0.21 29.64 2.49 5.62 2.26 0.422 0.304 80.5 58.1 45.3 

0.22 24.41 2.61 5.84 2.24 0.422 0.311 80.0 58.1 42.2 

0.23 19.91 2.75 5.91 2.15 0.422 0.319 79.1 57.7 41.3 

0.26 10.33 3.25 6.09 1.87 0.422 0.347 73.3 56.2 40.8 

0.29 5.24 3.99 6.43 1.61 0.422 0.372 65.1 54.4 40.5 

0.3 4.18 4.32 6.64 1.54 0.422 0.379 62.5 53.7 40.4 

0.33 2.13 5.73 7.79 1.36 0.422 0.398 55.2 51.0 40.2 

0.36 1.04 8.50 10.64 1.25 0.422 0.410 49.0 47.6 40.0 
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Table 3-4: Summary of Minimum Solvent Analysis Results: STEEL (27% CO2), 

GINLET = 10.4 kmol/s, TGAS,IN = TLIQUID,IN = 40°C,  90% CO2 Removal, 8 m PZ  

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate (LMIN/G) Rich Loading Temperatures 

Isothermal Adiabatic 
LMIN, 

ADIABATIC / 
LMIN, 

ISOTHERMAL 

Isothermal Adiabatic 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
mol/mol mol/mol mol CO2/mol alk.  °C 

0.12 217.97 3.09 3.21 1.04 0.431 0.421 86.5 45.0 78.5 

0.15 143.91 3.42 3.65 1.07 0.431 0.416 87.1 46.5 77.6 

0.16 124.49 3.55 3.81 1.07 0.431 0.413 87.4 47.2 77.2 

0.17 107.11 3.69 4.01 1.09 0.431 0.411 87.6 48.0 76.7 

0.175 99.32 3.76 5.67 1.51 0.431 0.345 88.6 57.5 70.2 

0.18 91.52 3.83 6.82 1.78 0.431 0.321 88.9 61.3 61.9 

0.19 77.56 3.99 7.70 1.93 0.431 0.315 88.8 63.1 51.4 

0.195 70.81 4.08 7.91 1.94 0.431 0.317 88.6 63.3 47.7 

0.2 65.13 4.16 8.06 1.94 0.431 0.318 88.4 63.3 44.8 

0.22 44.60 4.56 8.28 1.82 0.431 0.336 86.5 62.4 41.5 

0.24 29.41 5.03 8.41 1.67 0.431 0.354 81.0 61.2 41.2 

0.26 18.88 5.62 8.63 1.53 0.431 0.372 74.0 59.8 41.0 

0.29 9.57 6.81 9.30 1.36 0.431 0.394 65.3 57.3 40.7 

0.32 4.88 8.65 10.85 1.25 0.431 0.409 58.0 54.0 40.4 

0.34 3.09 10.54 12.69 1.20 0.431 0.416 53.8 51.5 40.3 

0.36 1.89 13.50 15.75 1.17 0.431 0.421 50.0 48.9 40.1 

0.39 0.78 23.74 26.84 1.13 0.431 0.426 45.1 44.8 40.0 
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3.4.1 Fundamental Explanations 

3.4.1.1 Equilibrium and Operating Line Constructions  

To understand the trends with loading, equilibrium-operating line constructions 

can provide insight into the effect of a temperature bulge in the column on the maximum 

capacity attainable (LMIN achieved).  Figure 3-5 through Figure 3-8 include representative 

equilibrium-operating line charts in the three loading ranges (low, mid, and high) for the 

coal-fired boiler application.  The loadings selected for detailed analysis are highlighted 

in Figure 3-4 (red circles) for reference.    
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Figure 3-5: Operating and equilibrium curves @ LLDG = 0.15 mol CO2/mol alk. 

Adiabatic absorber operated at LMIN (“infinite” packing) for 90% CO2 removal 

from coal-fired boiler flue gas (14.7% CO2).  The mass transfer pinch (contact of 

equilibrium and operating lines) occurs at the rich end of the column (bottom, 

45°C), unrelated to the max temperature (76 °C) near the lean end (top). 
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Figure 3-6: Operating and equilibrium curves @ LLDG = 0.19 mol CO2/mol alk. 

Adiabatic absorber operated at LMIN (“infinite” packing) for 90% CO2 removal 

from coal-fired boiler flue gas (14.7% CO2).  The mass transfer pinch (contact of the 

equilibrium and operating lines) occurs near the lean end of the column and 

coincides with the maximum temperature (80 °C). 
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Figure 3-7: Operating and equilibrium curves @ LLDG = 0.21 mol CO2/mol alk. 

Adiabatic absorber operated at LMIN (“infinite” packing) for 90% CO2 removal 

from coal-fired boiler flue gas (14.7% CO2). This condition represents the largest 

deviation from isothermal performance (LMIN/LMIN,Isothermal = 2.26 ).  The mass 

transfer pinch (contact of the equilibrium and operating lines) occurs near the lean 

end of the column and coincides with the maximum temperature (81 °C). 
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Figure 3-8: Operating and equilibrium curves @ LLDG = 0.36 mol CO2/mol alk. 

Adiabatic absorber operated at LMIN (“infinite” packing) for 90% CO2 removal 

from coal-fired boiler flue gas (14.7% CO2).  The mass transfer pinch (contact of the 

equilibrium and operating lines) occurs near the rich end of the column and 

coincides with the maximum temperature (49 °C). 

The slope of the operating line (upper line in orange) in the preceding figures 

represents the liquid to gas ratio (L/G). The curvature present in the operating lines is due 

to the concurrent transfer of water and an L/G that may vary significantly in different 

parts of the column. This differs from the typical binary diagram with only a single 

transferring component. As the liquid rate is reduced, the slope of the operating line is 

reduced until it comes in contact with the equilibrium line; at this point in the column, 

there is no driving force for mass transfer (the column is “pinched”), and the solvent rate 

cannot be reduced any further while meeting the 90% removal specification.  Therefore, 
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the slope of the operating line when the pinch occurs represents the minimum solvent rate 

to achieve 90% removal for the given operating conditions and column configuration.  

The best performance (in terms of solvent circulation or LMIN) achievable for a given 

operating condition corresponds to a mass transfer pinch at the rich end (bottom) of the 

column at the column feed temperature (an isothermal pinch or complete saturation of the 

solvent). Equilibrium-operating line constructions provide insight into the effect of a 

temperature bulge in the column on the approach to this best case performance. 

In Figure 3-5, the maximum solvent temperature occurs near the top of the 

column due to the relatively low L/G at the lean operating conditions.  At the low L/G 

condition, the gas heat capacity dominates and carries heat generated by CO2 absorption 

to the top of the column.  The low lean loading (0.15 mol CO2/mol alk.) also imposes 

large driving forces at the top of the column, so the temperature bulge in this region does 

not result in a mass transfer pinch.  The pinch occurs near the rich end of the column at a 

temperature of 45°C.  Therefore, while some benefit can be derived by reducing the 

temperature at the rich end of the column, the temperature maximum in the column does 

not limit the solvent capacity - this is reflected in the close approach to isothermal 

performance (LMIN/LMIN,Isothermal = 1.01). The benefit of intercooling in this low lean 

loading region is negligible from a solvent capacity perspective.  

In Figure 3-6 and Figure 3-7, a mass transfer pinch coincides with the temperature 

bulge at the lean end of the column.  In this loading range, the solvent carries an 

increasing portion of the heat generated by CO2 absorption and the heat is “trapped” in 

the column.  The temperature bulge is limiting the solvent capacity (as noted by the 

reduced rich loading values in Figure 3-6 and Figure 3-7).  This condition corresponds to 

the largest potential benefit from intercooling via removal of the temperature-induced 

mass transfer pinch.  
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Figure 3-7 corresponds to the largest deviation from isothermal capacity across 

the entire range of lean loadings evaluated for the coal-fired boiler (LMIN/LMIN, ISOTHERMAL 

= 2.26).  The temperature-related pinch is still at the lean end of the column (most of the 

removal occurs below the pinch). This seems to contradict the hypotheses of previous 

researchers that the critical L/G condition (where intercooling benefits are maximized) 

corresponds to a pinch in the middle of the column. This condition will be investigated 

further in the subsequent section.  

Finally, in Figure 3-8, the high lean loading results in a temperature bulge at the 

rich end of the column.  The high L/G (liquid heat capacity dominates) required in this 

loading region drives the temperature bulge to the bottom of the column and results in a 

comparatively low maximum column temperature (49°C).  The mass transfer pinch 

occurs at this bulge, but the low temperature and proximity to the rich end of the column 

results in a performance very close to an isothermal column.  Therefore, intercooling will 

provide limited benefits in this loading region.   

The trends for the NGCC case (Figure 3-2) and the steel-blast furnace case 

(Figure 3-4) can also be explained by the same phenomena in the column:  

1) Lean end temperature bulge at low loadings does not form a mass transfer 

pinch due to large driving forces near temperature maxima;  

2) As lean loading is increased, a lean end pinch forms at the temperature bulge 

and severely limits absorption capacity of the solvent;  

3) At high lean loadings, the solvent rate has increased sufficiently to push the 

temperature bulge (i.e., large heat capacity) to the rich end of the column and 

simultaneously moderate the temperature, limiting the effect of the mass 

transfer pinch on solvent capacity.  
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3.4.1.2 Lean Pinch Formation and Multiple Steady States  

As noted in the preceding discussion, the formation of a lean end pinch at the 

temperature bulge is the precipitating phenomena that leads to an operating region where 

intercooling is essential for the energy performance of amine-based solvent systems. In 

Figure 3-2 to Figure 3-4, the transition to this region appears to be discontinuous as a 

function of loading. The NGCC case (Figure 3-2) exhibits multiple steady states at the 

loading where the transition occurs (0.22 mol CO2/mol alkalinity), and will be 

investigated to understand the nature of this important transition in process performance.  

Figure 3-9 summarizes the pinch behavior at the transition loading.  

 



 63 

 

Figure 3-9: Lean end pinch formation at the transition loading (0.22 mol CO2/mol 

alk.) for an adiabatic absorber, NGCC power plant flue gas (4.1% CO2), 8 m PZ. 

Three steady state solvent rates achieve 90% CO2 removal (identified in the figure) 

as the solvent rate increases from the isothermal minimum (LMIN, ISOTHERMAL). 

CO2 absorption is expected to increase monotonically with solvent rate at a given lean 

loading due to the relaxing of equilibrium constraints in the column. However, Figure 3-9 
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rate change. This behavior can be explained by the physical phenomena governing each 

range of solvent rate. As the solvent rate is initially increased from the isothermal 
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initially rises rapidly as expected. However, the solvent simultaneously “traps” heat in the 

column exacerbating the impact of the lean end temperature bulge until a lean end pinch 

is formed. This transition from rich to lean pinch was illustrated as a function of lean 

loading in the preceding section (Figure 3-5 to Figure 3-6). In this transition to a lean end 

pinch, the first steady-state is realized for the NGCC application (LMIN = 780 kg/s).  

The formation of the pinch coincides with a sharp change in the trend with solvent 

rate. Increasing the solvent rate carries heat to the lean end pinch and outweighs any 

general equilibrium benefits of increasing the solvent rate. Therefore, the CO2 removal 

drops over a range of solvent rates. In this lean-end pinch controlled region, a second 

steady state occurs (LMIN = 1234 kg/s). 

 As the solvent rate is continually increased, the CO2 removal reaches a minimum 

before there is sufficient solvent to overcome both the temperature and equilibrium 

constraints. As the solvent rate is increased from this local minima, the CO2 removal rises 

once again as expected. The total liquid and vapor heat capacities2 crossover in this 

region. The liquid heat capacity becomes dominant, carrying heat out of the column 

while moderating temperatures and the CO2 removal rises rapidly with solvent rate again. 

The third steady state (LMIN = 2590 kg/s) is achieved in this region where the solvent 

moderates liquid temperatures. The relationship between the solvent and vapor heat 

capacities will be investigated in detail in the subsequent sections as this becomes the 

dominant phenomena after the lean pinch formation. 

 Figure 3-9 also has several important practical implications. First, two of the three 

steady state solvent rates which meet the 90% removal specification present operational 

and process control challenges. The first steady state exists in a region where CO2 

                                                 
2 The total heat capacity refers to the mass flow rate*specific heat capacity of each phase and includes the 

latent heat of vaporization of water for the vapor phase. 
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removal is very sensitive to solvent rate (steep slope) and can easily reach an unstable 

condition (lean end pinch) if the solvent rate is not controlled carefully. This region 

clearly offers benefits of enhanced energy performance with the lower solvent rates, and 

allowing some operational flexibility on CO2 removal targets (i.e., lower removal) might 

make this a feasible operating region.  

The second steady state exists after lean end pinch formation where the solvent 

rate exhibits and inverse relationship with CO2 removal. Operating in this region means 

control systems must account for this change in the relationship between a control 

variable and specification. If the control system is designed for general operation (solvent 

rate increase is followed by removal increase), the control scheme can drive the system 

away from the desired steady state and process specifications.  

In addition, identification of the three steady state operating conditions is 

important for design calculations. The wide range of solvent rates (varies by a factor of 

~4) will lead to drastically different equipment sizes, solvent inventories, and capital and 

operating cost splits. Therefore, careful selection of the operating condition with an 

associated control scheme to maintain operation in the desired region is required for 

robust design calculations near these lean-pinch forming regions.  

3.4.1.3 Critical L/G Concept and Temperature Effects 

The trends in Figure 3-9 are not limited to the transition loading discussed in the 

preceding section – they reflect general behavior at all loadings and all CO2 flue gas 

concentrations in this study (this will be explored in section 3.4.2). That is, at every lean 

loading in Figure 3-2 to Figure 3-4, a solvent rate increase from the isothermal minimum 

will result in lean end pinch formation, a transition phase where the solvent “traps” heat 
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at the bulge, and ultimately a region where dominant liquid phase heat capacity allows 

moderation of temperature effects and improved equilibrium performance of the solvent.  

At lean loadings below the transition loading (larger driving forces), the pinch 

formation and transitions will all occur at CO2 removal rates above the 90% constraint, 

and thus the only feasible steady state solution that achieves 90% removal will occur 

before a lean end pinch is formed (rich end pinch region). Conversely, as the lean loading 

increases above the transition (driving force drops), the pinch formation and solvent rate 

transitions will occur at CO2 removal rates below the 90% constraint, and therefore only 

one feasible steady state will be realized (the final high solvent rate steady state). 

Eventually, as the lean loading is further increased, the solvent rate will increase 

sufficiently that the lean end equilibrium constraint is readily overcome and the high 

solvent rate steady state condition is not far removed from the isothermal minimum 

solvent rate (all transitions in Figure 3-9 would occur over a narrow range of solvent 

rates).  

The discrete solvent rates that achieve 90% removal at each lean loading form the 

continuous trends as a function of lean loading in Figure 3-2 to Figure 3-4. Similarly, the 

individual temperature maxima and total heat capacities of each phase at each unique 

solvent rate-lean loading combination can be used to develop continuous trends as well. 

Figure 3-10 adds absorber outlet (vapor and solvent) and maximum (solvent) 

temperatures to the LMIN analysis to expand on the observations at each individual lean 

loading. Figure 3-11 provides the corresponding total vapor and liquid heat capacities to 

explain the temperature trends. The vapor heat capacity includes the capacity of the vapor 

to carry water (latent heat of vaporization).  
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Figure 3-10: Ratio of LMIN (“infinite” packing) for an adiabatic absorber to an 

isothermal absorber (40 °C) for 90% CO2 capture from a coal-fired boiler (14.7% 

CO2) utilizing 8 m PZ (primary y-axis). Solvent outlet and maximum temperatures 

and vapor outlet temperatures for each lean loading (secondary y-axis). The three 

regions identify vapor heat capacity control (I), balanced vapor and liquid heat 

capacities (II), and liquid heat capacity control (III). Red points = maximum values.  
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Figure 3-11: Ratio of LMIN (“infinite” packing) for an adiabatic absorber to an 

isothermal absorber (T = 40 °C) for 90% CO2 capture from a coal-fired boiler 

(14.7% CO2) utilizing 8 m PZ (primary y-axis). Total solvent inlet heat capacity 

(mass flow rate * specific heat capacity) and total vapor outlet heat capacity (mass 

flow rate * specific heat capacity + latent heat of water) for each lean loading 

(secondary y-axis). The three regions identify vapor heat capacity control (I), 

balanced vapor and liquid heat capacities (II), and liquid heat capacity control (III).  

 The two preceding figures taken together with the mass transfer pinch behavior at 

each lean loading (e.g., Figure 3-9) can fully describe the governing phenomena for 

trends in solvent capacity with lean loading. In Figure 3-10 and Figure 3-11, 3 regions 
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solvent temperature (Figure 3-10) is near the maximum value achieved across the 

entire loading range, but large driving forces prevent a lean end pinch that violates 

the CO2 removal constraint (90%) and prevents the associated increase in solvent 

rate required to overcome the constraint. The vapor carries a majority of the heat 

from the bulge out of the column. The vapor outlet temperature and, 

correspondingly, total vapor heat capacity are at a maximum in this region.  

 Region II: As the lean loading increases, the reduced driving forces lead to a lean 

end pinch at the temperature bulge that limits the ability to reach 90% CO2 

removal. The solvent rate increases significantly after the pinch is formed to 

overcome the equilibrium constraint associated with the temperature bulge. The 

total liquid heat capacity increases while the vapor heat capacity drops until the 

total heat capacities (or heat carrying ability) of the two phases are approximately 

equivalent. This condition represents the maximum retention of heat in the 

column (the capacity of the solvent to carry heat down the column is matched by 

the ability of the vapor to carry the heat to the top of the column). The “heat 

trapping” effect is further validated by the fact that the maximum temperature 

observed in the absorber across the entire loading range occurs at (or near) the 

heat capacity cross-over. This cross-over (equal heat capacities) has been 

proposed as a definition of the critical L/G (Kvamsdal & Rochelle, 2008). In this 

transition region, the liquid heat capacity becomes dominant, and the maximum 

temperature at the bulge is followed closely by the maximum solvent temperature 

at the absorber outlet as the heat is carried by the liquid down the absorber 

column. The maximum deviation from isothermal capacity occurs in this 

transition region as the bulge temperature is at its highest values and are 



 70 

associated with a lean end pinch.  This point of maximum deviation from 

isothermal capacity has also been defined as a critical L/G (Plaza, 2011). 

 Region III: In this final region, the vapor heat capacity reaches a minimum as the 

vapor outlet temperature approaches 40°C (the inlet temperature). The solvent 

heat capacity is dominant, and increases significantly as the lean loading increases 

(reflecting inherent solvent capacity limitations in this region). The solvent 

circulation rate (and corresponding heat capacity) is sufficient to moderate the 

magnitude and rate of temperature rise generated in the solvent and results in a 

temperature bulge towards the rich end of the column. These effects significantly 

reduce the solvent capacity penalty of the temperature-related mass transfer pinch.  

 

As the discussion of the 3 regions illustrates, several distinct phenomena occur 

sequentially to explain the effects of the temperature bulge on solvent capacity. These 

phenomena arise from the behavior exhibited at a single lean loading as the solvent rate is 

increased (c.f., Figure 3-9). Thus, a description is proposed to expand on the concept of a 

single critical L/G that previous researchers defined for the varying phenomena: 

1) The initiating phenomena is the formation of a limiting lean end pinch at the 

temperature bulge, which is a function of the maximum temperature achieved in 

the column (dictated by CO2 concentration in the flue gas, heat of absorption of 

the solvent, and relative transfer rates of water and CO2) and the operating 

loading/driving forces for mass transfer. The effect of transfer rates will be 

considered in section 3.4.3 – the rate phenomena are important in this region of 

pinch formation and differentiate it from the mechanisms after pinch formation, 

which are dominated by heat capacity effects and solvent rate effects.  The solvent 

rate does increase with lean loading and contributes to “trapping” heat, but is not 
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the primary phenomena in the formation of a pinch – as noted, the increasing L/G 

in region I has minimal impact on the maximum temperature realized in the 

column and therefore is not the primary explanation for the formation of the 

pinch.  

2) The “heat trapping effect” that occurs with increasing solvent rate (and 

exacerbates the solvent capacity penalty) reaches a maximum near the point 

where the total liquid and vapor heat capacities are equal. As will be discussed in 

subsequent sections, the difference in the solvent and vapor heat capacities when 

the lean pinch forms will determine how much the solvent rate must increase to 

reach this cross-over point to overcome the equilibrium restrictions imposed by 

the lean pinch.  

3) The subsequent buffering of solvent temperature by the high L/G follows as a 

result of the increasing solvent rate required to overcome the mass transfer pinch 

and the heat capacity difference of the two phases.  

3.4.2 Generalizing Solvent Capacity Trends for Adiabatic Absorbers 

The preceding discussion provides fundamental explanations for the observed 

trends in the deviation from isothermal capacity for adiabatic absorbers. While the 

mechanisms are the same as the process conditions are changed (e.g., flue gas 

concentration), the effect of process variables cannot be generalized from the preceding 

physical explanations alone. Therefore, the minimum solvent rate analysis was 

systematically repeated for various operating conditions to generalize the trends in 

solvent capacity for adiabatic absorbers.  
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3.4.2.1 Flue Gas CO2 Concentration 

The mechanisms discussed in the previous section (mass transfer pinch formation 

and subsequent solvent rate effects) for a coal-fired boiler and NGCC application are 

generally applicable for any flue gas CO2 concentration. However, the impact of the 

phenomena on process performance shows some notable differences as a function of CO2 

concentration. Figure 3-12 re-plots the deviation from the isothermal solvent rate for each 

of the 3 flue gas sources as a function of lean loading for direct comparison. 

 

 

Figure 3-12: LMIN analysis summary for an adiabatic absorber for NGCC (4.1% 

CO2), coal-fired boiler (14.7% CO2), and steel blast furnace (27% CO2), 8 m PZ, 

90% CO2 capture. 
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Figure 3-12 highlights two important differences. First, the lean loading 

(transition loading) where each application exhibits a lean end pinch and deviates from 

the isothermal baseline increases with decreasing CO2 flue gas concentration. This result 

has an important practical implication – as the CO2 concentration in the flue gas drops, 

the lean loading window where the absorber can be operated without intercooling 

expands (or, equivalently, without a significant energy penalty associated with large 

solvent circulation rates). The stripper energy performance is an optimization, in part, 

between the sensible heat associated with the mass of circulating solvent and the steam 

requirements to strip the CO2 from the solvent to achieve leaner loadings. By expanding 

the window of lean loadings where a lower solvent circulation rate can be applied without 

modification of the absorber, the stripper energy performance is more likely to be at or 

near an optimum operating condition. Therefore, the lower CO2 flue gas concentration 

provides more operational and design flexibility for the capture system.  

The fundamental explanation for this trend with loading can be developed from 

Figure 3-13, which presents the same curves for deviation from isothermal capacity as a 

function of the driving force at the lean end (top) of the absorber column.  
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Figure 3-13: LMIN analysis summary as a function of lean end driving force 

(equilibrium partial pressure of CO2 – gas-side partial pressure of CO2) for an 

adiabatic absorber for NGCC (4.1% CO2), coal-fired boiler (14.7% CO2), and steel 

blast furnace (27% CO2), 8 m PZ, 90% CO2 capture.   

The figure indicates that the driving force where the lean end pinch forms (sharp rise in 

each curve) drops with CO2 concentration. This follows directly from the lean loading 

result - as the gas side partial pressure drops with CO2 concentration in the flue gas, the 

equilibrium partial pressure of the lean solvent increases with the transition loading for 

each application. The driving force indicates how close each application is to a lean pinch 

– as noted in the preceding discussion, the formation of a mass transfer pinch near the 

lean end of the column is the initiating phenomena for the deteriorating performance of 

the adiabatic absorber. Lower CO2 flue gas concentrations result in lower temperatures at 
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the temperature bulge where the lean end pinch forms (compare temperatures in Table 

3-2 through Table 3-4). This results in reduced equilibrium partial pressures at a given 

loading, and allows for operation at higher loadings before a lean end pinch becomes 

limiting.  

The second major observation from Figure 3-12 is that the maximum deviation 

from isothermal behavior decreases with increasing CO2 concentration. The NGCC case 

reaches a maximum ratio of approximately 3.5, coal reaches a maximum of 2.2, and steel 

reaches a maximum of 2.  This trend appears counter-intuitive since the higher CO2 cases 

yield the highest absolute temperatures in the column (Table 3-2 through Table 3-4) and 

might be expected to exhibit the greatest temperature limitations on solvent capacity. 

However, the explanation can be developed by evaluating the lean pinch formation 

behavior for each flue gas source at the loading where the maximum deviation from 

isothermal solvent capacity occurs. Figure 3-14 through Figure 3-16 examine the 

transition from the isothermal to adiabatic minimum solvent rate for each case.  
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Figure 3-14: NGCC (4.1% CO2) Lean pinch formation and total heat capacity 

(mCP) for the vapor outlet and solvent inlet (lean end of the absorber) @ LLDG = 

0.23 mol CO2/mol alk. (8 m PZ). Solvent rate is increased from LMIN, ISOTHERMAL to 

LMIN, ADIABATIC. The total heat capacity of the vapor includes the ability of the vapor 

to carry water (i.e., includes enthalpy of vaporization of water). Lean loading 

corresponds to maximum deviation from LMIN, ISOTHERMAL for an adiabatic absorber 

(see Figure 3-2).  
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Figure 3-15: Coal-fired boiler (14.7% CO2) Lean pinch formation and total heat 

capacity (mCP) for the vapor outlet and solvent inlet (lean end of the absorber) @ 

LLDG = 0.21 mol CO2/mol alk. (8 m PZ).  Solvent rate is increased from LMIN, 

ISOTHERMAL to LMIN, ADIABATIC. The total heat capacity of the vapor includes the 

ability of the vapor to carry water (i.e., includes enthalpy of vaporization of water). 

Lean loading corresponds to maximum deviation from LMIN, ISOTHERMAL for an 

adiabatic absorber (see Figure 3-3). 
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Figure 3-16: Steel blast furnace (27% CO2) Lean pinch formation and total heat 

capacity (mCP) for the vapor outlet and solvent inlet (lean end of the absorber) @ 

LLDG = 0.195 mol CO2/mol alk. (8 m PZ).  Solvent rate is increased from LMIN, 

ISOTHERMAL to LMIN, ADIABATIC. The total heat capacity of the vapor includes the 

ability of the vapor to carry water (i.e., enthalpy of vaporization of water). Lean 

loading corresponds to maximum deviation from LMIN, ISOTHERMAL for an adiabatic 

absorber (see Figure 3-4). 

As in the discussion of the multiple steady state solutions at the transition lean loading 

(Figure 3-9), the three figures above exhibit the same sequence of mechanisms as the 
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CO2 removal rates below 90%. The higher lean loadings (smaller driving forces) in the 

maximum deviation region ensure the lean end pinch occurs before the system can reach 

90% removal. The three figures also include the total vapor and liquid heat capacities. In 

each case, the crossover of the heat capacities is followed by a significant improvement 

in CO2 removal as a function of solvent rate. The solvent circulation is sufficient to 

remove heat from the temperature bulge and relax the associated lean end pinch. To 

facilitate comparison of the trends, the CO2 removal and heat capacity curves are re-

plotted for all flue gas sources in Figure 3-17.  
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Figure 3-17: Summary of lean pinch and heat capacity curves - NGCC (4.1% CO2, 

LLDG = 0.23 mol CO2/mol alk.) coal-fired boiler (14.7% CO2, LLDG = 0.21 mol 

CO2/mol alk.), and steel blast furnace (27% CO2, LLDG = 0.195 mol CO2/mol alk.).   

Solvent rate is increased from LMIN, ISOTHERMAL to LMIN, ADIABATIC. The total heat 

capacity of the vapor includes the ability of the vapor to carry water (i.e., enthalpy 

of vaporization of water). A single curve represents the total heat capacity of the 

liquid for all three flue gas applications since the total heat capacity is dominated by 

solvent flow rate.   

The figure includes several important features to differentiate the performance 

with CO2 flue gas concentration. First, the difference in isothermal flow rates for the 3 

cases represent differences in the inherent solvent capacity at the given lean loading and 

the total CO2 removed in each case. Once the lean end pinch forms (forms with relatively 

small change in the solvent rate for each case), the differences for trends in CO2 removal 

with solvent rate (and ultimately the solvent rate required for 90% removal) are driven by 
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the heat capacity of each phase. Two aspects of the heat capacity curves explain the 

differences in the solvent rate increase required to overcome the lean end pinch for the 3 

flue gas applications. First, the difference between the total liquid and total vapor heat 

capacity at the point where the lean end pinch forms indicates the “barrier” the solvent 

rate must overcome to begin moderating temperatures at the bulge to address the 

equilibrium constraint of the mass transfer pinch. The larger this difference in vapor and 

liquid heat capacity, the more the solvent rate will need to be increased to become the 

dominant heat carrying phase (after the heat capacity crossover). Table 3-5 summarizes 

this parameter for each of the flue gas sources. 

Table 3-5: Vapor and liquid total heat capacity summary at maximum 

LMIN/LMIN,ISOTHERMAL   

Flue Gas 

Source 

Lean Loading  

@ Max LMIN/ 

LMIN,ISOTHERMAL 
 Max LMIN/ 

LMIN,ISOTHERMAL 

 Δ Total Heat 

Capacity  

@ Lean Pinch 

Formation 

(mCp
V - mCp

L) 

Slope of Vapor 

Total Heat 

Capacity Curve 

mol CO2/mol 

alk.  
MW/K J/kg-K 

NGCC 

 (Figure 3-14) 
0.23 3.58 8.38 2000 

COAL  

(Figure 3-15) 
0.21 2.26 8.66 5600 

STEEL 

 (Figure 3-16) 
0.195 1.94 6.83 8900 

 

The steel case has the smallest heat capacity “barrier” (6.83 MW/K) and should 

require the smallest proportional increase in solvent rate. However, the coal and NGCC 

cases exhibit similar “barriers” yet the NGCC case requires a much larger relative solvent 

increase. The second item in Table 3-5 above, the slope of the total vapor heat capacity 

curves, provides an explanation for this difference. The slope of the total vapor heat 
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capacity curves in Figure 3-17 indicates how effectively an incremental increase in 

solvent rate reduces vapor temperature and heat carried by the vapor. The slope of the 

curve increases with CO2 flue gas concentration. This can be explained by the 

components of the total vapor heat capacity. First, the mass of the flue gas is highest in 

the NGCC case and drops with increasing CO2 in the flue gas (see Table 3-1), and thus an 

incremental change in solvent rate will have the least impact of the NGCC flue gas – this 

is the dominant effect seen in the slopes of the 3 curves.  

Secondly, the role of the enthalpy of vaporization of water varies strongly 

between the 3 cases. The temperature of the gas rises with flue gas CO2 concentration, 

and correspondingly, the enthalpy of vaporization of water contributes more significantly 

to the total heat capacity. While the total heat capacity of the vapor at the lean pinch 

formation point in Figure 3-17 for each of the 3 applications does not differ significantly, 

the coal and steel cases are increasingly dependent on the contribution of water to the 

overall vapor heat capacity. For a given incremental increase in the solvent rate, the 

higher CO2 applications (with higher temperatures) see a larger net condensation of water 

(larger driving force for water transfer) and the corresponding drop in the vapor 

temperature is larger. Therefore, the drop in the total heat capacity of the vapor is 

amplified as CO2 concentration increases – larger water transfer rates remove more heat 

from a proportionally smaller amount of gas, reducing temperatures more rapidly, and 

ultimately reducing the dominant contribution of the latent heat of water to the overall 

heat capacity. This explains the progression of the slopes in Table 3-5 with flue gas 

concentration.  

The result of the heat capacity effects is that the natural gas combined cycle 

application requires the largest increase in solvent rate to overcome the lean end pinch. 

The difference in total vapor and liquid heat capacities at pinch formation is similar to 
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that of coal, but the NGCC heat capacity is dominated by the mass of the gas compared to 

the coal and steel cases. Therefore, incremental increases in solvent rate have a more 

limited impact in reducing the heat carrying capacity of the vapor. In contrast, the steel 

case has a smaller difference in vapor and liquid heat capacities at pinch formation due to 

an inherently larger solvent circulation rate to treat a concentrated flue gas. In addition, 

the vapor heat capacity is dominated by the water content compared to the lower CO2 

cases, so the incremental increases in solvent readily reduces the total heat capacity (and 

temperature) of the vapor and the solvent becomes the dominant heat carrying phase.  

3.4.2.2 Solvent Capacity Effects: 5 m PZ vs. 8 m PZ 

The following figure compares the trend in deviation from isothermal capacity for 

5 and 8 m PZ.  
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Figure 3-18: Ratio of LMIN (“infinite” packing) for an adiabatic absorber to an 

isothermal absorber (40 °C), 5  vs. 8 m PZ, 90% CO2 capture from a coal-fired 

boiler (14.7% CO2). 

 

As indicated by the figure, the transition loading is similar for 5 and 8 m PZ 

(dictated by similar VLE behavior as a function of loading and equivalent CO2 removal 

leading to similar maximum temperatures in each case). However, the maximum 

deviation from isothermal capacity is much larger for 8 m PZ. This can be explained by 

the fact that the same absolute amount of solvent is required to overcome the nearly 

identical lean end temperature bulge and pinch that forms in both cases. Figure 3-19 

compares the removal achieved for 5 and 8 m PZ as the solvent rate is increased from the 

isothermal minimum to the adiabatic minimum (at the loading where this deviation is the 
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largest for each solvent). The figure also includes the total vapor and liquid heat 

capacities for each case. 

 

Figure 3-19: Lean pinch formation and total heat capacity (mCP) for the vapor 

outlet and solvent inlet (lean end of the absorber) for capture from a coal-fired 

boiler (14.7% CO2) utilizing 5 m PZ (LLDG = 0.20 mol CO2/mol alk.) and 8 m PZ 

(LLDG = 0.21 mol CO2/mol alk.). The solvent rate is increased from LMIN, 

ISOTHERMAL to LMIN, ADIABATIC. The total heat capacity of the vapor includes the 

ability of the vapor to carry water (i.e., enthalpy of vaporization of water).  

 

As the figure shows, the isothermal minimum solvent rate is higher for 5 m PZ 

due to the inherently lower solvent capacity. However, once the lean end pinch is formed 

for 5 m PZ, the 5 and 8 m PZ cases are essentially identical, confirming the hypotheses 

that the similar lean end pinch conditions require the same amount of solvent to 
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overcome the vapor heat capacity and equilibrium restriction. The heat capacity curves 

confirm the expected mechanism as the difference between the solvent and vapor heat 

capacities at the lean pinch are larger for 8 m PZ due to the lower solvent rate operating 

range. Table 3-6 normalizes the LMIN/LMIN, Isothermal for the difference in isothermal 

capacity for 5 m and 8 m PZ. As expected, the values are essentially identical after this 

correction.  

Table 3-6: Normalized LMIN/LMIN, ISOTHERMAL for 5 and 8 m PZ using isothermal 

solvent capacity. Coal-fired boiler (14.7% CO2). 

  

Lean Loading @ 

Max 

LMIN/LMIN,ISOTHERMAL  Max 

LMIN/LMIN,ISOTHERMAL 

Isothermal 

Solvent Capacity 

Normalized 

LMIN/ 

LMIN,ISOTHERMAL  

(8 m PZ 

baseline) 
mol CO2/mol alk.  

mol 

CO2/kg(PZ+H2O) 

8 m PZ 0.21 2.26 2.01 2.26 

5 m PZ 0.20 1.70 1.50 2.27 

 

3.4.2.3 CO2 Removal Effect 

The preceding analysis has focused on a CO2 removal constraint of 90%. 

However, as was apparent in the discussion of multiple steady states, the CO2 removal 

specification can shift the region of pinch behavior in which an absorber is operating. In 

addition, as the amount of CO2 absorbed increases, the maximum temperature achieved 

in the absorber increases, shifting the conditions where a lean end pinch is developed. 

Figure 3-20 summarizes the effect of CO2 removal on deviation from isothermal capacity 

as a function of lean loading.  
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Figure 3-20: Ratio of LMIN (“infinite” packing) for an adiabatic absorber to an 

isothermal absorber (40 °C) for 85 - 95% CO2 capture from a coal-fired boiler 

(14.7% CO2) utilizing 8 m PZ.  

As expected, the higher temperatures in the higher CO2 removal cases result in the 

development of a pinch at leaner conditions. The maximum deviation from isothermal 

minimum solvent rate (LMIN/LMIN, ISOTHERMAL) increases with CO2 removal: 2.14 for 85% 

removal, 2.26 for 90% removal, and 2.52 for 95% removal. There are two reasons for this 

trend: 

1)  the higher removal cases have a lower baseline isothermal solvent rate (better 

isothermal capacity at leaner loadings – this is the dominant effect) ; 

2) the higher temperatures for higher CO2 removal require a larger absolute solvent 

rate to overcome the lean end temperature bulge.  
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As discussed previously, relaxing the CO2 removal constraint can provide important 

design and operational flexibility. The loading window where the absorber can be 

operated without intercooling (minimal solvent circulation increase over isothermal) is 

larger with lower CO2 removal specifications.  

3.4.3 Mass Transfer Rate Effects 

The discussion of minimum solvent rates and mass transfer pinches has largely 

focused on equilibrium considerations and overall energy balance considerations. 

However, the formation of a temperature bulge, magnitude of the bulge, and associated 

conditions at the lean end pinch are also a function of the relative amounts of CO2 and 

water transferred above and below the pinch (and the different enthalpy changes 

associated with the transfer of each species).  

Water is vaporized below the mass transfer pinch, leading to the drop in solvent 

temperature below the bulge; this water is then returned to the solvent above the pinch. 

Therefore, the rate at which water is transferred to and from the gas relative to rate at 

which CO2 is absorbed will dictate how rapidly the temperature rises, and ultimately 

determine the loading where a pinch will form.  

To test the effect of rates on the minimum solvent rate, a simple sensitivity study 

was performed at a single operating condition from the preceding analysis (Coal-fired 

boiler, lean loading = 0.20 mol CO2/ mol alkalinity). The gas film mass transfer 

coefficient (kg), which is expected to be important for water transfer, and the kinetic 

constants (CO2 transfer – see Equations 3.1 to 3.4) were independently increased to 

observe a change in the CO2 removal above and below the pinch and the change in 

minimum solvent rate to achieve 90% removal. The results for the study are summarized 

in Table 3-7.  
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Table 3-7: Effect of rate parameters (reaction rates and gas-film mass transfer 

coefficient) on mass transfer and LMIN associated with temperature-induced lean 

end pinch.  

COAL, 8m PZ, 

 LLDG = 0.20 mol CO2/mol alk. 
BASE CASE 5 x Reaction Rates 5 x kg 

CO2 Transfer Rate1 

(kmol/s) 

Above Pinch 0.22 0.30 0.11 

Below Pinch 2.28 2.27 2.28 

TOTAL 2.50 2.57 2.40 

CO2 Removal1 90% 92.5% 86.2% 

Max Solvent  

Temperature (°C) 
80.7 80.3 81.4 

LMIN to achieve 90% removal 2829 2354 3320 

% Change from BASE --- -17% 17% 

1: CO2 in Inlet Gas = 2.78 kmol/s 

 

The reaction rate and kg have opposite effects, as expected. The increase in 

reaction rates increases the amount of CO2 absorbed above the lean pinch and allows for 

a ~17% reduction in the minimum solvent rate compared to the base case. In contrast, the 

increase in kg yields reduced removal above the pinch due to an increase in the relative 

transfer rate of water to CO2 requires a ~17% increase in the minimum solvent rate to 

achieve 90% removal. The results for the increased kG can be explained as follows: 

1) The transition from a rich end pinch (temperature bulge is not limiting) to a 

limiting lean end pinch occurs at a comparatively lower solvent rate and 

higher bulge temperature.  

2) The reduced liquid heat capacity and enhanced vapor heat capacity (higher 

temperatures) when the pinch forms indicates (as in the previous discussion 

for varying CO2 flue gas concentration) that a proportionally larger increase in 
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solvent rate will be required to overcome the pinch at the enhanced kG 

conditions.  

Similar logic can be applied for the enhanced reaction case to describe the reduced 

solvent rate requirement for 90% removal. Further analysis is needed to generalize the 

rate effects, but the initial results indicate that the minimum solvent rate for adiabatic 

absorbers is not simply a thermodynamic phenomenon as in the typical isothermal rich 

end pinch case.  

 

3.5 CONCLUSIONS 

The key findings of the evaluation of adiabatic absorbers and pinch phenomena 

associated with minimum solvent rates can be summarized as follows: 

 Operation of adiabatic absorbers in specific lean loading ranges can lead to severe 

penalty in solvent circulation requirements compared to an isothermal baseline. 

The governing phenomena for these solvent capacity penalties can be summarized 

as follows: 

 Lean end pinch formation at the temperature bulge occurs at all lean 

loadings. CO2 removal constraint determines if lean pinch is limiting at 

given operating conditions.  

 Solvent rate increases to overcome lean end pinches initially “trap” heat in 

the column as the liquid rate is insufficient to moderate temperatures or 

carry heat away from the bulge. This leads to a drop in removal with 

increasing solvent rate.  

 As the solvent rate is increased further, the total liquid and vapor heat 

capacities (mCP) as calculated at the top of the absorber will crossover 
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(The vapor heat capacity includes the enthalpy of vaporization of water for 

the vapor saturated at outlet conditions). This condition identifies the point 

where the liquid can effectively moderate bulge temperatures and address 

the equilibrium constraint.  

 The non-monotonic behavior of CO2 removal as a function of solvent rate 

through each of the preceding transitions can lead to multiple steady state 

solvent rates that meet the CO2 removal specification. The first two steady 

states (prior to and immediately after lean pinch formation) may be 

unstable or present process control challenges.  

 Flue gas CO2 concentration has two critical effects on pinch formation and the 

associated solvent capacity penalty: 

 Lower CO2 flue gas concentrations (and associated lower temperatures) 

allow operation with wider range of lean loading without a limiting lean 

end pinch. This provides flexibility in the design and operation of these 

systems (operation without intercooling). 

 The solvent capacity penalty (measured as the ratio of the adiabatic 

minimum solvent rate (LMIN) to the isothermal minimum solvent rate 

(LMIN, ISOTHERMAL)) decreases as the flue gas CO2 concentration increases: 

i. NGCC (4.1% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 3.58 

ii. COAL (14.7% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 2.26 

iii. STEEL (27.1% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 1.94 

iv. The trend is associated with the solvent rate increase required to 

overcome the difference in total heat capacities (vapor vs. liquid) 

to allow the solvent to moderate temperatures and address 

equilibrium constraints.  NGCC, with inherently low L/G, has the 
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largest “heat capacity deficit” to overcome. In coal and steel cases, 

a relatively larger portion of the heat capacity of the gas is carried 

in water (due to higher temperatures), which provides large 

incremental benefits as the solvent rate is increased and allows 

efficient cooling of the gas and approach to the heat capacity 

crossover point.   

 Operating 5 and 8 m PZ for the same flue gas (composition and gas rate) and CO2 

removal rate requires the same absolute amount of solvent to overcome the 

temperature-related pinch. The inherently lower capacity of 5 m PZ means the 

increase in solvent rate over the isothermal baseline is relatively smaller for 5 m 

PZ and limits the benefits of intercooling.  

 Operating with lower CO2 removal targets limits the impact of temperature 

restrictions in the absorber: 

 Lower removal specifications allow operation over a wider range of lean 

loading without generating a performance limiting lean end pinch.  

 The solvent capacity penalty increases with CO2 removal since the leaner 

operating region yields a lower baseline solvent rate (better solvent 

capacity) and requires a larger increase to overcome a pinch at higher 

temperatures.  

 Temperature-related pinches are a rate-dependent phenomena, unlike isothermal 

saturation of the solvent (strictly thermodynamic phenomena): 

 Lean end pinches are affected by relative rates of water and CO2 transfer 

and thus are impacted by the mass transfer and kinetic properties in an 

absorber system. In addition, the minimum solvent rate used in design 
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calculations or for the identification of a pinched condition in a model will 

be affected by the rate parameters of the specific model.  

 Open Research Questions: 

o How do the rates of CO2 absorption and water transfer effect pinch 

formation? Is the lean end pinch observed in this work unique to “fast” 

amine solvents? Development of a dimensionless relationship to predict 

the effect of CO2 and water transfer rates on pinch formation would be a 

useful generalization for absorber design.  

o A shortcut method to predict the transition loading for a given solvent and 

operating condition (CO2 removal, flue gas concentration) was developed 

as part of this work but was very sensitive to assumptions about CO2 

removal above the pinch. A better approximation of removal at the mass 

transfer pinch is needed to improve the prediction of lean loading where 

adiabatic absorbers become limited by a temperature bulge induced mass 

transfer pinch.  
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Chapter 4: Benefits and Limitations of Simple Intercooling 

The preceding chapter provided a detailed discussion of the effects of temperature 

maxima on absorber performance in CO2 capture as a function of operating conditions 

with a description of the fundamental phenomena underlying the performance trends.  

The work in this chapter will be an extension of the analysis of the previous chapter to 

consider the effect of cooling the solvent at intermediate locations in the column 

(intercooling) to remove heat generated by CO2 absorption. Intercooling can mitigate the 

solvent capacity and driving force limitations, but the conditions of absorber operation 

(CO2 concentration in flue gas, lean loading, L/G, etc.) dictate the potential benefit that 

may be extracted from the intercooling operation. Quantifying the potential benefits of 

intercooling and generalizing the trends in these benefits with operating conditions can 

allow absorber and intercooling design optimized for the specific operating conditions.  

This chapter will evaluate the benefit of intercooling in comparison to the two 

limiting designs developed in Chapter 3 – adiabatic and isothermal absorbers. Minimum 

solvent rate analysis will repeated for an intercooled absorber to quantify the approach to 

the isothermal solvent capacity and the benefit over the adiabatic design as a function of 

CO2 flue gas concentration and operating conditions. As with the adiabatic design, the 

trends in the approach to isothermal capacity will be evaluated at a fundamental level 

(analysis of equilibrium pinch formation) to explain the limitations of the simple 

intercooling design. A new set of operating conditions (lean loading range) will be 

identified for opportunity to improve solvent capacity with advanced intercooling design.  

Finally, the LMIN analysis only describes the solvent capacity benefits and 

neglects the mass transfer requirements in a practical absorber design. This work will add 

design curves which reflect the trade-off between solvent circulation rates and packing 
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mass transfer area as absorber design moves away from the minimum solvent rate. This 

method will allow comparison of intercooled and adiabatic absorbers to an isothermal 

baseline across a realistic range of operating conditions. Operating conditions will be 

identified where intercooling provides the largest benefit in terms of solvent capacity and 

mass transfer performance and conditions where significant improvement can be 

achieved with improved intercooling design.  

4.1 EVALUATION OF EXISTING LITERATURE 

Intercooling the solvent in gas absorption systems is a well-established process 

modification in industrial applications (e.g., (Jackson & Sherwood, 1941)). In addition, 

the concept has been extended to commercial scale for CO2 capture with amines in 

industrial gas treating applications (Reddy, et al., 2008) and at the pilot scale in CO2 

capture from power plant flue gas (Plaza, et al., 2010). Most recently, the first 

commercial scale facility (139 MW) for CO2 capture from power plant flue gas was 

started-up at the SaskPower Boundary Dam Power Station. The commercial solvent and 

process design by Shell Cansolv included the application of intercooling in the absorber 

(Stephenne, 2014). 

4.1.1 Intercooling Benefits and Design for Amine-Based Capture Systems 

Evaluation of temperature profiles in commercially available amine-based 

absorber systems led to a recommendation of intercooling for higher CO2 concentrations 

(coal-fired boiler vs. natural gas combined cycle) and designated the optimum location 

for intercooling near the rich end of the column where equilibrium limitations were 

expected to be most significant (Reddy, et al., 2008). Following the recommendations of 

the commercial process analysis, a modeling study found no benefit of intercooling for an 
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NGCC application and limited benefit for a coal-fired boiler application with intercooling 

located near the bottom of an absorber (Ystad Marchioro, et al., 2012).  

Other studies found varying results with flue gas CO2 concentration, solvent 

concentration, and intercooling method (e.g., flue gas cooling vs. solvent intercooling) 

(Kvamsdal, et al., 2011); (Karimi, et al., 2011). The location of intercooling was not 

always optimized in these studies and the general purpose of the studies was not to 

systematically evaluate the effect of operating conditions on intercooling, but rather to 

study the entire capture system performance at specific discrete operating conditions of 

practical interest. In general, the studies concluded intercooling was beneficial for the 

coal application but not for the NGCC case.   

In a similar study for a blast furnace application with high CO2 partial pressure in 

the flue gas (100 kPa), the authors studied simple intercooling and flue gas cooling as 

part of capture system optimization (Tobiesen, et al., 2007). The intercooling location 

was fixed (near the bottom of the column) and the packed height of the column was fixed 

for various cases. The authors found significant energy benefits with the implementation 

of intercooling for the high CO2 application and concluded performance enhancement 

was due to enhanced solvent capacity at the bottom of the column. Flue gas cooling was 

found to have limited benefit.   

A screening study of flowsheet modifications for capture with monoethanolamine 

included the evaluation of intercooling as a process modification (Le Moullec & 

Kanniche, 2011). The authors found that the intercooler was best placed in the middle to 

bottom of the column and reasoned that the driving force benefits in this portion of the 

column outweighed potential mass transfer limitations imposed by lower temperatures.  
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Finally, Plaza found that optimizing the location of intercooling had limited 

benefit, but the analysis was limited to minimum solvent rate, or pinched, conditions 

(Plaza, 2011).  

