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Abstract

Along with other intelligent traffic control schemes, autonomous
vehicles present new opportunities for addressing traffic congestion.
Traffic simulators enable researchers to explore these possibilities be-
fore such vehicles are widespread. This thesis describes a new open
source1, agent-based simulator: the Approximately Orchestrated Rout-
ing and Transportation Analyzer, or AORTA. AORTA is designed to
provide reasonably realistic simulation of any city in the world with
zero configuration, to run on cheap machines, and with an emphasis
on easy use and simple code. Experiments described in this thesis
can be set up on a new city in about five minutes. Two applications
are built on AORTA by creating new intersection control policies and
specifying new strategies for routing drivers. The first application,
intersection auctions, allows humans to instruct their autonomous ve-
hicle to bid on their behalf at intersections, granting them entry before
other drivers who desire conflicting movements. The second, external-
ity pricing, learns the travel time of a variety of different routes and
defines a localized notion of cost imposed on other drivers by follow-
ing the route. This information is used to tax drivers who choose to
improve their own trip by inconveniencing others. These two systems
demonstrate AORTA’s utility for simulating control of the traffic of
the near future.

1http://www.aorta-traffic.org
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1 Introduction

Anybody that drives in a city needs few statistics to motivate the search for
solutions to traffic problems. In 2012, drivers just in the United States spent
5.5 billion hours, burned 2.9 billion gallons of fuel, wasted $121 billion in lost
time and fuel, and emitted 56 billion pounds of carbon dioxide while stuck
in traffic [18]. Building more roads to increase capacity takes money and
space that many cities lack, so cities must instead utilize existing roads more
effectively.

The advent of autonomous vehicles (AVs) has the potential to change
these issues. Universal adaption of reliable AVs means decreased following
distances on freeways, the virtual elimination of the 30, 000 deaths per year in
the US [1] caused by drivers, a radical shift in lifestyle as monotonously-spent
hours are returned to commuters, and the introduction of new legal and eth-
ical dilemmas. These changes are just the beginning: current traffic control
systems – namely, intersections controlled by traffic signals and routes picked
from driver experience or GPS recommendation – are built for human agents.
Intelligent transportation systems such as real-time travel information,
variable speed limits, and ramp metering have been introduced. Widespread
adoption of AVs further catalyzes new systems that could route vehicles away
from congestion, time the arrival of a hybrid car at intersections to allow for
hyper-miling, coordinate flow between multiple intersections, and have traffic
respond pre-emptively to approaching emergency vehicles.

Car manufacturers are already competing to deploy AVs to the public.
By 2020, Tesla, GM, Audi, Nissan, and BMW all aim to market vehicles that
are nearly fully autonomous [22]. Widespread adoption is probably still at
least a few decades away. To explore ideas for controlling traffic of the future
now, traffic simulations are used. There are many existing open-source
simulators already. In 2012, we introduced a new open-source simulator:
the Approximately Orchestrated Routing and Transportation Analyzer, or
AORTA [4]. This thesis heavily revises and expands on that paper. In
addition, this thesis explores several novel ITS control schemes. Three high-
level goals have directed AORTA’s development and distinguish it from other
simulators:

1. Reasonably realistic simulations on real city maps with fast setup

2. Real-time, user-friendly usage on cheap machines
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3. Simple, high-level code that is easily extended

These features mean a reader with minimal knowledge can import any city
into AORTA and start visualizing real-time simulations in about five minutes.
Aside from replicating the experiments in this thesis, researchers can then
quickly prototype new ideas by modifying AORTA. The code-base – a mere
11, 000 lines of code in a modern, multi-paradigm, Java-based language called
Scala – has been completely overhauled several times throughout its history,
and the end product is simple and succinct. Finally, two non-goals of this
thesis should be stressed. First, some research in ITS deals with the hardware
responsible for controlling the new behavior. Second, any real deployment of
AVs and systems built on top of them requires the highest level of security
and fault analysis. This thesis disregards both issues, presenting all ideas as
prototypes.

The rest of this thesis is organized as follows. First, §2 evaluates other
traffic simulators are evaluated. §3 then covers AORTA’s map model. Next,
§4 presents the simulator structure and traffic model, with §5 then focusing
on three configurable pieces designed particularly for ITS experiments. With
the simulator fully described, the fun begins. The first application built on
AORTA is the notion of intersection auctions, described in §6. The second
application, located in §7, influences drivers’ routes with tolls designed to
prevent congestion. Finally, §8 describes a number of future projects that
could be built with AORTA, and §9 concludes.

10



2 Related Work

This section gives a brief overview of traffic simulators, focusing on a few
that are most closely related to AORTA.

Wang and Prevedouros [21] provide an excellent overview of traffic sim-
ulators, classifying them by several factors. One characteristic is the time
model. Some simulators run in discrete time, meaning agents repeatedly
react to the world every fixed time-step. Discrete event simulations can
pass time faster, as they jump to the time at which interesting events oc-
cur, such as an agent reaching the end of a road or a faster agent coming
into range of a slower agent. These simulations develop formulas for deter-
mining when these events occur. Analytical models – not simulations – are
often continuous time, meaning the traffic state at any moment can be
determined by solving some differential equations. AORTA is discrete time
because it allows for the greatest flexibility in agent behavior.

Level of detail is another major characteristic of a simulator. AORTA
is microscopic, meaning individual drivers are modeled as agents. Micro-
scopic simulators sacrifice speed for more detail, with each driver deciding
a safe speed to travel and when to change lanes. Some microscopic models
frame the environment and vehicle behavior in a cellular automata model [13],
but these are quite dissimilar from the agent-based approach. In contrast,
macroscopic models aggregate information at each road and intersection,
typically as a number or density of vehicles. These simulators can be used
to analyze much larger regions with millions of drivers. Finally, meseo-
scopic models hybridize the two, representing packets of vehicles at a time.
These packets have a detailed behavior as in microscopic simulations, yet
they represent many drivers at once.

This section only discusses open-source simulators. AORTA’s purpose is
to prototype new traffic control schemes, a task that requires modifying a
simulator. As such, it is not useful to compare AORTA to simulators without
the same degree of extensibility. Two popular closed-source traffic simulators
must be mentioned, though. CORSIM is a detailed microsimulator, support-
ing multiple vehicle types and public transportation. It has a separate model
for freeways and urban areas. PTV VISSIM is another widely-used simulator,
with particular support for multi-modal transportation.
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2.1 SUMO

SUMO [12], the Simulation of Urban Mobility, is one of the most widely
used microscopic simulators. This section makes no attempt to explain all
of its features; rather, its 0.18 release (the most recent as of October 2013)
shall be evaluated against the goals of AORTA. SUMO has a high degree
of configurability, mostly through XML files for demand data, routes, turn
definitions at junctions, the map, traffic signal timings, and so on. More
things are tunable than in AORTA without editing the source. However, its
numerous capabilities come at the cost of a massive code-base of 125, 000
lines of C++. Upon rough inspection, the code is not easy to understand.
For example, the function isInsertionSuccess in the MSLane class attempts
to introduce a new driver into a lane, avoiding a crash. The function is 210
lines long with over 5 levels of nesting and conditional in some sections. A
quick glance at the details reveal many basic blocks that should be refactored
as separate functions.

SUMO also has a high startup cost. Using provided tutorials, I tried to
run a simulation using an OpenStreetMap encoding of Seattle. The map im-
porter lacks reasonable defaults: the option to remove disconnected portions
of the map is off by default. A separate Python script is needed to generate
random trips for agents. Even after disconnected sections of the map were
pruned, simulating these generated trips resulted in immediate failure2. Un-
doubtedly there is a way to make everything work, but there is no simple set
of instructions for getting started with a common use-case.

There has been no proper evaluation of AORTA against SUMO, but some
conclusions can be drawn. SUMO is a much more powerful simulator, but it
comes at the cost of a more complex code-base and a difficult user experience
for beginners. AORTA replicates much of the core behavior in only 11, 000
lines of a higher-level language, and has scripts and reasonable defaults so
that a beginner can begin simulating in any city within minutes. An argu-
ment may be made for the choice of C++ for speed, but there are doubts.
Loading the map for Seattle in SUMO took longer than in AORTA, probably
because the encoding in SUMO is uncompressed XML – a verbose 100MB –
compared to AORTA’s binary format of about 4MB. Disk IO as a limiting
factor appears to have been neglected in this design decision.

2An agent could not find a route for the trip generated by the Python script
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2.2 MATSim

MATSim [2], the Multi-Agent Transport Simulation, is another major traffic
simulator. Its focus is on the bigger picture of evaluating how people choose
different aspects of their trips – where to go, when to leave, what route to take
– rather than simulating detailed traffic conditions. It has two traffic flow
models, the newer of which uses discrete-event time. Equations give times at
which links will change state (meaning a driver exits or enters a road), and
effects like congestion spillback have to be explicitly modeled. In AORTA,
such effects arise naturally as each agent constantly reacts to its environment.
MATSim is agent-based in the sense that each driver updates its trip plan
after getting a score from simulation. Modeling new control policies for
intersections, for instance, would not be straightforward in MATSim. As
such, further comparison is difficult. For reference, MATSim 0.5 consists of
140, 000 lines of well-organized and documented Java. The tutorials make it
quick to start using, but getting visualization components to run takes more
work.

2.3 AIM

The Autonomous Intersection Management (AIM) project [7] introduces an
intersection control scheme designed for autonomous vehicles. As drivers
approach an intersection, they request their desired movement from an in-
tersection agent. This intersection manager determines when the driver can
safely make the turn and sends back a reply. The manager predicts potential
collisions by dividing the intersection into a grid and reserving space-time
tiles for each vehicle. The buffer around a vehicle can be adjusted to account
for mechanical inaccuracies, in case the autonomous vehicle cannot exactly
follow its intended path.

AIM is not a general traffic simulator; instead, it focuses on interactions
between vehicles and infrastructure at one intersection. AIM has been ex-
tended to cover a small network of linked intersections [10]. AIM is a large
source of inspiration for AORTA: originally AORTA was conceived to explore
the idea of running AIM’s intersection protocol at every intersection in an
entire city. This goal was never quite realized, as AIM’s protocol is too ex-
pensive to simulate on one machine at thousands of intersections at a time.
In addition, intersections in AIM have an idealized geometry, but AORTA
uses more realistic data, which cannot as easily be divided into grids. Note
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that an intersection policy inspired by AIM exists in AORTA; see §5.1.3. As
a point of comparison, the AIM 1.0.3 simulator consists of 40, 000 lines of
Java.
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3 Maps

To simulate traffic, some environment for vehicles is needed. For example,
AIM hardcodes a simple network of roads and intersections, while MATSim
can run over all of Europe. In contrast, AORTA is designed to work at city-
scale, simulating a metropolitan area. This scale is large enough to study
interesting questions about coordination between drivers and intersections,
while not being so ambitious as to compromise real-time usage.

There are three goals of AORTA’s maps. First, we wish to run simulations
on real cities. Handcrafting or randomly generating maps is a useful testing
technique, but we wish to avoid the bias from using mock cities. (Note
that we do not simulate realistic traffic demands in this thesis, due to the
lack of data – see §3.5.) Second, we desire generality. Although it may
be convenient to develop experiments for a familiar city, there is no reason
to make decisions limited to one city. Results obtained in one city should
be repeatable in another, and if they differ greatly, properties about the
networks should be discovered to explain this. Finally, zero configuration
should be required for new maps. Time is better spent developing code, not
hand-tuning maps. As a trade-off, development time has been spent finding
workarounds to the imperfect map data available.

3.1 OpenStreetMap

Based on the three goals of AORTA maps, OpenStreetMap (OSM)3 is the
source for map data. OSM is a project that releases maps of the entire
world under the Creative Commons license. Anybody can contribute map
data, and quality control is done on a volunteer basis. OSM files can be
downloaded from the main website, although this process only works for a
limited map size. Other websites4 provides dumps of many major cities, and
OSM also has a planet-wide file. Tools like JOSM5 can be used to further
refine a large map into the desired region, specified as a bounding polygon.

The OSM map model consists of ways and nodes. Nodes are a single
latitude/longitude pair, and ways are a sequence of nodes. The nodes in a
way encode an approximation of the center of a road. Ways have many an-
notations, describing the road’s classification and one-way restrictions. OSM

3www.openstreetmap.org
4http://metro.teczno.com/, http://download.bbbike.org/osm/, etc
5http://josm.openstreetmap.de/
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files also encode other information like the presence of points of interest and
bike paths, which AORTA ignores. OSM files are XML and easily parsed.

3.1.1 Limitations

There are several deficiencies with OSM data from AORTA’s perspective.
First, OSM ways do not specify how many lanes are on each street. (There
is a tag for number of lanes, but it is rarely used in most cities.) AORTA
guesses the number from the classification of a way, which is occasionally
wrong. The impact of the wrong number of lanes can be rather severe. If a
major road with several lanes is marked as minor for one segment, then traffic
will bottleneck there. This problem only occurs in simulation; in reality, the
number of lanes is different, so congestion does not necessarily form there.
In principle, mis-marked data like this could be fixed and contributed back
to OSM.

