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Here we consider the neural coding problem at two levels of the macaque

visual system. First, we analyze single neurons recorded in the lateral intra-

parietal (LIP) cortex while a monkey performed a perceptual decision-making

task. We relate the single-trial responses in LIP to stochastic decision-making

processes with latent dynamical models. We compare models with latent spike

rates governed by either continuous diffusion-to-bound dynamics or discrete

“stepping” dynamics. In contrast to previous findings, roughly three-quarters

of the choice-selective neurons we recorded are better described by the stepping

model. Second, we introduce a biophysically inspired point process model that

explicitly incorporates stimulus-induced changes in synaptic conductance in a

dynamical model of neuronal membrane potential. We show that our model

provides a tractable model of spike responses in macaque parasol retinal gan-

glion cells that is both more accurate and more interpretable than the popular
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generalized linear model. Most importantly, we show that we can accurately

infer intracellular synaptic conductances from extracellularly recorded spike

trains.
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Chapter 1

Introduction

Neurons transmit information by emitting a series of action potentials,

also known as a “spike train.” Finding a functional description between in-

formation in the world and spike trains recorded in the brain, the neural

coding problem, is a fundamental goal of systems neuroscience. Statistical

neuroscience techniques aim to solve this problem by defining probability dis-

tributions over spike trains (mathematically formulated as point processes)

which depend on variables of interest.

Much insight about the neural code has been gained by studying neu-

rons in the visual system (e.g., Hubel & Wiesel 1962, Kastner & Baccus 2014,

Ma & Jazayeri 2014). Activity in the early visual system is closely linked

with a visual stimulus that can be carefully controlled by an experimenter

– although responses are variable across multiple presentations of the same

stimulus. By presenting many stimuli to many visually responsive neurons,

statistical relationships between spikes and the visual world can be mapped.

However, an animal does not passively view the world: sensory signals are used

to guide actions. Neurons can also be recorded while an animal performs an

action in response to a stimulus in controlled tasks (Glimcher 2003). Animal
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behavior varies from trial-to-trial, and therefore the neural responses during

a behavioral task that are linked to an animal’s internal decision to act will

also vary from trial-to-trial. Averaging spike train responses over many trials

with respect to an external variable such as stimulus onset can therefore fail

to reveal the neural representation of internally generated signals during be-

havior. Statistical techniques that interpret single-trial spike train responses

are therefore critical for understanding how perceptual decisions are formed

and represented in cortex (Park, Meister, Huk & Pillow 2014).

This dissertation presents statistical modeling approaches to link ob-

served spike trains to unobserved dynamical processes that underlie the spike

trains. Chapter 2 examines the representation and formation of a decision

variable in the lateral intraparietal (LIP) cortex. Chapter 3 aims to extend

cascade models of coding in the early visual system with a simplified biophys-

ical model of the membrane dynamics.

1.1 Neural representations of perceptual decisions

Chapter 2 introduces methods for comparing hypotheses of the dynam-

ics of neural representations underlying perceptual decision making to single

neuron recordings. A decision is an inherently unobservable variable that is

represented by an entire network of neurons. The study of decision making in

systems neuroscience strives to link internally generated behaviors to neural

activity in order to understand how decisions to execute specific motor ac-

tions in response to a stimulus are formed (Hanks, Kopec, Brunton, Duan,
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Erlich & Brody 2015). Single neuron recordings can provide a window into

the decision making process in order to constrain behavioral models of deci-

sion making (Ditterich 2006). However, careful characterization the nature of

the dynamics of the neural representation of perceptual decisions is needed to

relate single-neuron recordings to cognitive-level notions of decisions.

At the behavioral level, a noisy evidence accumulation process suc-

cessfully describes perceptual decision making by accounting for accuracy and

reaction times (Ratcliff & Rouder 1998, Brunton, Botvinick & Brody 2013).

The actual implementation of the evidence accumulation process in the brain,

however, could appear very different than an integrator, especially at the

level of single cells. Perceptual decisions could instead be implemented by

an attractor network in which activity probabilistically jumps between dis-

crete states (Deco, Pérez-Sanagust́ın, de Lafuente & Romo 2007, Durstewitz

& Deco 2008, Miller & Katz 2010). Networks with multiple stable attrac-

tor states are of particular interest for their biologically plausibility and ro-

bustness as a mechanism for integration (Koulakov, Raghavachari, Kepecs &

Lisman 2002).

The average firing rate of neurons in several brain areas, notably LIP,

correlate with an accumulation process during decision-making tasks (Roitman

& Shadlen 2002, Mazurek, Roitman, Ditterich & Shadlen 2003, Gold & Shadlen

2007, Kiani, Hanks & Shadlen 2008, Kiani & Shadlen 2009, Purcell, Heitz, Co-

hen, Schall, Logan & Palmeri 2010, Shadlen & Kiani 2013). Concluding that

the average observed neural responses demonstrate a direct link between single
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neurons and the behavioral level description of decision formation is alluring,

but the accumulation-to-bound hypothesis aims to describe single-trial deci-

sion making and not the average of independent decisions. We therefore aimed

to test statistically the hypothesis of whether the single-trial activity of LIP

neurons could be explained by an accumulation process or a stochastic discrete

state-changing (or “stepping”) process.

We accomplish this by modeling the decision variable on each trial as an

unobserved (latent), stochastic variable that follows either an accumulation-

to-bound process or a discrete stepping process. In the models, the spike

rate of the neuron is controlled by the latent decision variable. We fit these

two candidate models to 40 choice-selective neurons recorded in LIP during

a perceptual decision-making task using Markov chain Monte Carlo methods.

Under a Bayesian model comparison framework, we show that the responses

in a majority of these cells are in fact best captured by the discrete stepping

process.

1.2 Coding of visual stimuli in the retina: combining
excitation and inhibition

The response properties of visual neurons are often described as a linear

filtering of the stimulus that is passed through a static nonlinear function to

produce a spike rate – the linear-nonlinear (LN) model(Chichilnisky 2001,

Chander & Chichilnisky 2001, Paninski 2004). The high-dimensionality of the

visual world and the stochasticity of neural responses, however, have made
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cracking the neural code a challenging task, even in the retina. Although

there has been much progress in unraveling the input-output relationships

in the retina, current statistical methods neither have a clear relationship to

biophysical mechanisms nor do they accurately predict responses across ranges

of naturalistic stimuli. In Chapter 3, we introduce a biophysically inspired

extension to the LN cascade paradigm for describing single-neuron responses

in the primate retina. Retinal ganglion cells (RGCs) provide an ideal foothold

to decipher the neural code because responses are closely tied to a controllable

visual input, and the neurons providing input to the cell are isolated.

RGCs integrate excitatory and inhibitory synaptic inputs to encode the

visual information that is sent to the brain (Roska, Molnar & Werblin 2006).

We demonstrate that a particular widely used instantiation of the LN cascade

model, the generalized linear point process model (GLM), can be interpreted

as a simple conductance-based model of the membrane voltage in which exci-

tation and inhibition have equal and opposite tunings. We extend the GLM by

explicitly modeling the excitatory and inhibitory conductances, and allowing

them to have independent tunings. In contrast to the modeling of decision

variables modeled in Chapter 2, excitatory and inhibitory synaptic conduc-

tances are concrete quantities that can be measured and used to constrain

the model. We therefore show using intracellular recordings that the model

accurately estimates the excitatory and inhibitory tuning received by the cell

from spike trains alone.

Neural responses adapt to shifts in stimulus statistics and local stimulus
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statistics can vary drastically within a single natural scene (Fairhall, Lewen,

Bialek & van Steveninck 2001, David, Vinje & Gallant 2004, Wark, Lundstrom

& Fairhall 2007, Hong, Lundstrom & Fairhall 2008, Ozuysal & Baccus 2012),.

We show that the conductance-based modeling approach can exhibit adaptive

coding across a range of temporal contrasts by having a stimulus-dependent

gain. Additionally, we find that the integration of excitatory and inhibitory

synaptic inputs can alter the spatial selectivity of simulated neurons compared

to linear-nonlinear models. While the classification of RGC responses using a

single linear filter has shed much light on the coding properties of retina under

different conditions, considering both the excitatory and inhibitory stimulus

tunings that a cell receives provides a more robust and accurate description of

the neural code in the retina.

6



Chapter 2

The dynamics of neurons in area LIP during

perceptual decision making

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing

rates that appear to ramp upwards or downwards during decision-making.

These ramps are commonly assumed to reflect the gradual accumulation of

evidence towards a decision threshold. However, the ramping in trial-averaged

responses could instead arise from instantaneous jumps at different times on

different trials. We examine single-trial responses in LIP using statistical meth-

ods for fitting and comparing latent dynamical spike train models. We com-

pare models with latent spike rates governed by either continuous diffusion-

to-bound dynamics or discrete “stepping” dynamics. Roughly three-quarters

of the choice-selective neurons recorded in LIP are better described by the

stepping model. Moreover, the inferred steps carry more information about

the animal’s choice than spike counts.

This work has been published in Science (Latimer, Yates, Meister, Huk

& Pillow in press) and was in part presented at the Computational and Systems

Neuroscience (COSYNE) 2015 meeting. The statistical inference methods are

described in Latimer, Huk & Pillow (2015).
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2.1 Encoding of perceptual decisions in parietal cortex

A fundamental challenge in neuroscience is to understand how deci-

sions are computed and represented in neural circuits. One popular approach

to this problem is to record from single neurons in brain regions that lie be-

tween primary sensory and motor regions while an animal performs a per-

ceptual decision-making task. Typical tasks require the animal to integrate

noisy sensory evidence over time in order to make a binary decision about the

stimulus. Such experiments have the tacit goal of characterizing the dynamics

governing the transformation of sensory information into a representation of

the decision. However, recorded spike trains do not reveal these dynamics di-

rectly; they represent noisy, incomplete emissions that reflect the underlying

dynamics only indirectly.

This dissociation between observed spike trains and the unobserved dy-

namics governing neural population activity has posed a key challenge for using

neural measurements to gain insight into how the brain computes decisions.

Recording decision-related neural activity has certainly shed much light upon

what parts of the brain are involved in forms of decision making and what sorts

of roles each area plays. But without direct access to the dynamics underlying

single-trial decision formation, most analyses of decision-related neural data

rely on estimating spike rates by averaging over trials (and often over many

independently recorded neurons as well). Although the central tendency is of

course a reasonable starting point in data analysis, sole reliance on the mean

can obscure single-trial dynamics when substantial stochastic components are

8



present. For example, as discussed in depth in this chapter, the average of a

set of step functions — when the steps occur at different times on different

trials — will yield an average that ramps continuously, masking the presence

of discrete dynamics. Although the majority of averaging and regression-based

analyses used in the field are straightforward to conceptualize and easy to ap-

ply to data, they provide limited insight into the dynamics that may govern

how individual decisions are made.

This chapter presents statistical methods to compare hypotheses of

the dynamics the single-trial dynamics governing spike trains in the LIP of

macaques performing a well-studied motion-discrimination task (Fig. 2.1)

(Newsome & Pare 1988, Kiani et al. 2008, Meister, Hennig & Huk 2013).

The modeling approach formalizes two latent dynamical models of spike trains

that have previously been proposed to govern decision-making behavior: (1)

diffusion-to-bound (or “ramping”); and (2) discrete switching (or “stepping”).

In the ramping model, also known as “diffusion-to-bound”, the spike rate

evolves according to a Gaussian random walk with linear drift (Fig. 2.2A).

The slope of drift depends on the strength of sensory evidence, and each trial’s

trajectory continues until hitting an absorbing upper bound. Alternatively, in

the stepping model, the latent spike rate jumps instantaneously from an ini-

tial “undecided” state to one of two discrete decision states during the trial

(Fig. 2.2B). The probability of stepping up or stepping down and the timing

of the step are determined by the strength of sensory evidence.

In the diffusion-to-bound model, the spike rate is a Gaussian random

9
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Figure 2.1: (A) Schematic of moving-dot direction-discrimination task. The
monkey fixates while viewing a motion stimulus of variable motion strength
and duration (500-1000 ms). The monkey must determine the direction of
the moving dot stimulus, selecting from two possible choices. The monkey
indicates its choice by making a saccade to one of two choice targets after
receiving a go-signal 500 ms after motion offset. The difficulty of the task is
controlled by varying the coherence of the noisy dot-motion stimulus. One
choice target is in the response field of the neuron under study (RF; shaded
patch on left); the other is outside it. (B) Average response of an LIP neu-
ron during a motion-direction discrimination task. (left) The spike rates are
aligned to the onset of the motion stimulus, and the traces are sorted by
the coherence (strength and direction) of motion. The firing rate begins to
show a stimulus-dependent ramping beginning at 2̃00 ms after motion on-
set (Churchland et al. 2008, de Lafuente et al. 2015). (right) The spike rates
are aligned to the time of the saccade. Before a saccade into the cell’s RF, the
firing rates converge to a common across coherence levels, as if the firing rates
are achieving a common decision bound or threshold.

walk plus a constant linear drift, which stops once an upper bound is reached.

In one popular instantiation of this model, the spike rate represents integrated
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sensory evidence, and the bound corresponds to an evidentiary threshold at

which the decision is made. Ramping responses have been observed in a variety

of brain areas, such as the LIP and the frontal eye field (FEF), during decision-

making, and have been widely interpreted as the neural implementation of ev-

idence accumulation for forming decisions (Roitman & Shadlen 2002, Mazurek

et al. 2003, Gold & Shadlen 2007, Kiani et al. 2008, Kiani & Shadlen 2009, Pur-

cell et al. 2010, Shadlen & Kiani 2013). However, ramping can only be ob-

served by averaging together responses from many trials (and often, many

neurons), which obscures the dynamics governing responses on single trials.

Although diffusion-to-bound models have been widely used to quantify behav-

ior in decision-making tasks (Smith & Ratcliff 2004), they have not to our

knowledge been formally incorporated into explicit point process models of

spike train data. Thus, despite the appealing analogies between psychological

accumulation and neural activity, it remains possible that the neural compu-

tations underlying decisions may be quite different than the idealized accu-

mulation process that describes behavior. In particular, a discrete “stepping”

process (Durstewitz & Deco 2008, Miller & Katz 2010), in which the spike

rate jumps stochastically from one rate to another at some time during each

trial, can also create the appearance of ramping (Goldman 2015, Churchland,

Kiani, Chaudhuri, Wang, Pouget & Shadlen 2011). Although decision-making

at the behavioral level is well described as an accumulation process (Ratcliff

& Rouder 1998, Brunton et al. 2013), whether the brain computes decisions

via a direct neural correlate (ramping) or a discrete implementation (stepping)

11
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Figure 2.2: Two proposed models for the dynamics underlying LIP responses
during motion evidence accumulation. Spike trains are modeled during a win-
dow beginning 200 ms after motion onset until 200 ms after motion offset
(300 ms before the monkey receives the go signal). (A) Ramping (diffusion-
to-bound) model. Spike rate trajectories (solid traces) were sampled from a
diffusion-to-bound process for each of three motion coherences (strong pos-
itive, zero, and strong negative). The model parameters included an initial
spike rate, a slope for each coherence, noise variance, and an upper bound.
The model did not include a lower bound, consistent with the competing in-
tegrator (race) model of LIP (Shadlen & Kiani 2013). Spike trains (below)
obey an inhomogeneous Poisson process for each spike rate trajectory. (B)
Discrete stepping model. Spike rate trajectories (above) begin at an initial
rate and jump “up” or “down” at a random time during each trial, and spike
trains (below) are once again Poisson given the latent rate. The step times
take a negative binomial distribution, which can resemble the time-to-bound
distribution under a diffusion model. Parameters include the spike rates for
the three discrete states and two parameters governing the distribution over
step timing and direction for each motion coherence. Both models were fit
using the spike trains and coherences for each neuron, without access to the
animal’s choices.

remains a central, unresolved question in neuroscience.

An alternative to the diffusion-based model of decision-making is that

populations of neurons jump between discrete states associated with different
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firing rates (Miller & Katz 2010). If steps between low firing and high firing

states occur at different times on each trial, this discrete “stepping model”

can equally well produce an average spike rate profile that ramps. This class

of models is attractive for decision-making because of the obvious mapping

between states and decisions, and because it can be robustly implemented in

neurally plausible models (Durstewitz & Deco 2008). Although the discrete

transitions in this model are inherently distinct from the continuous ramping in

the diffusion-to-bound model, the two models can resemble one another when

the data are viewed through the conventional lens of trial-based averaging.

Here, a restricted discrete-state model is examined in which the neuron starts

in an initial state and is allowed to make a single jump to one of two choice

states during a trial.

The following sections present latent variable models with either diffu-

sion or switching dynamics, show how these models can be fit to spike train

data, and describe Bayesian model selection methods for comparing and eval-

uating model fits to data. Both of the proposed models incorporate nonlinear

dynamics, and there are no simple closed-form estimators for the model pa-

rameters. We therefore use Markov chain Monte Carlo (MCMC) methods to

sample from the posterior distribution of the model parameters given the data.

These MCMC methods can be tractably applied to the data from an entire

experimental session. The samples, which act as an approximation of the full

posterior, can be used to compute Bayesian estimates of model parameters,

while also incorporating uncertainty about the parameters into conclusions
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about model performance. Numerical experiments demonstrate that these

methods reliably determine the true dynamics of spiking data simulated from

each of the two models. We then use the models to determine quantitatively

which family of dynamics best describes spike responses observed in a set of

40 choice-selective neurons recorded in area LIP.

2.1.1 Previous work

Models based on the “noisy accumulation of evidence” have been widely

employed in the psychology literature on normative accounts of decision mak-

ing (Wald 1973, Link 1975, Ratcliff & Rouder 1998). In the basic drift-

diffusion model, a latent “particle” is initialized at zero and then moves with

a linear drift plus diffusion noise. Once the particle reaches an upper or

lower bound, each of which corresponds to a possible choice, the decision

is made. Models of this class robustly capture subjects’ choice distributions

and reaction times (Ditterich 2006). Previous work has demonstrated how to

fit behavioral data with such models (Wiecki, Sofer & Frank 2013), includ-

ing non-trivial stimulus-dependent effects on the diffusion process (Brunton

et al. 2013). However, these models were originally used as a tool to study the

representation of a decision at a cognitive level. More recently, this model has

been applied to neural recordings taken while a subject performs a decision-

making task (Mazurek et al. 2003, Shadlen & Kiani 2013). The responses

of single neurons in LIP (and several other brain regions) appear to encode

a diffusion-to-bound process, as their averaged spike rates look like a direct
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neural correlate of diffusion-to-bound (Huk & Meister 2012).

Many initial claims about decision-related diffusion processes in single-

neuron recordings in LIP were derived from average spike count responses that,

when aligned to the onset of a noisy moving-dot stimulus, appear to ramp with

a slope dependent on the strength of the motion signal. The slope of the av-

erage ramping also changes along with shifts in the stimulus strength (Huk &

Shadlen 2005). The activity of LIP neurons appears to accumulate up to a

stimulus-independent upper bound, or threshold, before the monkey chooses to

saccade into the cell’s RF (Fig. 2.1B, right) (Roitman & Shadlen 2002, Shadlen

& Kiani 2013). However, the firing rate does not appear to reach a lower bound

when the monkey makes an out-RF decision. This is consistent with a com-

peting accumulator model: LIP contains an independent integrator for each of

the possible targets and the first accumulator to reach the threshold triggers

the decision. The competing accumulators model extends the “noisy accu-

mulator of evidence” model to tasks with more than two choices (Churchland

et al. 2008). More recently, average ramping activity has been shown in LIP

during tasks where the evidence for a decision is presented more abstractly

by a series of shapes (Yang & Shadlen 2007, Kira, Yang & Shadlen 2015).

In these studies, the monkey viewed a sequence of shapes. In each trial, the

sequence shapes were drawn independently from a distribution that depended

on the correct choice for the trial. Therefore, some shapes would provide evi-

dence that the in-RF target was the correct choice, while other shapes would

indicate that the out-RF target was more likely. The average single-unit ac-
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tivity recorded in LIP during these tasks appeared to ramp proportionally to

the log-likelihood ratio of the evidence that a choice into the cell’s RF would

result in a reward.

However, these conclusions are based on responses averaged over many

trials and many neurons. The mean response provides only a limited window

into the neuron’s dynamics, because average responses do not reveal the trial-

to-trial variability expected in a noisy accumulation process. Recent work has

proposed to use the response mean and variance to reveal signatures of an un-

derlying evidence integration process (Churchland et al. 2011). Although this

is clearly superior to methods that use only on the mean, section 2.6.1 shows

that this approach has limited ability to discriminate between continuous and

discrete latent dynamics in a number of settings.

One recent study focused on model comparison for spike trains recorded

in macaque LIP (Bollimunta, Totten & Ditterich 2012) (see Section 2.6.2). The

authors concluded that single-neuron activity in this area reflected a drift-

diffusion process rather than a discrete-stepping process. This is an important

first step in applying this class of models to decision-making, but their initial

efforts were affected by several limitations. Computational constraints forced

the authors to examine restricted versions of the models and only a small per-

centage of a cell’s spike trains at a time. The latent variable models we present

in this chapter were formulated to match the models proposed elsewhere in the

decision-making literature, and provide a computationally tractable method

for fitting to a larger set of spike trains.
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After defining potential models to describe spike train data, one must

fit the models and compare the fits to the data. Fitting the diffusion-to-bound

model to simple behavioral data is not trivial, and adding a spike train obser-

vation to this process adds to the complexity. The expectation-maximization

algorithm (EM) is a commonly used tool for maximum likelihood inference for

a variety of latent dynamical models of spike train data (e.g. Escola, Fontanini,

Katz & Paninski 2011, Buesing, Macke & Sahani 2012). These models define

the spiking process as a Poisson process where the intensity function (i.e.,

spike rate) is also a stochastic process. Typically, EM cannot be directly ap-

plied to the models of interest where the spiking is Poisson and the intensity

follows a Gaussian process, and approximations must be made. Model fits

obtained by EM algorithms are useful for studying data under a single model.

However, EM provides only a point estimate of the model parameters, and

particular choices of approximations could affect the quality of the fit. The

goal in Bayesian model comparison is to incorporate uncertainty in parame-

ter estimates, and model comparison ideally employs exact methods which do

not favor one particular model due to the inaccuracies in approximate model

fitting.

Yuan, Girolami & Niranjan (2012) applied exact Bayesian techniques

to the problem of estimating latent dynamics underlying a spike rate. They

assumed that the spike train could be modeled as a log Gaussian Cox process.

MCMC methods were used to fit the model. These methods are typically much

slower than EM, but the clever sampling techniques they proposed resulted in
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efficient sampling. This previous use of MCMC methods for a spiking model

fit a single model; for the application of these methods to perceptual decision

making, this chapter presents Bayesian tools to compare multiple possible

models that contain different dynamics.