In general, it is difficult to make broad recommendations or conclusions about 

intercooling for amine based capture systems from the existing literature because the 

studies either fix equipment configurations (e.g., amount of packing, location of 

intercooler, etc.) or operating conditions (e.g., lean loading, solvent rate, etc.). 

Furthermore, the underlying mechanisms governing intercooling benefits are not 

discussed in detail, making it difficult to explain why intercooling performance and 

benefits appear to vary over the conditions used in literature studies. These areas will be 

the focus of the current work with the goal of providing a general understanding of the 

performance benefits and limitations of intercooling. 

 

4.2 MODELING FRAMEWORK 

The absorber model used for the intercooling evaluation was implemented in 

Aspen Plus® in the RateSepTM module. The key components of the model are rigorous 

representations of solvent thermodynamics and kinetics, mass transfer and fluid 

mechanics in packing, and the physical properties of the system over the range of 

expected operating conditions.  

All of the subsequent analysis will utilize 8 m aqueous piperazine (PZ) as the 

solvent. The thermodynamic model for the PZ-H2O-CO2 system was developed from 

experimental amine pKa, CO2 solubility, heat capacity, speciation, and amine volatility 

data by regression of Gibbs free energy, enthalpy, heat capacity, and activity coefficient 

parameters within the electrolyte non-random two liquid (e-NRTL) framework.  
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The kinetics for the PZ model are described by the following reaction set: 

 

 𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍𝐻+ ↔  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍 4.1 

 𝑃𝑍𝐶𝑂𝑂− + 𝐻2𝑂 + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝐻𝐶𝑂3
−

 4.2 

 2𝑃𝑍 + 𝐶𝑂2 →  𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂− 4.3 

 2𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍(𝐶𝑂𝑂)2
2−

 4.4 

 

The first reaction is an equilibrium (proton transfer) reaction while reactions 2 through 4 

are reversible finite rate reactions where the corresponding reverse reactions complete the 

reaction set for PZ. Arrhenius rate expressions represent the rate constants for the kinetic 

reactions (including forward and reverse rates) where the pre-exponential and activation 

energy parameters were regressed from wetted wall column data collected over a range of 

temperatures, solvent concentrations, and loadings relevant for capture applications 

considered in this work. Finally, physical property models for binary diffusion 

coefficients, viscosity, and density were regressed as a function of amine concentration, 

loading, and temperature. For a detailed description of this “Independence” PZ model, 

see Frailie (Frailie, 2014). 

Mass transfer and area models were developed by Wang via regression of 

experimental data from a pilot scale column with a variety of random and structured 

packings (Wang, 2015). The area model developed by Wang is a modification of a model 

developed by Tsai (see Tsai for full theoretical and experimental details of the area 

model) (Tsai, 2010). 
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4.3 ANALYSIS OVERVIEW AND METHODOLOGY 

The analysis in this chapter will focus on the simple intercooling configuration 

depicted in Figure 4-1. 

 

 

Figure 4-1: Absorber PFD for In-and-Out Intercooling.  Two sections of packing 

(MP 250X) are used with liquid draw-off, cooling, and return between the packed 

sections.  The solvent is cooled to 40 °C before returning to the column.   

In-and-out intercooling will be compared to the limiting cases of an adiabatic and 

isothermal absorber that were discussed extensively in the previous chapter. The major 

objectives of the current analysis are: 

1) Evaluate effectiveness of simple intercooling in terms of solvent capacity 

(minimum solvent rate analysis) and mass transfer performance; 

2) Provide fundamental explanations for the performance trends of the simple 

intercooling design; 
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3) Define and identify optimal location of intercooling as a function of operating 

conditions; 

4) Identify conditions where simple intercooling is ineffective or provides 

potential for significant performance improvement with enhanced design. 

 

Table 4-1 summarizes the conditions used for the evaluation. The analysis was 

conducted for 90% removal of CO2 utilizing concentrated (8 molal) piperazine (PZ) as 

the solvent. The lower end of the proposed lean loading ranges in Table 4-1 would lead to 

precipitation in practice with the PZ solvent (Freeman, 2011). However, the wide range is 

included as an extrapolation of the PZ model in an attempt to allow generalization of the 

results.  

Table 4-1: Summary of Intercooling Analysis Operating Conditions  

Flue Gas Source 

Inlet 

CO2  
(mol%) 

Lean Loading 

Range 
(mols CO2/mols 

alkalinity) 

Flue Gas Flow  
(kmol/s) 

Natural Gas Combined Cycle  4.1 0.10 - 0.30 31.2 

Coal-Fired Boiler 14.7 0.10 - 0.36 18.9 

Steel Blast Furnace 27 0.10 - 0.39 10.4 

Lean solvent and flue gas feed at 40°C, MP-250X packing for all cases, Max approach to 

flooding = 70%. Flue gas saturated to water.  

 

The approach used in Chapter 3 will be extended to the simple intercooling configuration 

in Figure 4-1. For the range of conditions identified in the table, the solvent capacity for 

the intercooled absorber will be compared to the limiting cases of an adiabatic (no 

intercooling) absorber and an isothermal (“perfect” intercooling) absorber operated at 

40°C. The adiabatic absorber (limited by temperature-induced equilibrium constraints) 
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represents minimum solvent capacity and the isothermal absorber represents the 

maximum solvent capacity for a given operating condition. Figure 4-2 illustrates the 

approach used in this analysis.  

 

 

 

 

Figure 4-2: Example of design curves for packing-solvent rate trade-off. Each curve 

(dashed = adiabatic, solid = isothermal, blue = intercooled) represents the packing 

requirement to achieve 90% CO2 removal for a fixed lean loading and given liquid 

to gas ratio (L/G). At each point, the lean loading, removal, and solvent rates are 

fixed, so a unique rich loading exists (secondary y-axis).  The horizontal asymptote 

is the minimum solvent rate (LMIN) or best energy performance achievable for a 

given absorber design. 
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Each curve represents the packing required for a given liquid to gas ratio (L/G) 

for each absorber design moving from one asymptotic limit (vertical asymptote of infinite 

solvent rate and minimum packing) to another (horizontal asymptote of infinite packing 

and minimum solvent rate). In practice, the infinite solvent rate asymptote does not 

provide a physically meaningful or quantifiable limit as the packing will approach zero 

for all designs in this limit. The minimum solvent rate (LMIN) asymptote will be used to 

evaluate solvent capacity in this work. The LMIN for any absorption process can be 

defined as the solvent rate required to achieve a specific solute removal (or specific gas 

inlet and outlet compositions) for a given inlet solvent composition (loading) with infinite 

mass transfer area available. Lower values of LMIN are indicative of larger solvent 

capacity and are associated with better overall energy performance of the system 

(reduced sensible heat requirements in stripping system, enhanced rich loading to 

improve CO2/H2O selectivity in the stripping system, and reduced pumping costs across 

the entire system). The ratio of the LMIN for a given absorber design to the isothermal 

LMIN at each condition can serve as a screening tool for the effectiveness of the design in 

achieving maximum solvent capacity. A high ratio indicates a temperature-induced 

limitation and an opportunity for improved absorber design. A ratio equal to (or 

approaching) unity indicates that the absorber design under consideration is effective at 

mitigating temperature-related constraints and the capacity benefits of an improved 

absorber design are negligible or non-existent.   

The minimum solvent rate analysis only addresses one aspect of absorber design. 

In practice, absorber design is a trade-off between maximizing the solvent capacity 

(operating close to LMIN) and minimizing the mass transfer area (capital cost associated 

with packing or other contacting internals). The optimal absorber design (defined in 

terms of solvent capacity) identified for a given operating condition via the minimum 
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solvent rate analysis will be further evaluated in this work for mass transfer constraints or 

packing requirements to approach maximum solvent capacity. The curves in Figure 4-2 

are representative of the packing-solvent circulation rate trade-off, and will be developed 

over the range of conditions in Table 4-1.  

4.4 MINIMUM SOLVENT RATE ANALYSIS 

Figure 4-3, Figure 4-4, and Figure 4-5 include the LMIN ratios for an adiabatic (no 

intercooling) and intercooled (in-and-out intercooling) absorber for all three flue gas 

sources in Table 4-1.  
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Figure 4-3: NGCC power plant flue gas (4.1% CO2). Ratio of the minimum solvent 

rate (“infinite” packing) for an adiabatic absorber (no intercooling) and intercooled 

absorber (in-and-out intercooling) to an isothermal absorber (40 °C) for 90% CO2 

capture with 8 m PZ.  
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Figure 4-4: Coal-fired boiler flue gas (14.7% CO2). Ratio of the minimum solvent 

rate (“infinite” packing) for an adiabatic absorber (no intercooling) and intercooled 

absorber (in-and-out intercooling) to an isothermal absorber (40 °C) for 90% CO2 

capture with 8 m PZ. Points denoted with a black square have corresponding 

equilibrium-operating line charts in Figure 4-6 to Figure 4-8. 
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Figure 4-5: Steel blast furnace flue gas (27% CO2). Ratio of the minimum solvent 

rate (“infinite” packing) for an adiabatic absorber (no intercooling) and intercooled 

absorber (in-and-out intercooling) to an isothermal absorber (T = 40 °C) for 90% 

CO2 capture utilizing 8 m PZ. 

 The figures clearly demonstrate the benefit of intercooling – across the entire 

range of conditions for each flue gas source, intercooling has significantly improved the 

approach to isothermal (or ideal) solvent capacity over the adiabatic absorbers evaluated 

in Chapter 3. In all three cases, the simple intercooling method mirrors the trend of the 

adiabatic absorbers - an intermediate range of lean loadings results in the largest ratios 

(largest deviation from an ideal isothermal absorber) and identifies conditions where 

additional solvent capacity benefits could be attained with an improved intercooling 

method.  However, the solvent capacity penalty in this region is much lower than with an 
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adiabatic absorber and the intercooled absorber has expanded the range of loadings (at 

the low and high end) where the system operates near isothermal performance.  

  The data for the intercooled absorber in each of the preceding figures along with 

relevant temperatures are included in Table 4-2 through Table 4-4 for reference 

throughout the following discussion. See Chapter 3 for the data on adiabatic absorbers.  

 

Table 4-2: NGCC (4.1% CO2), Summary of Minimum Solvent Analysis Results for 

an intercooled absorber (in-and-out intercooling): 90% CO2 Removal, 8 m PZ  

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate Rich Loading 
Intercooled Absorber 

Temperatures 

Isothermal Intercool 

LMIN, ICOOL 

/ LMIN, 

ISOTHERMAL 

Isothermal Intercool 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
kg/s kg/s mol CO2/mol alk.  °C 

0.15 21.89 527 535 1.01 0.395 0.391 55.6 42.7 53.0 

0.18 13.92 608 620 1.02 0.395 0.391 55.6 42.7 52.5 

0.21 8.24 715 734 1.03 0.395 0.390 55.8 42.6 51.9 

0.23 5.53 808 833 1.03 0.395 0.390 55.9 42.6 51.2 

0.24 4.47 864 893 1.03 0.395 0.390 55.1 42.6 50.1 

0.25 3.59 927 968 1.04 0.395 0.389 55.4 42.6 48.1 

0.27 2.29 1084 2145 1.98 0.395 0.333 58.8 45.6 41.3 

0.3 1.16 1444 2684 1.86 0.395 0.351 54.6 45.8 40.1 
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Table 4-3: COAL (14.7% CO2), Summary of Minimum Solvent Analysis Results for 

an intercooled absorber (in-and-out intercooling): 90% CO2 Removal, 8 m PZ  

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate Rich Loading 
Intercooled Absorber 

Temperatures 

Isothermal Intercool 

LMIN, ICOOL 

/ LMIN, 

ISOTHERMAL 

Isothermal Intercool 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
kg/s kg/s mol CO2/mol alk.  °C 

0.15 78.76 1032 1038 1.01 0.422 0.421 75.8 42.6 68.1 

0.18 50.09 1173 1184 1.01 0.422 0.420 76.7 42.7 67.4 

0.19 42.45 1229 1244 1.01 0.422 0.419 77.0 42.7 67.0 

0.2 35.65 1289 1328 1.03 0.422 0.416 77.3 43.3 66.1 

0.23 19.91 1507 1810 1.20 0.422 0.390 73.2 47.3 52.3 

0.26 10.33 1807 2366 1.31 0.422 0.384 70.9 49.8 41.4 

0.29 5.24 2243 2643 1.18 0.422 0.402 64.6 47.9 40.7 

0.3 4.18 2436 2790 1.15 0.422 0.407 62.1 47.0 40.6 

0.33 2.13 3266 3530 1.08 0.422 0.415 54.8 44.4 40.2 

0.36 1.04 4900 5154 1.05 0.422 0.419 48.7 42.6 40.0 
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Table 4-4: STEEL (27% CO2), Summary of Minimum Solvent Analysis Results for 

an intercooled absorber (in-and-out intercooling): 90% CO2 Removal, 8 m PZ  

Lean 
Loading  Lean End 

 Driving 
Force 

(P*CO2/PCO2)  

Minimum Solvent Rate Rich Loading 
Intercooled Absorber 

Temperatures 

Isothermal Intercool 
LMIN, 

ICOOL/ 
LMIN, 

ISOTHERMAL 

Isothermal Intercool 
Max 

Liquid  
Liquid  
Outlet 

Vapor  
Outlet 

mol 
CO2/mol 

alk.  
kg/s kg/s mol CO2/mol alk.  °C 

0.12 217.97 894 900 1.01 0.431 0.430 85.7 43.0 77.8 

0.15 143.91 1001 1012 1.01 0.431 0.429 86.2 43.4 76.7 

0.18 91.52 1134 1156 1.02 0.431 0.427 86.7 44.2 74.8 

0.2 65.13 1242 1384 1.11 0.431 0.408 85.2 49.7 65.5 

0.22 44.60 1370 1610 1.18 0.431 0.400 83.3 52.1 50.7 

0.24 29.41 1524 1750 1.15 0.431 0.407 80.8 51.5 42.1 

0.26 18.88 1715 1891 1.10 0.431 0.415 75.2 49.6 41.3 

0.29 9.57 2102 2225 1.06 0.431 0.424 65.7 46.3 40.9 

0.32 4.88 2699 2796 1.04 0.431 0.427 58.0 43.9 40.5 

0.34 3.09 3314 3402 1.03 0.431 0.429 53.7 42.8 40.3 

0.36 1.89 4275 4370 1.02 0.431 0.430 49.9 41.9 40.2 

0.39 0.78 7458 7604 1.02 0.431 0.430 45.0 40.0 40.0 

 

4.4.1 Fundamental Explanations 

4.4.1.1 Equilibrium and Operating Line Constructions  

Operating and equilibrium line constructions can be used to study the effect of 

mass transfer pinches on the solvent capacity for an intercooled absorber. Figure 4-6 to 

Figure 4-8 include representative equilibrium-operating line charts in the three loading 

ranges (low, mid, and high) for the coal-fired boiler application.  The loadings selected 

for detailed analysis are highlighted in Figure 4-4 (black squares) for reference.    
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Figure 4-6: Operating and equilibrium curves @ LLDG = 0.18 mol CO2/mol alk. for 

an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a coal-fired boiler (14.7% CO2). The 

mass transfer pinch (contact of the equilibrium and operating lines) occurs at the 

rich end of the column (bottom, 44°C), unrelated to the maximum temperature (77 

°C) near the lean end (top). 
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Figure 4-7: Operating and equilibrium curves @ LLDG = 0.26 mol CO2/mol alk. for 

an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a coal-fired boiler (14.7% CO2). This 

condition represents the largest deviation from isothermal performance (LMIN/LMIN, 

Isothermal = 1.31).  Two mass transfer pinches (contact of the equilibrium and 

operating lines) occur, one on either side of the intercooler. The pinch above the 

intercooler occurs near the lean end of the column and coincides with the maximum 

temperature (71 °C). The pinch below the intercooler occurs near the rich end of the 

column with a secondary temperature maximum (64°C). 
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Figure 4-8: Operating and equilibrium curves @ LLDG = 0.33 mol CO2/mol alk. for 

an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a coal-fired boiler (14.7% CO2). Two 

mass transfer pinches (contact of the equilibrium and operating lines) occur, one on 

either side of the intercooler. The top pinch occurs immediately above the 

intercooler and coincides with the maximum temperature (55 °C) in the absorber. 

The pinch below the intercooler occurs near the rich end of the column with a 

secondary temperature maximum (46°C). 

The slope of the operating line (upper line in orange) in the preceding figures 

represents the liquid to gas ratio (L/G). The curvature present in the operating lines is due 

to the concurrent transfer of water and an L/G that may vary significantly in different 

parts of the column. This differs from the typical binary diagram with only a single 

transferring component. As the liquid rate is reduced, the slope of the operating line is 

reduced until it comes in contact with the equilibrium line; at this point in the column, 
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there is no driving force for mass transfer (the column is “pinched”), and the solvent rate 

cannot be reduced any further while meeting the 90% removal specification.  Therefore, 

the slope of the operating line when the pinch occurs represents the minimum solvent rate 

to achieve 90% removal for the given operating conditions and column configuration.  

The best performance (in terms of solvent circulation or LMIN) achievable for a given 

operating condition corresponds to a mass transfer pinch at the rich end (bottom) of the 

column at the column feed temperature (and isothermal pinch). Equilibrium-operating 

line constructions provide insight into the effect of a temperature bulge in the column on 

the approach to this best case performance. 

The apparent discontinuity in the equilibrium curves in each of the figures 

represents the intercooler, which reduces the temperature to 40°C and reduces the 

corresponding equilibrium partial pressure of CO2.  An important aspect of modeling the 

minimum solvent rate for an intercooled absorber (and a key difference from the 

adiabatic absorbers in the previous chapter) is the location of the intercooler. Since the 

limiting pinch behavior of the absorber can occur above or below the intercooler (lean or 

rich end pinch), and it is impossible to know a priori where the pinch will occur, a single 

position for intercooling cannot be defined when modeling a minimum solvent rate case. 

Fixing the intercooler in a location (or equivalently, the packing distribution around the 

intercooler) will lead to a false pinch in one of the two sections based on the CO2 -

removed in each of the sections based on the arbitrary constraint on the packing 

distribution – this will provide an inaccurate value for the minimum solvent rate. Instead, 

the intercooling must be modeled at an arbitrary location and packing must be added to 

both sides of the intercooler independently until a limiting pinch is achieved (adding 

packing on either side will not change the CO2 removal).  
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In Figure 4-6, a rich end pinch is developed below the intercooler and nearly all of 

the CO2 removal occurs above the intercooler (quantified by the change in loading on the 

x-axis in each section of the column). In this region of low lean loading, the liquid-to-gas 

ratio (L/G) is small with the gas carrying the heat generated by CO2 absorption towards 

the top of the column, where the maximum solvent temperature (77°C) occurs. However, 

the driving forces are large at these lean operating conditions (low equilibrium partial 

pressure of CO2 for the solvent) and a mass transfer pinch does not occur at the bulge. 

The rich end pinch occurs at 44°C, closely approximating an isothermal pinch, as 

evidenced by the approach to the isothermal solvent rate (LMIN/LMIN, ISOTHERMAL = 1.01). 

The solvent mass flow rate at these conditions is inadequate to provide much intercooling 

capacity (low total heat capacity of the solvent). Therefore, the function of intercooling at 

this condition is to provide enough CO2 removal at the bottom of the absorber to prevent 

a limiting lean end pinch without resulting in a severe rich end restriction (high 

temperatures below the intercooler).  

Figure 4-7 represents the intermediate range of lean loading operating conditions, 

where the simple intercooling approach experiences the largest deviations from 

isothermal performance. Two distinct mass transfer pinches exist on either side of the 

intercooler. The mass transfer pinch above the intercooler coincides with a temperature 

bulge at the lean end of the column (71°C). In this loading range, the solvent carries an 

increasing portion of the heat generated by CO2 absorption and the heat is “trapped” in 

the column and a limiting lean end pinch forms at as the solvent rate is increased from the 

isothermal minimum to achieve 90% removal. The cooled solvent leaving the intercooler 

similarly traps heat in the rich end of the absorber until a second pinch is formed below 

the intercooler. This pinch corresponds to second temperature maximum (64°C) below 

the intercooler. At conditions where a limiting lean end pinch forms, the two sections of 
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the absorber are effectively behaving as two adiabatic absorbers to balance the 

temperature limiting restriction on the column. If insufficient CO2 is removed below the 

intercooler, the lean end pinch will become more restrictive (increase the solvent rate 

required to achieve 90% removal). Similarly, if insufficient CO2 is absorbed above the 

intercooler, the pinch below the intercooler will become more severe (higher 

temperatures, occur closer to the intercooler/leaner loading) and require an increase in 

solvent rate to meet the removal requirement. Therefore, the “double pinch” seen in this 

case is a defining characteristic of intercooled absorbers which are operating at conditions 

(lean loading, maximum temperatures, etc.) which form a limiting lean end pinch. An 

alternate interpretation of this phenomena is that an intercooled absorber “splits” the 

temperature bulge that is formed in adiabatic absorber. The intercooled absorber is not 

truly equilibrium limited by temperature effects until a pinch is formed at both 

temperature maxima – this is where the deviation from isothermal capacity begins to 

occur (Figure 4-4). The NGCC case provides a clear illustration of this transition 

behavior from a rich end pinch away from the temperature bulge, to a lean end pinch at 

the temperature bulge above the intercooler (not restricting), and finally to the double 

pinch that restricts column performance. The next section will explore this transition 

behavior. 

Finally, in Figure 4-8, the high lean loading is associated with a high L/G (liquid 

heat capacity dominates) and pushes each mass transfer pinch and temperature bulge 

towards the bottom of their respective column sections while moderating the maximum 

temperatures (55°C and 46°C). The intercooler removes the heat associated with the lean 

limiting bulge and has sufficient capacity to push the secondary bulge and pinch to the 

rich end of the column. The result is a column approximating an isothermal rich end 

pinch (LMIN/LMIN, ISOTHERMAL = 1.01)   
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The trends for the NGCC case (Figure 4-3) and the steel-blast furnace case 

(Figure 4-5) can also be explained by the same phenomena in the column:  

4) Lean end temperature bulge at low loadings does not form a mass transfer 

pinch due to large driving forces near temperature maxima and the loading 

range for operating without a lean pinch is expanded (compared to an 

adiabatic column) by CO2 removal below the intercooler;  

5) Lean end pinch forms at the temperature bulge and secondary pinch is formed 

below the intercooler as CO2 removal is balanced around the intercooler to 

minimize the restriction of the lean end pinch – the double pinch indicates the 

intercooled system fully equilibrium constrained by temperature effects 

(neither section can operate without temperature restriction). 

6) The solvent rate is increased until liquid phase heat capacity carries each 

temperature bulge to the bottom of the packed bed – the intercooler removes 

the lean end temperature restriction and the high solvent rate moderates the 

temperature at the rich end, limiting the effect of the mass transfer pinch on 

solvent capacity.  

4.4.1.2 Pinch Transitions: NGCC Case 

The coal case (and similarly, the steel application) exhibit a sharp transition from 

a rich end pinch away from the lean end temperature bulge (Figure 4-6) to a double pinch 

that indicates the column is limited by temperature effects.  The NGCC case, however, 

exhibits three steps in this transition illustrated in the following figures: 

1) Rich end pinch away from both temperature maxima: No temperature 

restrictions on equilibrium (Figure 4-9, LLDG = 0.23 mol CO2/mol 

alkalinity). 
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2) Lean end pinch @ top bulge/ Rich end pinch away from bottom bulge: No 

restriction on equilibrium despite a lean pinch because bottom section can 

form a true rich end pinch away from bottom bulge (Figure 4-10, LLDG = 

0.24 mol CO2/mol alkalinity). 

3) Double Pinch (at each temperature bulge): System is equilibrium limited by 

temperature and true rich end pinch cannot be achieved (Figure 4-11, LLDG = 

0.27 mol CO2/mol alkalinity). 
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Figure 4-9: Operating and equilibrium curves @ LLDG = 0.23 mol CO2/mol alk. for 

an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a NGCC power plant (4.1% CO2).  The 

mass transfer pinch (contact of the equilibrium and operating lines) occurs at the 

rich end of the column (bottom, 43°C), unrelated to the maximum temperature in 

the top section (56°C) or bottom section (46°C). 
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Figure 4-10: Operating and equilibrium curves @ LLDG = 0.24 mol CO2/mol alk. 

for an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a NGCC power plant (4.1% CO2). Two 

mass transfer pinches occur (contact of the equilibrium and operating lines): 1) Rich 

end pinch (bottom, 43°C), unrelated to the maximum temperature in the bottom 

section (49°C); 2) Lean end pinch (top) at the maximum temperature (55°C).  
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Figure 4-11: Operating and equilibrium curves @ LLDG = 0.27 mol CO2/mol alk. 

for an intercooled absorber (in-and-out intercooling) operated at LMIN (“infinite” 

packing) to achieve 90% CO2 removal from a NGCC power plant (4.1% CO2). This 

condition represents the largest deviation from isothermal performance (LMIN/LMIN, 

Isothermal = 1.98).  Two mass transfer pinches (contact of the equilibrium and 

operating lines) occur: 1) The pinch above the intercooler occurs near the lean end 

of the column and coincides with the maximum temperature (53°C) in the top 

section; 2) The pinch below the intercooler occurs at the maximum temperature in 

the column (59°C). 

As the figures illustrate, the NGCC case exhibits a gradual transition to the 

formation of a true temperature restriction (double pinch). The lower temperatures and 

lower L/G in the NGCC case expand the window where a pinched system will form. This 

behavior will also be relevant as the system moves away from LMIN as the limiting 

pinches will also be the limiting driving force for mass transfer.  
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4.4.1.3 Pinch Formation: Comparison to an Adiabatic Absorber 

As discussed in the preceding chapter, the formation of a lean end pinch at the 

temperature bulge is the precipitating phenomena that limits adiabatic absorber 

performance and requires a significant increase in the solvent rate from the isothermal 

minimum. The discussion in the previous section indicates that the formation of 

temperature bulge related pinches are also the initiating phenomena for intercooled 

absorbers. However, the equilibrium constraint is much less restrictive for the intercooled 

absorbers in two ways: 

1) The lean loading range to achieve 90% removal without limiting temperature-

related pinches is larger; 

2) The increase in solvent rate required to overcome the pinches after formation 

is much smaller (reduced deviation from the isothermal baseline in Figure 4-3 

through Figure 4-5).  

The first benefit of intercooling is explained by the preceding discussion – 

intercooling reduces the maximum solvent temperature at the bulge (compared to an 

adiabatic absorber at the same conditions) by removing CO2 below the intercooler to 

delay the onset of the lean pinch. The second phenomena requires further investigation of 

the pinch formation behavior.  

 



 122 

 

Figure 4-12: Lean end pinch formation @ LLDG = 0.25 mol CO2/mol alk. for an 

intercooled absorber (in-and-out intercooling) for capture from a NGCC power 

plant (4.1% CO2) utilizing 8 m PZ. The solvent rate increases from the isothermal 

minimum solvent rate (LMIN, ISOTHERMAL = 927 kg/s) to the final LMIN required to 

achieve 90% removal (LMIN, INTERCOOL = 968 kg/s). The restricting double pinch 

forms after 90% removal is achieved in this case (one benefit of intercooling).  

Several features of the pinch formation and transition to higher solvent rates are notable 

for the intercooled absorber. First, for the case in Figure 4-12, the lower temperatures in 

the intercooled absorber at the lean end bulge allow 90% CO2 removal to be achieved 

before the double pinch is formed (i.e., before the column is equilibrium-limited by 

temperature) – the solvent rate therefore remains close to the isothermal minimum. After 

the formation of a pinch on both sides of the intercooler, the absorber exhibits a 

monotonic trend in CO2 removal as a function of solvent rate. The slope of the curve has 
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changed (an incremental increase in solvent rate is less effective at providing additional 

driving force benefits), but the behavior is different from an adiabatic absorber which 

exhibits a non-monotonic trend which requires a significant solvent increase to overcome 

the lean end pinch (c.f., Chapter 3, Figure 3-9).   

The solvent is more effective at addressing the equilibrium constraint associated 

with the temperature related pinches in the intercooled absorber case. As Figure 4-12 

shows, this is due to the heat removed at the intercooler. In an adiabatic absorber, this 

heat would be returned to the solvent in the form of water vapor which is condensed 

above the bulge to generate the temperature rise (along with CO2 absorption) at the lean 

end of the absorber. Therefore, the intercooler is effectively doubling the heat carrying 

capacity of the solvent since the heat absorbed in the top of the column is removed from 

the system instead of returned to the lean end pinch. As depicted in Figure 4-12, when the 

heat removed at the intercooler is considered, the liquid and vapor heat capacities are 

much more closely matched and exhibit a crossover point as in an adiabatic absorber. The 

intercooled absorber is essentially two adiabatic absorbers operating in series – the top 

section, which operates with double the effective total heat capacity due to the 

intercooler, and the bottom section, which operates as a normal adiabatic absorber. A new 

degree of freedom is introduced – the amount of CO2 removed in each absorber – that 

delays the onset and minimizes the impact of a temperature pinch.  This explains why the 

solvent is less constrained by carrying heat away from the bulge and can address the 

equilibrium constraint more effectively than in an adiabatic absorber.  

 As noted, the adiabatic absorber exhibits non-monotonic trends in CO2 removal as 

a function of solvent rate that can lead to multiple steady states (c.f., Chapter 3, Figure 3-

9).   This is another important advantage of an intercooled absorber and the trend in 

Figure 4-12 (which is consistently monotonic for intercooled absorbers across the 
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conditions evaluated in this work). The unstable steady states described for the adiabatic 

absorber do not exist and the operations and control of the system, even with a lean end 

pinch, is more straightforward. 

4.5 DESIGN CURVES AND MASS TRANSFER PERFORMANCE 

The benefit of simple intercooling over an adiabatic absorber is significant when 

considering solvent capacity effects. However, absorbers are not operated at the 

minimum solvent rate due to the prohibitive packing costs. The number of transfer units 

required for a given separation rises exponentially as an inverse function of the driving 

force, making operating with a “pinch” infeasible. To provide a practical assessment of 

the benefits of intercooling, design curves (as in Figure 4-2) were developed for each of 

the three flue gas sources at a lean loading in each of 4 unique regions identified from the 

minimum solvent rate plots (Figure 4-3 to Figure 4-5): 

1) “Over-stripped” region: This is the low loading region in each of the LMIN 

figures where the adiabatic absorber approximates the isothermal minimum 

solvent rate (LMIN, ADIABATIC/LMIN, ISOTHERMAL ≈ 1, no lean end pinch 

restriction). “Over-stripping” corresponds to the idea that the low loadings in 

this region typically drive the stripping system away from an energy optimum 

due to a significant increase in stripping steam requirements, though a specific 

stripper analysis would be needed to verify the energy performance as a 

function of loading (e.g., (Lin & Rochelle, 2014) and (Frailie, 2014)) .  

2) Simple Intercooling region: This is the region where the adiabatic absorber 

performance deteriorates due to a lean pinch (LMIN, ADIABATIC rises rapidly) but 

in-and-out intercooling prevents a lean pinch and approaches the isothermal 
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minimum (LMIN, ADIABATIC/LMIN, ISOTHERMAL >> 1, LMIN, INTERCOOL/LMIN, 

ISOTHERMAL ≈ 1). 

3) Advanced Intercooling region: This region is characterized by deviation from 

isothermal minimum solvent rates for both the adiabatic and in-and-out 

intercooled absorbers indicating limiting lean end pinches for both designs 

(LMIN, ADIABATIC/LMIN, ISOTHERMAL >> 1, LMIN, INTERCOOL/LMIN, ISOTHERMAL > 1).. 

An improved intercooling design is expected to provide solvent capacity 

benefits in this region.  

4) Large solvent rate region: This high loading region corresponds to inherently 

large liquid-to-gas ratios which moderate temperature effects and push 

temperature maxima to the ends of packed sections for adiabatic and 

intercooled absorbers. This region is of limited practical interest due to the 

extreme solvent circulation rates required.  

Table 4-5 defines the loading values for each region and flue gas source. Figure 4-13 

identifies the 4 regions for the coal case on the LMIN figure. 

Table 4-5: Summary of Lean Loading Ranges Defined for Design Curve Analysis  

Operating Regions 

Loading Range 

(mol CO2/mol alkalinity) 

Natural Gas Combined 

Cycle 

(NGCC) 

Coal-Fired 

Boiler 

Steel Blast 

Furnace 

“Over-Stripped” 0.15–0.21 0.15–0.18 0.12-0.17 

Simple Intercooling 0.22–0.26 0.19–0.21 0.18 – 0.19 

Advanced Intercooling > 0.26 0.22–0.30 0.20 – 0.29 

Large Solvent Rate N/A > 0.30 > 0.30 
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Figure 4-13: Four regions corresponding to different LMIN limitations are identified 

for design curve analysis, coal-fired boiler flue gas (14.7% CO2). Ratio of LMIN 

(“infinite” packing) for an adiabatic absorber (no intercooling) and intercooled 

absorber (in-and-out intercooling) to an isothermal absorber (40 °C) for 90% CO2 

capture with 8 m PZ. 

A total of 11 cases are defined by Table 4-5. The design curves for the three 

NGCC cases are presented here – the analogous curves for coal and steel are included in 

Appendix E.  
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Figure 4-14: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), “over-

stripped” loading region (LLDG = 0.18 mol CO2/mol alk.). Each curve (dashed = 

adiabatic, solid = isothermal) represents constant 90% CO2 removal. Unique rich 

loading for each L/G is on secondary y-axis. The asymptote each curve reaches with 

increasing packing area is the minimum solvent rate (LMIN). 
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Figure 4-15: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), simple 

intercooling loading region (LLDG = 0.25 mol CO2/mol alk.). Each curve (dashed = 

adiabatic, solid = isothermal, blue = intercooled) represents constant 90% CO2 

removal. Unique rich loading for each L/G is on secondary y-axis. The asymptote 

each curve reaches with increasing packing area is the minimum solvent rate (LMIN). 
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Figure 4-16: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), 

advanced intercooling loading region (LLDG = 0.30 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal, blue = intercooled) represents constant 90% 

CO2 removal. Unique rich loading for each L/G is on secondary y-axis. The 

asymptote each curve reaches with increasing packing area is the minimum solvent 

rate (LMIN). 

In each figure, the slope of the design curves depict the packing-energy cost 

(solvent rate) trade-off in the approach to the minimum solvent rate. When comparing 
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the isothermal curve (a simple packed absorber in this analysis). The isothermal curve is 

strictly limiting in the minimum solvent rate asymptote and only represents the best case 

driving forces for an absorber at all other conditions. Mass transfer performance of 

absorbers with PZ will be discussed extensively in Chapters 5 and 6 as part of developing 

novel absorber configurations.  

The design curves can also be used to define an optimum (or near optimum) 

operating condition (specific solvent rate) which balances the packing and solvent rate 

trade-off. This solvent rate can be defined as a multiple of the minimum solvent rate (e.g., 

L/LMIN =1.2) and provides an approach to absorber design – define the minimum solvent 

rate for the design and specified operating conditions, and evaluate packing requirements 

as the solvent rate is moved away from the minimum. As the discussion in the preceding 

sections in this chapter (and the previous chapter) indicate, quantifying the minimum 

solvent rate can be non-trivial (multiple steady states, intercooling location, etc.) so the 

isothermal minimum solvent rate serves as a useful baseline as it strictly depends on the 

solvent VLE and inlet flue gas composition (solvent is saturated to the inlet CO2 

concentration at the absorber temperature).   

The design curves above and in the appendix are useful for visualizing the 

relationship between packing requirements and solvent rates for different absorber 

designs, but a quick screening method for the performance of the absorber design will be 

developed in section 4.5.2 to summarize the results of this analysis.  

4.5.1 Optimal Intercooling Location 

Each point on the design curve for in-and-out intercooling represents an absorber 

design with an “optimal” location for intercooling, where the optimum design is defined 

by the intercooling location which minimizes the total packing requirement. The 
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optimization was performed using the flowsheet optimization tool in Aspen Plus®. 

However, the packing optimization problem has a single equality constraint (90% 

removal) with two optimization variables (two packed bed heights) which means the 

problem only has one true degree of freedom (one of the two bed heights can be varied 

freely while the second must satisfy the removal constraint). Therefore, the problem is 

easily tractable by a trail-and-error or “brute force” method or an offline Newton’s 

method if an approximate function is defined from discrete modeling cases. The resulting 

optimal location of intercooling for individual cases that define the design curves in the 

preceding analysis was evaluated as a function of operating conditions (solvent rate, CO2 

concentration in flue gas, lean loading).  

4.5.1.1 Optimal Intercooling Location for NGCC Application  

The optimal intercooling results for the NGCC application are described in Figure 

4-17. 
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Figure 4-17: Location of the intercooler for in-and-out intercooling method (Figure 

4-1) as a function of solvent rate for 90% capture from a NGCC power plant (4.1 

mol% CO2) at three lean loadings (8 m PZ): 0.23 (dotted line), 0.25 (dashed line), 

0.30 (solid line) mol CO2/mol alk.  Intercooling location is defined as a normalized, 

or relative, position in the overall packed height of the column. The solvent rate is 

defined as a multiple of the LMIN (L/LMIN) for the intercooled absorber at the given 

lean loading. The intercooling position is determined by the packing distribution 

around the intercooler that will minimize the total packing area in the column – 

each point in the chart represents an independent optimization at the given 

conditions. Pinch conditions at LMIN are described for each case.  

The NGCC case exhibits two distinct trends in the optimal location of 

intercooling. At the lower loadings (0.23 and 0.25 mol CO2/mol alkalinity), the 

intercooler position starts near the top of the column when the absorber is operated near 

LMIN. As solvent rate is increased (“relax” equilibrium pinch conditions, larger driving 

forces), the intercooler moves down the column to approximately the middle of the 
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column (ZINTERCOOLER/ZTOTAL≈ 0.5). The higher loading region shows the opposite trend 

– the intercooler starts near the bottom of the absorber and moves up towards the middle 

of the column as a function of solvent rate. The two trends as a function of loading can be 

explained by the underlying pinch behavior at the minimum solvent rate.  

Figure 4-9 described the pinch phenomena at a lean loading of 0.23 mol CO2/mol 

alkalinity (analogous to the 0.25 loading case). The temperature-related pinch occurs at 

the lean end of the column, while the overall column is able to achieve a true rich end 

pinch (not related to a temperature bulge). Therefore, the restricting pinch is at the lean 

end of the column and the initial optimum position of the intercooler is located towards 

the top of the column in Figure 4-17 (ZINTERCOOLER/ZTOTAL≈ 0.25) to limit the packing in 

this equilibrium constrained section. As the solvent rate increases, the pinch is relaxed in 

the lean end of the column, and more packing (proportionally) is allocated above the 

intercooler (i.e., intercooler moves down the column). Eventually, when the solvent rate 

is L/LMIN ≈ 2, the temperatures have been moderated and the driving forces are generally 

large throughout the column, so intercooling has limited effect. The intercooler stays in a 

“neutral” position (ZINTERCOOLER/ZTOTAL≈ 0.5) as the solvent rate increases further.   

At higher loadings (0.30 mol CO2/mol alkalinity in Figure 4-17), a “double” pinch 

occurs at LMIN (e.g., Figure 4-11) and the rich end pinch associated with a temperature 

bulge is limiting – this will be discussed further in the next section. As the solvent rate is 

increased, the restricting pinch in the bottom section benefits and the intercooler moves 

up the column (relatively more packing in the bottom section).  As with the lower loading 

region, when the solvent rate is L/LMIN ≈ 2, the intercooler has limited impact and 

approaches a “neutral” location at ZINTERCOOLER/ZTOTAL≈ 0.5. 
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4.5.1.2 Optimal Intercooling Location for Coal and Steel Applications  

The coal-fired boiler and steel blast furnace results are described in Figure 4-18 

and Figure 4-19. 

 

 

Figure 4-18: Location of the intercooler for in-and-out intercooling method (Figure 

4-1) as a function of solvent rate for 90% capture from a coal-fired boiler (14.7 

mol% CO2) at two lean loadings (8 m PZ): 0.20 (dashed line) and 0.26 (solid line) 

mol CO2/mol alk. Intercooling location is defined as a normalized, or relative, 

position in the overall packed height of the column. The solvent rate is defined as a 

multiple of the minimum solvent rate (L/LMIN) for the intercooled absorber at the 

given lean loading. The intercooling position is determined by the packing 

distribution around the intercooler that will minimize the total packing area in the 

column – each point in the chart represents an independent optimization at the 

given conditions. Pinch conditions at LMIN are described for each case.  
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Figure 4-19: Location of the intercooler for in-and-out intercooling method (Figure 

4-1) as a function of solvent rate for 90% capture from a steel blast furnace (27 

mol% CO2) at two lean loadings (8 m PZ): 0.18 (dashed line) and 0.22 (solid line) 

mol CO2/mol alk. Intercooling location is defined as a normalized, or relative, 

position in the overall packed height of the column. The solvent rate is defined as a 

multiple of the minimum solvent rate (L/LMIN) for the intercooled absorber at the 

given lean loading. Two lean loadings are presented:  The intercooling position is 

determined by the packing distribution around the intercooler that will minimize 

the total packing area in the column – each point in the chart represents an 

independent optimization at the given conditions. Pinch conditions at LMIN are 

described for each case.  
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All of the coal and steel cases depicted exhibit the same general trend – as the solvent 

rate is increased, the intercooler moves up the column until it eventually reaches the top 

of the column (ZINTERCOOLER/ZTOTAL≈ 0).  The limiting pinch in each case is a rich end 

temperature-related pinch – either as part of the “double” pinch or independently - Figure 

4-7 illustrates the “double” pinch for the 0.26 mol CO2/mol alkalinity case.  

 In each case, as the solvent rate is increased, the restricting rich pinch is relaxed 

and the intercooler moves to a relatively higher position in the column (larger portion of 

packing below the intercooler. As in the gas case, continued increase of the solvent rate 

beyond L/LMIN ≈ 2 reduces the impact of intercooling (moderated temperatures, large 

driving forces throughout) and the intercooler moves to a “neutral” position, in this case, 

ZINTERCOOLER/ZTOTAL≈ 0.   

 As the lean loading increases for each flue gas application, the corresponding 

intercooling location is higher in the column for a given L/LMIN. For a given L/LMIN, the 

absolute solvent rate and L/G is higher for the higher loading (baseline LMIN) is higher, so 

the solvent is able to address the temperature restriction at the rich end of the column 

more effectively.  

4.5.1.3 Generalizations about optimized intercooling location  

As the cases in the previous discussion illustrate, the starting position and trend in 

intercooling location are dependent on the underlying mass transfer pinch phenomena 

which are most clearly illustrated at LMIN. The cases with a lean-end limiting pinch 

(generally the NGCC application) start with an intercooler towards the top of the column 

and the position drops as the solvent rate is increased. For the rich end temperature-

limited cases, the intercooler generally starts towards the bottom or middle of the column 

and moves up with increasing solvent rate. In all cases, as the solvent rate exceeds L/LMIN 
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≈ 2, intercooling has limited impact, and the optimization will simply drive the 

intercooler to the nearest “neutral” or equilibrium position – in this analysis, that is the 

middle or top of the column, although presumably the bottom of the column would be a 

similar limiting position.     

A rich-end temperature limited case is plotted for each flue gas concentration in 

Figure 4-20 to provide general conclusions about the effect of CO2 concentration.  
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Figure 4-20: Location of the intercooler for in-and-out intercooling method (Figure 

4-1) as a function of solvent rate for rich end temperature limited cases for NGCC 

(red, 4.1% CO2), coal (blue, 14.7% CO2), and steel (black, 27% CO2).  Intercooling 

location is defined as a normalized, or relative, position in the overall packed height 

of the column. The solvent rate is defined as a multiple of LMIN (L/LMIN) for the 

intercooled absorber at the given lean loading. The intercooling position is 

determined by the packing distribution around the intercooler that will minimize 

the total packing area in the column – each point in the chart represents an 

independent optimization at the given conditions.  
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L/LMIN, the corresponding L/G is larger for higher CO2 concentrations. The inherently 

larger total solvent heat capacity overcomes the temperature restrictions in the column 

more readily for the high CO2 applications.  

Finally, if the analysis is considered in a reasonable operating range of solvent 

rates (~ 1.1 to 1.8*LMIN), the optimal intercooling position generally falls in the middle 

50% of the column for all cases (ZINTERCOOLER/ZTOTAL= 0.25 to 0.75). Therefore, an 

extreme position of intercooling may indicate an unrealistic operating solvent rate for the 

design (e.g., operating too close to LMIN).  

4.5.1.4 Intercooling Optimization and Relative Pinch Concept  

The discussion of trends in optimal intercooling position has focused on the 

underlying pinch behavior (managing the restricting pinch above or below the 

intercooler). Therefore, the optimal packing distribution in an absorber should correspond 

to a “balanced” or equivalent approach to a mass transfer pinch on either side of the 

intercooler, to a first approximation. However, the lean end of the absorber will 

inherently have smaller absolute driving forces (lower CO2 partial pressure in the gas) 

after CO2 has been removed from the gas, and appear closer to a pinch. To properly 

assess the equilibrium constraint imposed by the solvent, a normalized driving force or 

definition is proposed: 

 

2 2 2

2 2

* *

Normalized Driving Force 1
CO CO CO

CO CO

P P P

P P


    

4.5 

where: 

 PCO2
 = Bulk partial pressure of CO2 in the gas phase (Pa); 

P*CO2
 = Partial pressure of CO2 in equilibrium with the bulk solvent (Pa). 
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As the parameter approaches 1, the relative driving force is large (unloaded 

solvent) and as it approaches zero the column is pinched due to equilibrium limitation in 

the solvent (saturated solvent). When the two sections of an intercooled absorber have the 

same minimum normalized driving force or “relative pinch”, the absorber packing 

distribution around the intercooler is expected to be at an optimum value. The theoretical 

support for this concept comes from the definition of transfer units in defining overall 

absorber packing height. Equation 4.6 presents the height of packing in the two absorber 

sections in a general expression in terms of the number of transfer units (NTU) and 

(HTU). 
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4.6 

where: 

 ZTOTAL = Total packing height of column; 

ZTOP = Packing height of top bed or section of column; 

ZBOTTOM = Packing height of bottom bed or section of column; 

yCO2
 = Bulk mole fraction of CO2 in the gas phase; 

y*CO2
 = Vapor mole fraction of CO2 in equilibrium with the bulk solvent; 

yMID = Bulk mole fraction of CO2 leaving bottom/entering top bed; 

yIN = Bulk mole fraction of CO2 in the gas phase entering the column; 

yOUT = Bulk mole fraction of CO2 in the gas phase leaving the column; 

V = Total gas phase molar flow rate; 
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KG = Overall mass transfer coefficient for gas-phase driving force; 

ae = Effective area of packing per unit column volume (m2/m3); 

S = Column cross-sectional area (m2); 

 

As written, the HTU is assumed constant over the absorber, but in practice is part 

of the rigorous numerical integration over the column. However, the theoretical 

expression for packing height provides insight into assigning an optimal distribution of 

packing between the two beds. If the HTU, or mass transfer efficiency, of the packing 

does not vary greatly from top to bottom of the column (not strictly valid – see Chapter 5 

for detailed discussion), the minimization of packing is based on the NTU terms only. 

These terms represent the change in composition of the solute (or CO2  removed) relative 

to the average driving force in the section of the column. Therefore, to minimize the total 

packing area, the CO2 removed in each packed bed should be balanced based on the 

driving force available for mass transfer in the section. This is consistent with the 

normalized driving force concept, which compares the driving force to the gas phase 

composition at a discrete point in the column to determine the approach to a mass transfer 

pinch on a common basis through the column.  

 

The following figures show the relative pinch profiles for the optimized packing 

distribution for coal-fired boiler cases that fall in a practical solvent operating range (1.1 

to 1.8*LMIN). At extreme solvent rates (high or low), the packing distribution will not 

have meaning as the column will either be pinched (close to LMIN) or the driving forces 

will be large everywhere and intercooling position has no effect and the relative pinch 

concept is not meaningful.  
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Figure 4-21: Normalized driving force profile @ LLDG = 0.20 mol CO2/mol alk. and 

L/LMIN = 1.2 (8 m PZ) for an in-and-out intercooled absorber with optimum packing 

split (minimize total packing area) for 90% CO2 capture from a coal-fired boiler 

(14.7 mol% CO2). Relative pinch (or minimum normalized driving force) identified 

for each packing section. 
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Figure 4-22: Normalized driving force profile @ LLDG = 0.20 mol CO2/mol alk. and 

L/LMIN = 1.4 (8 m PZ) for an in-and-out intercooled absorber with optimum packing 

split (minimize total packing area) for 90% CO2 capture from a coal-fired boiler 

(14.7 mol% CO2). Relative pinch (or minimum normalized driving force) identified 

for each packing section. 
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Figure 4-23: Normalized driving force profile @ LLDG = 0.20 mol CO2/mol alk. and 

L/LMIN = 1.6 (8 m PZ) for an in-and-out intercooled absorber with optimum packing 

split (minimize total packing area) for 90% CO2 capture from a coal-fired boiler 

(14.7 mol% CO2). Relative pinch (or minimum normalized driving force) identified 

for each packing section. 