Another lack of detail is in intersections, which OSM does not even ex-
plicitly encode. Two ways sharing a node is treated as an intersection. OSM
does not describe the turns available. One-way roads are marked, so some
turns can be prohibited. Since lanes are not explicitly encoded, turn lanes
are of course not specified. If a major road feeds into a minor one and the
number of lanes lessens, what can drivers in the rightmost lane of the first
road do? They may go straight and merge with people from other lanes
also going straight, or only turn right. For simplicity, AORTA never infers
multiple lanes for turning left or right.

Overall, the limitations of OSM have heuristic workarounds. Familiarity
with the city during development helps detect anomalies. The level of detail
in OSM is really inconsistent6, which is expected from a volunteer-driven
mapping project.

3.2 AORTA Map Model

This section describes AORTA’s map model and its limits, invariants, and
encoding. An AORTA graph (or map) consists of lanes, vertices, turns,

6We once discovered that every tree on the east half of the Texas state capitol grounds
is precisely marked. In our amusement, we reached out to the tagger of the trees to learn
that her software had buggily erased the west side. Since then, somebody added in the
west trees. It should be noted that entrance lanes to I-35 were missing in some places.
Priorities are strange.
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Figure 1: AORTA map model

and roads. Each road has two groups of lanes, one in each direction. One-
way roads only have one group of lanes. The term directed road refers
to each group of lanes. Vertices represent intersections, where roads cross.
They contain turns, which connect a lane on a road incoming to the vertex
to a lane on a road outgoing from the vertex. These elements are shown in
Figure 1.

Drivers travel along lanes and turns in single-file. Turns and lanes are
the same with respect to modeling movement. Geometrically, lanes consist
of a sequence of line segments (when the underlying piece of the OSM way
defined multiple points), and turns are a single line segment between the
last point of the incoming lane and the first point of the outgoing lane. (It
would be perfectly reasonable to model turns with curves, but this would
only improve the visual representation and not any real simulation detail.)

For the purposes of finding paths, there are several ways to view an
AORTA map as a graph. One interpretation is that from a lane, a driver
may travel to any other lane in the same directed road by lane-changing or
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to any turn connected to that lane. It turns out that it is inconvenient for a
routing component to prescribe the specific lanes that must be used. Instead,
directed roads are used as graph edges, with intersections linking them.

3.2.1 Map Properties

Some properties are always true of AORTA maps, guaranteed by the con-
version process in §3.3. First, the directed roads of the map are connected,
meaning that there exists a path connecting any two directed roads. If this
was not true, it would be impossible for some drivers to find a route to
their destination. In simulation, a driver may have to change lanes to fol-
low a route. As described in §4.1.3, there are constraints on lane-changing
involving the length of the road – namely, the driver must completely finish
changing lanes by the time they are at the end of the road. There could be
a case where a driver must cross 5 lanes to make a turn, but the road is not
long enough to support this movement. To remedy this, the number of lanes
a road has is limited based on its length, speed limit, and the lanechanging
distance parameter.

A second property constrains the length of lanes. Because drivers stop 5
meters from the end of a lane in AORTA’s model, lanes should be at least this
long. In addition, the presence of short lanes implies multiple intersections
spaced close together. In order to move through a section of the map, a driver
must negotiate with each intersection. In practice, unless the intersections
are coordinating in some way (such as synchronized timing on traffic signals),
then unrealistic bottlenecks will occur near short lanes. To deal with these
two problems, a minimum lane length of 50 meters is required. Merging short
lanes into adjacent lanes enforces this limit, as described in §3.3.3.

3.2.2 Map Encoding

An AORTA map is characterized by the following data:
1 roads

1.1 ID
1.2 length (computable from coordinates, but cached for speed)
1.3 name
1.4 OSM metadata (type and OSM ID for debugging)
1.5 2 IDs of vertices linked
1.6 sequence of coordinates
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2 lanes
2.1 ID
2.2 road ID
2.3 direction (called “positive” and “negative” arbitrarily)
2.4 lane number (an offset from the rightmost lane)
2.5 sequence of line segments
2.6 length (cached)

3 vertices
3.1 ID
3.2 location coordinate
3.3 turns

3.3.1 ID
3.3.2 origin and destination lane IDs

4 geometric metadata (width, height, x offset, y offset, scale)

5 map name
This data is encoded in a compact binary format. It could just as easily

be expressed as XML.

3.3 Map Construction

This section details the process of converting an OSM map to an AORTA
map. This process only has to be run once per map, not once per simulation.

3.3.1 Pass 1: Scrape data from OSM

Using a SAX XML parser7, each XML element from the source OSM file is
processed. Nodes correspond directly to a (longitude, latitude) coordinate.
When a node is referenced by more than one way, it is added as a vertex.
The road name, road type, coordinates, and other miscellaneous metadata
are scraped from the OSM ways. Finally, coordinate normalization occurs.
AORTA’s coordinate system follows that of the Swing GUI library for con-
venience in drawing – the origin is at the top-left corner, only the positive
quadrant is used, and coordinates are scaled to be in the range [0, 5000].

7SAX parsers stream XML events. DOM parsers give a tree structure and are easier
to use, but consume too much memory.
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This max height/width is arbitrarily chosen. The min and max x and y
coordinates are found, then all coordinates are translated and re-scaled8.

3.3.2 Pass 2.1: Split ways into roads

OSM ways correspond to roads that cross many intersections. To move
towards having a graph structure, this pass splits ways into roads that go
between exactly two intersections. The list of points in each way is traversed,
and each pair of control points contributes a road. Control points are either
points marked as intersections in the previous pass (because more than one
way references them) or the first or last point of the way.

3.3.3 Pass 2.2: Merge short roads

Figure 2: A short road (left) and its removal (right)

As mentioned in the map properties, short roads cause problems and
must be removed. It is simplest to do this in pass 2, while roads are still
directionless and have no lanes. This pass iterates over all short roads under
50 meters excluding cul-de-sacs9, removes the road, and arbitrarily removes
one of the road’s two vertices. It then stitches up every road referencing the
removed vertex, making it point instead to the other vertex. Figure 2 shows

8It would be simpler to leave coordinates in GPS-space and only transform in the GUI.
This will be fixed in the future.

9roads that form a self-loop on a vertex
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this process. On the left, the red road is too short. On the right, one vertex
has been removed and both connected roads extended.

3.3.4 Pass 2.3: Collapse degenerate vertices

Degenerate vertices have only two roads leading to them. They are degener-
ate because no turns could ever conflict. The only purpose of keeping around
a degenerate vertex is to keep data between the two roads separate – speed
limits, number of lanes, or the name of the road. This pass finds all degen-
erate vertices, then merges the two roads and removes the vertex. This pass
must be run after merging short roads in pass 2.2. Since 2.2 also removes
vertices, it makes some vertices that were originally normal become degen-
erate. Thus, this pass should run after 2.2, to clean up any new degenerate
cases, as well as pre-existing cases.

3.3.5 Pass 3.1: Multiply roads into lanes

Each road has a number of lanes in each direction. Directions are arbitrarily
labeled either positive or negative, and a one-way road only has positive
lanes. The number of lanes is given by a very rough heuristic based on the
OSM road type10.

3.3.6 Pass 3.2: Filling out turns

At this point, lanes link to and from vertices, but no turns connect them.
This pass creates turns for each vertex. If there is only one road leading to
a vertex, it is a dead-end. Assuming the road is not one-way, corresponding
lanes are linked together with turns. Figure 3 demonstrates these U-turns.

At each vertex, every pair of incoming roads and outgoing roads is an-
alyzed. The angle between arbitrary representative lanes on each road is
calculated. If the angle is less than a crossing threshold of 18◦ or if the two
roads came from the same original OSM way, then the connection will be
straight crossing turns. If the number of incoming lanes equals the number
of outgoing, then each corresponding lane will be linked by a turn. If there
are less lanes on the other side of the intersection, then the rightmost incom-
ing lanes will all have to merge into the one rightmost outgoing lane. If less

10Residential streets, service roads, and links have 1 lane; all other types have 2
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Figure 3: U-turns at a dead-end

lanes lead to more, then the leftmost incoming lane gets to pick from the
extra choices of outgoing lanes.

When the angle between the two roads is beyond the threshold, then ei-
ther the leftmost lanes are linked, or the rightmost lanes are linked. Multiple
left or right turn lanes are never created.

3.3.7 Pass 3.3: Disconnected graph pruning

Lanes have predecessors, other lanes that lead to them via turns, and
successors, other lanes that are reachable from them via turns. At this
point, some lanes may lack one or both, since the prior pass may fail to fill
out some turns that might exist in reality. Since maps must be connected,
this pass employs a fixed-point algorithm to guarantee connectedness. The
algorithm cycles between two stages. In the first, it discovers lanes with
no predecessors or successors and removes them. In the second, Tarjan’s
algorithm [19] is run on the graph of lanes and turns in order to find all
strongly-connected components. All but the largest component are removed.
Since each stage removes pieces of the map and potentially creates more
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pieces of the map to be removed, the algorithm iterates until there are no
changes. After all of this work, all lanes, turns, roads, and vertices are
renamed so that their IDs are contiguous.

3.3.8 Pass 3.4: Trimming lane geometry

Figure 4: Lanes before trimming (left) and after trimming (right)

Due to the way lane lines are projected from road lines, lane geometry
naturally extends until it juts into the intersection. This is visually displeas-
ing, so this pass attempts to correct for this. The line segment closest to
the intersection for every lane is quadratically compared. When segments
intersect, both are trimmed back to the point of crossing. There may be
many collisions for a given line, so the correction with the greatest magni-
tude is chosen. Figure 4 shows the results. Unfortunately, this fix makes
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some correct lanes become too short, violating the efforts of pass 2.2. Since
these transformations are aesthetic and 2.2’s are semantic, for now this pass
is disabled.

3.3.9 End of conversion

The built map is serialized in a binary format.

3.4 Evaluation of Map System

City Austin Baton Rouge NYC SF Seattle
OSM file size (MB) 11 15 15 55 29

OSM nodes 40, 677 48, 608 50, 461 251, 581 118, 237
OSM ways 3, 214 6, 421 2, 446 7, 833 5, 337

AORTA file size (MB) 2.5 5.4 .9 5.3 4
AORTA roads 6, 756 13, 892 3, 460 12, 769 10, 277
AORTA lanes 13, 396 28, 232 4, 562 23, 929 21, 237

AORTA vertices 3, 971 9, 233 1, 730 6, 937 5, 848
Time (mm::ss) 0:44 1:25 1:05 1:45 1:14

As the table above indicates, the one-time conversion process is cheap11.
With a low-end machine (2GB RAM, 2.32 GHz chip), these map sizes lead
to acceptable performance for most simulations. AORTA has not been eval-
uated on maps much larger than one city.

3.5 Demand Data

Once realistic maps are available, the next step is to produce realistic pat-
terns of traffic, such as a morning rush from home to work. This requires
origin-destination (OD) pairs indicating how many drivers leave from one
region during some time to travel to another. There is a large body of work
[14] describing various ways to produce these pairs. OpenStreetMap gives
AORTA generality in maps, but unfortunately, there is no known source for
demand data for many cities. (Recently, OpenStreetMap has annotated in-
dividual residential and business buildings in Seattle. Future AORTA work
will harvest this data to generate drivers leaving from houses and going to
shops.)

11Most of the expensive passes have low-priority simple optimizations to be done, so
this process can be made even faster.
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As a result, in all of the experiments described in this thesis, unless
otherwise stated, the traffic demand is uniformly distributed. This means
that if 10, 000 drivers are spawned per hour, their spawning time, origin, and
destination are uniformly distributed from all available choices. This pattern
is extremely unrealistic.

It may be possible to generate more realistic demands automatically, re-
taining generality. The process would involve picking a random road from
the map, flooding outwards to encompass the surrounding region up to some
threshold, and then defining roads in that region as popular origins and des-
tinations. This process might backfire if the region happens to be an area
with low population and few good routes to the region in reality, but it could
offer some improvement over uniform distributions.
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4 Traffic Simulator

Figure 5: The interaction of the traffic simulator with other components

This section describes the main component of AORTA: the traffic simu-
lator. Figure 5 shows how the simulator fits in the bigger picture of using
AORTA. The remainder of this section dives into the simulator, starting with
the traffic model in §4.1. Next, §4.2 discusses a major feature of the simu-
lator: determinism. §4.3 then discusses gridlock, followed by an overview of
implementation details in §4.4.