Bromberg-Martin, Matsumoto & Hikosaka (2010) performed model

comparison of the activity of dopamine neurons in a similar spirit to the mod-

els presented in this chapter. The authors compared two models of the spike

rate for the observed neurons: (1) a deterministic, linearly ramping rate and

(2) a two-state Hidden Markov model (HMM) that includes a baseline and a

phasic response state. These models could be fit efficiently by maximum like-

lihood methods, and the authors compared the model fits using the maximum

likelihood values. HMMs have been widely used to model discrete state tran-

sitions, like the stepping model, in neural data. They can be tractably fit to

data using standard EM algorithms (Seidemann, Meilijson, Abeles, Bergman

& Vaadia 1996, Miller & Katz 2010, Escola et al. 2011). One concern with

applying an HMM to the neural data is that the HMM formulation forces

state transitions to follow an exponential distribution. In order to compare a

discrete transition process to a diffusion-to-bound in the context of decision

making, the distribution decision times given by the discrete model should

be comparable to the bound-hit times defined by the diffusion model, which

obey an inverse-Gaussian distribution (Fig. 2.5). Hidden semi-Markov Mod-

els (HSMMs) allow for non-exponential switch times, and can therefore more

closely capture transitions between bursting and non-bursting activity in neu-
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rons (Tokdar, Xi, Kelly & Kass 2010).

A diffusion-to-bound model has previously been applied to spike train

data recorded in the early visual system to determine the stimulus selectivity of

single neurons (Pillow, Paninski, Uzzell, Simoncelli & Chichilnisky 2005). The

membrane voltage is determined through linear “integrate-and-fire” dynamics,

where the membrane voltage follows a (leaky) drift-diffusion process where the

slope is a linear function of the visual stimulus. The neuron emits a spike

when the membrane voltage reaches the upper bound. The integrate-and-fire

process in this case is distinct from the diffusion-to-bound model for decision-

making presented in this chapter. The integrate-and-fire model emits a spike

every time the upper bound is hit. In the decision-making case, the bound-

hit time is inherently unknown (it is a convenient mathematical abstraction

instead of a measurable event) as it is a cognitive variable represented within

a network. The spike rate in LIP is hypothesized to represent the decision

process, and therefore spikes are still emitted to encode the amount of evidence

for a decision while the integrator is below the bound. Therefore, both the

model fitting procedure used by Pillow et al. (2005) and the interpretation of

the diffusion-to-bound process are distinct from the ramping model examined

here.
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2.2 Spike train models of decision-making dynamics in
LIP

Here we present the two models of LIP spike train responses during

decision-making. The models define an observed spike train as a Poisson pro-

cess with rate determined by an unobserved (latent) noise process on each

trial, yielding a doubly stochastic model. Both models are fit to each cell

independently.

The models do not include an urgency signal, as introduced by (Churchland

et al. 2008). The urgency signal is defined as the residuals between the data

and an unbiased diffusion model. Typically, the urgency signal manifests as a

positive (sometimes linear) drive in the spike rate towards the decision thresh-

old. This forces decisions to occur faster, perhaps in an attempt to increase

reward rates in a reaction-time task. The LIP responses we examined did not

exhibit an urgency signal and in practice characterized as the upward deflec-

tion of responses for 0% coherence trials not conditioned on choice. The latter

is flat in the dataset examined here (e.g., Fig. 2.16).

We use MCMC methods to sample from the posterior distribution of

model parameters given the observed spike trains. These methods provide

samples from the posterior distribution over the model parameters by al-

ternately sampling the model parameters and the latent variables for every

trial. The resulting samples of the model parameters approximate the pos-

terior distribution of parameters given the data, marginalized over the latent

variables. This enables the inclusion of uncertainty in the parameter estimates,
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and to avoid any approximations that be required to fit these non-linear, non-

Gaussian models with deterministic algorithms such as expectation-maximization.

The model fits use 90% of the trials for each neuron (selecting 90% from each

coherence group), and hold out 10% for computing cross-validation statistics

such as predictive log-likelihood. The results of our analysis is consistent with

the results obtained from DIC and Bayes Factors, but much more costly to

compute because they required 10 folds of fitting and validation, and we did

not include them here.

For computational convenience, the models consider spike trains in dis-

crete time using bins of length ∆t (∆t = 10 ms bins here). However, sim-

ulations from the models produce spikes at a 0.2 ms resolution, assuming a

homogeneous spike rate within 10 ms bins. Here we provide some notation

for the models. We denote the entire set of spike trains (for the single neuron

being modeled) as y, and the spike counts at time bin t in trial j as yj,t, with

trials numbered 1 to N . Some parameters depend on the stimulus coherence in

the trial. The models treat the stimulus coherence level as categorical, rather

than assuming a functional form for the stimulus-dependent parameters. The

total number of categories is denoted C (here, C = 5). The coherence for

trial j is c(j). Some model parameters depend on stimulus coherence, and a

subscript (for example, pc) denotes coherence dependence. The latent-variable

analysis method allows trials to be of varying length: the length of trial j in

number of discrete bins is denoted Tj.
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2.2.1 Diffusion-to-bound (ramping) model

The spike rate in the ramping model follows a diffusion-to-bound pro-

cess. The parameters of the model are Θ = {β1:C , x0, ω
2, γ}. The β and

ω2 parameters are the drift and diffusion terms (respectively) for the drift-

diffusion process. The diffusion process starts at x0, and the bound height is

determined by γ. The drift-diffusion process xj,1:Tj determines the spike rate

for trial j. The full model can be described:

xj,1 = x0 + εj,0 (2.1)

xj,t+1 = xj,t + βc(j) + εj,t (2.2)

εj,t ∼ N(0, ω2) (2.3)

τj =

{
inf
t
xj,t ≥ 1 : if there exists xj,1:Tj ≥ 1

∞ : otherwise
(2.4)

yj,t|t < τj ∼ Poisson (log(1 + exp(γxt))∆t) (2.5)

yj,t|t ≥ τj ∼ Poisson (log(1 + exp(γ))∆t) (2.6)

The graphical model is shown in Figure 2.3. The drift term β is the only

coherence-dependent parameter (representing the strength of evidence in the

stimulus). Spike rates are kept positive with the soft-rectification function

log(1 + exp(γxt)). The spike rates observed in choice-selective LIP cells are

sufficiently high to make the soft-rectification function close to a true linear

rectifier.

In the parameterization given here, the latent diffusion process, xj,1:Tj ,

does not stop at the bound, but the spike rate is held constant after the
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Figure 2.3: Graphical model for the diffusion-to-bound model. The box rep-
resents the N trials for a neuron. The diffusion-to-bound process begins each
trial at the level x0 and diffuses with noise w2 and drift β. The diffusion
process is bounded by setting τj equal to the first time t such that xj,t ≥ 1.
The spike count at time t is drawn from a Poisson distribution where the
rate is a bounded, scaled and linearly rectified version of xj,t: the rate is
log(1 + exp(γxj,t)) for t < τj and log(1 + exp(γ)) for t ≥ τj.

bound crossing time τj. This is equivalent to a model that stops the diffusion

at bound hitting time, because spike rate is constant after this time in either

case. Additionally, the bound-hitting time occurs when xj,t crosses a constant

bound at 1; the bound height in terms of spike rate changes with the parameter

γ. The transfer function makes bound in spikes per second equal to

log(1 + exp(γ)) ≈ γ. (2.7)

Therefore, the bound height is given by γ. This choice in parameterization

not only simplifies model inference, but it makes the noise in the integration

process independent of each neuron’s firing rate a priori.

The prior distributions for the model parameters take the following
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form

x0 ∼ N(µ0, σ
2
0) (2.8)

β ∼ N(µβ, σ
2
β) (2.9)

ω2 ∼ Inv-Gamma(αω, βω) (2.10)

γ ∼ Gamma(αγ, βγ) (2.11)

We selected the following values for the priors

1. µ0 = 0, σ0 = 10

2. µβ = 0, σβ = 0.1

3. αω = 0.02, βω = 0.02

4. αγ = 2, βγ = 0.05

The prior over the maximum firing rate, γ, has mean 40 spikes/s with

a standard deviation of 28.3, which covers the range of firing rates one expects

to encounter in LIP. The typical values for the starting point of the diffusion

process, x0, should lie between 0 and 1, because the diffusion process runs

to a bound of 1. The broad Gaussian prior given for x0 is nearly uniform

over this region. The diffusion slope, β, corresponds to motion evidence (dot

coherence), which was drawn for each trial from a distribution with mean 0%.

We chose the standard deviation for the β prior by considering the range of

realistic time-to-bound distributions: assuming x0 = 0, then if β > 0.1 the
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mean time-to-bound would be under 100 ms (extremely fast). Therefore, the

standard deviation for the prior on β (0.1) places most of the prior probability

mass on reasonable bound-hit times, without being too constricting. However,

the specific choice of prior did not strongly affect results (not shown).

The MCMC section shows the prior parameter symbols instead of these

specific values so that it is clear where the priors are placed.

2.2.2 Discrete stepping model

The stepping model allows the firing rate to occupy three discrete

states: an initial state and two states that represent the possible decisions

in a two-alternative forced choice task. The neuron maintains a single firing

rate in each state, (α0:2), and the firing rates are constant across all trials.

Transitions betweens states (or “steps”) occur instantaneously for simplicity.

The model allows a single transition between states during a trial, although

the model does not force a step to occur on every trial.

The step time for trial j is zj (in discrete bins) and the state stepped

to is dj. If zj is greater than the trial length, then no step occurs during the
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Figure 2.4: Graphical model for the discrete-switching hypothesis. The box
represents the N trials for a neuron. The neuron begins each trial in the initial
state with spike rate α0. Each trial has a step time, zj, and a switch-to state,
dj. The observed spikes at each time t are drawn from a Poisson distribution
with a rate depending on the state at t.

trial. The initial state is referred to as state 0.

zj ∼ Negative Binomial(pc(j), r) (2.12)

P (dj = 1) = φc(j) (2.13)

P (dj = 2) = 1− φc(j) (2.14)

yj,t|t ≤ zj ∼ Poisson(α0∆t) (2.15)

yj,t|t > zj ∼ Poisson(αdj∆t) (2.16)

The graphical model is shown in Figure 2.4.

The negative binomial distribution is a discrete-time analogue of a

gamma distribution. The distribution can be interpreted as the number of

coin flips needed to get r heads,where 1 − p is the probability of a head (al-

though r can take continuous values instead of just positive integers). If the
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Figure 2.5: Comparison of the bound hit time distribution of a drift-diffusion
process (inverse-Gaussian; blue curve) to a gamma distribution (red curve)
and exponential distribution (black curve). The state transition times of a
continuous time Hidden Markov model are exponentially distributed. The
gamma distribution has the same mean and variance as the inverse-Gaussian,
and the exponential shares only the mean.

negative binomial parameter r is set at 1, then this model becomes a more

commonly used Hidden Markov model (HMM) with added restriction that the

model cannot step out of states 1 or 2. We chose not to restrict the state tran-

sitions to be Markovian so that the step time distribution could be similarly

shaped to the hit time distribution in the ramping model (Fig. 2.5). Addition-

ally, trial lengths are finite, but zj can take arbitrarily large values. Values

larger than the trial length are interpreted to mean that no step took place on

the trial.

The model parameters estimated are Ψ = {α0:2, r, φ1:C , p1:C}.

The prior distributions for the model parameters take the following

27



form

α0 ∼ Gamma (αα, βα) (2.17)

α1 ∼ Gamma (αα, βα) (2.18)

p(α2|α1) ∝ 1(α2 > α1)Gamma (αα, βα) (2.19)

pc ∼ Beta(αp, βp) (2.20)

φc ∼ Beta(αφ, βφ) (2.21)

r ∼ Gamma(αr, βr) (2.22)

The truncated gamma prior enforced the inequality α2 > α1 in order

to make state 2 always represent the up state and state 1 the down state

(without this restriction, the model is unidentifiable because the state labels

can be swapped). Otherwise, the prior distributions are independent.

We chose the following parameters

1. αα = 1, βα = 0.01

2. αp = 1, βp = 1

3. αφ = 1, βφ = 1

4. αr = 2, βr = 1

The distribution over firing rates is broadly tuned, with both a mean and

standard deviation of 100 spikes/s. The beta distributions over φ and p are
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uniform over the range of values [0, 1]. The prior on r peaks at 1, where the

model becomes a HMM.

The MCMC section shows the prior parameter symbols instead of these

specific values so that it is clear where the priors are placed.

2.3 Bayesian model comparison

The goal in modeling spike trains in this chapter is not just to provide

estimates of the posterior distribution of model parameters, but to determine

which model best describes actual neural data. Several metrics exist which

can compare model fits using the output from the MCMC algorithms.

A classic tool in Bayesian model comparison is the Bayes factor. The

quantity, denoted K, is the ratio of the marginal likelihoods (P (y|M)) of the

data given two models

K =
p(y|Md)

p(y|Ms)
(2.23)

p(y|Md) =
p(y|Θ,Md)p(Θ|Md)

p(Θ|y,Md)
(2.24)

where Md and Ms are the diffusion-to-bound and switching models respec-

tively. The marginal likelihoods integrate over the parameter space in order to

include the uncertainty in the parameter estimates. Chib & Jeliazkov (2001)

and Chib (1995) describe how the output of the samplers can be used to

calculate the marginal likelihood for each model using the samplers. Bayes

factors are sensitive to the prior distribution, and the marginal likelihood is
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only valid if proper prior distributions are used. Additionally, calculating the

Bayes factors is often computationally intensive.

The posterior-predictive likelihood, PP , tests how well a model can

predict new data (ynew) given what the model can learn from a training data

set (yold). This quantity can be simply estimated using the MCMC output.

PP = p(ynew|yold,Md) =

∫
p(ynew|Θ,Md)p(Θ|yold,Md)dΘ (2.25)

≈ 1

S

S∑
s=1

p(ynew|Θ(s),Md) (2.26)

This quantity is attractive, as it validates a model fit by using previously

unseen data. Additionally, unlike the marginal likelihood, this quantity uses

only a posterior distribution and is not heavily influenced by choice of prior.

For the switching model, p(ynew|Ψ(s),Ms) can be calculated in closed form.

This quantity must be approximated for the diffusion model, which can be

done by sampling

p(ynew|Θ(s),Md) =

∫
p(ynew|γ(s),x,Md)p(x|Θ(s),Md) (2.27)

x(m) ∼ p(x|Θ(s),Md) (2.28)

p(ynew|Θ(s),Md) ≈
1

M

M∑
m=1

p(ynew|γ(s),x(m),Md) (2.29)

This process requires an M of several hundred to a few thousand to converge.

However, this step is highly parallelizable.

Another model selection tool is the Deviance information criterion

(DIC) (Spiegelhalter, Best, Carlin & van der Linde 2002). DIC constructs
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a penalty for the log-likelihood of a model at the posterior mean, Θ̄ by exam-

ining the posterior distribution

DIC = D(Θ̄) + 2pD (2.30)

pD = ¯D(Θ)−D(Θ̄) (2.31)

D(Θ) = −2log(p(y|Θ)) + const (2.32)

DIC = 2 log p(y|Θ̄,Md)− 4EΘ|y,Md
[log p(y|Θ,Md)] (2.33)

The expectation with respect to the posterior is approximated with the MCMC

samples

EΘ|y,Md
[log p(y|Θ,Md)] ≈

1

S

S∑
s=1

log p(y|Θ(s),Md) (2.34)

This quantity can be calculated for each model, and a lower DIC indicates

more support for the model. The log likelihood becomes penalized when the

support of the posterior distribution includes regions that do not describe the

data well. This term is designed to act as an estimate of the effective number

of parameters in the model. In fact, the term pD converges exactly to the

number of free parameters in some simple models. Because DIC provides the

relative fit of each model to the data, the model comparison results relies only

the difference in DIC values between the two models:

∆DIC = DICramping −DICstepping. (2.35)

Positive ∆DIC indicates support for the stepping model. Here, we interpret

∆DIC greater than 10 as strong support for the stepping model and a ∆DIC
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less than −10 to indicate strong support for the ramping model (Burnham &

Anderson 2002).

More well-known metrics, like the Akaike information criterion (AIC)

the Bayesian information criterion (BIC), also use a penalized log-likelihood

to compare model fits. These metrics are more difficult to apply to latent

variable models: how does one include the latent variables in the count of

model parameters? The latent spaces in the two models are starkly different:

the stepping model’s latent state can be described by two values (step time,

and state stepped-to), while the state in the ramping model is much more

complex.

We favor DIC for the purposes of comparing the latent-variable models

discussed here, because it attempts to avoid these challenges by dynamically

forming a penalty based on the shape of the posterior distribution. Addi-

tionally, DIC can be more widely applied to time series models than cross-

validation. The models in this chapter divide the data into independent trials,

but some models of interest to systems neuroscience consider one long stream of

data (e.g., Turaga, Buesing, Packer, Dalgleish, Pettit, Hausser & Macke 2013)

that cannot be divided into independent chunks for cross-validation. DIC has

been useful in these cases for comparing different latent dynamical models to

financial time series data (Berg, Meyer & Yu 2004). Although DIC has not

been widely applied in neuroscience, it has become a widely used model fitness

criterion within many other domains (Spiegelhalter, Best, Carlin & van der

Linde 2014). As with the posterior-predictive distribution, the expectation for
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DIC is taken with respect to the posterior distribution. DIC is therefore less

sensitive to the choice of prior than Bayes factors, and it permits the use of

improper priors.

2.4 Markov chain Monte Carlo methods

The MCMC methods generate a sequence of samples from the poste-

rior distribution of each model. We ran the MCMC algorithms for a total of

60 000 iterations and discarded the first 10 000 samples (the “burn in” period),

to ensure that the Markov Chain had converged to its asymptotic distribution,

the true posterior. The final result only took every 5th sample (a procedure

known as “thinning” the chain) in order to reduce autocorrelation (or increase

independence) between samples. Thus, we effectively obtained 10 000 samples

from the posterior distribution of model parameters. These samples approx-

imated the posterior distribution for performing model comparison analyses

(Figs. 2.15, 2.12-2.6). All other analyses used the posterior mean (mean of the

10 000 samples) as a point estimate of the model parameters.

We implemented the sampling algorithms on a GPU using a combi-

nation of Matlab and CUDA. All sampling and analyses were performed on

single desktop computer equipped with an Nvidia GTX Titan GPU and an

Intel i7-4930K CPU (6 cores, 3.40 GHz). For the ramping (diffusion-to-bound)

sampler running on a 500 trial dataset, the MCMC required 0.35 s to generate

a sample. The stepping model sampler required 0.03 s per iteration. These

times can be compared with an earlier CPU-only Matlab implementation of
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the ramping MCMC algorithm, which required a prohibitively slow 17.6 s per

sample. The use of both C/CUDA and a modern GPU produced an imple-

mentation suitable for running on a single desktop.

2.4.1 Ramping model

The sampler consists of two primary steps: (1) sampling the latent

states given the previous value of the model parameters, and (2) sampling the

model parameters given the newly sampled latent states. This gives a rep-

resentation of the joint posterior of model parameters and latent states. By

ignoring the latent state samples, we obtain an estimate of the posterior distri-

bution over model parameters given the data alone, marginalizing over latent

parameters. Sampling the latent states in each step results in a more efficient

chain in which the model parameters are easily sampled using a fixed value

of the latent states, especially because the data are divided into independent

trials (Shephard & Pitt 1997, Yuan et al. 2012). We initialize the sampler by

setting the bound height, γ, to the average spike rate in the final bin of all

in-RF choice trials. The initial diffusion value x0 is set to 0.1. The remaining

parameters are set to the mode of the prior distribution.

2.4.1.1 Sampling the latent state with a particle filter

We obtain the sth sample of the latent state for all trials x(s) condi-

tioned on the previous sample of the parameters, Θ(s−1), and the observed

spikes y. The latent state of each trial is independent of all other trials given
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the model parameters and the data. Therefore, this section outlines the sam-

pler for a single trial only, and the notation used here drops the subscript

denoting trial number for simplicity of notation.

The posterior distribution over the latent states does not have a closed

form. Instead, the posterior is decomposed using the Markovian structure of

x:

p(x|y,Θ, τ) = p(xT |Θ, y1:T , τ)
T−1∏
t=1

p(xt|xt+1,Θ, y1:t, τ) (2.36)

Using Bayes theorem, the right-hand side terms are computed as

p(xt|xt+1,Θ, y1:t, τ) ∝ p(xt+1|xt,Θ, τ)p(xt|y1:t,Θ, τ) (2.37)

Therefore, if we can compute p(xt|y1:t,Θ, τ) for t = 1 to T and p(τ |Θ, y1:t),

we can sample xT from p(xT |Θ, y1:T ) and then work backwards, sampling xt

from p(xt|xt+1,Θ, y1:t, τ) for t = τ to 1 in order to obtain a sample from the

complete posterior distribution, p(x, τ |y,Θ).

We used a particle filter to approximate the distributions p(xt|y1:t, τ ≥

t,Θ(s−1)) for t = 1 to T (Gordon, Salmond & Smith 1993). In this algorithm,

a set of M (M = 200 here) particles approximates the distribution of xt for

times t = 1 to T , considering only paths that have not crossed the bound

by time t. At time t, particle k has position x̂
(k)
t and w

(k)
t which form the

distribution

p(xt|y1:t, τ ≥ t,Θ(s−1)) ≈
M∑
k=1

w
(k)
t δ(xt − x̂(k)

t ) (2.38)

where δ denotes the Dirac delta function. The weights must sum to 1 at

each time (
∑M

k=1w
(k)
t = 1). Additionally, we augmented the particle fil-
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ter by tracking the distribution of the bound hit time, τ , relative to time

t: P (τ < t|y1:t,Θ
(s−1)) and P (τ = t|y1:t,Θ

(s−1)), and P (τ > t|y1:t,Θ
(s−1)).

This formulation allowed the algorithm to account for the absorbing bound

without needing to track each particle’s history, which could result in a high

percentage of degenerate particles. After obtaining these distributions over

xt and τ ≥ t from time t = 1 to T , the sampler produced the values of x
(s)
t

working backwards from time t = T to 1.

The particles were initialized by setting x̂
(k)
0 = x0 and w

(k)
0 = 1

M
and

P (τ > 0) = 1. Particles are propagated through time using a sequential

importance resampling (SIR) algorithm. Particle positions at time t + 1 are

randomly sampled

x̂
(k)
t+1 ∼ π(x̂t+1|x̂(k)

t , yt+1,Θ
(s−1)) (2.39)

The particle weights are updated as

w
(k)
t+1 ∝ w

(k)
t

p(yt+1|x̂(k)
t+1,Θ

(s−1))p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1))

π(x̂
(k)
t+1|x̂

(k)
t , yt,Θ(s−1))

(2.40)

Because the particles tracked the distribution of x under the bound, the pro-

posal distribution was a truncated Gaussian with mean and variance given by

the drift-diffusion model

π(x̂t+1|x̂(k)
t , yt+1,Θ

(s−1)) ∝ 1(−∞,1)(x̂t+1)N(x̂t+1; x̂t + β(s−1), ω2,(s−1)). (2.41)

The numerator terms are (from the model definition)

p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1)) = N(x̂

(k)
t+1; x̂

(k)
t + β(s−1), ω2,(s−1)), (2.42)

p(yt+1|x̂(k)
t+1,Θ

(s−1)) = Poisson
(
yt+1; log(1 + exp(γ(s−1)x̂

(k)
t+1))∆t

)
(2.43)
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The bound time, τ , is tracked through time. The model assumes the

bound time was greater than 0 (i.e, P (τ > 0) = 1). The bound-hit time

probabilities are propagated through time, from t = 1 to T , with the following

updates

P (τ < t|y1:t,Θ
(s−1)) ∝ p(yt|τ < t,Θ(s−1))P (τ < t|y1:t−1,Θ

(s−1)) (2.44)

P (τ = t|y1:t,Θ
(s−1)) ∝ p(yt|τ = t,Θ(s−1))P (τ = t|y1:t−1,Θ

(s−1)) (2.45)

P (τ > t|y1:t,Θ
(s−1)) ∝ p(yt|τ > t, y1:t−1,Θ

(s−1))P (τ > t|y1:t−1,Θ
(s−1)) (2.46)

and normalizing the probabilities so that

P (τ > t|y1:t,Θ
(s−1)) + P (τ = t|y1:t,Θ

(s−1)) + P (τ < t|y1:t,Θ
(s−1)) = 1. (2.47)

The particle distributions provide the updated probability distribution over τ

relative to time t.