As the figures show, the relative pinch, and normalized driving force profile in general, is 

very closely matched in the two packing sections for all cases (minimum relative pinch 

values are within ~15% of one another). This trend is consistent for the NGCC and steel 

cases in a practical operating range as well. The deviation from balanced pinches can be 

explained by the HTU term in Equation 4.6, as the mass transfer efficiency may vary 

with position in the column. However, even with differences in mass transfer efficiency 

over the column, the relative pinch is a good predictor of optimal packing distribution in 

intercooled absorbers.   
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4.5.2 Quantifying Benefits of Intercooling and Potential for Development 

For every point on a design curve for any absorber configuration, the solvent rate-

packing area combination represents a unique design requirement to meet 90% CO2 

removal.  In practice, this combination of solvent rate and packing requirement can be 

converted to a total cost, generating total cost curves for each design. The difference 

between any two cost curves would represent a total cost savings of the improved design. 

However, the goal of this analysis is not to develop a detailed economic optimum; rather, 

the goal is to screen for the conditions where a significant improvement can be made over 

an adiabatic or simple intercooled absorber (in-and-out intercooling) with an advanced 

design and to rank the operating conditions where the most benefit might be derived. 

Once this screening process is complete, unique novel absorber designs can be developed 

for specific operating conditions and detailed equipment design and economic evaluation 

are appropriate.  Therefore, the method for evaluating the base case design (adiabatic or 

intercooled) will be to compare the integrated area between the base case design curve 

and the isothermal design curve. To perform the integration, limits on the area (x-axis) 

for the integration must be defined. A realistic operating window of solvent circulation 

rates based on the isothermal column was used to define the limits. The minimum and 

maximum area limits were defined by 1.8*LMIN, ISOTHERMAL and 1.05*LMIN, ISOTHERMAL , 

respectively. Figure 4-24 depicts the aforementioned integration.  
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Figure 4-24: Integration method to quantify potential benefit of advanced 

intercooling. Each curve (solid = isothermal, blue = intercooled) represents the 

packing requirement to achieve 90% CO2 removal for a fixed lean loading and 

given liquid to gas ratio (L/G). The maximum and minimum areas for integration 

are defined by the isothermal curve at 1.05 and 1.8 x LMIN, respectively. The area 

between the two curves represents the maximum benefit achievable with an 

advanced IC design.  

This method provides a proxy for the maximum benefit that can be derived by 

improvement over the base design. As mentioned, the isothermal design is the limiting 

design at the minimum solvent rate. At other conditions, the isothermal absorber only 

represents the best case for driving forces, and better designs could be developed by 

enhancing limiting mass transfer mechanisms. However, the isothermal case still serves 

as a well-defined common baseline for comparison. Detailed discussion of limiting mass 
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transfer phenomena in absorber systems with PZ will be discussed in Chapter 5 as part of 

discussing further improvement in absorber design. 

In practice, the ratio of the area under the best case absorber design to the area 

under isothermal absorber design curve was used to quantify the “deviation” from 

isothermal performance – this provides a relative or normalized metric that allows 

comparison across the varying operating conditions in the 11 cases (different baselines in 

each case). Table 4-6 summarizes the results of the integration analysis. The large solvent 

rate region is excluded from the analysis due to the limited practical value of absorber 

development and operation at the extreme solvent flow rates in the region.  

Table 4-6: Summary of Potential Benefits of Advanced Intercooling Design  

NGCC (4.1 mol% CO2) 

Intercooling Region 

LLDG 

(mol CO2/mol 

alk.) 

Intercooling 

Method 

Integrated 

"Intercooling Benefit" 

Over-stripped 0.18 NONE 1.14 

Simple Intercooling 0.25 In-and-Out IC 1.50 

Advanced IC 0.30 In-and-Out IC 1.60 

Coal (14.7 mol% CO2) 

Intercooling Region 

LLDG 

(mol CO2/mol 

alk.) 

Intercooling 

Method 

Integrated 

"Intercooling Benefit" 

Over-stripped 0.15 NONE 1.08 

Simple Intercooling 0.20 In-and-Out IC 1.09 

Advanced IC 0.26 In-and-Out IC 1.13 

Steel (27 mol% CO2) 

Intercooling Region 

LLDG 

(mol CO2/mol 

alk.) 

Intercooling 

Method 

Integrated 

"Intercooling Benefit" 

Over-stripped 0.12 NONE 1.08 

Simple Intercooling 0.18 In-and-Out IC 1.02 

Advanced IC 0.22 In-and-Out IC 1.07 
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The table clearly highlights the importance of intercooling development for the 

NGCC application – in all three regions, the largest deviation between the best absorber 

design in the region and an isothermal absorber occur for the NGCC application. 

Specifically, in the simple intercooling and advanced intercooling regions, the NGCC 

application has a significantly larger potential benefit from improved intercooling design. 

In the simple intercooling region, despite achieving near isothermal capacity (Figure 4-3), 

in-and-out intercooling appears to suffer from driving force limitations when approaching 

the minimum solvent rate (Figure 4-15). Therefore, advanced intercooling concepts have 

potential in a region where LMIN analysis would have suggested limited benefit.  

The results for the coal-fired boiler and steel-blast furnace applications indicate 

that the base case design (adiabatic absorber in the over-stripped region, in-and-out 

intercooling in the other regions) performs well (ratios all under 1.15). Even in the 

advanced intercooling region, where the simple intercooling design is limited by a lean-

end pinch at minimum solvent rate conditions, the benefits of a potential advanced design 

are modest in the operating range of the absorber. The coal-fired boiler in this advanced 

intercooling region may be the only condition outside of the NGCC application that 

merits consideration for novel design development.  

4.6 CONCLUSIONS 

Simple (in-and-out) intercooling was studied as a function of flue gas CO2 

concentration and operating conditions to quantify solvent capacity and mass transfer 

benefits, identify limitations of simple intercooling, and understand underlying 

phenomena to explain performance trends. The following major findings were developed: 
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4.6.1 Solvent Capacity Effects and Pinch Formation in Intercooled Absorbers 

 Simple intercooling significantly improves solvent capacity over an adiabatic 

absorber (measured by minimum solvent rate analysis and approach to isothermal 

ideal, LMIN /LMIN, ISOTHERMAL) for all conditions in the analysis 

 Maximum Deviation from Isothermal (LMIN /LMIN, ISOTHERMAL): 

i. NGCCINTERCOOLED = 1.98 

NGCCADIABATIC = 3.58 

ii. COALINTERCOOLED = 1.31 

COALADIABATIC = 2.26 

iii. STEELINTERCOOLED = 1.18 

STEELADIABATIC = 1.94 

 Simple intercooling expands loading range where a limiting temperature pinch is 

avoided and isothermal capacity is approached (LMIN /LMIN, ISOTHERMAL ≈ 1): 

i. NGCCINTERCOOLED = < 0.25 mol CO2/mol alkalinity 

NGCCADIABATIC = < 0.22 mol CO2/mol alkalinity 

ii. COALINTERCOOLED = < 0.20 mol CO2/mol alkalinity 

COALADIABATIC = < 0.18 mol CO2/mol alkalinity 

iii. STEELINTERCOOLED = < 0.18 mol CO2/mol alkalinity 

STEELADIABATIC = < 0.17 mol CO2/mol alkalinity 

 Pinch formation and performance limitation is different for an intercooled 

absorber: 

 True rich end pinch forms (not associated with temperature bulge at lean 

end). 

 Lean pinch forms at bulge above intercooler, but system is not equilibrium 

limited if bottom bed still achieves true rich pinch 
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 “Double pinch” forms associated with bulge in each section (above and 

below IC). System is equilibrium limited and requires solvent rate 

increase.  

 Intercooling can effectively be viewed as two adiabatic absorbers operated in 

series: 

 First (top) absorber effectively operates with double the total heat capacity 

of the nominal inlet solvent – this is because all of the heat generated by 

CO2 absorption in this bed is removed at the intercooler instead of 

returning to the lean end of the column as water condensing from the gas 

as in a normal adiabatic absorber.  

 Second (bottom) absorber operates as a normal adiabatic absorber. 

 New degree of freedom (CO2 removed in each section) allows moderation 

of the effect of temperature bulges in column – bulge is split between two 

sections and removal in section prevents formation of pinch/minimizes 

effect of existing pinches.  

4.6.2 Design Curves and Packing-Solvent Rate Trade-Offs 

 Design curves were developed to evaluate the performance of intercooling in 

terms of packing (mass transfer) – solvent rate trade-off or the packing required to 

approach LMIN for each absorber design. The difference between intercooled (or 

adiabatic) absorber and an isothermal absorber in normal solvent operating range 

(1.05 to 1.8 LMIN) was quantified as the area between the design curves. The 

results for 3 relevant loading regions led to the following conclusions: 
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i. “Over-stripped” or low lean loading region: Adiabatic absorber 

provides good performance in terms of solvent capacity and mass 

transfer and should be the default design for this operating region.  

ii. “Simple Intercooling” or mid-loading region: Simple Intercooling 

is effective for coal and steel (high CO2 applications) and should 

be the default design.  For NGCC, while in-and-out intercooling 

approximates isothermal behavior at LMIN, the performance in the 

operating solvent range is poor due to driving force limitations. 

Novel intercooling development is warranted. 

iii. “Advanced Intercooling” or mid-loading region: Simple 

Intercooling is effective for coal and steel (high CO2 applications) 

and should be the default design despite the deviation in solvent 

capacity at the limiting case of LMIN.  NGCC performs poorly 

compared to an isothermal absorber and novel intercooling design 

development is needed  

 Optimal Intercooling Location: The optimal intercooling location (minimize total 

packing area) was defined for all flue gas applications and select lean loadings as 

a function of L/LMIN: 

 Underlying pinch at LMIN determines the trend in optimal intercooling 

position as a function of solvent rate: 

i. Double pinch or temperature-induced rich pinch @ LMIN: Optimal 

IC positions starts in bottom half of column (or near the middle) 

and moves up column as L/LMIN increases 

ii. Only limiting lean pinch: Optimal IC positions starts in top half 

(above IC) of column and moves down column as L/LMIN increases 
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iii. ALL CASES: As L/LMIN reaches large values (L/LMIN > ≈ 2), IC is 

not needed and optimal location is the nearest “neutral” location in 

the column (mid-point or top). 

iv. ALL CASES: In normal operating range for solvent rates (L/LMIN 

< 2), optimal IC locations falls in the middle 50% of column 

(ZINTERCOOLER/ZTOTAL= 0.25 to 0.75) 

 Normalized driving force concept was introduced to explain optimal intercooling 

location. The driving force through the column is normalized by the partial 

pressure of CO2 in the bulk gas to provide a measure of solvent equilibrium 

constraint. The optimal location of IC occurs when the “relative pinch” (or 

minimum normalized driving force) is equivalent on both sides of the intercooler. 

This result is consistent for all flue gas concentrations within the normal solvent 

operating window (L/LMIN = 1.1 to 1.8). 
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Chapter 5:  Mass Transfer Parameter Sensitivity Analysis 

Absorber design choices reflect a balance between operating costs imposed on the 

capture system (via solvent circulation rate and rich loading) and capital costs (packing 

for mass transfer and absorber column structure). Previous work by the authors has 

focused on the use of intercooling in absorber columns to address equilibrium (or driving 

force) limitations imposed on absorber performance by elevated temperatures associated 

with heat of absorption (Sachde & Rochelle, 2014). However, addressing these 

limitations primarily impacts the operating cost of the system by reducing the solvent 

circulation requirements. Intercooling should be coupled with enhanced mass transfer 

performance to minimize packing requirement and capital costs of the absorber required 

to achieve solvent capacity benefits (Sachde & Rochelle, 2014).  

Rate-based absorber models represent coupled differential equations for mass 

transfer with chemical reaction and heat transfer subject to constraints imposed by phase 

and thermal equilibria. The parameters defining the transport, kinetic and thermodynamic 

models are not explicitly varied in process optimization, but understanding the relative 

importance of each of the fundamental contributions to mass transfer rates can guide 

design and development of absorbers. Furthermore, sensitivity analysis of parameters in 

the underlying models allows comparison of model behavior to theoretical understanding 

of the process and can identify limitations or shortcomings of the overall absorber model. 

The focus of the current work will be to identify the limiting or controlling phenomena 

for mass transfer in an absorber utilizing concentrated piperazine (PZ) as the solvent. The 

controlling components of mass transfer resistance will be identified via sensitivity 

analysis of CO2 transfer rates to mass transfer parameters as a function of operating 

conditions and flue gas source. The sensitivity analysis is also repeated over a range of 
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parameter values to represent uncertainty in the models and to generalize results for 

alternate amine systems, equipment specifications, or operating conditions. Theoretically 

limiting, or asymptotic cases, will be used to validate the sensitivity results and to provide 

insight into the fundamental mechanisms controlling mass transfer resistance in the 

absorber.  

5.1 RATE-BASED MODELING FRAMEWORK 

All analysis in this work will utilize aqueous piperazine (PZ) as the solvent for 

CO2 absorption. The rate-based model used to rigorously evaluate CO2 absorption into 

PZ can be described by its three major components:  

1) solvent thermodynamic and kinetic model, 

2) packing mass transfer model, and 

3) numerical integration scheme.  

5.1.1 PZ Solvent Model – Thermodynamics and Kinetics 

The solvent model for PZ (“Independence” model) was developed in Aspen Plus® 

and consists of a thermodynamic and kinetic framework with parameters regressed from 

experimental data (Frailie, 2014). The thermodynamic model for the PZ-H2O-CO2 system 

was developed from experimental data for amine pKa, CO2 solubility, heat capacity, 

speciation, and amine volatility by regression of Gibbs free energy, enthalpy, heat 

capacity, Henry’s constant and activity coefficient parameters within the electrolyte non-

random two liquid (e-NRTL) framework.  

The reaction set for the PZ model is as follows: 

 

 𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍𝐻+ ↔  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍 5.1 

 𝑃𝑍𝐶𝑂𝑂− + 𝐻2𝑂 + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝐻𝐶𝑂3
−

 5.2 
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 2𝑃𝑍 + 𝐶𝑂2 →  𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂− 5.3 

 2𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍(𝐶𝑂𝑂)2
2−

 5.4 

 

Arrhenius rate expressions were used to define rates for the kinetic reactions where the 

pre-exponential and activation energy parameters were regressed from wetted wall 

column data collected over a range of temperatures, solvent concentrations, and loadings 

relevant for capture applications considered in this work (Frailie, 2014). Reactions 2 

through 4 are reversible and have corresponding reverse rate expressions which were 

regressed with the constraint of the equilibrium constant to ensure consistency with the 

thermodynamic model.  

Finally, physical property models for binary diffusion coefficients, viscosity, and 

density were regressed as a function of amine concentration, loading, and temperature. 

The diffusion coefficient representations are particularly important in the subsequent 

sensitivity analysis.  Two effective diffusion coefficients are specified for the liquid 

phase in the mass transfer model. The binary diffusion coefficients of CO2, N2, and O2 

(small molecules with low critical temperatures/limited physical solubility) were treated 

identically. Equation 5.5 specifies the effective diffusion coefficient of CO2 (and N2/O2) 

in amine solution.  
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CO Am CO H O
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 5.5 

where: 

 DAB = Binary Fickian diffusion coefficients; 

µAm = Viscosity of loaded amine solution. 
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The relationship between diffusion of CO2 in amine solutions and in water was 

determined by the modified Stokes-Einstein relation (Versteeg & van Swaaij, 1988).  All 

remaining binary diffusion coefficients in the system (amine, water, and reaction product 

binary pairs) are represented by the effective diffusion coefficient in Equation 5.6. 

 

m/Pr
313.15 0.0155

Am
A od O
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D D


  

    
   

 5.6 

where: 

 DO = Regression constant = 2.26 x 10-10; 

T = Operating temperature (K); 

β = Regression Constant = -2.58; 

α = Regression Constant = -1.45; 

µ = Viscosity of loaded amine solution (Pa-s).  

 

Equation 5.6 is strictly an empirical expression which was regressed via wetted wall 

column data that included a range of solvent concentration, loading, and temperature (and 

implicitly, viscosity) (Frailie, 2014). As the system moves from the pseudo first order 

(PFO) limit to the instantaneous reaction limit (i.e., diffusion of amine and amine 

products controlled), the effect of temperature and viscosity on mass transfer will change, 

in part, via the controlling diffusion coefficient.  

5.1.2 Packing Mass Transfer Model 

The specific effects of fluid mechanics on mass transfer are determined by 

incorporating models for mass transfer in packed beds. Experiments in a pilot scale air-

water column were used to develop semi-empirical models for interfacial area (aI) and 
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gas- and liquid-side physical mass transfer coefficients (kG and kL). The interfacial area 

model used in this was developed by Tsai and is represented in Equation 5.7 (Tsai, 2010): 
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 5.7 

where: 

 aI = Effective or interfacial area of packing (m2/ m3); 

ap = Specific (geometric) area of packing (m2/ m3); 

ρL = Liquid mass density (kg/ m3); 

σ = Surface tension (N/m); 

g = Gravitational acceleration (m2/s); 

Q = Liquid volumetric flow rate (m3/s); 

Lp = Wetted perimeter in cross-sectional slice of packing (m). 

 

The mass transfer coefficient models (Equations 5.8 and 5.9) were developed 

from data collected by Wang (Wang, 2015). All parameters in the equations were 

normalized to reference values (not shown) during the regression. Raw data and details of 

the regression included in Appendix A.  
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where: 
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 k#, AB
 = Binary physical mass transfer coefficients, # = L(liquid) or G (gas) (m/s);  

u# = Superficial velocity, # = L(liquid) or G (gas)  (m/s); 

Mi = Mixing number - dimensionless parameter describing the number of mixing 

points in a characteristic volume of packing; 

µL = Liquid viscosity (Pa-s). 

 

The viscosity dependence assigned in Equation 5.8 represents the effect of 

viscosity on fluid mechanics and was derived via literature review (Appendix A). An 

additional viscosity effect enters the mass transfer coefficient via the binary diffusion 

coefficient (Equations 5.5 and 5.6). The overall dependence of the liquid-side mass 

transfer coefficient on viscosity (function of loading, temperature, and amine 

concentration) will be important in evaluating the results of mass transfer parameter 

sensitivity.  

5.1.3 Numerical Integration Method 

The integration of a rate-based stage (as depicted in Figure 5-1) at steady state 

includes three sets of differential equations: 1) component bulk material balance, 2) 

component film material balance, 3) constitutive mass transfer relationships. The 

following equations are presented in difference form (algebraic system) for the liquid 

phase as implemented in the numerical integration in Aspen Plus®.  

 

1 10 L L

j ij j ij ij ijL x L x N r      5.10 

 

,0 INTF L film L

ij ij ijN N r    5.11 
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0 ( ) ( ) ( )
Intf LL E L L

jj j j j jj j j tx x x z R N N x             5.12 

Where brackets [ ] indicate C-1 x C-1 matrix, overbar indicates C-1 vector, and: 

 j = Stage; 

ΔΦE = Electric potential driving force in ionic solutions; 

z = Electric charge number of species; 

R = Inverse mass transfer coefficient matrix; 

Nt = Total molar flux =
1

C

i

i

N


  ; 

Equations 5.11 and 5.12 are also written for each segment in the discretized liquid film 

(see (Frailie, 2014), (Plaza, 2011), or (Chen, 2011) for film discretization schemes). 

Analogous vapor phase equations are implemented without reaction terms or 

discretization in the vapor film. 

Equation 5.12 represents the Maxwell-Stefan constitutive equations for multi-

component mass transfer relating the individual flux for each species to the driving force 

of all other species (Taylor & Krishna, 1993). The components of the inverse mass 

transfer coefficient matrix, which introduces coupling of binary mass transfer 

coefficients, can be defined as follows: 
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5.13 

 

The Maxwell-Stefan relationships add coupling of mass transfer outside of 

chemical reactions, but as discussed in Appendix B, these effects are unimportant for the 

mass transfer of CO2 as specified in the “Independence” model. Several other 
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simplifications can be made to the above equations to allow for analytical evaluation of 

CO2 mass transfer in amines using film theory at the asymptotic conditions discussed 

previously. The results of this evaluation are also discussed in detail in Appendix B.  

5.2 MASS TRANSFER WITH FAST CHEMICAL REACTION 

The rigorous mathematical description of the reaction-diffusion problem in CO2 

absorption by amines can be described by the species continuity equations for each 

component in each phase.  
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 5.14a 
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where: 

C = Total number of components; 

cP
i = Molar concentration of species i, phase p (vapor or liquid); 

NP
i = Molar flux of species i, phase p (vapor or liquid); 

fP
i = Fugacity of species i, phase p (vapor or liquid); 

Ri = Rate of production of moles of i per unit volume produced by chemical 

reaction.  

The molar flux in Equation 5.14 can be defined in terms of driving forces or gradients via 

a constitutive relationship such as Fick’s Law or the Maxwell-Stefan relations (Taylor & 

Krishna, 1993) as illustrated in the numerical methods in the previous section. The 

solution to the system of coupled differential equations and associated boundary 

conditions yield concentration profiles and transfer rates for each of the components in 

the system.  
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While the differential equations provide a full description of the physical system, 

isolating the effect of the physical parameters embedded in the equations on mass transfer 

rates requires a description of the solution to the system of equations. The concentration 

profiles in Figure 5-1 provide a general representation of absorption and reaction of CO2 

in amine solvents.  

 

 

Figure 5-1: Concentration profiles for mass transfer with fast chemical reaction. In 

the case of CO2 absorption by PZ, as many as 10 components may be present in the 

film due to reaction chemistry, but CO2, amine (Am), and products (Prod) define the 

general categories relevant to mass transfer.  Free CO2 is at equilibrium at the 

vapor-liquid interface. P*CO2 represents the partial pressure of CO2 in equilibrium 

with the bulk liquid composition. The entire liquid film (liquid and reaction film) is 

discretized for numerical integration.  

The distinctive feature of the film model for mass transfer with fast chemical 

reaction (e.g., CO2 reaction with amines) is the presence of a “reaction film” where the 
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CO2 concentration profile exhibits a steep gradient. A majority of the chemical reaction 

takes place in this portion of the film, with the remainder of the liquid film primarily 

representing diffusion of reactants and products.  The representation as discrete stagnant 

films is a simplification of the actual physical phenomena in an absorber (i.e., counter-

currently flowing bulk fluids with turbulent flow features present in each film and a non-

uniform interface between phases). However, the film model identifies the key 

components of overall mass transfer resistance and can be used to develop a general 

mathematical description of mass transfer with chemical reaction for each of the 

components.  

The mass transfer rates corresponding to the concentration profiles in Figure 5-1 

can be represented in terms of gas-phase, liquid-phase, or overall driving forces: 

 

2 2 2
( )Bulk Intf

CO G CO CON k P P   5.15a 

2 2, 2 2([ ] [ ] )Intf Bulk

CO L CON Ek CO CO   5.15b 

2 2 2

*( )Bulk Bulk

CO G CO CON K P P   5.15c 

where: 

 NCO2 = CO2 molar flux; 

kG = Gas-side physical mass transfer coefficient for CO2; 

PCO2
Bulk

 = Partial pressure of CO2 in bulk vapor; 

PCO2
Intf

 = Partial pressure of CO2 at gas-liquid interface; 

kL,CO2 = Liquid-side physical mass transfer coefficient for CO2; 

[CO2]
Bulk

 = Concentration of free (unreacted) CO2 in bulk liquid; 

[CO2]
Intf

 = Concentration of free (unreacted) at gas-liquid interface; 

E = Enhancement factor = 2
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KG = Overall gas-phase driving force based mass transfer coefficient; 

P*Bulk
CO2 = Partial pressure of CO2 in equilibrium with bulk liquid composition; 

 

The CO2 flux is equivalent for all expressions in Equation 5.15 if considered at the gas-

liquid interface (via continuity) and can be used to define a series resistance model based 

on film theory:  

 

2
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1 1 CO

G G L CO

H

K k Ek
   5.16 

where:  

HCO2 = Henry’s constant of CO2 in amine solution. 

 

The details of the rigorous solution to the system of differential equations are embedded 

in the concentration profiles and mass transfer coefficients used to define the CO2 flux. 

The gas and liquid physical mass transfer coefficients (and associated physical and 

transport properties) in Equation 5.16 are described by semi-empirical models detailed in 

Equations 5.8 and 5.9. The enhancement factor describes the effect of chemical reaction 

on the flux of CO2 and can be described in terms of asymptotic cases. The asymptotic 

solutions provide a clear relationship between flux and the individual mass transfer, 

kinetic, and physical properties that will guide the sensitivity analysis for the rigorous 

numerical model of the absorber. 

5.2.1 Pseudo-First-Order Limit 

The system of equations represented by Equation 5.14 can be solved analytically 

for CO2 transfer in the liquid film at steady-state with several assumptions. The primary 

assumption made at the pseudo-first-order (PFO) asymptotic condition is that the amine 
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concentration is constant at the bulk value throughout the liquid film (not depleted by 

reaction/limited by diffusion). This condition and solution to the differential equation was 

considered in detail by Danckwerts and is reviewed in Appendix B (Danckwerts, 1970). 

The final expressions for flux are presented in Equations 5.17 and 5.18.  
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where: 

k1 = Pseudo-first-order rate constant = k2[Am]Bulk; 

Ha = Hatta number; 

 

When the Hatta number is greater than ~5, the hyperbolic tangent term in Equation 5.17 

approaches 1 and the hyperbolic cosine term approaches infinity. This range for the Hatta 

number is consistent with the pseudo-first-order assumption (fast, but not instantaneous, 

reaction). Under this simplification, the flux of CO2 can be expressed as: 

 

2 2, 2[ ]Intf
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2 2, 2[ ]PFO Intf
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where: 

EPFO = Pseudo-first-order enhancement factor = 2
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The flux at PFO conditions is independent of the liquid-film physical mass transfer 

coefficient and has a half-order dependence on the diffusion coefficient of CO2 and 

pseudo-first-order reaction constant. Equation 5.19  provides an alternate definition for 

the liquid-film mass transfer coefficient if the driving force is converted to a partial 

pressure driving force. This description is useful for experimental measurements of 

absorption at PFO conditions since the driving force is typically quantified in the gas 

phase. 
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where: 

'

gk  = Liquid-film mass transfer coefficient in terms of gas phase driving force. 

 

The pseudo-first-order solution provides one bounding condition for the sensitivity 

analysis.  

  The flux expressions in the preceding equations are presented for a single 

irreversible chemical reaction for simplicity since the general expression for the 

enhancement factor will be the same for reversible reactions – the reversibility is only 

relevant when considering the driving force at the PFO limit. Equation 5.20 is the Hatta 

number for the CO2-PZ system represented by the Independence model. 
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where: 
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kPZ = Forward kinetic constant for reaction 5.3 (PZ acts as base); 

kPZCOO- = Forward kinetic constant for reaction 5.4 (PZCOO- acts as base); 

ai = Activity of component i (PZ or PZCOO-); 

γCO2 = Activity coefficient of CO2; 

  = Molar density of loaded solution. 

 

The modified Hatta number was derived by converting Equation 5.14 to dimensionless 

form when the reaction source term includes the forward rates of the two major reactions 

in the PZ-CO2 system (reactions 5.3 and 5.4). Bicarbonate rates are not significant at 

conditions in this analysis allowing omission of reaction 5.2 in the Hatta number 

derivation. In addition, the Hatta number in Equation 5.20 is modified to account for 

activity based kinetics in the Independence model. The appearance of a mass transfer 

coefficient and diffusion coefficient representing amine and products in place of the 

expected CO2 mass transfer dependence reflects an issue that arises from the 

implementation of film theory and calculation of film thickness as part of the numerical 

integration performed in Aspen Plus®. This issue is detailed in Appendix B.  

5.2.2 Instantaneous Reaction Limit 

Analytical solutions can also be developed for Equation 5.14 by considering the 

limit where chemical reaction occurs instantaneously when compared to diffusion. For 

reversible chemical reactions, chemical equilibrium is maintained at all points in the 

liquid film. Secor and Butler and Danckwerts used the method of Olander to illustrate 

that the differential equations (5.14) can be reduced to a balance between the diffusional 

flux of reactants and products by eliminating chemical reaction source terms via the 

chemical equilibrium constraint (Secor & Butler, 1967), (Danckwerts, 1970), (Olander, 
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1960). The flux and enhancement factor at the instantaneous reaction limit can then be 

described as follows after solving the new set of differential equations: 
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where: 

E∞ = Instantaneous reaction enhancement factor; 

[CO2]
*Bulk

 = Equilibrium concentration of free (unreacted) CO2 in bulk liquid; 

[CO2]
Intf

 = Concentration of free (unreacted) CO2 at gas-liquid interface; 

kL,Am/Prod = Liquid-side physical mass transfer coefficient for amine and products; 

[Prod]*Bulk
 = Equilibrium concentration of products in bulk liquid; 

[Prod]*Intf
 = Equilibrium concentration of products at gas-liquid interface; 

 

For the CO2-PZ system used in this work, the concentration of products can be 

approximated as the total concentration of CO2 in all forms (free and reacted)3 since 

reaction products will be the dominant form of CO2 present in the system at equilibrium. 

In addition, the leading term (unity) of the enhancement factor in Equation 5.21 is not 

significant for the range of values for the E∞ expected for this amine system. The 

enhancement factor for the CO2-PZ system can be written as: 
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where: 

                                                 
3 [CO2]TOTAL = [CO2]+[PZCOO-]+[HCO3

-]+[PZH+]+[H+PZCOO-]+2*[PZ(COO)2
2-] 
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E∞ = Instantaneous reaction enhancement factor; 

[CO2]
*Bulk

 = Equilibrium concentration of free (unreacted) CO2 in bulk liquid; 

[CO2]
Intf

 = Concentration of free (unreacted) CO2 at gas-liquid interface; 

kL,Am/Prod = Liquid-side physical mass transfer coefficient for amine and products; 

*

2[ ] Bulk

TOTALCO  = Total concentration of all species containing CO2 in bulk liquid at 

equilibrium; 

*

2[ ] Intf

TOTALCO  = Total concentration of all species containing CO2 at gas-liquid 

interface at equilibrium; 

 

5.2.3 Dimensionless Group from Asymptotic Limits 

The enhancement factors for the pseudo-first-order and instantaneous reaction 

limits represent the relevant bounding cases for the mass transfer with fast chemical 

reaction and the flux predicted by the absorber model should fall between these 

asymptotic limits. Previous researchers have used the limiting enhancement factors to 

qualitatively predict if a particular system is operating at or near one of the limiting 

conditions (Danckwerts, 1970): 

 

PFO Limit :1

Instantaneous Limit :1

Ha E

E Ha





 

 
 5.23 

 

The relationships defined in Equation 5.23 were developed considering single reversible 

reactions, but should be generally applicable. In the case of fast reactions with amines, 

the constraint that the enhancement factors must each be much larger than unity is 

generally satisfied as this is a definition of fast reaction. Equation 5.23 can be simplified 

and re-arranged into the following expressions: 
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PFO Limit : 1

Instantaneous Limit : 1
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 5.24 

 

A new dimensionless ratio (referenced in this work as reaction enhancement ratio, Φ) is 

defined and compared to unity to determine approach to the limiting asymptotes. While 

Equation 5.24 is still qualitative since it is not an exact expression, this work will propose 

to define the limits quantitatively for the PZ system. In addition, it is hypothesized that a 

ratio near unity (Φ ≈ 1) indicates that the liquid film will be equally controlled by 

reaction and diffusion. Establishing consistency between results of the sensitivity analysis 

(described in the next section) and the predictions of Φ will provide theoretical validation 

of the absorber model and sensitivity analysis method. In addition, if Φ is well correlated 

with sensitivity analysis results, the ratio can provide fundamental explanations for trends 

in the controlling resistance in the absorber (e.g., function of position in the absorber, 

operating conditions, etc.).  

Finally, the asymptotic enhancement factors can be used to expand the series 

resistance model proposed in Equation 5.16 to include the full range of conditions in the 

liquid film: 
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where: 



 170 

m = Slope of the vapor-liquid equilibrium curve.  

 

The two equivalent expressions in Equation 5.25 represent the discrete sections of the 

liquid film in Figure 5-1 (reaction and diffusion) and reduce to the appropriate asymptotic 

limits based on the conditions defined in Equation 5.24. Note that the expressions in 

Equation 5.25 are not an exact solution for all condtions between the asymptotes as 

simple addition of asymptotic solutions is not a sufficiently general representation of the 

reaction-diffusion problem solution (see, for example (DeCoursey, 1982)). 

Nonetheless, the series resistance model provides a good description of the 

various components of the overall mass transfer resistance. Therefore, the components of 

mass transfer resistance that must be considered in the sensitivity analysis can be defined 

from Equation 5.25 as gas-film diffusion resistance, chemical reaction resistance, and 

liquid-film diffusion resistance.  

5.3 MASS TRANSFER SENSITIVITY ANALYSIS METHODS 

The theoretical framework summarized in Equation 5.25 identifies the parameters 

that will be considered as part of the absorber sensitivity analysis. The sensitivity of CO2 

flux to gas-film diffusion resistance, chemical reaction resistance, and liquid-film 

diffusion resistance will be evaluated as described by Equation 5.26. 
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where: 

ϴn = Mass transfer parameter: 
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  ϴ1 = kG , ϴ2 = kL, ϴ3 =  Rxnk ; 

All forward and reverse rate constantsRxnk   ; 

NStages = Total number of stages in absorber; 

 

For each case evaluated in this study (see Table 5-1), mass transfer parameters were 

independently perturbed by +/- 1% for each stage of the absorber and the corresponding 

change in flux was recorded. The perturbation size for the parameters was selected to 

ensure local linearity of the flux as a function of all parameters to allow numerical 

approximation of the partial derivative while generating a computationally significant 

change in the flux.  The partial derivatives in Equation 5.26 are calculated by averaging 

the flux over the range of perturbation in each parameter. The final result is a fractional 

resistance for each stage in the absorber that can be attributed to gas-side diffusion 

resistance, chemical reaction resistance, and liquid-film diffusion resistance. These 3 

resistances should sum to approximately 1 if they account for all mass transfer resistance.  

 The sensitivity analysis was performed over a range of absorber operating 

conditions summarized by the cases in Table 5-1. 
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Table 5-1: Sensitivity Analysis Case and Operating Condition Summary. Conditions 

that differ from the base case (Case 1) are highlighted in the table.  

Case  

Flue Gas 
Source 
(mol % 

CO2) 

Solvent 
Concentration 

Intercooling 

LLDG 

L/LMIN 

RLDG 

kL Value 

molal 
mol 

CO2/mol 
alk. 

mol 
CO2/mol 

alk. 

1  
COAL  

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 Base 

2 
COAL 

 (14.7%) 
8 NONE 0.15 1.2 0.375 Base 

3 
COAL  

(14.7%) 
8 ISOTHERMAL 0.15 1.8 0.300 Base 

4 
COAL  

(14.7%) 
8 ISOTHERMAL 0.20 1.2 0.380 Base 

5 
COAL  

(14.7%) 
8 ISOTHERMAL 0.26 1.2 0.395 Base 

6 
COAL  

(14.7%) 
5 ISOTHERMAL 0.15 1.2 0.371 Base 

7 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 5*Base 

8 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 0.8*Base 

9 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 0.5*Base 

10 
NGCC 
(4.1%) 

8 ISOTHERMAL 0.15 1.2 0.354 Base 

11 
STEEL 

(27.1%) 
8 ISOTHERMAL 0.15 1.2 0.384 Base 

12 
COAL 

(14.7%) 
8 NONE 0.15 1.2 0.375 0.2 Base 

All Cases:  
1) CO2 Removal = 90% 
2) MP-250X Packing 

3) Max Approach to Flood = 70% 

 

Case 1 will serve as the base case. The lean loading (0.15 mol CO2/mol alkalinity) is 

outside of the normal operating window for 8 m PZ due to solubility concerns. However, 

the low value for lean loading ensures large variation in loading over the absorber to 
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provide insight into the effect of loading on mass transfer resistance. Furthermore, the 

base lean loading is in an operating region where intercooling is not necessary to achieve 

maximum solvent capacity (minimum solvent circulation rate) so the systematic effects 

of temperature can be studied without being conflated with solvent circulation effects 

(Sachde & Rochelle, 2014).   

5.3.2 Mass Transfer Parameter Values 

The base parameter values for all mass transfer parameters are those defined in 

the Independence model and discussed in section 5.1. Specifically, the base value for the 

liquid-side mass transfer coefficient is defined by Equation 5.8. Table 5-1 includes cases 

for high and low parameter values for kL. These alternate values were selected to move 

the system towards asymptotic limits – high kL values move the absorber closer to the 

PFO limit (reduces the Hatta number, c.f., Equation 5.20) and low kL values move the 

absorber closer to the instantaneous limit (increases the Hatta number). Since all of the 

parameters in the liquid film are related by a dimensionless group, Φ (Equation 5.24), 

only one parameter needs to be modified to move the system towards a limiting 

condition. The value of kL also has the largest degree of uncertainty among the mass 

transfer parameters evaluated in this work, and thus represents bounding cases for the 

model results in general. The kL model details and range of values are discussed in 

Appendix A.  

 

5.4 RESULTS 

5.4.1 Validation of Dimensionless Group Method 

The reaction enhancement ratio (Φ) defined from asymptotic enhancement factors 

can be compared to the parameter sensitivity results. Specifically, for each stage in a 
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column where the parameter sensitivity analysis was performed, the Hatta number and E∞ 

can be defined and used to calculate Φ. This ratio can be compared to the ratio of the 

fractional resistance of diffusion in the liquid film (via kL sensitivity) to the fractional 

resistance of chemical reaction.  The reaction enhancement ratio and parameter 

sensitivity ratio were calculated for all cases in Table 5-1 and compared in Figure 5-2. 
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Figure 5-2: Parity plot of theoretical reaction enhancement ratio (Φ = Ha/E∞) and 

the ratio of the components of liquid-film mass transfer resistance (diffusion and 

chemical reaction) as calculated by parameter sensitivity analysis. All cases included 

in the plot. Danckwerts’ limits for pseudo-first order (PFO, Φ = 0.5) and 

instantaneous (∞, Φ =10) reaction for irreversible chemical reaction provided as a 

reference (Danckwerts, 1970).  

If the theoretical reaction enhancement ratio (Φ) is a perfect predictor of the liquid-film 

resistance distribution from sensitivity analysis, the points in the parity plot would fall on 

the diagonal of Figure 5-2 and yield a slope of 1. As seen in Figure 5-2, the two ratios are 

well-correlated, but not identical across the range of cases tested. The ratios appear to 

diverge beyond Φ ≈ 10. These points are almost exclusively from Case 12, which is 
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expected to be the most diffusion-controlled case (lowest kL values). It is proposed that 

an absorber utilizing PZ is at the instantaneous reaction limit when Φ ≈ 10, and as Φ 

becomes larger than 10, the ratio of the computed fractional diffusion resistance to 

fractional reaction resistance will not change measurably (or in a computationally 

significant way). In addition, the PFO and instantaneous reaction limits identified by 

Danckwerts for irreversible chemical reaction are identified in the figure and appear to 

correspond fairly well to the conditions where the deviations occur in the parity plot 

(Danckwerts, 1970).  The ratios are re-plotted in Figure 5-3 after omitting values outside 

of the Danckwerts limits.  
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Figure 5-3: Parity plot of theoretical reaction enhancement ratio (Φ = Ha/E∞) and 

the ratio of the components of liquid-film mass transfer resistance (diffusion and 

chemical reaction) as calculated by parameter sensitivity analysis. All cases 

included, points outside of Danckwerts’ limits (Φ < 0.5 & Φ > 10) were omitted. 

The results after omitting larger values of Φ indicate that the theoretical reaction 

enhancement ratio is a very good predictor of the distribution of liquid film resistance 

between diffusion and reaction. The boundary of Φ ≈ 10 can serve as a reasonable 

approximation for identifying the instantaneous reaction limit. However, a similar ratio 

was not clearly identified when Φ < 1 to define the PFO limit though points as low as Φ ≈ 

0.1 were included in the evaluation. Further investigation in this region may be required 

to quantify a limit. The correlation between the theoretical predictions and the parameter 

sensitivity results provide validation for the parameter sensitivity method.  
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The reaction enhancement ratio can also be used to provide fundamental 

explanations for the trends summarized by the parameter sensitivity results.  To facilitate 

the analysis, Φ can be written in terms of the constituent parameters of Ha and E∞ and re-

arranged to create a set of factors as detailed in Equation 5.27. 
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where: 

kHa = 
2 2

2

PZ PZ CO COPZCOO PZCOO PZCOO
k a a k a    ;  

kL
o
 = Diffusion coefficient independent portion of kL (c.f., Equation 5.8).  

 

The four factors reflect the important phenomena represented by the dimensionless 

groups - chemical reaction kinetics, physical mass transfer/fluid mechanics, diffusion, 

and driving force/equilibrium capacity of the solvent. The final term is also a 

representation of the slope of the vapor-liquid equilibrium curve of the solvent if the 

driving force is converted to the gas phase by accounting for the resistance due phase 

equilibria (Henry’s constant in amine solution, c.f., Equation 5.25). The analysis can be 

used in a normalized form to compare relative changes in factors over a column or 

between different cases. Equation 5.28 illustrates the normalized form of the factor 

approach. 
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 5.28 

where: 
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NEW = New or modified case or stage in a column;  

BASE = Reference case or stage for comparison, (e.g., Case 1 in Table 5-1 or top 

stage in column);   

 

5.4.2 Parameter Sensitivity Results 

The sensitivity analysis results for Case 1 are summarized in Figure 5-4. 
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Figure 5-4: Case 1 Results. Sensitivity of CO2 flux to mass transfer parameters: 

physical liquid-side (kL) and gas-side (kg) mass transfer coefficients and reaction 

rates (krxn) via kinetic constants in rate expressions. Parameters were independently 

perturbed +/- 1% from base value at each stage in the absorber. Analysis conducted 

for an isothermal absorber with 90% CO2 capture from a coal-fired boiler (14.7% 

CO2) using 8 m PZ.  

Several observations can be developed from the base case results. First, the sum of the 

parameter sensitivity for all 3 parameters is approximately 1 at every point in the column. 

Therefore, overall mass transfer resistance is largely explained by the phenomena 

represented by the 3 parameters and the sensitivity results can be interpreted as fractional 

resistance or contribution to overall mass transfer resistance.  With this interpretation of 

the results, the liquid-side diffusion resistance is dominant over a majority of the column, 

and increases monotonically from the top (lean end) of the column to the bottom (rich 
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end). Concurrently, the reaction resistance is controlling only near the lean end and 

reaches a minimum at the rich end of the column. The gas-side resistance is generally 

negligible with a small influence at the lean end of the column. These results indicate the 

absorption of CO2 is liquid film controlled, but is not near the pseudo-first-order limit as 

the liquid-side physical mass transfer coefficient is important over the entire column. The 

system is closer to the instantaneous (diffusion limited) limit, particularly at the rich end 

of the column.  

The trend from top (lean) to bottom (rich) in the column can be explained by 

considering the dimensionless group and factor analysis from Equations 5.27 and 5.28. 

The normalized reaction enhancement ratio (Φ) and component factors are plotted in 

Figure 5-5 for Case 1.  
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Figure 5-5: Dimensionless group analysis, Case 1. Each parameter in the plot is 

normalized to the value at the top (lean end) of the column to reflect changes in 

parameters over the column. Analysis conducted for an isothermal absorber with 

90% CO2 capture from a coal-fired boiler (14.7% CO2) using 8 m PZ. 

As the figure shows, the reaction enhancement ratio rises from the lean to rich end of the 

column, mirroring the rise in liquid-film diffusion control in Figure 5-4. Φ increases by a 

factor of 10 over the column and this rise is dominated by the equilibrium effects (F4) or 

slope of the VLE curve, which changes by a factor of 30 over the column. As the loading 

increases from the lean to rich end of the column, the VLE curve becomes steeper and 

limits the equilibrium capacity of solvent (Figure 5-6). The VLE curve for 8 m PZ is 

provided in Figure 5-6 with the equilibrium (or maximum) rich loadings corresponding to 

CO2 inlet concentrations for the three sources evaluated in this work. 
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Figure 5-6: 8 m PZ VLE curve at 40°C. Maximum rich loadings are identified for 

NGCC (4.1% CO2), Coal (14.7% CO2), and Steel (27% CO2) inlet flue gas 

compositions considered in this work.  

The reaction rates are also limited with the change in loading (F1) since free 

amine is depleted and slows the progression towards diffusion control in the liquid film. 

The remaining factors (fluid mechanics and diffusion) do not change significantly over 

the column compared to the equilibrium and reaction effects. The trends observed in Φ 

(and corresponding liquid-film control) over a column due to the loading effect for the 

base case is consistent for all cases in this analysis.  

The results in Figure 5-4 can also be summarized by identifying several key 

features of the trends. The maximum fractional resistance values for each parameter can 

be used to identify limiting conditions in each case. In addition, the area under the curves 

in Figure 5-4 represent an average fractional resistance over the column since the curves 
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are plotted against a fractional height or area. The average resistance of each parameter 

can indicate the controlling phenomena for the column as a whole and can be used to 

compare different cases. These results are summarized in Table 5-2 for all cases in this 

study.
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Table 5-2: Sensitivity Analysis Results Summary for All Cases. Average and maximum resistance for each mass 

transfer parameter with maximum values for each metric highlighted in the table.  

Case  

Flue Gas 
Source 
(mol % 

CO2) 

Solvent 
Concentration 

Intercooling 

LLDG 

L/LMIN 

RLDG 

kL Value 

Column Average 
Fractional  Resistance 

Max Fractional  
Resistance 

molal 

mol 
CO2/
mol 
alk. 

mol 
CO2/
mol 
alk. 

kL kG Rxn kL kG Rxn 

1 
COAL  

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 Base 71% 2% 23% 86% 11% 51% 

2 
COAL 

 (14.7%) 
8 NONE 0.15 1.2 0.375 Base 62% 6% 28% 86% 15% 70% 

3 
COAL  

(14.7%) 
8 ISOTHERMAL 0.15 1.8 0.300 Base 47% 9% 42% 82% 14% 58% 

4 
COAL  

(14.7%) 
8 ISOTHERMAL 0.20 1.2 0.380 Base 69% 2% 24% 84% 9% 50% 

5 
COAL  

(14.7%) 
8 ISOTHERMAL 0.26 1.2 0.395 Base 66% 1% 26% 82% 7% 49% 

6 
COAL  

(14.7%) 
5 ISOTHERMAL 0.15 1.2 0.371 Base 47% 5% 43% 64% 17% 64% 
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Table 5-2: Continued.  

Case  

Flue Gas 
Source 
(mol % 

CO2) 

Solvent 
Concentration 

Intercooling 

LLDG 

L/LMIN 

RLDG 

kL Value 

Column Average 
Fractional  Resistance 

Max Fractional  
Resistance 

molal 

mol 
CO2/
mol 
alk. 

mol 
CO2/
mol 
alk. 

kL kG Rxn kL kG Rxn 

7 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 5*Base 32% 7% 54% 52% 20% 67% 

8 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 0.8*Base 76% 1% 20% 90% 10% 52% 

9 
COAL 

(14.7%) 
8 ISOTHERMAL 0.15 1.2 0.375 0.5*Base 83% 1% 14% 95% 6% 42% 

10 
NGCC 
(4.1%) 

8 ISOTHERMAL 0.15 1.2 0.354 Base 55% 3% 36% 83% 14% 77% 

11 
STEEL 
(27%) 

8 ISOTHERMAL 0.15 1.2 0.384 Base 77% 1% 18% 86% 11% 41% 

12 
COAL 

(14.7%) 
8 NONE 0.15 1.2 0.375 0.2 Base 87% 1% 8% 95% 4% 30% 

All Cases:  
1) CO2 Removal = 90% 

2) MP-250X 
3) Max Approach to Flood = 70% 
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The results and trends in Table 5-2 will be discussed in detail in the subsequent 

sections. 

5.4.2.1 Gas-Film Resistance 

As in the base case (Case 1), the gas-film resistance does not contribute 

significantly across the range of conditions evaluated in this study. The average gas-side 

resistance in the absorber does not exceed 10% for any case, and the maximum resistance 

at any point in the column does not exceed 20% for any case. In the cases where gas-side 

resistance has the most influence (Cases 3 and 7), the liquid-film resistance has been 

reduced by extreme parameter values (high kL) or operating conditions (high solvent 

circulation). Therefore, gas-film resistance will be neglected in further discussion and is 

unlikely to play an important role in absorber design with PZ.  

5.4.2.2 Liquid-Film Resistance 

The liquid-film resistance has been separated into diffusion and reaction 

resistance. Both are significant compared to gas-film resistance at all conditions in Table 

5-2  In all but one case (Case 7), the average resistance across the column indicates that 

diffusion is the controlling mechanism in the liquid film. In case 7, the liquid-film 

physical mass transfer coefficient is 5 times the base value, moving the system towards 

the PFO limit or reaction control. In all cases, diffusion is the majority of the overall 

resistance at a point in the column (rich end) as indicated by the maximum fractional 

resistance values in Table 5-2. Therefore, the liquid-film resistance is generally 

controlled by diffusion for the PZ model across the range of operating conditions 

considered in this analysis.  
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5.4.2.3 Temperature Effects 

Cases 1 and 2 compare parameter sensitivity results for isothermal and adiabatic 

absorbers at identical operating conditions to isolate of the effects of temperature on mass 

transfer resistance in an absorber. Figure 5-7 compares the parameter sensitivity results of 

the two cases. 

 

Figure 5-7: Case 1(Isothermal) and Case 2(Adiabatic) comparison. Sensitivity of 

CO2 flux to mass transfer parameters: physical liquid-side (kL) and gas-side (kg) 

mass transfer coefficients and reaction rates (krxn) via kinetic constants in rate 

expressions. Parameters were independently perturbed +/- 1% from base value at 

each stage in the absorber. Analysis conducted with 90% CO2 capture from a coal-

fired boiler (14.7% CO2) using 8 m PZ.  