4.1 Traffic Model

AORTA is a microscopic, agent-based traffic simulator, meaning each vehicle
is a separate entity that perceives its environment and responds accordingly.
Time advances in discrete steps of 1.0 second. Space is continuous, meaning
the front of a vehicle is located at a real-valued distance from the start of the
road. (The alternative discrete space would split each road into tiles, with a
vehicle occupying only one tile at a time.) Note AORTA includes no model
for pedestrians, bikes, or public transportation.
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Figure 6: The main loop of the AORTA simulator

The simulation proceeds by repeating the steps shown in Figure 6. Specif-
ically, every time-step – or tick – the following occurs:

1. New agents scheduled to spawn at the current tick join the ready set

2. All agents in the ready set attempt to enter the map

3. Action phase: Every active agent moves according to the target accel-
eration set in the previous tick

Lane-changing is initiated before the agent moves during this tick

4. Optionally, all queues of agents verify no collisions have occurred12

5. Optionally, all intersections verify agents in the intersection are not
performing conflicting movements, which would indicate a collision

12Agents present must retain the same relative ordering as the last tick. Due to lane-
changing, agents can appear or disappear from the middle of the queue.
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6. Planning phase: Each agent reacts to its environment, choosing a tar-
get acceleration to perform during the next tick

Agents talk to upcoming intersections to request turns during this
step

7. Agents finished with their route exit the simulation

8. Intersections react to the environment by linearizing the order of turn
requests and granting leases to agents

4.1.1 Agent Lifecycle

This section gives an overview of each stage of an agent’s life. Before a
simulation starts, agents are scheduled to spawn somewhere at a certain
time (see §4.2.2). To model leaving from driveways, agents start at 0 speed.
To avoid existing agents colliding with them, several requirements must be
met for some new agent to spawn on a certain queue:

• new cannot spawn in front of an agent a already on queue unless a
could completely stop and avoid colliding with new in the worst case
(which is new not moving at all)

• new cannot spawn too close behind another agent a on queue

• new cannot spawn in front of an agent a who has been approved by
the next intersection to turn, since that could block a from turning and
contribute to gridlock (see §4.3)

Once an agent is part of the simulation, they react every tick by setting
a target acceleration for the next tick and optionally requesting to change
lanes. Agents request turns from intersections before they may leave a road,
as detailed in §5.3.1. Multiple agents may perform the same turn simultane-
ously, as long as they leave enough space between themselves. If the path of
two turns could intersect at any point, then they are considered conflicting
and cannot be performed concurrently. In Figure 7, the red turns conflict
with the green turn.

An agent’s destination is a directed road. When an agent comes to a halt
at the end of any lane of the goal road, they vanish from the simulation.

28



Figure 7: Turn conflicts

4.1.2 Parameters

The AORTA traffic model has a number of parameters that remain fixed
during the course of a simulation. If, for instance, a run is saved and then
later resumed, the same parameters must still be set for it to be meaningful.
These parameters have not yet been tuned to match realistic driving.
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Parameter Description Default value
dt s The duration of one tick 1 second

end threshold The distance from the end of a lane
that an agent can stop to be con-
sidered at the end13

5 meters

follow dist The minimum distance that must
be between every agent on the
same queue. This represents vehi-
cle length, since vehicles are other-
wise treated as a single point at the
front of the vehicle.

5 meters

max accel The maximum magnitude of accel-
eration/deceleration a vehicle can
perform

2.7m
s2

lanechange dist rate The distance needed to perform a
lane change is this value multiplied
by the lane width of 0.5 meters

5

The tick duration dt s determines how often agents react. Lower values
result in slower-running simulations. When set high (at about 30 seconds),
vehicles tend to lag at intersections. Drivers must request their turn during
one tick, and they will not get a reply until the next tick. This delay main-
tains determinism of intersections approving drivers (see §4.2 for details).
Consequently, drivers may spend 30 seconds on a short road just waiting for
an intersection.

Note that a fixed follow dist and max accel imply that every vehicle is
the same. It is a future task to introduce variety in vehicle capabilities and
size. Some formulas in §5.3.1 rely on every vehicle knowing the max accel of
every other vehicle it encounters. When vehicles start to have variety, these
formulas can remain simple by always using the worst-case value for these
parameters.

4.1.3 Kinematics and Lane-Changing Model

AORTA uses a discrete model of time and models agent location as a distance
from the start of a lane or turn. In each tick, agents move based on choices

13This threshold is set to produce a visual effect in the GUI of stopping before entering
the intersection. It will be removed in the future to simplify the model.
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made during the previous tick, then choose their desired lane-changing mo-
tion and acceleration for the next tick. This section describes how those
choices are applied.

If vi is an agent’s current speed14) and a is the target acceleration, then
vf = max(0, vi+(a∗dt sec)). There is a choice here: AORTA could assert that
agents never reach negative speeds, or it could cap off high decelerations to let
the agent come to rest, then not utilize the remaining duration of the tick. As
the formula shows, the latter was chosen, for two reasons. First, floating point
errors sometimes differ in the computation of what acceleration to use to stop
and the computation of what final speed is set. Second, some formulas are
vastly simplified with this choice in model. With this in mind, the distance
traveled during one tick by an agent is given by d = (vi ∗ t) + (1

2
∗ a ∗ t2)

where t = dt s when a ≥ 0 and t = min(dt s,−vi
a

) when a < 0. The second
argument to min is the time it takes to come to rest from an initial speed
of vi, from the formula vf = vi + a ∗ t, with vf = 0. This distance d first
moves the agent along the current lane or turn. If the agent reaches the end,
they move to the next turn or lane and and continue applying the remaining
distance.

Many roads have more than one lane in each direction. Agents may need
to change lanes to take certain turns; this is mandatory lane-changing.
Alternatively, agents may wish to to avoid a lane with more queued traffic
than others by performing discretionary lane-changing. Discretionary lane-
changing simply prefers the lane with the lowest percent of its capacity filled.
The process to lane-change is as follows:

1. During the planning phase of one tick, mark an adjacent lane as the
target lane

2. During the action phase of subsequent ticks, if the agent is still on the
same road, determine if it is safe to perform the lane-change

If it is, set the lane-changing distance remaining to lanechange dist rate∗
lane width

While lane-changing, the agent exists at the same distance along
both the old and new queues. Agents in both queue have to account
for an obstacle, and the agent changing lanes has to obey constraints
imposed by others in both lanes.

14vehicles cannot move in reverse, so speed and not velocity is the appropriate term
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3. Each tick while the agent is changing lanes, apply the distance traveled
to the lane-changing distance remaining

4. When the agent has traveled the required lane-changing distance, end
the motion, leaving the agent in only the new lane

Note that the actual lane-changing action is performed during the action
phase, not the reaction phase. This choice was made so that all agents per-
ceive the same view of the world during the reaction phase, so it could in
theory be parallelized. The action phase, on the other hand, is sensitive to
the order that agents execute their choices, since lane-changing safety require-
ments depend on the order of other nearby agents’ lane-changing motions.
This sensitivity is why it is vital to execute these actions in a deterministic
order, as detailed in §4.2.

The safety requirements to start changing lanes are:

• The agent must finish lane-changing before reaching the intersection.

• Since the agent could not have requested a turn from the target lane
yet (since agents cannot request a turn until they are sure they could
follow through with it), they may have to stop by the end of the target
queue to wait for their turn request to be approved.

• There must be a slot available on the target queue, for gridlock avoid-
ance (see §4.3)

• The agent cannot move in front of another agent on the target queue
that has already been approved to make their turn (see §4.3)

• If nobody would be behind the agent on the target queue, ask the
intersection if anybody is scheduled to enter the target queue. If so, do
not attempt to lane-change, since there could be a collision15.

• Do not merge in too closely behind somebody else, or cause an agent
on the target queue to crash. Check for agents in a “danger range.”

15This check could be less conservative by checking the speed of the oncoming vehicle
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4.2 Determinism

AORTA simulations are deterministic: given the same input, the same
sequence of events will occur. This allows controlled experiments to be per-
formed, so the effects of one change can be evaluated without worrying about
other factors. Determinism also makes reproducing bugs easy. This section
characterizes the input and give implementation details for how deterministic
resimulation works.

Simulations often introduce noise to model realistic sensors and actuators
that cannot perfectly perceive and act in the world. Noise is compatible
with determinism by capturing and repeating the seed of the pseudo-random
number generator used to produce the noise. In AORTA, noise could be
introduced with human behaviors (see §5.3.2).

4.2.1 Implementation Details

There are several key details to achieve deterministic simulations in AORTA.
First, a systematic use of data structures with deterministic iteration orders
is important. This requirement is easily satisfied by using tree sets and
maps, rather than hash-based structures. Second, all code relying on pseudo-
random numbers must use the same seed in every run. There are not any
uses of random variables in the traffic model itself; instead, some routing
strategies (see §5.2) employ them. Breaking ties by lane IDs or agent IDs
can introduce unintended biases – consider if intersections broke ties this way
when choosing which turns to approve. Since agents that spawn earlier have
lower IDs, this ordering could favor agents that have been traveling longer.
If this effect is desirable, agent lifetime is explicitly available as a variable;
relying on an implementation detail like ID is dangerous.

More generally, agents must perform their moves in a deterministic order.
In a simpler traffic model, it could be possible for agents to plan their moves
in any order (since they all observe the same fixed, atomic state of the world)
and even for them to execute their moves in any order (since where they wind
up is a function of the state of the world before anybody moves and their
choice, with others’ choices the same tick being irrelevant). Two details of
AORTA’s model prevent any order from being used. First, moves must be
planned deterministically, because any action causing an agent to move into
a different queue (whether by lane-changing or beginning/ending a turn)
cannot be allowed without first allocating a spot in the queue for the agent,
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due to gridlock avoidance (see §4.3). Second, lane-changing occurs during
the action phase, not the planning phase. During the planning phase, agents
indicate they wish to lane-change, and during the action phase, the first
agent that can change lanes will get to do it. It is ongoing work to remedy
these two cases, since being able to reorder agent moves is an easy way to
parallelize these steps.

4.2.2 Scenarios

A scenario is the unit of determinism; it captures the full setup for a simula-
tion. Simulating the same scenario twice produces exactly the same results.
Specifically, a scenario encodes:

• the map on which a simulation is to be run

• every agent that will exist in the simulation

their ID and the time at which they will spawn

exactly where they start (the directed road and distance along it)

their destination and the implementation-specific parameters for
their route

• the configuration of every intersection

Scenarios are convenient structures for running experiments. For in-
stance, measuring the effects of changing a congested intersection from a
stop sign to a traffic signal is a matter of running two simulations. The
second run would re-use the same scenario from the first, just assigning a
different control policy to the intersection in question.

Scenarios can be created and modified using convenient command-line
tools. Distributions of agents and intersections can be defined, so scenarios
with some percentage of agents routing using a certain strategy can be set
up. Using the GUI (see §4.5), regions of the map can be selected, and then
agents can be spawned to travel from one region to another. Scenarios can be
modified surgically, changing one agent or intersection, or at large, changing
the behavior of all intersections.
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Figure 8: Gridlock at 4 adjacent intersections

4.3 Gridlock

A reasonable liveness property requires all agents to eventually reach their
destination. This section deals with this property and how it is jeopardized
by gridlock. Gridlock occurs when queues of drivers become interdependent.
In gridlock, there are a sequence of full queues, with the driver at the front
of each queue waiting to enter the next queue in the sequence. Until one of
the drivers decides to take a different turn and move into a queue that is not
full, all agents involved will remain stuck forever. Empirically, when gridlock
in one section of the map occurs, other drivers trying to pass through that
region will also become stuck, and the problem grows. Figure 8 demonstrates
a localized form of gridlock. Each of the red cars wants to turn left. The
yellow car wants to pass through the critical area, and by blocking forever,
will cause the problem to grow. Queue spillback and gridlock are explicitly
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modeled by some macroscopic traffic models, but it is an emergent effect in
agent-based AORTA.

AORTA’s intersections prevent agents from starting a turn if another
agent is still performing a conflicting turn. So if an agent ever stops during a
turn, then all agents wishing to perform conflicting turns become stuck. The
solution is thus to prevent agents from starting a turn they cannot finish.
In reality, humans would creep around one another, performing conflicting
turns slowly, and gradually proceed. Nonetheless, gridlock is a real issue,
and the techniques used to alleviate it in AORTA may be useful in reality
too.

AORTA maintains some invariants to guarantee that once an agent’s turn
request is approved by the intersection policy, then nothing may prevent the
agent from completing that turn. A rest capacity is defined for each lane,
describing the max number of agents that can fit in the lane when at rest.
(Reaching this capacity is not desirable, as no agent in the lane could be going
the speed limit.) An agent reserves some of this capacity while they drive
on a lane and just before they enter a lane, and they cannot be evicted by
other agents. An agent allocates a slot on a queue in several circumstances:

• just before they spawn as a new agent

• just before they begin lane-changing

• when an intersection policy approves them for a turn, the turn’s desti-
nation is marked

• when the reservation policy (see §5.1.3) chooses a turn request to inter-
rupt the current set of approved turns, the interrupting agent allocates
a slot

An agent frees a slot after exiting that lane. Note that the third rule
prevents cases where agents on several incoming roads all desire a spot in
one almost-full lane. The intersection will only approve agents up to the
capacity of that lane. Also recall that one of the rules for lane-changing
given in §4.1.1 prevents agents from lane-changing in front of another agent
who has been approved for a turn. If this was not enforced, then an approved
agent could be stuck behind an unapproved agent, violating the invariant.

This invariant does not fully prevent gridlock. Consider a case where all
agents in some interdependent queues are stopped on lanes, with nobody in
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Figure 9: Gridlock at many intersections

any intersection. If the desired lane of every leading agent is already full, then
gridlock is still present, as in Figure 9. One possible solution is preventative
detection: before an agent requests a turn or before an intersection approves
one, a cycle detector can discover interdependencies among the leading agent
in full queues, so a different turn can be chosen. However, this fix is a bit
too weak: there are some race conditions that can occur after approving but
before starting a turn.