P (τ = t|y1:t−1,Θ
(s−1)) ≈ P (τ > t− 1|y1:t−1,Θ

(s−1))

×
M∑
k=1

w
(k)
t−1(1− Φ(1; x̂

(k)
t + β(s−1), ω2,(s−1))))

(2.48)

p(yt|τ > t, y1:t−1,Θ
(s−1)) ≈

M∑
k=1

w
∗(k)
t−1 p(yt|xt = x̂

(k)
t ) (2.49)

where w
∗(k)
t+1 = w

(k)
t

p(x̂
(k)
t+1|x̂

(k)
t ,Θ(s−1))

π(x̂
(k)
t+1|x̂

(k)
t , yt,Θ(s−1))

(2.50)

P (τ > t|y1:t−1,Θ
(s−1)) ≈ P (τ > t− 1|y1:t−1,Θ

(s−1))

×

(
M∑
k=1

w
(k)
t−1Φ(1; x̂

(k)
t + β(s−1), ω2,(s−1))

)
(2.51)
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Φ(x;µ, σ2) denotes the normal cumulative density function with mean µ and

variance σ2. The weights, w
∗(k)
t+1 indicate the probability of particles x̂

(k)
t+1 given

only y1:t (without observing yt+1).

After running the particle filter from t = 1 to T , the latent trajectory

x
(s)
1:T and τ (s) is sampled. The sampler accomplished this by working backwards

from time T to sample the value for τ (s). Once τ (s) was sampled, the sampler

continues working backwards in time to establish the latent trajectory x
(s)
1:τ .

With probability P (τ ≤ T |y1:T ) (calculated by the forward-pass), let

τ (s) ≤ T . Otherwise, let τ (s) = ∞, to signify that the diffusion process did

not reach the bound on this trial. If instead τ (s) ≤ T , then τ (s) is sampled by

working backwards from t = T − 1, then t = T − 2, and so on until an exact

value for τ (s) is found. The sampler works backwards setting τ (s) ≤ t with

probability

P (τ ≤ t|τ ≤ t+ 1, y1:t,Θ
(s−1)) =

P (τ ≤ t|y1:t,Θ
(s−1))

P (τ ≤ t|y1:t,Θ(s−1)) + P (τ = t+ 1|y1:t,Θ(s−1))

(2.52)

P (τ = t+ 1|y1:t,Θ
(s−1)) ≈

M∑
k=1

w
(k)
t (1− Φ(1; x̂

(k)
t + β(s−1), ω(s−1)))

× P (τ > t|y1:t,Θ
(s−1))

(2.53)

Otherwise, set τ (s) = t+ 1.

If τ (s) > T , the sampler selects a value for x
(s)
T from the particle set at
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time T using the probability distribution

p(xT |y1:T , τ
(s) > T,Θ(s−1)) ≈

M∑
k=1

w
(k)
T δ(xT − x̂(k)

T ). (2.54)

and then works backwards in time sampling x
(s)
1:T−1 (sampling first x

(s)
T−1, then

x
(s)
T−2, and so on) as described below.

If instead τ (s) < T , the value of x
(s)
τ−1 is set to one of the particles x̂

(k)
t

where t = τ (s) − 1 by sampling from the distribution

p(xt|τ (s), y1:T ,Θ
(s−1)) ∝ p(τ (s) = t+ 1|xt,Θ(s−1))p(xt|y1:t,Θ

(s−1)) (2.55)

≈
M∑
k=1

w
(k)
t δ(xt − x̂(k)

t )
(

1− Φ(1; x̂
(k)
t + β(s−1), ω2,(s−1))

)
.

(2.56)

The remaining trajectory, x
(s)
1:τ−2, is obtained by sampling backwards through

time.

Backwards sampling again requires the particles. The value of x
(s)
t−1

given x
(s)
t was sampled using the approximated distribution

p(xt−1|x(s)
t , y1:t−1,Θ

(s−1), τ > t− 1) ∝ p(x
(s)
t |xt−1,Θ

(s−1))

× p(x1:t−1|y1:t−1,Θ
(s−1), τ > t− 1)

(2.57)

≈
M∑
k=1

δ(xt−1 − x̂(k)
t−1)w

(k)
t−1

N(x
(s)
t ; x̂

(k)
t−1 + β(s−1), ω2,(s−1))

(2.58)
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After obtaining the latent values all the way back to x
(s)
1 and if τ (s) ≤ T ,

the value of x
(s)

τ (s)
is sampled from the truncated normal distribution

p(xτ |x(s)
τ−1,Θ

(s−1)) ∝ 1[1,∞)N(xτ ;x
(s)
τ−1 + β, ω2) (2.59)

where 1 is the indicator function

1[1,∞)(x) =

{
1 if x ∈ [1,∞)
0 otherwise

(2.60)

After τ (s), the observations (spikes) no longer depend on the new values

of the latent state. This independence also means that the sampler can drop

x
(s)

τ (s)+1:T
from the model parameter sampling step (everything about the spike

rate is given by x
(s)

1:τ (s)
). Dropping these terms increases sampler efficiency.

2.4.1.2 Sampling the model parameters

With the sth sample of the latent states, the algorithm samples a new

set of the model parameters. We first sample the parameters x0, β1:C , and ω2.

Applying Bayes’ rule to the posterior gives

p(x0, β1:C , ω
2|x(s),y) ∝ p(x(s)|x0, β1:C , ω

2)p(x0, β1:C , ω
2) (2.61)

in order to compute the distributions. The parameters x0, β1:C , and ω2 condi-

tioned on x(s) are independent of the observations and γ. The model defines

the latent paths as a simple linear-Gaussian process, and therefore the pa-

rameters can be sampled exactly using Gibbs steps. The model definition of

p(x(s)|x0, β1:C , ω
2) states that the differences (xj,t − xj,t−1) are normally dis-

tributed with mean βc(j) and variance ω2.
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The values of β
(s)
1:C and x

(s)
0 can be sampled from independent Gaussian

distributions given the previous diffusion variance term ω2,(s−1).

β(s)
c |x(s),y, ω2,(s−1) ∼ N(B · A−1, A−1) (2.62)

A =
1

σ2
β

+
1

ω2,(s−1)

∑
j∈{i:c(i)=c}

((Tj ∧ τ (s)
j )− 1) (2.63)

B =
µβ
σ2
β

+
1

ω2,(s−1)

∑
j∈{i:c(i)=c}

Tj∧τ
(s)
j∑

t=2

(x
(s)
j,t − x

(s)
j,t−1) (2.64)

x
(s)
0 |x(s),y, ω2,(s−1) ∼ N(D · C−1, C−1) (2.65)

C =
1

σ2
0

+
N

ω2,(s−1)
(2.66)

D =
µ0

σ2
0

+
1

ω2,(s−1)

N∑
j=1

x
(s)
j,1 (2.67)

Tj ∧ τ (s)
j = min(Tj, τ

(s)
j ) (2.68)

The term Tj ∧ τ (s)
j signifies the bound crossing time (the “effective”

length of the latent trajectory x
(s)
j,1:Tj

). The spike rate is no longer dependent

on the diffusion process once the process has crossed the bound (for t ≥ τ
(s)
j ,

yj,t is independent of the value of x
(s)
j,t ). Therefore, the sampler only needs

to consider the values of xj,t for t ≤ τj in order to sample from the posterior

(replacing Tj ∧ τ (s)
j with Tj results in a correct, but slower, sampler).

The next step is to sample ω2 given the newly generated samples of

β1:C and x0.
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ω2,(s)|β(s)
1:C , x

(s)
0 ,x(s),y ∼ Inv-Gamma(E,F ) (2.69)

E = αω +
1

2

N∑
j=1

(Tj ∧ τ (s)
j ) (2.70)

F = βω +
1

2

N∑
j=1

[(
x

(s)
j,1 − x

(s)
0

)2

+

Tj∧τj∑
t=2

(
x

(s)
j,t − (x

(s)
j,t−1 + β

(s)
c(j))

)2

 (2.71)

βc depends only on trials of stimulus coherence c, while x0 and ω2 are coupled

to all trials.

Even though the bound height parameter, γ, is independent of all other

parameters given the latent states, there exists no single closed-form Gibbs step

to sample γ(s). Instead, we generated samples via a Metropolis-Hastings (MH)

step. The MH algorithm samples γ(s) with the following steps

1 Sample γ∗ ∼ q(γ|γ(s−1)) where q is an arbitrary proposal distribution.

2 Sample u ∼ U([0, 1]).

3 γ(s) =

{
γ∗ , u < α
γ(s−1) , otherwise

where α = min
(

1, p(γ∗|y,x(s))q(γ(s−1)|γ∗)
p(γ(s−1)|y,x(s))q(γ∗|γ(s−1))

)
A Langevin step was used for the proposal distribution (Roberts &
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Stramer 2002)

q(γ∗|γ(s−1),y,x(s)) = N

(
γ∗; γ(s−1) + ε2

1

2
G−1(γ(s−1))

d

dγ
L(γ(s−1)), ε2G−1(γ(s−1))

)
(2.72)

L(γ) = log p(y|x(s), γ) + log p(γ)

=
N∑
j=1

Tj∑
t=1

log p(yj,t|x(s)
j,t , γ) + log p(γ)

(2.73)

G(γ) = −Ey|γ,x(s)

[
d2

dγ2
L(γ)

]
(2.74)

This proposal uses the Fisher information plus the second derivative

of the log prior, G(γ), to condition the step, as suggested by (Girolami &

Calderhead 2011). The result of this conditioning made selecting an effective

value for ε simple. We set ε to a small initial value (0.1) and slowly raised it

during the burn-in period to a larger value of 1.

Labeling the soft-rectifying function

h(x, γ) = log(1 + exp(xγ)) (2.75)

the derivative of the log likelihood is

d

dγ
L(γ) =

d

dγ

[
log p(y|x(s), γ) + log p(γ)

]
(2.76)

=
d

dγ

 N∑
j=1

Tj∑
t=1

(
−h(x

(s)
j,t , γ)∆t + yj,t log(h(x

(s)
j,t , γ))

)
+(αγ − 1) log(γ)− γβγ + const]

(2.77)

=
N∑
j=1

Tj∑
t=1

(
h′(x

(s)
j,t , γ)

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

))
+
αγ − 1

γ
− βγ

(2.78)
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where

h′(x, γ) =
d

dγ
h(x, γ) =

x

1 + exp(−xγ)
(2.79)

The Fisher information combined with the prior Hessian is calculated

as

G(γ) = −Ey|γ,x(s)

 d

dγ

 N∑
j=1

Tj∑
t=1

(
h′(x

(s)
j,t , γ

(s−1))

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

))

+
αγ − 1

γ
− βγ

)]
(2.80)

= −Ey|γ,x(s)

 N∑
j=1

Tj∑
t=1

(
h′′(x

(s)
j,t , γ)

(
−∆t + yj,t

1

h(x
(s)
j,t , γ)

)

− yj,t

(
h′(x

(s)
j,t , γ)

h(x
(s)
j,t , γ)

)2
− αγ − 1

(γ)2

 (2.81)

= −
N∑
j=1

Tj∑
t=1

(
h′′(x

(s)
j,t , γ)

(
−∆t + Ey|γ,x(s) [yj,t]

1

h(x
(s)
j,t , γ)

)

− Ey|γ,x(s) [yj,t]

(
h′(x

(s)
j,t , γ)

h(x
(s)
j,t , γ)

)2
+

αγ − 1

(γ)2

(2.82)

Noting that Ey|γ,x(s) [yj,t] = h(x
(s)
j,t , γ)∆t

G(γ) =
αγ − 1

(γ2)
+

N∑
j=1

Tj∑
t=1

∆t

(
h′(x

(s)
j,t , γ)

)2

h(x
(s)
j,t )

 (2.83)
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2.4.2 Stepping model

As with the ramping model, the sampler consists of two main steps: (1)

sampling the latent stepping process given the parameters and (2) sampling

the parameters given the new latent states. We initialize the chain by setting

the rate parameters based on average spike rates: α0 is set to the average spike

rate over all trials in the first bin, α2 is set to the average spike rate in the

final bin of all in-RF choice trials, and α1 is set to 1
2
α2. The initial values for

all the φ and p parameters is 0.5 (the mean of the prior). The final parameter,

r, is initially set to the mode of the prior distribution.

2.4.2.1 Sampling the latent steps

The sth sample of the latent states is obtained using the (s − 1)th

sample of the model parameters:

(z,d)(s) ∼ z,d|Ψ(s−1),y (2.84)

With the model parameters fixed, each trial becomes independent. Un-

fortunately, there is no closed form distribution for this step. However, in this

simple stepping case, truncating the distribution over z results in a finite dis-

crete distribution that can be sampled. We set z to a maximum of 1500, which

is 15 times longer than the longest trial and much longer than an interpretable

step time in the decision-making task. Therefore, the truncated distribution

is an extremely close approximation to the true distribution. The step time zj

can be greater than Tj, which is interpreted to mean no step occurred during
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the trial. For zj = 1 to 1500 and dj = 1 to 2, the probability of the latent

states is

p(zj, dj|yj,1:Tj ,Ψ
(s−1)) ∝ p(yj,1:Tj |zj, dj, α(s−1))p(zj|r(s−1), p

(s−1)
c(j) )p(dj|φ(s−1)

c(j) )

= p(zj|r(s−1), p
(s−1)
c(j) )p(dj|φ(s−1)

c(j) )

Tj∏
t=1

p(yj,t|zj, dj, α(s−1))

(2.85)

The distributions on the right side are calculated using the model defini-

tion for the Poisson observation p(yj,1:t|zj, dj, α(s−1)), the negative binomi-

ally distributed step time p(zj|r(s−1), s(s−1)), and the Bernoulli state choice

p(dj|φ(s−1)). Once all 3000 possible values are calculated, the joint distribu-

tion was normalized and sampled directly.

2.4.2.2 Sampling the model parameters

The sth sample of the latent states is used to draw the next value for

the model parameters. This step consisted of two parts: the first part samples

α0:2, p, and φ. The final step samples the parameter r with the new values of

p1:C and z.

The parameters α0:2, p, and φ are all sampled independently with

Gibbs’ steps.
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φ(s)
c |d(s) ∼ Beta (αφ +Dc, βφ +N −Dc)

Dc =
∑

j∈{i:c(i)=c}

1(d
(s)
j = 2)

(2.86)

p(s)
c |z(s), r(s−1) ∼ Beta

αp +
∑

j∈{i:c(i)=c}

z
(s)
j , βp + r(s−1)

∑
j∈{i:c(i)=c}

1

 (2.87)

α
(s)
0 |z(s),d(s),y ∼ Gamma

αα +
N∑
j=1

z
(s)
j∑
t=1

yj,t, βα +
N∑
j=1

z
(s)
j

 (2.88)

α
(s)
1 |z(s),d(s),y ∼ Gamma (α1, β1) (2.89)

α
(s)
2 |α

(s)
1 z(s),d(s),y ∼ 1(α

(s)
2 > α

(s)
1 )Gamma (α2, β2) (2.90)

αi = αα +
N∑
j=1

Tj∑
t=z

(s)
j +1

1(d
(s)
j = i)yj,t (2.91)

βi = βα +
N∑
j=1

1(d
(s)
j = i)(Tj − z(s)

j ) (2.92)

The truncated gamma distribution on α
(s)
2 enforces that α

(s)
2 > α

(s)
1 holds (see

model prior section).

No simple closed form distribution exists for the posterior over the

negative binomial parameter r. A Metropolis adjusted Langevin algorithm

generates samples of r using the following proposals (see the ramping sampler
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for a brief description of Metropolis-Hastings proposals):

q(r∗|r(s−1),y, z(s), p
(s)
1:C) = N

(
r∗; r(s−1) + ε2

1

2

d

dr
L(r(s−1)), ε2

)
(2.93)

L(r(s−1)) = log p(z(s)|r(s−1), p
(s)
1:C) + log p(r(s−1))

=
N∑
j=1

log p(z
(s)
j |r(s−1), p

(s)
c(j)) + log p(r(s−1))

(2.94)

We use a simple automatic procedure select a value for ε. Initially, ε is

set to a small value (0.05), and during the burn-in period, the sampler raises or

lowers ε (by multiplicative factors of 1.25 or 0.75) until the sampler stabilizes

to an acceptance rate in the range of 30− 70%.

The derivative can be calculated

L(r(s−1)) =
N∑
j=1

log p(z
(s)
j |r(s−1), p

(s)
c(j)) + log p(r) (2.95)

=
N∑
j=1

[
log Γ(z

(s)
j + r(s−1))− log Γ(z

(s)
j + 1)− log Γ(r(s−1))− z(s)

j log(p
(s)
c(j))

+r(s−1) log(1− p(s)
c(j))

]
+ (αr − 1) log(r(s−1))− r(s−1)βr + const

(2.96)

d

dr
L(r(s−1)) =

N∑
j=1

[
ψ(z

(s)
j + r(s−1))− ψ(r(s−1)) + log(1− p(s)

c(j))
]

+
αr − 1

r(s−1)
− βr

(2.97)

where Γ and ψ are the gamma and digamma functions respectively. This

sampling step uses the entire set of coherence-dependent p parameters.
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2.4.3 Visualizing samples from the posterior distribution

To provide more intuition about what the MCMC methods produced,

Figure 2.6 shows the posterior distributions for the model parameters esti-

mated from the MCMC for one example LIP cell. These estimated posteriors

are simply histograms of the samples from the Markov chain. For visualization

purposes, these distributions are the marginal posterior distributions for each

parameter given the set of spike trains. However, the samples came from the

joint posterior. Figure 2.7 shows samples from the posterior distribution over

the latent firing rates for the stepping model for 15 example trials from one

cell. Figure 2.8 shows samples from the posterior distribution over the firing

rates for the ramping model for the same 15 trials.
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Figure 2.7: Each plot shows samples from the posterior distribution over the
latent firing rates in the stepping model (gray traces) for five example trials
at each of three motion coherence levels. The black trace shows the median
step time estimate (Section 2.5.4.2) with the posterior mean spike rates for the
states. Rasters above each plot indicate the spike times on each trial. (Top
row) High negative coherence (strong out-RF motion) trials. (Middle row) 0%
coherence trials. (Bottom row) high positive coherence (strong in-RF motion)
trials. The trials shown are from cell 10.
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Figure 2.8: Each plot shows samples from the posterior distribution over the
latent firing rates in the ramping model (gray traces) for the same trials as
shown in Figure 2.7. The black trace shows the trial’s posterior mean firing
rate. Rasters above each plot indicate the spike times on each trial. (Top
row) High negative coherence (strong out-RF motion) trials. (Middle row) 0%
coherence trials. (Bottom row) high positive coherence (strong in-RF motion)
trials.
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2.4.4 Analyzing simulated spike trains

To assess the ability of the MCMC methods to successfully fit and

identify models, we simulated trials from the ramping and stepping models and

applied the MCMC methods to the simulated data. We examined the ability

of the sampler to recover true parameters and the DIC metric to identify the

correct model.

2.4.4.1 Simulations: evaluating sampler efficiency

To evaluate how well the MCMC algorithms were mixing (i.e., how

quickly the chain could start to produce effectively independent samples from

the true posterior), we calculated the autocorrelations in the parameter sam-

ples from the chain. This is a basic visual tool that can indicate if the chain

has reached the true posterior, and how independent the samples are (with

lower autocorrelation meaning more independence). Testing this metric using

all 50 000 samples from the MCMC output indicates that the ramping parame-

ters ω2 and γ, and the stepping model parameter r had a high autocorrelation.

(Fig. 2.9, top). However, thinning the chain by taking only every 5th sam-

ple (described in Section 2.4), largely eliminated the autocorrelation (Fig. 2.9,

bottom). The autocorrelation from the MCMC output of the fit to the cell

shown in Figure 2.17 is shown in Figure 2.10 for a comparison.
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Figure 2.9: Autocorrelation plots of all the parameter samples from the MCMC
output for all the parameters for both models for simulated data. The abscissa
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two rows show the autocorrelation after thinning the chain, taking only every
5th sample. The chain was run on datasets containing 500 trials, with 100
trials of each of the 5 possible motion coherence levels.
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The result is similar to the simulation in Fig. 2.9
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2.4.4.2 Estimating parameters in simulations

We confirmed that the samplers estimate the true parameters from

simulated data (i.e., is the estimator consistent?). We ran the MCMC on

various amounts of simulated data and compared the posterior mean estimates

of the parameters to the true parameters. Figure 2.11 shows that the error

tends towards zero with more data.
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Figure 2.11: Mean-squared errors of the MCMC posterior mean estimate
(log scaled) of the model parameters as a function of the amount of sim-
ulated data. Simulated datasets containing an equal number of trials of
each of 5 possible motion coherence levels. For the 50 and 125 samples
populations, 20 independent simulations and MCMC runs were used. 10
runs were used for the remaining sample sizes. Error bars show one stan-
dard error of the estimate of the MSE. The true parameters were chosen
to be similar to the parameters estimated for a real LIP neuron: β =
{−4.7e× 10−3,−2.4× 10−3,−1.3× 10−3, 6× 10−4, 3.4× 10−3}, x0 = 0.72, ω2 =
1.7× 10−3, γ = 39.7, α = {4.1, 0.57, 41.0}, φ = {0.10, 0.30, 0.71, 0.82, 0.98}, p =
{0.990.98, 0.98, 0.975, 0.97}, r = 1.05
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2.4.4.3 Model comparison identifies true model in simulations

Simulated model comparison results confirmed that the model com-

parison can identify the true model used to produce simulated spike trains,

although several cells show a small (insignificant) DIC difference in these pa-

rameter regimes (Fig. 2.12). These simulations used parameters found in the

model fits to actual data (see Section 2.5) to ensure these results held in pa-

rameter regimes relevant to the neurons in the real LIP dataset.
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Figure 2.12: Model comparison with DIC (Eq. 2.35) on simulated data gen-
erated from the model fits to 40 LIP cells (Section 2.5). Each simulation
contained the same number of trials as in the actual data (on an individual
cell basis). For all 40 simulations of the stepping model (right), the model
comparison showed strong evidence (DIC difference greater than 10) towards
the correct model. For the ramping simulations (left), 31 simulations showed
strong evidence supporting the ramping model. The model comparison showed
that 3 ramping simulations could be explained better by stepping, but none
of these simulations offered strong support for stepping (maximum DIC dif-
ference of 3, well below the threshold of 10 for strong support). Median DIC
differences are given by the triangles: ramping simulations=-20.3, and step-
ping simulations=121.2.
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2.5 Results of model comparison of LIP responses

We applied Bayesian model comparison between the ramping and step-

ping model to a population of cells recorded in area LIP while the monkey

performed the perceptual decision-making task shown in Figure 2.1A. The

data shown here have been reported previously (Meister et al. 2013). The task

and data collection are briefly summarized here. Single units were recorded

while a monkey performed a moving-dot direction-discrimination task. The

dot motion was displayed for random times, uniformly distributed from 500

to 1000 ms. The motion was directed towards one of the two choice targets: a

target placed inside the cell’s response field (in-RF target), and one placed di-

ametrically opposite (out-RF target). 500 ms after the motion stimulus ended,

a go-signal was provided and the monkey made a saccade to one of two choice

targets, indicating its choice of motion direction. Dot coherence (the strength

of the motion stimulus) was varied across trials. Dot coherence was drawn from

conventional values of 0, 3.2, 6.4, 12.8, 25.6, and 51.2%. Coherence levels for

each trial were selected uniformly random and motion direction was sampled

independently with a 50% chance of an in-RF direction. To simplify the analy-

sis, we collapsed the coherences into 5 levels: zero=0%, positive/negative high

={25.6, 51.2}%, and positive/negative low ={3.2, 6.4, 12.8}% (positive values

indicate motion towards the in-RF target and negative values towards the out-

RF target). The original study included trials in which the choice targets were

displayed during the entire trial and trials in which the targets were flashed

briefly before motion onset. This study considered only trials for which the
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targets were displayed throughout the trial.