In general, the adiabatic absorber is less sensitive to liquid-film physical mass 

transfer (diffusion) than the isothermal absorber, and more sensitive to reaction and gas-

film parameters. This is confirmed by the average resistance values reported in Table 5-2. 
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In addition, the adiabatic absorber exhibits non-monotonic trends over the absorber due 

to the presence of a temperature maxima in the column. This effect is most notable in the 

trend of the liquid-film mass transfer coefficient sensitivity which is isolated with column 

temperature in Figure 5-8. 

 

 

Figure 5-8: Case 2 physical liquid-side (kL) sensitivity (primary y-axis) and column 

liquid temperature (secondary y-axis). Analysis conducted for an adiabatic absorber 

with 90% CO2 capture from a coal-fired boiler (14.7% CO2) using 8 m PZ.  

The trend in liquid-film resistance can be evaluated with the dimensionless factor 

analysis over the column presented in Figure 5-9. 
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Figure 5-9: Dimensionless group analysis, Case 2. Each parameter in the plot is 

normalized to the value at the top (lean end) of the column to reflect changes in 

parameters over the column. Analysis conducted for an isothermal absorber with 

90% CO2 capture from a coal-fired boiler (14.7% CO2) using 8 m PZ.  

The figure details that the increase in liquid-film diffusion resistance over the column 

(change in Φ) is dominated by the equilibrium effect (F4) as in the isothermal case. 

However, the initial drop in diffusion resistance at the lean end of the column can be 

attributed to a drop in the fluid mechanics (F2) contribution to the mass transfer 

resistance.   This phenomena can be explained by evaluating the mass transfer coefficient 

model in Equations 5.5 through 5.8. The primary effect of temperature is to reduce the 

viscosity of the amine solution and enhance diffusion and mass transfer coefficients in 

the system. The large changes in temperature near the lean end (top) of the column have a 

strong effect on the viscosity (reduced by approximately a third from the top of the 



 191 

column to the temperature maxima).  Beyond the temperature maxima, viscosity 

increases as expected with loading and temperature effects are minimal.   

In general, the adiabatic and isothermal absorbers exhibit similar trends as a 

function of loading over the column. At most points in the column (omitting the region 

near the temperature maxima), the columns both exhibit similar levels of diffusion and 

reaction control and negligible gas-film resistance. Therefore, temperature effects are not 

considered to be a primary factor in evaluating mass transfer resistance and isothermal 

absorbers were used for a majority of the cases in this analysis (Table 5-1).   

5.4.2.4 High and Low Parameter Values 

As noted in section 5.3.2, several cases (7, 8, 9, and 12) were evaluated with 

significant modification of base kL values to move the system towards asymptotic limits 

and reflect uncertainty in the mass transfer models. Cases 7 and 9 will be discussed here 

to represent high and low kL values. 

Case 7 considered liquid-film mass transfer coefficients at 5 times the base values 

to represent a case approaching PFO limit. Table 5-2 identifies Case 7 as the only case 

that is reaction limited in terms of average reaction control over the column (54%). 

However, even with this significant modification of model parameters, the liquid-film 

diffusion resistance is still significant over a large portion of the column and is 

controlling at the rich end. Figure 5-10 compares the parameter sensitivity for Case 7 to 

the base case.  
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Figure 5-10: Case 1 (Base) and Case 7 (5*kL) isothermal absorber comparison. 

Sensitivity of CO2 flux to mass transfer parameters: physical liquid-side (kL) mass 

transfer coefficient and reaction rates (krxn) via kinetic constants in rate expressions. 

Parameters were independently perturbed +/- 1% from base value at each stage in 

the absorber. Analysis conducted with 90% CO2 capture from a coal-fired boiler 

(14.7% CO2) using 8 m PZ.  

Case 9 evaluated parameter sensitivity with kL values at half of the base values. This case 

was expected to move the model closer to the instantaneous reaction limit, and Table 5-2 

verifies that the average diffusion control over the column is significantly larger (>80% 

diffusion control) than the base case and reaches the highest recorded value for diffusion 

control in all of the cases tested (95%). Figure 5-11 summarizes the comparison of the 

low kL case and base case parameter sensitivity.  
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Figure 5-11: Case 1 (Base) and Case 9 (0.5*kL) isothermal absorber comparison. 

Sensitivity of CO2 flux to mass transfer parameters: physical liquid-side (kL) mass 

transfer coefficient and reaction rates (krxn) via kinetic constants in rate expressions. 

Parameters were independently perturbed +/- 1% from base value at each stage in 

the absorber. Analysis conducted with 90% CO2 capture from a coal-fired boiler 

(14.7% CO2) using 8 m PZ.  

5.4.2.5 Solvent Circulation Rate 

Case 3 utilizes a higher solvent rate (1.8 x minimum solvent rate) than the base 

case (1.2 x minimum solvent rate) to isolate the effect of solvent rate on mass transfer 

resistance in the absorber. The higher solvent rate was expected to have two major 

effects: 

1) enhance the liquid film mass transfer coefficient (see Equation 5.8); 

2) reduce the rich loading achieved (see Table 5-1 ) minimizing the limitations 

on equilibrium capacity of the solvent. 
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Both effects should serve to move the system towards the PFO limit. As seen in Table 

5-2, the average liquid-film diffusion resistance for Case 3 is significantly lower than the 

Case 1, confirming the shift towards PFO limit. The dimensionless group factor analysis 

(Equation 5.28) in Figure 5-12 is used to identify the mechanism responsible for the shift 

in the system. 

 

 

Figure 5-12: Dimensionless group analysis, Case 3 (High solvent rate, 1.8 LMIN) vs. 

Case 1 (Base, 1.2 LMIN). Each curve in the chart represents a change from the base 

case as all factors are normalized to Case 1 (c.f., Equation 5.28). Analysis conducted 

for an isothermal absorber with 90% CO2 capture from a coal-fired boiler (14.7% 

CO2) using 8 m PZ. 

Each curve in the chart is represents the change in a factor from the base case (Case 1). 

The figure confirms that the reaction enhancement ratio (Φ) is consistently lower than the 

base case (ΦNEW/ ΦBASE < 1) throughout the column for the higher solvent rate (closer to 
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PFO limit). When comparing the 4 factors that make up Φ, the equilibrium effect is 

dominant at the lean end of the column. This indicates that the higher solvent rate is 

limiting the increase in loading and enhancing the equilibrium capacity of the solvent 

compared to the base case. At the rich end, or bottom of the column, the reaction is 

enhanced significantly at the higher solvent rate due to the increased availability of free 

amine and offsets the equilibrium effect. The fluid mechanics effect (higher solvent rate 

reduces physical mass transfer resistance) becomes important in this rich region as this 

keeps Case 3 closer to PFO than the base case.  

5.4.2.6 Lean Loading 

Cases 4 and 5 operate at higher lean loadings than the base case (0.20 and 0.26 

mol CO2/mol alkalinity, respectively). The expected effect of the loading shift was to 

operate the column in a richer portion of the solvent VLE and move the system towards 

liquid-film diffusion control compared to the base case. However, the results in Table 5-2 

indicate that as the lean loading is increased, the system operates progressively closer to 

the PFO limit (reduced column average liquid-film diffusion resistance). Case 5 (lean 

loading = 0.26) was selected for comparison to the base case in utilizing dimensionless 

group factor analysis (Equation 5.28). 
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Figure 5-13: Dimensionless group analysis, Case 5 (Lean Loading = 0.26 mol CO2 / 

mol alkalinity) vs. Case 1 (Base, Lean Loading = 0.15 mol CO2 / mol alkalinity). 

Each curve in the chart represents a change from the base case as all factors in Case 

5 were normalized to Case 1 (c.f., Equation 5.28). Analysis conducted for an 

isothermal absorber with 90% CO2 capture from a coal-fired boiler (14.7% CO2) 

using 8 m PZ. 

The reaction enhancement ratio exhibits the expected behavior at the top of the 

column – Φ is higher and the system is closer to the instantaneous limit for Case 5 

(higher loading) primarily due to the equilibrium effect (Case 5 operates in steeper region 

of VLE curve, see Figure 5-6). However, the rich loading achieved in each case of the 

column is limited by the equilibrium constraint identified in Figure 5-6, so the loading 

gap between the two cases shrinks rapidly after the lean end of the column and 

equilibrium effect is offset by the reaction effects (F1) of operating at richer loadings 

(depleted free amine in Case 5).  The fluid mechanics become important as the higher 



 197 

solvent rate required for Case 5 reduces liquid-film physical mass transfer resistance and 

pushes the system closer to the PFO limit than the base case.  

5.4.2.7 Flue Gas Concentration 

The effect of flue gas concentration is examined in Cases 4 (NGCC, 4.1% CO2) and 5 

(Steel, 27.6% CO2). Table 5-2 indicates that liquid-film diffusion control increases as the 

CO2 concentration in the flue gas increases. The explanation for the trend with CO2 

concentration is consistent with the preceding discussions regarding solvent rate and lean 

loading.  

As depicted in Figure 5-6, lower inlet CO2 concertation corresponds to operating 

in a leaner portion of the VLE curve. This reduces equilibrium limitations as CO2 

concentration drops and is the dominant factor (F4) for the reduction in liquid-film 

diffusion control from steel to coal to NGCC. Increased reaction rates (F1) and reduced 

solvent rates (F2) push the lower CO2 concentration system away from the PFO limit, but 

the equilibrium effect is dominant.   

5.4.2.8 Solvent Concentration 

The effect of amine solvent concentration was evaluated by testing 5 m PZ in Case 6. 

Table 5-2 indicates the column average liquid-film diffusion resistance is significantly 

reduced when operating with lower amine concentration (46% for Case 6 vs. 71% for 

Case 1). The reduced amine concentration should result in reduced free amine and 

reaction rates, reduced solvent viscosity (enhanced turbulence/physical mass transfer and 

diffusion), and increased solvent rate to compensate for reduced amine (enhanced 

turbulence/physical mass transfer). The difference in VLE effects is expected to be 

important when comparing 5 m PZ (Case 6) and 8 m PZ (Case 1) since the concentration 



 198 

of free amine is different at a common loading condition. Figure 5-14 summarizes the 

effects with a normalized factor analysis using average values over the column.  

 

 

Figure 5-14: Dimensionless group analysis, Case 6 (5 m PZ) vs. Case 1 (Base, 8 m 

PZ). Each bar in the chart represents a change from the column average value for 

the parameter at the base case (8 m PZ) as all factors are normalized to Case 1 (c.f., 

Equation 5.28). Analysis conducted for an isothermal absorber with 90% CO2 

capture from a coal-fired boiler (14.7% CO2) and LLDG = 0.15 mol CO2/mol 

alkalinity.  

As expected, the 5 m PZ case results in a significantly lower Φ (reaction enhancement 

ratio) than the base 8 m PZ case confirming the reduced liquid-film diffusion control 

identified in the parameter sensitivity analysis. In addition, 5 m PZ does have an 

equilibrium restriction compared to 8 m PZ that pushes the system towards liquid-film 
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diffusion control, but all other factors (enhanced diffusion and fluid mechanics and 

reduced reaction rate) push the system towards PFO when compared to 8 m PZ 

confirming the important role of viscosity in the PZ system.  

 

5.5 CONCLUSIONS 

The goals and corresponding key findings of the current work can be summarized as 

follows: 

 Identify controlling mass transfer resistance in an absorber utilizing concentrated 

PZ as a function of operating conditions: 

 The model predicts liquid-film control for the PZ system. Gas-film 

resistance is negligible across conditions tested (column average gas-film 

resistance does not exceed 10% in any case). Maximum gas-film 

resistance is localized at the lean end of the column.  

 The liquid-film resistance is dominated by diffusion resistance at the base 

case parameter values tested in this analysis across all operating conditions 

and diffusion resistance is greatest at the rich end of the column for all 

cases.  

 Temperature effects in an adiabatic absorber do not change the overall 

column trends (diffusion limitation increase from lean to rich) and have a 

minimal impact on the average contribution of each component to overall 

mass transfer resistance when compared to an isothermal absorber.  

 At high kL values (5*Base), the column average reaction resistance 

indicates significant reaction control of the liquid film (54% of overall 
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resistance). Operating at high solvent rates (1.8 LMIN) or with 5 m PZ also 

lead to significant reaction resistance (42% column average in each case). 

 Define/identify dimensionless group to predict mass transfer resistance in 

absorber and validate parameter sensitivity results: 

 The reaction enhancement ratio, Φ, (ratio of pseudo-first-order and 

instantaneous asymptotic enhancement factors) provides very accurate 

prediction of liquid-film mass transfer resistance distribution (diffusion vs. 

reaction) as evaluated by parameter sensitivity analysis. 

 When Φ > 10, the theoretical predictions no longer match sensitivity 

analysis prediction, indicating the system may have reached instantaneous 

reaction limit (within calculation ability of parameter sensitivity method) 

 Use theoretical model to explain trends in mass transfer resistance in the absorber 

 Liquid-film diffusion resistance increases from the lean to rich end of the 

column primarily due to the change in the equilibrium capacity of the 

solvent with loading (slope of vapor-liquid equilibrium curve). The 

equilibrium contribution to the change in Φ (measure of diffusion vs. 

reaction resistance) may increase by as much as a factor of 30 from the 

lean loading to rich loading.   

Beyond the conclusions developed directly from results in this analysis, the evaluation of 

mass transfer resistance should guide absorber design and model development activities: 

 The base case predictions of the piperazine rate-based absorber model indicate 

significant liquid-film diffusion resistance across the full range of operating 

conditions. Novel absorber design should include features that generate 

turbulence in the liquid face or enhance physical mass transfer, particularly at the 
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rich end of the column where the model predicts approach to instantaneous 

reaction limit. 

 Solvent selection should carefully consider the effect of viscosity on absorber 

performance. As the analysis with 5 m PZ demonstrated, the reduction in 

viscosity significantly reduces liquid-film physical mass transfer resistance and 

should enhance overall absorber mass transfer performance. 

 The liquid-film mass transfer coefficient model is a critical component of 

properly modeling absorber mass transfer resistance. The upper limit of kL 

evaluated in this work (5*Base kL) is within the range of commonly used 

literature models and within the uncertainty in the current model when 

considering viscosity dependence and uncertainty in experiments. The design 

approach for absorbers and performance prediction as a function of operating 

conditions will vary significantly in the range of kL values considered in the work 

and may lead to sub-optimal design.  

 The reaction enhancement ratio, Φ, can be used to predict the liquid-film control 

mechanisms for cases not included in this analysis (e.g., different equipment, 

operating, or solvent specifications) if operating specifications for the absorber 

are known and a thermodynamic model is available to calculate the asymptotic 

enhancement factors.   
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Chapter 6: Novel Absorber Contacting and Intercooling Configurations 

The preceding chapters have focused on developing a detailed understanding of 

modeled absorber performance using concentrated piperazine (PZ), including the 

underlying mechanisms that explain performance trends with operating and equipment 

specifications. One goal of developing a fundamental understanding of absorber 

performance is to guide the development of improved and novel intercooling and 

contacting concepts for CO2 capture. The development of these new designs should be 

supported at a theoretical level by the mechanisms controlling absorber performance. 

This chapter will introduce and study novel absorber concepts, quantify the potential 

benefits of the novel designs over the baseline designs considered in previous chapters, 

and explain the performance enhancement with the mechanistic explanations put forth in 

the previous chapters. In addition, several conceptual designs will be proposed with a 

discussion of the data and modeling requirements to further evaluate and develop the 

concepts.    

6.1 EVALUATION OF EXISTING LITERATURE 

Alternative contacting and intercooling schemes have been developed for a 

variety of absorption applications. Specifically, there are literature examples of 

integrating intercooling with the absorption process and enhancing mass transfer with 

alternative contacting schemes and methods. A few examples have been selected for their 

relevance to the work in this chapter. 

Solvent recycle has been proposed in absorption processes for a variety of 

reasons. The use of multiple solvent recycle loops was developed for acid gas treating 

applications (Thirkell, 1971). Recycling solvent was proposed as a method to enhance 

liquid-film mass transfer via higher liquid velocities and to ensure sufficient wetting of 
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the column internals. Solvent recycle with cooling has been proposed in the literature for 

processes utilizing chilled ammonia to capture CO2 (Mathias, et al., 2010). However, the 

purpose of the recycle in the chilled ammonia process was to reduce volatile losses of the 

solvent, not to enhance mass transfer performance.  

Integrated intercooling in absorption columns has also been developed for various 

applications. A novel heat exchanger-absorber combination was proposed for absorption 

of ethylene vapor into a hydrocarbon liquid (Romano, 1982). The concept would 

approximate isothermal absorption of the gas, but was specifically developed for small-

scale applications where separate external cooling would not be cost effective.  

Rotating packed beds (RPB) have also been proposed for CO2 capture with 

amine-based solvents (Tan & Chen, 2006). RPBs are designed to significantly reduce the 

size of gas-liquid contactors by decreasing diffusion resistance and generating additional 

mass transfer area via the turbulence created by centrifugal acceleration of the contactor.   

In this work, several alternative absorber intercooling methods and absorber 

contacting schemes will be proposed based on the fundamental mechanisms studied in 

preceding chapters and based on specific process conditions for CO2 capture from flue 

gas.  

6.2 MODELING OVERVIEW 

The absorber model used for the intercooling evaluation was implemented in 

Aspen Plus® in the RateSepTM module. The key components of the model are rigorous 

representations of solvent thermodynamics and kinetics, mass transfer and fluid 

mechanics in packing, and the physical properties of the system over the range of 

expected operating conditions.  
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All of the subsequent analysis will utilize 8 m aqueous piperazine (PZ) as the 

solvent. The thermodynamic model for the PZ-H2O-CO2 system was developed from 

experimental amine pKa, CO2 solubility, heat capacity, speciation, and amine volatility 

data by regression of Gibbs free energy, enthalpy, heat capacity, and activity coefficient 

parameters within the electrolyte non-random two liquid (e-NRTL) framework (Frailie, 

2014).  

The kinetics for the PZ model are described by the following reaction set: 

 

 𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍𝐻+ ↔  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍 6.1 

 𝑃𝑍𝐶𝑂𝑂− + 𝐻2𝑂 + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝐻𝐶𝑂3
−

 6.2 

 2𝑃𝑍 + 𝐶𝑂2 →  𝑃𝑍𝐻+ + 𝑃𝑍𝐶𝑂𝑂− 6.3 

 2𝑃𝑍𝐶𝑂𝑂− + 𝐶𝑂2 →  𝐻+𝑃𝑍𝐶𝑂𝑂− + 𝑃𝑍(𝐶𝑂𝑂)2
2−

 6.4 

 

The first reaction is an equilibrium (proton transfer) reaction while reactions 2 through 4 

are reversible finite rate reactions where the corresponding reverse reactions complete the 

reaction set for PZ. Arrhenius rate expressions represent the rate constants for the kinetic 

reactions (including forward and reverse rates) where the pre-exponential and activation 

energy parameters were regressed from wetted wall column data collected over a range of 

temperatures, solvent concentrations, and loadings relevant for capture applications 

considered in this work. Finally, physical property models for binary diffusion 

coefficients, viscosity, and density were regressed as a function of amine concentration, 

loading, and temperature. For a detailed description of the “Independence” PZ model, see 

Frailie (Frailie, 2014). 
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6.2.1 Packing Mass Transfer Model 

The specific effects of fluid mechanics and physical properties of the gas and 

liquid on mass transfer are determined by incorporating models for mass transfer in 

packed beds. Two mass transfer models were used through the course of the work in this 

chapter.  

6.2.1.1 Hanley and Chen Mass Transfer Model  

The Hanley and Chen mass transfer model was developed internally by Aspen 

Technology by regressing a large database of distillation and acid gas 

absorption/stripping experiments (Hanley & Chen, 2012). The effective area of sheet 

metal structured packing is described by Equation 6.5. 
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where: 

 ae= Effective or interfacial area of packing (m2/ m3); 

ap = Specific (geometric) area of packing (m2/ m3); 

ρ = Liquid or vapor mass density (kg/ m3); 

µ = Liquid or vapor dynamic viscosity (Pa-s); 

ϴ = Packing corrugation angle; 

σ = Surface tension (N/m); 
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u = Superficial velocity of liquid or vapor (m/s); 

g = Gravitational acceleration (m2/s); 

de = Equivalent diameter (m); 

ε = Void fraction of packing. 

 

The mass transfer coefficient models are described by Equations 6.6 and 6.7. 
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where: 

 k#
 = Binary physical mass transfer coefficients, # = L(liquid) or G (gas) (m/s);  

D#
 = Binary diffusion coefficients, # = L(liquid) or G (gas) (m2/s). 

 

6.2.1.2 Mass Transfer Models Developed at the University of Texas at Austin  

Experiments in a pilot scale air-water column operated by the Separations 

Research Program (SRP) at the University of Texas (UT) Pickle Research Center (PRC) 

were used to develop semi-empirical models for the effective interfacial area (ae) and gas- 
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and liquid-side physical mass transfer coefficients (kG and kL). The interfacial area model 

used in this work was developed by Tsai and is represented in Equation 6.8 (Tsai, 2010): 
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where: 

 ae = Effective or interfacial area of packing (m2/ m3); 

ap = Specific (geometric) area of packing (m2/ m3); 

ρL = Liquid mass density (kg/ m3); 

σ = Surface tension (N/m); 

g = Gravitational acceleration (m2/s); 

Q = Liquid volumetric flow rate (m3/s); 

Lp = Wetted perimeter in cross-sectional slice of packing (m). 

 

The mass transfer coefficient models (Equations 6.9 and 6.10) were developed 

from data collected by Wang (Wang, 2015). All parameters in the equations were 

normalized to reference values (not shown) during the regression. Raw data and details of 

the regression are included in Appendix A.  
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where: 
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 k#, AB
 = Binary physical mass transfer coefficients, # = L(liquid) or G (gas) (m/s);  

u# = Superficial velocity, # = L(liquid) or G (gas)  (m/s); 

Mi = Mixing number - dimensionless parameter describing the number of mixing 

points in a characteristic volume of packing; 

µL = Liquid viscosity (Pa-s). 

 

The viscosity dependence assigned in Equation 6.9 represents the effect of viscosity on 

fluid mechanics (not diffusion) and was derived via literature review (Appendix A).  

6.2.1.3 Role of Mass Transfer Models in Absorber Development  

The effects of physical mass transfer (or diffusion) on absorber performance were 

highlighted by the analysis in Chapter 5. The CO2 absorption process can be controlled 

by physical mass transfer in the gas and liquid films or by chemical reaction – the relative 

rates of these mechanisms ultimately determine which phenomena are important or 

controlling in the absorption process. In addition, the mass transfer area is proportional to 

overall CO2 transfer rates regardless of the mas transfer mechanism and can be limiting 

when chemical reaction is the dominant rate mechanism in the liquid film.  The analysis 

in Chapter 5 found that physical mass transfer in the liquid film is an important 

mechanism in the absorber, particularly at the rich end of the column where it may be 

controlling. The reaction rate (and, by association, the area) is most important at the lean 

end of the column where the system can approach the pseudo-first order limit.   

The mass transfer models (such as the ones in the preceding discussion) determine 

the significance of physical mass transfer in the absorption process (magnitude of the 

transfer coefficients) but also determine the  effect of process and equipment changes on 

overall mass transfer performance. To the extent that the models provide a realistic 
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representation of the underlying physical phenomena, they can be used to predict or 

explain process and equipment changes that enhance performance of the absorber. 

Therefore, the dependence of the aforementioned mass transfer models on operating and 

equipment specifications that could potentially be used in the development of novel 

absorber design will be considered explicitly. Two parameters will be considered here – 

liquid rate and the hydraulic radius or characteristic dimension of the packing (i.e., 

specific area). For a more rigorous and systematic comparison of the mass transfer 

models developed at UT to models in the literature, see the work by Wang (Wang, 2015) 

and Tsai (Tsai, 2010). 

The effects of superficial liquid velocity (or liquid load) and the specific area (as a 

proxy for the inverse of a characteristic dimension or hydraulic radius) primarily 

represent a measure of turbulence, which enhances surface to bulk mixing and generates 

additional surface area for mass transfer. In the UT models, the parameters enter as a 

ratio, indicating the relationship expected in a Reynolds number-type dependence. The 

dependence of mass transfer parameters on superficial velocity and specific area is 

defined in Equations 6.11 and 6.12 for the Hanley and Chen and UT models.  
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The inverse dependence of fractional area on the specific area of the packing in 

both models (Equation 6.11) indicates that a coarse packing will generate more mass 

transfer area per unit of physical surface area than a fine packing.  This effect has been 

observed in other work and it has been hypothesized that it arises from the development 

of ripples, flow instabilities, and droplets in coarse structured packing (see (Tsai, 2010) or 

(Henriques de Brito, et al., 1994) for examples and discussion).  The implication for 

absorber design is that the use of coarse structured packing where possible (or necessary 

to limit pressure drop) will yield better performance than fine structured packing per unit 

area purchased.    

The fractional area dependence on liquid velocity is contradictory between the 

two models. Tsai predicts a positive relationship between fractional area and liquid 

velocity while the Hanley and Chen predicts a drop in fractional area with increasing 

liquid rate. Part of the explanation for this seemingly contradictory prediction of the 

physical behavior in the packing arises from the difficulty of isolating contributions of a 

specific physical property or flow condition that appears in multiple dimensionless 

groups (i.e., is related to multiple mechanisms in the fluid dynamics) in the empirical 

models developed for packing.  In this case, the liquid velocity appears in three of the 

dimensionless groups (Re, We, and Fr for the liquid) in the generic dimensionless model 

form used by Hanley and Chen. Their model regression predicts that the Weber and 

Froude number dependencies on velocity cancel, leaving only a liquid Reynolds number 

contribution for the velocity.  In contrast, Tsai’s regression found no significant effect in 

the liquid Reynolds number contribution, but found contributions from both the We and 

Fr numbers (Tsai, 2010).  Unfortunately, this makes direct physical interpretation of the 

model dependency difficult; while properties such as surface tension were varied to 
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develop a We number dependence in the Tsai model, this also connotes dependence on 

liquid velocity.  Ultimately, in the work by Tsai, the dimensionless group separation is 

discarded and the model is recast in terms of physical properties and a term representing 

liquid load per perimeter of packing.  Tsai concludes this last term (which contains the 

liquid velocity and packing geometry contribution) is the most significant predictor of 

mass transfer area.  Each of the contributions to Tsai’s model can be explained by 

experimental data supporting his conclusions even if a simple physical mechanism is not 

necessarily evident.  The Hanley and Chen model is regressed on a large database 

spanning a range of physical systems without clarity about the physical properties and 

operating conditions varied in the experiments. Therefore, the dependence of the model 

on underlying independent parameters reflects a statistical fit and care should be taken in 

arriving at any physical conclusions about the variable dependency.  

Finally, the liquid film mass transfer coefficient for the UT model has an overall 

positive dependence on the ratio of the liquid superficial velocity to specific area 

(Equation 6.12)  indicating enhancement of liquid film mass transfer as the liquid rate is 

increased or coarse packing is used to create an effectively larger liquid load on the 

surface of the packing. The Hanley and Chen model predicts a strong dependence on 

liquid rate but no additional effect of the characteristic dimension of the packing. In 

either case, the models predict opportunity for enhancement of liquid film mass transfer 

with high intensity (high liquid rate) contacting.  
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6.3 SOLVENT RECYCLE INTERCOOLING DEVELOPMENT 

6.3.1 Process Flow Diagram and Design Criteria 

The absorber configurations in Figure 6-1 and Figure 6-2 represent an alternate 

intercooling method which integrates the intercooling function into a solvent recycle 

loop.  

 

Figure 6-1: Absorber PFD for Simple Recycle Intercooling.  Three packing sections 

are used, with the packing height of each section optimized for each design case to 

minimize total packing area.  MP-250X is used in the top and bottom section and 

various coarse structured packing is used in the middle (recycle section) to maintain 

70% max approach to flood.  Solvent is pumped from the bottom of the middle 

section and cooled to 40 °C.   

 

 

Simple Recycle Intercooling

Max L/G
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Figure 6-2: Absorber PFD for Recycle Intercooling with Bypass Design.  Three 

packing sections are used, with the packing height of each section optimized for each 

design case to minimize total packing area.  MP-250X is used in the top and bottom 

section and various coarse structured packing is used in the middle (recycle section) 

to maintain 70% max approach to flood.  Solvent is pumped from the bottom of the 

middle section and cooled to 40 °C.  A portion of the solvent is sent directly to the 

bottom section of the column (equal to the nominal liquid feed rate of the column) 

while the remaining liquid is recycled to the top of the middle section. 

The solvent recycle design includes a packed bed where the solvent is 

recirculated. The simple recycle design pumps out a portion of the solvent leaving the 

recycle bed (defines the recycle rate) and allows the remaining solvent (nominally 

equivalent to the feed flow rate) to overflow the chimney tray and enter the distributor for 

the bottom bed without cooling. The recycle with bypass presents an incremental 

improvement over the simple recycle. All of the solvent leaving the middle packed bed is 

pumped out of the column and through an intercooling exchanger. Downstream of the 

Recycle Intercooling with Bypass

Max L/G
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exchanger, a portion of the cooled solvent is sent to the bed below (equal to the nominal 

feed rate to maintain the steady state material balance) – this feature is referred to as a 

bypass or split and the benefits will be discussed in subsequent sections.  

The design creates new degrees of freedom and design choices as highlighted in 

Figure 6-3. 

  

 

Figure 6-3: Absorber PFD for Recycle Intercooling with Bypass Design.  New 

degrees of freedom and design choices include recycle rate, packing selection for 

each bed, and the packing split between the 3 beds. The design is constrained by 

pressure drop and flooding limits in the middle bed and an optimized design will 

attempt to minimize packing requirements and pumping costs.  

 

The primary degree of freedom introduced with the recycle design is the selection of a 

recycle rate, which allows an independent value of L/G in the recycle section. In theory, 
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there is no limit on the solvent recycle rate. In practice, the recycle rate is limited by the 

pumping costs and pressure drop/flooding constraints (maximum of 70% approach to 

flood in this study) in the packed section as part of the larger optimization of the absorber 

and capture system. Recycle rate selection will be discussed in subsequent sections.  

 The selection of the packing in the middle bed becomes a separate design choice 

with the implementation of the recycle. This section of the column operates at a much 

larger L/G than the rest of the column but will likely be in a column with uniform 

diameter. Therefore, the flooding constraint and associated pressure drop will be limiting 

in the recycle section. In order to relax this design constraint, different packing can be 

selected for the recycle. The use of a coarse structured packing in the recycle section can 

mitigate the pressure drop issues associated with the large L/G and satisfy the flooding 

constraint without changing the diameter of the entire column.  

 Finally, as with the simple intercooling method (Chapter 4), the packing 

distribution can be selected to minimize the overall packing required in the column. The 

simple intercooling design only had a single degree of freedom (vary a single bed height) 

while meeting the CO2 removal constraint. In addition, as discussed in Chapter 4, the 

packing distribution, or location of intercooling, was primarily a function of the 

equilibrium constraints or “relative pinch” in each packed section (maximize average 

driving force in the column). The recycle design will balance similar equilibrium 

constraints, but the mass transfer efficiency of the 3 sections may vary greatly due to the 

large L/G and coarse packing used in the recycle. The difference in efficiency of the 

sections is expected to have an important role in the packing distribution in the column.  
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6.3.2 Recycle Rate Case Study and Evaluation4  

Recycle intercooling is implemented as a potential improvement over the simple 

intercooling (in-and-out intercooling) concepts discussed in detail in Chapter 4. The 

design was developed to target natural gas combined cycle applications (NGCC) due to 

the low nominal liquid to gas ratio (L/G) in the absorber for this application.  The 

expected improvement with recycle intercooling is, in part, due to the benefit of cooling 

the gas with a large L/G in the recycle packed bed. In addition, as discussed in Section 

6.2.1, the liquid film mass transfer coefficient and interfacial area for mass transfer are 

both a function of the liquid rate per wetted perimeter (see Equations 6.5 to 6.9). In 

addition, the liquid-film mass transfer coefficient is expected to be important for the PZ 

system, particularly at the rich end of the column (see Chapter 5). The recycle design 

increases the amount of solvent per unit perimeter of packing. The benefits (and 

underlying mechanisms of the benefits) of solvent recycle will be discussed in detail in 

subsequent sections.   

The limitations of the recycle design include the mixing of the solvent on the 

recycle section.  The driving forces of the column are reduced by mixing a richer solvent 

with lean solvent entering the middle section of the column.  Furthermore, additional 

costs are associated with breaking the packed bed in two places for a recycle in the 

middle of the column (above and below the bed). Finally, for any recycle design, there 

are additional costs associated with pumping the solvent around the recycle bed (function 

of the height and solvent rate pumped through the section).  

 To evaluate the performance of the solvent recycle design, it was compared to in-and-out 

intercooling and an adiabatic absorber for the NGCC application. The evaluation in 

Chapter 4 indicated that the NGCC application can benefit from an improved design in 

                                                 
4 Hanley and Chen model used for this case study.  
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terms of solvent capacity and mass transfer performance over the simple in-and-out 

intercooling design. Table 6-1 includes the NGCC flue gas conditions for the evaluation. 

Table 6-2 summarizes equipment design parameters used in the NGCC intercooling 

comparison.  

Table 6-1: Flue Gas Conditions, Natural Gas Combined Cycle Flue Gas   

Gas Conditions 

Gas Feed 

Rate 

114,000 kmol/hr 

3,230,000 kg/hr 

Temperature 106 °C 

Pressure 1 atm 

Composition (Mole %) 

CO2 4.0% 

H2O 8.7% 

N2 74.3% 

O2 12.1% 

Data from NETL Case 13 (National 

Energy Technology Laboratory, 

2010) 
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Table 6-2: Equipment and Process Design Parameters for the Solvent Recycle 

Evaluation   

Equipment and Process Design Parameters 

CO2 Removal 90% 

Lean Loading (mol CO2/ mol alkalinity) 0.25 

Flue Gas CO2 Concentration (post-DCC) 

(mol%) 
4.1% 

Recycle Rate 

 (LRecycle/G) 
0.5–8 

Maximum Approach to Flooding 70% 

Packing 

 (No Solvent Recycle in Section)** 
MP 250X 

Packing  

(Solvent Recycle in Section)** 

0.5 LRecycle/G:  MP 250X 

1 LRecycle/G: MP 250X 

2 LRecycle/G: MP 2X 

3 LRecycle/G: MP 170X 

5 LRecycle/G: MP 125X 

8 LRecycle/G: MP 64X 

**Coarse Packing required to meet flooding criteria in packing section with solvent 

recycle.  Packing type varied to approximate identical flooding profiles in each case.  

 

Table 6-2 includes the range of recycle rates evaluated in this study (defined in 

the table as liquid rate in the recycle relative to the overall gas rate in the column).  In 

addition, the table reflects the design choice regarding packing that is introduced by the 

recycle configuration.  MP 250X is the standard packing used in all cases in packing 

sections without recycled solvent.  However, in the cases with solvent recycle (around the 

middle bed of 3 sections of packing), the maximum approach to flooding is reached in the 

recycle section due to high liquid rates compared to the rest of the column.  Instead of 

increasing the column diameter with increasing recycle liquid rate, a progressively 



 219 

coarser packing (reduced specific area) was used to minimize pressure drop and flooding 

with limited change to column diameter from case to case.   

The goal of this case study is to develop an understanding of the effect of solvent 

recycle on absorber performance to allow better definition of operating conditions 

(LRecycle/G) and equipment specifications (packing distribution, pump head in recycle) for 

the recycle design. 

6.3.2.1 Process Performance: Packing Area and Rich Loading Cross-plots 

Two approaches were used to compare the intercooling designs.  First, the simple 

recycle design (no bypass) was compared to the in-and-out intercooling design and an 

adiabatic absorber (no intercooling) at an operating point of 1.2*minimum liquid flow 

rate (LMIN) for each case (all achieving 90% CO2 removal).  This approach allows 

comparison of the designs at a common operating point; the packing requirement and 

energy performance (as reflected in the rich loading) can be compared for all designs.  

However, this method requires interpretation or weighting of the capital cost benefits 

(packing) and the energy benefits (rich loading) on a common basis to provide an 

absolute comparison of designs.  

The second approach involved comparison of intercooling designs at a common 

rich loading.  By fixing the rich loading (and, in conjunction with the 90% removal 

requirement, fixing the absolute solvent rate), the packing requirements of each design 

can be compared directly without consideration of energy performance implications.  

In both approaches, the packing distribution of the recycle intercooling design was 

defined to minimize the total packing requirement in the column for every case that was 

run.  This was accomplished by optimizing the packing split between the three sections in 

the column.   
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Figure 6-4 and Figure 6-5 provide a comparison of the simple recycle intercooling 

design to both in and out intercooling and a baseline of no intercooling.  

 

 

Figure 6-4: Intercooling configuration comparison in terms of total packing 

requirement: simple recycle intercooling, in-and-out intercooling, and no 

intercooling.  For cases without recycle, the maximum L/G corresponds to the 

nominal feed L/G.  For the recycle cases, this corresponds to the L/G in the recycle 

section (feed L + recycle L).  Recycle intercooling simulated at a series of recycle 

solvent flow rates (and corresponding max L/G). 
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Figure 6-5: Intercooling configuration comparison in terms of rich loading 

achieved: simple recycle intercooling, in and out intercooling, and no intercooling.  

For cases without recycle, the maximum L/G corresponds to the nominal feed L/G.  

For the recycle cases, this corresponds to the L/G in the recycle section (feed L + 

recycle L).  Recycle intercooling simulated at a series of recycle solvent flow rates 

(and corresponding max L/G).   

The preceding figures should be used together when evaluating the designs.  For 

example, Figure 6-4 indicates that a design without intercooling will provide the lowest 

packing requirement; however, the high liquid rate required leads to a rich loading 

(Figure 6-5: 0.302 mols CO2/mols alkalinity) that is impractical from an energy and 

stripping performance perspective.  

More importantly, the chart highlights the minimum recycle rate required for 

simple recycle to become competitive with in-and-out intercooling.  In terms of both 
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packing requirement and rich loading, a recycle rate of 1 L/G is required (max L/G = 

2.28) to make the recycle design comparable to in-and-out intercooling.  Given the 

additional cost associated with the recycle design (pumping liquid around the middle 

section of packing, potentially larger intercooling equipment, etc.), a higher recycle rate 

would be needed to justify the recycle design.  As both figures show, the higher recycle 

rates provide both reduced packing and improved rich loading.  However, the benefits 

show diminishing returns with incremental increases in recycle rate, and when considered 

with costs associated with higher recycle rates, indicate potential for an optimal recycle 

rate somewhere above 1 L/G but below the 8 L/G value simulated here.  

To compare the configurations on a common basis, Figure 6-6 compares all 3 

intercooling designs (in-and-out, simple recycle, recycle with bypass) at a constant rich 

loading of 0.365 mols CO2/mols alkalinity (constant L/G of 1.28 mol/mol).  The fixed 

rich loading corresponds to that achieved by in-and-out intercooling at 1.2*LMIN. 
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Figure 6-6: Intercooling configuration comparison at constant rich loading (and 

solvent rate) in terms of total interfacial area: simple recycle intercooling, recycle 

with bypass, and in-and-out intercooling.  For cases without recycle, the maximum 

L/G corresponds to the nominal feed L/G.  For the recycle cases, this corresponds to 

the L/G in the recycle section (feed L + recycle L).  Recycle intercooling simulated at 

a series of recycle solvent flow rates (and corresponding max L/G). 

As in the previous figures, simple recycle intercooling must utilize a recycle rate 

greater than 1 LRecycle/G to be competitive with in-and-out intercooling.  At a recycle rate 

of 8 LRecycle/G, the maximum packing reduction of 46% is achieved compared to in-and-

out intercooling.  However, the implementation of the recycle with bypass (sending 40 °C 

solvent to the bottom section of the column and maintaining intercooling benefit) shows 

drastic improvements at the low recycle rates.  At a recycle rate of 0.5 LRecycle/G, the 

implementation of bypass reduces the packing requirement by 47% compared to simple 

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

To
ta

l I
n

te
rf

ac
ia

l A
re

a 
(1

0
0

0
 m

2
)

Max L/G (mol/mol)

Simple Recycle

Recycle-Bypass

0.5 LRecycle/G

In and Out IC

8 LRecycle/G

1

2

3 

5

Conditions
NGCC (4.1% CO2)

LLDG = 0.25 mol CO2/mol alk.
CO2 Removal = 90%

RLDG = 0.365
L/G = 1.28

46% Packing Reduction



 224 

recycle and by 8% compared to in-and-out intercooling.  The benefit of recycling solvent 

is effectively combined with the intercooling benefit realized with the standard in-and-out 

design.  A similar improvement is seen at a recycle rate of 1 LRecycle/G; however, beyond 

this rate, the benefit of the bypass design is marginal and eventually the bypass and 

simple recycle designs become indistinguishable.  At higher solvent recycle rates, the 

temperature of the solvent leaving the recycle section approaches 40 °C and the bypass 

provides limited benefit. This is illustrated in Figure 6-7. 
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Figure 6-7: The benefit (packing reduction) of recycle intercooling with bypass 

compared to simple recycle intercooling as a function of the solvent recycle rate and 

corresponding temperature leaving the recycle section.   

As expected, at higher recycle rates the temperature leaving the recycle drops; the 

temperature is as low as 42.4 °C at the highest recycle rate of 8 LRecycle/G.  With the drop 

in temperature leaving the recycle, the benefit of the bypass design compared to the 

recycle design is diminished.  By a recycle rate of 3 LRecycle/G (temperature leaving 

recycle = 44.3 °C), the benefit is less than 5% reduction in packing.  

The preliminary results of the NGCC application intercooling comparison 

revealed the operating range in which recycle intercooling may be beneficial. A recycle 

rate above 1 LRecycle/G should be used as this value is close to the nominal solvent feed 

rate and the benefits of the recycle are limited (mixing with warm solvent from section 
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above, limited L/G benefits).  In addition, at high recycle rates (> 5 LRecycle/G), the 

benefits associated with recycle intercooling (reduced packing and higher rich loadings) 

show diminishing returns.  

6.3.2.2 Incremental Economic Analysis: Packing Cost Savings vs. Pumping Costs 

An incremental economic analysis will be used to compare the recycle 

intercooling with bypass design (provides benefits at all recycle rates) to a baseline of in-

and-out intercooling. Both designs will be compared at a constant solvent flow rate (LIN-

AND-OUTIC/LMIN = 1.2) or, equivalently, a constant rich loading of 0.365 mol CO2/mol 

alkalinity (cases represented in Figure 6-6). The goal of the analysis is to provide a 

feasibility or screening assessment of the recycle intercooling design within the range of 

recycle rates (Table 6-2) evaluated in this study. The incremental analysis will only 

consider the following factors: 

1) Incremental packing cost savings 

2) Pumping costs (operating costs only) associated with recycle loop 

3) Incremental blower operating costs/cost savings (gas-side pressure drop) 

Several other costs may vary between the in-and-out intercooling design and 

recycle design including incremental cost of column internals (additional liquid 

distributors, packing supports), differences in size and capital cost of peripheral 

equipment (intercooling heat exchanger and pump, piping size),  differences in process 

control equipment, differences in cooling water consumption, etc. -  see the work by 

Frailie for an example of detailed absorber economics (Frailie, 2014). However, if the 

core costs of the recycle intercooling design (pumping and pressure drop associated with 

the recycle) are not justified by the benefits, the design will not be feasible in general. In 

addition, the ranking of the recycle intercooling designs (i.e., ranking of recycle rate) are 
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unlikely to be affected by the costs omitted from the analysis as they should scale with 

the costs considered in this analysis. Table 6-3 includes key assumptions used in the 

calculations. 

Table 6-3: Assumptions for Incremental Economic Evaluation of Recycle 

Intercooling   

Capital Cost Assumptions Operating Cost Assumptions 

Interest Rate Of Capital 12.50% Annual Operating Hours2 7446 

Amortized Lifetime (years) 15 Cost of Electricity ($/MWh)3 56.6 

Amortization Factor1 15% 
Overall Pump Efficiency4 64% 

Blower Efficiency 72% 

1: Amortization factor calculated from interest rate and loan term.  Provides (equal) 

annual payments when multiplied by principal. 

2: Capacity Factor = 85% (National Energy Technology Laboratory, 2010) 

3: 2012 Texas Industrial Average Cost of Electricity (U.S. Energy Information 

Administration, 2013) 

4:  Pump efficiency is average value over range of flow rates considered in this analysis 

(Peters, et al., 2003). 

 

The annualized capital (packing cost) and operating (pumping/blower) costs were 

calculated by Equations 6.13 through 6.15. 

 

Cos * * Packing packingAnnualized Packing t UC V AF  6.13 

 1 1

 
  
   

n

i
AF i

i
  

where: 

UCPacking = Unit cost of packing ($/m3) – see Figure 6-8; 

VPacking = Volume of packing (m3). 
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AF = Amortization factor (or annuity calculation); 

i = Annual interest rate (as % or fraction) – See Table 6-3; 

n = Term of loan or project (years) – See Table 6-3; 
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Cos *

1000*

 
  

  

cycle cycle

Electricity

Pump

m g h
Annual Pumping t UC


 

6.14 

where: 

UCElectricity = Unit cost of electricity ($/kWh) – see Table 6-3; 

Recyclem = Mass flow rate through recycle pump (kg/s); 

hRecycle = Height of recycle section (m);  

ηPump = Pump efficiency – See Table 6-3; 

 

*
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6.15 

where: 

ΔPPacking = Pressure drop in packed bed (Pa) – from vendor correlation in 

AspenPlus®; 

QGas = Volumetric flow rate of gas at blower (m3/s); 

ηBlower= Blower efficiency – See Table 6-3; 
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The incremental economic analysis used the preceding equations to establish 

baseline annualized costs for in-and-out intercooling and determined the incremental cost 

(or savings) based on the specific packing and pumping/blower requirements for each 

recycle case.  

The packing costs were calculated using data and a simple linear correlation from 

previous work by Tsai corrected to 2012 U.S. dollars (Tsai, 2010).  The original data and 

correlation from Tsai are shown in Figure 6-8. 
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Figure 6-8: Prediction of packing cost per unit volume from the packing specific 

area based on data collected by Tsai for 3 packing sizes (250, 500, 750 m2/m3) (Tsai, 

2010) 

The packing cost data is limited and restricted to a single set of vendor quotes obtained 

by Tsai; in addition, the range of packing sizes used in this analysis is beyond the range 

encompassed by the correlation.  However, in the absence of detailed packing cost data, 

the correlation by Tsai provides relatively recent data on structured packing costs. 

The results of the economic evaluation are presented in two parts. The first 

evaluation only considers the packing and pumping cost components (omitting the 

pressure drop costs). The second portion of the analysis will include the pressure 

drop/blower operating costs. The analysis was performed separately to highlight the 

important effect of gas-side pressure drop on the overall economics. The pressure drop 
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model used in this work is the proprietary vendor correlation built into AspenPlus® 

associated with the Mellapak-series packings used in this analysis. Since the vendor 

pressure drop model is not accessible and the pressure drop data in Mellapak packing has 

not been independently corroborated for the conditions and packing types tested in this 

work, the costs associated with pressure drop predictions may be a large source of 

uncertainty.  Therefore, the analysis is presented with and without gas-side pressure drop 

costs.  

Figure 6-9 presents the incremental economic analysis considering pumping and 

packing costs.  
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Figure 6-9: Cost savings achieved (compared to in-and-out intercooling at the same 

rich loading/solvent rate) by recycle intercooling with bypass configuration applied 

to NGCC flue gas (4.1% CO2). Each case operated at LLDG = 0.25 mol CO2/mol 

alk. to achieve 90% removal.  Total cost savings (black curve) calculated by 

subtracting pumping costs (red curve) from packing cost savings (green curve). All 

costs on an annualized basis. Max L/G corresponds to the L/G in the recycle section 

(feed L + recycle L).   

The results of the analysis show that the packing cost savings predicted for the recycle 

intercooling design outweigh the pumping costs for all but the highest recycle rate 

(LRecycle/G = 8). At the highest solvent recycle rate, the improvement in mass transfer 

performance (measured as packing reduction) exhibited diminishing returns (Figure 6-6). 

In addition, the use of progressively coarser packing (less surface are per unit volume) 

with increasing recycle rate leads to the steep increase in pumping costs seen in Figure 
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6-9. The figure indicates that the largest incremental savings are achieved with a recycle 

rate between approximately LRecycle/G = 2 and 4.  

 Figure 6-10 provides the results for the same analysis with the incremental cost 

savings of pressure drop reduction in the recycle intercooling design.  

  

 

Figure 6-10: Cost savings achieved with blower costs (compared to in-and-out 

intercooling at the same rich loading/solvent rate) by recycle intercooling with 

bypass configuration applied to NGCC (4.1% CO2) and operated at LLDG = 0.25 

mol CO2/mol alk. to achieve 90% removal.  Total cost savings (black curve) 

calculated by subtracting pumping costs (red curve) from packing cost savings 

(green curve) and blower operating cost savings (maroon curve).  All costs on 

annualized basis. Max L/G corresponds to the L/G in the recycle section (feed L + 

recycle L).   
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The figure illustrates the blower operating costs are reduced with the recycle intercooling 

design across the entire range of recycle rates. The resulting cost savings largely offset 

the pumping costs, even at the highest recycle rates, and lead to potentially feasible 

recycle designs across the range of conditions tested. As before, the maximum cost 

savings are achieved in the range of LRecycle/G = 2 to 4. The explanation for the reduced 

pressure drop with the recycle rate has two components. First, the overall height of 

packing (i.e., gas path length) is smaller for all but the highest recycle rate (LRecycle/G = 

8), despite the use of coarse packing in the recycle sections. This indicates that the 

recycle section has improved the overall efficiency of CO2 removal via enhanced mass 

transfer in the recycle section and improved driving forces outside of the recycle (reduced 

temperatures). Secondly, the improved intercooling and removal of CO2 in the cooled 

recycle section mean that the gas temperatures are lower throughout the column than the 

in-and-out intercooled case (this will be discussed in subsequent sections). The lower gas 

temperatures lead to lower gas velocities (increased density), reducing the pressure drop 

compared to the in-and-out intercooling base case.  

