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Tight gas and shale oil play an important role in energy security and

in meeting an increasing energy demand. Hydraulic fracturing is a widely

used technology for recovering these resources. The design and evaluation of

hydraulic fracture operation is critical for efficient production from tight gas

and shale plays. The efficiency of fracturing jobs depends on the interaction

between hydraulic (induced) and naturally occurring discrete fractures. In this

work, a coupled reservoir-fracture flow model is described which accounts for

varying reservoir geometries and complexities including non-planar fractures.

Different flow models such as Darcy flow and Reynold’s lubrication equation

for fractures and reservoir, respectively are utilized to capture flow physics

accurately.

Furthermore, the geomechanics effects have been included by consid-

ering a multiphase Biot’s model. An accurate modeling of solid deformations

vii



necessitates a better estimation of fluid pressure inside the fracture. The frac-

tures and reservoir are modeled explicitly allowing accurate representation of

contrasting physical descriptions associated with each of the two. The ap-

proach presented here is in contrast with existing averaging approaches such

as dual and discrete-dual porosity models where the effects of fractures are av-

eraged out. A fracture connected to an injection well shows significant width

variations as compared to natural fractures where these changes are negligi-

ble. The capillary pressure contrast between the fracture and the reservoir

is accounted for by utilizing different capillary pressure curves for the two

features.

Additionally, a quantitative assessment of hydraulic fracturing jobs re-

lies upon accurate predictions of fracture growth during slick water injection for

single and multistage fracturing scenarios. It is also important to consistently

model the underlying physical processes from hydraulic fracturing to long-term

production. A recently introduced thermodynamically consistent phase-field

approach for pressurized fractures in porous medium is utilized which captures

several characteristic features of crack propagation such as joining, branching

and non-planar propagation in heterogeneous porous media. The phase-field

approach captures both the fracture-width evolution and the fracture-length

propagation. In this work, the phase-field fracture propagation model is briefly

discussed followed by a technique for coupling this to a fractured poroelastic

reservoir simulator.

We also present a general compositional formulation using multipoint
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flux mixed finite element (MFMFE) method on general hexahedral grids with

a future prospect of treating energized fractures. The mixed finite element

framework allows for local mass conservation, accurate flux approximation

and a more general treatment of boundary conditions. The multipoint flux

inherent in MFMFE scheme allows the usage of a full permeability tensor. An

accurate treatment of diffusive/dispersive fluxes owing to additional velocity

degrees of freedom is also presented. The applications areas of interest in-

clude gas flooding, CO2 sequestration, contaminant removal and groundwater

remediation.
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Chapter 1

Introduction

This chapter presents a problem statement broadly outlining the chal-

lenges and motivation guiding the research direction. A list of research objec-

tives and a brief description of the following chapters is also presented to give

an overview of the work presented here.

1.1 Problem Statement

Tight and shale formations play a pivotal role in strengthening our en-

ergy security and meeting an ever increasing future energy demand. These

formations are usually characterized by high pore volumes and low permeabil-

ities making it challenging to recover oil and gas using conventional techniques.

Another characteristic feature of such formations is the presence of natural or

discrete fractures which are low pore volume and high permeability entities.

A formation volume can then be thought of as reservoir storage capacity or

hydrocarbons in place and the natural fracture network as reservoir flow ca-

pacity.

Hydraulic fracturing is a well known production stimulation technology

which lets us access this network by creating artificial fractures extending from

1



a well-bore into the reservoir. The overall process can be broadly subdivided

into three stages: (1) perforation, (2) pressurized fluid injection and (3) prop-

pant distribution. In layman’s terms, a ballistic device is first used to perforate

well-bore casing and initiate a fracture. The next stage involves injection of

water at high pressures with chemical additives for various purposes. The slick

water injection is followed by polymer injection with suspended solids called

proppants. Once the fluid injection is stopped the solids redistribute and prop

the rock matrix from closing while providing the artificial fracture an aperture

(opening). This allows a high flow capacity channel extending from the well

bore to either the porous reservoir rock matrix or an existing natural fracture

network.