2.5.1 Cell selection

In the original study (Meister et al. 2013), 80 spatially selective LIP

cells were recorded from 2 adult, male rhesus macaques (M. mulatta; 14 from

monkey J, 66 from monkey P). The full population included cells with a range

of response styles, including cells selective primarily for motor response. The

intent of this study was to include only cells with choice selectivity during the

motion epoch. A d′ analysis was used to quantify choice selectivity in the spike

counts of the cells during the period 200-700 ms after dot motion onset (before

the go signal was given on any trial). The d′ value measures choice selectivity

for a single cell as

d′ =
µin − µout√
1
2

(σ2
in + σ2

out)
(2.98)

where µin and µout are the mean spike counts on the in-RF and out-RF trials

respectively. The variance of the spike counts on the in-RF and out-RF trials

are σ2
in and σ2

out. We selected the top 50% of cells (40 cells, 6 from monkey J

and 34 from monkey P). The d′ of the 40 selected cells ranged from 0.397 to

1.661 with mean 0.819 and standard deviation 0.359.

For the statistical analyses, we used the spike trains for each trial start-

ing 200ms after motion onset (assuming a 2̃00 ms latency of the decision-

related activity to appear in LIP (Churchland et al. 2008)) until 200 ms after
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motion offset. Therefore, the spike trains were 500-1000 ms long, uniformly

distributed on this interval. The analyses produced similar results with earlier

start times results (Sec. 2.5.5.3). The mean number of trials per cell was 385

(std=148.4, range=[96 750]). The mean number of spikes observed on each

trial was 12.4 (std=11.7, range=[0 116]). This set of cells was qualitatively

similar to those that have received focus in other studies, and exhibit response

profiles (shown in Figures A.2- A.4) similar to those present in the well-studied

Roitman & Shadlen dataset (Fig. 2.23).

2.5.2 Model fits to 40 LIP neurons

The posterior mean provided a specific estimate for the model parame-

ters for a cell. Figures 2.13-2.14 plot the population summary of the parame-

ters estimates for both models, and the exact values are provided in Tables A.2

and A.1 along with the model comparison results for each cell.

2.5.3 Model comparison supports stepping model in majority of
cells

Using latent variable models, we formally addressed the ramping versus

stepping hypothesis in LIP using statistical model comparison. Both models

give a probability distribution over spike trains, and the model that better

represents the data should place more probability mass over the observed spike

trains. We compared the model fits using DIC (Section 2.3). The stepping

model provided a superior account of LIP responses for 78% (31/40) of the cells

compared to the ramping model (Fig. 2.15A). The superiority was supported
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Figure 2.13: The stepping model parameters fit to all 40 cells.
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Figure 2.14: The ramping model parameters fit to all 40 cells.
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Figure 2.15: (A) Quantitative model comparison using DIC (Eq. 2.35) reveals
a superior fit of the stepping model over the ramping model for the majority
of cells (31 out of 40). A DIC difference greater than ±10 (gray region) is
commonly regarded as providing “strong” support for one model over the
other (Burnham & Anderson 2002). We found substantially more cells with
strong evidence for stepping over ramping (25 cells vs. 6 cells; median DIC
difference = 22.1, sign test p < 0.001). (B) Comparison of the estimated DIC
differences with the log Bayes factor model comparison metric for all 40 cells.
These values are highly correlated (r = 92.7, p < 10−8) and they provide the
same model comparison result for all but 3 cells (open circles), all of which
had weak (< 10) model assignments from the log Bayes factor.

not just by DIC but also by other model comparison metrics, such as Bayes

factor (Fig. 2.15B).

2.5.3.1 Population spiking statistics better fit by stepping mode

We examined how well the two models account for the time-varying

mean (or peri-stimulus time histogram, PSTH) and the variance (peri-stimulus

time variance, PSTV) of neural responses. Figure 2.16 shows the comparison

for the mean responses (top row) and variance (bottom row) for the data (left
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Figure 2.16: Comparison of model fits to average population activity, sorted
by stimulus strength. Motion coherence and direction are indicated by color
(blue, in-RF; red, out-RF). Average spike rate (top) and spike count variance
(bottom) for the population aligned to motion onset. The data (left) and
simulations from the stepping model (center) and the diffusion-to-bound model
(right) fits to all 40 cells are shown. Spike rates and variances were calculated
with a 25 ms sliding window (see Section A.1).

column), stepping model (middle column), and ramping model (right column).

Although the models were fit to predict the spike responses on each trial, as

opposed to these summary statistics, both models did an acceptable job of

accounting for the mean response (fraction of variance in the PSTHs explained:

stepping R2 = 0.94, 95% credible interval:[0.90, 0.94], ramping R2 = 0.78

95% CI: [0.71, 0.79]). This is consistent with the long-standing difficulty in

distinguishing between these two mechanisms. However, the stepping model

provided a more accurate fit to the variance of neural responses (stepping
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R2 = 0.40, 95% CI:[0.09, 0.45], ramping R2 = −0.49, 95% CI: [−0.86,−0.27]).

In particular, the stepping model captured the decreasing variance observed

in trials with strong negative motion much better than the ramping model.

A similar result held for estimates of variance of the underlying spike rate

(Fig. 2.27).

2.5.4 Inferring steps on single trials

Figure 2.17A shows the raster of spike trains from an example LIP

neuron plotted in two different ways: first, aligned to the time of motion

stimulus onset (left); and second, aligned to the step time inferred under the

stepping model (right; see below in Section 2.5.4.2 for details about the step

time estimate). The traditional raster and PSTH at left show that the average

response ramps upward or downward depending on choice, as expected. The

step-aligned raster at right, however, shows that these data are also consistent

with discrete step-like transitions with variable timing across trials. Addi-

tional panels show the distribution of step times inferred under the model

(Fig. 2.17B), and the dependence of step direction (“up” or “down”) on the

motion signal (Fig. 2.17C). Discrete steps in the instantaneous spike rate could

thus plausibly underlie the gradual ramping activity seen in stimulus-aligned

and averaged LIP spike responses.

We applied the same analysis to the full set of LIP neurons and observed

similar structure in step-aligned rasters (see Figs. A.2-A.4 for more examples).

Figure 2.18A shows population-averaged PSTHs computed from stimulus-
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Figure 2.17: Model-based analysis of spike responses from an example LIP
neuron. (A) Spike rasters sorted by the monkey’s choice in or out of the RF
of the neuron under study (black=“in-RF”, gray=“out-RF”), and their asso-
ciated averages (PSTHs, below). Left: Conventional stimulus-aligned rasters
with each trial aligned to the time of motion onset exhibit commonly-observed
ramping in the PSTH. Blue and red triangles indicate the inferred time of an
“up” or “down” step on each trial under the fitted stepping model. Yellow
triangles indicate that no step was found during the trial, and are placed at
the end of the trial segment analyzed here (200 ms after motion offset). Right:
The same spike trains aligned to the inferred step time for each trial. Note
that estimated step direction of the neuron does not always match the animal’s
decision on each trial. (B) The distribution of inferred step times shown in A
(histogram), and the distribution over step times under the fitted parameters
(black trace). (C) The probability of an “up” step, for each coherence level.
Error bars indicate 95% credible intervals.

aligned and step-aligned responses, sorted by motion strength (Fig. 2.18B),

or motion strength and step direction (Fig. 2.18C). Figures 2.18B and C plots

show that spike rate is effectively constant when spike trains are aligned to the

inferred step time on each trial. The gradient of step heights in the middle plot

results from differential probabilities of stepping “up” or “down” as a function
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Figure 2.18: Population average PSTH sorted by motion coherence computed
from spike trains: (A) aligned to motion onset and sorted by motion strength;
(B) aligned to step times inferred under the stepping model and sorted by
motion strength; (C) aligned to step times and sorted by both motion strength
and inferred step direction. Simulated results from the stepping model (dashed
lines) provide a close match to the real data under all types of alignment and
conditioning.

of motion strength over trials. Figure 2.18C confirms that the firing rate, once

conditioned on stepping “up” or “down”, is independent of motion strength.

Furthermore, simulated spike responses, based on the fitted stepping models,

resemble the real data under both kinds of alignment (dashed traces).

Although these analyses provided a visually compelling illustration of

the plausibility of stepping dynamics in LIP, they could not by themselves

definitively rule out the ramping model. We performed the same step-aligned

analysis on a simulated diffusion-to-bound cell (Fig. 2.19). The step-aligned

firing rate appeared to reveal discrete jump, even though the firing rate was

truly a continuous diffusion process. Therefore, seeking to visualize a signature

of a dynamical process in the mean spike rate of a cell aligned to an event -

a “neural correlate” - can provide some evidence that a potential model is a
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Figure 2.19: Coherence-sorted PSTH for a simulated ramping cell (solid traces)
aligned to motion onset (left) and estimated step times (right). The output of
the stepping model fit to the simulated ramping cell is plotted in the dashed
traces. The step-aligned PSTH revealed an apparent step in the ramping
simulation. Although the slope in the step-aligned PSTHs from the ramping
simulation before and after the step appears to be nonzero, these ramping
slopes were small enough that visual inspection should be deemed insufficient.
However, the quantitative model comparison using DIC correctly identified
the simulated responses as arising from the ramping model.

viable description of the data, but conclusive tests between ramping and step-

ping models require additional quantitative assays. Instead, Bayesian model

comparison provides a stronger measure for hypothesis testing by quantifying

which model best predicts the observed spike trains.

2.5.4.1 Decoding choice with steps

The stepping model provided an intuitive platform for decoding the

monkey’s choice on single trials, as the posterior distribution over steps could

be used for reading out decisions from the spikes on a single trial. We first

quantified decoding performance using choice probability (CP), a popular met-
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ric for quantifying the relationship between choice and a pair of spike counts.

Aligned to motion onset, CP grew roughly linearly with time (Fig. 2.20A,

left). However, the CP relative to the inferred step times (Fig. 2.20A, right)

was consistent with an abrupt emergence of choice-related activity. We then

compared classical CP with a model-based CP measure, which assumed that

the direction of the neuron’s step predicted the animal’s choice. The model

was fit to the spike trains without access to the animal’s choices. The model-

based CP was on average greater than classical CP, indicating that the states

estimated under the stepping model were more informative about the animal’s

choice than raw spike counts (Fig. 2.20B).

Choice probability (CP) is a widely-used metric to quantify the rela-

tionship between spike count fluctuations and behavior. For a fixed stimulus,

higher spike counts on single trials are often correlated with in-RF choices.

CP is the probability that a spike count observed during an in-RF choice trial

is greater than a spike count observed on an out-RF choice trial in response

to the same stimulus condition. CP does not consider the percentage of in-RF

or out-RF choices, only the distributions of spike counts observed for in-RF

choice and out-RF choice trials. This way, one obtains a measure how the

trial-to-trial fluctuations of a neuron correlate with choice, which discards any

overall bias towards one choice.

CP is equivalent to decoding choice using a neuron-antineuron pair.

The “anti-neuron” is a hypothetical neuron whose response distributions are

equal to the recorded neuron, but with tuning to the targets reversed. A
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Figure 2.20: (A) Population average choice probability aligned to stimulus
onset (left), and average CP aligned to estimated step times (right). Grey
region indicates one standard error of the mean. CPs were calculated with
a sliding 25 ms window. Conventional alignment suggests a ramp in choice
selectivity, while the model-based alignment indicates a rapid transition. (B)
Conventional choice probability based on spike counts using responses 200-
700 ms after motion onset versus model-based choice probability using the
probability of stepping to the up state by the end of the same period. Model-
based CP is greater than conventional CP in the population (Wilcoxon signed
rank test, p < 0.05). Stepping models were fit using 10 fold cross validation.
Error bars show the standard error of CPs, as computed on each training data
set. Black points indicate cells with significant differences between model-
based and conventional CP (Student’s t-test, p < 0.05), and grey indicates
not significant.

decoder would chose a target by selecting which of these two neurons gives

the highest spike count on a single trial. An out-RF choice occurs when the

antineuron gives the larger count, and the in-RF choice occurs when the an-

tineuron has the lower count.

We calculated CP conditioned on stimulus coherence and direction and

took the final CP as the average across conditions. CPs were calculated using

dot coherences from 0 − 12.8%, including both directions of motion. The

final CP value included only coherence levels with at least 3 in-RF choices
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and 3 out-RF choices into the final CPs. We chose to average CPs across

conditions instead of z−scoring each response within the stimulus categories

and calculating a single CP on the pooled responses, because z−scoring can be

biased by conditions with unbalanced choice selection (Kang & Maunsell 2012).

In addition to the classical, spike count-based CP, we calculated a

model-based CP. The model fit was used to calculate the probability that

the latent state had stepped up given a spike train. The model-based CP is

the probability that an in-RF choice trial is more likely to have stepped into

the up state than an out-RF choice trial (i.e., model-based CP was calcu-

lated by replacing the spike count observations in classical CP with the step

probabilities).

The specific quantity used to compute the model-based CP trial j at

time t was computed

Pup(j) =
P (dj = 1|yj,1:t, zj < t, Ψ̄)

P (dj = 1|yj,1:t, zj < t, Ψ̄) + P (dj = 2|yj,1:t, zj < t, Ψ̄)
(2.99)

where

P (dj = 1|yj,1:t, zj < t, Ψ̄) =
t−1∑
z=0

P (zj = z, dj = 1|yj,1:t, zj < t, Ψ̄) (2.100)

∝
t−1∑
z=0

P (yj,1:t|zj = z, dj = 1, Ψ̄)P (zj = z|Ψ̄)P (dj = 1|Ψ̄)

(2.101)

Here, the decoder assumes that a step has been made (i.e., it returns a “best

guess” about the choice).
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2.5.4.2 Estimating step times

Figures 2.17, 2.17, and A.2-A.4 visualize the LIP recordings using de-

coded steps. Step times and directions were estimated using a Bayesian de-

coder with the model fit parameters (Ψ̄ = posterior mean of Ψ). For a trial j,

the distribution over step times, marginalizing over step direction, is given

P (zj = z|yj,1:Tj , Ψ̄) =
∑

d∈{1,2}

P (zj = z, dj = d|yj,1:Tj , Ψ̄)P (dj = d|Ψ̄) (2.102)

∝ P (yj,1:Tj |zj = z, dj = d, Ψ̄)P (zj = z|Ψ̄)P (dj = d|Ψ̄)
(2.103)

where the final terms P (yj,1:Tj |zj = z, dj = d, Ψ̄), P (zj = z|Ψ̄), and P (dj =

d|Ψ̄) are all given by the model definition. For computational tractability,

the possible step times was truncated to a maximum of 1500 time steps (15

times longer than the longest trial) and the distribution was normalized the

distribution based on the truncation. We then estimated the median step time

as

ẑj = arg min
z∈{0,...,1500}

1

2
≥

(
z∑

x=1

P (zj = x|yj,1:Tj , Ψ̄)

)
(2.104)

The median time was selected instead of the mean because the distribution

of step times tended to be highly skewed. A MAP estimator achieved similar

results to the median.

If the step time occurred after the trial end, the decoder signaled that
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no step occurred on that trial. Otherwise, step direction was decoded as

d̂j = arg max
d∈{1,2}

P (dj = d|yj,1:Tj , Ψ̄) (2.105)

= arg max
d∈{1,2}

1500∑
z=0

P (dj = d|zj = z, yj,1:Tj , Ψ̄)P (zj = z|Ψ̄) (2.106)

= arg max
d∈{1,2}

1500∑
z=0

P (yj,1:Tj |dj = d, zj = z, Ψ̄)P (dj = d|Ψ̄)P (zj = z|Ψ̄) (2.107)

where the distributions P (yj,1:Tj |dj = d, zj = z, Ψ̄), P (dj = d|Ψ̄), and P (zj =

z|Ψ̄) are all given by the model definition (product of independent Poissons,

a Bernoulli distribution, and a negative binomial distribution respectively).

For all step aligned figures, spike rates on each trial were estimated

by smoothing the spike trains with a centered boxcar filter (25 ms wide).

The rates were then aligned to the step time on each trial and averaged.

The step-aligned average included only the segment beginning 200 ms after

motion onset until 200 ms after motion offset (300 ms from each trial. This

avoided confounding step-related activity with motor effects or visual responses

coupled to, for example, saccade target onset. For trials not containing a

detectable step, we aligned the trial to the end of the analysis period (200 ms

after motion offset).

Figure 2.21A shows the step times of 3 example cells. Figure 2.21C

shows the average and variance of step times for each coherence, which was

calculated by first taking the average (or standard deviation) of step times for

each cell individually, then averaging across the population.
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Figure 2.21: Model-estimated step times for the LIP cells. (A) The step times
relative to motion onset estimated for 3 example cells (blue) across all motion
coherences. The model fit step time distributions are shown in grey. (B)
The step time distribution across the entire population. (C) The mean step
times averaged across cells for each coherence level (top) and the standard
deviation of step times averaged across cells (bottom). Only trials containing
a detectable step step time were used in this plot.
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2.5.5 Robustness of results

2.5.5.1 Response-time task: Roitman & Shadlen, 2002

Many perceptual decision-making studies have used a response-time

task instead of the fixed-duration task in which the monkey must wait to

receive a go signal before making a saccade used in this chapter. Although

LIP is thought to reflect the same decision process during both tasks (Kiani

et al. 2008), we applied the model comparison methods to a publicly available

dataset from Roitman & Shadlen (2002) (downloaded from https://www.

shadlenlab.columbia.edu/) to determine if the model comparison produced

different results depending on the task. The task in this dataset was similar to

the task presented earlier in this chapter, except the monkey was not given a

“go” signal and instead viewed the dots until it chose to signal a decision with

a saccade. The responses of these choice-selective LIP cells are summarized in

Figure 7 of Roitman & Shadlen (2002).

Similar to the analysis of the data from Meister et al. (2013), we used

spike trains starting from 200 ms after motion onset. Following Bollimunta

et al. (2012), the model comparison included spikes occuring up until 50 ms

before the saccade. Trials lasting less than 350 ms long, counting from motion

onset until saccade, were discarded. Therefore, every trial we analyzed had at

least 100 ms of data for the analysis. After weeding out short trials, we selected

cells with at least 8 remaining trials per signed coherence level. 16 cells from

this dataset met this criterion, and their motion-aligned and choice-separated

PSTHs are shown in Fig. 2.23. The model comparison analysis indicated that
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Figure 2.22: Model comparison results for 16 cells from Roitman & Shadlen
(2002).

12 of these 16 cells were better fit by the stepping model than the ramping

model (Fig. 2.22). Figure 2.24 shows the population average firing rate aligned

to motion onset and inferred step times (similar to Figure 2.18). The simi-

larity of this result to the model comparison using the larger dataset in the

main paper suggests that the dynamics of LIP neurons are not fundamentally

different in experimenter-controlled and reaction-time versions of the task, a

conclusion that has been arrived at previously (Kiani et al. 2008).

The response-time paradigm, in contrast to the fixed-duration task,

might allow for decision-related and saccade-related motor activity to overlap

within a single spike train, even though we excluded a brief portion of the pre-

saccadic activity from analysis. The models considered here were only intended

to capture decision-related dynamics, so further analyses of LIP responses
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Figure 2.23: PSTHs aligned to motion onset from the cells analyzed in Fig-
ure 2.22 from Roitman & Shadlen (2002), sorted by the monkey’s choice. DIC
differences from the model comparison analyses are given for each cell (positive
favoring the stepping model).

during the response time task will benefit from analyzing larger datasets with

extended models that are explicitly designed to disentangle decision-related

dynamics from pre-motor activity.
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Figure 2.24: Population average PSTH sorted by motion coherence computed
from spike trains for 16 cells from Roitman & Shadlen (2002): (left) aligned to
motion onset and sorted by motion strength; (middle) aligned to step times in-
ferred under the stepping model and sorted by motion strength; (right) aligned
to step times and sorted by both motion strength and inferred step direction.
Simulated results from the stepping model (dashed lines) provide a close match
to the real data under all types of alignment and conditioning. These PSTHs
were smoothed using a 50 ms sliding average, rather than a 25 ms window,
because the number of trials in each condition was limited.
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2.5.5.2 Model comparison results are unaffected by grouping co-
herence levels

We grouped stimulus coherence levels into 5 levels (±high,±low, and

zero) in order to limit the number of model parameters. To ensure that this

grouping did not unfairly disadvantage the ramping model, we fit the ramp-

ing model to the data using all coherence levels (11 levels) and compared to

the stepping model fits with grouped coherences. In general, model compari-

son showed that the ramping model with grouped coherence levels performed

better than including all coherences (Fig. 2.25). Only 6 cells showed slightly

better performance on the all coherence levels. Of those cells, 2 were originally

classified as “rampers.” For 3 of the remaining 4 “stepping” cells, the grouped-

coherence stepping model still provided a better fit than the all-coherence

ramping model. For the final cell, the all-coherence ramping model provided a

slightly better fit than the grouped-coherence stepping model (DIC difference

-1.27). However, the stepping model fit with all coherences to this cell better

described the cell than the all-coherence ramping model (DIC difference 8.84).