Instead, AORTA adapts a simpler approach: if an agent is waiting for its
turn to be approved, the agent is part of a gridlock cycle, and the agent has
another choice of turn, then the agent can reroute using congestion routing,
described in §5.2.2. This way, the queues belonging to a gridlock cycle will
gradually start moving again. This improves conditions, but does not solve
every possible case.
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4.4 Implementation

One of AORTA’s selling points is its simple and concise implementation.
This can only be fully appreciated by working with the code, but this section
highlights some key features. The language choice is discussed in §4.4.1, then
AORTA’s organization is described in §4.4.2, and some specific design pat-
terns utilized are listed in §4.4.3. In addition, note that AORTA is currently
single-threaded, but parallelization is planned (see §8.2.2).

4.4.1 Scala

AORTA was originally written in Java, but it was completely ported to Scala
after a semester of development. This section briefly argues why Scala was
chosen. Scala mixes ideas from functional programming and object-oriented
programming, allowing either style to be used. Since it runs on the Java
Virtual Machine (JVM), Java libraries can be used from Scala.

AORTA particularly utilizes several of Scala’s features. First, Scala dis-
tinguishes mutable variables from immutable values. Immutable data can be
shared between parallel executing contexts without locks and enable some
compiler optimizations. In AORTA, they are useful to organize the member
fields of each class, accentuating the truly mutable state. Second, Scala lists
have the functional programming transformation map and filtering filter
functions defined. Combined with anonymous functions, this replaces many
verbose loops with a succinct one-liner. Third, Scala has a built-in option
monad, which describe the return type of operations that may fail. Finally,
Scala has powerful pattern matching that can branch to cases based on mul-
tiple factors.

While the default Scala compiler runs very slowly (about three minutes to
compile AORTA’s code-base), third-party build managers make compilation
quite responsive. Specifically, sbt16 incrementally compiles code. With sbt,
the entire code-base can be compiled in about one minute, and most changes
to the code only take a few seconds to recompile.

4.4.2 Components

AORTA is split roughly into three layered components: the map system,
the microscopic simulator, and the GUI. The map system is independent

16http://www.scala-sbt.org/

38

http://www.scala-sbt.org/


of the other code, meaning that building a macroscopic simulator – or any
other application – on top of the maps would not involve detangling much
simulation-specific code. The microscopic simulator, though, is tied rather
heavily to the map system. AORTA is not tied to OpenStreetMap though;
maps from other sources could be converted to AORTA’s format, as in §3.3.
The third component, the GUI, is heavily tied to both the map and simulator.
Although there is some generic code17, most of the GUI visualizes specific
details in the simulator.

Although AORTA has not been integrated with third-party software, its
modularity should make this task easy, as long as the map model in the
other package is compatible with AORTA’s. As an example, the built-in
assignment of traffic signal timings, described in §5.1.2, is simplistic and
could be replaced with results from an external optimizer.

The following table gives the break-down of the 11, 000 lines of code18 in
AORTA.

Package Lines of code Description
analysis 666 measuring stats, recording replays, and

various experiments
common 549 configuration, physics formulas, serializa-

tion, and other general code
map 1000 map model

map/analysis 448 map pathfinding
map/make 1247 convert OSM to AORTA maps

sim 3362 traffic model
sim/market 525 intersection auction code
sim/policies 521 different intersection policies

tests 229 test cases
ui 1726 GUI

4.4.3 Design Patterns

This section lists a few particular patterns AORTA uses. First, each class
is organized into several labeled sections for consistency. The mutable state
of each object is grouped first, followed by standard methods to serialize
and initialize the object. Then “action” methods that have a side-effect on

17Such as the ScrollingCanvas class, which exposes a large buffer and interprets key-
board and mouse controls to perform panning and zooming

18measured directly with Unix wc -l, which includes whitespace and comments
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the object or other objects are defined. Finally, “query” methods that are
read-only follow. It is useful to have documented whether or not a method
is pure19.

AORTA has many ID spaces to identify agents, roads, vertices, turns,
lanes, and directed roads. Each ID is just an integer. It is easy to mistake
one type of ID for another – there was once a bug in serializing routes where
lane and directed road IDs were mixed up. When that bug was present, ID
spaces were distinguished by variable naming or by context. However, since
Scala 2.10 introduced value classes, this problem could be fixed with the
type system. Simple classes like AgentID and RoadID are defined that just
wrap integers. These classes form real types, so the compiler statically checks
usages of these. Since types are explicitly declared in the code, naming the
variable carefully is no longer needed to document the ID space. This sort
of strategy is possible in any language allowing new types to be defined, but
the reason to use value classes is efficiency. The boxed ID type is only known
at compile-time; at runtime, the JVM just sees plain integers, so the JVM
does not allocate new objects on the heap. This pattern can also be used to
define physical quantities like distance, time, and speed.

AORTA makes heavy use of the listener pattern to maintain code sep-
aration. User interface or data logging code must respond when key events
occur in the simulation code. Rather than littering unrelated code through-
out the core module, events are broadcast. The event publisher does not
care who consumes the events, enabling the decoupling. The other modules
simply subscribe and consume the events.

4.4.4 Savestates

AORTA can take a snapshot of the traffic model at a certain time, encoding
the exact internal state of every relevant object. This feature saves time. It
may take several wall-hours to pass a few simulation-hours. Suppose some
experiment introduces a change after several simulation-hours. Rather than
simulate the baseline and modified scenario, one of the two can be simulated
once, with a savestate captured right before the change is introduced.

All important simulation state is captured by the following fields. Some
minor fields are omitted.
1 scenario name

19Scala currently lacks a standard way to annotate pure methods and statically verify
they remain this way
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2 tick

3 all agents
3.1 ID
3.2 route

3.2.1 route type
3.2.2 goal road ID
3.2.3 rng
3.2.4 for PathRoute only: the path stored, each chosen turn

3.3 RNG seed
3.4 wallet

3.4.1 wallet type
3.4.2 budget
3.4.3 priority

3.5 start lane
3.6 position (lane/turn ID, distance)
3.7 speed
3.8 target acceleration
3.9 target lane ID (or -1 if none)
3.10 old lane ID (or -1 if none)
3.11 lanechange distance left
3.12 idle since (for calculating how long an agent has been waiting)
3.13 all tickets
3.14 turn ID
3.15 stats on when the turn was requested/accepted/finished
3.16 ID of each agent ready to spawn20

Agents’ routes and wallets have multiple implementations, each with their
own specialized state. The abstract Route or Wallet serializes an enum to
mark the concrete implementation, then saves state common to all imple-
mentations. The subclasses each add their own specific state after that.

This tree of data is explicitly defined because built-in Java serialization
is inappropriate for savestating. Some pieces of the object graph, such as the
in-memory map model, are immutable and recreatable from the map; they
do not need to be serialized with each save-state. Although such fields can
be skipped during serialization with the transient annotation, these fields
have to be restored when unserializing the object. Since manual intervention

20The details of the agent to spawn are in the scenario
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is required anyway and reflection-based serialization is measurably slower,
the tree of data is explicitly saved and used to recreate the traffic model. It
takes about a half-second to write a save-state for most simulations using
this method.

4.5 User Interface

While simulations can be run in a “headless” mode for maximum processing
speed, AORTA also has a GUI for easy interaction. The map can be explored
by panning and zooming, and there is also a way to teleport to a certain lane,
road, or vertex. The GUI can highlight different routes, pause a running
simulation, and track an agent as it moves. The user can draw a polygon
around some region of the map, then capture all roads or lanes contained
within to use as a zone for starting or ending trips.

The GUI uses the Java Swing library for rendering and GUI widgets.
Rather than pollute the main code-base with GUI-related code, a render-
ing wrapper is created per object. The DrawDriver, DrawRoad (with a
DrawOneWayRoad subclass), and DrawLane wrappers render each object,
determine if it hits a bounding box representing the current view pane, and
respond to being moused over. There is also a ColorScheme interface for
determining the color of agents. The schemes work in optional chains: if a
certain scheme does not prescribe a color to a certain agent, it delegates to
the next scheme. The schemes, in order, include:

• FocusV ertexScheme describes agents when the user mouses over a
certain intersection. Agents not involved with that intersection turn
gray, agents with an approved request are green, and agents with a
request not yet approved are red.

• CameraScheme highlights in white the agent whose movements are
being tracked.

• StalledScheme colors agents red if they have been at rest waiting to
take a turn for more than 30 seconds. This pinpoints sections of the
map with bottlenecks.

• PersonalScheme assigns any remaining agents to a randomly chosen
color that they retain for the duration of the simulation.
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5 Configurable Simulation Modules

To accommodate the exploration of autonomous traffic control, AORTA has
three components designed specifically to be extended: intersection control
policies, routing for agents, and agent behaviors. Note that AORTA does not
have explicit support for vehicle-to-vehicle (V2V) communication. However,
adding it to agent behaviors and modeling delayed or corrupted messages
would not be hard.

5.1 Intersection Policies

An intersection policy controls how agents interact with a single intersec-
tion. Agents send a ticket, representing a requested turn, before they reach
an intersection, and they may not begin their turn until the intersection ap-
proves their request. As described in §4.1.1, if two turns conflict, then no
two agents may perform them concurrently, even if physically, there could be
room for the interleaving.

Every tick, a policy examines all enqueued tickets and grant approval to
some subset of them. As described in §4.3, policies must maintain invariants
to avoid gridlock. If a ticket’s agent is currently blocked from doing their
turn, the policy must not accept the request yet. Agents may cancel a ticket
and request a different turn, but this is discouraged. Currently, canceling
tickets is only allowed for agents to avoid gridlock by navigating away from
a stalled queue.

Each policy must choose how to prioritize requests. Any intersection
ordering can be used with any policy. The default ordering is first-come,
first-serve (FCFS). The first agent to request a turn is the first to be served.
Since agents request turns far before they reach the intersection, each policy
must form a list of valid candidates to serve. Often these candidates must
be ready to start their turn in the next tick before they are approved. The
other ordering, based on auctions, is the subject of §6.

One issue is how to assign policies to each intersection by default. The
assignment is based on OpenStreetMap’s annotation of the roads involved
with the intersection as a minor or major road. In AORTA, intersections of
minor roads have stop signs, traffic signals are placed between major roads,
and a reservation manager handles crossings between a mix of minor and
major roads. Other sources such as the Manual on Uniform Traffic Control
Devices could be used to assign policies more appropriately.
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The remainder of this section will describe each policy.

5.1.1 Stop Signs

The stop sign is the simplest intersection policy. It allows only one agent
to perform their turn at a time21. Every agent must completely stop before
proceeding. Each tick, if the intersection is not already occupied, the policy
approves the first candidate ticket, according to the intersection ordering.

5.1.2 Traffic Signals

Traffic signals are the most common form of control for major intersections.
Signals cycle through various phases, in which some turns through the in-
tersection are permitted. Intersection ordering is used here to pick the next
phase, not individual drivers. In AORTA’s simplified model, each phase lasts
a fixed signal duration of 60 seconds. A signal cannot safely switch to the
next phase until all agents approved in the previous phase finish their turn.
As a result, signals need a heuristic to determine if an agent could finish their
turn by the time the phase ends. Right now the heuristic is overly simple:
if the agent travels at the road’s speed limit and could start the turn by the
time the phase ends, then the ticket is approved. There is much room for
improvement here.

There are many choices for the phases. A massive body of literature
on this subject covers everything from patterns of three-phase signals to
multi-intersection light optimization. One simple but effective example draws
inspiration from backpressure routing in communication networks [23]. In
AORTA, there is currently only one simple greedy algorithm. A set of re-
maining turns to assign to a phase is initialized with all turns. To make a
phase, one turn from the remaining set is chosen arbitrarily and removed.
Turns from the remaining set are added to this phase in any order as long as
no two turns conflict. This process is repeated, adding more phases as long
as there are turns remaining. Finally, a post-process pass adds in all turns
compatible with a phase, since only remaining turns were considered in the
first pass.

21This is not realistic, as it prevents two non-conflicting turns from being done simulta-
neously
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5.1.3 Reservation Managers

The reservation manager policy is designed exclusively for autonomous vehi-
cles. It is modeled loosely after the AIM protocol [7]. It works by accepting
one ticket at a time until it cannot accept anybody. The order is determined
by intersection ordering, the candidates consist only of drivers who are not
blocked by others whose tickets are unapproved, and each ticket is accepted
as soon as no conflicting turn is scheduled. The first agent that requests a
turn conflicting with the current batch is considered the interruption, and
no new agents are admitted until this agent can start their move.

This policy’s performance can easily be worse than that of traffic signals,
if the ordering is poorly chosen. A major portion of this thesis is concerned
with choosing the ordering using auctions; see §6 for more.

5.2 Routers

Each agent has a router responsible for leading the agent to its goal. As an
agent moves between lanes and turns, it forwards its location to its router.
In response, the router prescribes a sequence of directed roads to reach the
goal. Sometimes, an agent cannot follow this route; it is an unrealizable
path. This happens when moving from the current directed road to the next
step requires changing lanes, but the target lane is full and cannot be entered
in time. When this happens, the router must reroute. As described in §4.3,
when an agent detects gridlock, it can also request that its router try to find
a new path.

Aside from telling the agent which turn to request at an intersection,
the router also prescribes a lane to use. This is necessary for informing the
agent of a lane that leads to the next step along the path. It is also used for
discretionary lane-changing by choosing the lane with the least congestion.
One future addition could be avoiding unrealizable routes by having the
driver change lanes several steps before a crucial intersection.