6.3.2.3 Identifying mechanisms for recycle intercooling benefits 

The recycle intercooling design appears to provide significant mass transfer 

performance enhancement as measured in terms of packing reduction from the baseline 

in-and-out intercooling case. While improved intercooling performance (cooling the gas) 

and enhanced turbulence (improved liquid-film mass transfer and effective area) have 

been proposed as explanations, the preceding analyses do not confirm the source of the 

benefits. In an effort to de-couple the various mechanisms that may be the source of the 

recycle design benefits, a series of modeling cases and calculations were developed to 

isolate the expected mechanisms.  
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The overall approach of isolating the contribution to the change in packing 

requirement (compared to the base case in-and-out design) of each of the effects of the 

recycle intercooling discussed in the preceding section is summarized as follows: 

 

OVERALL PACKING REDUCTION 

- CONTRIBUTION FROM EFFECTIVE AREA DEPENDENCE ON LIQUID RATE 

- CONTRIBUTION FROM EFFECTIVE AREA DEPENDENCE ON PACKING 

SELECTION (SPECIFIC AREA) 

- CONTRIBUTION FROM MASS TRANSFER COEFFICIENT DEPENDENCE ON 

LIQUID RATE 

- CONTRIBUTION FROM MASS TRANSFER COEFFICIENT DEPENDENCE ON 

PACKING SELECTION (SPECIFIC AREA) 

 

NET DRIVING FORCE EFFECT (INTERCOOLING BENEFIT – BACK-MIXING 

PENALTY) 

 

Each of the mass transfer contributions is quantified and removed from the overall 

packing reduction reported (see Figure 6-6) leaving a remainder which should reflect the 

net driving force effects.  While this does not lead to a direct quantification of the 

intercooling benefit, the intercooling benefit is coupled with the important deterioration 

of performance (back-mixing of solvent) expected with the recycle design and therefore 

reflects the fundamental driving force trade-off central to the recycle concept. The 

calculation of the individual mass transfer contributions was performed as follows: 
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1) MODELING STEP: The diameter of the column in the recycle section in each 

design case was increased until the superficial liquid velocity matched the values 

outside of the recycle section and a new packing area requirement is determined.  

This modeling approach allows the same amount of liquid to be recycled through 

the intercooling section (same maximum L/G as before) providing the same 

intercooling benefit as the nominal design, but removes the benefits associated 

with the high superficial velocity in the recycle section (see preceding discussion 

of the effect of superficial velocity on wetted area and mass transfer coefficients).   

 

2) CALCULATION STEP: Calculate the effect of the liquid superficial velocity on 

the wetted area directly from the previously presented correlation (Equation 6.5).  

Using the information from step 1, the changes in the packing requirement due to 

the effect of superficial liquid velocity on the wetted area and on the mass transfer 

resistance have now been isolated independently.  

 

3) CALCULATION STEP: Calculate the change in total packing requirement due 

to the use of a coarse packing in the middle section of the recycle design 

compared to fine packing throughout the in-and-out intercooling design.  This can 

be calculated directly from the preceding correlation (Equation 6.5). 

 

4) The Hanley and Chen model does not predict a dependence of the mass transfer 

coefficient on packing type (specific area), so no calculation is needed in this 

analysis.  
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The mass transfer enhancements (area and mass transfer resistance related) are now 

independently isolated and the remainder of the reported packing reduction from the in-

and-out intercooling base case is the net driving force benefit (intercooling vs. back-

mixing). This method has potential shortcomings related to the first (modeling) step.  The 

recycle section is not isolated from the rest of the absorber and changes in this section 

may yield performance differences outside of the section the section that are secondary 

benefits of the recycle design. However, to a first approximation, the benefits of the 

increased liquid rate can be quantified by deduction as in the proposed approach. The 

results (Figure 6-11) identify the relative contribution of each mechanism to the total 

packing reduction predicted by the model for the recycle section.  
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Figure 6-11: Isolated contributions to overall packing reduction for recycle 

intercooling with bypass design compared to in-and-out intercooling design. Recycle 

rates from 0.5 to 8 L/G are presented for the NGCC (4.1% CO2) application.  All 

cases with following specifications: LLDG = 0.25 mols CO2/mols alkalinity, RLDG = 

0.365 mols CO2/mols alkalinity, CO2 Removal = 90%. Packing type used in recycle 

section noted in parentheses under recycle rate.  

The area effects (first of four bars in each group, if present, reading from left to 

right) include the combined effect of liquid rate and packing specific area on the wetted 

area; the two were combined since the overall contribution to the change in packing 

requirement is small in all cases.  The area effects are negative (or increase the packing 

requirement compared to in-and-out intercooling) at the lowest recycle rates because the 

Hanley and Chen model predicts a negative dependence on liquid velocity (as discussed 

before); as the packing is changed to progressively coarser packing, however, the 

fractional area dependence on the packing geometry begins to become more important, 
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and the area effects ultimately contribute to a reduction in the packing requirement.  In 

general, however, it is clear that the Hanley and Chen model predicts minimal effect on 

wetted area of the packing due to the conditions in the recycle.  

The net driving force effect (combined intercooling and back-mixing effect) of 

the recycle is shown in the second bar (blue) from the left in each case.  This trend shows 

an initially increasing benefit from intercooling at the lowest recycle rates to a maximum 

of 12% packing reduction at the 2 L/G recycle rate; beyond this recycle rate, the benefit 

diminishes and appears negligible at the highest recycle rates.  There are two 

explanations for this trend.  First, as the recycle rate is increased, the marginal benefit of 

intercooling diminishes – the temperature in the system is not affected by an incremental 

increase in liquid rate beyond some point.  This would explain a flattening in intercooling 

benefits with recycle rate. The decline in intercooling benefits (above LRecycle/G = 2) is 

explained by the back-mixing contribution.  As illustrated in Table 6-4, more of the 

packing was allocated to the well-mixed recycle section of the column as the recycle rate 

increased to minimize the total packing area of the column. Up to ~40% of the mass 

transfer area is not utilized for counter-current contacting at highest recycle rates. 

Therefore, the average driving forces in the column are progressively diminished with 

recycle rates and undercut the driving force benefits from intercooling.  

 

 



 240 

Table 6-4: Packing Distribution by height and metal packing area for NGCC 

application with recycle intercooling.  All cases at lean loading = 0.25, constant rich 

loading = 0.365, 90% removal.  MP-250X in top and bottom sections of column in all 

cases. 

Recycle L/G 
Packing in Recycle 

Section 

% of Total Height 
% of Total Metal 

Packing Area 

Top Mid Bottom Top Mid Bottom 

0.5 MP-250X 30% 18% 52% 30% 18% 52% 

1 MP-250X 31% 23% 46% 31% 23% 46% 

2 MP-2X 32% 38% 30% 35% 33% 32% 

3 MP-170X 39% 40% 21% 45% 31% 24% 

5 MP-125X 31% 56% 13% 45% 37% 18% 

8 MP-64X 21% 71% 8% 46% 38% 16% 

 

Finally, the effect of the liquid rate on the mass transfer resistance (as determined 

indirectly from the modeling step (step 1) in the procedure described before) is quantified 

in the third bar from the left (red) for each case.  Clearly, this is the dominant source of 

the packing reduction predicted by the model.  This result indicates that the physical 

liquid-side mass transfer coefficient (as predicted by the Hanley and Chen model) is of a 

magnitude where it is a significant contributor to the overall mass transfer resistance; 

when coupled with the strong dependence on liquid rate predicted by the model, the mass 

transfer resistance contribution becomes very important in the recycle configuration. As 

discussed in Chapter 5, the parameter sensitivity analysis revealed that the overall mass 
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transfer resistance is controlled by liquid-film physical mass transfer contributions for the 

absorber model with PZ using the packing models developed at UT (Equations 6.8 to 

6.9). Therefore, the general result regarding the importance of the liquid-film mass 

transfer contribution to the recycle benefits would be expected to be similar with the UT 

models.  

This highlights the importance of isolating these effects.  If the intercooling 

benefit is the primary goal of the design, the current design is less than optimal – the 

strong dependence on mass transfer resistance contributions led to a large amount of 

packing in the middle (recycle section) of the column, reducing average driving forces 

and wiping out the intercooling benefits.  If the mass transfer benefits are not realized at 

the magnitude predicted by the model in a real system, the design will lead to poor 

performance compared to the cost of the recycle system (in particular, the pumping costs 

over the large recycle section). This result is not unique to the recycle design. Modeling 

of any novel contacting scheme (e.g., rotating packed bed, cross-flow), column internals 

(trays, hybrid packing), operating conditions (e.g., high solvent loads), or solvents with 

unique physical properties (e.g., high viscosity) will require independent, accurate, and 

physically representative component mass transfer models to properly design and 

optimize the system.  Therefore, mass transfer model development and experimental 

characterization of mass transfer phenomena in real contactors are among the most 

important areas of open research for CO2 capture systems. 
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6.3.3 Summary and Recommendations from Recycle Case Study 

The evaluation in the preceding sections yielded insight regarding the operating 

conditions and potential benefits of the recycle intercooling design. Specifically, the 

following recommendations can be used for further development with the NGCC 

application: 

 A recycle rate of LRecycle/G = 2 – 4 is recommended based on the economic 

analysis and evaluation of the source of recycle benefits. The driving force 

benefits are maximized in this range even if the mass transfer benefits are 

ultimately over-predicted by the model.  

 The recommended recycle rate is defined for the specific conditions in the 

case study (LLDG = 0.25 mol CO2/mol alkalinity, Feed L/G = 1.28). 

However, the recycle rate can be generalized (as a first approximation) by 

scaling based on the L/G of alternate conditions evaluated. For example, if a 

recycle rate of LRecycle/G = 3 is selected for the base case study conditions at a 

nominal L/G = 1.28, a new recycle rate can be defined in terms of the new 

feed L/G as follows: (3/1.28)*(L/G)FEED. This approach ensures that the 

recycle rate is sufficiently large compared to the feed solvent rate as they mix 

and enter the recycle section.  

 Recycle intercooling benefits were dominated by liquid-film mass transfer 

enhancement. The case study analysis placed the recycle segment in the 

middle of 3 beds of packing, but a recycle design at the bottom (rich end) of 

the absorber would address the portion of the column most-limited by 

diffusion of reactants and products (see Chapter 5).  
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6.4 COMPARING RECYCLE INTERCOOLING TO IN-AND-OUT INTERCOOLING5 

The analysis in Chapter 4 compared simple intercooling (in-and-out intercooling) 

to limiting cases of an adiabatic and isothermal absorber. Minimum solvent rate analysis 

identified the region for the NGCC application where simple intercooling could not 

achieve isothermal solvent capacity and necessitated the use of novel intercooling 

methods. In addition, the use of design curves to quantify packing and solvent rate 

relationships at normal solvent operating rates highlighted the need for improved 

intercooling methods to address mass transfer limitations associated with in-and-out 

intercooling. The recycle intercooling design will be evaluated in an extension of the 

analysis in Chapter 4 to determine if the design can address the specific shortcomings of 

the simple intercooling method for NGCC application. In addition, the use of the mass 

transfer models developed at UT (Equations 6.8 through 6.9) in this analysis will provide 

validation for the recycle benefits identified in the case study using the Hanley and Chen 

model from literature.  

6.4.1 Comparison to Simple Intercooling: Minimum Solvent Rate  

Figure 6-12 presents the results for the minimum solvent rate analysis for the 

recycle intercooling with bypass design alongside the previously presented results for 

adiabatic intercooling and in-and-out-intercooling. All cases for the recycle with bypass 

design were operated with a recycle rate scaled from the base case (LRecycle/G = 3) as 

described in section 6.3.3. As noted, the recycle rate could be scaled to the nominal L/G, 

but the effects were found to be small over the limited range of lean loadings where 

advanced intercooling is applied.   

                                                 
5 UT mass transfer models used for this analysis. See Equations 6.8 through 6.9. 
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Figure 6-12: Ratio of the minimum solvent rate (“infinite” packing) for an adiabatic 

absorber (no intercooling), simple intercooled absorber (in-and-out intercooling), 

and advanced intercooled absorber (recycle with bypass) to an isothermal absorber 

(T = 40 °C) for 90% CO2 capture from a NGCC power plant (4.1% CO2) utilizing 8 

m PZ. For the recycle design, the following range of recycle rates were 

implemented: LRecycle/G = 3 - 4.6 for lean loadings of 0.25 - 0.30 mol CO2/mol 

alkalinity.  

The recycle configuration improves the approach to the isothermal LMIN across the range 

of lean loadings where in-and-out intercooling and an adiabatic absorber were 

significantly limited by temperature-induced mass transfer pinches. The recycle design 

successfully approximated maximum solvent capacity at all but the highest loading (0.30 

mol CO2/mol alkalinity). This condition operates with near zero driving force at the lean 
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end of the column (highest lean loading possible to achieve 90% removal for the NGCC 

case) and thus is not likely a practical operating condition.   

 As noted in the introduction of the recycle intercooling design, the benefits of the 

new design were expected to come from cooling of the gas in the low L/G NGCC 

application and enhanced mass transfer in the recycle section due to high liquid rate per 

perimeter of packing. Partitioning of benefits in Figure 6-11 indicated that, at operating 

solvent rates (1.2*LMIN), the benefits of solvent recycle were largely related to the 

enhancement of the liquid film mass transfer coefficient. However, the analysis did not 

provide details on the source of the driving force benefits quantified and did not consider 

performance benefits at LMIN (i.e., achieving maximum solvent capacity).  

 To understand the benefits of solvent recycle at LMIN, the recycle design was 

compared to an in-and-out intercooled design where the gas is cooled at the same point as 

the solvent (at the intercooler) to ensure the gas going to the top bed is the same 

temperature as the intercooled solvent. This modeling scenario is designed to simulate the 

benefit of gas cooling in the NGCC application and determine if this is an important 

contribution of the recycle design. In addition, the recycle design was evaluated as a 

function of the amount of packing in the recycle section when calculating LMIN. The CO2 

that is removed in the recycle section of the column is removed with a large L/G and a 

cooled solvent, and the heat associated with the CO2 transfer is removed at the 

intercooler. Therefore, the benefit of CO2 transfer in the recycle section is to limit the 

CO2 removed in the top and bottom beds where temperature limitations may prevent the 

absorber from reaching maximum solvent capacity. The results of the comparative 

analysis are presented in Figure 6-13 and Table 6-5. 
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Figure 6-13: Ratio of the minimum solvent rate (“infinite” packing) for specified 

intercooled absorber configurations to the minimum solvent rate for an isothermal 

absorber (T = 40 °C) (LMIN, INTERCOOLED/LMIN. ISOTHERMAL). Intercooled absorber 

designs include in-and-out intercooling, in-and-out intercooling with gas cooling (T 

= 40 °C) and an advanced intercooled absorber (recycle with bypass) for 90% CO2 

capture from a NGCC power plant (4.1% CO2) utilizing 8 m PZ. Lean loading = 

0.27 mol CO2/mol alkalinity. For the recycle design, a recycle rate of LRecycle/G = 3 

was implemented.  
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Table 6-5: Minimum Solvent Rate Comparison of Recycle Intercooling, in-and-out 

intercooling with gas cooling (T=40°C) and in-and-out intercooling (baseline). 

Amount of packing is varied in the recycle section to evaluate effect of CO2 removed 

in recycle on LMIN. “Infinite” packing in the recycle indicates mass transfer pinch in 

recycle section. 

Recycle Section 

Size  

TGAS Out of Intercooling 

Section 
CO2 removal in 

recycle 

LMIN/LMIN, 

ISOTHERMAL 
m °C 

0.1 m 44.5 0.9% 1.98 

0.5 m 43.5 4.4% 1.80 

1 m 42.6 7.7% 1.47 

2 m 41.7 12.5% 1.11 

"Infinite" 41.1 50.5% 1.06 

In-and-Out w/ 

Gas Cool 
40 N/A 1.82 

In-and-Out IC 45.5 N/A 1.98 

 

Several conclusions can be developed from the table and figure. First, Figure 6-13 

clearly illustrates that the benefit of gas cooling is small – the reduction in minimum 

solvent rate from the standard in-and-out intercooling design to the “gas cooling” design 

is less than 10%. As seen in Table 6-5, the temperature of the gas leaving the bottom bed 

(entering the top bed) of the absorber in the standard in-and-out intercooling design is 

approximately 46°C. Therefore, the hypotheses that the simple intercooling design does 

not adequately cool the gas is not valid. The benefit of cooling the gas in an intercooling 

design is primarily to increase the capacity of the gas to pick up water as it rises to the 

maximum temperature in the top portion of the column. The small change in gas 

temperature by cooling to 40°C does little to effect the amount of water the gas can carry.  
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In addition, Table 6-5 highlights the importance of CO2 removal in the recycle 

section. While a small amount of packing in the recycle adequately cools the gas (< 2 m) 

to attain the gas cooling benefits of solvent recycle, as packing is continually added to the 

recycle section until a pinch forms (“infinite packing” in the recycle), the CO2 removed 

in the section is significant – 50% of the CO2 entering the absorber is removed in the 

recycle section. This serves to reduce the CO2 captured outside of the recycle and 

moderates temperature significantly to limit the development of temperature-related mass 

transfer pinch (see Chapters 3 and 4 for details on pinch formation at temperature 

maxima). This is the primary mechanism for the effectiveness of the recycle intercooling 

method – a section of the column is able to operate with an independent (and large) L/G 

to capture CO2 (moderates the temperatures as the CO2 is captured) and remove the heat 

associated with CO2 removal at the intercooler, isolating other sections from the effects 

of the bulk of the CO2 removal in the column. This phenomena at the “infinite” packing 

limit only impacts the maximum solvent capacity of the absorber with recycle; it does not 

predict the effectiveness of the recycle at a normal solvent operating rate with finite 

packing and associated mass transfer limitations.  

6.4.2 Comparison to Simple Intercooling: Design Curve  

The analysis in Chapter 4 highlighted the shortcoming of in-and-out intercooling 

for the NGCC application in terms of mass transfer limitations at normal operating 

conditions (i.e., away from LMIN). Specifically, at a loading of 0.25 mol CO2/mol 

alkalinity, in-and-out intercooling was able to achieve the isothermal minimum solvent 

rate (see Figure 6-12), but produced a poor packing-solvent rate trade-off in a normal 

operating range when compared to an isothermal absorber (see Chapter 4, Figure 4-15). 

This condition was targeted for evaluation of the mass transfer performance of the 
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recycle intercooling design via a design curve approach, as used in Chapter 4. Figure 

6-14 presents the design curves for the NGCC application at 0.25 mol CO2/mol alkalinity 

with the addition of the recycle with bypass design.  
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Figure 6-14: Design curves representing the packing-solvent rate trade-off of 

various absorber configurations for a NGCC power plant flue gas (4.1 mol% CO2) 

at LLDG = 0.25 mol CO2/mol alkalinity. Each curve (dashed = adiabatic, solid = 

isothermal, blue = intercooled, red = recycle IC) represents the packing requirement 

(normalized by the gas rate) to achieve 90% CO2 removal for the fixed lean loading 

and given liquid to gas ratio (L/G). The recycle configuration was operated at 

LRecycle/G = 3.  For each point on the curve, the lean loading, removal, and solvent 

rates are fixed, so a unique rich loading exists as well (secondary y-axis).  The 

asymptote each curve reaches with increasing packing area is the minimum solvent 

rate (LMIN). 

The benefits of the recycle design are apparent over the entire range of operating 

conditions as the curve approximately mirrors the isothermal absorber. In some cases, at 

higher L/G (> 1.5), the recycle design lies outside the isothermal curve indicating that the 

design is outperforming the isothermal absorber. The isothermal absorber is a limiting 

design at the “infinite packing limit”, but is only a limiting case for the driving forces at 
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conditions away from LMIN. The recycle intercooling design is outperforming the 

isothermal design due to the liquid-film mass transfer enhancement discussed in Section 

6.3.2.3.  

 Figure 6-15 compares the packing requirement for the recycle intercooling design 

with varying recycle rate to in-and-out intercooling and an isothermal absorber at the 

highlighted constant solvent rate condition from Figure 6-14 (L/G = 1.48). 
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Figure 6-15: Normalized packing requirement for in-and-out intercooling, recycle 

intercooling, and an isothermal absorber at a constant L/G = 1.48 mol/mol, LLDG = 

0.25 mols CO2/mols alkalinity, and 90% CO2 removal.  A maximum packing 

reduction of 62% compared to in-and-out intercooling can be achieved with a 

recycle rate of LRecycle/G = 8.  The packing height of the recycle section is included as 

an indication of the pumping cost associated with each recycle rate. 

As the figure shows, the recycle intercooling configuration outperforms the in-and-out 

intercooling design at all recycle rates.  At recycle rates above LRecycle/G = 3, the recycle 

design surpasses the isothermal absorber performance as well.  However, with increasing 

recycle rate, the packing height of the recycle section increases, rapidly increasing the 

energy required for pumping in the recycle design while the packing benefits exhibit 

diminishing returns.  The tall recycle section results from the use of progressively coarser 
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packing in the recycle section (taller section required to maintain a given mass transfer 

area) and weighting of packing optimization to the recycle section due to enhanced mass 

transfer efficiency. These results are consistent with the incremental economic analysis in 

section 6.3.2.2. 

 Figure 6-16 compares the temperature profiles for the recycle design and in-and-

out intercooled design at the conditions designated in Figure 6-14 (L/G/ = 1.48).  
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Figure 6-16: Temperature profiles for In-and-Out Intercooling (Blue), Recycle 

Intercooling at LRecycle/G = 3 (Red) and Isothermal operation (Black).Each curve 

represents the profile  90% CO2 removal with a lean loading of 0.25 mol CO2/mol 

alkalinity and 8 m PZ for the given liquid to gas ratio (L/G = 1.48). 

The figure indicates that the temperatures are lower throughout the column with the 

recycle intercooling design. This is primarily due to the significant CO2 absorption that 

occurs in the recycle section (50% of CO2 into absorber), where the temperatures are 

moderated and heat is removed at the intercooler to prevent transfer to other sections of 

the absorber. Therefore, the recycle design benefits from the mass transfer enhancements 

in the recycle section and reduced temperature-related driving force limitations outside of 

the recycle section compared to the in-and-out intercooling design.  
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6.5 NOVEL CONCEPTS: HYBRID CONTACTING   

The development of the recycle intercooling design has highlighted the potential 

performance enhancement of operating a portion of the absorber with a large L/G for 

NGCC applications. However, as noted in the analysis of the benefits of recycle 

intercooling (Section 6.3.2.3), a potential downside of the recycle design is the 

diminished driving forces in the column due to solvent recycle (absorber is no longer a 

true counter-current contactor). To address this shortcoming of the recycle design while 

retaining the benefits of high intensity contacting, a new hybrid contacting method was 

developed. 

6.5.1 Description of Hybrid Contacting Concept 

The general concept of hybrid contacting is illustrated in Figure 6-17. 
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Figure 6-17: General hybrid contacting concept. The contactor, or contacting 

section, consists of M x N individual absorption beds. The liquid flow pattern moves 

from bed (1,1) to bed (i, N), then back on the subsequent row from (i+1,N) to (i+1,1). 

This “serpentine” liquid flow pattern continues until the liquid leaves on row M.  

The liquid is pumped through an intercooling exchanger between each bed. The gas 

is split into N identical streams which flow in parallel through each column of beds.  

The hybrid contactor design consists of a series of smaller contacting sections (or 

absorbers) arranged in specific pattern to maximize driving forces for mass transfer, 

ensure high intensity (high liquid-gas-ratio, L/G) contacting, and to approximate 

isothermal contacting conditions with repeated intercooling between beds. There are two 

dimensions for the arrangement of the individual contacting sections: the vertical axis, or 

rows, from 1 to M, and the horizontal axis, or columns, from 1 to N (M x N contactor 

“size”).  The solvent moves along the rows of the hybrid configuration, alternating flow 
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direction on each subsequent row (flows from 1 to N on one row, and back from N to 1 

on the next row). This forms a serpentine pattern for the liquid flow as it moves down the 

contactor. In addition, the liquid is cooled between each bed in series to approximate 

isothermal contacting.  

The gas flows along the vertical axis, or columns, of the hybrid design. The inlet 

gas to the contactor is split into “N” identical streams, each fed to a column, or 

independent vertical gas flow path, in the contactor. Within each bed in the contactor, the 

gas counter-currently contacts the liquid flowing down the bed. By splitting the gas and 

contacting each independent gas stream with the full feed rate of the liquid, the hybrid 

design has successfully increased the L/G in each contacting section by a factor of “N” 

over a simple countercurrent contacting scheme with a single contactor. This high 

intensity contacting generates turbulence to enhance mass transfer and helps moderate 

temperatures in each bed by damping the effect of heat generated in the absorption 

process (large amount of liquid compared to the gas treated and solute transferred). 

The dimensions (or packing configuration) of the hybrid contactor can be varied 

(degrees of freedom) to change the performance of the hybrid section as defined by the 

generic M x N contactor size in Figure 6-17. As additional beds are added to a given row, 

the L/G in each section increases. Alternately, as additional packed sections are added to 

each column (increase number of beds vertically), the design becomes more “counter-

current” (better average driving forces through the contactor). This effect is a result of the 

serpentine liquid flow pattern described in Figure 6-17. As each gas stream moves up the 

contactor, it sees alternating high and low liquid loadings (concentration of solute in the 

liquid) or, equivalently, alternating high and low driving forces for mass transfer. This 

has the net effect of balancing the average driving forces for each stream of stream of gas 

through the contactor. As additional beds are added to as column, the changes in liquid 
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loading are smaller, and driving forces are more continuous through the contactor, as in a 

true counter-current or plug flow scheme.   

In addition, the diameter (subject to flooding constraints) and height (subject to 

outlet gas specifications) of each packed section in the hybrid design can be varied 

independently, subject to practical constraints of constructing the contactor and costs 

associated with a customized design. It should be noted that any variation in the pressure 

drop across the independent gas flow paths (or columns) in the hybrid contactor will lead 

to different gas flows along the independent paths. 

  

6.5.2 Proof of Concept: Hybrid Contacting vs. Recycle Intercooling 

To demonstrate and validate the potential benefits of the hybrid concept, the 

design was compared to a specific recycle intercooling case. The use of hybrid contacting 

as an intercooling section is depicted in Figure 6-18. 
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Figure 6-18: Absorber PFD for Hybrid Intercooling Design. The column is divided 

into three major sections. MP-250X is used in the top and bottom section and 

various coarse structured packing (MP-170X) is used in the middle (6 packed bed 

hybrid section) to maintain 70% max approach to flood.  The solvent is cooled to 

40°C above and below the middle section of the column and between each of the 

beds in the hybrid section (7 total exchangers). The liquid flow path is indicated by 

the sequence of numbers in the intercooled section (1-6) and the 3 parallel flow 

paths are designated A, B, and C.  

The recycle section in the middle of the absorber has been replaced by a series of 

smaller contacting sections. The 2 x 3 hybrid intercooling design replicates the high 

liquid rate per wetted perimeter of the recycle design by splitting the gas into 3 packed 
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sections which are counter-currently contacted by the full solvent rate (3 times the L/G in 

the rest of the column). In addition, the single intercooling function in the recycle design 

is now discretized as the solvent is cooled between each bed of the hybrid design. Finally, 

because of the contacting pattern used in the hybrid design (serpentine liquid flow 

through the two rows), the hybrid contactor is closer to a counter-current design than the 

fully-back-mixed recycle design and should benefit from better driving forces throughout 

the section. 

 A uniform 2 x 3 design (each bed has the same diameter and height) was selected 

as a baseline for comparison to a recycle intercooling design operated at LRecycle/G = 3 to 

minimize the complexity of a concept still in preliminary development stages. The 

conditions for the analysis are summarized as follows: 

 NGCC (4.1 mol% CO2) flue gas (See Table 6-1) 

 Lean Loading = 0.27 mol CO2/mol alkalinity 

 L/G = 1.5 (L/LMIN = 1.2 based on recycle design) 

 8 m PZ 

 90% CO2 removal  

 MP-250X in top and bottom beds, MP-170X in intercooling bed 

The hybrid intercooling design is compared directly to the recycle design by 

isolating the intercooling section. The solvent and gas entering the recycle intercooling 

section (from the top and bottom sections) are fed to the hybrid intercooling section and 

the CO2 removed in the intercooling section will be matched in the hybrid design by 

varying the total packing requirement. This approach will highlight the benefit of the 

hybrid design under identical operating conditions by quantifying the change in packing 

required in the section. In addition, heat duty and energy requirements for important 
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peripheral equipment associated with the intercooling loops (pumps, exchangers) are 

compared in Table 6-6. 

 

Table 6-6: Comparison of Hybrid and Recycle Intercooling Sections 

  Recycle Intercooling Hybrid Intercooling  

Total Packing Area MP-170X  

(1000 m2) 
585 298 

Total Packed Height in 

Intercooling Beds (m) 
11.4 17.4 (6 x 2.9)1 

CO2 Removal in Intercooling 

Section2
 

50% 

Total IC Heat Duty (MW) 72.6 79.2 

Gas-Side Pressure Drop (Pa) 1297 662 

Gas-Side Gross Fan Power3 

(kW) 
1037 529 

Liquid-Side Gross Pump 

Power (excl. exchanger ΔP)3,4 

(kW) 

476 240 

Total Gross Electric Power 

(kW) 
1513 769 

Gas Outlet T (K) 314.6 313.5 

1: Total packed height of hybrid is sum of all 6 beds. Each bed is 2.9 m. The path length 

of the gas is only 5.8 m (2 beds).  

2: Based on inlet flue gas CO2 

3: Gross power requirement does not account for efficiency  

4: Pump power accounts for liquid pumping head in each design for total height of 

packing. 
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The hybrid design reduces both the packing requirement and gross electric power 

requirement of the intercooling section by ~50% for the same CO2 removal. The packing 

requirement is a result of the enhanced driving forces in the intercooling section. The 

gross power requirement reduction is a result of two effects. The overall gas flow path 

length is reduced - the gas only passes through 5.8 meters of packing (2 sections @ 2.9 m 

each) to reduce the pressure drop in the intercooling section. In addition, the liquid 

pumping head is reduced because the solvent rate is cut by 1/3 compared to the recycle 

design, but the total packing height that the solvent is pumped over (6 x 2.9 m = 17.4 m) 

did not increase correspondingly from the recycle case. Finally, the overall intercooling 

heat duty is approximately the same for the two designs despite the addition of several 

coolers in the hybrid case – the heat of absorption is removed throughout the intercooling 

section in the hybrid design as opposed to the single exchanger leaving the recycle 

section.  

The driving force and temperature profiles for the two intercooling methods are 

compared in Figure 6-19 and Figure 6-20.  
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Figure 6-19: Total driving force (PCO2, Bulk Vapor – P*CO2, Bulk Liquid) comparison in 

intercooling section: 2 x 3 hybrid intercooling contactor vs. recycle intercooling with 

bypass (LRecycle/G = 3). Normalized packing height in intercooling sections only from 

top to bottom of the section. Parallel gas flow paths A, B, and C are labeled in 

Figure 6-18. LLDG = 0.27 mol CO2 mol alkalinity, 8 m PZ, MP-170X for both 

configurations.  
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Figure 6-20: Solvent temperature comparison in intercooling section: 2 x 3 hybrid 

intercooling contactor vs. recycle intercooling with bypass (LRecycle/G = 3). 

Normalized packing height in intercooling sections only from top to bottom of the 

section. Beds 1 to 6 are numbered along solvent path in Figure 6-18. LLDG = 0.27 

mol CO2 mol alkalinity, 8 m PZ, MP-170X for both configurations. 

The figures illustrate the discontinuous nature of the driving forces and temperatures in 
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solvent moves through the intercooling section and the intercooling of the solvent 

between every bed. In addition, the driving forces are consistently larger for the hybrid 

intercooling design compared to the recycle intercooling approach. This is due, in large 

part, to the closer approach to counter-current contacting in the hybrid design. However, 
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each bed, the hybrid design approaches a continuous cooling configuration (isothermal 

section) while the recycle configuration removes approximately the same amount of heat 

(Table 6-6) but at one discrete location.  

6.5.3 Process Intensification: Integrating the DCC and Intercooling functions  

The analysis of the recycle intercooling design highlighted the advantages over 

in-and-out intercooling for the NGCC application. The discussion in section 6.4.1 

concluded that the gas cooling effect of the solvent recycle was not significant compared 

to the CO2 removal in the recycle section. However, as Table 6-5 highlighted, the solvent 

recycle did effectively cool the gas while concurrently absorbing a significant amount of 

CO2. In addition, the analysis in Chapter 5 indicated that the rich end of the absorber is 

expected to be most severely limited by diffusion of reactants and products (most 

sensitive to the physical liquid-film mass transfer coefficient). Therefore, the rich end (or 

bottom) of the column should be expected to benefit the most from an absorber design 

that generates turbulence to enhance the liquid-film mass transfer coefficient. These two 

points together support the concept of a recycle intercooling section or hybrid 

intercooling section at the bottom of the column that replaces the direct contact cooler 

(DCC) that cools the incoming flue gas. The costs associated with a separate unit 

operation to cool the flue gas are eliminated.  

During the initial development of the recycle intercooling concept, a large study 

to develop absorber and stripper configurations for various natural gas flue gas sources 

(NGCC, NGCC with exhaust gas recycle (EGR), and natural gas-fired boiler) was 

completed and the combined recycle intercooling-DCC concept was evaluated6. This 

initial evaluation concluded that the DCC could be replaced by a solvent recycle section, 

                                                 
6 The work for this study was supported by TOTAL 
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but a second recycle bed was required in the column to perform the typical intercooling 

function. The full report for this project is included in Appendix F and demonstrates the 

feasibility of the DCC replacement concept. 

The goal of the current analysis is to develop a DCC replacement that 

simultaneously performs the function of the DCC and recycle intercooling - primarily to 

absorb CO2 to limit absorption required in sections outside of the recycle loop. Therefore, 

four absorber configurations will be compared to evaluate the performance of DCC 

integration concepts: 

1) Recycle Intercooling with DCC (BASE CASE): 3 bed absorber design with 

recycle intercooling around middle bed and separate DCC unit operation 

(Figure 6-2) 

2) Recycle Intercooling, NO DCC: 2 packed bed design, bottom bed with recycle 

IC to replace DCC (Figure 6-21). 

3) Hybrid Intercooling (2 x 3), NO DCC: 2 column sections, top section is 

standard counter-current bed, bottom section is a 2 x 3 hybrid intercooling 

design (6 beds) (Figure 6-22). 

4) Hybrid Intercooling (1 x 3), NO DCC: 2 column sections, top section is 

standard counter-current bed, bottom section is a 1 x 3 hybrid intercooling 

design (3 beds) (Figure 6-23). 

 

 



 267 

 

Figure 6-21: Absorber PFD for Recycle Intercooling, NO DCC. The column is 

divided into two sections. MP-250X is used in the top section and coarse structured 

packing (MP-170X) is used in the bottom (solvent recycle) bed to maintain 70% max 

approach to flood.  A portion of the rich solvent leaving the absorber (the specified 

recycle rate) is pumped through an intercooler (T = 40°C) back to the top of the 

bottom bed of packing. The down-coming solvent from the top bed of packing is 

mixed with the recycle stream upstream of the exchanger to ensure that all solvent 

enters the bottom bed at 40°C. The recycle serves the function of the direct contact 

cooler as it contacts hot flue gas.  
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Figure 6-22: Absorber PFD for 2 x 3 Hybrid Intercooling Design, NO DCC. The 

column is divided into two major sections. MP-250X is used in the top section and 

coarse structured packing (MP-170X) is used in the bottom section (6 packed-bed 

hybrid section) to maintain 70% max approach to flood.  The solvent is cooled to 

40°C above the hybrid section of the column and between each of the beds in the 

section (6 total exchangers). The liquid flow path is indicated by the sequence of 

numbers in the intercooled section (1-6) and the 3 parallel gas flow paths are 

designated A, B, and C. The hybrid section serves the function of the direct contact 

cooler as it contacts hot flue gas. 
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Figure 6-23: Absorber PFD for 1 x 3 Hybrid Intercooling Design, NO DCC. The 

column is divided into two major sections. MP-250X is used in the top section and 

coarse structured packing (MP-170X) is used in the bottom section (3 packed-bed 

hybrid section) to maintain 70% max approach to flood.  The solvent is cooled to 

40°C above the hybrid section of the column and between each of the beds in the 

section (3 total exchangers). The liquid flow path is indicated by the sequence of 

numbers in the intercooled section (1-3) and the 3 parallel gas flow paths are 

designated A, B, and C. The hybrid section serves the function of the direct contact 

cooler as it contacts hot flue gas. 

The 1x3 hybrid was added to the analysis to test the hybrid intercooling 

configuration in the simplest format. The design is expected to lose some of the driving 

force benefits of a design with additional rows (i.e., 2x3) as each fresh gas stream will 

contact very different solvent loadings and lead to a distribution of CO2 concentration in 

the gas outlet (less counter-current design). However, the design will retain benefits of a 

high L/G and discretized intercooling.  
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The flue gas conditions (repeated from Table 6-1) and absorber equipment and 

operating specifications for the study are presented in Table 6-7. 

Table 6-7: DCC Integration Study Conditions 

Gas Conditions 

Gas Feed Rate 
114,000 kmol/hr 

3,230,000 kg/hr 

Temperature 106 °C 

Pressure 1 atm  

Composition (Mole %) 

CO2 4.0% 

H2O 8.7% 

N2 74.3% 

O2 12.1% 

Data from NETL Case 13 

 (National Energy Technology Laboratory 2010) 

Absorber Specifications 

Solvent 8 m PZ 

Lean Loading  0.27 mol CO2/mol alk. 

CO2 Removal Specification 90% 

L/G 1.5 mol/mol 

Packing Type 

Outside of Intercooling 

Sections 
MP-250X 

Intercooling Sections MP-170X 

Solvent Recycle Rate LRecycle/G = 3  

Hybrid Bed Configurations 
2 rows by 3 columns (6 beds) 

1 row by 3 columns (3 beds) 

 

The important characteristic of the flue gas composition is the water content in the 

NGCC application. The flue gas contains approximately 9% H2O at an elevated 
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temperature of 106°C. The target for flue gas cooling in a direct contact cooler prior to 

entering the absorber is 40°C, where the saturated flue gas would contain 7.6% H2O. 

Therefore, as the flue gas from the NGCC source is cooled, a net transfer of water to the 

solvent occurs (introduction of water to the capture system). However, in certain natural 

gas cases, the water content may be lower than the saturation concentration at 40°C (see 

Appendix F). This allows cooling of the flue gas with the solvent without concern for 

potentially disrupting the water balance in the capture system.  

In addition, the flue gas rapidly cools to the wet-bulb temperature based on the 

specific vapor composition (driving force for water transfer), so the lower water content 

in the flue gas for NGCC applications indicates a lower wet-bulb temperature for the 

vapor. The elimination of the DCC is not possible for flue gas from a coal-fired boiler, 

for example, which might contain approximately 15% H2O in the incoming flue gas. 

6.5.3.1 Results 

The absorber configurations were compared in terms of the minimum solvent rate 

(LMIN) to assess any temperature restrictions created by the introduction of hot flue gas at 

the rich end of the absorber and the packing requirement at a common L/G. The results of 

the LMIN comparison are presented in Figure 6-24. 
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Figure 6-24: Ratio of the minimum solvent rate (“infinite” packing) for specified 

intercooled absorber configurations to the minimum solvent rate for an isothermal 

absorber (T = 40 °C) (LMIN, INTERCOOLED/LMIN. ISOTHERMAL). Intercooled absorber 

designs include recycle intercooling without a DCC (2 beds), recycle intercooling 

with a DCC (3 beds), and hybrid (2x3) intercooling without a DCC. All designs are 

for 90% CO2 capture from a NGCC power plant (4.1% CO2) utilizing 8 m PZ. Lean 

loading = 0.27 mol CO2/mol alkalinity. For the recycle designs, a recycle rate of 

LRecycle/G = 3 was implemented.  

The recycle method to replace the DCC is insufficient to address temperature 

limitations in the absorber as the minimum solvent rate is ~25% higher than an 

isothermal absorber. As noted, previous work on the use of solvent recycle to replace the 

direct contact cooler revealed that a second, separate intercooling loop is needed to 

separate the gas cooling and intercooling functions in the absorber (Appendix F). While 

the double recycle design would eliminate the DCC and associated costs, some of the 
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benefit is offset by the additional complexity in the absorber.  The hybrid design, 

however, outperforms both recycle configurations (with and without a DCC). This 

indicates that the hybrid design cools the gas and effectively removes CO2 

simultaneously without incurring a significant temperature restriction in the rich end of 

the column.  The large L/G and multiple intercooling loops ensure that the temperatures 

in the intercooling section are moderated and allow the hybrid design to closely 

approximate the performance of an isothermal absorber at the limit of “infinite” packing.  

The configurations were also evaluated at a common solvent flow rate for all 

designs (L/G = 1.5) (Table 6-8). 

Table 6-8: DCC Replacement Evaluation at L/G = 1.5 

  

BASE with 

DCC 
NO DCC 

Recycle 

Intercooling 

Recycle 

Intercooling  

Hybrid 

Intercooling 

(2 x 3) 

Hybrid 

Intercooling 

(1 x 3) 

L/G (mol/mol) 1.5  

L/LMIN 1.2 1.04 1.23 1.14 

Rich Loading 

(mol CO2/mol 

alk.) 

0.368 

Total Packing 

Area  

(1000 m2) 

1499 2444 816 1138 
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Table 6-8: Continued 

Packing Specifications by Section (m) 

Total Height 

Outside of IC 

(MP-250X) 

Top: 5.3  

Bottom: 7.1 
31  1 4.8 

Total Height in 

IC Section 

(MP-177X) 

11.4 10 
41 (6.8 x 6 

beds)1 

41 (14.1 x 3 

beds)1 

Column 

Diameter2 
19.2 19.75 

Top: 19.75 

Hybrid: 11.4 

Top: 19.75 

Hybrid: 11.4 

Intercooling Section Performance 

CO2 Removal in 

Intercooling 

Section3 

50% 66% 87% 74% 

Packing/CO2 

Removed: 

Intercooling 

section 

(m2/mol/s) 

915 1980 667 812 

Gas Outlet T, 

Intercooling 

Section (K) 

N/A 313.9 313.3 313.3 

1: Total packed height of hybrid is sum of all beds. Each bed is 6.8 m for the 2 x 3 or 

14.1 for the 1 x 3. The flow path length of the gas is 13.6 m (2x3) or 14.1 m (1x3).  

2: Column diameter for the top counter-current bed and hybrid beds defined to yield the 

same gas superficial velocity (i.e., cross-sectional area of each hybrid section is 1/3 of top 

counter-current bed) 

3: Based on inlet flue gas CO2 

 

At a common solvent rate (common rich loading), both hybrid configurations 

without a DCC significantly outperform the recycle designs. The 2x3 hybrid reduces the 

total packing requirement by 45% compared to the base design with a DCC and by 67% 

compared to the recycle configuration without a DCC. The 1x3 hybrid provides a 24% 
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packing reduction vs. the base design with a DCC and 53% reduction vs. the recycle 

configuration without a DCC.  The subsequent discussion will focus on the 2x3 hybrid 

design due to the large performance improvements, but the 1x3 design is a promising 

design with the advantage of reduced complexity, packing sections, and peripheral 

equipment.     

The recycle design without a DCC is severely limited at the selected operating 

condition as it is operating near the minimum solvent rate for the configuration. 

However, to operate in a reasonable operating range (e.g., 1.2 LMIN), the rich loading and 

corresponding energy performance of the system would suffer. The hybrid performance 

improvement over the recycle design with a DCC indicates that the integrated DCC and 

intercooling function does not limit the hybrid intercooling performance. This is 

supported by the normalized packing requirement in the intercooling sections – the 2x3 

hybrid reduces the packing required per mole of CO2 absorbed by nearly a third 

compared to the base case recycle design.  

The top (counter-current) bed in the 2x3 hybrid design contains a limited amount 

of packing (1 m) and does not remove a significant amount of CO2 (~ 3% of CO2 in flue 

gas). A design was evaluated without the top bed (2 x 3 section only) – the results are 

summarized in Table 6-9. 
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Table 6-9: Hybrid Intercooling without a top counter-current section of packing 

  

Hybrid Intercooling 

(2 x 3) 

With CC top Section No Top Bed  

L/G (mol/mol) 1.5  

Rich Loading 

(mol CO2/mol alk.) 
0.368 

Total Packing Area  

(1000 m2) 
816 842 

Packing Specifications by Section (m) 

Total Height Outside of IC 

(MP-250X) 
1 N/A 

Total Height in IC Section 

(MP-177X) 
41 (6.8 x 6 beds)1 47 (7.8 x 6 beds)1 

Column Diameter2 
Top: 19.75 

Hybrid: 11.4 

Top: N/A 

Hybrid: 11.4 

1: Total packed height of hybrid is sum of all beds. Each bed is 6.8 m for the 2 x 3 with a 

top section or 7.8 for the 2 x 3, no top section. The flow path length of the gas is only 

13.6 m and 15.6m, respectively. 

2: Column diameter for the top counter-current bed and hybrid beds defined to yield the 

same gas superficial velocity (i.e., cross-sectional area of each hybrid section is 1/3 of top 

counter-current bed) 

 

As the table illustrates, the design without a top section has a slight deterioration 

in performance (~3% more packing required). However, this small cost in packing is 

likely offset by the cost and complexity of adding an addition section to the column 

(packing supports, distributors, column, shell, etc.). The reason that the top section 
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enhances performance is because the lean end of the column has the lowest gas-side CO2 

concentrations and the beds in the crossflow design are not equally efficient in treating 

the gas as it approaches the outlet gas concentration – the bed with the most restrictive 

driving forces drives the packing requirement for the entire hybrid design (under the 

constraint that each bed must have the same dimensions). The counter-current section 

ensures that the crossflow beds only operate to their optimal CO2 removal in each gas 

section – the top bed then provides the best possible driving forces to complete the 

required CO2 removal.  This will be more important to achieve high CO2 removal rates 

(e.g., 99% removal).  

The performance of each bed in the 2x3 hybrid intercooling was also evaluated 

based on the fraction of inlet CO2 removed by each bed. The results are presented in 

Figure 6-25. 
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Figure 6-25: Performance (CO2 removed) of each bed in the intercooling section of 

the 2x3 hybrid absorber configuration. The 3 gas flow paths (A, B, C) and 6 beds (2 

x 3 configuration) are defined in Figure 6-22. 

The figure highlights a general pattern associated with the hybrid contacting 

scheme – the two rows of beds and the liquid flow path (Figure 6-22) ensure the CO2 

removed in any gas flow path is balanced. For example, gas flow path A contacts the 

richest solvent (bottom left bed) and the leanest solvent (top left bed) in the configuration 

- the CO2 removal rate follows this solvent loading pattern. Each of the 3 gas flow paths 

experiences similar CO2 removal rates. The balancing of CO2 removal across rows allows 

the hybrid design to approach counter-current contacting – additional rows of beds would 

improve the counter-current nature of the contacting scheme.  
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The figure also confirms that the introduction of hot flue gas does not have a 

significant detrimental effect of CO2 removal performance of the bottom beds – the 

highest CO2 removal occurs in a bottom bed (bottom right). This explains the 

performance of the 1x3 hybrid design as well.  

 Finally, the temperature profiles for each design were evaluated to determine the 

effectiveness of each design in cooling the gas and to provide an explanation for the 

performance improvement seen with the hybrid contactor.  
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Figure 6-26: Vapor temperature comparison for DCC integration configurations: 

2x3 hybrid intercooling contactor vs. recycle intercooling (LRecycle/G = 3). Fractional 

packing area moves from top to bottom of the absorber. For hybrid intercooling, 3 

parallel paths exist – A, B, and C in Figure 6-22. Flue gas enters at 106°C with 8.7 

mol% H2O. LLDG = 0.27 mol CO2 mol alkalinity, 8 m PZ, MP-250X (top bed) and 

MP-170X (bottom section) for both configurations. 
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Figure 6-27: Solvent temperature comparison for DCC integration configurations: 2 

x 3 hybrid intercooling contactor vs. recycle intercooling (LRecycle/G = 3). Fractional 

packing area moves from top to bottom of the absorber. For hybrid intercooling, 3 

parallel paths exist – A, B, and C in Figure 6-22. Flue gas enters at 106°C with 8.7 

mol% H2O. LLDG = 0.27 mol CO2 mol alkalinity, 8 m PZ, MP-250X (top bed) and 

MP-170X (bottom section) for both configurations. 

The vapor temperature profile compares the ability of the recycle and hybrid 
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point (top of the recycle section) and the entire recycle bed is required to cool the gas to 

40°C while simultaneously capturing CO2. Therefore, the fine discretization (multiple 

beds with multiple intercoolers) in the hybrid design provides an advantage in managing 

the hot flue gas in addition to the expected driving force and solvent cooling benefits.  