2.5.5.3 Model comparison results are consistent across start time
of analysis

The main analysis assumed that the motion integration signal in LIP

began at approximately 200 ms (Churchland et al. 2011). However, the popu-

lation PSTH in Figure 2.18A suggests that coherence sorting in the population

may begin earlier than 200 ms. We therefore repeated the model comparison

using spike trains beginning at 160 ms, 180 ms, and 220 ms after motion on-
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Figure 2.25: Model comparison between the ramping model fit using all coher-
ences compared to the ramping model fit with grouped coherence levels. The
median DIC difference is denoted by the black triangle.

set, but still ending 200 ms after motion offset. The model comparison results

were similar across all 3 analysis windows (Fig. 2.26). The median DIC dif-

ference was comparable across time points: 17.3, 22.4, 22.1, 23.4, for the 160,

180, 200, and 220 ms start times respectively. In the 160 ms analysis, 30 cells

were better fit by the stepping model (24 showed strong support) and 10 cells

were better fit by the ramping model (7 showed strong support). In the 180

ms analysis, 29 cells were better fit by the stepping model (24 showed strong

support) and 11 cells were better fit by the ramping model (7 showed strong

support). In the 220 ms analysis, 31 cells were better fit by the stepping model

(27 showed strong support) and 9 cells were better fit by the ramping model

(8 showed strong support).

Only 3 out of the original 31 “stepping” cells were better fit by the
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start times for the analysis. The median ∆DIC (black) was significantly
greater than 0 for all time points (sign test, p < 0.004 for each start time).
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(grey traces). Two cells (red trace) were classified as a steppers by the 200 ms
analyses, but showed slightly better support for stepping at the 160 ms, 180
ms, or 220 ms analyses. Three cells (blue traces) were classified as a stepper
by the 200 ms analysis, but showed better support for ramping at one of the
other start times.

ramping model at a different analysis start point (Fig. A.5). One of these cells

showed weak support for stepping or ramping at all time points (|∆DIC| < 10).

Two of the 9 original “ramping” cells were better fit by the stepping model

at a different start point (Fig. A.6). One of these cells showed only small

support for the stepping model (DIC difference = 3.5) in the 160 ms analysis.

The other cell showed only weak support for ramping in the original analysis.

These model comparison changes seen in these cells do not alter the overall

result. These changes do not appear to be the result of an earlier onset of
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integration, and are primarily the result of including responses to the onset of

targets and dot motion that occur at the earlier portions of the trials (Meister

et al. 2013, Park et al. 2014).

2.6 Comparison to previous methods

2.6.1 Variance of the Conditional Expectation

Churchland et al. (2011) introduced a method for analyzing the dy-

namics of spike trains based on the variance of the conditional expectation

(or “VarCE”). This method employs the law-of-total-variance to divide the

time-varying spike count variance (referred to above as the PSTV) into two

components: one due to the point process or spiking variability, and another

due to the variability of the underlying latent process. The Churchland et al.

method assumes that the first component is proportional to the spike rate,

which holds true for any inhomogeneous renewal process (including the condi-

tionally Poisson stepping and ramping models considered here). The second

component is the VarCE, which is the quantity of interest in this analysis,

since it corresponds to the variability of the latent process that drives spiking.

The VarCE is calculated within a single time bin as

V arCE = σ2
N − φσ2

N |x (2.108)

where σ2
N is the total spike count variance (PSTV), and φσ2

N |x is an estimate

of the point-process variance, obtained by multiplying the mean spike count

σ2
N |x (i.e., the PSTH for that time bin) by a scale factor φ. This scale factor

is estimated by setting it to the cell’s minimum observed Fano factor.
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The basic intuition for this approach is that the shape of the VarCE over

time should provide insight into the latent dynamics that underlie spiking. The

VarCE of a continuous diffusion process should grow linearly, because noise

accumulates linearly over time. A discrete stepping process, on the other

hand, should have low VarCE at the beginning and end of a trial (assuming it

always steps to the same final state), and high variance during the portion of

the interval when steps are most likely.

Churchland et al. compared the shape of the VarCE curve estimated

from neural data to that of a simulated stepping model, and concluded that

LIP responses were inconsistent with stepping dynamics. However, the step-

ping simulations used to make this argument were restricted to “in”-RF choice,

0% coherence trials, and assumed that the mean response reflected a mixture of

two response levels, one from early in the trial and one preceding the saccade.

This produced a VarCE time course that was larger overall, and increased

more steeply, than the VarCE from the data.

However, if a neuron’s latent state is allowed to step up, step down, or

to not step on some trials (which is analogous to a drift-diffusion path that does

not hit the bound, or wanders downward on some “in” trials), then a stepping

model (like ours) can produce a more flexible range of VarCE timecourses.

We therefore decided to explore whether VarCE could definitively distinguish

between the ramping and stepping dynamics implemented in our models.

Figure 2.27A shows the VarCE calculated for 0% coherence trials for

an example cell (black traces), along with the VarCE of spike trains simulated
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from the two fitted models (red traces for ramping, blue traces for stepping).

The ramping and stepping models produce nearly identical linear VarCE traces

(r2 = 0.991 and r2 = 0.992 between a true linear ramp and the ramping and

stepping model VarCEs respectively). Figure 2.27B shows an example cell for

which the VarCE traces predicted by the two model fits show distinct nonlinear

trends (r2 < 0.01 and r2 = 0.83 compared to a linear ramp for the ramping

and stepping models respectively). However, estimates of VarCE are noisy for

individual cells and the visual adequacy or superiority of either model is not

particularly definitive. We therefore calculated the cell-averaged VarCE on the

0% coherence trials from the data and our model fits (Fig. 2.27C). We found

that the VarCE of the stepping model fits (blue curve) matched the data more

closely than ramping fits (red curve) (mean squared error ramping = 0.031,

stepping = 0.026).

Churchland et. a. also presented an extension of the VarCE to estimate

the correlation of the conditional expectation (CorCE), or the correlation of the

latent spike rate over time. This process assumes that, given the latent spike

rate, spike generation is independent across time in addition to the VarCE as-

sumption that the variance of the spike count given a fixed rate is proportional

to the mean. This assumption holds in the latent variable models presented

in this chapter. The CorCE is calculated by taking the covariance matrix of
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Figure 2.27: VarCE from Churchland et al. (2011) calculated from simulated
spike trains and the data. The VarCE from the simulations was calculated in
a 400 ms window beginning 200 ms after motion onset, and the VarCE from
the data was calculated starting at motion onset. Spike count statistics were
computed within a 60 ms time bin. (A) VarCE for the 0% coherence trials of
an LIP cell (black). Simulations from ramping (red) and stepping fits to the
cell (blue). Simulations included 50000 trials per cell– many more than can be
collected in a real experiment. Cell parameters are given in Tables A.2- A.1.
(B) Same as A for another cell. (C) VarCE for the LIP population (black)
and from simulations of model fits to the population for 0% coherence trials.

spike counts over time, Nt, and then replacing the diagonal with the VarCE

 V arCE1 · · · Cov[N1, Nm]
...

. . .
...

Cov[Nm, N1] · · · V arCEm

 =


s2〈N1〉 · · · r1,m

√
s2〈N1〉s

2
〈Nm〉

...
. . .

...

r1,m
√

s2〈N1〉s
2
〈Nm〉 · · · s2〈Nm〉


(2.109)

The CorCE matrix is found by solving for the ri,j.

Figure 2.28A shows the CorCE estimated for an example cell along

with the CorCE’s of the model fits to the data. The CorCE of the model fits

were nearly identical, and both appeared similar to the predicted CorCE for

the diffusion model given in Churchland et al. However, estimating the CorCE
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matrix from a single cell is difficult, and therefore the estimate from the data

is extremely noisy. It is therefore difficult to conclusively determine which

model best resembled the CorCE calculated from the data. (The Frobenius

norm between the model CorCE and the data CorCE was 0.82 and 0.80 for

the ramping and stepping models respectively, compared to a Frobenius norm

of 0.07 between the two model CorCEs.) Similarly, the CorCE calculated from

the population (Fig. 2.28B) could not conclusively be differentiated between

the CorCE calculated from the two models.

2.6.2 Bollimunta et al., 2012

Bollimunta et al. (2012) performed a statistical analysis of LIP spike

trains similar in spirit to the one presented here. Specifically, they tested

whether LIP spike trains were best fit by a ramping model or a discrete step-

ping model. Their analysis suggested that LIP spike trains were fit best by

a ramping spike rate model, in contradiction to our results. However, their

modeling and computational approaches differed strongly from our own.

There were two primary differences between our models and the models

employed by Bollimunta et al. First, the Bollimunta ramping model defined

a spike train as a Poisson process with a noiseless, linearly increasing rate,

without any bound. This model is a severe simplification of the hypothesis of

noisy accumulation to a decision bound. Second, Bollimunta et al. assumed in

their stepping model that the distribution of possible step times was uniform,

and that step direction was identical across the trials being analyzed. However,

85



220 340 460 580

220

340

460

580

data

220 340 460 580

ramping model

220 340 460 580

stepping model

tim
e 

fro
m

 m
ot

io
n 

on
se

t (
m

s)

220

340

460

580

data

time from motion onset (ms)

ramping model

580

stepping model

0

0.5

1

time from motion onset (ms)tim
e 

fro
m

 m
ot

io
n 

on
se

t (
m

s)

220 340 460 580 220 340 460 580 220 340 460

A

B population CorCE

cell 32 CorCE

Figure 2.28: CorCE from Churchland et al. (2011) calculated from simulated
spike trains and the data. The CorCE was calculated in a beginning 220 ms
after motion onset, and spike count statistics were computed within a centered
60 ms time bin. (A) CorCE for all trials of an LIP cell (left). CorCE for
simulations from ramping (middle) and stepping fits to the cell (right). Cell
parameters are given in Tables A.2- A.1. (C) CorCE for the LIP population
(left) and from simulations of model fits to the population for all trials.
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step-time distributions, like reaction time distributions, are not expected to

be uniform. Additionally, we found that the step-direction was not perfectly

correlated with choice (Fig. 2A).

There are also issues of power. The computational costs of the model

fitting techniques proposed by Bollimunta et al. made simultaneous analysis

of more than 4 trials at a time infeasible. By only viewing a small portion

of trials at a time, the model fits can produce drastically different parame-

ter fits across trials. Bollimunta et al. used the Hannan-Quinn information

criterion (HQIC) as a metric to compare models, similar to the use of DIC

in this chapter. The distribution of HQIC values computed across model fits

of different trials was tested for being significantly greater than 0, instead of

computing a single HQIC for all the trial for a single cell. The magnitude

of the median HQIC values reported by Bollimunta et al. are less than 0.01,

which several orders of magnitude smaller than the model comparison values

we reported. Additionally, Bollimunta et al. constrained their analysis to view

only the 400ms preceding a saccade instead of the entire integration period.

The MCMC methods we used to analyze a large number of trials, along with

our definitions of both types of latent dynamics, increased the statistical power

of our study.

These differences are substantial, and might explain the discrepancies

in the findings reported here.
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2.7 Conclusions

We have developed tractable, principled methods for fitting and com-

paring statistical models of single-neuron spike trains in which spike rates

are governed by a latent stochastic process. We have applied these methods

to determine the dynamics underlying single-neuron activity in area LIP. Al-

though neurons in this area have been largely assumed to exhibit ramping

dynamics, reflecting the temporal accumulation of evidence posited by mod-

els of decision-making, statistical model comparison supports an alternative

hypothesis: LIP responses were better described by randomly timed, discrete

steps between underlying states. In a supplementary analysis, we examined

data from a response-time version of the dots task and found results consis-

tent with the trend in the fixed duration version; this initial comparison will be

strengthened by extending the models to account for overlapping decision and

motor events, and application to larger datasets (Figs. 2.22-2.24) (Roitman &

Shadlen 2002). In addition to accounting better for the dynamics of the mean

firing rates, only the stepping model accounted accurately for the variance of

neural responses. Finally, the estimation of single-trial step times provided a

novel view of choice-related activity, revealing that choice-correlated fluctua-

tions in response are also dominated by discrete step-like dynamics.

Although these results challenge the canonical perspective of LIP dy-

namics during decision-making, the approach facilitates new avenues of in-

vestigation. These analyses suggest that accumulation may be implemented

by stochastic steps, but simultaneous recordings of multiple neurons will be
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required to test whether population activity ramps or discretely transitions

between states on single trials (Miller & Katz 2010); population-level ramping

could still be implemented via step times that vary across neurons, even on the

same trial. Fortunately, the statistical techniques reported here are scalable

to simultaneously-recorded samples of multiple neurons, and newer record-

ing techniques are starting to yield these multi-neuron datasets (Stevenson

& Kording 2011, Bollimunta et al. 2012, Kiani, Cueva, Reppas & Newsome

2014, Kaufman, Churchland, Ryu & Shenoy 2015). It is also possible that sin-

gle neurons with ramping dynamics implement evidence integration elsewhere

in the brain, and that LIP neurons are post-decisional or pre-motor indica-

tors of the binary result of this computation. More generally, we believe these

techniques will have broad applicability for identifying and interpreting the

latent factors governing multi-neuron spike responses, allowing for principled

tests of the dynamics governing cognitive computations in many brain areas.

89



Chapter 3

Inferring synaptic conductances from spike

trains in retinal ganglion cells

A popular approach to modeling sensory neurons describes neural re-

sponses in terms of a cascade of linear and nonlinear stages: a linear filter

to describe stimulus integration, followed by a nonlinear function to con-

vert the filter output to spike rate. In particular, the point process gener-

alized linear model (GLM) has provided a useful and highly tractable tool

for characterizing neural encoding in a variety of sensory, cognitive, and mo-

tor brain areas (Harris, Csicsvari, Hirase, Dragoi & Buzsaki 2003, Truccolo,

Eden, Fellows, Donoghue & Brown 2005, Pillow, Shlens, Paninski, Sher, Litke

& Chichilnisky 2008, Gerwinn, Macke & Bethge 2010, Stevenson, London,

Oby, Sachs, Reimer, Englitz, David, Shamma, Blanche, Mizuseki, Zandvakili,

Hatsopoulos, Miller & Kording 2012, Park et al. 2014). However, there is a

substantial gap between descriptive statistical models like the GLM and more

realistic, biophysically interpretable neural models. Cascade-type statistical

models describe input to a neuron in terms of a set of linear (and some-

times nonlinear) filtering steps (Paninski 2004, Butts, Weng, Jin, Alonso &

Paninski 2011, Vintch, Zaharia, Movshon & Simoncelli 2012, McFarland, Cui

& Butts 2013, Park, Archer, Priebe & Pillow 2013, Theis, Chagas, Arnstein,
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Schwarz & Bethge 2013). Real neurons, on the other hand, receive distinct ex-

citatory and inhibitory synaptic inputs, which drive conductance changes that

alter the nonlinear dynamics governing membrane potential. Previous work

has shown that excitatory and inhibitory conductances in retina and other sen-

sory areas can exhibit substantially different tuning (Roska et al. 2006, Trong

& Rieke 2008, Poo & Isaacson 2009, Cafaro & Rieke 2013). Determining how

the excitatory and inhibitory inputs combine to produce the spike train output

of a neuron remains a challenge, because spikes and excitatory and inhibitory

synaptic inputs cannot be measured simultaneously (Roska et al. 2006).

Here we introduce a quasi-biophysical interpretation of the generalized

linear model. The resulting interpretation reveals that the GLM can be viewed

in terms of a highly constrained conductance-based model. We expand on this

interpretation to construct a more flexible and more plausible conductance-

based spiking model (CBSM), which allows for independent excitatory and

inhibitory synaptic inputs. The model can exhibit shunting as well as hyper-

polarizing inhibition, and time-varying changes in both gain and membrane

time constant.

We show that the stimulus-dependence of both excitatory and inhibitory

conductances can be well described by a linear-nonlinear cascade, with the fil-

ter driving inhibition exhibiting opposite sign and a slight delay relative to

the filter driving excitation. We find that the CBSM allows us to accurately

infer excitatory and inhibitory synaptic conductances received by macaque

retinal ganglion cells (RGCs) in response to visual stimuli from extracellu-
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larly recorded spike trains. Additionally, the CBSM captures RGC responses

more accurately than the standard GLM for both full-field and spatio-temporal

stimuli.

This work has in part been published in the proceedings of the Neural

Information Processing Systems (NIPS) 2014 meeting (Latimer, Chichilnisky,

Rieke & Pillow 2014).

3.1 Methods

3.1.1 Electrophysiology

We analyzed four sets of parasol RGCs. All data were obtained from

isolated, peripheral macaque monkey, M acaca mulatta, retina.

3.1.1.1 Synaptic current recordings

We analyzed the responses of 7 ON parasol cells previously described

in Trong & Rieke (2008). Cell-attached records to obtain spike trains, and

voltage clamp recordings were performed to measure excitatory and inhibitory

currents in the same cells. The stimulus, delivered from an LED, consisted of

a one dimensional, full-field white noise signal, filtered with a low pass filter

with a 60Hz cutoff frequency, and sampled at a 0.1ms resolution. Either 30

or 40 trials were recorded from each cell, using 10 unique 6 second stimuli.

After the spike trains were recorded, voltage clamp recordings were used to

measure the excitatory and inhibitory currents to the same stimuli. For 5 of

the cells, 2-4 trials were recorded for each of the 10 stimuli for the excitatory
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and inhibitory currents. For the 2 remaining cells, 3-4 excitatory current trials

were recorded for all 10 stimuli and 1-2 trials for the inhibitory current were

obtained for 8 of the stimuli. Conductances were estimated by dividing the

current by the approximate driving force (-70mV for the excitatory current,

and 70mV for the inhibitory).

3.1.1.2 Dynamic clamp recordings

The membrane potentials of 2 ON parasol retinal ganglion cells were

recorded during dynamic clamp experiments previously reported in Cafaro &

Rieke (2013). The cells were current clamped and current was injected into

the cells according to the equation

I(t) = ge(t)(V (t−∆t)− Ee) + gi(t)(V (t−∆t)− Ei) (3.1)

where ge and gi were conductances recorded in RGCs in response to a light

stimulus. The injected current at time t was computed using the previous

measured voltage with offset ∆t = 100µs. The reversal potentials were Ee = 0

mV and Ei = −90 mV.

For the first cell, 18 repeat trials were recorded for a 19 s stimulation,

and 24 repeat trials were obtained from the second cell.

3.1.1.3 RGC population recordings: full-field stimulus

We analyzed data from two experiments previously reported in Uzzell

& Chichilnisky (2004) and Pillow et al. (2005). The first experiment included

9 simultaneously recorded parasol RGCs (5 ON and 4 OFF). The stimulus
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consisted of a full-field binary noise stimulus with a root-mean-square contrast

of 96%. The stimulus was displayed on a CRT monitor at a 120Hz refresh rate

and the contrast of each frame was drawn independently. A 10 min stimulus

was obtained for characterizing the cell responses, and a 5 min segment was

used to obtain a cross-validated log-likelihood. Spike rates were obtained by

recording 167 repeats of a 7.5 s stimulus.

In a second experiment, 8 cells (5 OFF parasol and 3 on parasol) were

recorded in response to a full-field binary noise stimulus (120Hz) at 12%, 24%,

and 48% contrast. An 8 min stimulus segment at each contrast level was used

for model fitting, and cross-validated log-likelihoods were obtained using a

novel 4 min segment at each contrast level.

3.1.1.4 RGC population recordings: spatio-temporal stimulus

We analyzed 11 ON and 16 OFF parasol RGCs which were previously

reported in Pillow et al. (2005). The stimulus consisted of a spatio-temporal

binary white noise pattern (i.e., a field of independent white and black pixels).

The stimulus was 10 pixels by 10 pixels (pixel size of 120µm x 120µm on the

retina) displayed with a 120Hz refresh rate, and the contrasts of each pixel

was drawn independently on each frame. The root-mean-square contrast of

the stimulus was 96%.

A 10 min stimulus was obtained for characterizing the cell responses,

and a 5 min segment was used to obtain a cross-validated log-likelihood. Spike

rates were obtained by recording 600 repeats of a 10 s stimulus.
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3.1.2 Modeling methods

3.1.2.1 The conductance-based spiking model

We introduce the CBSM which models the spike train response of a

RGC to a visual stimulus as a Poisson process where the spike rate is a func-

tion of the membrane potential (Fig. 3.1). The membrane potential is approx-

imated by considering a single-compartment neuron with linear membrane

dynamics and conductance-based input:

dV

dt
= −gl(V − El) + ge(t)(V − Ee)− gi(t)(V − Ei). (3.2)

The synaptic inputs take the form of linear-nonlinear functions of the stimulus,

x:

ge(t) = fe((ke ∗ x)(t)), gi(t) = fi((ki ∗ x)(t)), (3.3)

where fe and fi are nonlinear functions ensuring positivity of the conductances.

The firing rate is a nonlinear function of the membrane voltage plus a GLM-

like spike history (autoregressive) term to account for refractory periods or

other spike-dependent behaviors:

rt = Rsp

(
V (t)− VT

∆V
+ (hspk ∗ yhist)(t)

)
. (3.4)

The voltage-to-spike rate nonlinearity, Rsp, follows the form proposed by Mensi,

Naud & Gerstner (2011), where VT is a soft spiking threshold and ∆V deter-

mines the steepness of the nonlinearity. Although spiking activity in real

neurons influences both the membrane potential and the output nonlinear-

ity (Johnston, Wu & Gray 1995, Badel, Lefort, Berger, Petersen, Gerstner
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Figure 3.1: Schematic of conductance-based spiking encoding model.

& Richardson 2008), we do not include any spike-dependent currents in the

CBSM’s membrane voltage dynamics.

For a set of spike times s1:nsp in the interval [0, T ] and parameters Θ,

the log-likelihood is

log p(s1:nsp |x1:T ,Θ) =

nsp∑
i=1

log(r(si))−
∫ T

0

r(t)dt. (3.5)

This continuous time likelihood can be discretely approximated as the product

of Bernoulli trials in bins of width ∆ (Citi, Ba, Brown & Barbieri 2014)

log p(y1:T |x1:T ,Θ) =
T∑
t=1

yt log(1− exp(−rt∆))− (1− yt)rt∆ (3.6)

where yi = 1 if a spike occurred in the ith bin and 0 otherwise.

The membrane voltage (and firing rate) is computed by integrating the

membrane dynamics equation (Eq. 3.2). In practice, we evaluate V along the

same discrete lattice of points of width ∆ (t = 1, 2, 3, . . . T ) that we use to dis-

cretize the log-likelihood function. Assuming ge and gi remain constant within

each bin, the voltage equation becomes a simple linear differential equation
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with the solution

V (t+ 1) = e−gtot(t)∆
(
V (t)− Is(t)

gtot(t)

)
+

Is(t)

gtot(t)
(3.7)

V (1) = El (3.8)

gtot(t) = ge(t) + gi(t) + gl (3.9)

Is(t) = ge(t)Ee + gi(t)Ei + glEl. (3.10)

The model parameters we fit were ke, ki, be, bi, and hspk, which were

selected using conjugate-gradient methods to maximize the log-likelihood. The

derivatives of the log-likelihood with respect to these parameters are provided

in Appendix B. The firing rate parameters were fixed at VT = −53mV and

∆V = 1.67mV (see Sections 3.1.2.2) and 3.2.2.1). The reversal potential

and leak conductance parameters were kept fixed at Ee = 0mV , gl = 200,

El = −60mV , and Ei = −80mV . For modeling the cells in which we had

access to intracellular recordings (Section 3.2.4), we set the time bin width to

∆ = 0.1ms to match the sampling frequency of the synaptic current recordings.