The remainder of this section will describe each router.

5.2.1 Dijkstra’s Router

This router runs Dijkstra’s algorithm [6] once, obtaining a table of distances
from every directed road to the target directed road. Picking a turn amounts
to hill-climbing: every turn leads to some directed road, so this router chooses
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the turn leading to the lowest-distance next step. This router prefers lanes
leading to the next step that are closest to the agent’s current lane, since
less lane-changing is easier. This router is simple, oblivious to traffic, has
a moderate one-time time cost, and a reasonably hefty space cost (O(|R|),
with R being the map’s directed roads).

5.2.2 Path Router

The path router delegates to two sources for paths: one for the initial path,
and another for when rerouting is requested or forced. The initial path may
be a fixed route precomputed somehow, but the rerouter must be able to
pathfind between any two roads.

By default, to compute a new path to an agent’s destination, AORTA
uses congestion routing, as part of its gridlock avoidance strategy (see
§4.3). This is a form of A* [9] that weights each directed road with the pair
(congested steps, distance to goal). The first component counts the number
of congested22 directed roads in the path so far. Because the ordering is a
pair, this means that the routing strictly prefers less congested steps, even if
the route is much longer. This preference is quite inflexible and unrealistic:
just because a road far away is congested now does not mean it will remain
congested once the agent reaches it. The second major application described
in this thesis aims generally to improve this.

5.2.3 Drunken Routing

The drunken walk router is not intended for real use. It lazily selects a
random turn and lane, caching the answer to be consistent when queried
multiple times. Theoretically the agent should eventually reach their goal;
in practice, this will not happen. One slight variation of this router prefers
turns to roads closer to the goal by Euclidean distance. A further variation
remembers previous roads traversed and prefers unexplored roads.

5.3 Agent Behavior

The most intricate module is what controls agent behavior. During the
planning phase of each tick, every agent must set a target acceleration for

22A congested road has over 80% of its max capacity filled
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the next tick and optionally request lane-changing. Though this interface is
simple, the primary implementation is quite complex.

During the planning phase, the agent behavior module technically has
access to all information in the simulation. In practice, the view of the world
actually used is limited to the following:

• the position and velocity of all agents on the current road and any
“upcoming” roads that could be reached during the next tick

• an interface to the router, to know which path to follow

• an interface to request turns from upcoming intersections

This is a reasonable amount of localized knowledge, though routers do
access global aggregated information to deal with congestion.

5.3.1 Lookahead Behavior

Figure 10: Lookahead and some constraints

47



The default behavior chooses the highest safe target acceleration by satis-
fying constraints imposed by other agents, upcoming intersections, and speed
limits. Each tick, the behavior computes the max distance its agent could
travel during the next tick, then uses that to lookahead to the remainder
of the current lane and upcoming intersections and lanes, for as long as the
distance prescribes. Figure 10 illustrates this: the aqua car scans ahead, ver-
ifying its turn is approved at the intersection and paying attention to speed
limits and the green car in the next road.

The behavior also has rules for when to attempt lane-changing. If the
agent has already requested a turn, then this means that lookahead previously
scanned past the end of the current lane and had to request a turn. In this
case, the behavior does not try to lane-change, since canceling requests should
be avoided. Before deciding to try to lane-change, the behavior performs the
same safety checks as listed in §4.1.3. If any check fails, the behavior gives
up early, committing to not lane-change on the current road. Agents must
commit to remain on a lane before requesting a turn, so this choice favors
scheduling a turn sooner. Additionally, when an agent must cross more than
one lane in some road, it reduces its speed23 to increase the chances that this
will work. Alternative approaches to lane-changing are possible24.

The full details of each constraint are available in the code25, but an
overview follows here. First, speed limits impose the simplest constraint. As
an agent approaches the end of one road, their lookahead distance causes
them to scan to the next intersection and road. The agent will follow the
lowest speed limit it observes. The lookahead distance is defined so that the
agent will be guaranteed to be traveling at the lower speed limit by the time
they reach the slower road.

The second type of constraint is imposed by intersections. An agent
may not enter one and perform a turn until approved. Thus, agents must
often stop at the end of their lane. Due to floating point issues and AORTA’s
discretized model of time, there are some cases where the standard kinematic
formulas for decelerating to rest while traveling a specific distance fail. For
instance, some agents travel at 0.00000001m

s
for many ticks, slowly reducing

their speed to cover a fraction of a meter. In these cases, one fix is to

23The agent divides the speed limit by the number of lanes to cross, so more than one
lane causes a slow-down. This formula is quite ad-hoc.

24Humans tend to slow down if they cannot lane-change due to other cars. This approach
has not been explored yet in AORTA.

25utexas/aorta/sim/Behaviors.scala
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accelerate at am
s2

one tick and then at −a the next, so that the total distance
is the desired amount.

The third constraint is to not collide with the leader vehicle. In some
cases where the intersection is small and the agent is near the end of their
road, the leader may be on the next road. Regardless, the worst case that
could happen is that during this tick, the leader slams on their brakes, de-
celerating at the max rate possible. A safe behavior must ensure that during
the next tick, the agent can safely decelerate to avoid collision and maintain
the minimum required following distance.

5.3.2 Human Behavior

AORTA generally takes the assumption that all vehicles are autonomous and
can communicate with upcoming intersections. However, this assumption is
not strictly necessary. The lookahead behavior drives as fast as is safely pos-
sible26 and models an AV with excellent reaction time. An easy way to model
human drivers (beyond changing their router) would be to use the target ac-
celeration prescribed by the lookahead behavior as a limit. In other words,
assign each driver a parameter indicating how responsive they are during the
trip, and use it to randomly choose an acceleration some percentage or fixed
amount less than the base-line acceleration from lookahead. This has not
been implemented.

26except for parts that are overly conservative because the math is easier
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6 Intersection Auctions

Traditional traffic control schemes assign all drivers the same priority. Drivers,
though, have different values of time. A traveler late for a flight presumably
tolerates delay less than somebody going shopping. An ideal traffic control
system should be able to accommodate this difference. This system could
not simply poll drivers for their level of impatience, rewarding some while
punishing others, since most drivers would lie. Instead, the drivers must
support their priority by spending form of money.

In previous work [3], we proposed and prototyped intersection auc-
tions, a way to let drivers express their preferences at intersections. Rather
than admit drivers in the traditional first-come, first-serve order, auctions are
run to determine the intersection ordering. This section is an updated form of
that paper. §6.1 starts by reviewing other systems for regulating traffic with
auctions. Then §6.2 formalizes the system for running intersection auctions.
Rather than making humans participate in the auctions, “wallet agents” de-
scribed in §6.3 bid on behalf of drivers. Because introducing auctions raises
equity and efficiency concerns, §6.4 regulates the auctions with “system bids”
that subsidize bids beneficial to the overall traffic flow. Lastly, §6.5 evaluates
the system’s performance and §6.6 discusses further implications of it.

6.1 Related Work

A similar approach to our work was conducted by Vasirani and Ossowski,
who extended the AIM reservation protocol[7] to use auctions at individual
intersections as well. To handle an entire network, they introduce compet-
itive traffic assignment[20], which has intersections update reserve prices
in real-time in response to the current demand. Drivers choose routes based
on their own preferences between time and cost, participating in intersec-
tions auctions as long as they are willing to meet the reserve price. Although
our work bears similarity to this approach, there are several key distinctions.
First, our system does not restrict drivers to routes based on pricing. In-
stead, we use pricing to control the order in which drivers proceed through
intersections. Second, we explicitly address the issue of equity with system
bids. Third, we generalize the notion of auctions to work at traditional in-
tersection policies as well as with autonomous reservations. Finally, we show
that the idea of intersection auctions is compatible with the realism of a
microscopic simulator running on maps from OpenStreetMap, and make our
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implementation available under an open source license.
Another similar work offers valuation-aware intersections[16]. The auc-

tion format differs in that time is a relevant factor in their free choice and
clocked modes. Rather than run an auction as soon as the intersection is
ready to accept another driver, their work runs auctions at different times
to maximize the number of participants. The evaluation also differs in that
we run simulations with our auction protocol at city-scale, while this work
focuses solely on a single intersection.

6.2 Auction Framework

This section first presents an example of running an intersection auction,
then formalizes the general procedure and describe details of how it works
at each type of intersection.

6.2.1 Example

As an example to illustrate how our proposed intersection auctions work,
consider Figure 11, in which driver A is about to finish crossing the inter-
section. The amount each driver bids (in units of cents) is shown below or
beside their name, and the total bid for each choice at the front of a queue
is circled. All drivers wish to cross straight across the intersection. Only B,
C, D, and E are valid items for the auction, since the other drivers are stuck
behind one of these four. Each driver bids for the driver at the front of its
lane, since each is self-interested. Note that the drivers behind C do not bid
anything, while the driver behind E is actually helping E, to get the indirect
benefit of moving up in their queue of cars sooner.

The winners will split the cost of the second highest bid with propor-
tional payment, a method inspired by the Clarke-Groves tax mechanism[5,
8]. B wins with 50¢, and the runner-up is E with 40¢. The winners – B, who
bid 30¢, and G, who bid 20¢, must together pay the total of the runner-up’s
bid: 40¢. Since B comprised 60% of the winning bid and G made up the
other 40%, B pays 60% of the 40¢ and G pays the remaining 16¢. After
B crosses the intersection, a new auction is run, and G is now a candidate.
Note that G must bid again; the fact that it contributed to the winner of
the previous auction does not affect the next auction. In fact, there is a risk
that new drivers, not shown, could appear behind C and D and repeatedly
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Figure 11: An example of intersection auctions applied to a stop sign

outbid G. The effect is that G wastes its money paying for B to move earlier.
This reflects a more general risk, discussed in §6.6.2.

6.2.2 General Procedure

This section formalizes the procedure for running an intersection auction.
The participants of auctions are all drivers on a road leading to the in-
tersection. These participants choose and bid for various items, which are
either individual drivers wishing to perform a turn or an entire phase of a
traffic signal. (Drivers can bid for multiple items since more than one phase
might be useful to a driver at a traffic signal.) After summing all bids for an

52



item together, a separate system bid, denoted SB(item), is multiplied to
boost certain items, described later in §6.4. As a result of the auction, there
are some losers, which are participating drivers who experience delay due to
the outcome. The items up for bid and the losers are defined per intersection
policy in §6.2.3. The auction process is thus:

1. Ask all participating drivers to bid on an item, collecting bids

2. Determine the winning item: argmaxitem(SB(item) ∗ sum(bidsitem))

3. With the winning item chosen, determine the runner-up item and
losers, then the compute the second price: SB(runner up)∗sum({bid ∈
bidsrunner up | bidagent ∈ losers

4. Collect payment from each driver who bid for the winning item. If a
contributed amount to the total, then a pays: amount

total
∗ second price

SB(winner)

The auction format is that of a 2nd price, sealed bid auction. There is a
single round, with drivers oblivious to the bids of others. The winners split
the second price cost proportionally to what they originally bid. Dividing by
the system bid prevents a driver from spending more than it bid. Note that
ties are broken arbitrarily (but deterministically), and do not occur often in
practice.

6.2.3 Auctions at each Intersection Policy

Auctions are incorporated in AORTA’s three intersection policies, which are
defined in §5.1.

For stop signs, the candidates that drivers can bid on include all drivers
who are stopped at the front of their respective lane. The losers are all
drivers who did not bid for the winner, which should be everybody in a
different lane from the winner, since they do not benefit from the outcome.

For traffic signals, the candidates are phases, rather than individual
drivers. The winning phase lasts for the usual fixed duration, but agents
can extend this duration by bidding for it consecutively. The losers are
drivers whose desired movement is not in the winning phase. Since a turn
could be in multiple phases, it makes sense for a driver to bid for all phases
including their turn. Additionally, agents could predict whether or not they
could make the next light by counting the cars in front of them.
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Recall that reservation managers approve one driver at a time until the
approved driver’s turn conflicts with other scheduled turns. The candidates
are all drivers that are not blocked by unaccepted drivers (since the gridlock
invariants of §4.3 must be maintained). The losers are all drivers whose turn
conflicts with that of the winner, since they have no chance of winning the
next auction and being immediately accepted.

6.3 Wallets: Automatic Bidding

Bidding at each intersection requires constant attention and unbiased judg-
ments about how to best divide the budget. Humans are ill-suited for both
task, so each autonomous vehicle conceptually has a wallet agent bidding
on behalf of the human. Ideally, humans input their preferences to the wallet
in the form of constraints: a max budget to not exceed for this trip, a limit
on cost per time gained, and a deadline for arrival. However, enforcing these
constraints requires predicting the effects of moving through an intersection
several seconds earlier. Due to the sequential auction problem discussed in
§6.6.2, for now, flexible wallets must be deferred.

Two simple wallets are currently implemented. The static wallet always
bids some fixed amount and has an effectively infinite budget. This can be
used to model emergency vehicles, for instance, by making the amount that
they bid sufficiently high. Alternatively, drivers could pay a one-time fee at
the beginning of each trip, and the priority they express at every intersection
is this one value.