The solvent temperature profile for the hybrid design follows the CO2 removal 

pattern in Figure 6-25 – the beds with highest CO2 removal exhibit the highest 

temperatures. Only the top row of beds forms a temperature bulge – this is because the 

bottom beds contact hot flue gas and therefore the temperature increases monotonically 

through these beds. In addition, the average temperature of the solvent contacting the 3 

identical gas streams is consistently lower than the recycle design. Finally, the solvent 

temperature in the top (countercurrent) bed of the hybrid design is much lower than the 

recycle design simply due to the limited CO2 transferred in this section (~3%). The top 

bed in the hybrid design is acting as a polishing section, while the counter-current section 

in the recycle design is essential to maintain adequate driving forces for the overall mass 

transfer performance of a recycle intercooling configuration with a recycle bed at the 

bottom (rich end) of the column. 

 

6.5.4 Other contacting concepts for future analysis  

An extension of the hybrid intercooling configuration is a true crossflow 

contacting scheme (Figure 6-28) where the vapor and liquid flow in different planes 

(perpendicular to one another). 
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Figure 6-28: Absorber PFD for Crossflow Design.  The solvent and gas flow 

perpendicularly in each bed (crossflow) with an independent column cross-section 

for each phase. The solvent is cooled between each module of crossflow to serve as 

intercooling mechanism.   

The crossflow approach has created an additional degree of freedom by separating the 

vapor and liquid flow cross-sections. A high liquid rate per perimeter (high-intensity 

contacting) is not limited by the vapor cross-section and flooding or pressure drop 

constraints as in a counter-current contactor. In addition, the solvent cooling can be 

integrated readily into the modular design proposed in Figure 6-28. The crossflow 

approach is limited by the sacrifice of driving forces compared to a countercurrent 

contactor. 

 The modeling and evaluation of a crossflow contactor requires two major 

modifications to the methods currently used for countercurrent contactors: 

1) Two-dimensional integration of concentration profiles to account for vapor and 

liquid flow in different axes.  
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2) Mass transfer models for packing (or other column internals) that account for the 

flow patterns specific to a crossflow contactor. Vapor “drift” has been observed in 

crossflow contactors, for example, and requires special attention when modeling 

mass transfer in crossflow patterns (Thibodeaux, et al., 1977). 

Two dimensional integration is not readily available in AspenPlus®. Specifically, the 

rate-based methods used for absorber modeling in this work will be required in a rigorous 

two dimensional model as well. A workaround may be to use the rate-based column 

model in Aspen as individual, small, and well-mixed computational nodes in the 

crossflow contactor. However, to model a full absorber with this method will be 

computationally inefficient and may limit the use of design specifications or optimization 

tools.  

Mass transfer models and data for crossflow contacting are very limited in the 

literature and would necessitate experimental evaluation which might include design and 

development of column internals specific for the crossflow application (e.g., structured 

packing that considers the perpendicular flow paths of the solvent and vapor).  

 

6.6 CONCLUSIONS 

Novel intercooling concepts were proposed based on the fundamental 

mechanisms effecting absorber performance, as identified in preceding chapters. The 

novel concepts were evaluated in comparison to in-and-out intercooling and to one 

another to identify the best potential configurations for the NGCC application.  

6.6.1 Evaluation of Recycle Intercooling Method for NGCC Application 

 Recycle intercooling benefits are maximized at recycle rates in the range of 

LRecycle/G ≈ 2 – 4 or LRecycle/ LFeed ≈ 2.5 – 5. 
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o Incremental economic analysis indicates pumping costs become 

prohibitive beyond this range.  

o Evaluation of recycle intercooling benefits reveal that the driving force 

benefits also fall beyond this range as back-mixing outweighs small 

incremental intercooling benefits. The mass transfer enhancement of the 

recycle design also exhibits diminishing returns at high recycle rates.  

 Potential pressure drop benefits of recycle intercooling (lower velocities from 

cool, dense gas and reduced overall column height) can serve to offset pumping 

costs and make recycle design potentially feasible over the full range of recycle 

rates tested (LRecycle/G = 0.5 – 8) 

 Mechanistic evaluation of recycle intercooling benefits revealed that the liquid-

film mass transfer enhancement is the dominant source of benefits from the 

recycle.  

 The “intercooling” benefit of the recycle design is the absorption of CO2 in a 

section with a large L/G and an integrated intercooling loop. This limits the 

absorption (and temperature constraints) outside of the recycle section. 

  Gas cooling is a relatively minor benefit compared to in-and-out intercooling as 

the temperature is not reduced significantly and the capacity of the gas to carry 

water is not increased significantly.  

 Recycle intercooling provides significant solvent capacity benefits (improved 

approach to isothermal LMIN) at lean loadings above 0.25 mol CO2/mol alkalinity, 

where adiabatic absorbers and simple intercooling are severely limited by 

temperature-related equilibrium restrictions.  

 Recycle intercooling outperforms simple intercooling in terms of packing-solvent 

rate (capital-operating cost) trade-off due to significant mass transfer 
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enhancement realized in the recycle section and the overall reduction of 

temperatures throughout the absorber compared to in-and-out intercooling. The 

mass transfer enhancements are also sufficient to equal or outperform a simple 

isothermal absorber across the entire range of operating L/G.  

6.6.2 Novel Absorber Configurations 

A hybrid contacting scheme was introduced as a method to enhance mass transfer 

performance of absorbers by generating turbulence and moderating temperatures (high 

L/G) and improving driving forces (more “counter-current” than recycle configuration 

and distributed intercooling throughout absorption process). 

 A 2x3 hybrid intercooling design was evaluated as a one-to-one replacement for 

the recycle intercooling section (LRECYCLE/G = 3) in an absorber treating NGCC 

flue gas (4.1% CO2): 

 The hybrid intercooling configuration yielded ~50% reduction in packing 

and ~50% reduction in gross power requirements (solvent pumping and 

gas-side pressure drop) to achieve identical performance (CO2 removal, 

gas and liquid exit temperatures) in the isolated intercooling sections. 

 The hybrid design maintains consistently larger driving forces and lower 

temperature throughout the intercooling section.  

 Hybrid intercooling designs (2x3 and 1x3) were evaluated as a method to replace 

the direct contact cooler (DCC) and by integrating the gas cooling and 

intercooling function in one section of the absorber.   

 The hybrid intercooling design was within 5% of the maximum solvent 

capacity (i.e., isothermal LMIN) for the given conditions (LLDG = 0.27 mol 
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CO2/mol alkalinity, 90% CO2 removal effectively removing any 

temperature-induced equilibrium constraints.  

 At a common operating condition (L/G = 1.5, RLDG = 0.368 mol 

CO2/mol alkalinity), the hybrid designs significantly outperformed recycle 

designs: 

i. The 2x3 hybrid reduced packing requirements by 45 and 67% over 

the recycle intercooling design with a DCC (base case) and the 

recycle design without a DCC, respectively.  

ii. The 1x3 hybrid reduced packing requirements by 26 and 55% over 

the recycle intercooling design with a DCC (base case) and the 

recycle design without a DCC, respectively.  

iii. A small countercurrent section (~10% of total packing area, 1 m 

bed) is required at the top of the 2x3 design to account for small 

imbalances in CO2 removal in the 3 gas flow paths for the hybrid. 

This section increases to 4.7 m in the 1x3 design (~33% of total 

packing area).  

iv. All designs without a DCC (hybrid and recycle) rapidly cool the 

entering hot flue gas (within the first 10% of the column) to the 

wet bulb temperature. The hybrid design maintains lower average 

vapor and solvent temperatures throughout the contactor. 

 

6.6.3 Open Research Issues 

 Modeling of any novel contacting scheme (e.g., rotating packed bed, cross-flow), 

column internals (trays, hybrid packing), operating conditions (e.g., high solvent 
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loads), or solvents with unique physical properties (e.g., high viscosity) will 

require independent, accurate, and physically representative component mass 

transfer models to properly design and optimize the system. As novel absorber 

concepts move to leveraging detailed mass transfer mechanisms to improve 

performance, the empirical mass transfer models must provide adequate 

resolution of the specific mechanisms being used to properly develop and 

optimize the design. Therefore, mass transfer model development and 

experimental characterization of mass transfer phenomena in real contactors are 

among the most important areas of open research for CO2 capture systems. 

 Novel designs, such as hybrid contactor, need to be taken to the next step of 

conceptual equipment design to understand any potential hidden costs or design 

challenges prior to further development or evaluation (i.e., economic assessment, 

pilot testing, etc.). 

 Modeling of true cross-flow contacting requires mass transfer data specific to the 

contacting scheme (limited data) and development of a 2-D integration method 

for use with rigorous rate-based contactor and solvent models in AspenPlus®. 
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Chapter 7: Conclusions and Recommendations 

7.1 GENERAL ABSORBER DESIGN AND RESEARCH RECOMMENDATIONS 

A primary goal of the work in the preceding chapters was to develop general 

recommendations regarding absorber design with amine solvents. The following broad 

recommendations have been developed in the preceding chapters and will be supported 

by the conclusions for each research objective.    

1) Low CO2 flue gas sources (NGCC, 4% CO2 in this work) provide the best 

opportunity for operation without intercooling (large lean loading range) but 

also require advanced intercooling design once a temperature-limitation is 

realized (simple intercooling is insufficient). 

2) Higher CO2 flue gas sources (Coal, 15% CO2 and Steel, 27%, in this work) 

require intercooling over the entire practical operating range of piperazine, but 

simple (in-and-out intercooling) is largely effective.  

3) Lower capacity solvents (larger inherent solvent circulation rates, 5 m PZ in 

this work) should be operated with simple intercooling. 

4) Operating with reduced CO2 removal targets (< 90%) expands the lean 

loading range for operation without intercooling and reduces the penalty of 

operating with intercooling when a limitation is realized. Higher removal 

targets (>90%) will require intercooling, including the development of 

advanced designs.  

5) The “optimal” location of the intercooler in an in-and-out intercooling design 

will be in the middle 50% of the column at normal solvent operating 

conditions (L/LMIN 1.1 to 1.8) and can be predicted by underlying “pinch” 

behavior. Extreme locations (high or low) are not expected and movement 
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from a default location in the middle (Z/ZTOTAL =0.5) of the column provides 

limited benefit.  

6)  Liquid-film physical mass transfer is a significant factor in absorber 

performance with fast amines (especially viscous solvents). The rich-end of 

the absorber is particularly limited and absorber design or internals should be 

customized to enhance liquid-film turbulence to maximize absorber 

performance in these cases.  

7) Reducing the viscosity of fast amine solvents (5 m vs. 8 m PZ) has a 

significant impact on absorber performance and should be considered 

carefully in solvent development.  

8) Measurement (and complete understanding) of the liquid-film mass transfer 

coefficient (as a function of operating conditions, column internals, and 

physical properties) is one of the most important research areas for absorber 

modeling and process development.  

9) Novel high intensity (high L/G) contacting schemes (increase L/G without 

increasing feed solvent rate, i.e. recycle or hybrid scheme in this work) are 

promising due to coupling of liquid-film mass transfer enhancement and 

temperature moderation.  

7.2 SIGNIFICANT INNOVATIONS  

In addition to the general absorber design recommendations, specific innovations 

and findings in this work are relevant to ongoing research and development of absorbers 

for CO2 capture: 

1) Solvent Recycle Intercooling: The approach of recycling (and cooling) solvent 

to create a section of the absorber with a high L/G was demonstrated to 
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provide significant mass transfer benefits and was an improvement over 

simple intercooling for the NGCC application. 

2) Hybrid Intercooling: This method, which splits the gas into multiple parallel 

paths sequentially contacting multiple passes of the solvent (e.g., 2 x 3 hybrid 

intercooling) provides the benefits of a large L/G ratio but with enhanced 

intercooling (at multiple discrete locations) and more counter-current 

contacting than the solvent recycle approach and has potential for all solvent 

absorption applications.  

3) Integrating the DCC and solvent cooling functions for NGCC: The recycle 

and hybrid intercooling methods were both demonstrated to successfully 

replace the direct contact cooler for NGCC applications while providing 

additional benefits associated with intercooling.  

4) Integrating sprays to create a recycle intercooling section: Tests at the pilot 

plant and subsequent modeling efforts demonstrated and quantified the 

benefits of integrating spray nozzles into the intercooling loop to create a 

solvent recycle section with mass transfer area provided by the spray. 

The detailed conclusions supporting these recommendations (and others) follow in the 

subsequent sections.  

7.3 CONCLUSIONS AND RECOMMENDATIONS BY RESEARCH OBJECTIVE 

7.3.1 Model Validation with Pilot Plant Data 

The rigorous rate-based absorber model using aqueous piperazine as the solvent 

was validated and adjusted using pilot plant data from the Separations Research Program 

pilot plant at the University of Texas at Austin. A data reconciliation procedure was 

implemented to simultaneously account for the measurement uncertainty for the pilot 
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plant measured inputs and to the model (flows, temperatures, etc.) and the uncertainty in 

the output metrics of the model (CO2 removal, outlet temperatures, etc.). In addition, an 

adjustable parameter was defined to allow fitting of the model to pilot data for any 

unexplained offset in the reconciliation process. The key findings of this reconciliation 

process can be summarized as follows:   

 A systematic bias between the model and pilot plant data was identified by a 

consistent model adjustment across two pilot plant campaigns covering a wide 

range of operating conditions and different types of packing. 

o The model bias could be corrected by an increase in the lean solvent 

loading of ~7% or by a 25% reduction in packing mass transfer area. 

o The CO2 correction had independent corroboration from separate stripper 

model validation and via a modified density-predicted loading. 

 The adjusted model was used in a second stage of data reconciliation to isolate the 

performance of a spray nozzle added to the intercooling loop in the pilot plant.  

o The mass transfer area of the spray nozzle was regressed during the 

reconciliation process and correlated to the kinetic energy (via mass flow 

rate) of the solvent. 

o The spray nozzle added between 5 and 20% additional mass transfer area 

to the column measured as an equivalent packing area.  

o A screening economic analysis to compare the cost of the pressure drop 

through the spray nozzle to the value of the mass transfer area added 

(quantified via the cost of an equivalent area of structured packing) 

revealed that the spray nozzle pumping costs always outweigh the value of 

area generated. However, the flexibility in design and operation provided 

by sprays make them a potentially attractive option.  



 293 

 

The final approach to model validation consisted of using the adjusted model to 

predict the performance of a new pilot plant campaign.  

 The model predicted NTU with an average error of 22% and over-predicted NTU 

on average (mean ratio of predicted/measured = 1.08). 

 The data showed a correlation with time (i.e., experiment number) exhibiting a 

distinct shift from consistent under-prediction to over-prediction of CO2 removal 

half way through the campaign. The worst fit of individual experiments occurred 

together in a cluster of runs in the second half of the campaign.  

 A pilot plant parametric study of absorber performance as a function of PZ 

concentration revealed that 5 m PZ significantly outperformed 8 m PZ in terms of 

mass transfer rates, indicating a strong impact of viscosity on absorber 

performance and the potential importance of liquid-film physical mass transfer in 

amine absorbers.  

Open Research Issues/Recommendations 

 The operation of the absorber at high CO2 removal conditions provides an 

opportunity to validate different absorber performance mechanisms related to 

operating near a pinch (small driving forces). Specifically, equilibrium constraints 

become controlling at pinched conditions and provide an opportunity to validate 

model VLE. Further validation of the model is need at these conditions.  

 The spray nozzle model developed in this work is largely empirical and is coupled 

to the packing mass transfer models used in the regression process (spray 

represented as a packed bed). If the spray nozzle continues to be used as a 

component of the pilot plant (or other modeling activities), the spray model 
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should be de-coupled from packing models by regressing a combined kLa to 

represent the true performance of the spray as a function of operating conditions.  

 Mid-loading measurements (or similarly, mid-column gas measurements) create a 

new degree of freedom for model validation of the absorber via a secondary 

material balance around half of the absorber. This new degree of freedom can be 

used to validate rate mechanisms in the absorber by considering the relative rates 

of CO2 absorption in each half of the column and identifying the controlling 

mechanism in the model which can be used to fit the new pilot plant data point. 

This is particularly relevant for the validation or measurement of physical-liquid 

film mass transfer coefficients, which are difficult to measure and extrapolate 

from experimental conditions to conditions in an actual amine absorber. Initial 

attempts with the approach of varying the overall volumetric mass transfer 

coefficient (kLa) indicates significant improvement in model prediction of mid-

loading compared to the base case, but still exhibits a consistent trend of over-

predication. 

7.3.2 Adiabatic Absorbers: LMIN and Pinch Phenomena 

The key findings of the evaluation of adiabatic absorbers and pinch phenomena 

associated with minimum solvent rates can be summarized as follows: 

 Operation of adiabatic absorbers in specific lean loading ranges can lead to severe 

penalty in solvent circulation requirements compared to an isothermal baseline. 

The governing phenomena for these solvent capacity penalties can be summarized 

as follows: 
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 Lean end pinch formation at the temperature bulge occurs at all lean 

loadings. CO2 removal constraint determines if lean pinch is limiting at 

given operating conditions.  

 Solvent rate increases to overcome lean end pinches initially “trap” heat in 

the column as the liquid rate is insufficient to moderate temperatures or 

carry heat away from the bulge. This leads to a drop in removal with 

increasing solvent rate.  

 As the solvent rate is increased further, the total liquid and vapor heat 

capacities (mCP) as calculated at the top of the absorber will crossover 

(The vapor heat capacity includes the enthalpy of vaporization of water for 

the vapor saturated at outlet conditions). This condition identifies the point 

where the liquid can effectively moderate bulge temperatures and address 

the equilibrium constraint.  

 The non-monotonic behavior of CO2 removal as a function of solvent rate 

through each of the preceding transitions can lead to multiple steady state 

solvent rates that meet the CO2 removal specification. Each steady state 

solvent rate can produce drastically different system design and can 

present process control challenges (stable operating condition). 

 Flue gas CO2 concentration has two critical effects on pinch formation and the 

associated solvent capacity penalty: 

 Lower CO2 flue gas concentrations (and associated lower temperatures) 

allow operation with a wider range of lean loading without a limiting lean 

end pinch. This provides flexibility in the design and operation of these 

systems (operation without intercooling). 
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 The solvent capacity penalty (measured as the ratio of the adiabatic 

minimum solvent rate (LMIN) to the isothermal minimum solvent rate 

(LMIN, ISOTHERMAL)) decreases as the flue gas CO2 concentration increases: 

i. NGCC (4.1% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 3.58 

ii. COAL (14.7% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 2.26 

iii. STEEL (27.1% CO2): Maximum LMIN/LMIN, ISOTHERMAL = 1.94 

iv. The trend is associated with the solvent rate increase required to 

overcome the difference in total heat capacities (vapor vs. liquid) 

to allow the solvent to moderate temperatures and address 

equilibrium constraints. NGCC, with inherently low L/G, has the 

largest “heat capacity deficit” to overcome. 

 Operating 5 and 8 m PZ for the same flue gas (composition and gas rate) and CO2 

removal rate generates an identical maximum temperature and lean end pinch. 

The same absolute solvent rate is required to overcome this pinch. The inherently 

lower capacity of 5 m PZ means the increase in solvent rate over the isothermal 

baseline is relatively smaller for 5 m PZ and limits the benefits of intercooling.  

 Operating with lower CO2 removal targets limits the impact of temperature 

restrictions in the absorber: 

 Lower removal specifications allow operation over a wider range of lean 

loading without generating a performance limiting lean end pinch.  

 The solvent capacity penalty increases with CO2 removal since the leaner 

operating region yields a lower baseline solvent rate (better solvent 

capacity) and requires a larger increase to overcome a pinch at higher 

temperatures.  
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 Temperature-related pinches are a rate-dependent phenomena, unlike isothermal 

saturation of the solvent (strictly thermodynamic phenomena): 

 Lean end pinches are affected by relative rates of water and CO2 transfer 

and thus are impacted by the mass transfer and kinetic properties in an 

absorber system. In addition, the minimum solvent rate used in design 

calculations or for the identification of a pinched condition in a model will 

be affected by the rate parameters of the specific model.  

Open Research Issues/Recommendations 

 How do the rates of CO2 absorption and water transfer effect pinch formation? Is 

the lean end pinch observed in this work unique to “fast” amine solvents? 

Development of a dimensionless relationship to predict the effect of CO2 and 

water transfer rates on pinch formation would be a useful generalization for 

absorber design.  

 A shortcut method to predict the transition loading for a given solvent and 

operating condition (CO2 removal, flue gas concentration) was developed as part 

of this work but was very sensitive to assumptions about CO2 removal above the 

pinch. A better approximation of removal at the mass transfer pinch is needed to 

improve the prediction of lean loading where adiabatic absorbers become limited 

by a temperature bulge induced mass transfer pinch.  

7.3.3 Evaluating the Limitations of Simple Intercooling 

Simple (in-and-out) intercooling was studied as a function of flue gas CO2 

concentration and operating conditions to quantify solvent capacity and mass transfer 

benefits, identify limitations of simple intercooling, and understand underlying 

phenomena to explain performance trends. The following major findings were developed: 
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Solvent Capacity Effects and Pinch Formation in Intercooled Absorbers 

 Simple intercooling significantly improves solvent capacity over an adiabatic 

absorber for all conditions in the analysis: 

 Maximum Deviation from Isothermal (LMIN /LMIN, ISOTHERMAL): 

i. NGCCINTERCOOLED = 1.98 

NGCCADIABATIC = 3.58 

ii. COALINTERCOOLED = 1.31 

COALADIABATIC = 2.26 

iii. STEELINTERCOOLED = 1.18 

STEELADIABATIC = 1.94 

 Simple intercooling expands loading range where a limiting temperature pinch is 

avoided and isothermal capacity is approached (LMIN /LMIN, ISOTHERMAL ≈ 1): 

i. NGCCINTERCOOLED = < 0.25 mol CO2/mol alkalinity 

NGCCADIABATIC = < 0.22 mol CO2/mol alkalinity 

ii. COALINTERCOOLED = < 0.20 mol CO2/mol alkalinity 

COALADIABATIC = < 0.18 mol CO2/mol alkalinity 

iii. STEELINTERCOOLED = < 0.18 mol CO2/mol alkalinity 

STEELADIABATIC = < 0.17 mol CO2/mol alkalinity 

 Pinch formation and performance limitation is different for an intercooled 

absorber: 

 True rich end pinch forms (not associated with temperature bulge at lean 

end). 

 Lean pinch forms at bulge above intercooler, but system is not equilibrium 

limited if bottom bed still achieves true rich pinch 
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 “Double pinch” forms associated with bulge in each section (above and 

below IC). System is equilibrium limited and requires solvent rate 

increase.  

 Intercooling can effectively be viewed as two adiabatic absorbers operated in 

series: 

 First (top) absorber effectively operates with double the total heat capacity 

of the nominal inlet solvent – this is because all of the heat generated by 

CO2 absorption in this bed is removed at the intercooler instead of 

returning to the lean end of the column as water condensing from the gas 

as in a normal adiabatic absorber.  

 Second (bottom) absorber operates as a normal adiabatic absorber. 

 New degree of freedom (CO2 removed in each section) allows moderation 

of the effect of temperature bulges in column – bulge is split between two 

sections and removal in section prevents formation of pinch/minimizes 

effect of existing pinches.  

Design Curves and Packing-Solvent Rate Trade-Offs 

 Design curves were developed to evaluate the performance of intercooling in 

terms of the packing – solvent rate trade-off for each absorber design. The 

difference between an intercooled (or adiabatic) absorber and an isothermal 

absorber in normal solvent operating range (1.05 to 1.8 LMIN) was quantified as 

the area between the design curves. The results for 3 relevant loading regions led 

to the following conclusions: 
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i. “Over-stripped” or low lean loading region: Adiabatic absorber 

provides good performance in terms of solvent capacity and mass 

transfer and should be the default design for this operating region.  

ii. “Simple Intercooling” or mid-loading region: Simple Intercooling 

is effective for coal and steel (high CO2 applications) and should 

be the default design.  For NGCC, while in-and-out intercooling 

approximates isothermal behavior at LMIN, the performance in the 

operating solvent range is poor due to driving force limitations. 

Novel intercooling development is warranted.  

iii. “Advanced Intercooling” or mid-loading region: Simple 

intercooling is effective for coal and steel (high CO2 applications) 

and should be the default design despite the deviation in solvent 

capacity at the limiting case of LMIN.  NGCC performs poorly 

compared to an isothermal absorber and novel intercooling design 

development is needed  

 Optimal Intercooling Location: The optimal intercooling location (minimize total 

packing area) was defined for all flue gas applications and select lean loadings as 

a function of L/LMIN: 

 Underlying pinch at LMIN determines the trend in optimal intercooling 

position as a function of solvent rate: 

i. Double pinch or temperature-induced rich pinch @ LMIN: Optimal 

IC positions starts in bottom half of column (or near the middle) 

and moves up column as L/LMIN increases 

ii. Only limiting lean pinch: Optimal IC positions starts in top half 

(above IC) of column and moves down column as L/LMIN increases 
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iii. ALL CASES: As L/LMIN reaches large values (L/LMIN > ≈ 2), IC is 

not needed and optimal location is the nearest “neutral” location in 

the column (mid-point or top). 

iv. ALL CASES: In normal operating range for solvent rates (L/LMIN 

< 2), optimal IC locations falls in the middle 50% of column 

(ZINTERCOOLER/ZTOTAL= 0.25 to 0.75) 

 Normalized driving force concept was introduced to explain optimal intercooling 

location. The driving force through the column is normalized by the partial 

pressure of CO2 in the bulk gas to provide a measure of solvent equilibrium 

constraint. The optimal location of IC occurs when the “relative pinch” (or 

minimum normalized driving force) is equivalent on both sides of the intercooler. 

This result is consistent for all flue gas concentrations within the normal solvent 

operating window (L/LMIN = 1.1 to 1.8). 

 

7.3.4 Mass Transfer Parameter Sensitivity Analysis 

The goals and corresponding key findings of mass transfer parameter sensitivity analysis 

can be summarized as follows: 

 Identify controlling mass transfer resistance in an absorber utilizing concentrated 

PZ as a function of operating conditions: 

 The model predicts liquid-film control for the PZ system. Gas-film 

resistance is negligible across conditions tested (column average gas-film 

resistance does not exceed 10% in any case). Maximum gas-film 

resistance is localized at the lean end of the column.  
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 The liquid-film resistance is dominated by diffusion resistance at the base 

case parameter values tested in this analysis across all operating conditions 

and diffusion resistance is greatest at the rich end of the column for all 

cases.  

 Temperature effects in an adiabatic absorber do not change the overall 

column trends (diffusion limitation increase from lean to rich) and have a 

minimal impact on the average contribution of each component to overall 

mass transfer resistance when compared to an isothermal absorber.  

 At high kL values (5*Base), the column average reaction resistance 

indicates significant reaction control of the liquid film (54% of overall 

resistance). Operating at high solvent rates (1.8 LMIN) or with 5 m PZ also 

lead to significant reaction resistance (42% column average in each case). 

 Define/identify dimensionless group to predict mass transfer resistance in 

absorber and validate parameter sensitivity results: 

 The reaction enhancement ratio, Φ, (ratio of pseudo-first-order and 

instantaneous asymptotic enhancement factors) provides very accurate 

prediction of liquid-film mass transfer resistance distribution (diffusion vs. 

reaction) as evaluated by parameter sensitivity analysis. 

 When Φ > 10, the theoretical predictions no longer match sensitivity 

analysis prediction, indicating the system may have reached instantaneous 

reaction limit (within calculation ability of parameter sensitivity method) 

 Use theoretical model to explain trends in mass transfer resistance in the absorber 

 Liquid-film diffusion resistance increases from the lean to rich end of the 

column primarily due to the change in the equilibrium capacity of the 

solvent with loading (slope of vapor-liquid equilibrium curve). The 
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equilibrium contribution to the change in Φ (measure of diffusion vs. 

reaction resistance) may increase by as much as a factor of 30 from the 

lean loading to rich loading.   

Beyond the conclusions developed directly from results in this analysis, the evaluation of 

mass transfer resistance should guide absorber design and model development activities: 

 The base case predictions of the piperazine rate-based absorber model indicate 

significant liquid-film diffusion resistance across the full range of operating 

conditions. Novel absorber design should include features that generate 

turbulence in the liquid face or enhance physical mass transfer, particularly at the 

rich end of the column where the model predicts approach to instantaneous 

reaction limit. 

 Solvent selection should carefully consider the effect of viscosity on absorber 

performance. As the analysis with 5 m PZ demonstrated, the reduction in 

viscosity significantly reduces liquid-film physical mass transfer resistance and 

should enhance overall absorber mass transfer performance. 

 The liquid-film mass transfer coefficient model is a critical component of 

properly modeling absorber mass transfer resistance. The upper limit of kL 

evaluated in this work (5*Base kL) is within the range of commonly used 

literature models and within the uncertainty in the current model when 

considering viscosity dependence and uncertainty in experiments. The design 

approach for absorbers and performance prediction as a function of operating 

conditions will vary significantly in the range of kL values considered in the work 

and may lead to sub-optimal design.  

 The reaction enhancement ratio, Φ, can be used to predict the liquid-film control 

mechanisms for cases not included in this analysis (e.g., different equipment, 
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operating, or solvent specifications) if operating specifications for the absorber 

are known and a thermodynamic model is available to calculate the asymptotic 

enhancement factors.   

7.3.5 Development of Novel Absorber Configurations 

Novel intercooling concepts were proposed based on the fundamental 

mechanisms effecting absorber performance, as identified in preceding chapters. The 

novel concepts were evaluated in comparison to in-and-out intercooling and to one 

another to identify the best potential configurations for the NGCC application.  

Evaluation of Recycle Intercooling Method for NGCC Application 

 Recycle intercooling benefits are maximized at recycle rates in the range of 

LRecycle/G ≈ 2 – 4 or LRecycle/ LFeed ≈ 2.5 – 5. 

o Incremental economic analysis indicates pumping costs become 

prohibitive beyond this range.  

o Evaluation of recycle intercooling benefits reveal that the driving force 

benefits also fall beyond this range as back-mixing outweighs small 

incremental intercooling benefits. The mass transfer enhancement of the 

recycle design also exhibits diminishing returns at high recycle rates.  

 Potential pressure drop benefits of recycle intercooling (lower velocities from 

cool, dense gas and reduced overall column height) can serve to offset pumping 

costs and make recycle design potentially feasible over the full range of recycle 

rates tested (LRecycle/G = 0.5 – 8) 

 Mechanistic evaluation of recycle intercooling benefits revealed that the liquid-

film mass transfer enhancement is the dominant source of benefits from the 

recycle.  
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 The “intercooling” benefit of the recycle design is the absorption of CO2 in a 

section with a large L/G and an integrated intercooling loop. This limits the 

absorption (and temperature constraints) outside of the recycle section. 

  Gas cooling is a relatively minor benefit compared to in-and-out intercooling as 

the temperature is not reduced significantly and the capacity of the gas to carry 

water is not increased significantly.  

 Recycle intercooling provides significant solvent capacity benefits (improved 

approach to isothermal LMIN) at lean loadings above 0.25 mol CO2/mol alkalinity, 

where adiabatic absorbers and simple intercooling are severely limited by 

temperature-related equilibrium restrictions.  

 Recycle intercooling outperforms simple intercooling in terms of packing-solvent 

rate (capital-operating cost) trade-off due to significant mass transfer 

enhancement realized in the recycle section and the overall reduction of 

temperatures throughout the absorber compared to in-and-out intercooling. The 

mass transfer enhancements are also sufficient to equal or outperform a simple 

isothermal absorber across the entire range of operating L/G.  

Novel Absorber Configurations 

A hybrid contacting scheme was introduced as a method to enhance mass transfer 

performance of absorbers by generating turbulence and moderating temperatures (high 

L/G) and improving driving forces (more “counter-current” than recycle configuration 

and distributed intercooling throughout absorption process). 

 A 2x3 hybrid intercooling design was evaluated as a one-to-one replacement for 

the recycle intercooling section (LRECYCLE/G = 3) in an absorber treating NGCC 

flue gas (4.1% CO2): 
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 The hybrid intercooling configuration yielded ~50% reduction in packing 

and ~50% reduction in gross power requirements (solvent pumping and 

gas-side pressure drop) to achieve identical performance (CO2 removal, 

gas and liquid exit temperatures) in the isolated intercooling sections. 

 The hybrid design maintains consistently larger driving forces and lower 

temperature throughout the intercooling section.  

 Hybrid intercooling designs (2x3 and 1x3) were evaluated as a method to replace 

the direct contact cooler (DCC) and by integrating the gas cooling and 

intercooling function in one section of the absorber.   

 The hybrid intercooling design was within 5% of the maximum solvent 

capacity (i.e., isothermal LMIN) for the given conditions (LLDG = 0.27 mol 

CO2/mol alkalinity, 90% CO2 removal effectively removing any 

temperature-induced equilibrium constraints.  

 At a common operating condition (L/G = 1.5, RLDG = 0.368 mol 

CO2/mol alkalinity), the hybrid designs significantly outperformed recycle 

designs: 

i. The 2x3 hybrid reduced packing requirements by 45 and 67% over 

the recycle intercooling design with a DCC (base case) and the 

recycle design without a DCC, respectively.  

ii. The 1x3 hybrid reduced packing requirements by 26 and 55% over 

the recycle intercooling design with a DCC (base case) and the 

recycle design without a DCC, respectively.  

iii. A small countercurrent section (~10% of total packing area, 1 m 

bed) is required at the top of the 2x3 design to account for small 

imbalances in CO2 removal in the 3 gas flow paths for the hybrid. 
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This section increases to 4.7 m in the 1x3 design (~33% of total 

packing area).  

iv. All designs without a DCC (hybrid and recycle) rapidly cool the 

entering hot flue gas (within the first 10% of the column) to the 

wet bulb temperature. The hybrid design maintains lower average 

vapor and solvent temperatures throughout the contactor. 

Open Research Issues 

 Modeling of any novel contacting scheme (e.g., rotating packed bed, cross-flow), 

column internals (trays, hybrid packing), operating conditions (e.g., high solvent 

loads), or solvents with unique physical properties (e.g., high viscosity) will 

require independent, accurate, and physically representative component mass 

transfer models to properly design and optimize the system. As novel absorber 

concepts move to leveraging detailed mass transfer mechanisms to improve 

performance, the empirical mass transfer models must provide adequate 

resolution of the specific mechanisms being used to properly develop and 

optimize the design. Therefore, mass transfer model development and 

experimental characterization of mass transfer phenomena in real contactors are 

among the most important areas of open research for CO2 capture systems. 

 Novel designs, such as hybrid contactor, need to be taken to the next step of 

conceptual equipment design to understand any potential hidden costs or design 

challenges prior to further development or evaluation (i.e., economic assessment, 

pilot testing, etc.). 
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 Modeling of true cross-flow contacting requires mass transfer data specific to the 

contacting scheme (limited data) and development of a 2-D integration method 

for use with rigorous rate-based contactor and solvent models in AspenPlus®. 
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Appendix A: Mass Transfer Coefficients 

BACKGROUND 

New empirical mass transfer models were developed to isolate independent 

variables that impact mass transfer performance and to regress model coefficients from 

data collected in a pilot scale column operated with structured packing.  This approach is 

expected to provide models that closely represent the packing and hydraulic conditions 

experienced in the amine-based absorption columns used in CO2 capture processes.  The 

generalized mass transfer models available in Aspen Plus® (and in literature) represent an 

average of a wide range of hydraulic conditions, packing types/materials, and fluid 

properties that may not be representative of capture process conditions.  

The new empirical mass transfer models were developed using data collected at 

the Separation Research Program (SRP) at the University of Texas at Austin (UT).  The 

experimental apparatus at SRP consists of a 16.8” diameter PVC column operated with 

air and water as the carrier fluids.  The apparatus is used to measure interfacial area and 

gas and liquid mass transfer coefficients.  By measuring interfacial area independently, 

the mass transfer coefficients can be isolated and correlated to relevant physical property 

and fluid transport parameters.  Details regarding the air-water column apparatus and the 

theory and method of operation can be found in work by Tsai and Wang (Tsai, 2010) 

(Wang, 2015). 

A.1 MASS TRANSFER COEFFICIENTS 

A.1.1 Liquid-Side Mass Transfer Coefficient (kL) 

For measurement of liquid-side resistance, toluene is stripped from water by air; 

the limited solubility of toluene in water (large Henry’s law constant or K-value) results 

in liquid-side controlled mass transfer and allows for direct calculation of the liquid-side 
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mass transfer coefficient (kL) from measured mass transfer rates.  Data for six types of 

packing were used to develop the liquid film mass transfer coefficient model (Wang, 

2015).  The properties of each type of packing are summarized in Table A-1; the packing 

vendor and proprietary name of each packing are omitted.  

Table A-1: Properties of packing used in liquid film mass transfer coefficient model 

development and regression 

  
Packing 

Type 
Material of 

Construction 

Specific Area 
Corrugation 

Angle 

m2/m3 Degrees 

1 Structured 
Stainless 

Steel 
205 60 

2 Structured 
Stainless 

Steel 
350 70 

3 Structured 
Stainless 

Steel 
250 45 

4 Structured 
Stainless 

Steel 
250 60 

5 Structured 
Stainless 

Steel 
350 45 

6 Hybrid 
Stainless 

Steel 
200 60 

 

The air-water column was operated over a range of conditions for each type of 

packing (liquid loads of 2.5 to 30 gpm/ft2 and gas rates of 180 to 450 ACFM); the full set 

of data for all packing types was used to develop Equation A.1. For details regarding the 

raw data and experimental conditions, see the work by Wang (Wang, 2015). 

 

𝒌𝑳

𝑫𝑨𝑩
𝟎.𝟓

= 𝑨 ∗ (
𝒖𝑳/𝒂𝑷

𝒖𝑳,𝒐/𝒂𝑷,𝒐
) 

𝒙𝟏

(
𝑴𝒊

𝑴𝒊,𝒐
) 

𝒙𝟐

(
𝝁𝑳

𝝁𝑳,𝒐
) 

−𝟎.𝟓

 (A.1) 

where: 

kL = Liquid side physical mass transfer coefficient (m/s); 
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DAB = Binary diffusion coefficient (m2/s); 

A, x1, x2 = Regression constants; 

uL = Liquid superficial velocity (m/s); 

ap = Packing Specific Area (m2/m3); 

Mi = Mixing number - dimensionless parameter describing the number of mixing 

points in a characteristic volume of packing; 

μL = Liquid viscosity (Pa-s). 

 

Equation A.1 only includes parameters that were explicitly varied during the 

experiments with the exception of the viscosity and diffusivity.  Viscosity dependence is 

discussed in the subsequent section.  The diffusion coefficient dependence is consistent 

with penetration theory prediction.  Each of the parameters is normalized to a reference 

value in the dataset (represented by the subscript “o” in Equation A.1) to prevent scaling 

issues of the independent variables and to allow transformation of data for linear 

regression.  The normalized power law form of Equation A.1 was selected over the 

common dimensionless group form (i.e., Sh = f(Re, Sc)) found in many literature models 

to avoid assignment of property dependence where it has not been explicitly measured.  

For example, density does not appear in Equation A.1 since it was not varied explicitly in 

the experiments.  However, if the Reynolds number was used as an independent variable 

it would imply a dependence on density when density was not actually varied or 

measured in the experiments. Dimensionless group methods require special care to ensure 

the dimensionless groups themselves have been varied over the entire relevant range 

imposed by their constituent variables.  

Physical properties were not varied explicitly in the mass transfer coefficient 

experiments conducted at the SRP facility, but experimental plans are being developed 



 312 

for viscosity and diffusion dependence.  To account for the property dependence in the 

current model without arbitrary assignment from dimensionless groups, important 

physical properties were considered individually.  In amine systems used for CO2 

capture, the density does not vary much from the experiments using water, and therefore 

the density dependence term is omitted altogether from the power law model.  In contrast, 

viscosity can vary by more than an order of magnitude relative to water, and is therefore 

included with a dependence extracted from literature (-0.5). 

Finally, the mixing point parameter represents the number of points per unit area 

of packing where the liquid encounters a junction and changes direction.  These junctions 

represent points where the bulk liquid flow changes directions and the liquid may mix 

(with the ideal limit of complete mixing at junctions) to renew the surface concentration 

of the solvent for mass transfer.  The mixing point parameter is a function of the packing 

geometry and size; a detailed derivation for random and structured packing was 

developed by Wang (Wang, 2015).  

The results of the regression are summarized in Figure A-1.  All regressed 

parameters (A, x1, x2) were statistically significant within their 95% confidence 

intervals. 
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Figure A-1: Model predictions (Equation A.1) of liquid film mass transfer 

coefficient compared to experimental data measured on pilot scale air-water 

column.  Value of 1 on the ordinate indicates a model prediction consistent with 

experimental measurements.    

The largest errors in Figure A-1 are generally present at the lowest measured mass 

transfer coefficient values, which might represent the difficulty in separating mass 

transfer measurements from the underlying error in the experiments at these conditions.  

A.1.1.1 Viscosity Dependence of Liquid Film Mass Transfer Coefficients 

As noted in the previous section, the viscosity of amine solutions used in CO2 

capture facilities can deviate by more than an order of magnitude from the viscosity of 

water (the solvent used for mass transfer coefficient measurements in the experimental 
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apparatus).  Therefore, accounting for the dependence of the mass transfer coefficient on 

viscosity is an important part of model development for amine systems.  Viscosity can 

impact the liquid film mass transfer coefficient in two distinct ways.  First, the diffusion 

coefficient is expected to show an inverse dependence on viscosity due to molecular level 

drag on particles diffusing in the liquid media.  Second, viscosity affects the onset of 

turbulence in the liquid.  Turbulence in the liquid film can enhance mass transfer by 

increasing the rate surface to bulk mixing.  Therefore, an extensive literature review was 

conducted to find analyses which included explicit variation of the viscosity of solvents 

in experiments while controlling for the effect of viscosity on the diffusion coefficient.  

The goal of the review was to isolate the effect of viscosity on the liquid film mass 

transfer coefficient from the effect of viscosity on the diffusion coefficient.  Table A-2 

contains selected papers that were used to derive the -0.5 viscosity dependence used in 

the mass transfer model developed in the previous section.  
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Table A-2: Review of Liquid-Side Mass Transfer Coefficient Experimental Studies 

to Evaluate Viscosity Dependence 

Reference Model  Packing/Device Solvents 
Viscosity 

Range 
(Pa-s) 

Controls for 
Diffusivity? 

Viscosity 
Dependence 

(Excluding 
Diffusion 

Dependence) 

(Delaloye, 
et al., 
1991) 

kLa 

30 cm I.D.  
Column 

25 mm GLASS 
Raschig Rings 

Alginate, 
Glycerol, 
PEG-6000 

0.0008 - 
0.00963 

Yes, 
Experimental 

Data 
-0.52 

(Echarte, 
et al., 
1984) 

kLa 

40 cm I.D.  
Column 

25 and 50 mm 
CERAMIC 

Raschig Rings 

Aqueous 
Glycerol 

0.00087 - 
0.0061 

Yes, 
Experimental 

Data 
-0.46 

(Mangers 
& Ponter, 

1980) 
kLa 

10 cm I.D.  
Column 

10 mm GLASS 
Raschig Rings 

0–75 wt % 
Aqueous 
Glycerol 

0.00089 - 
0.02611 

Yes, 
Experimental 

Data 
-0.57 

(Norman 
& 

Sammak, 
1963) 

kL 
String of Discs 

GRAPHITE 

Water, 
Heptane, 

Isobutanol, 
amyl 

alcohol, 
eugenol, 

gas oil 

0.000411 
- 0.025 

Yes, 
Experimental 

Data, 
Laminar Jet 

-0.54 

 

 

The papers selected in Table A-2 reflect the limited availability of data for the 

systematic variation of viscosity in mass transfer measurements for packed columns.  

However, the relative consistency in the viscosity dependence reported for independent 

experiments for a wide range of viscosities and experimental apparatus scales provides 

some validation of the viscosity dependence selected for the mass transfer model in this 

work.  Three of the models report the viscosity dependence of a combined volumetric 

mass transfer coefficient (kLa) rather than the isolated mass transfer coefficient (kL).  
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However, work by Tsai determined that viscosity does not have a statistically significant 

effect on the interfacial mass transfer area of packing (Tsai, 2010).  If the Tsai model 

conclusions for structured packing are extended to random packing used in the 

experimental work in Table A-2, the combined kLa dependence on viscosity can be 

directly attributed to kL (as in Equation A.1).  However, this conclusion should be 

verified experimentally. 

A.1.2 Gas-Side Mass Transfer Coefficient (kG) 

Gas-side resistance is measured by SO2 absorption into caustic solution (NaOH 

solution).  The instantaneous, irreversible reaction in the liquid makes the liquid 

resistance insignificant relative to the gas side diffusion of SO2 allowing isolation of the 

gas-side mass transfer coefficient (kG).  Data for six types of packing were used to 

develop the liquid film mass transfer coefficient model.  The properties of each type of 

packing were summarized previously in Table A-1.  

The air-water column was operated over a range of conditions for each type of 

packing (gas rates of 180 to 750 ACFM); the full set of data for all packing types was 

used to develop Equation A.2. See Wang for raw data and experimental details (Wang, 

2015): 

 

𝒌𝑮

𝑫𝑨𝑩
𝟎.𝟔𝟕

= 𝑨 ∗ (
𝒖𝑮/𝒂𝑷

𝒖𝑮,𝒐/𝒂𝑷,𝒐
) 

𝒙𝟏

(
𝑴𝑷

𝑴𝑷,𝒐
) 

𝒙𝟐

 (A.2) 

where: 

kG = Gas-side physical mass transfer coefficient (m/s); 

DAB = Binary diffusion coefficient (m2/s); 

A, x1, x2 = Regression constants; 

uG = Gas superficial velocity (m/s); 
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ap = Packing Specific Area (m2/m3); 

Mp = Mixing point parameter (points/m2). 

 

As with the liquid-film coefficient, Equation A.2 only reflects parameters 

explicitly varied in the experiments with the exception of the diffusion coefficient.  Each 

of the parameters is normalized to a reference value in the dataset (represented by the 

subscript “o” in Equation A.2) to prevent scaling issues of the independent variables and 

to allow transformation of data for linear regression.  The results of the regression are 

summarized in Figure A-2.  All regressed parameters (A, x1, x2) were statistically 

significant within their 95% confidence intervals and all measurements were predicted 

within +/- 20% by the model. 
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Figure A-2: Model predictions (Equation A.2) of gas film mass transfer coefficient 

compared to experimental data measured on pilot scale air-water column.  Value of 

1 on the ordinate indicates a model prediction consistent with experimental 

measurements. 

 

A.2 EVALUATING UNCERTAINTY IN LIQUID-FILM MASS TRANSFER COEFFICIENT 

A.2.1 Comparison to Literature Models 

Wang provides an extensive discussion of the liquid film mass transfer coefficient 

models developed from data collected at SRP (i.e., those used in this work) and 

commonly used model in the literature. His analysis is mostly confined to a discussion of 
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determining the controlling mechanism in the liquid-film mass transfer resistance. 

Therefore, Figure A-3 provides a re-evaluation of Wang’s analysis to compare kL values.  

 

 

Figure A-3: Liquid-side physical mass transfer coefficient predictions for given 

liquid and gas rates with MP-250Y.  Solid curves were developed from data by 

(Wang, 2015) and associated literature models (Bravo, et al., 1985) (Hanley & Chen, 

2012). Modified Wang model (- - -) with viscosity correction in Equation A.1.  WWC 

= Wetted wall column prediction.  

The figure includes two literature models representing high and low values of the 

liquid film mass transfer coefficient. The Wang model is towards the lower end of the 

range, and with the strong viscosity correction in Equation A.1, will drop further (other 

models would fall as well, but do not have same viscosity dependence). Even without the 
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viscosity correction, the Wang is a factor of ~1.5 – 4 times lower than the upper end of 

the range (Bravo model) (Bravo, et al., 1985).  

 

A.2.2 Re-Interpretation of Liquid-Film Mass Transfer Coefficients - Channeling 

Cussler develops an example that re-evaluates experimental mass transfer data 

that appears to be inconsistent with penetration theory predictions of velocity 

dependence. Specifically, penetration theory predicts a half-order dependence of the mass 

transfer coefficient on liquid rate (kL ~ uL
0.5) while the predictions of the current work 

predict a dependence of kL ~ uL
0.63. To be clear, penetration theory was not developed to 

explain the complex flow patterns encountered in packed columns (counter-current 

liquid-gas flow, junctions for liquid accumulation/change of flow path, surface structures 

of packing creating turbulence and waves, etc.). The dependence predicted by the 

experimental work at SRP may well be representative of conditions in a packed bed.  

However, an alternative theory, originally posed by Schlunder, is that some 

portion of the gas in mass transfer experiments is bypassing due to uneven flow in the 

column (Schlunder, 1977). This bypassing leads to an underestimation of mass transfer 

coefficients in general and over-estimation of the velocity dependence (Cussler, 2009). 

For the liquid film, an analogous condition would be channeling. Channeling refers to the 

phenomena where some portion of the liquid is passing down the walls or other relatively 

unobstructed path with limited (or no) contact with the gas in the column. Based on the 

example developed by Cussler for gas bypassing, a method to “correct” the liquid-film 

mass transfer coefficients was developed. Figures A-4 and A-5 describe the standard 

liquid-film mass transfer coefficient measurement and calculation method and the effect 

of liquid channeling on the calculations.  
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Figure A-4: Standard liquid-film mass transfer experiment and calculation. 

 

Figure A-5: Effect of channeling on mass transfer experiment and calculations.  
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The situation described in the figures represents an extreme scenario, or 

simplification, where the liquid either experiences normal contacting (plug flow) with the 

gas or no contacting and transfer. In reality, a more complex distribution might describe 

the contacting efficiency of the liquid based on the true gas-liquid flow patterns in the 

column. However, the simplification does provide an “average” performance measure 

and a method to correct the experimental data, as described by the following procedure. 