For the remaining cells, which were recorded in separate experiments, we set

∆ = 0.083ms to equal 100 times the frame rate of the visual stimulus.

The stimulus filters spanned over 100 ms, or over 1000 time bins. There-

fore, we restricted the excitation and inhibitory filters to a low dimensional

basis to limit the total number of free parameters in the model. The basis

consisted of 10 raised cosine ‘bumps’ (Pillow et al. 2005, Pillow et al. 2008) of

the form

bj(t) =

{
1
2

cos(a log[t+ c]− φj) for a log(t+ c) ∈ [φj − π, φj + π]
0 otherwise

(3.11)
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where t is in seconds. We set c = 0.0004 and a = φ2−φ1. The phij were evenly

spaced from φ1 = log(0.0 + c), φ10 = log(0.150 + c) so that the peaks of the

filters spanned 0ms to 150ms. The spike history filter was also represented in a

low-dimensional basis. The refractory period was accounted for with 5 square

basis functions of width 0.4ms, spanning the period 0 − 2ms after a spike.

The remaining spike history filter consisted of 7 raised cosine basis functions

(c = 0.0001) with filter peaks spaced from 2ms to 90ms.

The log-likelihood function for this model is not concave in the model

parameters, which increases the importance of selecting a good initialization

point compared to the GLM. We initialized the parameters by fitting a simpli-

fied model, which had only one conductance with a linear stimulus dependence,

glin(t) = klin
>xt (note that this allowed for unrealistic negative conductance

values). We initialized this filter to 0, and then numerically maximized the

log-likelihood for klin. We then initialized the parameters for the complete

model using ke = cklin and ki = −cklin, where 0 < c ≤ 1, thereby exploiting

a mapping between the GLM and the CBSM (Section 3.2.1.1).

When fitting the model to real spike trains, one conductance filter would

occasionally become dominant early in the optimization process. This was

likely due to the limited amount of data available for fitting, especially for the

cells that were recorded intracellularly. The intracellular recordings clearly in-

dicated that the cells received similarly scaled excitatory and inhibitory inputs.

To alleviate this problem, we added a penalty term, φ, to the log-likelihood to
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the L2 norms of ke and ki:

φ(ke,ki) = λe||ke||2 + λi||ki||2 (3.12)

Thus we maximized

L(θ) = log p(y1:T |x1:T ,ke,ki, be, bi)− φ(ke,ki) (3.13)

All cells were fit using the same penalty weights: λe = 1 and λi = 0.2. We

note that unlike the typical situation with cascade models that contain multiple

filters, intracellular recordings can directly measure synaptic currents. Future

work with this model could include more informative, data-driven priors on

ke and ki.

In several analyses, we fit the CBSM without the inhibitory conduc-

tance, labeled as the CBSMexc. All the fixed parameters used in the full CBSM

were held at the same values in the CBSMexc.

3.1.2.2 Spike rate nonlinearity

We used a spike-triggered analysis (De Boer & Kuyper 1968) on mem-

brane voltage recordings to determine the spike rate nonlinearity, Rsp, as a

function of voltage for the CBSM. The membrane potential and spikes were

recorded in dynamic-clamp experiments over several repeats of simulated con-

ductance traces for 2 cells. We computed the mean voltage recorded over

all runs of the dynamic-clamp condition, which largely eliminated the action

potential shapes from the voltage trace. Using the spike times from all the
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repeats, we computed the probability of a spike given the mean voltage, V̄ :

p(Sp|V̄ ) =
p(V̄ |Sp)p(Sp)

p(V̄ )
(3.14)

where p(V̄ |Sp) is the spike-triggered distribution of the membrane potential.

We combined the spike times and voltage distributions for the two cells to

compute a common spike rate function.

A least-squares fit approximated the nonlinearity with a soft-rectification

function of the the form

Rsp(t) = a log

(
1 + exp

(
(V (t)− VT )

∆V

))
(3.15)

where a = 90, VT = −53mV and ∆V = 1.67mV .

3.1.2.3 Conductance LN cascade

The conductance nonlinearities, fe and fi were selected by fitting a

linear-nonlinear cascade to measured conductances in response to a visual

stimulus (Hunter & Korenberg 1986, Paninski, Vidne, DePasquale & Ferreira

2012, Park et al. 2013, Barreiro, Gjorgjieva, Rieke & Shea-Brown 2014). For

a full-field stimulus x, we modeled the mean conductance, ḡe(t), as the LN

cascade

ḡe(t) = aefe((ke ∗ x)(t) + be) + et (3.16)

εt ∼ N(0, σ2) (3.17)

where ae and be are constants. We selected fixed functions for the nonlinearities

fe and fi. Thus, we chose the ke, ae, andbe that minimized the squared error

between the LN prediction and the measured excitatory conductance.

100



The soft-rectifying function was selected to model the conductance non-

linearities (see Sections 3.2.2.1-3.2.2.2):

fe(s), fi(s) = log (1 + exp (s)) . (3.18)

We chose to fix these nonlinearities to known functions rather than fitting

with a more flexible empirical form (e.g., Ahrens, Paninski & Sahani 2008,

McFarland et al. 2013). Fixing these nonlinearities to a simple, closed-form

function allowed for fast and robust maximum likelihood parameter estimates

while still providing an excellent description of the data.

3.1.2.4 Generalized linear models

For a baseline comparison to the CBSM, we also fit spike trains with

a GLM. We used the same Bernoulli discretization of the point-process log-

likelihood function for the GLM as we did with the CBSM:

log p(y1:T |x1:T ,k, b,h) =
T∑
t=1

yt log(1− exp(−λ∆))− (1− yt)λ∆ (3.19)

where the firing rate is

λt = f((k ∗ x)(t) + b+ (h ∗ yhistspk )(t)). (3.20)

The stimulus filter is k and the spike history filter is yhistspk . We used conjugate-

gradient methods to find the maximum likelihood estimates for the parameters.

We set f(·) = exp(·), which is the canonical inverse-link function for Poisson

GLMs. We found that the soft-rectifying nonlinearity we used for the CBSM,

f(·) = log(1+exp(·)), did not capture RGC responses as well as the exponential

function (results not shown).
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3.1.2.5 Modeling respones to spatio-temporal stimuli

For spatio-temporal stimuli, the linear kernels for the CBSM and GLM

(k,ke,, and ki) spanned both space and time. Although the stimulus we used

was a 10x10 grid of pixels, the receptive field (RF) of the neurons did not span

the complete grid. We therefore limited the spatial extent of the linear filters

to a 5x5 grid of pixels, where the center pixel was the strongest point in the

GLM stimulus filter.

The filters were represented as a matrix where the columns span the

pixel space and the rows span the temporal dimension. The number of param-

eters was reduced by decomposing the spatio-temporal filters into a low-rank

representation (Pillow et al. 2008). The filter at pixel x and time τ was

k(x, τ) =
J∑
j=1

ks,j(x)kt,j(τ) (3.21)

where ks,j was a vector containing the spatial portion of the filter of length 25

(the number of pixels in the RF) and kt,j represented the temporal portion of

the filter. The temporal filters were projected into the same 10-dimensional

basis as the temporal filters used to model the full-field stimuli and the spa-

tial filters were represented in the natural pixel basis. For identifiability, we

normalized the spatial filters and forced the sign of the center pixel of the

spatial filters to be positive. We used rank 2 filters (J = 2) for the CBSM

and GLM. Therefore, each filter contained 2× 25 spatial and 2× 10 temporal

parameters for a total of 70 parameters. In the GLM, we found no significant
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improvement using rank 3 filters. To fit these low-rank filters, we alternated

between optimizing over the spatial and temporal components of the filters.

3.1.2.6 Evaluating model performance

We evaluated model predictions of spike rate by simulating 2500 trials

from the model for a repeated stimulus. We computed the firing rate, or peri-

stimulus time histogram (PSTH), by averaging the number of spikes observed

in 1 ms bins and smoothing with a Gaussian filter with a standard deviation

of 2 ms. The percent of variance in the PSTH explained by the model is

% variance explained = 100× 1−
∑T

t=1(PSTHdata(t)− PSTHmodel(t))
2∑T

t=1(PSTHdata(t)− PSTHdata)2

(3.22)

where PSTHdata denotes the average value of the PSTH.

We evaluated single-trial spike train predictive performance by com-

puting the log-likelihood of a spike train observed in response to a novel test

stimulus. We computed the difference between the log (base-2) likelihood un-

der the model and the log-likelihood under a homogeneous rate model (LLh)

that captured only the mean spike rate:

LLh = nsp ∗ log2(λ̄) + (T − nsp) log2(1− λ̄) (3.23)

λ̄ =
nsp
T
. (3.24)

where the test stimulus is of length T (in discrete bins) and contains nsp

spikes. We then divided by the number of spikes to obtain the predictive

performance in units of bits-per-spike (Panzeri, Biella, Rolls, Skaggs & Treves
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1996, Brenner, Strong, Koberle, Bialek & Steveninck 2000, Paninski, Shoham,

Fellows, Hatsopoulos & Donoghue 2004)

bits per spike =
LLmodel − LLh

nsp
(3.25)

Intervals of bits-per-spike measures given here denote 1 standard deviation of

the population mean.

3.2 Results

3.2.1 A conductance-based extension to the GLM

The GLM describes neural encoding in terms of a cascade of linear,

nonlinear, and probabilistic spiking stages. A quasi-biological interpretation

of GLM is known as “soft threshold” integrate-and-fire (Plesser & Gerstner

2000, Gerstner 2001, Paninski, Pillow & Lewi 2007, Mensi et al. 2011). This

interpretation regards the linear filter output as a membrane potential, and the

nonlinear stage as a “soft threshold” function that governs how the probability

of spiking increases with membrane potential, specifically:

Vt =

∫ t

0

k(t′)x(t− t′)dt′ = (k ∗ x)(t) (3.26)

rt = fr(Vt + b) (3.27)

yt|rt ∼ Poiss(rt∆). (3.28)

The linear filter k maps the stimulus x to the membrane potential Vt at time

t, and a fixed nonlinear function fr maps Vt to the conditional intensity (or

spike rate) rt. The spike count yt is a Poisson random variable in a time bin

of infinitesimal width ∆.
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The stimulus vector xt can be augmented to include arbitrary covariates

of the response such as the neuron’s own spike history or spikes from other

neurons (Truccolo et al. 2005, Pillow et al. 2008). In such cases, the output

does not form a Poisson process because spiking is history-dependent.

The nonlinearity f is fixed a priori. Therefore, the only parameters

are the coefficients of the filter k. The most common choice is exponential,

f(z) = exp(z), corresponding to the canonical ‘log’ link function for Poisson

GLMs. Prior work (Paninski 2004) has shown that if f grows at least linearly

and at most exponentially, then the log-likelihood is jointly concave in model

parameters θ. This ensures that the log-likelihood has no non-global maxima,

and gradient ascent methods are guaranteed to find the maximum likelihood

estimate.

3.2.1.1 Interpreting the GLM as a conductance-based model

A more biophysical interpretation of the GLM can be obtained by con-

sidering a single-compartment neuron with linear membrane dynamics and

conductance-based input:

dV

dt
= −glV + ge(t)(V − Ee)− gi(t)(V − Ei)

= −(gl + ge(t) + gi(t))V + ge(t)Ee + gi(t)Ei

= −gtot(t)V + Is(t), (3.29)

where (for simplicity) we have set the leak current reversal potential to zero.

The “total conductance” at time t is gtot(t) = gl+ge(t)+gi(t) and the “effective
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input current” is Is(t) = ge(t)Ee + gi(t)Ei.

Suppose that the stimulus affects the neuron via the synaptic conduc-

tances ge and gi. It is then natural to ask under which conditions, if any, the

above model can correspond to a GLM. The definition of a GLM requires the

solution V (t) to be a linear (or affine) function of the stimulus. This arises if

the two following conditions are met:

1. Total conductance gtot is constant. Thus, for some constant c:

ge(t) + gi(t) = c. (3.30)

2. The input Is is linear in x. This holds if we set:

ge(xt) = (ke ∗ x)(t) + be

gi(xt) = (ki ∗ x)(t) + bi. (3.31)

We can satisfy these two conditions by setting ke = −ki, so that the exci-

tatory and inhibitory conductances are driven by equal and opposite linear

projections of the stimulus. This allows us to rewrite the membrane equation

(Eq. 3.29):

dV

dt
= −gtotV + ((ke ∗ x)(t) + be)Ee + ((ki ∗ x)(t) + bi)Ei

= −gtotV + (ktot ∗ x)(t) + btot, (3.32)

where gtot = gl+be+bi is the (constant) total conductance, ktot = keEe+kiEi,

and btot = beEe+biEi. If we take the initial voltage V0 to be btot, the equilibrium
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voltage in the absence of a stimulus, then the solution to this differential

equation is

Vt =

∫ t

0

e−gtot(t−s) ((ktot ∗ x)(s)) ds+ btot

= kleak ∗ ((ktot ∗ x)(t)) + btot

= (kglm ∗ x)(t) + btot, (3.33)

where kleak ∗ (ktot
>xt) denotes linear convolution of the exponential decay

“leak” filter kleak(t) = e−gtot t with the linearly projected stimulus train, and

kglm = ktot ∗ kleak is the “true” GLM filter (from Eq. 3.26) that results from

temporally convolving the conductance filter with the leak filter. Because the

membrane potential is a linear (affine) function of the stimulus (as in Eq. 3.26),

the model is clearly a GLM.

Thus, to summarize, the GLM can be equated with a synaptic conductance-

based dynamical model in which the GLM filter k results from a common linear

filter driving excitatory and inhibitory synaptic conductances, blurred by con-

volution with an exponential leak filter determined by the total conductance.

From the above, it is easy to see how to create a more realistic conductance-

based model of neural responses. We constructed the conductance-based spik-

ing model (Section 3.1.2.1) which extends upon the GLM by allowing the

stimulus tuning of excitation and inhibition to differ (i.e., allow ke 6= −ki),

and includes a nonlinear relationship between x and the conductances to pre-

clude negative values (e.g., using a rectifying nonlinearity). As with the GLM,

the only source of stochasticity on the CBSM is in the spiking mechanism: we
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place no additional noise on the conductances or the voltage. This simplifying

assumption allows us to perform efficient maximum likelihood inference using

standard conjugate-gradient methods.

3.2.2 Approximating the input and output properties of ON para-
sol cells with intracellular recordings

Before applying the CBSM to characterize spiking responses in RGCs,

we first analyzed intracellular recordings of ON parasol cells to validate and

constrain the nonlinear components of the model.

3.2.2.1 Spike rate nonlinearity

We examined membrane voltages recorded from 2 ON parasol RGCs

during a dynamic current clamp experiments to determine the spike rate as a

function of membrane voltage (Fig. 3.2). The dynamic clamp recordings drove

the RGCs with currents given by simulated conductances similar to those in the

CBSM. We computed the firing rate as a function of the average membrane po-

tential computed from several trials of the same simulated conductances. The

firing rate function was closely approximated by the soft-rectification function

Rsp = a log

(
1 + exp

(
V − VT

∆V

))
. (3.34)

where where a = 90sp/s, VT = −53mV and ∆V = 1.67mV .

Applications of the GLM have shown that an exponential nonlinear-

ity captures the stimulus-to-spike rate relationship in RGC responses with

greater accuracy than a soft-rectified function (Pillow et al. 2008). However,

108



membrane voltage (mV)
-80 -60 -40 -20 0sp

ik
e-

tri
gg

er
ed

 v
ol

ta
ge

 d
is

tri
bu

tio
n

0

0.03

0.06

0.09

membrane voltage (mV)
-80 -60 -40 -20

fir
in

g 
ra

te
 (s

p/
s)

0

500

1000

1500

2000

B C

A
spikesnonlinearity noise

membrane
voltage

0

Figure 3.2: (A) Schematic of the transformation from voltage to firing rate of a
neuron. The mean voltage recorded during repeated trials of current injection
is passed through a nonlinear function to predict the spike rate. (B) The mean
membrane voltage trace was computed by averaging voltages recorded over
several repeats of the dynamic clamp condition. We computed the distribution
of voltages observed in the mean trace (gray region) and compared this to the
distribution conditioned on a spike occurring during one of the repeats (black
trace) for two parasol RGCs. (C) The firing rate as a function of voltage (black
trace) computed by applying Bayes’ rule on the distributions shown in B. The
firing rate function is closely approximated by a rectified linear function (red
trace).

the voltage-to-firing rate function found here is much shallower than exponen-

tial, consistent with power-law relationships found in cortical neurons (Mechler

& Ringach 2002, Priebe, Mechler, Carandini & Ferster 2004).

3.2.2.2 Conductances as a linear-nonlinear function of the stimulus

Ganglion cells receive excitatory synaptic input from bipolar cells (Gollisch

& Meister 2010), and linear-nonlinear models can successfully characterize
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the membrane potential response of bipolar cells to full-field visual stim-

uli (Rieke 2001). We therefore fit the measured conductances with a linear-

nonlinear cascade model using a fixed nonlinear function (Fig. 3.3). The LN

model with a soft rectified nonlinearity

fe(·) = log(1 + exp(·)) (3.35)

provided a close approximation to the observed conductances.

The LN model accounted for 76% of the variance of the mean excitatory

conductance recorded in response to a novel stimulus. The LN model with the

same fixed nonlinearity also accounted for 63% of the inhibitory conductances

measured from the same cells.
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Figure 3.3: (A) We modeled the relationship between stimulus and synaptic
conductances in a parasol RGC with an LN-cascade. The LN cascade assumed
a fixed, rectifying nonlinearity. In order to fit filters directly to measured con-
ductances, we assumed that the measured conductances contained additive
Gaussian noise. Therefore, we fit the stimulus filter to predict the conduc-
tances by minimizing the squared error. (The CBSM, however, included the
simplifying assumption that the conductances contain no noise.) (B) The per-
cent variance explained for both excitatory and inhibitory conductances for 7
ON parasol RGCs, cross-validated using on a novel 6 s stimulus. The error
bars indicate the standard deviation of the variance explained across all cross-
validated stimuli. (C) The distribution of measured excitatory conductances
given the filtered stimulus values for the example cell indicated in green in
B. The gray region shows the middle 50-percentile of the distribution of ob-
served excitatory conductance given the filtered stimulus value (se). The fixed
soft-rectifying function (dark blue) closely matched the average conductance
given the filtered stimulus value (light blue points). (E) The distribution of
measured excitatory conductances for the example cell. (D) The distribution
filtered stimulus values for the example cell given the excitatory stimulus filter.
(E) The distribution inhibitory conductances conditioned on the filtered stim-
ulus value for the same example cell. The fixed soft-rectifying function (dark
red) provided a close approximation to the average inhibitory conductance
given the filtered stimulus value (light red points). (F) The distribution of
measured inhibitory conductances for the example cell. (G) The distribution
filtered stimulus values for the example cell given the inhibitory filter.
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3.2.3 Model fitting in simulations

To examine the performance of our numerical maximum likelihood esti-

mation of the CBSM, we fit the parameters to simulated spike trains from the

model with known parameters (Fig. 3.4). The first simulated cell qualitatively

mimicked experimental RGC datasets, with input filters selected to reproduce

the stimulus tuning of macaque ON parasol RGCs (excitation oppositely tuned

and delayed compared to excitation, or “crossover” inhibition). The second

simulated cell had similar excitatory tuning, but the inhibitory input had the

same tuning as excitation with a short delay. The stimulus consisted of a one

dimensional white noise signal, binned at a 0.1ms resolution, and filtered with

a low pass filter with a 60Hz cutoff frequency. We validated our maximum

likelihood fitting procedure by examining error in the fitted filters, and eval-

uating the log-likelihood on a 5-minute test set. With increasing amounts of

training data, the parameter estimates converged to the true parameters for

both simulated cells. Therefore, standard fast and non-global optimization

algorithms can reliably fit the CBSM to spiking data, despite the fact that the

model does not have the concavity guarantees of the standard GLM.

3.2.4 Predicting conductance tuning from spikes in ON parasol
cells

We fit the excitatory and inhibitory conductance filters (and spike his-

tory filters) of the CBSM to spike trains recorded from 7 macaque on-parasol

RGCs. The spike trains were obtained by cell attached recordings in response
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Figure 3.4: (A) Estimates (solid traces) of excitatory (blue) and inhibitory
(red) filters from 10 minutes of simulated spike trains. (Dashed lines indicate
true filters). The inhibitory filter was oppositely tuned and delayed compared
to the excitatory filter. (B) The L2 norm between the estimated input filters
and the true filters as a function of the amount of training data. (C) The
log-likelihood of the fit CBSM on the test data converged towards the log-
likelihood of the true model. (D,E,F) Same as A-C for a simulation in which
ki had the same tuning as ke with a delay.

to full-field, white noise stimuli (the same as in the simulations above). Either

30 or 40 trials were recorded from each cell, using 10 unique 6 second stimulus

segments. After the spike trains were recorded, voltage clamp recordings were

used to measure the excitatory and inhibitory conductances to the same 10

stimuli. We fit the model using the spike trains for 9 of the stimuli, and the
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model fits were evaluated using the remaining 6 second stimulus. Thus, the

models were effectively trained using 3 or 4 repeats of 54 seconds of full-field

noise stimulus.

We compared the mean measured conductances in response to a test

stimulus to the ge and gi predicted by the CBSM (Fig. 3.5). The CBSM cor-

rectly determined the stimulus tuning for excitation and inhibition for these

cells: inhibition is oppositely tuned and slightly delayed from excitation. To

visualize the measured conductances alongside the inferred conductances, we

scaled the estimated conductances. Membrane voltage dynamics depend on

the capacitance of the membrane, which we do not include because it intro-

duces an arbitrary scaling factor that cannot be estimated from spikes alone.

Therefore, for comparisons we chose a scaling factor for each cell to minimize

the squared error between the predicted conductances and the measured con-

ductances, while assuming a common scaling for the inhibitory and excitatory

conductances. We similarly scaled the stimulus filters fit to the conductance

measurements to match the average height of the CBSM filters.

The CBSM predicted the synaptic conductances showed strong correla-

tion with the measured conductances for all 7 cells. Using only a few minutes

of spiking data, the conductances inferred from the spike trains showed an

average correlation of r = 0.69 for the excitatory input and r = 0.68 for the

inhibitory input, compared to an average r = 0.87 and r = 0.83 for the ex-

citatory and inhibitory conductances respectively from the LN fit directly to

the conductances (Fig. 3.6).
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3.2.5 Characterization of RGC responses by inferring excitatory
and inhibitory inputs

We fit the CBSM and GLM to a population of 9 extracellularly recorded

macaque RGCs in response to a full-field binary noise stimulus (Pillow et al.