Second, the fair wallet attempts to divide the total budget evenly among
all intersections. At any intersection, it spends the remaining funds divided
by the number of intersections left. Since routes change when drivers en-
counter congestion or cannot change lanes, the number of remaining inter-
sections sometimes changes. By default, the fair wallet only pays once at
each intersection: it does not pay for anybody ahead of its driver. This has
the drawback of preventing drivers with a high budget from achieving time
savings when they are stuck behind slower drivers. There is also a bias in the
fair wallet of spending more money towards the end of a trip. Since auctions
are second-price and the burden of payment is shared among the winners,
the fair wallet usually spends less than it bids. As a result, it spends 1

3
, 1

2
,

and finally all of these remaining funds at the end of the trip.
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6.4 System Bids

This section will describe various issues that may arise when individuals
express preferences that lead to inefficient overall orderings. To regulate
these issues, an agent separate from all drivers will place system bids to
maintain various fairness properties. These bids act like a reserve price,
meaning drivers can always overcome them by bidding high enough.

There are several types of system bids for different circumstances, and
since they sometimes conflict, it is necessary to tune the magnitude of their
bids against one another. At the same time, system bids must be scaled
against driver bids. If system bids are too low, they can never affect the
outcome of auctions. If they are too high, driver preferences will be ignored.
The method we use is to multiply driver bids by system bids, rather than
add system bids. After the bids for some item are summed, the system bids
for that item are multiplied by the total. (This is the rate, denoted R, in
§6.2.2.) By multiplying instead of adding, drivers can bid between 5¢ and
10¢ or $5 and $10, and the regulation will be the same. (When system bids
apply to an item, 1¢ is added, since multiplying by zero has no effect.)

The process of tuning system bids sets the specific multipliers for each
type of system bid. Right now, the rates are manually set. In the future,
they will be adjusted by hillclimbing or genetic algorithms with an offline
test.

In the remainder of this section, specific system bids will be presented.

6.4.1 General System Bids

Figure 12 demonstrates two general problems that may occur when drivers
express preferences. On the left side, A wants to move south into a full
queue, while B wants to turn left into an empty queue. A clearly will not
save time overall by hastening to wait in a different queue, so B should move
first. The system bid for pointless impatience corrects this by rewarding
drivers destined for queues with more capacity available. Specifically, drivers
moving into queues with at least %25 max capacity free are rewarded by
having their bid multiplied by capacity rate = 5.

The right side of Figure 12 shows another problem. Driver C wants to
turn left into a busy queue that has steady demand from the north. Imagine
C is not willing to spend much money, so C must wait indefinitely to make
its turn. This situation is particularly troublesome if C has low-income and

55



Figure 12: Two scenarios ripe for regulation by system bids

cannot spend much money. Thus, a system bid will help drivers avoid waiting
forever. A driver’s waiting time is the time since the driver stops because
it reaches an intersection or the driver in front stops. The system bid for
liveness multiplies C’s bid by wait rate∗waiting time, where wait rate = 1
currently.

A third issue relates to gridlock, which is discussed in §4.3. An empirically
effective way to relieve congestion is to reward drivers trying to leave full
queues, since other drivers are often blocking their queue by waiting for a full
queue. The system bid for dependency multiplies bids by dependency rate∗
demand, where dependency rate = 2 currently and demand is the number
of drivers in the queue.
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6.4.2 System Bids for Reservation Managers

Intersections controlled by reservation managers, described in §5.1.3, admit
drivers in some order. When this ordering is poor – if the winning agents oc-
cur on alternating directions that conflict – the throughput of the intersection
degrades severely to that of a stop sign. System bids can help.

The first system bid relates to which drivers are eligible to win. Drivers
request turns before they reach an intersection, but accepting a driver far
away from the intersection needlessly prevents conflicting drivers from pass-
ing. Stop signs only admit drivers stopped at the intersection, and traffic
signals cut off drivers too far away to possibly cross before the phase ends,
but reservation managers need the help of a system bid to achieve a similar
effect. The driver in the front of a queue is ready to turn if they are close
to the end of the queue. Other drivers are ready to turn if they are closely
following a driver that is ready. The system bid for readiness multiplies
bids by ready agents by ready rate = 5.

To prevent drivers in conflicting directions from winning too often, the
system bid for throughput multiplies bids by drivers with turns compat-
ible with those previously accepted by throughput bonus = 7. Note that
throughput is not applicable for stop signs and is naturally achieved by traf-
fic signals.

6.5 Experimental Evaluation

This section evaluates the performance of intersection auctions using two
metrics. First, unweighted total trip time is the sum of every agent’s
trip time27:

∑
agent timeagent. Lowering unweighted time means agents on

average experience faster trips. Second, weighted total trip time is a sum
of trip time, weighted by the budget each driver has available during the
trip:

∑
agent timeagent ∗ budgetagent. Minimizing this metric involves lowering

the trip time of drivers with larger budgets, capturing the intuition that
higher-paying drivers should experience better trips. Of course, comparing
the weighted time of two individual drivers is meaningless, as the score is not
normalized to account for the route length.

Seven different modes will be evaluated in this section. First-come,
first-serve (FCFS) represents the status-quo, where drivers cannot express

27trip time begins when an agent attempts to spawn, meaning some time is spent waiting
for a safe moment to appear on a busy road
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their priority at intersections. In equal mode, all drivers use a static wallet,
always paying $1. This treats all drivers the same, but intersections make
choices based on unweighted demand. For instance, at stop signs, the driver
in the most congested lane will win. Next, fixed mode assigns all drivers the
static wallet with a uniformly distributed budget. At every intersection, the
driver bids this amount. This scheme models drivers paying a one-time fee
for their trip and experiencing that priority at each auction. Finally, drivers
in auction mode pay using a fair wallet and a uniformly distributed initial
budget. Equal, fixed, and auction mode – all except FCFS – can work with
or without the aid of system bids, with the default untuned configuration
presented in §6.4.

Although FCFS is the status quo, using it as a baseline to benchmark
other modes may be inappropriate. All other modes are aware of the num-
ber of cars on each incoming lanes, while FCFS at traffic signals will blindly
cycle through a phase that nobody uses. Additionally, the reservation man-
ager with FCFS ordering admits drivers in a nearly arbitrary order and may
degrade to the performance of a stop sign if turns often conflict in the or-
dering. A better baseline is equal mode with system bids, which still ignores
the priority of drivers, but has knowledge of demand.

6.5.1 Single Intersection Test

First, we wish to quantify the effects of auctions at a single intersection.
The setup consists of one reservation manager-controlled intersection, with
4 roads connecting, each with 2 lanes in each direction. Vehicles spawn
for one hour with budgets uniformly distributed between $1.00 and $2.00.
Two modes are compared: the baseline FCFS and auctions. For auctions,
two factors are further varied – whether or not system bids are used, and
whether the agent’s fair wallet bids for agents ahead in the same queue.

Figure 13 shows the results of using system bids at various levels of vehi-
cles spawned. The y-axis is unweighted time savings, which is more positive
when the auction mode performs better than FCFS. As the coloring shows,
system bids are necessary for auctions to be useful in this setup. Consider
how the reservation policy without system bids operates. Since budgets and
agent locations are uniformly distributed, the winner of an auction is from
an arbitrary road, with a %50 chance of conflicting with the previous winner.
The system bid for throughput addresses this.

Figure 14 shows results only when system bids are employed, coloring
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Figure 13: Effect of system bids on trip time savings at one intersection

based on whether or not agents bid for drivers ahead. Based on these results,
this factor is not an indicator of unweighted trip time performance.

Although both unweighted and weighted time were measured, the corre-
lation coefficient between the two metrics over all runs is 0.999845, meaning
total weighted time is effectively the same as unweighted with re-scaling.
This means the auction mechanism did not serve drivers with higher budgets
better than drivers with low budgets – all drivers experienced faster trips,
but higher-paying drivers were not preferred.

6.5.2 City-wide Tests

This section evaluates the 7 modes in 4 cities: Austin, Baton Rouge, San
Francisco, and Seattle. Between 10, 000 and 15, 000 drivers spawn per hour
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Figure 14: Trip time savings with system bids at one intersection

for 3 consecutive hours, then the simulation proceeds without spawning addi-
tional drivers until all drivers complete their trip, or a deadline of 12 hours is
reached (indicating some failure like gridlock or a lane-changing bug). Runs
with up to 30, 000 drivers per hour have been successfully completed, but
this scale takes a prohibitively long time to simulate. Drivers have uniformly
chosen sources and destinations28 and a budget uniformly distributed be-
tween $0 and $5.00. Agents route with shortest-distance routing initially
and reroute away from congestion.

During a test run with the same parameters, agents used the fair wallet
but did not bid for agents ahead in the queue at stop signs or reservation
managers. Figure 15 shows the distribution of how much of the total bud-

28This distribution is unrealistic, but generating more natural demand distributions is
difficult without trip data
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Figure 15: Percent of budget spent with fair wallet when bidding ahead is disabled

get each agent spent. The effects are more pronounced when system bids
subsidize part of the cost. Of course, bidding ahead is not the only factor
contributing to the percentage of budget spent. This preliminary run simply
motivates bidding ahead to be enabled in the final tests presented next.

Figure 16 shows the unweighted normalized trip times from different sce-
narios in each city. For each scenario, the trip time of every agent is summed
up, producing one total time per scenario. To account for the different num-
ber of agents in each scenario, this time is then divided by the number of
agents. The raw trip time is given in seconds, but the graphs show a more
understandable scale with minutes. Note the number of trials in Austin,
n = 3, is low due to bugs29

29Austin has some short roads with many lanes, causing agents to attempt impossible
lane-changing forever.
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Figure 16: Unweighted trip times in 4 cities

To compare modes more easily, we show unweighted trip time savings
relative to two baselines: FCFS and equal with system bids. Figure 17
shows the savings relative to FCFS. In Austin and Baton Rouge, auction,
equal, and fixed mode without system bids perform worse than FCFS – up
to a 15 minutes loss per agent. In San Francisco and Seattle, FCFS truly is
the worst mode. In all cases, it is clear that auction, equal, and fixed mode
perform the best.

FCFS is a strawman; the true baseline is equal mode with system bids.
Figure 18 shows the unweighted time savings relative to equal mode. In
Austin and Seattle, auction and fixed mode perform marginally better than
equal. In Baton Rouge and San Francisco, they perform marginally worse.
Under the conditions, this suggests that the unintentional primary contri-
bution of intersection auctions is the use of system bids. They improve the
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Figure 17: Time savings relative to FCFS

time of every agent without regards to their level of priority. Further exper-
iments are required to isolate which system bid contributes most to savings.
Note that in auction mode, every agent used the same strategy for bidding
– the fair wallet – and this does not represent a true market. More bidding
strategies should be simultaneously employed.

Additionally, more data suggests that during auction mode, agents were
not fully utilizing the auction system. Figure 19 shows the percent of the
total budget that each agent spent. Note this figure is different from Figure
15, since agents bid for drivers ahead of them in the final run. Although
this distribution has more mass at higher percentages, few agents spent more
than %40 of their budget. Either agents did not have enough opportunities to
actually participate in auctions, or the fair wallet does not spend aggressively
enough. It is future work to evaluate both possibilities. The results of this
low spending are shown in Figure 20. Just as in the single intersection test,
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Figure 18: Time savings relative to Equal mode with system bids

the unweighted and weighted time correlate nearly perfectly. Higher-income
agents did not spend much more, so their time savings did not improve
relative to lower-income agents.

6.6 Discussion

This section raises some conceptual issues with our approach. First there is
the issue of how to use the money collected during intersection auctions. One
idea is to replace road maintenance taxes with the earnings. Rather than have
everybody pay equal taxes for a common good, drivers who receive preferen-
tial treatment could pay more. However, this could force agents to strategize
by taking into account their utility for supporting road maintenance. The
remainder of this section presents other concerns.
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Figure 19: Percent of budget spent with fair wallet when bidding ahead is enabled

6.6.1 Exploitation

Suppose some malicious agent E drives slowly. Drivers stuck behind E may
consider helping E at intersections, to make up lost time. To remove this
incentive for E, any reasonable wallet implementation could explicitly detect
bad drivers and never reward them. If this policy is universal, then E has
no reason to delay itself and others.

Another potential concern is that most drivers would free-ride instead of
using the auction system. However, people have a non-negligible value of
time. If nobody bids, the cost to improve time is low. Additionally, second
price payment means that drivers who bid against a would-be free-rider will
get priority but pay nothing, encouraging participation.

The system should protect drivers with lower budgets from having to
wait indefinitely. The system bid for waiting time directly addresses this
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Figure 20: Unweighted and weighted trip times in Baton Rouge

danger. Another option is to grant each driver a fixed number of “credits”
to everybody to use instead of money. These credits would be renewed per
week or month, and drivers could spend them however they see fit – all at
once for one fast trip, or spread out carefully. To be fair, credits should be
tracked per driver, not per car, since wealthy drivers could afford multiple
cars to get more credits.

6.6.2 Sequential Auctions

Suppose some driver is willing to pay up to $10 to complete a trip by some
deadline. After carefully spending $8, they are close to reaching their des-
tination. Unfortunately, a traffic jam forms around their destination, and
either the $2 remaining is insufficient to reach the goal before the deadline,
or the traffic jam is so severe that no amount of reordering turns could let
the driver finish in time. The driver effectively wasted their $8. The driver
may be able to spend much less money and still get approximately the same
trip time in the end. The fear that this may happen could lead some drivers
to spend no money at all.