The development of an effective toolset for fractured reservoir planning

and management is a requirement. This entails accurate modeling of the in-

volved processes beginning from hydraulic fracture propagation and proppant

placement followed by long term hydrocarbon recovery predictions from the

fracture reservoir system. Inherent in the latter is the prediction and isolation

of possible failure zones owing to stress changes associated reservoir depletion

or pressurization. One of the challenges is the integration of various complex

sub-processes under a single framework. It is therefore necessary to develop

detailed mathematical models, representative of the underlying physics, effi-

cient and robust numerical solution approaches along with consistent schemes

for coupling these sub-processes.
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1.2 Research Objectives

The goal of this research is to develop and integrate models, for field-

scale fractured-reservoir recovery predictions, consistently under a single frame-

work and to this end the work can be divided into three phases:

1. Phase I: Extension of a multipoint flux mixed finite element (MFMFE)

discretization with general hexahedral elements to span from single and

two phase, incompressible and slightly compressible flow to an equation

of state (EOS) compositional flow. The general hexahedral grids allow

complex reservoir and non-planar fracture geometries to be captured

without requiring substantial manipulation of petrophysical properties

associated with the reservoir.

2. Phase II: Development of a coupled fractured reservoir flow and geome-

chanics model, solution algorithm and a convergent numerical solution

scheme. This entails capturing the differences in fracture and reservoir

flow physics and petrophysical properties such as capillary pressure and

permeability. Further, address differences between hydraulic and natu-

ral fractures by integrating the former with horizontal/deviated well-bore

models.

3. Phase III: Coupling of a phase field fracture propagation model with

a field-scale, coupled, fractured-reservoir flow and geomechanics model.

Identify and develop a coupling scheme that takes into account the dif-

ferences in time scales associated with each of the above physical model.
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1.3 Thesis Outline

In the second chapter, we begin by describing a single phase slightly

compressible flow model using an MFMFE scheme. A description of finite

element spaces and quadrature rules associated with the scheme are presented

once to make the reader familiar with the subject matter. The MFMFE scheme

is locally mass conservative and provides accurate fluxes at the cell faces.

Further the additional flux degrees of freedom due to an enhanced BDDF1

(Brezzi Douglas Durán Fortin, Brezzi et al. (1987)) space allows treatment of

a full tensor permeability. This provides avenues for several developments in

the following chapters.

The second chapter discusses a slightly compressible two phase flow

model using the spatial discretization scheme presented in the previous chap-

ter. Two different formulations, namely formulation I and II, with different

primary unknowns are presented. A detailed description of each solution is

discussed differing in degree of implicit treatment of the primary unknowns

associate with each of the two formulations. An implicit pressure explicit sat-

uration and implicit pressure explicit concentration scheme is used for formu-

lations I and II, respectively. The differences in the two formulations suggest

that the first one is more appropriate for multiphase flow systems where phase

densities are not affected by phase or component concentrations. The second

formulation is later used for equation of state compositional flow modeling in

the next chapter.

In the third chapter, we present an equation of state (EOS) composi-
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tional flow model where the model formulation is adapted to use the aforemen-

tioned MFMFE scheme. An implicit pressure explicit concentration (IMPEC)

solution approach is employed. The chapter also briefly discusses a variant

of successive substitution phase behavior and stability algorithm along with

the associate mathematical description. A comparison between MFMFE and

two-point flux approximation (TPFA) scheme shows that a full tensor perme-

ability is capable of accounting for grid-orientation effects. A number of other

numerical tests including Frio and Brugge field gas flooding is also presented.

The fourth chapter describes a coupled two-phase fractured reservoir

flow and geomechanics model with different capillary pressure curves in the

reservoir and fractures. The differences in flow physics are captured using

a Reynold’s lubrication equation and Darcy’s law inside the fracture and

the reservoir, respectively. The two domains are again discretized using the

MFMFE scheme. Here the general hexahedral grids allow us to capture non-

planar fracture geometries. A solution algorithm is described along with two

numerical schemes owing to differences in the treatment of jump in fluxes

across the fracture or the leakage term. The results section presents a com-

parison between numerical and experimental results for a fracture core along

with several other numerical tests and field scale examples.

In the fifth chapter, we present a coupled phase field fracture propa-

gation model and fractured reservoir flow model. We begin with a brief de-

scription of the phase field fracture propagation model. An explicit coupling

scheme is chosen based upon differences in time-scales associated with fracture
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propagation and coupled reservoir-fracture flow modeling and the physically

discrete nature of the two physical processes. A workflow for reconstructing

2D and 3D fracture information and later integrating into the coupled fracture

reservoir flow model is described. The results section shows several numerical

tests studying effect of fracture spacing, reservoir heterogeneities, initial frac-

ture lengths. A Brugge field case demonstrating the aforementioned coupling

approach is also presented.