2005). The models were fit to 10 minutes of spike train recordings. We com-

pared predicted spike rate of the CBSM to the GLM to a 5 s test stimulus for

which we had repeated trials, and compared the predictive log-likelihood for

a single a 5 minute recording with a novel test stimulus (Fig. 3.7). All cells

showed an improved fit with the CBSM. The CBSM on average explained 86%

of the variance of the PSTH, while the GLM on captured 77% of the spike

rate. The CBSM also improved spike train prediction (0.34±0.11 bits/sp over

the GLM).

Previous experiments have indicated that inhibition only weakly modu-

lates parasol cell responses to full-field stimuli (Cafaro & Rieke 2013). To test

the effect inhibition in the model, we also fit the CBSM without any inhibitory

synaptic conductance (CBSMexc). The CBSMexc still provided a superior pre-

diction of the PSTH than the GLM (81% of the variance explained) and a

larger cross-validated log-likelihood (mean improvement of 0.14± 0.10bits/sp

over the GLM. Fig. 3.8). Thus, inhibition only accounts for 48% of the CBSM’s

spike rate prediction performance over the GLM, and excitatory input alone

can account for most of the RGC firing rate in response to a full-field, single-

contrast noise stimulus. We compared the excitatory filters estimated by the

CBSMexc with the GLM filters and found that the filters are nearly identical
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(Fig. 3.9). The GLM appears to account only for the excitatory input received

by the cell. The CBSM improves characterization of the RGC responses both

by including an inhibitory input, and by treating the excitatory input as a

synaptic conductance in a simple biophysical model with data-constrained

nonlinearities.
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3.2.6 RGC responses across different temporal contrasts

The characterization of adaptation to changes in stimulus statistics in

sensory neurons has relied heavily on studying changes to single linear filter fit

to a cell’s activity across different stimulus conditions (Chander & Chichilnisky

2001, Fairhall et al. 2001, Baccus & Meister 2002, Garvert & Gollisch 2013,

Marava 2013). RGCs exhibit contrast gain control: as contrast (the variance of

the luminance) increases, the sensitivity of the cell decreases. The GLM reveals

this behavior by showing a contrast-dependent linear filter height (Fig. 3.10A).

We aimed to determine if the CBSM using a fixed pair of stimulus filters

could predict gain scaling to temporal contrast. We fit 8 RGCs to responses to

a binary, full-field stimulus at 12%, 24%, and 48% contrast. We then followed

a procedure similar to an experimental paradigm to used to study contrast

adaptation in real cells: we simulated from the CBSM fits using stimuli at all

3 contrast levels and we characterized the simulated fits with a GLM to obtain

a linear filter (Fig. 3.10B). The CBSM simulations exhibited a similar scaling

in linear filter in response to changes in contrast as the real cells. The change

in filter heights of the CBSM simulations relative to the height of the 48%

contrast filter correlated well with the filter height change seen in the GLM

fits to the real cells (r = 0.61, p < 0.05; Fig. 3.10C). Therefore, much of the

change in filter height over contrast levels can be reproduced by considering the

intrinsic properties of a fixed model with excitation and inhibitory conductance

inputs.

Classic LN models with single linear filter often fail to generalize over
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Figure 3.10: (A) GLM filters for an example ON cell fit to responses recorded
at 12%, 24%, and 48% contrast. (B) GLM filters fit to spike trains simulated
from the CBSM fit to the cell shown in A. The CBSM was fit to responses at
all 3 contrast levels. (C) The filter heights (the absolute value of the peak of
the filter) of the GLM fits to 8 cells at all three contrast levels (one point per
contrast level per cell), compared to the GLM filters fit the CBSM simulations
of those same cells.

stimulus conditions because of adaptation effects, and connecting the changes

in a linear filter to specific biophysical mechanisms is difficult. Understanding

how neural coding during natural stimuli and its biophysical implementation

will require a single modeling framework that can explain RGC responses

across stimulus conditions (Ozuysal & Baccus 2012, Clark, Benichou, Meister

& Azeredo da Silveira 2013). To quantify the CBSM’s ability to generalize

122



over coherences, we compared the model predictions to test stimuli at each

contrast level with a model fit only to the test contrast level. We found that

the CBSM showed greater ability to maintain predictive performance over the

different contrast levels compared to the GLM (Fig. 3.11). At 12% contrast,

the GLM fit to all contrasts lost an average 0.36 ± 0.41bits/sp compared to

GLM fit specifically to the 12% contrast stimulus, while the CBSM lost only

0.16±0.2bits/sp. At 24% contrast, the GLM lost 0.20bits/sp while CBSM only

lost 0.07±0.14bits/sp. Finally, both models only lost 0.05±0.08bits/sp in the

48% contrast probe. Removing the inhibitory filter showed that the CBSM

required inhibition to generalize over contrast levels (a loss of 0.95 ± 0.88,

0.85±1.20, and 0.59±0.65bits/sp at the 12%, 24%, 48% probes respectively).

3.2.7 Excitatory and inhibitory responses to spatial stimuli

We next analyzed the responses of a population of 27 parasol cells in

response to a spatio-temporal noise stimulus (Pillow et al. 2008) to explore how

the excitatory and inhibitory inputs interact to shape the spatial selectivity

of RGCs. The temporal response profiles of excitation and inhibition in the

CBSM were qualitatively similar to those that we observed in the full-field

stimulus condition (Fig. 3.12). However, the time-variant spatial profile of the

filters could allow the synaptic inputs to have different temporal interactions

compared to the full-field stimulus.

The CBSM captured the mean firing rate more closely than the GLM

(average percent variance explained 83% and 79% for the CBSM and GLM
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respectively). The CBSM also predicted the single-trial responses with higher

accuracy than the GLM (an average of 0.07 ± 0.04 bits/sp greater than the

GLM). Removing the inhibitory conductance from the CBSM showed that

the excitatory input alone provided a superior account of the mean firing
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rate (average percent variance explained 81%), but the single-trial spike train

prediction was reduced by removing inhibition (an average of 0.02±0.04 bits/sp

greater than the GLM).

We simulated from the model using a binary, center-surround stimulus

in which the center pixel was the opposite sign contrast of the outer pixels to

explore how accounting for distinct excitatory and inhibitory inputs affects the

characterization of spatial selectivity. Spatio-temporal noise and full-field noise
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stimuli produced similar cross-correlation between the CBSM’s excitatory and

inhibitory conductances (Fig. 3.14A,B). In response to these stimuli, the exci-

tatory and inhibitory conductances showed a strong negative correlation with

excitation preceding inhibition. The random opposing center-surround stim-

ulus produced a distinct cross-correlation pattern with a larger positive peak

at the positive lags. Additionally, we simulated responses to steps of the an-

tagonistic center-surround stimulus. The CBSM and GLM showed similar

onset responses, but the sustained responses of the CBSM simulations showed

inhibition-dependent suppression for both ON and OFF cells (Fig. 3.14C).
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Thus, spatial correlations in the stimulus can alter the temporal structure of

excitatory and inhibitory interactions in the CBSM that shape the model’s

response differently than the GLM.
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3.3 Conclusion

The classic GLM serves as a valuable tool for describing the relation-

ship between stimuli and spike responses. However, the GLM describes this

map as a mathematically convenient linear-nonlinear cascade, which does not

take account of the biophysical properties of neural processing (Herz, Gollisch,

Machens & Jaeger 2006). This problem persists in abstract mathematical ex-

tensions to the traditional LN model that include quadratic terms (Schwartz,

Chichilnisky & Simoncelli 2002, Agüera y Areas, Fairhall & Bialek 2001, Park

& Pillow 2011), or additional linear-nonlinear processing steps (Ahrens et al.

2008, Butts et al. 2011, McFarland et al. 2013). Here we have shown that the

GLM may be interpreted as a biophysically inspired, but highly constrained,

synaptic conductance-based model. We proposed a more realistic model of the

conductance, removing the artificial constraints present in the GLM interpre-

tation, which results in a new, more accurate and more flexible conductance-

based point process model for neural responses. Even without the benefit of

a concave log-likelihood, tractable numerical optimization methods provide

accurate estimates of model parameters.

The model also allows the excitatory and inhibitory conductances to be

distinct functions of the sensory stimulus, as is expected in real neurons. We

used intracellular measures to validate and constrain the nonlinear functions

in the CBSM, in contrast to previous cascade modeling approaches which typ-

ically select these terms in order to maximize a likelihood function or based

on computational convenience. We demonstrated that the CBSM not only
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achieves improved performance as a phenomenological model of neural en-

coding compared to the GLM, the model accurately estimates the tuning of

the excitatory and inhibitory synaptic inputs to RGCs purely from measured

spike times. The CBSM has a stimulus-dependent time constant, which al-

lows it change its gain as a function of stimulus statistics (e.g., contrast), an

effect that cannot be captured by a standard GLM. Although the GLM is

able to produce spike rate predictions to spatio-temporal noise stimuli that

are almost as accurate as the CBSM, the interaction of the excitation and

inhibition in the CBSM results in different predictions about the selectivity of

RGCs to spatially structured, center-surround stimuli compared to the GLM.

As we move towards more naturalistic stimulus conditions that have complex

spatio-temporal statistics, we believe that the conductance-based approach will

become a valuable tool for understanding the neural code in sensory systems.
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Chapter 4

Discussion

The statistical tools presented in this dissertation targeted the neural

coding problem at the level of single neurons in two stages of the primate

visual system.

In Chapter 2, we applied latent variable models to compare candi-

date models of decision formation to single-trial spike trains recorded during a

decision-making task. In stark contrast to previous findings, Bayesian model

comparison revealed that decision-related activity in LIP neurons was better

captured by a discrete stepping model than a continuous evidence accumula-

tion process. Therefore the diffusion-to-bound model does not directly link

the behavior of the monkey in the motion-discrimination task to single-neuron

responses recorded in area LIP. These results demonstrate the limitations of

“neural correlates” for studying decision making processes in the brain. While

much of systems neuroscience has relied on viewing neural data in relation

to external variables, applying modern statistical techniques enables us to ex-

amine neural data aligned to internal states to reveal new insights about the

brain.

The modeling tools presented in Chapter 3 demonstrated that a more
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accurate characterization of neural responses in the retina can be achieved

by relating statistical models of neurons to the biological substrate. Using a

simplified model of membrane dynamics and synaptic input, we found that we

could recover the basic stimulus tuning of the excitatory and inhibitory input

received by RGCs. Characterizing these two input sources separately described

RGC responses more accurately than a single linear-nonlinear model. The

conductance-based approach was more robust to changes in temporal contrast,

and the model produced different predictions about spatial integration than

the classic LN model approach.

4.1 Future Directions: Modeling decision representa-
tions in multi-cell recordings

The analyses presented in Chapter 2 examined what can be gleaned

about the dynamics of the neural representation of perceptual decisions from

single neurons recorded in LIP. To gain a true understanding of the dynamics

of how a neural circuit integrates input will require observing and analyzing a

larger portion of the neural circuit (Churchland, Cunningham, Kaufman, Ryu

& Shenoy 2010, Mante, Sussillo, Shenoy & Newsome 2013, Kaufman, Church-

land, Ryu & Shenoy 2014). Because decision-related activity is observed in

multiple brain areas, including the medial intraparietal area (MIP) (de La-

fuente et al. 2015), a complete study of perceptual decision-making must also

examine the interactions between different brain regions. Collecting large-

scale neural recordings, while challenging, is rapidly becoming more com-
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mon (Stevenson & Kording 2011). However, many challenges for analyzing

large neural datasets exist (Freeman, Vladimirov, Kawashima, Mu, Sofroniew,

Bennett, Rosen, Yang, Looger & Ahrens 2014). Latent variable methods, like

the models we described in Chapter 2 for single neurons, can provide a way to

link the observed activity from multiple neurons, even neurons recorded from

several regions, to a common variable. This section describes preliminary work

modeling pairs of simultaneously recorded neurons.

4.1.1 Confirming single-cell results in a new dataset

We examined a set of 72 LIP neurons recorded while a monkey per-

formed a motion discrimination task similar to the one described in Sec-

tion 2.5 (Yates, Park, Cormack, Pillow & Huk 2013). The motion stimulus

consisted of a set of drifting gabors instead of random-dot motion, and the

motion stimulus was presented for 1.166 s on every trial. As with the earlier

dataset, the top 50% (36 of the 72 cells) of choice-selective cells were chosen for

further analysis. This selection included 19 pairs of simultaneously recorded

neurons.

We applied the same model comparison analysis as before to the indi-

vidual LIP cells in this new dataset. A majority of the 36 cells were better

fit by the stepping model (Fig. 4.1), confirming the initial findings that the

stepping model better captured the responses of LIP cells during the tentative

integration period than the ramping model.
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Figure 4.1: Model comparison results for 36 LIP neurons from a new dataset.
The ∆DIC score shows that 29 of the 36 cells were fit better by the stepping
model than the ramping model, and 27 of those cells showed strong support
for stepping.

4.1.2 Are step times across different neurons correlated?

As a first step towards analyzing the representation of decisions in

LIP populations, we examined the results of the stepping model fit to the

individual cells. We then compared the step times inferred by the model across

simultaneously recorded cell pairs (Fig. 4.2). Many cell pairs did not show

significant correlations in step times across pairs of simultaneously recorded

LIP neurons in this population, even though the majority of these cells were

described better by the stepping model than the ramping model in the single-

cell analysis. The mean correlation coefficient over all the pairs was centered

near 0.
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Figure 4.2: Correlation of the step times inferred by the stepping model be-
tween pairs of simultaneously recorded LIP cells. Cell pairs with a correlation
coefficient that is statistically significant from zero (p < 0.05) are in dark gray.
The mean of the correlations (black triangle) is slightly positive, but this is
not statistically significant.

4.1.3 Extending the stepping model to multiple neurons

If the discrete state picked up by the stepping model truly reflected the

actual decision signal, one might expect that all LIP cells with RFs containing

the a choice target would step up or down together. To test this, we modeled

the responses of the neuron pairs with a simultaneous step. The stepping

model can easily be extended for multiple neurons by assuming that each

observed cell is the product of a common latent process. We define the multi-
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cell, simultaneous stepping model as

zj ∼ Negative Binomial(pc(j), r) (4.1)

P (dj = 1) = φc(j) (4.2)

P (dj = 2) = 1− φc(j) (4.3)

yk,j,t|t ≤ zj ∼ Poisson(αk,0∆t) (4.4)

yk,j,t|t > zj ∼ Poisson(αk,dj∆t) (4.5)

where the index k denotes the k-th neuron. This simple extension assumes

that a step occurs simultaneously across all cells, without any temporal off-

sets. The primary difference between this model and the single-cell version in

Section 2.2.2 is that there are multiple firing rates for each state, one for each

neuron. This model is much more restrictive than more general HMM meth-

ods used to examine populations during decision-making tasks (e.g., Miller &

Katz 2010, Bollimunta et al. 2012).

MCMC under this model proceeds almost identically to the MCMC for

the single-cell model. There are two small differences. The first difference is

that, to sample the latent variables, the likelihood term becomes a product of

Poisson observations

p(y·,j,t|zj, dj, α) =
K∏
k=1

p(yk,j,t|zj, dj, αk,·) (4.6)

The second difference is that α values must be sampled for each neuron. This

step is performed identically to the sampling step in the single neuron case,
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Figure 4.3: Model comparison results between a simultaneous stepping model
and the single-cell stepping model which considers the cells independently.
The model comparison strongly supports independent stepping.

but it is performed K times: once for each neuron (or once for each set of αk,·

given yk,·,·, d, and z).

For the 19 LIP cell pairs, we compared the simultaneous stepping to

independent, single-cell stepping model fits. We found for these cell pairs,

quantitative model comparison did not support the hypothesis of a common

stepping process (Fig. 4.3). This is not surprising considering that the single-

cell fits did not find strong evidence of correlated step times.

This preliminary analysis demonstrated that latent variable models can

be applied to test hypotheses of representations of an evolving decision variable

in a population of cells. The simple hypothesis test here shows that, while

single LIP neurons were better described by a discrete-stepping model than a

diffusion-to-bound process, the responses of pairs of LIP neurons were not well-

described by a simultaneous state change. One possible interpretation is that
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the steps seen in single cells act as “votes” for a particular choice. Therefore,

the population could encode a more continuous decision-related variable even

though the individual neurons appear to represent a discrete value. Future

work, including analyses of more than two cells at a time, will be required

to uncover the nature of the dynamics of the LIP population during decision-

making.

4.2 Future directions: conductance-based modeling of
RGCs

The CBSM took the GLM one step closer to a biophysical model of

the neuron, but many properties of the biophysical neuron were not included

in the model. Further developments to the CBSM can include additional sets

of rectified, conductance inputs (McFarland et al. 2013). For example, the

model could include multiple spatially distinct inputs to account for input

from different bipolar or amacrine cells. Spatially selective rectification of

inhibitory inputs helps determine RGC responses to spatial stimuli (Cafaro &

Rieke 2013), and adaptation can occur in localized regions of a ganglion cell’s

RF (Garvert & Gollisch 2013). Additionally, the CBSM could also be applied

to explore the role of active conductances that depend spike history, such as an

after hyper-polarization current, on the coding properties of sensory neurons.

Spike-dependent conductances could also be included to within a population;

although the analyses presented here focused on the coding properties of single

neurons, many of the RGCs analyzed were recorded simultaneously (Pillow
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et al. 2008).

Additionally, the spike generation of the CBSM, while constrained

by dynamic clamp recordings, was a simple statistical approximation of the

true spike generation process. The intrinsic properties of spike generation in

real neurons can contribute to adaptive coding (Mease, Famulare, Gjorgjieva,

Moody & Fairhall 2013). Including a more biophysically accurate spiking pro-

cess could lead to a more experimentally applicable and accurate model.

The CBSM confined all noise in the model to the spike generation mech-

anism. Assuming deterministic conductances and voltages made the CBSM a

tractable model that could be efficiently fit with standard conjugate-gradient

methods. However, the synaptic conductances in real neurons are also variable

from trial to trial, and the correlation of the noise between the two conduc-

tances can change the reliability of RGC spike trains (Cafaro & Rieke 2010).

Latent variable models could extend the model to include variability in the

conductances and voltage process (Paninski et al. 2012). The added flexibility

would allow the model to match more closely neural data than the CBSM, but

would also increase the difficulty of model fitting both in terms of the amount

of data needed and the computational cost.

Finally, neural recordings analyzed here were exclusively driven by

simple artificial noise stimuli. Solving the neural coding problem will ulti-

mately require understanding the code during naturalistic stimulation, rather

than experimentally convenient conditions (Carandini, Demb, Mante, Tol-
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hurst, Dan, Olshausen, Gallant & Rust 2005, van Hateren, Rüttiger, Sun

& Lee 2002, Butts, Weng, Jin, Yeh, Lesica, Alonso & Stanley 2007). Future

work should aim to determine how excitatory and inhibitory synaptic inputs

combine to shape RGC responses to natural stimuli.

4.3 Conclusion

The specific statistical tools we select to analyze data can transform our

perception of the neural code. Ensuring that a statistical tool can truly capture

the essence of a hypothesis we propose about neural coding is vital to construct

a proper understanding of information processing in the brain, whether that

hypothesis pertains to the integration of inputs that leads to spiking in single

neurons or the network-level computation of a decision. Here we found that

analyzing the neural representation of perceptual decisions in LIP with modern

latent variable models leads to different conclusions than by viewing the data

through the conventional lens of averaging spike trains over many trials. Unlike

analyses of summary statistics like the PSTH, latent variable methods can

relate neural activity directly to theories of perceptual decision-making because

such decisions are single-trial events and not averages. Although the average

firing rate of an LIP neuron appears as a correlate of a diffusion-to-bound

process, modeling single-trial activity produced a different view of the data:

choice-related activity in LIP on single trials is better explained by a discrete

stepping process. In the retina, we developed a model relating visual stimuli

to spike train responses in ganglion cells that was not only more accurate than
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the traditional GLM, but the model provided a more general description of

the data by accounting for gain scaling across temporal contrasts. This was

accomplished not by constructing a purely phenomenological model, but by

expanding an existing model (the GLM) towards a more realistic biophysical

description of a neuron that integrates synaptic inputs.

As modern experimental methods advance to allow more and more neu-

rons to be recorded simultaneously, statistical methods for analyzing neural

must also advance in order to connect data to theory (Stevenson et al. 2012,

Freeman et al. 2014). Simple statistical techniques, like computing the PSTH,

have been invaluable for providing intuitive explanations of single-neuron re-

sponses, especially in early sensory regions. However, simply averaging the

activity of single neurons may not be an effective method to analyze larger

scale recordings, because even cells within the same region can exhibit hetero-

geneous properties (Meister et al. 2013) and correlations between cells can play

an important role in the neural code (Pillow et al. 2008, Cohen & Kohn 2011).

Additionally, essential aspects of neural responses recorded during complex

tasks may be washed away by averaging (Goldman 2015). Advanced latent

variable models will certainly play a central role in the future of systems neu-

roscience by tying together the activity of many brain regions in order to make

sense of the dynamics in the whole population.
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Appendix A

Methods used to analyze LIP response

A.1 Computing PSTHs

The coherence-sorted spike rates (PSTH) and variances (PSTV) aligned

to motion onset in Fig. 2.16 were computed for each cell using a 25 ms sliding

window (boxcar filter) moved by 5 ms increments. At each time point, trials

were only included in the average if the end of the window of the analysis

(200 ms after motion offset) had not been reached. The population rates and

variances were computed by averaging the rates and variances from all 40 cells.

I compared the model predictions of the coherence sorted PSTH/PSTV

to the true population spike rate and variance during the interval 205-700 ms

after motion onset (100 time points). I simulated 1000 spike trains per co-

herence level per cell using the posterior-mean parameters from each model to

obtain the coherence-sorted model predicted rate (MR) and variance (MV ). I

then calculated the fraction of variance explained in the coherence-dependent

PSTH (or PSTV):
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R2 = 1−

5∑
c=1

700∑
t=205

(MRc,t − PSTHc,t)
2

5∑
c=1

700∑
t=205

(
PSTH − PSTHc,t

)2

(A.1)

PSTH =
1

5

1

100

5∑
c=1

700∑
t=205

PSTHc,t (A.2)

where PSTHc,t is the PSTH at time t (in milliseconds) for coherence level c.

The average spike rate over all time and coherence levels is PSTH. The sums

over t are in increments of 5 ms.