This problem also exists in the current state of driving, though. Human
drivers often leave for a destination early in order to make a deadline. When
they do this, they accept the the risk that a traffic jam will cause them to
miss the deadline anyway. They may prefer to leave later after the jam clears,
still miss the deadline, but spend less time driving.

If trip time cannot be accurately predicted, one alternative to this issue is
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time insurance. A driver pays an up-front fee, then engages in intersection
auctions as usual. If they bid reasonably but are thwarted by unforeseen
congestion, then the insurance company would either refund the bids they
spent or help with the remaining bids. The driver takes the usual risk of
insurance fees: if no problems occur during the trip, then the fee is the
additional, unnecessary cost.

6.6.3 Alternatives to Auctions

This section briefly outlines alternate schemes for optimizing weighted trip
time. One possibility is that when a driver D wants to turn quickly, D could
compensate any drivers they delay. The delayed drivers could bargain with
D to set a “bribery” price, which D would pay to the drivers. However,
this creates an incentive for somebody to drive in busy areas, yielding to
impatient drivers and collecting money. If this money balances out the price
of gas and the value of time, bargaining could actually increase the congestion
in that area! This idea has been implemented in the literature with time-slot
exchange[17], but the game theoretic downsides are not discussed.

A second method, which supplements intersection auctions, is to change
routing to distribute drivers more evenly through roads leading to their des-
tination. These routes could be planned in advance, with shorter routes
being reserved for higher-paying agents. A fundamental question with this
approach is how to handle planning routes for new drivers. If an agent enters
the system later than others, has a route that could cause delays for drivers
whose schedules and routes have already been set, and is willing to pay more
than the others, how should the existing routes change?

The third alternative, placing tolls on roads to prevent drivers from crowd-
ing a popular route, is the subject of the remainder of this thesis, starting in
§7.
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7 Externality Pricing

Although drivers have many possible paths to their destination, they often
choose a familiar path, deviating when they sense higher traffic levels directly
or via GPS. When drivers do plan routes, they often ignore their own impact
on traffic. A direct route through the busy center of a city may be faster than
a lengthy but quiet detour, but it could also cause marginal delays on other
drivers in that congested region. Taxing routes through congested regions
may encourage traffic to distribute more evenly. Along with predictions of
the time to follow a route, agents could evaluate potential routes in terms of
a time and cost trade-off.

§7.1 starts by quantifying the effects of a route on other drivers. §7.2 then
presents an initial experiment based on the simplest externality model. Next,
§7.3 shows a simple and effective method for predicting trip time. Finally,
§7.4 concludes with ideas for extending the pricing scheme.

7.1 Externality

There are many notions of externality, such as fuel emissions, noise pollution,
and creating traffic in residential neighborhoods. Here we focus just on time
externalities. Suppose in world A, a population P of drivers perform some
trips. In a derivative world B, one new driver D is present. Then one way to
measure the externality imposed by D is to sum the difference in trip time
for all the other drivers:

externality =
∑

driver∈P

timeB(driver)− timeA(driver) (1)

If some driver finishes their trip before the new D joins or is traveling
far from D, then their time in both worlds is likely to remain exactly the
same. D can certainly influence drivers with whom it has no direct contact:
if it causes a slight delay at an intersection, everybody moving through that
intersection in the future will be impacted slightly. This makes this definition
extremely prone to noise30.

An alternative is to blame the new driver not for every propagating effect
they unknowingly cause, but instead for a more easily measured, localized
effect. Consider a popular road R. It has a freeflow capacity, the max

30This has been observed in attempts to measure this form of externality in simulations.
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number of cars that can be on the road simultaneously such that all of the
cars can travel at the max speed limit. R also has a rest capacity – the
most cars that can co-exist when all the cars are stalled. When R approaches
its freeflow capacity, many new drivers should not choose to take R, since
they will slow themselves and others down. At the same time, R should
strive for max utilization, if it could contribute to shortest routes. One way
to limit the number of drivers that include R in their route and mediate this
instance of the tragedy of the commons is with a toll. In this section we
evaluate a simple linear toll: toll = max(0, percent − 50), where percent is
the percent of freeflow capacity filled. Roads under 50% freeflow capacity are
free, then the price increases linearly. Note percent can exceed 100%, since
rest capacity is the true limit for a road.

7.2 Preliminary Experiment

With the toll primitive, several modes respecting tolls can be evaluated.
All the modes route using A* with a 2-tuple scoring each step. Steps are
ordered lexicographically, meaning lower values in the first component are
strictly preferred and the second component is ignored until two steps have
the same value in the first. For all modes in this experiment, the secondary
component is a loose measure of route time – distance divided by speed
limit31. The avoid max mode tracks the highest toll of any road in the
current path so far. The avoid sum instead adds the toll at each step,
preferring routes that go through roads with the least total toll cost. Finally,
as a baseline, congestion routing is used, which has the number of congested
roads as a cost. Congestion in this router is defined as more than 80% of its
total capacity filled, while tolls rise as freeflow capacity exceeds a threshold.

These 3 modes are tested in 4 cities, with between 10, 000 and 15, 000
drivers spawning per hour for 3 consecutive hours. All intersections use
auction ordering with the help of system bids, with every agent having the
same equal fixed budget. (As §6.5.2 shows, this mode performs much better
than FCFS.) Note that in this experiment, agent do not pay tolls. Nor do
agent preferences affect their routes at all. Ideally, agent value of time can
be used to assign higher-paying drivers to in-demand, fast routes and lower-
paying drivers to less frequented, perhaps longer routes. For this initial

31It would be quite reasonable to use a more accurate time prediction, such as the one
developed in §7.3 instead.
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experiment, all agents will avoid any sign of congestion.

Figure 21: Normalized trip times per mode in Baton Rouge

The results surprisingly differ significantly by city. In Baton Rouge (Fig-
ure 21) and Seattle (Figure 22), routing involving tolls resulted in an average
delay from the baseline of 30 seconds per agent and nearly 10 minutes per
agent, respectively! In Baton Rouge, the source of the problem is not clear:
Figure 23 shows a histogram of the freeflow capacity percentages witnessed
as agents entered queues. Percentages under 100% are clipped out because
they are so much more common than others, making behavior at high con-
gestion harder to discriminate on the scale. In baseline mode, agents observe
high congestion much more frequently than when avoiding the sum or max
toll. Figure 24 shows the congestion in Seattle. Here, avoiding high tolls ac-
tually causes more agents to enter highly congested queues, which explains
the extremely high delay.

70



Figure 22: Normalized trip times per mode in Seattle

In Austin (Figure 25) and San Francisco (Figure 26), cars avoiding tolls
have on average a gain in time of about 2 minutes per driver. This is a much
more encouraging result. The distributions of freeflow capacities observed in
both cities are much more similar to the distribution in Baton Rouge. As
Figure 27 and Figure 28 show, baseline mode causes agents to enter more
congested queues than the other modes.

What factors account for this discrepancy? One possibility is that since all
drivers avoid roads approaching congested levels, too many drivers needlessly
pick longer routes, when some percentage of them could have taken the more
direct route. This may be the case in Baton Rouge, where tolls helped
drivers avoid congested roads, yet agents had worse times on average. The
more likely explanation is that the current condition of a road is not always
a good predictor of the road in the future. When roads change state between
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Figure 23: Frequency of entering highly congested roads in Baton Rouge

clear and congested, drivers who have already performed pathfinding will not
notice, unless they reroute due to gridlock or failed lane-changing. For some
unknown reason, this occurred much more often in Baton Rouge and Seattle.

7.3 Trip Time Prediction

To evaluate trade-offs between time and cost, agents must be able to predict
the time it will take to follow a route. The freeflow time (distance divided
by speed limit) used in §7.2 is not sufficient. In this section, we present a
simple linear model for trip time. The inputs to the model are certain route
features, all of which are easily measured once at the time that the model
runs. A linear combination of these features then produces a predicted time.
To learn the weights for this combination, the features of routes and resulting
trip times are recorded in a number of trials, and then a linear regression gives
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Figure 24: Frequency of entering highly congested roads in Seattle

the weights.

7.3.1 Route Features

This section describes a vector of route features. The dot product of this
vector with a vector of learned weights then predicts the trip time. Each
directed road along a route contributes one of these feature vectors. The
component-wise sum describes the whole route. Note that each road con-
tributes monotonically to the route vector; no negative values occur at any
step.

Table 1 describes the 11 features. Note that static features hold the
same throughout an entire simulation, while dynamic features change de-
pending on the time during simulation they are evaluated. Note that calcu-
lating road and intersection demand seems to require the path every agent
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Table 1: Route Features

Feature Description

Static features

length the length, in meters, of each
step

freeflow time the length of each step divided
by the road’s speed limit

stop sign count the number of stop signs along
the path

traffic signal count the number of traffic signals
along the path

reservation count the number of reservation
managers along the path

road demand the number of agents who
want to use each road some-
time

intersection demand the number of agents who
want to use each intersection
sometime

Dynamic features

congested road count the number of roads currently
congested

queued turn count the number of turns queued at
each intersection in the route

average waiting time the sum of the average waiting
time for turns at each intersec-
tion

agents enroute the number of agents cur-
rently on each step of the path
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Figure 25: Normalized trip times per mode in Austin

is destined to take, before they choose it. This seems quite unrealistic, but
demand simply represents a general notion of which roads and intersections
tend to be popular in a city. The dynamic features do not account for agents
that will spawn soon, so this demand instead accounts for it. Ideally it comes
from historical usage data about the most utilized roads and intersections.
In our implementation, the demand does not represent the precise path that
each agent will take (since that is impossible to know without simulating);
instead, it uses standard shortest-distance routing.

7.3.2 Initial Results

This section presents a learned linear model for trip time. Note that it was
generated from an older version of AORTA, and it has not been evaluated
against the latest version, which has fixed some bugs. Waikato Environment
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Figure 26: Normalized trip times per mode in San Francisco

for Knowledge Analysis (Weka) was used for all analysis. To generate the
training data of route feature vectors and trip times, between 10, 000 and
15, 000 new drivers were spawned per hour for 3 hours, with a source and
destination chosen uniformly from the entire map. Simulations were run in
4 different cities, but different numbers of simulation in each city were run32.

City Total number of routes recorded
Austin 105, 810

Baton Rouge 584, 418
San Francisco 864, 870

Seattle 304, 488
Figure 29 shows the distribution of each route feature and the trip time

metric. This histogram is generated from combining all the data from every

32The map was independently and randomly chosen on many machines in parallel

76



Figure 27: Frequency of entering highly congested roads in Austin

city, but the histogram for each individual city’s data looks similar. Most
routes do not incur a high penalty for any feature, but a few agents wind up
stuck in a traffic jam, constantly rerouting and increasing all components of
their route.

Table 2 shows the results of generating a linear model for trip time from
all routes from each city, then evaluating against each test city. In all cases,
Pearson’s correlation coefficient is reasonably high. As expected, the model
generated from a particular city is the best at predicting that city. Since the
coefficient is so similar across each row, though, this indicates that the model
from one city transfers to another. This means that the route characteristics
do not omit some factor intrinsic to each map.
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Figure 28: Frequency of entering highly congested roads in San Francisco

7.4 Next Steps

The preliminary results in §7.2 are promising – in some cities, limiting the
number of drivers on popular roads leads to overall improvement for every-
body. However, the methods so far have not take the agent’s own value of
time into account. The tolls should encourage the appropriate number of
drivers to take popular roads, not reject everybody once half the capacity
is reached. One task will be guaranteeing that agents who take a popular
shortcut pay an amount that somehow compensates the drivers banned from
using that faster route.

The original idea of externality pricing was to present drivers with several
choices of routes, each with a predicted trip time and cost. Given those
choices, a procedure to choose a route from choices R and a V OT would be
as follows:
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Table 2: Correlation coefficient of linear model for trip time

Test city
Austin Baton Rouge San Francisco Seattle

Training city

Austin .8803 .8134 .8343 .8378
Baton Rouge .872 .8635 .8435 .8272
San Francisco .8756 .8533 .8517 .8329
Seattle .8681 .7828 .8129 .8488

Table 3: Algorithm for choosing a route

baseline = arg mini∈R(pricei) Choose the cheapest
route as the baseline

C = {i ∈ R | timei ≤ timebaseline} Do not pay more for
slower routes

ratio(i) = timebaseline−timei
pricei−pricebaseline

Judge each route by
the time saved and
additional price, rel-
ative to baseline

r = arg maxi∈C(ratio(i)) Choose the best
time savings per
cost trade-off

Choose r if ratio(j) ≥ V OT , or baseline otherwise Do not spend more
than the VOT limit

Pay pricer − pricebaseline The cheapest route
is always free
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Figure 29: The distribution of each route feature, from all cities’ data combined

One way to use this procedure would be to generate several choices of
routes for every agent by A* with a step cost based on route features. As
the search expands, A* could maintain the total feature vector for the path
so far. A step would be scored using the dot product of this vector with
a fixed weight vector. Different weights yield different paths. A variety of
useful weight vectors could be learned offline. This method, though, is slow
to simulate, since many paths for every agent would have to be computed.
A faster alternative would be to run A* just once, tracking the time-cost
trade-off at every step. A driver would try to avoid roads whose cost is not
worth the predicted time savings. The problem here is that time savings
require a baseline path of a lower (or free) cost. The baseline would have to
give a predicted time and cost for every step that A* considers.