The seventh chapter provides conclusions of the research presented here

and a brief outlook towards future work and improvements. A brief literature

survey pertaining to each of the research areas pursued as a part of this work

is presented at the beginning of corresponding chapter.
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Chapter 2

Single Phase Flow

In this chapter, we begin by describing a single phase slightly com-

pressible flow model formulation. This is followed by a weak formulation of

the model with a brief description of finite element spaces and quadrature

rules associated with the spatial discretization scheme employed here. A fully

discrete formulation is then presented where a backward Euler scheme is used

for temporal discretization whereas a multipoint flux mixed finite element

(MFMFE) method is used for spatial discretization. Finally the linearized

system and a discussion reduction to cell-centered stencil resulting from local

elimination of fluxes from the linear system is presented.

2.1 Model Formulation

This section describes a single phase slightly compressible flow model.

The mass conservation equation for single phase flow in porous medium on a

domain Ω ∈ R3 is written as,

∂(φρ)

∂t
+∇ · z = q in Ω× (0, T ], (2.1)
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where φ, ρ and q are the rock matrix porosity, density and source term, re-

spectively. The flux z is given by the Darcy’s law as,

z = −Kρ

ν
∇ (p− ρg∇d) in Ω. (2.2)

Here, ν is the fluid viscosity.

2.1.1 Boundary & Initial Conditions

The Neumann and Dirichlet boundary conditions are prescribed as,

z · n = zN on ∂ΩN × (0, T ], (2.3)

p = pD on ∂ΩD × (0, T ], (2.4)

along with an initial condition of,

p = p(0) in Ω (2.5)

Here, n is the unit normal to the boundary ∂Ω

2.1.2 Closure and Other Conditions

We further assume a slightly compressible flow for which the equation

of state is given by,

ρ = ρ0exp [cf (p− p0,SC)] . (2.6)

Here, cf is the fluid compressibility and p0,SC is the pressure at standard

conditions. The porosity varies linearly with pressure, given by Eqn. (3.16),

with rock compressibility (cr) as the constant of proportionality and φ0 as the

reference porosity.

φ = φ0 [1 + cr(p− p0,SC)] (2.7)
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2.2 Weak Formulation

We use a multipoint flux mixed finite element method (MFMFE) to

construct a fully discrete form of the flow problem describe earlier. MFMFE

methods have been developed by Wheeler and Yotov (2006) for quadrilateral

and simplicial grids and were later extended to general hexahedral grids by

Ingram et al. (2010). Mixed finite element (MFE) methods are preferred over

other variational formulations due to their local mass conservation and im-

proved flux approximation properties. An appropriate choice of mixed finite

element spaces and degrees of freedom based upon the quadrature rule for nu-

merical integration (Wheeler et al. (2011a); Wheeler and Xue (2011)) allows

flux degrees of freedoms to be defined in terms of cell-centered pressures.

2.2.1 Finite element spaces

For the sake of document completeness we briefly discuss the appropri-

ate finite element spaces used to formulate the MFMFE scheme. We recall the

finite dimensional spaces and the reduction to cell-centered pressure scheme

introduced by Wheeler and Yotov (2006); Ingram et al. (2010); Wheeler et al.

(2011a); Wheeler and Xue (2011). Rewriting the problem defined by Eqns.

(2.1)-(2.4) in the mixed form leads to a natural choice of spaces for velocity

and pressure variables, namely V = {v ∈ H(div; Ω) : v · n = 0 on ∂ΩN}, and

W = L2(Ω), respectively. Let Vh × Wh be the lowest order BDDF1 mixed

finite element spaces defined on a hexahedra Brezzi et al. (1985, 1987). The

linear functions provide three degrees of freedom per face which are chosen to
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be the normal component of velocities at the faces. On a reference unit cube

these spaces are defined as,

BDDF1(Ê) =P1(Ê)3 + r0curl(0, 0, x̂ŷẑ)T + r1curl(0, 0, x̂ŷ
2)T + s0curl(x̂ŷẑ, 0, 0)T

+ s1curl(ŷẑ
2, 0, 0)T + t0curl(0, x̂ŷẑ, 0)T + t1curl(0, x̂

2ẑ, 0)T

=P1(Ê)3 + r0(x̂ẑ,−ŷẑ, 0)T + r1(2x̂ŷ,−ŷ2, 0)T + s0(0, x̂ŷ,−x̂ẑ)T+

s1(0, 2ŷẑ,−ẑ2)T + t0(−x̂ŷ, 0, ŷẑ)T + t1(−x̂2, 0, 2x̂ẑ)T

(2.8)

Ŵ (Ê) = P0(Ê) (2.9)

Let Th be a finite element partition of Ω comprising of hexahedral elements.

The mixed finite element spaces on a physical element is mapped from a ref-

erence element using the Piola and scalar transformations (2.10).

v ↔ v̂ : v̂ =
1

JE
DFE v̂ ◦ F−1

E

w ↔ ŵ : w = ŵ ◦ F−1
E

(2.10)

where FE denotes the trilinear mapping from the reference element Ê to the

physical element E where DFE is the Jacobian matrix and JE = |detDFE|.