Credible intervals on the R2 values included uncertainty in both the

measured PSTH/PSTV as well as the model fit uncertainty. I obtained 1000

samples of the data PSTH (PSTV) by randomly drawing a set of trials with

replacement for each cell and computing the population PSTH (PSTV) with

those trials. Each sample used the number of trials per coherence as were

actually observed for each cell. I obtained errors on the model PSTH (PSTV)

by using the output from the MCMC. I simulated each model with each of the

10 000 parameters samples from the MCMC output. I calculated the R2 for

each of the 10 000 simulated PSTHs (PSTVs) against the 1000 bootstrapped

data PSTHs (PSTVs), resulting 1000 000R2 values per model (Fig. A.1). The

95% credible interval was the 2.5 and 97.5 percentiles of the R2 values.
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Figure A.1: Distribution of sampled R2 values of the model predictions of the
coherence-sorted PSTH (left) and PSTV (right). The distributions compare
the ramping model PSTH/PSTV predictions (red) to the predictions from
the stepping model (blue). Triangles indicate the R2 values calculated for the
PSTHs or PSTVs plotted in Fig. 4A, which were computed using the posterior
mean parameters.
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A.2 Parameter estimates

A.2.1 Ramping model

Cell β−high β−low βzero β+low β+high x0 ω2 γ DIC difference
1 -5.59e-03 -1.43e-03 1.02e-02 1.31e-02 3.45e-02 0.44 5.72e-03 37.0 141.8
2 -2.55e-02 -1.05e-02 -5.34e-03 8.48e-05 1.37e-02 0.36 1.09e-02 19.2 41.8
3 -1.47e-03 -3.21e-04 3.01e-05 3.28e-03 7.42e-03 0.40 3.05e-03 19.8 4.7
4* -4.42e-03 -3.71e-03 -3.77e-03 -2.35e-03 3.94e-04 0.45 1.93e-03 138.6 -151.6
5 -8.72e-03 -6.58e-04 5.76e-04 9.20e-04 6.00e-03 0.38 3.80e-03 9.4 10.9
6 -8.47e-03 -7.17e-03 -3.56e-03 -2.16e-03 1.19e-01 0.76 1.56e-03 23.4 44.0
7* -1.52e-02 -5.89e-04 4.69e-03 5.87e-03 1.21e-02 -0.05 1.01e-02 35.9 -164.4
8 -2.11e-03 1.73e-03 4.04e-03 6.12e-03 1.27e-02 0.19 6.75e-03 33.0 66.8
9 -3.45e-03 -1.97e-03 -7.70e-04 -9.58e-05 4.75e-04 0.36 1.71e-03 158.1 128.9
10* -5.08e-03 -2.55e-03 1.36e-03 2.66e-03 4.82e-03 0.32 4.92e-03 62.0 -54.4
11 -1.30e-02 -6.06e-03 7.19e-03 1.49e-03 7.89e-02 0.93 5.18e-03 10.8 22.5
12 2.37e-03 1.67e-03 2.94e-03 5.53e-03 1.45e-02 0.29 2.87e-03 7.9 53.5
13 5.99e-03 4.03e-03 6.12e-03 7.78e-03 1.32e-02 0.30 3.16e-03 21.7 10.5
14 -2.79e-03 5.44e-04 6.52e-03 9.12e-03 2.21e-01 0.27 7.17e-03 11.7 70.6
15 -3.26e-03 -1.15e-03 -1.68e-03 -1.52e-03 -1.47e-03 0.38 2.67e-03 63.9 60.7
16 -2.02e-03 8.35e-04 1.17e-03 1.93e-03 4.38e-03 0.56 2.46e-03 23.4 28.4
17 3.01e-03 3.82e-03 4.97e-03 8.25e-03 1.03e-02 0.35 3.44e-03 70.4 96.0
18 1.08e-01 1.13e-01 1.09e-01 1.03e-01 1.17e-01 0.97 9.27e-03 39.5 27.5
19 -3.50e-03 -2.55e-03 5.31e-04 2.63e-03 3.51e-02 0.48 4.43e-03 14.5 22.1
20 -4.56e-03 -2.45e-03 1.51e-02 3.14e-03 2.73e-02 0.86 3.14e-03 26.0 0.5
21 2.77e-02 1.10e-01 9.63e-02 1.15e-01 1.10e-01 0.98 4.29e-03 29.5 170.5
22 -1.32e-05 2.67e-03 2.54e-03 4.09e-03 5.81e-03 0.29 4.31e-03 25.9 1.1
23* -1.91e-03 -3.18e-04 1.36e-03 3.07e-03 5.32e-03 0.39 1.49e-03 46.4 -19.9
24 -1.07e-02 -6.20e-03 -3.44e-03 -5.04e-03 -3.94e-03 0.59 3.60e-03 25.5 38.4
25* -2.36e-04 -6.52e-04 9.40e-04 3.17e-03 7.00e-03 0.40 3.45e-03 52.7 -211.3
26 2.43e-04 7.32e-04 3.59e-03 4.24e-03 4.86e-03 0.23 3.44e-03 39.8 19.6
27 3.77e-03 1.41e-02 1.72e-02 3.19e-02 2.67e-02 0.71 1.43e-02 20.5 9.9
28 -4.65e-03 -2.38e-03 -1.25e-03 5.69e-04 3.42e-03 0.72 1.69e-03 39.7 63.0
29 1.28e-03 2.89e-03 6.13e-03 9.51e-03 1.21e-02 0.09 4.00e-03 13.6 8.9
30 -8.49e-03 -2.40e-03 -1.66e-03 1.24e-03 6.76e-03 0.71 3.98e-03 26.5 57.3
31 -4.27e-03 2.47e-05 -1.11e-04 2.48e-03 4.74e-03 0.58 1.57e-03 32.2 76.4
32* -4.55e-03 -2.68e-03 4.64e-03 8.97e-03 1.63e-02 0.03 9.99e-03 50.4 -227.4
33 -6.09e-03 -1.67e-03 -2.64e-03 -1.71e-05 1.04e-05 0.36 3.45e-03 26.6 80.7
34* -1.23e-02 -2.32e-03 2.89e-04 2.51e-03 7.81e-04 0.55 3.56e-03 23.0 -9.9
35 1.57e-02 1.91e-02 2.12e-02 1.78e-02 3.76e-02 0.01 1.93e-02 11.0 24.6
36 1.89e-03 4.17e-03 7.94e-03 7.48e-03 1.92e-02 0.27 1.93e-03 28.8 4.7
37* -2.44e-02 -9.12e-03 -3.99e-03 -3.45e-03 5.35e-03 0.65 7.49e-03 42.9 -8.9
38 -7.20e-03 -4.51e-03 4.67e-03 8.67e-03 2.11e-02 0.42 1.21e-02 11.6 22.0
39* -4.72e-03 -2.48e-03 -1.43e-04 3.28e-03 7.49e-03 0.29 3.29e-03 18.1 -0.3
40 -1.76e-03 -1.13e-03 2.03e-02 1.11e-02 7.41e-02 0.81 2.40e-03 18.2 15.9

Table A.1: Posterior mean ramping model parameters for all cells, and the
DIC differences from the model comparison (positive indicating support for
the stepping model). Stars next to the cell number indicate those cells we
identified as tentative rampers (negative DIC difference of any magnitude).
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A.2.2 Stepping model

Cell αinit αout αin p−high p−low pzero p+low p+high φ−high φ−low φzero φ+low φ+high r
1* 16.8 4.1 36.3 0.972 0.975 0.977 0.968 0.951 0.02 0.35 0.82 0.88 0.98 0.55
2* 7.7 0.7 19.9 0.815 0.957 0.977 0.982 0.987 0.01 0.20 0.36 0.48 0.94 0.79
3* 8.4 3.5 20.8 0.960 0.969 0.954 0.971 0.974 0.15 0.23 0.25 0.60 0.89 1.63
4 70.9 11.1 33.2 0.944 0.968 0.972 0.981 0.991 0.46 0.51 0.53 0.59 0.80 0.94
5* 3.4 0.8 9.5 0.953 0.979 0.944 0.980 0.957 0.03 0.39 0.50 0.52 0.78 1.42
6* 18.4 6.6 23.7 0.801 0.902 0.871 0.912 0.276 0.04 0.09 0.42 0.51 0.97 3.02
7 1.7 0.4 24.1 0.852 0.947 0.958 0.971 0.964 0.02 0.48 0.74 0.93 0.97 1.71
8* 1.3 10.9 29.2 0.994 0.990 0.990 0.987 0.970 0.07 0.26 0.57 0.59 0.62 0.38
9* 74.2 11.0 39.7 0.902 0.984 0.986 0.991 0.993 0.16 0.43 0.58 0.69 0.93 0.64
10 21.0 3.6 49.5 0.975 0.984 0.982 0.983 0.992 0.08 0.25 0.51 0.62 0.86 0.68
11* 11.8 3.3 11.0 0.829 0.737 0.406 0.374 0.360 0.37 0.72 0.84 0.84 0.92 2.13
12* 2.5 3.0 8.6 0.887 0.724 0.829 0.451 0.800 0.44 0.26 0.40 0.26 0.76 4.57
13* 5.1 12.0 21.9 0.986 0.985 0.975 0.972 0.924 0.58 0.29 0.37 0.44 0.72 0.86
14* 49.4 2.6 11.0 0.401 0.524 0.981 0.444 0.489 0.03 0.18 0.38 0.44 0.88 0.04
15* 38.9 5.4 16.9 0.972 0.989 0.990 0.985 0.977 0.45 0.67 0.54 0.67 0.80 0.38
16* 14.5 8.2 20.8 0.700 0.421 0.536 0.526 0.346 0.23 0.45 0.46 0.45 0.65 1.64
17* 11.6 31.5 60.9 0.978 0.957 0.951 0.964 0.957 0.34 0.31 0.38 0.69 0.72 0.54
18* 43.6 37.2 42.7 0.467 0.445 0.433 0.461 0.462 0.17 0.12 0.38 0.49 0.90 1.80
19* 11.2 3.6 13.3 0.545 0.695 0.762 0.559 0.436 0.15 0.20 0.34 0.48 0.81 1.87
20* 21.2 10.3 26.1 0.900 0.545 0.507 0.387 0.850 0.32 0.70 0.74 0.79 0.89 2.11
21* 35.6 24.3 27.4 0.361 0.757 0.779 0.878 0.908 0.17 0.39 0.69 0.64 0.64 5.42
22* 3.5 8.5 20.4 0.970 0.964 0.965 0.882 0.957 0.41 0.44 0.44 0.37 0.65 0.91
23 19.6 8.6 41.7 0.945 0.962 0.966 0.975 0.967 0.04 0.23 0.44 0.72 0.94 2.01
24* 21.3 1.7 10.4 0.965 0.967 0.953 0.962 0.982 0.15 0.48 0.75 0.64 0.58 0.73
25 8.6 23.6 44.9 0.996 0.993 0.991 0.988 0.985 0.23 0.14 0.37 0.43 0.63 0.27
26* 4.8 15.3 33.8 0.994 0.991 0.983 0.976 0.980 0.10 0.20 0.39 0.34 0.44 0.57
27* 3.1 13.8 21.7 0.994 0.963 0.972 0.727 0.967 0.38 0.68 0.75 0.69 0.83 0.12
28* 32.9 17.6 38.3 0.766 0.876 0.934 0.542 0.323 0.04 0.26 0.26 0.60 0.65 1.53
29* 1.6 7.1 14.2 0.986 0.985 0.974 0.969 0.953 0.09 0.40 0.40 0.61 0.36 1.44
30* 19.1 5.3 25.3 0.941 0.848 0.947 0.677 0.946 0.05 0.60 0.54 0.75 0.87 1.19
31* 19.9 10.9 29.4 0.871 0.859 0.882 0.449 0.850 0.06 0.41 0.40 0.59 0.80 0.84
32 4.1 0.6 41.0 0.988 0.983 0.982 0.975 0.972 0.10 0.30 0.71 0.82 0.98 1.05
33* 24.1 2.5 9.7 0.940 0.987 0.992 0.989 0.971 0.24 0.43 0.30 0.62 0.64 0.17
34 12.6 1.5 23.7 0.935 0.971 0.980 0.973 0.987 0.03 0.37 0.53 0.70 0.55 1.56
35* 2.5 7.2 18.8 0.910 0.925 0.862 0.923 0.739 0.27 0.57 0.31 0.58 0.31 4.21
36* 7.5 10.4 26.9 0.591 0.829 0.730 0.870 0.785 0.10 0.25 0.47 0.64 0.86 4.32
37 26.7 1.4 44.1 0.955 0.985 0.984 0.986 0.985 0.05 0.21 0.54 0.53 0.81 0.70
38* 5.8 1.7 10.8 0.646 0.538 0.569 0.325 0.882 0.14 0.33 0.59 0.71 0.96 3.39
39 5.8 1.1 16.8 0.979 0.987 0.987 0.990 0.983 0.10 0.16 0.33 0.62 0.82 0.74
40* 23.5 11.3 19.3 0.689 0.531 0.497 0.252 0.399 0.24 0.18 0.53 0.70 0.88 2.37

Table A.2: Posterior mean stepping model parameters for all cells. Stars
next to the cell number indicate those cells we identified as tentative steppers
(positive DIC difference of any magnitude).
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A.3 Example LIP cells

Figure A.2: Each column shows the responses of an example LIP cell with the
same step-model analysis performed on the cell in Figure 2.17. The top row
shows all the trials aligned to stimulus onset, sorted by choice, and ordered in
the order the trials were collected. The 2nd row shows the average firing rate
aligned to motion onset. The 3rd row is the same data as in row 1, although
the trials have been ordered by step time. In the 4th row, the trials have been
aligned to the step time. The spike rate aligned to step time is given in the
bottom row. Cells that were fit better by the ramping model are labeled as
“rampers” and cells better fit by the stepping model are labeled “steppers”.
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Figure A.3: Same as Figure A.2 for 3 more cells.
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Figure A.4: Same as Figure A.2 for 3 more cells.
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A.4 Cell examples over different start times of analysis
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Figure A.5: The three rows show the coherence-sorted PSTH (left) of cells
identified as steppers in the original analysis that were better fit bit the ramp-
ing model at different start times of analysis. (right) The model comparison
metric for each cell is given for all start times. The PSTHs were estimated
using only a 25 ms sliding window, which makes the firing rate estimate very
noisy for single cells.
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Figure A.6: The two rows show the coherence-sorted PSTH (left) of cells iden-
tified as rampers in the original analysis that were better fit bit the stepping
model at different start times of analysis. (right) The model comparison metric
for each cell is given for all start times.
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Appendix B

Gradients of CBSM log likelihood

B.1 Notation for the log likelihood

The design matrix is denoted X where theK columns of X consist of the

original stimulus convolved with the (temporal) basis vectors. The tth row of

X, denoted Xt is the value of the stimulus at time t and (ke∗x)(t) = Xtke). We

assume that one of the columns of X consists of all ones, so that the stimulus

filters, k, implicitly include the offset terms be and bi. Similarly, the spike

history convolved with the appropriate basis vectors is given by the matrix H

with J columns. The vector V denotes the voltage at all discrete time bins

and V (t) is the voltage at time t.

The CBSM defines the membrane voltage according to the equations

ge(t) = log(1 + exp(Xtke)) = f(Xtxe) (B.1)

gi(t) = log(1 + exp(Xtki)) = f(Xtki) (B.2)

dV (t)

dt
= ge(t)(Ee − V (t)) + gi(t)(Ei − V (t)) + gl(El − V (t)) (B.3)

= (ge(t)Ee + gi(t)Ei + glEl)− V (t)(ge(t) + gi(t) + gl) (B.4)
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The voltage equation is solved along the bins t = 1 . . . T of width ∆

c(t) = ge(t) + gi(t) + gl (B.5)

b(t) = ge(t)Ee + gi(t)Ei + glEl (B.6)

V (t+ 1) = exp(−c(t)∆)

(
V (t)− b(t)

c(t)

)
+
b(t)

c(t)
(B.7)

V (t+ 1)− exp(−c(t)∆)V (t) =
b(t)

c(t)
(1− exp(−c(t)∆)) (B.8)

exp(c(t)∆)V (t+ 1)− V (t) =
b(t)

c(t)
(exp(c(t)∆)− 1) (B.9)

M =


exp(c(1)∆) 0 · · · 0
−1 exp(c(2)∆) 0
0 −1 exp(c(3)∆) 0 · · ·

. . .

0 0 −1 exp(c(T )∆)


(B.10)

d =


Vinit + b(1)

c(1)
(exp(c(1)∆)− 1)

b(2)
c(2)

(exp(c(2)∆)− 1)
...

b(T )
c(T )

(exp(c(T )∆)− 1)

 (B.11)

The voltage at each time point is then

V = M−1d. (B.12)

The firing rate at each time is the vector

r =

 αr(wV (1) + Hthspk + z)
...

αr(wV (T ) + s(T ) + z)

 . (B.13)
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The log-likelihood becomes

L(Θ) =
T∑
t=1

[y(t) log(1− exp(−r(t)∆))−∆r(t)(1− y(t))] (B.14)

B.2 Gradients for conductance filters

Here we show the derivative of the log likelihood with respect to ke. The

derivative for the inhibitory filter is computed analogously. The Hadamard

product (element-wise multiplication) is denoted by ◦.

d

dΘ
L(Θ) =

d

dΘ

T∑
t=1

[y(t) log(1− exp(−r(t)∆))−∆r(t)(1− y(t))] (B.15)

=
T∑
t=1

[
y(t)

(
1 +

1

exp(r(t)∆)− 1

)
− 1

]
∆
dr(t)

dΘ
(B.16)

dr(t)

dke
=

d

dke
α log(1 + exp (wV (t) + s(t) + z)) (B.17)

= wα
1

1 + exp(−(wV (t) + s(t) + z))

dV (t)

dke
(B.18)

The derivative of the voltage is given

Ve = −M−1M ′M−1d +M−1re

= −M−1(M ′V − vde)

= −M−1(γe) (B.19)

γe = (me ◦V − de) (B.20)
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de =


b(1)
c(1)

me(1) + pe(1)(s(1)− 1)
b(2)
c(2)

me(2) + pe(2)(s(2)− 1)
...

b(T )
c(T )

me(T ) + pe(T )(s(T )− 1)

 (B.21)

s =


exp(c(1)∆)
exp(c(2)∆)

...
exp(c(T )∆)

 (B.22)

me = ∆ce ◦ s (B.23)

pe(t) =
be(t)c(t)− ce(t)b(t)

c(t)2
(B.24)

ce(t) = f ′(Xtke) (B.25)

be(t) = Eef
′(Xtke) = Eece(t) (B.26)

f ′(x) =
1

1 + exp(−x)
(B.27)

The derivative is then simply

d

dke
L(Θ) = ∆wαX

>
(q ◦ a ◦Ve) (B.28)

q =


y(1)

(
1

exp(r(t)∆)−1
+ 1
)
− 1

y(2)
(

1
exp(h(2)∆)−1

+ 1
)
− 1

...

y(T )
(

1
exp(h(T )∆)−1

+ 1
)
− 1

 (B.29)

a =


1

1+exp(−(wV (1)+s(1)+z))
...
1

1+exp(−(wV (T )+s(T )+z))

 (B.30)
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B.2.1 Second derivative for conductance filters

Here we show the second derivative of the log likelihood with respect

to ke. We denote a column vector containing K ones as 1K .

d2

dk2
e

L(Θ) = wα∆ [([q� (a�Vee + αae ◦Ve ◦Ve)

+wαqe � (a�Ve)� (a�Ve)] 1
>

K

)
◦X
]>

X

(B.31)

qe =


y(1) −∆

exp(r(1)∆)−2+exp(−r(1)∆)

y(2) −∆
exp(r(2)∆)−2+exp(−r(2)∆)

...
y(T ) −∆

exp(r(T )∆)−2+exp(−r(T )∆)

 (B.32)

ae =


1

2+exp(−(wV (1)+s(1)+z))+exp(αV (1)+s(1)+z)
...
1

2+exp(−(wV (T )+s(T )+z))+exp(αV (T )+s(T )+z)

 (B.33)

Vee = M−1M ′M−1γe −M−1γee (B.34)

= M−1(me � (M−1γe)− γee) (B.35)

= M−1(−me � Ve − γee) (B.36)

γee = (mee � V +me �Ve − dee) (B.37)
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mee = ∆2(cee ◦ s + ce ◦ ce � s) (B.38)

dee(t) = pe(t)me(t) +
b(t)

c(t)
mee(t) + pee(t)(s(t)− 1) + pe(t)me(t) (B.39)

pee(t) =
c(t)2 (bee(t)c(t)− cee(t)b(t))− 2c(t)ce(t) (be(t)c(t)− ce(t)b(t))

c(t)4

(B.40)

cee(t) = f ′′(Xtke) (B.41)

bee(t) = Eeceet = Eef
′′(Xtke) (B.42)

f ′′(x) =
exp(−x)

(1 + exp(−x))2)
(B.43)

d2

d2Θ
L(Θ) =

d

dΘ

T∑
t=1

[
y(t)

(
1 +

1

exp(r(t)∆)− 1

)
− 1

]
∆
dr(t)

dΘ
(B.44)

= ∆
T∑
t=1

[
y(t)

(
1 +

1

exp(r(t)∆)− 1

)
− 1

]
d2r(t)

dΘ2

+

[
y(t)

−∆

exp(r(t)∆)− 2 + exp(−r(t)∆)

](
dr(t)

dΘ

)2
(B.45)

d2r(t)

dk2
e

=
dr(t)

dke

(
wα

1

1 + exp(−(wV (t) + s(t) + z))

dV (t)

dke

)
(B.46)

= wα

[
d2Vt
dk2

e

a(t) + wae(t)

(
dV (t)

dke

)2
]

(B.47)

B.2.2 Mixed second derivative for conductance filters

Here we show the second derivative of the log likelihood with respect

to ke and ki.
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d2

dkidke
L(Θ) = ∆

T∑
t=1

[
y(t)

(
1 +

1

exp(r(t)∆)− 1

)
− 1

]
dr(t)

dkidke

+

[
y(t)

−∆

exp(r(t)∆)− 2 + exp(−r(t)∆)

]
dr(t)

dke

dr(t)

dki
(B.48)

= ∆wα [([q ◦ a ◦Vei

+w(q� ae + wqe � a ◦ a) ◦Ve ◦Vi] 1
>

K

)
◦X
]>

X (B.49)

Vei = −M−1(γei)−M−1mi ◦Ve (B.50)

γei = (mei ◦V + me ◦Vi − dei) (B.51)

mei = ∆2(ce ◦ ci ◦ s) (B.52)

(B.53)

dei(t) =
b(t)

c(t)
mei(t) + pi(t)me(t) + pe(t)mi(t) + pei(t)(s(t)− 1) (B.54)

pei(t) =
c2(t)(be(t)ci(t)− bi(t)ce(t)) + 2c(t)ci(t)(be(t)c(t)− b(t)ce(t))

c4(t)

=
ce(t)ci(t)(−c(t) ∗ (Ee + Ei) + 2b(t))

c(t)3
(B.55)
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B.3 Gradients for the spike history filter

The derivative of the log likelihood with respect to the spike history

filter is

d

dhspk
L(Θ) = ∆αH

>
(q ◦ a). (B.56)

B.3.1 Second derivative for the spike history filter

The second derivative of the log likelihood with respect to the spike

history filter is

d2

dh2
spk

L(Θ) = α∆
[(

[q ◦ ae + wqe ◦ a ◦ a] 1
>

J

)
◦H

]>
H. (B.57)

B.3.2 Mixed second derivative for the spike history and conduc-
tance filters

Here we show the second derivative of the log likelihood with respect

to ke and hspk. The mixed second derivative with respect to ki and hspk is

analogous.

d2

dhspkdke
L(Θ) = wα∆

[(
[q ◦ dae ◦Ve + wqe ◦ a ◦ a ◦Ve] 1

>

K

)
�X

]>
H

(B.58)
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