 

Part 1: Force measured mass transfer coefficients to fit penetration theory predicted 

velocity dependence.  

1) Use functional relationship between mass transfer coefficients and velocity to 

derive “corrected” mass transfer coefficients: 

 

1ln *lnMeasured Measured

Center Center

Measured Measured

k u
m

k u

   
   

   
 

A.3a 

2ln *lnCorrected Measured

Center Center

Corrected Measured

k u
m

k u

   
   

   
 A.3b 

 

where: 

kMeasured = Mass transfer coefficient measured in experiments; 

kCorrected = Mass transfer coefficient after correction to match penetration 

theory velocity dependence; 

uMeasured = Mass liquid velocity in experiments; 

Center = Average values over the range of the parameter (k or u); 

m1 = Measured velocity dependence of kL; 

m2 = Theoretical velocity dependence of kL (= 0.5); 
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2) Subtract Equation A.3b from Equation A.3a. Solve directly for corrected mass 

transfer coefficient ratio. 
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A.3c 

 

Part 2: Define bypass or channeling variable as part of mass transfer coefficient 

calculation.  

3) Solve differential mass balance on contactor and create fractional distribution 

(bypass) to correct calculation for portion of liquid that experiences mass 

transfer: 

 
* *

(1 )*
Correctedk a Z

uOUT

IN

c
e

c
 

 
 
     A.4a 

 

where: 

 cOUT = Concentration of toluene (or solute) exiting contactor; 

 cIN = Concentration of toluene (or solute) entering contactor; 

ϴ = Bypass fraction; 

a = Specific wetted area of packing (m2/m3); 

Z = Height of packing (m); 
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4) Solve Equation A.4a for kcorrected in terms of ϴ. 
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A.4b 

5) Solve system of equations represented A3.C and A.4b simultaneously or 

iteratively (2 equations, 2 unknowns – kCORRECTED, ϴ). 

 

The preceding procedure yields a new set of values for measured mass transfer 

coefficients that have the theoretically predicted dependence on velocity (0.5) and yields 

a predicted fraction of liquid that is channeling. Figure A-6 and A-7 depict the corrected 

data for two of the packings. Table A-3. summarizes the data for the 6 packings outlined 

in Table A.1.  
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Figure A-6: Liquid-film mass transfer coefficient data for packing 2, corrected to 

match theoretical velocity dependence (0.5).     

 

Figure A-7: Liquid-film mass transfer coefficient data for packing 4, corrected to 

match theoretical velocity dependence (0.5).     
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Table A-3: Properties of packing used in liquid film mass transfer coefficient model 

development and regression 

  
Packing 

Type 

Specific Area 
Corrugation 

Angle 
Range of kL 

“correction” 
ϴ 

m2/m3 Degrees 

1 Structured 205 60 1.1 – 1.6 2% 

2 Structured 350 70 1.3 – 3.1 3% 

3 Structured 250 45 1 0% 

4 Structured 250 60 1.5 – 3.3 14% 

5 Structured 350 45 1 – 1.2 <1% 

6 Hybrid 200 60 1 – 1.15 <1% 

 

As the corrected coefficients depict, the new mass transfer coefficients can 

increase by as a much as a factor of ~3, which is also approximately the deviation of the 

current model from the top end of the literature range (see Figure A-3). In addition, the 

45 degree corrugation angle packing and hybrid packing showed much less sensitivity to 

the bypass correction method. The method is primarily illustrative, but does provide 

another approach to define an upper bound for the measured kL values in this work.  

A.2.3 Sensitivity analysis with modified kL values 

One of the cases that was evaluated in Chapter 5 as part of the mass transfer 

parameter sensitivity analysis was repeated here using the updated kL values from the 

preceding section to illustrate the effect of the modified kL on the absorber mass transfer 

mechanisms (Figure A-8).  
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Figure A-8: Mass transfer parameter (kL and kinetic constants, kRXN) sensitivity 

analysis updated for “corrected” kL values. See Chapter 5 for details on sensitivity 

analysis approach.     

 

As the figure shows, a more significant portion of the column is reaction-

controlled (~40% vs. 20% in the base case) after the corrected kL values are applied. 

Liquid-film is still dominant at the rich end of the column. The model can be corrected 

further is the viscosity dependence in Equation A.1 is too strong. Therefore, the 

uncertainty in the kL model can play a large role in predicted absorber performance, and 

justifies the use of a large range of kL values in Chapter 5 for the sensitivity analysis and 

Chapter 3 for the pilot plant reconciliation of mid-loading data. 
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Appendix B: Film Theory Implementation Issue in AspenPlus® 

INTRODUCTION 

Several researchers in the TxCMP have observed theoretically inconsistent 

dependence of CO2 flux on the diffusion coefficient of CO2 (0.25 predicted vs. 0.5 in 

theory) and the diffusion coefficient of reactants and products (0.25 predicted vs. 0 in 

theory) when evaluating absorption of CO2 at pseudo-first-order conditions in Aspen 

Plus®.  The system of equations in Aspen Plus® can be solved analytically for the flux of 

CO2 at pseudo-first-order conditions after a series of simplifications to the multi-

component mass transfer framework.  The comparison of the differential equations 

represented by the Aspen Plus®
 numerical framework and the differential equations used 

in the theoretical solution of film theory reveals the source of the inconsistency in the 

pseudo-first-order results.  The explicit use of mass transfer coefficients in the 

constitutive equations in Aspen Plus® (Maxwell-Stefan relations) instead of diffusion 

coefficients implies that the mass transfer coefficients should be defined by film theory 

(with corresponding 1st order diffusion dependence).  However, the user is allowed to 

separately define the diffusion dependence of mass transfer coefficients. A value of 0.5 

has been applied in the in models developed by the Rochelle research group to maintain 

consistency with surface renewal and penetration theories.  This fundamental 

inconsistency propagates through the definition of the film thickness used in the 

integration.  The film thickness should reflect only hydrodynamic conditions, but carries 

a species-specific diffusion dependence via the two definitions of the mass transfer 

coefficient.  The integration of the analytical analogue to the numerical solution in Aspen 

Plus® isolates the fundamentally inconsistent treatment of mass transfer coefficients as 

the source of the spurious diffusion dependence observed by previous researchers. The 

modified film theory method applied in Aspen Plus® is inadequate to represent 
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appropriate diffusion dependence while simultaneously maintaining consistency with all 

relevant asymptotic cases (pseudo-first-order and instantaneous limits) and suggests the 

need for the implementation of an alternate steady state mass transfer theory (i.e., eddy 

diffusivity theory). 

B.1 FILM THEORY SOLUTION FOR PSEUDO-FIRST ORDER REVERSIBLE REACTION 

The system of differential equations for reaction and diffusion of CO2 in amine 

solutions as defined by Equation B.1 (written at steady state) can be solved analytically 

by de-coupling the differential equation of CO2 from other components.  
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where: 

C = Total number of components; 

ci = Molar concentration of species i; 

NL
i = Molar flux of species i in liquid film; 

δ = Total film thickness (interface to bulk liquid); 

Ri = Rate of production of moles of i per unit volume produced by chemical 

reaction.  

The coupling between CO2 and other components occurs via the chemical reaction term. 

The following equations define a generic irreversible chemical reaction and 

corresponding reaction rate expression for CO2 with amines: 

 

2m PrA CO od   (B.2 a) 
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2 2 2[ ][ ]COR k Am CO   (B.2 b) 

If the amine concentration is much higher than the CO2 concentration and the CO2 flux, 

the amine concentration can be assumed to be constant throughout the liquid film 

(pseudo-first order assumption). The reaction term in the differential equation is now 

only varies with CO2 concentration, removing any coupling with other components. 

Finally, if the dilute solution assumption is applied for CO2 (no diffusion induced 

convection), Fick’s first law can be substituted directly for the flux term in Equation 

B.1a. Equation B.3 is the final form of the differential equation for CO2 under these 

assumptions. 
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where: 

k1 = Pseudo-first order rate constant = k2[Am]. 

 

The solution of this differential equation follows the approach described by 

Danckwerts and the resulting expression for CO2 flux is described by Equation B.4 

(Danckwerts, 1970). 
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 (B.4) 

where: 

2,L COk   = Physical liquid-film mass transfer coefficient = 2COD


 for film theory; 

Ha = Hatta number; 
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[CO2]I = CO2 concentration at gas-liquid interface; 

[CO2]B = CO2 concentration in bulk liquid; 

 

When the Hatta number is greater than ~5, the hyperbolic tangent term in Equation B.4 

approaches 1 and the hyperbolic cosine term approaches infinity. This range for the Hatta 

number is consistent with the pseudo-first order assumption (fast, but not instantaneous, 

reaction). Under this simplification, the flux of CO2 can be expressed as: 
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where: 

E = Enhancement factor = 2

2
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  . 

 

The enhancement factor modifies the mass transfer coefficient for physical absorption 

(kL,CO2) for the effect of combined chemical reaction and diffusion. The combined liquid-

film mass transfer coefficient ultimately does not depend on physical-liquid film mass 

transfer coefficient. If the driving force is converted to a partial pressure driving force, 

Equation B.6 represents the flux with a new definition for the liquid-film mass transfer 

coefficient.  
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where: 
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2COH   = Henry’s constant of CO2; 

'

gk  = Liquid-film mass transfer coefficient in terms of gas phase driving force. 

 

 

The liquid film mass transfer coefficient (kg
’) exhibits half-order dependence on 

the diffusion of CO2 at pseudo-first order conditions for film theory. An analogous 

derivation can be developed with reversible reactions (as in the PZ-CO2 system in this 

work), but the expression for the liquid film mass transfer coefficient is identical 

(Bishnoi, 2000). The theoretical prediction is expected to be consistent with the 

numerical integration in Aspen Plus®, which implements film theory.  

B.2 DIFFUSION COEFFICIENT DEPENDENCE RESULTS IN ASPEN PLUS® 

 Several previous researchers modeling CO2 absorption with amines in Aspen 

Plus®  have observed diffusion coefficient dependence at pseudo-first order conditions 

that is inconsistent with theoretical expectations ( (Plaza, 2011), (Chen, 2011), (Frailie, 

2014)). Sensitivity of the liquid film mass transfer coefficient (kg’) in a wetted wall 

column to diffusion coefficients (and other mass transfer parameters) revealed the 

inconsistency; results of a representative analysis utilizing the “Independence” model (PZ 

and PZ/MDEA blended system) are presented in Figure B.1. 
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Figure B-1: Sensitivity of liquid film mass transfer coefficient (kg’) to diffusion 

coefficients for CO2 absorption into PZ and PZ/MDEA blends in a wetted wall 

column from 40-100°C. Data from (Frailie, 2014). 

 

As shown in the figure, the liquid-film mass transfer coefficient never exhibits the 

half-order dependence on the diffusion coefficient of CO2 as predicted by theory. At low 

equilibrium partial pressures of CO2 (lean loading range or lower temperatures) 

consistent with absorber operation, pseudo-first order behavior is expected. Figure B.1 

shows that the combined dependence of the CO2 diffusion coefficient and amine/products 

diffusion coefficient is approximately 0.5. The results demonstrate a spurious dependence 

on DAm/Products in place of the expected dependence on DCO2 in the pseudo-first order 

regime. However, as the equilibrium partial pressure is increased (richer loadings or 
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higher temperatures), the reaction-diffusion problem should approach the instantaneous 

reaction limit. In this limit, the mass transfer coefficient should only depend on the 

diffusion of amine/products (Bishnoi, 2000). Figure B.1 indicates that the model correctly 

predicts the control by DAM/Products in this limit. To explain the diffusion dependence 

exhibited in the sensitivity analysis, the integration of a rate-based stage in Aspen Plus 

will be evaluated with relevant simplifying assumptions for the CO2/PZ system and the 

pseudo-first order regime. The numerical method as implemented in Aspen Plus® will be 

converted to the corresponding differential equation that can be solved analytically at 

pseudo-first order conditions using the same set of simplifying assumptions to isolate the 

source of the false dependence in the integration.  

B.3 NUMERICAL METHOD AND ASSUMPTIONS IN ASPEN PLUS® RATE-BASED 

CALCULATIONS 

The integration of a rate-based stage at steady state includes three sets of 

differential equations: 1) component bulk material balance, 2) component film material 

balance, 3) constitutive mass transfer relationships. The following equations (for a total 

of C components) are presented in difference form (algebraic system) for the liquid phase 

as implemented in the numerical integration in Aspen Plus®.  

 

1 10 L L
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where brackets [ ] indicate C-1 x C-1 matrix, overbar indicates C-1 vector, and: 
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 Γ= Thermodynamic non-ideality correction (for chemical potential driving force); 

 j = Stage number; 

ΔΦE = Electric potential driving force in ionic solutions; 

z = Electric charge number of species; 

R = Inverse mass transfer coefficient matrix; 

Nt = Total molar flux =
1

C

i

i

N


  ; 

L

ijr  = Reaction rate of species i in bulk liquid = T

i V   

i = Volumetric production rate of species i; 

Φ = Fractional volumetric liquid-hold-up for packing; 

VT = Total volume for computational stage (element of packing); 

ε = Void fraction of packing; 

,film L

ijr = Reaction rate of species i in liquid film = film I

i a ; 

δ = Liquid film thickness;  

aI = Interfacial area available for mass transfer; 

 

Equations B.8 and B.9 are written for each segment in the discretized liquid film (see 

(Frailie, 2014), (Plaza, 2011), or (Chen, 2011) for discussion of film discretization 

schemes). Analogous vapor phase equations are implemented without reaction terms or 

discretization in the vapor film. 

B.3.1 Simplification of Maxwell-Stefan Relations 

Equation B.9 represents the Maxwell-Stefan constitutive equations for multi-

component mass transfer relating the individual flux for each species to the driving force 

of all other species (Taylor & Krishna, 1993). The first simplification of this system of 

equations is to neglect the non-ideality effects on driving forces ([Γ] = Identity matrix). 
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This simplification is applied in all Aspen Plus® absorber modeling throughout this work. 

Valerio and Vanni found that the non-ideality effects are unimportant for moderately 

non-ideal systems (infinite dilution activity coefficients in the range of 0.2 to 5), 

particularly when solutes are dilute (Valerio & Vanni, 1994). In the case of CO2 

absorption in amines, the CO2 is relatively dilute in the system and the system would not 

be considered highly non-ideal.  

The components of the inverse mass transfer coefficient matrix, which introduces 

coupling of binary mass transfer coefficients, can be defined as follows: 
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(B.10) 

The Maxwell-Stefan relationships add coupling of mass transfer of individual 

components via the mass transfer coefficients in Equation B.10 and interactions of 

driving forces in Equation B.9. However, these coupling effects are not present for the 

transfer of CO2 in the “Independence” model. First, the mass transfer model in 

“Independence” defines two diffusion coefficients (and two corresponding mass transfer 

coefficients) for all species in the liquid phase (Frailie, 2014). The binary diffusion 

coefficients of CO2, N2, and O2 (small molecules with low critical temperatures/limited 

physical solubility) were treated identically. Equation B.11 specifies the binary diffusion 

coefficient of CO2 (and N2, O2) in amine solution.  
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where: 

 DAB = Binary Fickian diffusion coefficients; 

µAm = Viscosity of amine solution. 

 

The relationship between diffusion of CO2 in amine solutions and in water was 

determined by the modified Stokes-Einstein relation (Versteeg & van Swaaij, 1988).  All 

remaining binary diffusion coefficients in the system (amine, water, and reaction product 

binary pairs) are all represented via Equation B.12. 
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 (B.12) 

where: 

 DO = Regressed parameter = 2.26 x 10-10
 m

2/s; 

β= Regressed Parameter = -2.58; 

α = Regressed Parameter = 1.45. 

 

Equation B.12 is strictly an empirical expression which was regressed via wetted wall 

column data for PZ and PZ/MDEA blends that included a range of solvent concentration, 

loading, and temperature (and implicitly, viscosity). 

 The binary diffusion coefficients are related to the physical liquid-side mass 

transfer coefficient in the general form of Equation B.13. 
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where: 
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kL
O = Species independent mass transfer coefficient that represents fluid 

mechanics dependence of mass transfer specified by the user (regressed from 

experimental data in this work); 

ξ = 0.5 in this work, 1 for film theory.  

 

The diffusion dependence of the binary mass transfer coefficient (ξ = 0.5) was selected in 

this case to be consistent with penetration theory and the range seen in experimental data 

for gas-liquid systems (Astarita, 1967) . However, this creates a potential source of 

inconsistency with film theory (which predicts ξ=1) as will be evident in the next section.  

For CO2 transfer, since DCO2-k = DCO2-SOLN (calculated from Equation B.11), 

kL,CO2-k = kL,CO2-SOLN (all binary mass transfer coefficients for CO2 are identical) for all k. 

Therefore, Equation B.10 written explicitly for CO2 transfer simplifies as follows: 
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(B.14) 

 

When combined with Equation B.9, Equation B.14 effectively removes the multi-

component diffusion effects of the Maxwell-Stefan equations as CO2 transfer is only a 

function of a single mass transfer coefficient (CO2 in amine solution) and its own driving 

force. 

 The simplifications to this point are actively implemented as part of the numerical 

integration in Aspen Plus® for the “Independence” model. The final two assumptions are 

only relevant in this discussion (not implemented explicitly in the model). First, the dilute 

solution assumption will be applied for CO2 eliminating the effects of diffusion-induced 
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convection (xj = 0 in Equation B.9) – free CO2 is relatively dilute in reactive amine 

systems. Finally, the electric potential driving force (ΔΦE) effects in Equation B.9 will be 

neglected in this discussion for simplicity as this term should not affect the diffusion 

coefficient dependence of the flux. With these additional simplifications, Equation B.9 

can be re-written to explicitly represent the flux of CO2 in Aspen as follows: 
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    (B.15) 

Equation B.15 is simply the difference form of Fick’s first law written in terms of a mass 

transfer coefficient. Therefore, the analytical solution (at pseudo-first order conditions) of 

the component material balance for CO2 (Equation B.1a) with Fick’s first law using mass 

transfer coefficients should predict a diffusion dependence that is consistent with the 

results in Figure B.1.  

B.3.2 Definition of Film Thickness  

The simplified expression in Equation B.15 must be solved with the liquid film 

component material balance (Equation B.8).  The film thickness (δ) term that appears in 

the source (reaction) term of Equation B.8 is defined by film theory as follows: 
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Film theory was developed for physical absorption of a single component in a binary 

system and defines film thickness in terms of the single binary diffusion and mass 

transfer coefficient for the system and would be a species independent parameter 

reflecting fluid mechanics. However, in the case of multicomponent mass transfer, if the 

individual binary mass transfer coefficients are derived completely empirically or have a 
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diffusion dependence defined independently of Equation B.10, multiple values may exist 

for the boundary layer thickness as a function of the binary pair used in the definition. As 

noted in Equation B.13, the binary mass transfer coefficients in Aspen Plus® have an 

independent relationship with diffusion coefficients outside of the definition for film 

thickness. The solution to this issue in Aspen Plus® is to define a film thickness based on 

mole-fraction weighted average of binary coefficients: 
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(B.17) 

where: 

,D k  = Composition-averaged diffusion and mass transfer coefficients, 

Ψ = Binary coefficient (D or kL); 

 

A single film thickness value is defined without assigning a specific binary pair. 

However, in practice, the amine systems used in CO2 capture are close to 90 mol % 

water, meaning the weighted average is dominated by binary coefficients with water. For 

all species other than CO2, N2, and O2, DH2O-k = DAm/Prod-SOLN (calculated from Equation 

B.11) and kL,H2O-k = kL,Am/Prod-SOLN. The weighted average for film thickness then reduces 

to the following approximate expression: 
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The film thickness as implemented in Aspen Plus®
 is not a species-independent fluid 

mechanics parameter, but also carries the effective diffusion of amine and products in 

solution. 

B.4 ANALYTICAL ANALOG TO ASPEN PLUS® RATE-BASED CALCULATIONS 

B.4.1 Pseudo-First Order Limit 

The analysis from section B.1 can be modified for consistency with the numerical 

approach used in Aspen Plus®. The key modifications to the previous analysis are the 

following: 

1) Change the 2nd order differential equation (Equation B.3) representing the 

combination of the component material balance and Fick’s first law at pseudo-

first order conditions to dimensionless form using the film thickness, δ, as 

follows: 
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2) Use the definition of δ from film theory to convert the diffusion coefficient 

into a mass transfer coefficient. Aspen Plus® solves the differential equations 

in terms of mass transfer coefficients (diffusion coefficients are only implicit). 

This is a critical assumption implicit in the Aspen Plus® formulation. The 

mass transfer coefficient in Equation B.15 (and by analogy, Equation B.20) 
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should be consistent with film theory. However, Aspen Plus® allows user-

defined diffusion dependence for the mass transfer coefficients via Equation 

B.13.   This is a fundamental inconsistency between the modeling method and 

the theory from which it was developed.  
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 (B.20) 

 

3) Solve the differential equation using the same approach as in section B.1. The 

same simplifications of a large Hatta number (> 5) can be applied. However, 

the new solution contains a modified version of the Hatta number (λ) that is a 

function of the film thickness that is defined by Aspen Plus®:  
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 (B.21) 

 

Several conclusions can be developed from Equation B.21: 

1) The analytical solution for the flux, developed analogously to the 

numerical method and implementation in Aspen Plus®, exhibits the 0.25 

dependence on each of DCO2 and DAm-Prod (combined 0.5 dependence on 

diffusion coefficients) evident in the sensitivity analysis of previous authors. 

2) The source of the diffusion dependence issue is inconsistent 

implementation of the mass transfer coefficient. The film theory definition is 

implicitly applied in the derivation of Equations B.15 and B.20 while an 

independent mass transfer coefficient is defined via Equation B.13. This is 

coupled with the definition of the film thickness in Aspen Plus® (Equation 

B.18) to produce the specific sensitivity results in Figure B.1.  

3) Two potential solutions can be implemented: 

a. Define mass transfer coefficients to be consistent with film theory:  
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This will remove the species-dependence of the film thickness and 

ensure theoretical consistency at all conditions. However, diffusion 

dependence will be inconsistent with experimental data and more 

realistic theories (e.g., surface renewal, penetration, etc.). 

 

b. Implement an alternative steady state theory to provide consistency 

with expected diffusion dependence and independence for the 

hydraulic parameters of mass transfer. Eddy diffusivity theory has 

been implemented previously (Bishnoi, 2000). Implementation within 

the Aspen Plus® integration framework may be possible by redefining 

the boundary layer in dimensionless coordinates presented by Bishnoi 

in place of the film theory calculations for film thickness and 

discretization. 

Other solutions within the film theory framework only resolve issues for one 

limiting case while creating issues at others.  For example, defining the film thickness in 

terms of CO2 instead of amine and products resolves the diffusion dependence issue at 

pseudo-first-order conditions, but creates inconsistency at the instantaneous reaction limit 

(false dependence of diffusion of CO2 due to component specific definition of film 

thickness). 

B.4.2 Practical Implications of Diffusion Dependence Issue 

The false diffusion dependence impacts the absorber modeling in two ways: 

regression of the underlying model parameters and propagation of the false diffusion 

effect into absorber performance. First, the underlying kinetic parameters and diffusion 

coefficients (Equation B.8) in the “Independence” model are regressed in a wetted wall 
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column simulation that incorporates the false diffusion effect. As seen in Equation B.5, 

the wetted wall column data in the pseudo-first order region should only be sensitive to 

the reaction rate constants and the diffusion coefficient of CO2. This should allow 

isolation of the kinetic parameters for regression in the pseudo-first order region. 

However, the parameters in Equation B.8 representing the diffusion of amine and 

products are also improperly regressed in this region due the false diffusion dependence. 

In effect, the reaction kinetics and diffusion coefficients are correlated during the wetted 

wall column regression. As long as the absorber is operated within the same range of 

reaction rates and diffusion coefficients as the wetted wall column, the combined 

reaction-diffusion effects should be properly captured.  

In absorber modeling, the effect of the diffusion of amine and products introduces 

unexpected physical property dependence at absorber conditions. For example, 

DAm/Products-SOLN exhibits stronger viscosity dependence than DCO2 so the viscosity 

dependence can be overstated at absorber conditions.  

B.5 IMPLEMENTING EDDY DIFFUSIVITY THEORY 

The steady state version of the species continuity equations in a reactive system 

can be represented by the following: 
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where: 

C = Total number of components; 

ci = Molar concentration of species i; 
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NL
i = Molar flux of species i in liquid film; 

δ = Total film thickness (interface to bulk liquid); 

Ri = Rate of production of moles of i per unit volume produced by chemical 

reaction.  

If the dilute solution assumption is applied for the system (no bulk convection effect), 

Fick’s first law can be modified to account for the effect of turbulent eddies on mass 

transfer as follows (King, 1966):   
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where: 

Di = Molecular diffusion coefficient of component i; 

DE = Eddy diffusivity; 

ε = Eddy parameter, proportionality constant; 

n = Exponent on distance from gas-liquid interface; 

b = Eddy diffusivity at the interface;  

 

The eddy diffusivity at the interface is commonly neglected (b = 0) due to expected eddy 

damping at the surface, leaving ε and n as the only parameters to be defined for a 

particular system or problem. In the limit of steady state mass transfer and for values of n 

> 1, King used dimensional analysis to define a mass transfer coefficient in terms of the 

remaining eddy parameters (King, 1966): 
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 (B.24) 

where: 

kL = Binary liquid-film physical mass transfer coefficient; 

 

 The model is sufficiently general to allow the user to define a diffusion 

dependence; the example of half-order dependence (consistent with penetration theory 

dependence) is included in Equation B.24.  In addition, the user must specify the 

parenthetical term including the mass transfer and diffusion coefficient – this term 

represents the species-independent portion of the mass transfer coefficient and can be 

provided via a user or literature correlation for mass transfer coefficients (already 

implemented in this form in Aspen Plus®).  

B.5.1 Numerical Evaluation Methods 

Equations B.22 and B.24 represent the system of equations that need to be solved 

simultaneously for all components. The differential equations can be evaluated as written 

(in terms of flux) or can be combined to represent a single second-order differential 

equation in concentration: 
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(B.25) 

 

The combined second-order differential equation is used here to provide consistency with 

the method used by previous researchers (Bishnoi, 2000). The infinite domain specified 

by the boundary conditions is not tractable numerically. Glasscock developed a 

coordinate transformation for the spatial domain based on the solution to the physical 

absorption problem (Glasscock, 1990): 

 

12
tan

or

tan
2

REF

REF

r x
D

D
x r







  
  

 

 
  

 

 (B.26) 

where: 

r = Dimensionless spatial coordinate that varies from 0 (x=0) to 1 (x = ∞); 

DREF = Reference diffusion coefficient for system, typically set to largest value.  

 

 Equation B.25 can be re-written after a coordinate transform to the new dimensionless 

spatial coordinate. The details of the derivation are discussed in detail by Glasscock and 

Bisnoi ( (Glasscock, 1990), (Bishnoi, 2000)). The resulting transformed 2nd-order 

differential equation is described in Equation B.27: 
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(B.27) 

 

A finite differencing scheme can be applied to develop a system of equations for the 

interior nodes of the discretized liquid film based on Equation B.27; the boundary 

conditions define the exterior nodes of the liquid film. An example of a central difference 

scheme (as employed by Bishnoi) for the derivative terms in Equation B.27 is provided 

as follows: 
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 (B.28) 

 

 The terms T1 through T4 and the reaction term are evaluated at each interior node (each 

value of r).  
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B.5.2 Implementation in Aspen Plus® 

The critical components of eddy diffusivity method implementation are the definition of 

the eddy diffusivity parameters (ε and n) and the coordinate transformation and finite 

difference formulation of the appropriate differential equations. The eddy diffusivity 

parameters should be readily accommodated within the existing mass transfer coefficient 

framework in Aspen. The implementation of the differential equations will require 

additional discussion and collaboration.  

 B.5.2.1 Steps and Outstanding Issues Required for Implementation: 

1) Define transformed differential equations for Aspen implementation: Method 

proposed in this document discretizes second-order differential equation in 

concentration after transformation to dimensionless spatial coordinates. Current 

approach in Aspen appears to discretize the species continuity (change in flux 

across a film segment) equation and separately applies the constitutive equation 

(Maxwell-Stefan) after conversion to dimensionless form that directly 

incorporates a mass transfer coefficient based on the film theory. Determine if 

2nd-order differential equation in concentration can be implemented directly as by 

Bishnoi (Equation B.27) or if the differential in flux (Equation B.22) and the 

constitutive equations (Maxwell-Stefan multicomponent form of Equation B.23) 

need to be transformed to r-coordinates and discretized. Also need to define 

resistance matrix for eddy diffusivity theory (i.e., replace mass transfer 

coefficients with diffusion coefficient and eddy diffusivity and possibly 

coordinate transform parameters). The Maxwell-Stefan definitions for film theory 

are as follows (Taylor & Krishna, 1993): 
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Modification for eddy diffusivity likely entails replacing the binary diffusion 

coefficient in the first expression above with the sum of the eddy and binary 

diffusivity and transforming to r-coordinates: 
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(B.30) 

 

This modified equation is only a suggested or preliminary approach and requires 

further consideration. 

 

2) Designation of a reference diffusion coefficient: Can be user-defined or automatic 

designation of largest diffusion coefficient in the system.  

3) Evaluation of reaction rates/reaction volume: Implementation of finite difference 

method in dimensionless coordinates should not require reaction volume 
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calculation at any node – spatial step-size appears in finite difference formulation 

to account for relative size of each segment. Boundary conditions define 

concentrations at r = 0 (x=0) and r = 1 (x = ∞), and solution of finite difference at 

interior nodes yields a concentration profile. If total reaction rate for a stage or 

segment is required for reporting, this can be calculated after the integration. May 

need further discussion/consideration.  

4) Finite Volume Method?: Aspen appears to be using something similar to a finite 

volume method (not finite difference) which evaluates differential equations over 

a control volume and ensures conservation of mass in each element. This method 

includes a reaction volume when the elements are discretized. Need to verify 

exact implementation method in Aspen as the discretized equations will change 

depending on the approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 353 

Appendix C: Pilot Plant Manuscript 

Modeling Pilot Plant Performance of an Absorber with 

Aqueous Piperazine 

Darshan Sachdea, Eric Chenb, Gary T. Rochellea 

aThe University of Texas at Austin, Department of Chemical Engineering. Luminant Carbon Management Program, 200 E Dean 

Keeton St. Stop C0400, Austin, TX 78712-1589 USA. 

bThe University of Texas at Austin, CO2 Capture Pilot Plant Project, 10100 Burnet Rd., Bldg 133, CEER, Austin, TX  78758, USA.   

 

Abstract 

Pilot plant data for CO2 capture with 8 m piperazine (PZ) were reconciled with an absorber model in Aspen Plus® using 

quantified error in pilot plant input data and a global correction to absorber performance parameters. Four global 

corrections were applied independently to adjust: interfacial area, liquid side mass transfer coefficient, solvent CO2 

content, or solvent piperazine (PZ) content. Each of the four cases resulted in a reconciled model with pilot plant data 

and provides a potential route to quantifying and correcting measurement and experimental error as well as enhancing 

understanding of real absorber performance. The modified absorber model was then used to quantify the performance 

improvement due to implementation of a spray nozzle in the absorber intercooling loop. The spray nozzle added the 

equivalent of 7% to 20% more packing to the column as a function of the flow rate through the nozzle.  

 

 
© 2013 The Authors. Published by Elsevier  Ltd.  

Selection and/or peer-review under responsibility of GHGT 

 

 
Keywords:absorber; pilot plant; piperazine; data reconciliation; mass transfer; interfacial area; spray nozzle 

1. Introduction 

Pilot plant operations for CO2 capture using amine solvents provide mass and energy balance data to 

validate thermodynamic, kinetic, and mass transfer models built using experimental data. In October 2011, 

the pilot plant at the University of Texas at Austin Separations Research Program (SRP) was operated with 

8 molal (m) piperazine (PZ) in an intercooled absorber with solvent return via a spray nozzle. This paper 

will present validation results of an absorber model built using Aspen Plus® RateSepTM, a thermodynamic 

and kinetic framework developed by Frailie (Frailie, et al., 2013), and mass transfer and area models 

developed by Wang (Wang, et al., 2013). The reconciled model was used to quantify the performance 

benefit of spray nozzle implementation in the intercooling loop.  

 

2. Pilot Plant Overview: October 2011 Campaign 

The pilot plant at SRP includes an absorber, stripper, and 2-stage flash skid used in CO2 capture trials. 

The October 2011 campaign used the 2-stage flash skid for stripping; see Madan et al. (Madan, et al., 2013)  
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and Walters et al. (Walters, et al., 2013) for details regarding the stripping section and Chen et al. (Chen, et 

al., 2013) for an overview of the SRP pilot plant equipment, operations, and overall performance results. 

The absorber configuration for the October 2011 campaign is depicted in Figure 1.  

 

 

Figure 1 Absorber PFD with flow and sampling points, SRP October 2011 Campaign 

The campaign included two absorber-specific equipment modifications from previous campaigns. First, 

the campaign was the first trial of a 350 series packing (specific area of 350 m2/m3) with a 70° corrugation 

angle used in CO2 capture applications with 8 m PZ. Second, the intercooling loop included a spray nozzle 

configured to feed the intercooled solvent into the bottom of the upper section of packing (see Figure 1).  

 

Table  1 provides an overview of equipment and operating specifications relevant to absorber 

performance and modeling for the 11 runs of the October 2011 campaign.  

 
Table 1. Overview of Equipment and Operating Specifications, October 2011 Pilot Plant Campaign 

Equipment Specifications Operating Specifications 

Column  

 

Solvent (PZ) 

 Inner Diameter (m) 0.43 Concentration(m) 8 

Packing (Structured) 
 

Liquid Rate (GPM) 11 - 22 

Height (m) 
6.1  

(2 beds x 3.05) 
Lean Loading 

 (mols CO2/mols alkalinity) 
0.24-0.26 

Specific Area (m2/m3) 350 Feed Gas 
 

Corrugation Angle (°) 70 CO2 (mol %) 12% 

Material Stainless Gas Rate (ACFM) 350 - 675 

 

3.  Modeling Framework 

Rich Gas Feed
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Rich Amine

LP CX
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Absorber 
Feed Tank

CO2 Accumulator 

CO2 From Bulk

IC Draw-Off

Knock-Out
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The model for the PZ solvent and absorber equipment configurations was developed in Aspen Plus® 

RateSepTM. The thermodynamic model for the PZ-H2O-CO2 system was developed from experimental CO2 

solubility, heat capacity, speciation, and amine volatility data by regression of Gibbs free energy, enthalpy, 

heat capacity and activity coefficient parameters within the electrolyte non-random two liquid (e-NRTL) 

framework in Aspen Plus®. For a detailed description of the sequential regression methodology used in the 

development of the PZ thermodynamic model, see Frailie et al. (Frailie, et al., 2011); for details regarding 

the most recent version of the PZ model, as implemented in the current work, see Frailie (Frailie, et al., 

2013).  

Mass transfer and area models were developed by Wang (Wang, et al., 2013) via regression of 

experimental data from a pilot scale column with a variety of random and structured packings. The area 

model developed by Wang is a modification of a model developed by Tsai (Tsai, 2010) (see Tsai for full 

theoretical and experimental details of the area model). The mass transfer model is discussed in additional 

detail in subsequent sections. 

4. Data Reconciliation Methodology 

The data reconciliation process consists of four broad steps: 

 

 Quantification of error in pilot plant measurements; 

 Identification of global adjustable parameters for data reconciliation; 

 Reconciliation of pilot plant mass and energy balances for runs without spray nozzle implementation; 

 Isolation of spray nozzle performance by application of global adjustments from step 3 with independent 

variation of spray nozzle mass transfer area for each run with spray nozzle implementation. 

 

Each of the steps is discussed in further detail in the subsequent sections. The data reconciliation tool in 

Aspen Plus® used to implement the process described in the steps minimizes the objective function 

described by Equation 1 to perform a maximum likelihood (errors in variables) regression on the pilot plant 

data.  

 
2

( )

1 ,

Measured ModelN
i iMin

v i measured i


 
 
 

  
                                                                                                               (1) 

 

Where: 

 Measuredi are the pilot plant measured input or result parameters, 

 Modeli are the process model predicted input or result parameters, 

 σmeasured,i are the pilot plant calculated standard deviations for input and result parameters, and 

 v are the globally varied parameters. 

 

4.1. Error Quantification 

Measureable error in the pilot plant data was limited to random error quantified via repeated trials of 

analytical measurements and continuous data collection of inline measurements at steady state (flows, 

temperatures, etc.). Table 2 summarizes measurement techniques used for the sampling points around the 

absorber identified in Figure 1. 

 
Table 2. Measurement Techniques used in October 2011 campaign 

Measurement Location and Inline  Analytical  
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ID  CO2 concentration PZ concentration 

Lean Amine/Mid-Column 

Amine 
Micro Motion® Coriolis Flow 

Meters  

Auto Titration Auto Titration 

(Point 2 and 6)  Manual Titration Manual Titration 

  Total Inorganic Carbon   

Rich Amine 

Micro Motion® Coriolis Flow 

Meter  

Auto Titration 

Auto Titration (Points 4 and 5)  Manual Titration 

  Total Inorganic Carbon 

Lean Gas Rosemount® Annubar 
(Differential Pressure) Meter  

Vaisala® GMT220 CO2 Sensor 
(NDIR Sensor)  

N/A 
(Point 1)  

Rich Gas 
Inferred from Inlet  

Vaisala® GMT220 CO2 Sensor 

(NDIR Sensor)  
N/A  

(Point 3)  

Column Temperatures 
Rosemount® 68-Series RTD N/A N/A  

(Throughout Column) 

 

Standard deviations were calculated for each measurement from the pilot plant and were propagated 

through calculations of derived values (e.g., component flow rates) with assumption of uncorrelated 

random error (covariance terms are omitted). The results of the error analysis allowed verification of mass 

balance closure within random error in the process (discussed in results section) and provided a range for 

input variables used in data reconciliation. 

4.2. Global Adjustment Parameters 

Global adjustment parameters are user-defined model parameters which are adjusted uniformly for all of 

the experiments in a dataset (i.e., all of the runs in a pilot plant campaign) as part of the error minimization 

process described by Equation 1. For pilot plant campaigns, parameters were selected to reflect sources of 

potential systematic bias in data measurements and/or physical parameters linked to column performance. 

The choice of parameters will guide future pilot plant operations and experimental research. The four 

parameters selected for evaluation in the October 2011 campaign were mass transfer area, liquid-side mass 

transfer coefficient, lean solvent CO2 content, and lean solvent PZ content.  

4.2.1. Correction for Mass Transfer Area 

 

The mass transfer area model originally developed by Tsai (Tsai, 2010) from data for 9 different types 

of structured packing matched experimental data within 13%.  The correction to the model-predicted area 

in the data reconciliation process indirectly accounts for, in part, the model error. In addition, liquid 

distribution issues (specifically, liquid flows along walls) can result in under-utilization of packing; Yin et 

al. demonstrated significant wall flow in a column of similar diameter to the SRP pilot plant column (0.5 m 

vs. 0.43 m) when utilizing random packing (Yin, et al., 2000). Thus the area factor can be used to represent 

model error and physical performance issues.  

4.2.2. Correction for Liquid Side Mass Transfer Coefficient 

 

The liquid side mass transfer model implemented in the reconciliation process is a simple empirical 

equation (Equation 2) designed to fit data collected by Wang on the 350 series packing with a viscosity 
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correction to account for the use of a viscous solvent (PZ) instead of the water used in experimental mass 

transfer studies (Wang, et al., 2013). 
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Where:  

 kL is the liquid side mass transfer coefficient (m/s), 

 D is the binary diffusivity coefficient (m2/s), 

A and B are the regression parameters (A = 281 kg/s0.637/m0.726, B = 0.863 for the 350 series packing in 

this work), 

 USL is the superficial liquid velocity (m/s), 

 ap is the specific area of the packing (m2/m3), and 

 μL is the liquid viscosity (Pa-s). 

 

The model is presented as a diffusion independent mass transfer coefficient (consistent with 

implementation in Aspen Plus®) with the assumption that the mass transfer coefficient has a square root 

dependence on diffusivity as predicted by penetration and surface renewal theories. The prediction of 

diffusion coefficient is not considered in this work, but is developed as part of the thermodynamic 

framework of Frailie (Frailie, et al., 2013). Equation 2 is not a generally applicable mass transfer model, 

but rather an empirical expression to represent the experimental data collected for the packing of interest 

(350 series packing in this work). The exponent on the viscosity term was derived from literature review 

since viscosity was not varied in the experimental data.  
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Physical mass transfer resistance in reactive absorption systems with fast (not instantaneous) reaction is not 

significant under certain conditions (pseudo-first order approximation with high Hatta number (Bishnoi, 

2000)). For the liquid side mass transfer model to be a meaningful parameter in the data reconciliation 

process, the predicted mass transfer coefficient must be low enough to limit diffusion of reactant and 

products to and from the interface (violating the pseudo-first order approximation), reducing the rate of 

CO2 absorption. A sensitivity analysis of the mass transfer coefficient for representative pilot plant 

conditions (lean loading = 0.28, L/G = 4.3 mol/mol, spray intercooling) is summarized in Figure 2. The 

results depict two distinct regions of CO2 mass transfer sensitivity to kL; the prediction of Equation 2 (red, 

dashed line) falls in the region of high sensitivity (represented by the slope of the line or exponent on the 

trend line equation in Figure 2). Thus, current experimental data for the 350 series, 70° packing indicate 

that the physical mass transfer coefficient is important to overall mass transfer performance in the pilot 

plant system with 8 m PZ.  

 

 

 

Figure 2 Sensitivity of CO2 Absorption (Penetration) to changes in Diffusion-Independent Liquid Mass Transfer 

Coefficient. Dashed lines represent predictions by the mass transfer model presented in this work (- -red) in Equation 2 

and the model used by Plaza (Plaza, 2011) (- - black) in previous pilot plant analysis. All data in the plot reflect the 

following modeled case: lean loading = 0.27 mol CO2/mol alkalinity, L/G = 4.3 mol/mol, and spray intercooling. Mass 

transfer coefficients are average values over the column.  

Since the model parameters were regressed to fit the data for the packing used in this pilot plant campaign, 

the average deviation of the model from the experimental data was small (< 1%), but individual 

experimental points could vary from model predictions by as much as 20%. Therefore, this model error 

may be represented in the reconciliation process by allowing a correction to the model predicted mass 

transfer coefficient. In addition, as with the interfacial area, local mass transfer coefficients can be 

adversely affected by liquid distribution in the column. If large portions of the packing do not receive 

sufficient liquid flow, the apparent mass transfer coefficient will drop correspondingly; local mass transfer 

behavior is not easily modeled in packed columns, and thus the correction to the model-predicted mass 

transfer is needed.   
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4.2.3. Corrections for CO2 and PZ 

 

Corrections for CO2 and PZ component mass flows in the feed stream to the absorber were also 

implemented (each an independent parameter). The corrections were primarily introduced to represent 

potential measurement bias in titrations or flow measurements around the absorber. Mass balance 

reconciliation after random error quantification (section 4.1) showed that the CO2 and PZ mass balances 

could not be simultaneously closed within the random error using the same titration and flow meter data 

sources. This inconsistency pointed to potential bias in either flow or titration data. In addition, work by 

Walters showed that CO2 concentration predictions from inline density measurements were inconsistent 

with CO2 titration data (Walters, et al., 2013). This evidence supports the need for a bias correction in the 

reconciliation process. Finally, work by Nielsen indicated evidence of degradation products in the pilot 

plant solvent (Nielsen, et al., 2013); if the PZ degraded over time, and this corresponds to a loss of 

alkalinity of the solvent, the modeled PZ concentration should be reduced to reflect reduced alkalinity.  

4.3. Data Reconciliation and Spray Nozzle Performance 

The pilot plant data and global adjustment parameters were used to reconcile model predicted performance 

with pilot plant measurements (Equation 1) for the three runs in the October 2011 campaign (runs 1, 8, and 

10) that did not implement spray nozzle intercooling; this process identified values for the global 

adjustment parameters to be applied uniformly to the full campaign. With global parameters fixed, the 

spray nozzle was modeled as a packed section between the two primary beds of the column. The mass 

transfer area of the spray nozzle section was treated as an independent variable for each run with the spray 

nozzle activated and provided a measure of interfacial area generated by the spray without rigorous 

modeling for the spray. This two-step process identified global adjustments for the entire campaign and 

isolated the impact for the spray nozzle by run. Table 3 summarizes input, adjustment, and result 

parameters used in the data reconciliation.  
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Table 3. Data Reconciliation Parameter Summary 

Input Parameters Global Adjustment Parameters Results 

Lean Solvent -  CO2 Liquid Side Mass Transfer Coefficient (kL) Rich Solvent Flow 

Lean Solvent - PZ  Interfacial Area Mid Column Loading1 

Lean Solvent – H2O  CO2 Correction Rich Loading1 

Lean Solvent –Temperature/Pressure  PZ Correction Rich Solvent Temperature  

Rich Gas Composition2 
 

Lean Gas Composition2  

Rich Gas Temperature/Pressure 
 

Lean Gas Temperature 

Rich Gas Flow 
 

Lean Gas Flow 

Intercooling Temperature  
  

Column Pressure Drop  
  

Column Heat Loss3 
  

1. Mid-Column and Rich Loadings were represented by changes from lean loading 

2. Rich and Lean gas compositions were used to calculate CO2 Removal 
3. Steady state heat loss calculated from column RTD measurements.  

 

5. Previous PZ Campaigns and Data Reconciliation  

Three previous campaigns were implemented using 8 m PZ at SRP. Plaza performed data reconciliation 

work on the 3 previous campaigns, using both an interfacial area modification and CO2 modification to 

reconcile the pilot plant data with a previous version of the 8 m PZ model (Plaza, 2011). Table 4 provides a 

summary of absorber conditions and the results of Plaza. The significance of the CO2 corrections cannot be 

isolated from the mass transfer area corrections since they were varied concurrently and are likely not 

independent; this is also reflected in the standard deviations around the corrections which indicate the 

corrections are not statistically different from 1(no correction) at a 95% confidence level (only the 

December 2010 area correction is significant). Nonetheless, the corrections provide a reference for 

comparison and range of expected corrections for the October 2011 campaign. 
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Table 4. Previous PZ Pilot Plant Campaign Operating Conditions and Reconciliation Results 

Pilot Plant Campaigns November 2009 September 2010 December 2010 October 2011* 

Operating 

Conditions 

Solvent 5 – 9 m PZ 8 m PZ 8 m PZ 8 m PZ 

Packing 
 Type/Sp. Area(m2/m3)/Angle 

Structured 205 X Hybrid 250 Hybrid 250 Structured 350 Z 

Gas Rate (ACFM) 350 250-750 350-650 350-675 

Liquid  Rate (GPM) 12-18 8-26 8-26 11-22 

Intercooling No  Yes/No Yes Yes (with Spray) 

Modified Model 

Parameters 

Interfacial Area Factor 1.17 + 0.15 1.02 + 0.16 0.72 + 0.13 See Results 

CO2 Multiplier 1.05 + 0.03 1.05 + 0.03 1.06 + 0.04 See Results 

# of Runs Evaluated 14 12 9 11 

 

6. Results 

Table 5 summarizes the global parameter sensitivity results of the first step of the reconciliation process 

(runs without the spray nozzle). 

 
Table 5. Results of Independent Global Parameter Sensitivity Analysis with 95% confidence intervals 

Parameter Correction Factor Upper 95% Lower  95% 

Interfacial Area 0.74 0.79 0.68 

Liquid Side Mass Transfer Coefficient (kL) 0.65 0.71 0.59 

CO2 Correction 1.075 1.1 1.05 

PZ Correction 0.93 0.95 0.91 

 

Each of the individual parameter corrections in Table 5 is statistically significant and reconciled the 

overall mass and energy balance for the 3 runs without the spray nozzle. The area and CO2 corrections are 

similar to previous corrections by Plaza (Plaza, 2011), though a combination of area and loading 

corrections was not needed to reconcile the data in this work (less severe correction than previous work). 

The CO2 correction has corroborating data from the work of Madan in stripper reconciliation and Walters 

in dynamic pilot plant performance analysis (Madan, et al., 2013; Walters, et al., 2013). Madan was able to 

reconcile the stripper section (two-stage flash) of the October 2011 campaign with a correction of 4.6% 

reported in this work (Madan, et al., 2013). Walters work showed that an average increase of 4.5% was 

required in CO2 mole fractions to reconcile dynamic simulation around the stripping section (Walters, et 

al., 2013). The correction in this work is higher than those on the stripper side, and may in reality be 

coupled with one of the other effects in represented in Table 5. Nonetheless, the CO2 correction was 

selected as the global parameter to be applied to all spray nozzle runs.  
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Figures 3 through 6 show several important result parameters from the data reconciliation process using 

the CO2 correction and spray nozzle mass transfer area variation. The reconciliation process matched all 

input and result variables within 95% confidence intervals (error bars in figures) with the exception of mid 

column loading (not shown). The single parameter approach used in this analysis is likely insufficient 

(underspecified) to fit the mid loading measurement, and a secondary parameter would be needed to 

account for relative mass transfer rates through the column.  