In addition to these issues, two assumptions taken in the preliminary ex-
periment could be relaxed. First, drivers currently reroute only when forced
to by missed lane-changing or gridlock levels of congestion. In the future,
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agents could reroute every few steps, which lets them take into account cur-
rent conditions. This, of course, would be very expensive to simulate. Sec-
ond, the toll for roads is currently a fixed, simple linear formula. If the toll’s
behavior does not match the distribution of driver’s values of time, then too
many or too few people might utilize a road. It may be wise to adjust tolls
online with a reinforcement learning approach.
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8 Future Work

This section describes a number of project ideas that could be explored using
AORTA.

8.1 Contraflow

Contraflow lane reversal, as the name suggests, reverses the direction
of some lanes, adding capacity to one direction of a road. It is currently
used for evacuation scenarios and in some regions with predictable morning
and afternoon rush patterns. Some challenges to wider deployment involve
safety concerns regarding how the infrastructure informs humans about the
change. Autonomous vehicles, of course, could respond much more quickly.
There has been successful work to reverse lanes dynamically based on current
congestion, rather than follow a set schedule, with improvements up to 70%
[11].

AORTA could be used to evaluate the effects of contraflow policies in
a microscopic setting. Although maps in AORTA are generally immutable,
lanes could have a small amount of mutable state describing their orientation.
The procedure to determine how lanes are linked by turns could be directly
re-used.

8.2 Simulator Performance

AORTA’s performance has not been extensively benchmarked, but loosely
speaking, there is room for improvement in the number of agents that can be
simulated at a time. Aside from profiling and optimizing bottlenecks, there
are two broad strategies for improvement.

8.2.1 Fast-paths

Recall that discrete event simulators jump forwards variable amounts of time
to the next interesting event. One idea to speed up AORTA is to do the
same on a per-agent basis. There are two steady-states in which an agent
is not changing their behavior. First, when an agent is traveling at the full
speed limit, they will remain at freeflow as long as they are far from the
next intersection and the leader vehicle, if any, is doing the same. Second,
when an agent is at rest waiting for an intersection, either at the front of
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their queue or behind another stopped driver, they remain stalled until the
intersection state changes. In both of these cases, there is no need to run the
full lookahead behavior from §5.3.1, which consumes about half the time by
very rough profiling. Instead, the agent can run a fast-path, which would
quickly return a default action.

Only certain events trigger an agent to enter or leave steady-state. These
have not been analyzed in detail yet, so they may not be sufficient or nec-
essary. To enter the freeflow steady-state, an agent must be traveling at
the speed limit. They must leave when the leader vehicle exits the freeflow
state, or when they get within some distance of an intersection. To enter the
stalled steady-state, an agent should be at rest. They must resume normal
lookahead behavior when their leader vehicle exits the stalled steady-state,
or when the intersection notifies them. Both cases are a simple recursive
formulation, which could also be implemented quite efficiently. To test that
fast-paths function correctly, it would be necessary to run many simulations,
verifying there is no difference between in output from runs using fast-paths
to normal runs.

8.2.2 Parallel AORTA

At some point, only so many agents can be simulated quickly on one machine.
Using multiple processors in a single node or even a cluster of nodes could
allow more agents to be simulated concurrently. The expensive part of each
tick, the planning phase, is not quite parallelizable (see §4.2.1 for details).
Rather than making each agent be a unit of parallelism, it may make sense to
group agents on some region of the map together in a node. This may require
some sort of load-balancing, in case one physical region of the map has many
agents, while another has few. Each region could be simulated independently,
but any drivers near the borders would have to be synchronized. One option
is to run in lock-step, having each node simulate one tick in their region,
then sharing any information about agents that have crossed the border. This
approach would be bounded by the slowest machine, but good load-balancing
could implement a form of work-stealing to help weaker nodes. Alternatively,
nodes could optimistically simulate several ticks before synchronizing, an
approach explored before in traffic models [24]. If a node failed to introduce
a new agent at the border, it could rewind and try again. A third option
seems to be the most lucrative: nodes managing adjacent regions could each
cover a small chunk of neighboring regions. In other words, some areas would

83



be simulated by multiple machines. If the overlapping area is, for example,
a set of long roads connecting two regions, then the minimum time it takes
for a driver to cross from one region to another would be known. This way,
the nodes only need to synchronize when a driver from their exclusive region
enters the overlapping region.

8.3 Reversible Simulation

In a reversible simulator, time could efficiently flow forwards or backwards.
One possible use of this feature would be evaluating short-term alternatives.
If an agent is considering a choice with effects quickly measurable, the simula-
tor could run time forwards, score the choice, then back up to the moment of
the choice, and try more branches. This could also be done with savestates,
though, and as §4.4.4 explains, saving and loading a snapshot generally takes
under a second. A second use of reversible simulation could be for debug-
ging. Suppose the user notices a jam forming. They could mark cars involved
with the problem, then reverse the simulation, tracking the potential causes.
Then one of the culprits could be forced to reroute or make another choice,
and the simulation could run forwards, evaluating whether or not the jam
still forms.

A trivial way to implement reversible simulation is by save-stating very
frequently and rewinding by loading a previous savestate and simulating
forward a few ticks. This takes lots of space, though. In AORTA, agents and
various components track certain amounts of state. Reversible simulation
would have to reduce this, remembering only key data such as the route
followed thus far. Since AORTA is deterministic when simulating normally,
perhaps there could be a way to minimize the number of possible predecessor
states as well.

8.4 Big Breaux – a Centralized Oracle

Most traffic control schemes take the realistic assumption that they cannot
command drivers, merely sway them with economic incentives. Big Breaux33

is an authoritarian, centralized planner that rejects such a premise. All cars
who wish to travel anytime throughout the next day must request their origin,
destination, and time of departure in advance. Big Breaux will not only

33Rumor has it, Orwell liked Cajun food.
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schedule a route for that driver to follow, it will also fiddle with predestination
paradoxes by prescribing a precise space-time schedule for the driver. In other
words, Big Breaux determines the acceleration that the driver should apply
every tick in order to be in the right place at the right time.

In some sense, Big Breaux is like AIM [7], except that it schedules a
driver’s entire movement, rather than just one intersection. Big Breaux
could utilize AORTA as follows. It would simulate the first driver to leave
in the day in an empty, desolate world, recording its location at every mo-
ment in a time-table. The second driver would then run through an empty
world containing one “ghost” – that of the first driver. Its lookahead behav-
ior (recall §5.3.1) would have to obey additional constraints that guarantee
the dystopian invariant: previously scheduled drivers should not have to
change anything about their fate. In other words, the new driver would have
to avoid interacting with the first in any noticeable way. This could mean
avoiding being a leader car of the first on any queue, or choosing a route that
would pass through intersections at different times.

Big Breaux need not be constrained by 21st century ideas like memory
limitations or needing to plan for a buffer around vehicles in case they fail to
follow their precise plan. In addition, drivers who do not know precisely when
they want to travel in advance simply do not travel. In the cold distant future,
there shall be no dynamic re-planning of existing routes. Furthermore, any
quibbles over the order in which potentially conflicting drivers are scheduled
shall be settled by the Ministry of Equity (Newspeak: Miniquit).
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9 Conclusion

This thesis has presented the architecture and details of a new agent-based
traffic simulator. Prototypes of two traffic control schemes – intersection
auctions and congestion-based tolls – have been evaluated. Per original goals,
both experiments are reproducible in any city with minimal setup. AORTA’s
simplicity, stemming partly from the use of a modern programming language,
makes it a viable candidate for testing future traffic control schemes.
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A Experiment framework

During the course of this thesis, an experiment framework in AORTA has
evolved. The goals for it are automation – so repeating experiments with
fixed code is trivial – and reusability – so a new experiment can be set up
with minimal work. Running an experiment involves three general steps:

1. Write the experiment code declaratively with metrics and modes

2. Deploy AORTA to a cloud computing environment and run many trials
in parallel

3. Generate a report with aggregates from the raw results

To best illustrate the first step, the code for the intersection auction
experiment from §6.5.2 is reproduced below:

class AuctionExperiment(config: ExpConfig) extends SmartExperiment(config) {

override def get_metrics(info: MetricInfo) = List(

new TripTimeMetric(info), new OriginalRouteMetric(info),

new TurnDelayMetric(info), new TurnCompetitionMetric(info)

)

def run() {

// The generated scenario is the baseline.

val sysbid_base = AuctionExperiment.enable_auctions(scenario)

val nosys_base = AuctionExperiment.disable_sysbids(sysbid_base)

output_data(List(

run_trial(scenario, "fcfs"),

run_trial(sysbid_base, "auctions_sysbids"),

run_trial(nosys_base, "auctions_no_sysbids"),

run_trial(AuctionExperiment.equal_budgets(sysbid_base), "equal_sysbids"),

run_trial(AuctionExperiment.equal_budgets(nosys_base), "equal_no_sysbids"),

run_trial(AuctionExperiment.fixed_budgets(sysbid_base), "fixed_sysbids"),

run_trial(AuctionExperiment.fixed_budgets(nosys_base), "fixed_no_sysbids")

), scenario)

}

}
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An experiment changes independent variables and collects data on de-
pendent variables. The independent variables are called modes, and they
are expressed as transformations on a base scenario. The same experimental
setup is precisely reproduced, with only the inclusion of system bids, the
distribution of budgets, or the style of payment varied. The dependent vari-
ables are the metrics listed. These use the listener pattern to echo raw data
such as agent trip time or delays experienced at intersections to plain-text
files. Originally, only higher-level metrics – such as the time savings between
auction mode and the baseline, or the average of all turn delays – were saved.
However, we found that other analysis was desirable several days after the
test had run. Rather than re-run the test every time, we shifted to a two-step
approach, outputting raw data, and then transforming it to produce a report
offline.

Gathering sufficient data is only possible by running many trials simulta-
neously. AORTA includes simple scripts to instrument deployment to Google
Compute Engine34, an infrastructure-as-a-service provider. Virtual machines
may be spun up, running standard Linux images augmented with a startup
script to download and set up AORTA. Simulation status and results are
retrieved via Google Cloud Storage.

The R statistical computing environment is used to transform raw results
into aggregates offline. Marshalling data to and from a transient SQLite
database has been found useful for reshaping data – SQL queries are often a
natural way to express aggregate functions. The scripts to generate the plots
in this document are available35.

34For full disclosure, I have previously interned on the team that develops GCE.
35See misc/auction report.r
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B Project History

A brief history of AORTA follows. My interest in traffic control began when
I was a junior in high school, burning my hours at unsynced red lights in
Baton Rouge. At the time, I was building a computer game and was happily
employing techniques such as collaborative diffusion[15] for making monsters
intelligently surround the player. At some point, the two ideas met, and I
thought it would be nifty to have a centralized system route vehicles.

Spring 2011, I joined UT Austin’s Autonomous Vehicles FRI stream,
where I met Marvin, UT’s AV, and learned about AIM[7]. The winter
break before the semester started, I had discovered OpenStreetMap. Again
something clicked, and my course project became the first Java iteration of
AORTA: a program to mangle OSM maps into something interesting, display
them, and make cars with the phenomenal ability to pass through one an-
other on the same lane without a lawsuit. I believe at the time the AORTA
acronym stood for something much less sensible.

Summers always meant internships and fall 2011 was a fun diversion into
the realm of pointer analysis research, but by spring 2012, I had rewritten
AORTA in Scala, a much more enjoyable language to use. Rewriting entire
code-bases was something I loved doing in my early game engine development
days. In this case, it was not a direct port, but instead a chance to re-architect
everything. At this point, agents did ridiculous things like request and receive
approval for turns in the same tick36 and cause safety checks to explode every
time they landed on a road from OSM with a length of 2.7E−11 meters.

Fall 2012 is a blur of trying to finally add lane-changing support and
haggling with gridlock. Dr. Stone tasked me with tolling every road in a
city. That winter, my rubber duck and partner-in-thoughtcrime got me in
an economic mood, and by January, the ideas for intersection auctions were
flooding out. The toll roads, I was convinced, could not work. Spring 2013
was probably my most active semester.

Fall 2013 has been an adventure as well. Writing this thesis has taken
much of my time, but new ideas about routing have intruded. I was foolish
enough to try to write my third conference paper in about a week while I
was at a conference in an unfamiliar time-zone and couldn’t remember that
subtraction doesn’t commute37. In the end, toll roads made more sense than

36This was a terrible idea; intersection policies could not see multiple requests at once,
and the determinism was brittle

37There was a bug in my formula for trip time savings leading me to believe that a new
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I thought. As of November 2013, the git repository for AORTA has 825
commits.

I end with a list of milestones and quirky bugs.

• I have made the infamous “epsilon bug” too many times. When x ==
0 is inappropriate due to floating-point imprecision, x < ε is not the
right idea.

• It took over a year of development to draw cars as little rectangles
rather than little circles.

• Back in the day, to deal with intersections placed too close together,
Mike Depinet and I conceived uber-turns, a sequence of turns and
abysmally short roads in between that should be grouped. The eventual
solution in §3.3.3 still falls short of this original vision due to having a
boring name.

system was performing terribly, when, in fact, it was performing quite well
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