 

Figure 3 Gas Side CO2 Removal by Pilot Plant Run, 

Measured (blue) vs. Model Predicted (red) (Error bars = 

95% Confidence Intervals) 

 

Figure 4 Loading Difference (Rich – Lean) by Pilot Plant 

Run, Measured (blue) vs. Model Predicted (red) (Error 

bars = 95% Confidence Intervals) 

 

Figure 5 Rich Solvent Temperature by Pilot Plant Run, 

Measured (blue) vs. Model Predicted (red) (Error bars = 

95% Confidence Intervals) 

 

Figure 6 Gas Outlet Temperature by Pilot Plant Run, 

Measured (blue) vs. Model Predicted (red) (Error bars = 

95% Confidence Intervals) 

 

In addition to verification of the reconciliation process, the result parameters provide insight into the 

pilot plant operations. The rich to lean loading difference (Figure 4) shows a trend of over-prediction by the 

model (all 11 runs). Random process variations and measurement errors should yield pilot plant results on 

both sides of the model prediction; it is highly unlikely to find trends such as that in Figure 4 strictly via 

random variation. Reconciliation results for the rich solvent flow rate revealed an analogous trend; the rich 

solvent flow rate was shifted towards its lower bound in all but one run. The drop in solvent flow for a 
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given CO2 transfer leads to higher rich loading as observed in Figure 4. During the error quantification 

process of the pilot plant data (section 4.1), the choice of rich flow meter (point 4 vs. point 5 in Figure 1) 

altered the mass balance closure. An average of flow meter values was used in the reconciliation since this 

minimized the error in the mass balance; however, as the reconciliation results indicate, the rich solvent 

flow still shows an apparent bias that should be addressed in future runs. 

Figure 7 and 8 provide representative temperature profiles for the column for runs with comparable 

operating conditions with and without the spray nozzle.  

. 

Figure 7 Absorber Column Temperature Profile, Run 1 

(Intercooling with No Spray Return). Profile moves down 

the column from left to right. 

 

Figure 8 Absorber Column Temperature Profile, Run 2 

(Spray Return for Intercooling). Profile moves down the 

column from left to right. 

 

Despite the fact that the reconciliation process only matched inlet and outlet gas and solvent 

temperatures, the temperature profile behavior is largely captured by the model. For example, in run 2, the 

spray nozzle leads to recycle of solvent in the middle of the column (approaches a well-mixed section) and 

the temperature leaving the middle section of the column is higher than in run 1 where the intercooled 

solvent goes directly to the lower section of the column; this behavior is replicated well by the model.  The 

model struggled to match the peak temperatures observed at the pilot plant; this may be a function of poor 

estimates of heat loss at these points or may provide insight into real temperature behavior in operation. 

These points may be candidates for multiple radial temperature measurements in future campaigns.  

 

Finally, the predicted mass transfer area generated by the spray nozzle was quantified as an equivalent 

height of packing (Table 6). The predicted height was then correlated to the mass flow rate through the 

spray nozzle with the purpose of relating the kinetic energy in the flow stream to the mass transfer area 

generated from the nozzle (Figure 9).  
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Table 6. Predicted Spray Nozzle Mass Transfer Area (Equivalent Height of Packing) by Pilot Plant Run 

 

Run 
Spray Equivalent Height of Packing 

% Addition to Total Packing  

(m)  

2 0.44 7% 

3 0.58 10% 

4 0.96 16% 

5 0.57 9% 

6 1.03 17% 

7 1.09 18% 

9 1.26 21% 

11 0.88 14% 

 

 

 

 

 

 

Figure 9 Prediction of mass transfer area produced by the spray nozzle on intercooled solvent return as a function of 

the solvent mass flow rate through the nozzle. Mass transfer area is reported as an equivalent height of packing (of 350 

series packing used in the October 2011 campaign). 
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The data regarding spray nozzle performance can be used to perform an economic analysis of spray 

nozzle implementation (trade-off vs. packing) or as a measure of performance improvement in a retrofit 

application in an absorber column.  In the case of the pilot plant, additional mass transfer area was 

generated where packing could not be added at the cost of a spray nozzle and pressure drop associated with 

the flow rates enumerated in Figure 9.  

 

7. Conclusions 

Pilot plant data reconciliation of mass and energy balances for an absorber column utilizing 8 m PZ 

were successfully completed with the independent implementation of 4 global adjustment parameters 

representing potential deviations in pilot absorber performance from model predictions.  

 

 Interfacial Area Correction: A 26% decrease of the model predicted mass transfer area was required to 

reconcile the October 2011 campaign data with model predictions. The reduced performance compared 

to the model (and experimentally collected data) in the pilot column may indicate error in the model at 

pilot plant conditions or issues with column operation such as liquid distribution. The result suggests the 

need for proper incorporation of experimental error into modeling efforts as well as reduction of model 

error by packing specific area measurements at pilot plant conditions to reduce error in the model. This 

objective should be balanced with the need for generalized area models that are applicable to a variety of 

packing and will inherently have more error than a packing-specific model. In addition, experiments 

quantifying the performance impact of varying liquid distribution would provide a valuable upgrade to 

the area models in use currently. 

 

 Liquid Side Mass Transfer Coefficient: Sensitivity analysis of the mass transfer coefficient revealed that 

column performance is sensitive to the physical mass transfer coefficient. A 35% reduction of the 

nominal or model predicted mass transfer coefficient was required to reconcile pilot plant data. As with 

the mass transfer area, repeated experiments at pilot plant conditions could isolate the relevant 

experimental error in the mass transfer model and liquid distribution experiments could provide an 

additional important correction parameter. Finally, the viscosity dependence assumed in this work (-0.5 

power) should be experimentally verified or updated for systems analogous to the 8 m PZ solvent as this 

is another source of potential uncertainty currently unaccounted for in the model. 

 

 CO2 Correction: An increase of 7.5% to CO2 content (mole fraction) in the lean amine stream was 

required to achieve reconciliation between model and plant data. As noted, the correction to CO2 is in 

part validated by stripper reconciliation work by Madan (Madan, et al., 2013) and Walters (Walters, et 

al., 2013) who found increases in CO2 concentration of 4.6 and 4.7%, respectively. The correction in 

CO2 concentration implies a bias in pilot plant measurement data (titrations and/or flow measurements); 

this potential for bias was supported by component mass balance closure problems during error 

quantification of pilot plant data. However, future campaigns will require re-calibration of flow meters 

and analysis of standards for analytical methods to quantify or eliminate the bias.  

 

 PZ Correction: A 7% reduction to PZ content (mole fraction) in the lean amine stream was required to 

achieve reconciliation between model and plant data. As with CO2, the correction may be explained by 

un-quantified measurement bias. However, work by Nielsen (Nielsen, et al., 2013) points to the 

possibility of degradation of the PZ solvent over several campaigns which may ultimately lead to loss of 

alkalinity in the solvent. However, this effect has not been quantified in a way that can be modeled. The 

establishment of a baseline for the solvent condition based on Nielsen  or the use of fresh solvent in 

future campaigns will allow the evaluation of modeled compared to actual solvent performance over 
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time. Alongside analytical data collected with each campaign, changes in expected performance can be 

correlated to changes in the solvent.  

 

Using the CO2 model correction, the effect of spray nozzles was quantified in terms of the equivalent 

height of packing required to replicate spray nozzle performance improvement.  The spray nozzle impact 

was equivalent to the addition of 7 to 20% additional packing to the column as configured in the October 

2011 campaign. Further, the spray nozzle mass transfer area generated was correlated to the 1.5 power of 

the mass flow rate through the nozzle (and intercooling loop). This correlation provides the basis for 

economic evaluation of the spray nozzle configuration and identification of feasible conditions for 

operation. 
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Appendix D: Notes on Absorber Modeling Methods 

D.1 MINIMUM SOLVENT RATE ANALYSIS (CHAPTER 3 AND 4) 

Chapters 3 and 4 included evaluations at the minimum solvent rate asymptote 

(LMIN) for isothermal, adiabatic and intercooled absorbers. The chapters provide a 

detailed discussion of the evaluation of the pinch conditions that define LMIN for each 

case. The following discussion will outline some important aspects of modeling the LMIN 

condition using the rate-based absorber model in Aspen Plus®. 

D.1.1 Isothermal LMIN 

The minimum solvent rate for an isothermal absorber corresponds to a pinch at 

the rich end of the absorber. Therefore, LMIN can be calculated from the solvent VLE and 

a material balance on the absorber. First, the rich loading for the isothermal absorber is 

defined as the loading where the equilibrium partial pressure (P*CO2) is equal to the inlet 

flue gas CO2 partial pressure (PCO2,IN). For a given lean loading and CO2 removal, the 

material balance around the absorber can be used to calculate LMIN as follows:  

 

 

2 2 2CO

1





 

 
 

IN

CO IN CO

MIN IN

PZ
OUT

PZ

f y V MW
L  

D.1 

where: 

fCO2 = Fraction of CO2 removed; 

2

IN

COy  = Mole fraction of CO2 in flue gas inlet; 

VIN = Molar flow rate of flue as into absorber; 

MWCO2 = Molecular weight of CO2 (44.01 g/mol); 
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ωPZ = Apparent mass fraction of piperazine at solvent inlet (IN =lean) and outlet 

(OUT = rich); 

The apparent mass fractions of PZ can be calculated from the lean and rich loadings. 

Alternatively, a flash block in AspenPlus® can be used to combine both steps (match 

P*CO2 and perform material balance) removing the need for apparent mass fractions.  

D.1.2 Adiabatic and Intercooled LMIN 

For the cases where the column is not operated isothermally (adiabatic and 

intercooled absorber), pinches may coincide with temperature maxima in the column (and 

are a function of CO2 and water transfer rates as discussed in Chapter 3). In these cases, 

LMIN is a rate-based phenomena and cannot be predicted by VLE and material balance as 

in the isothermal case. Instead, the full rate-based model must be used to find LMIN and 

the corresponding pinch. Figure D.1 illustrates the approach used in this work.  
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Figure D-1: Minimum Solvent Rate Identification from Absorber Design Curves.   

As the figure shows, the horizontal asymptote of an absorber design curve for a 

given lean loading and CO2 removal represents LMIN for any absorber configuration. The 

modeling approach, therefore, is to add packing to a simulated column until the solvent 

rate required to achieve 90% removal is effectively constant (i.e., changes by less 0.1% 

from previous step). However, several important factors should be considered in the 

simulation of this conditions: 

1) Stages must be added to the absorber as packing is added to ensure that individual 

computational stage size is not becoming too large. This is particularly important 

where large gradients exist (e.g., around a temperature bulge). Therefore, column 

discretization must be checked after each simulation to ensure all gradients are 

properly captured (add additional stages around gradients). Once LMIN is 
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identified, the sensitivity of LMIN to computational stages and column 

discretization should be checked to ensure the result is not a modeling artifact.  

2) The pinch should be verified by an equilibrium-operating line chart (i.e., checking 

driving forces), checking a CO2 flux profile, or the CO2 reaction rate, all of which 

provide indications of a mass transfer pinch. As with the LMIN specification, a 

computational limit must be defined to determine a pinch (i.e., finite driving force 

that defines approximates a pinched condition). 

3) For intercooled absorbers, in general, a pinch should occur in each independent 

packed section of the column and should be verified computationally to ensure 

simulation of LMIN.  

The simulated packing area requirements for the cases in Chapters 3 and 4 are 

summarized here for reference only (provide an order of magnitude reference for the 

packing requirement @ LMIN for the specific simulated cases in this work): 

 

 NGCC, 90% Removal; G = 31.2 kmol/s; yCO2,IN = 4.1 mol%: 

o Adiabatic: 4400 – 8200 (1000 m2) 

o In-and-Out IC: 7600 – 9700 (1000 m2) 

 Coal-fired boiler, 90% Removal; G = 31.2 kmol/s; yCO2,IN = 14.7 mol%: 

o Adiabatic: 3600 – 9800 (1000 m2) 

o In-and-Out IC: 6300 – 9000 (1000 m2) 

 Steel blast furnace, 90% Removal; G = 10.8 kmol/s; yCO2,IN = 27 mol%: 

o Adiabatic: 1800 – 4000 (1000 m2) 

o In-and-Out IC: 6400 – 8000 (1000 m2) 
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As noted in the preceding discussion, many factors can affect the computational packing 

requirement for LMIN and once LMIN is reached, packing can be added to the simulation 

with minimum effect on the results. Therefore, the finite packing requirement has little 

physical meaning and is only computationally relevant in that it describes the range of 

values where a pinch might be expected for the given conditions.   

D.2 ISOTHERMAL COLUMN (CHAPTER 3, 4, AND 5) 

Modeling an isothermal column with a finite packing requirement (i.e., away from 

LMIN) using the full rate-based model in AspenPlus® requires a method to remove heat 

generated by absorption and reaction of CO2 as the mass transfer and thermodynamic 

models cannot be de-coupled directly. The following approach was used in this work.  

1) Specify a “heat loss” section in the Radfrac module corresponding to each stage 

in the simulation (found under "Blocks>Absorber>Heaters Coolers>Heat Loss").   

2) Provide an initial guess for the heat loss for each stage.  

3) Column should be fully converged with initial guesses for heat loss profile – may 

require updating of heat loss specifications. Significant deviations in temperature 

from target temperature or CO2 removal from removal specification will create 

difficulty in converging the column (large steps will be required in heat loss 

profiles and changes in CO2 removal will have significant impact on temperature 

profiles).  

4) Define a design specification for each stage to vary the heat loss for each stage 

(variable name = HTLOSS-SEC) until the solvent temperature is at the target 

temperature (e.g., 40°C). 

5) Design specifications should be defined to converge simultaneously (found under 

"Convergence>Conv Options>Sequencing>Design Spec Nesting").   
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6) A design specification to maintain constant CO2 removal should also be active 

during heat loss convergence (vary solvent rate for a given packing height or vary 

packing height for a fixed solvent rate). 

D.3 HYBRID CONTACTING SCHEME (CHAPTER 6) 

The hybrid contacting scheme (Figure D-3) in Chapter 6 requires that each of the 

individual packed sections be modeled as an individual rate-based column model in 

AspenPlus®.  
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Figure D-2: Hybrid contacting scheme modeling notes. Each section in the hybrid 

contacting scheme is a separate “absorber” or rate-based Radfrac module in 

AspenPlus®.   The individual gas streams were mixed leaving the hybrid section 

prior to entering a top bed (if present). The feed streams (gas and liquid for all but 

the lean feed and entering gas streams represent potential tear streams (red) in the 

simulation.  

The potential tear streams created by the hybrid contacting scheme are 

highlighted in Figure D-2. These tear streams provide the primary challenge to 

convergence in the simulation as they define the heat and material balance for all unit 

operations in the simulations (columns and heat exchangers). Initial guesses for the 

streams should be provided as part of the initial simulation based on known feed stream 

(gas and liquid) conditions and can be updated through the convergence process (e.g., as 

the columns are simulated from physical absorption to full chemical kinetics) by 

reconciling the stream input with the stream results.  The gas streams leaving the hybrid 

Lean 
Amine

Rich 
Amine

Tear Streams
 in Red

1 2 3

6 5 4

Flue Gas In

A

B
C

Gas Out

Gas re-mixed 
in simulation



 374 

section were mixed prior to entering a top section of packing, but can be fed separately to 

three parallel counter-current packed columns to simulate gas distribution in an actual 

column.   
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Appendix E: Design Curves for Intercooled Absorbers 

The following figures are intended to supplement the discussion in Chapter 3 by 

completing the set of design curves generated for the analysis in that chapter. The NGCC 

design curves are repeated here for completeness, and the curves for the coal-fired boiler 

and steel blast furnace applications appear for the first time. Please reference Chapter 4 

for detailed discussion of the results.  

“OVER-STRIPPED” LOADING RANGE 

 

 

Figure E-1: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), “over-

stripped” loading region (LLDG = 0.18 mol CO2/mol alk.). Each curve (dashed = 

adiabatic, solid = isothermal) represents constant 90% CO2 removal. Unique rich 

loading for each L/G is on secondary y-axis. The horizontal asymptote each curve 

reaches is LMIN. 
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Figure E-2: Packing-solvent rate trade-off, coal-fired boiler flue gas (14.7 mol% 

CO2), “over-stripped” loading region (LLDG = 0.15 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal) represents constant 90% CO2 removal. 

Unique rich loading for each L/G is on secondary y-axis. The horizontal asymptote 

each curve reaches is LMIN. 
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Figure E-3: Packing-solvent rate trade-off, steel blast furnace flue gas (27 mol% 

CO2), “over-stripped” loading region (LLDG = 0.12 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal) represents constant 90% CO2 removal. 

Unique rich loading for each L/G is on secondary y-axis. The horizontal asymptote 

each curve reaches is LMIN. 
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SIMPLE INTERCOOLING LOADING RANGE 

 

Figure E-4: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), simple 

intercooling loading region (LLDG = 0.25 mol CO2/mol alk.). Each curve (dashed = 

adiabatic, solid = isothermal, blue = intercooled) represents constant 90% CO2 

removal. Unique rich loading for each L/G is on secondary y-axis. The horizontal 

asymptote each curve reaches is LMIN. 
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Figure E-5: Packing-solvent rate trade-off, coal-fired boiler flue gas (14.7 mol% 

CO2), simple intercooling loading region (LLDG = 0.20 mol CO2/mol alk.). Each 

curve (dashed = adiabatic, solid = isothermal, blue = intercooled) represents 

constant 90% CO2 removal. Unique rich loading for each L/G is on secondary y-

axis. The horizontal asymptote each curve reaches is LMIN. 
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Figure E-6: Packing-solvent rate trade-off, steel blast furnace flue gas (27 mol% 

CO2), simple intercooling loading region (LLDG = 0.18 mol CO2/mol alk.). Each 

curve (dashed = adiabatic, solid = isothermal, blue = intercooled) represents 

constant 90% CO2 removal. Unique rich loading for each L/G is on secondary y-

axis. The horizontal asymptote each curve reaches is LMIN. 
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ADVANCED INTERCOOLING LOADING RANGE 

 

 

Figure E-7: Packing-solvent rate trade-off, NGCC flue gas (4.1 mol% CO2), 

advanced intercooling loading region (LLDG = 0.30 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal, blue = intercooled) represents constant 90% 

CO2 removal. Unique rich loading for each L/G is on secondary y-axis. The 

horizontal asymptote each curve reaches is LMIN. 
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Figure E-8: Packing-solvent rate trade-off, coal-fired boiler flue gas (14.7 mol% 

CO2), advanced intercooling loading region (LLDG = 0.26 mol CO2/mol alk.). Each 

curve (dashed = adiabatic, solid = isothermal, blue = intercooled) represents 

constant 90% CO2 removal. Unique rich loading for each L/G is on secondary y-

axis. The horizontal asymptote each curve reaches is LMIN. 
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Figure E-9: Packing-solvent rate trade-off, steel blast furnace flue gas (27 mol% 

CO2), advanced intercooling loading region (LLDG = 0.22 mol CO2/mol alk.). Each 

curve (dashed = adiabatic, solid = isothermal, blue = intercooled) represents 

constant 90% CO2 removal. Unique rich loading for each L/G is on secondary y-

axis. The horizontal asymptote each curve reaches is LMIN. 
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LARGE SOLVENT RATE LOADING RANGE 

 

 

Figure E-10: Packing-solvent rate trade-off, coal-fired boiler flue gas (14.7 mol% 

CO2), large solvent rate loading region (LLDG = 0.36 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal) represents constant 90% CO2 removal. 

Unique rich loading for each L/G is on secondary y-axis. The horizontal asymptote 

each curve reaches is LMIN. 
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Figure E-11: Packing-solvent rate trade-off, steel blast furnace flue gas (27 mol% 

CO2), large solvent rate loading region (LLDG = 0.39 mol CO2/mol alk.). Each curve 

(dashed = adiabatic, solid = isothermal) represents constant 90% CO2 removal. 

Unique rich loading for each L/G is on secondary y-axis. The horizontal asymptote 

each curve reaches is LMIN. 
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Appendix F: TOTAL sponsored Natural Gas Power Plant Case Studies7 

SUMMARY 

During the past year, TOTAL sponsored a project through the Process Science 

and Technology Center (PSTC) to initiate a techno-economic analysis of amine 

scrubbing using 8 m piperazine (PZ) for CO2 removal from flue gas from three natural 

gas-based applications. The applications and corresponding flue gas CO2 concentrations 

are as follows: combined cycle (3% CO2), combined cycle with exhaust gas recycle (6% 

CO2), and natural gas-fired boiler (9% CO2).  

For each application, two bounding economic scenarios were evaluated: high 

capital and low operating cost (high cap-ex, low op-ex)  or low capital and high operating 

cost (low cap-ex, high op-ex). Within the two major process areas (absorption and 

stripping), further equipment level design modifications were introduced into each 

economic scenario; in total, 10 designs were developed for detailed economic evaluation. 

Key developments in absorber design included implementation of solvent recycle 

intercooling around multiple packed sections of the column. The solvent recycle design 

allows cooling of the gas in an intercooled section in addition to the expected solvent 

cooling. The high solvent rate per wetted perimeter also provides enhancement of mass 

transfer to counteract diminished driving forces in the column due to solvent recycle. 

Sensitivity analyses identified solvent recycle rates to minimize total packing 

requirements (capital costs) and maximize rich loadings (minimize energy requirement in 

the stripping section). In addition, the ability to cool gas with solvent allowed the 

implementation of designs without a direct contact cooler (DCC); a recycle section in the 

bottom of the column was shown to effectively cool the gas and replace the DCC unit.  

                                                 
7 The report in this chart served as a deliverable to TOTAL as part of research sponsored through the 

Process Science and Technology Center at the University of Texas at Austin (Level B project). PI: Gary 

Rochelle, Authors: Darshan Sachde and Tarun Madan 
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In the stripping section, an inter-heated stripper was implemented with 5° LMTD 

for the main cross exchanger to represent a high cap-ex, low op-ex designs. In addition, a 

simple stripper with cold rich bypass and 5° LMTD for the main cross exchanger were 

implemented for the low cap-ex, high op-ex designs. For both equipment configurations 

analysis of the equivalent work requirements was conducted, including sensitivity 

analysis identifying a range of operable lean and rich loadings for the natural gas 

applications.  

The following report includes analysis of the 10 design cases including detailed 

heat and material balance results, equipment specifications, and discussion of results.  

INTRODUCTION AND PROCESS DESCRIPTION 

Absorber and stripper models were developed for CO2 capture from three natural 

gas applications with flue gas feed conditions summarized in Table F-1.  
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Table F-1: Natural Gas Capture Applications, Flue Gas Information 

Case 2010-1A: Combined 

Gas Cycle Turbine 

Case 2010-1B: Combined 

Gas Cycle Turbine with 

EGR 

Case 2010-2: Gas Boiler 

Flow rate 

(kmol/h) 
40,473 

Flow rate 

(kmol/h) 
24,172 

Flow rate 

(kmol/h) 
10,292 

Flow rate 

(t/h) 
1,161 

Flow rate 

(t/h) 
691 

Flow rate 

(t/h) 
284 

T (°C) 121 T (°C) 121 T (°C) 136 

P (kPag) 0 P (kPag) 0 P (kPag) 0 

Composition (mol %) Composition (mol %) Composition (mol %) 

H2O 6.51 H2O 7.06 H2O 18.78 

CO2 3.31 CO2 6.18 CO2 8.69 

N2 75.48 N2 78.94 N2 69.92 

Ar 0.91 Ar 0.95 Ar 0.89 

O2 13.79 O2 6.87 O2 1.72 

 

Within the three cases, designs were developed to represent two economic scenarios:  

 

1) High capital cost, low operating cost design (High CapEx, Low OpEx) operating 

with 1.2 times the minimum solvent rate. 

2) Low capital cost, high operating cost design (Low CapEx, High OpEx) operating 

with 1.4 times the minimum solvent rate. 
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The primary process parameter used to differentiate the economic scenarios was 

solvent circulation rate. The high cap-ex, low op-ex cases utilized a solvent rate of 1.2 

times the minimum solvent rate required to achieve 90% CO2 removal (1.2*Lmin); the low 

cap-ex, high op-ex utilized a higher solvent rate of 1.4*Lmin. 

In addition, for the first two cases, the water content in the flue gas stream (Table 

F-1) was low enough (no condensation of water during cooling to 40°C) to permit 

cooling of the gas in the absorber itself without a direct contact cooler (DCC) upstream of 

the absorber. Thus, designs were developed with and without a direct contact cooler for 

the first two flue gas sources.  

All designs were developed for 90% CO2 removal from the corresponding flue 

gas stream. A total of 10 process configurations were evaluated for the three cases; the 

list is summarized in Table F-2. 

 

Table F-2: Summary of Design Scenarios Evaluated 

Case 2010-1A Case 2010-1B Case 2010-2 

High Cap EX, Low Op Ex 

with DCC 

High Cap EX, Low Op Ex 

with DCC 

High Cap EX, Low Op Ex 

with DCC 

Low Cap EX, High Op Ex 

with DCC 

Low Cap EX, High Op Ex 

with DCC 

Low Cap EX, High Op Ex 

with DCC 

High Cap EX, Low Op Ex 

NO DCC 

High Cap EX, Low Op Ex 

NO DCC   

Low Cap EX, High Op Ex 

NO DCC 

Low Cap EX, High Op Ex 

NO DCC   

 

The 10 designs can be represented by 4 flow sheets, presented in the subsequent sections 

accompanied by a description of the major process steps and design choices.  

 

1. High CapEx, Low OpEx with Direct Contact Cooler 

Applied to following cases: 
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 Case 2010-1A: Gas Turbine (3.3% CO2)  

 Case 2010-1B: Gas Turbine with EGR (6.2% CO2)  

 Case 2010-2: Gas-Fired Boiler (9% CO2)  

Figure F-1 presents the full process flow diagram for absorption and stripping of CO2 for 

the high capital cost, low operating cost design utilizing a DCC.  

 

 

Figure F-1: Process Flow Diagram for the High Capital Cost, Low Operating Cost 

equipment configuration with a Direct Contact Cooler 

 

Flue gas (1a) at atmospheric pressure is compressed by a blower to overcome 

pressure drop in the DCC, absorber, and water wash in downstream process steps. The 

hot, compressed flue gas (1b) is cooled by contact with cooling water in a DCC unit (E-8) 

to 40°C in all cases. The cooled gas (2) enters the absorber (V-1) and counter-currently 

contacts amine solvent in three packed sections within the column. The stripped or lean 

gas leaves the absorber beds and passes through a packed water wash bed (in the same 
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vessel, V-1) to remove volatile amine products by countercurrent contact with water. The 

stripped gas (22) is ultimately vented after passing through the wash portion of the 

column.  

Lean amine solvent (13) enters the absorber at 40°C above the top absorber bed. 

At the bottom of the second (middle) bed of packing in the column, solvent is pumped 

out of the column and cooled to 40°C in a solvent inter-cooler. The solvent is returned to 

the top of the middle packed section. This solvent recycle with intercooling removes heat 

generated in the solvent by chemical reaction as the solvent is drawn-off and cooled and 

cools the gas as the solvent is recycled and contacts the gas through the well-mixed 

middle section of packing. A high rate of solvent is recycled to ensure cooling of the gas 

and maintain cool solvent through the recycle section. A rate of three times the solvent 

feed was withdrawn in the recycle loop in all designs in this analysis. The high solvent 

rates in the middle packed section lead to the implementation of coarse structured 

packing in this section to minimize pressure drop and avoid flooding constraints.  

The amine solvent leaving the solvent recycle section contacts the gas in the 

bottom bed of the absorber and leaves the unit as rich solvent (3a). The rich amine is 

pumped through the main cross exchanger (E-1) where it is heated by hot, lean solvent 

(10) returning from the stripper. In the high capex, low opex designs, a 5°C LMTD was 

applied around the main cross exchanger (E-1). 

The hot, rich solvent (4) enters the stripper (V-2) where CO2 is stripped in a single 

packed bed by heat provided by a steam reboiler (E-2). As the solvent leaves the packed 

section, it is removed from the column (7a) and passes through an interheater cross-

exchanger (E-5) where it is heated by the rich solvent (9)  leaving the reboiler. The 

“interheated stripper” configuration recovers additional heat from the reboiler via the rich 

stream leaving the reboiler and results in a cooler rich amine stream (4) reaching the 
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stripper since less heat is transferred in the main cross-exchanger (E-1) from the hot lean 

amine (10) to the cool rich amine (4). The cooler rich amine stream entering the stripper 

reduces the amount of water vapor lost per mole of CO2 recovered and in turn reduces 

irreversible heat losses in the condenser.  

After the hot lean amine stream passes through the interheater, it is cooled via the 

main cross exchanger (E-1) and the trim cooler (E-3) to 40°C for the absorption process.   

The CO2 rich gas (5) leaves the stripper and is cooled with water knockout in a 

condenser (E-6) before proceeding to a compressor (not depicted) to be compressed for 

end-use/disposal. 

 

2. Low CapEx, High OpEx with Direct Contact Cooler 

Applied to following cases: 

 Case 2010-1A: Gas Turbine (3.3% CO2)  

 Case 2010-1B: Gas Turbine with EGR (6.2% CO2)  

 Case 2010-2: Gas-Fired Boiler (9% CO2)  

Figure F-2 presents the full process flow diagram for absorption and stripping of CO2 for 

the low capital cost, high operating cost design utilizing a DCC.  

 



 393 

 

Figure F-2: Process Flow Diagram for the Low Capital Cost, High Operating Cost 

equipment configuration with a Direct Contact Cooler 

 

The flow sheet for this design is identical to that of the high capex, low opex with 

DCC design (Figure F-1) with the exception that a simple stripper (V-2) with cold rich 

bypass is used instead of the interheated stripper. In this stripper design, the stripper 

consists of two packed sections. The cold rich amine stream (3b) leaving the absorber is 

split upstream of the main-cross exchanger (E-1). A fraction of the flow (4) bypasses the 

main exchanger and is sent to the top of the stripper. This cold solvent reduces the water 

lost per mole of CO2 in the gas leaving the stripper (7). The remaining rich solvent from 

the absorber (5) passes through the main cross exchanger (E-1) and is heated by the hot, 
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associated with the main exchanger. The heated rich amine stream (6) then enters above 

the second packed bed of the stripper.  

All other parts of the flow sheet are identical to those described in section 1.  

 

3. High CapEx, Low OpEx NO DCC 

Applied to following cases: 

 Case 2010-1A: Gas Turbine (3.3% CO2)  

 Case 2010-1B: Gas Turbine with EGR (6.2% CO2)  

Figure F-3 presents the full process flow diagram for absorption and stripping of CO2 for 

the high capital cost, low operating cost design without a DCC.  

 

 

Figure F-3: Process Flow Diagram for the High Capital Cost, Low Operating Cost 

equipment configuration without a Direct Contact Cooler. 
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The flow sheet for this design is identical to that of the high capex, low opex 

design with DCC (Figure F-1) with the exception of the omission of a direct contact 

cooler and the recycle of solvent around the bottom packed bed of the column to couple 

the cooling effect of a direct contact cooler with absorption of CO2 by the solvent. The 

gas leaving the blower and entering the absorber (1b) does not pass through a separate 

unit for gas cooling and instead enters the absorber hot (at approximately the temperature 

in Table F-1 for the corresponding gas source). In the Case 2010-1A and Case 2010-1B, 

the water content of the gas is below that of the saturation concentration of water at 40°C, 

so water condensation from the gas is not expected during cooling of the gas. This allows 

direct cooling of the flue gas by the solvent in the bottom packed bed of the absorber 

without adverse effects on solvent water balance. As in the recycle loop described in 

section 1, the solvent leaving the bottom of the packed bed (2a) is cooled to 40°C and is 

pumped back to the top of the bed. The solvent recycle rate is three times the feed solvent 

rate and requires coarse structured packing in the bottom packed bed to minimize 

pressure drop.  

The process beyond the gas entering the absorber and bottom section of the 

absorber is identical to that described in section 1.  
 

4. Low CapEx, High OpEx NO DCC 

Applied to following cases: 

 Case 2010-1A: Gas Turbine (3.3% CO2)  

 Case 2010-1B: Gas Turbine with EGR (6.2% CO2)  

Figure F-4 presents the full process flow diagram for absorption and stripping of CO2 for 

the low capital cost, high operating cost design without a DCC.  
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Figure F-4: Process Flow Diagram for the Low Capital Cost, High Operating Cost 

equipment configuration without a Direct Contact Cooler. 

 

The flow sheet for this design is identical to that of the low capex, high opex 

design with DCC (Figure F-2) described in section 2 with the exception of the omission 
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column. The recycle section of in the bottom portion of the absorber (corresponding to 

the omission of the DCC) is identical to process described in section 3. Thus, no new 

design features were incorporated for this configuration and the preceding sections 

provide descriptions of all components of the flow sheet in Figure F-4.  
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level design modifications were introduced into each economic scenario; the details of 

these designs are presented in the following sections by process area.  

2a

2b

12

13a
13b

14

15

16

17

18a 18b

2021

19

22

26
27

28
29

24 25

30 31

V-1
Absorber

Absorber Water 
Wash Section

11

E-3

E-4

E-5

P-1

P-3

P-4

E-6

1a

1b

8
E-7

23

9

7

E-2

4

6

V-2
Stripper

3a
5

10

E-1
3b

P-2



 397 

ABSORBER DESIGN 

For cases 1 and 2, with hot, under-saturated flue gas streams, two equipment 

configurations were developed in parallel for the conditions described in Table F-1. The 

first design (no DCC) is depicted in the process flow diagram (PFD) in Figure F-5.  

 

 

Figure F-5: Case 1 and 2 Absorber PFD, No DCC, Combined Cycle Gas Turbine.  

 

The PFD highlights the novel design features for the combined cycle flue gas 

stream.  The low water content in the gas feed allowed elimination of the DCC since 

water does not need to be removed from the gas during cooling.  Instead, the gas is 

cooled with a rich amine recycle stream in the lower packed section of the column.  This 

accomplishes the necessary cooling of the gas and allows for absorption of CO2 during 

the cooling process.  The recycle of solvent in the bottom packed section results in high 

pressure drop through this section; coarse structured packing was used in the bottom 
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section to minimize pressure drop. While the bottom intercooling loop serves the primary 

purpose of cooling the incoming gas, the middle intercooling loop is used to reduce 

temperature bulges.  By using two loops for the two distinct purposes, back-mixing over 

the length of the column is reduced compared to one large intercooling loop performing 

both functions.  

 

The second configuration (with a DCC) is shown in Figure F-6. 

 

 

Figure F-6: Case 1, 2 and 3 Absorber PFD with DCC  

The absorber configuration is modified to account for the cool gas entering the 

column; amine recycle is no longer required in the bottom section of the column.  
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recycle is important to ensure cooling of the gas as well as the liquid in a well-mixed 

intercooling section.   

The third case (gas-fired boiler) cannot omit the DCC due to the high water 

content in the flue gas stream.  Therefore, the PFD for the third case will mirror the 

combined cycle DCC case (Figure F-6). 

Optimization Procedure 

The equipment configurations described in the previous section were optimized to 

minimize total interfacial area of the packing (in lieu of packing height since different 

packing types were used in different sections of the column) and maximize rich loading 

(or minimize energy requirements in the stripping section).  Variables considered in the 

optimization process included amine feed flow rate, recycle ratio, and packing height in 

and out of the recycle section.  

Amine Feed Flow Rate 

The base case design amine feed flow rate was set at 1.2 times the minimum 

amine flow rate in an attempt to minimize column height without significant compromise 

in rich loading; this design flow rate was used in the recycle ratio and packing split 

optimization.  To validate the flow rate assumption, a sensitivity analysis was performed 

on the amine feed rate with results summarized in Figure F-7. 
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Figure F-7: Total interfacial area and equivalent work as a function of the feed 

amine flow rate (X*minimum liquid flow rate).  Lean Loading = 0.25 mols CO2/mols 

alkalinity, 90% CO2 removal, 3:1 recycle ratio, optimum packing split at each point.  

Equivalent work extrapolated from stripping analysis by Madan. 

As the liquid rate increases, the packing requirement drops monotonically as 

expected, but the incremental benefit diminishes (22% decrease from 1.1 to 1.2*Lmin, 

24% decrease from 1.2 to 1.4*Lmin).  In contrast, the energy penalty increases nearly 

linearly with increasing liquid flow rate (3.3% from 1.1 to 1.2*Lmin and 5.3% from 1.2 to 

1.4*Lmin).  Thus, 1.2*Lmin is near a change in slope (steep to flat) for the range of 

conditions depicted in Figure F-7 and is a reasonable approximation of  a point of 

diminishing returns on increasing amine flow rate. 
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Recycle Ratio and Packing Split 

The recycle ratio (recycle flow rate/amine feed flow rate) was optimized 

concurrently with the packing split (packing in the recycle outside the recycle section to 

packing in the recycle section).  Each recycle ratio has a unique optimal packing split 

since a trade-off exists between cooling of the solvent and diminished driving force due 

to mixing of solvent through a large section of the column. In addition, for each recycle 

rate, the process was operated at 1.2 times the minimum amine flow rate required for 

90% removal for the given configuration. The result of the optimization for the non-DCC 

configuration is summarized in Figure F-8. 

 

 

Figure F-8: Recycle Ratio and packing split optimization, no DCC.  Lean Loading = 

0.25 mols CO2/mols alkalinity, 90% CO2 removal, L = 1.2*Lmin.  Equivalent work 

extrapolated from stripping analysis  
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As the figure shows, the 1:1 recycle provides the clear minimum in packing 

interfacial area (29% less than 3:1 recycle), but also imposes the most severe energy 

penalty (13% higher equivalent work requirement than 3:1 recycle).  From a ratio of 3:1 

to a ratio of 10:1, very little change occurs in optimum conditions; total interfacial area 

varies by less than 5% and equivalent work by less than 2%.  Therefore, the 3:1 recycle 

ratio was selected as an operating point that best balanced energy and packing benefits of 

solvent recycle while limiting the solvent recycle rate (increased pumping and capital 

costs in the intercooling loop).  For the DCC design, a detailed optimization for the 

recycle rate, as in Figure F-8, was not performed, but sensitivity analysis of recycle ratio 

showed similar behavior to that of Figure F-8.  Therefore, 3:1 recycle was selected as an 

optimal design condition for the DCC configuration as well.   

With a 3:1 recycle rate and a solvent operating point of 1.2 times the minimum 

solvent rate fixed, the packing distribution (amount of each packing in each section) was 

optimized to minimize the total packing requirement for each of the 10 design cases. The 

packing distribution optimization was incorporated into the Aspen Plus® simulation as an 

objective function of the following form: 

 

 
𝑴𝒊𝒏 [𝑨𝑪𝒓𝒐𝒔𝒔−𝑺𝒆𝒄𝒕𝒊𝒐𝒏 ∗ ( 𝒂𝒑,𝒕𝒐𝒑 ∗ 𝒉𝒕𝒐𝒑 + 𝒂𝒑,𝒎𝒊𝒅𝒅𝒍𝒆 ∗ 𝒉𝒎𝒊𝒅𝒅𝒍𝒆 + 𝒂𝒑,𝒎𝒊𝒅𝒅𝒍𝒆 ∗ 𝒉𝒎𝒊𝒅𝒅𝒍𝒆)] (F.1) 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 𝑴𝒂𝒙 𝑭𝒍𝒐𝒐𝒅 ≤ 𝟕𝟎%, 𝑪𝑶𝟐𝑹𝒆𝒎𝒐𝒗𝒂𝒍 = 𝟗𝟎%  

 

Where: 

ap = Specific area of packing (m2/m3); 

hsection = Specific area of packing (m2/m3); 

ACross-Section= Cross-sectional area of column (m2) 
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ABSORBER RESULTS 

Results for each of the three cases (and corresponding economic scenarios) are 

summarized in Table F-3 through F-5. 

.   

Table F-3: Absorber Design Results, Natural Gas Applications Case 1 

 
Case 1: NGCC, 3% CO2 

  

No DCC DCC 

High CapEx Low CapEx High CapEx Low CapEx 

Low OpEx  High OpEx  Low OpEx  High OpEx  

Lean Loading 

0.25 0.25 0.25 0.25 (mols CO2/mols 
alkalinity) 

L/G (mol/mol) 1.13 1.32 1.11 1.29 

L*LMIN 1.2 1.4 1.2 1.4 

Rich Loading 

0.355 0.340 0.358 0.343 (mols CO2/mols 
alkalinity) 

Total Packing Height 
(m) 

14.6 10.7 17.5 13.1 

Top 6.4 3.8 6.6 4.3 

Middle  3.3 2.8 5.7 5.1 

Bottom 5.0 4.1 5.0 3.6 

Recycle Ratio/Location 3:1 Bottom 3:1 Bottom 3:1 Middle 3:1 Middle 

Column Diameter (m) 
11.8 12.1 10.8 11.1 

(@70% of flood) 

Total Interfacial Area 
(m2) 

285,688 212,547 289,121 217,548 
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Table F-4: Absorber Design Results, Natural Gas Applications Case 2 

 
Case 2: NGCC with EGR, 6% CO2 

  

No DCC DCC 

High CapEx Low CapEx High CapEx Low CapEx 

Low OpEx  High OpEx  Low OpEx  High OpEx  

Lean Loading 

0.25 0.25 0.25 0.25 (mols CO2/mols 
alkalinity) 

L/G (mol/mol) 1.74 2.03 1.77 2.06 

L*LMIN 1.2 1.4 1.2 1.4 

Rich Loading 

0.378 0.360 0.376 0.358 (mols CO2/mols 
alkalinity) 

Total Packing Height 
(m) 

12.3 8.7 14.7 10.7 

Top 4.4 2.8 5.5 3.5 

Middle  3.1 2.4 6.1 4.9 

Bottom 4.9 3.6 3.2 2.3 

Recycle Ratio/Location 3:1 Bottom 3:1 Bottom 3:1 Middle 3:1 Middle 

Column Diameter (m) 
9.7 9.9 8.9 9.1 

(70% of flood) 

Total Interfacial Area 
(m2) 

157,818 115,342 158,195 115,747 
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Table F-5: Absorber Design Results, Natural Gas Applications Case 3 

 
Case 3: Gas Boiler, 10% CO2 

  

DCC 

High CapEx Low CapEx 

Low OpEx  High OpEx  

Lean Loading 
0.27 0.27 

(mols CO2/mols alkalinity) 

L/G (mol/mol) 2.97 3.55 

L*LMIN 1.2 1.4 

Rich Loading 
0.391 0.371 

(mols CO2/mols alkalinity) 

Total Packing Height (m) 14.9 10.4 

Top 4.3 3.3 

Middle  8.0 5.2 

Bottom 2.6 1.8 

Recycle Ratio/Location 3:1 Middle 2:1 Middle 

Column Diameter (m) 
5.9 5.8 

(70% of flood) 

Total Interfacial Area (m2) 65,582 44,495 

 

In Cases 1 and 2, the design without the DCC provides comparable energy 

performance (interpreted via rich loading) and similar packing requirement in the 

absorber to the cases utilizing the DCC; when considering the additional packing 
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requirement and cost associated with the DCC itself, omitting the DCC becomes an 

attractive design option for the NGCC cases. The final case (Table F-5) has notable 

differences from the NGCC cases.  The higher flue gas CO2 content reduces the packing 

requirement and allows for a higher lean loading to be utilized in the design (0.27).  In 

addition, the lower gas rate (higher L/G) reduces the need to cool the gas and in the high 

liquid rate case (1.4*Lmin) allowed for a lower recycle ratio (2:1) than the other cases. 

Figures F-9 through F-11 provide representative temperature and mass transfer 

profiles for the different design cases and equipment configurations.  

 

 

Figure F-9: Molar Flux and temperature profiles, Case 1 (3%CO2) with DCC.  Lean 

loading = 0.25 mols CO2/mols alkalinity, lean amine T = 40 °C, rich gas T = 40 °C, 

3:1 recycle. 
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Figure F-10: Molar Flux and temperature profiles, Case 1 (3%CO2) without DCC.  

Lean loading = 0.25 mols CO2/mols alkalinity, lean amine T = 40 °C, rich gas T = 

121 °C, 3:1 recycle. 

Figures F-9 and F-10 provide a comparison between designs with and without the 

DCC (3% CO2 case shown – similar to 6% case).  The profiles illustrate the reasons the 

case without a DCC can closely replicate the performance of a column with the DCC.  

The recycle in the bottom of the column (Figure F-10) effectively cools the inlet gas 

(reduces gas temperature to 42°C).  Combined with a smaller middle intercooled section, 

the column without a DCC is able to create a relatively uniform temperature profile 

throughout the bottom half of the column.  Both designs (Figures F-9 and F-10) exhibit 

similar performance in the top of the column where temperature bulges still exist for the 
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columns.  This area may be a potential area for future performance improvement in the 

low CO2 designs.  

 

 

Figure F-11: Molar Flux and temperature profiles, Case 3 (10%CO2) with DCC.  

Lean loading = 0.25 mols CO2/mols alkalinity, lean amine T = 40 °C, rich gas T = 

121 °C, 3:1 recycle. 

Finally, Figure F-11 provides a representative profile for case 3 (10% CO2).  This 

case can be compared to Figure F-9 as both cases utilize a DCC and recycle intercooling 

in the middle of the column.  The higher CO2 concentration in the case 3 leads to an 

optimal design with a larger middle intercooling section; the large driving forces in the 
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bottom of the column lead to rapid temperature increases which limit mass transfer 

performance of the column.  The top of the column in Figure F-11 exhibits a temperature 

bulge as in the lower CO2 cases, but as with the bottom of the column, the bulge is 

developed more rapidly and is more severe.  This leads to a relatively small top section of 

the column (and larger intercooled middle section).  This final case illustrates that a 

single-intercooled section may not be versatile enough to address temperature-related 

performance limitations for high CO2 cases.  

 

STRIPPER DESIGN 

Two stripper configurations corresponding to a high capex case of interheated 

stripper with 5 °C LMTD cross-exchanger and a low capex case of simple stripper with 

cold rich bypass and 10 °C LMTD were studied.  Other common specifications for 

modeling these configurations are as follows: 

 

1. Packing – Mellapak Standard 250X 

2. Thermodynamic Model – Fawkes Model developed in-house 

3. Pump efficiency – 0.72 

4. Heater Temperature – 150 °C. 
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Rich

5 °C LMTD
Mellapak 250X

Reboiler
150 °C T
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CO2

Compression to 150 bar

Interheater
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Figure F-12: High capex configuration of interheated stripper and 5 °C LMTD 

cross-exchanger 

Rich

10 °C LMTD

Mellapak 250X

Cold rich bypass

150 °C 
Reboiler T

Lean

CO2

Compression to 150 bar

 

Figure F-13: Low capex configuration of simple stripper with cold rich bypass and 

10 °C LMTD cross-exchanger 
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The configuration was optimized for equivalent work by varying the lean loading 

(high capex case) and lean loading and cold rich bypass (low capex case). 

Tables F-6 through F-8 shows the design value of lean and rich loading achieved 

in the absorber modeling, along with the corresponding values of equivalent work in the 

high and low capex cases.  

Table F-6: Equivalent work for high and low capex cases for 3% CO2 (8 m PZ, high 

capex case of interheated stripper with 5 °C LMTD cross-exchanger, low capex case 

of simple stripper with cold rich bypass and 10 °C LMTD) 

  Without DCC With DCC 

  
High capex 

Low opex 

Low capex 

High opex 

High capex 

Low opex 

Low capex 

High opex 

Rich ldg mol/mol alk 0.355 0.34 0.358 0.343 

Lean ldg mol/mol alk 0.25 0.25 0.25 0.25 

Equivalent Work 

(compression to 150 bar) 
kJ/mol CO2 35.2 40.9 34.9 40.5* 

* optimum cold rich bypass of 6% 

 

Table F-7: Equivalent work for high and low capex cases for 6% CO2 (8 m PZ, high 

capex case of interheated stripper with 5 °C LMTD cross-exchanger, low capex case 

of simple stripper with cold rich bypass and 10 °C LMTD) 

  Without DCC With DCC 

  
High capex 

Low opex 

Low capex 

High opex 

High capex 

Low opex 

Low capex 

High opex 

Rich ldg mol/mol alk 0.378 0.360 0.376 0.358 

Lean ldg mol/mol alk 0.25 0.25 0.25 0.25 

Equivalent Work 

(compression to 150 bar) 
kJ/mol CO2 33.1 38.3* 33.3 38.5* 

* optimum cold rich bypass of 8% 
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Table F-8: Equivalent work for high and low capex cases for 9% CO2 (8 m PZ, high 

capex case of interheated stripper with 5 °C LMTD cross-exchanger, low capex case 

of simple stripper with cold rich bypass and 10 °C LMTD) 

  With DCC 

  
High capex 

Low opex 

Low capex 

High opex 

Rich ldg mol/mol alk 0.391 0.371 

Lean ldg mol/mol alk 0.27 0.27 

Equivalent Work 

(compression to 150 bar) 
kJ/mol CO2 31.6 37.6* 

* optimum cold rich bypass of 6% 

COMBINED RESULTS 

Packing and energy requirements are summarized in Figures F-14 through F-16 

for each of the applications, economic scenarios and designs with and without the DCC 

where relevant.  
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Figure F-14: Capital and operating cost trade-offs in final designs for Case 1 (3% 

CO2).  Lean loading = 0.25 mols CO2/mols alkalinity, 90% CO2 removal, 3:1 recycle 

ratio, optimum packing split at each point.   
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Figure F-15: Capital and operating cost trade-offs in final designs for Case 2 (6% 

CO2).  .  Lean loading = 0.25 mols CO2/mols alkalinity, 90% CO2 removal, 3:1 

recycle ratio, optimum packing split at each point.   
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Figure F-16: Capital and operating cost trade-offs in final designs for Case 3 (9% 

CO2).   Lean loading = 0.27 mols CO2/mols alkalinity, 90% CO2 removal, 3:1 recycle 

ratio for high cap-ex, 2:1 recycle for low-cap-ex, optimum packing split at each 

point.   
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