Note that we have used the Piola transformation for the velocity space which

preserves the normal traces. The discrete finite element spaces Vh and Wh on

Th are given by,

Vh ≡ {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê),∀E ∈ Th},

Wh ≡ {w ∈ W : v|E ↔ ŵ, ŵ ∈ ŵ(Ê), ∀E ∈ Th},
(2.11)

An enhanced BDDF1 mixed finite element space on Ê ,with one additional

degree of freedom per face resulting in bilinear functions, for a general hex-

ahedral element is defined on a reference unit cube Eqn.(2.12) by enhancing
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the BDDF1 space Eqn.(2.8).

V̂ ∗(Ê) =BDDF1(Ê) + r2curl(0, 0, x̂
2ẑ)T + r3curl(0, 0, x̂

2ŷẑ)T + s2curl(x̂ŷ
2, 0, 0)T

+ s3curl(x̂ŷ
2ẑ, 0, 0)T + t2curl(0, ŷẑ

2, 0)T + t3curl(0, x̂
2ẑ, 0)T

=BDDF1(Ê) + r2(0,−2x̂ẑ, 0)T + r3(x̂2ẑ,−2x̂ŷẑ, 0)T + s2(0, 0,−2x̂ŷ)T

+ s3(0, x̂ŷ2,−2x̂ŷẑ)T + t2(−2ŷẑ, 0, 0)T + t3(−2x̂ŷẑ, 0, ŷẑ2)
(2.12)

2.2.2 Quadrature Rules

In this section, we discuss quadrature rules the numerical integration

of the velocity mass matrix. For q, v ∈ V ∗h the local (on element E) and

global (on domain Ω) quadrature rules are given by Eqns.(2.14)-(2.13) and

Eqn.(2.15), respectively. Here Eqns.(2.13) and (2.14) give the symmetric and

non-symmetric quadrature rules, respectively. The non-symmetric quadrature

rule has been shown to have convergence properties for general hexahedra by

Wheeler et al. (2011b).

(K−1z, v)Q,E =
1

8

8∑
i=1

JE(r̂i)(DF
−1
E )T (ri)DF

T
E (ri)K

−1
E (FE(r̂i))q(ri) · v(ri)

(2.13)

(K−1z, v)Q,E =
1

8

8∑
i=1

JE(r̂i)(DF
−1
E )T (ri)DF

T
E (r̂c,Ê)K̄−1

E q(ri) · v(ri) (2.14)

(K−1z, v)Q ≡
∑
E∈Th

(K−1q, v)Q,E ≡
∑
E∈Th

|Ê|
8

8∑
i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i) (2.15)

Here, r̂i is a vertex of the reference element Ê, r̂c,Ê is the center of mass of Ê,

K̄E is the mean of K on E.
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2.2.3 Fully Discrete Formulation

In this section, we present a fully discrete formulation of the model

described before. An MFMFE and backward Euler schemes are used for spatial

and temporal discretizations, respectively. For simplicity we assume Dirichlet

and no-flow boundary conditions. The discrete weak problem reads: Given

pnh ∈ Wh, find zh ∈ Vh and ph ∈ Wh such that,

〈
ν

ρ
K−1zh, vh

〉
Q,E

− (ph,∇ · vh)E = (ρg∇d, vh)E −
∫
∂E∩∂Ω

pvh · n ∀vh ∈ Vh,

(2.16)(
(φρ)n+1 − (φρ)n

∆t
, wh

)
E

+ (∇ · zh, wh)E = (q, wh)E ∀wh ∈ Wh. (2.17)

Here, the superscript n represents the time level iterate. We use one of

the two quadrature rules described in the previous section to perform numerical

integration. Please note that in the above all terms are evaluated at time level

‘n+1’ unless explicitly stated otherwise.

2.3 Linearization

The resulting system of equations is solved implicitly in zh and ph

using an inexact Newton method. We begin by linearizing the discrete weak

formulation to obtain a linear system of equations in the unknowns δzh and

δph with superscript ‘k’ representing the Newton iterate.
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〈
ν

ρk
K−1δzkh, vh

〉
Q,E

=
(
δpkh,∇ · vh

)
E
−
{〈

ν

ρk
K−1zkh, vh

〉
Q,E

−
(
pkh,∇ · vh

)
E

−
(
ρkg∇d, vh

)
E

+

∫
∂E

pvh · n
}
(2.18)(

(crφ0ρ+ φcf )
n+1,kδpkh, wh

)
E

+
(
∆t∇ · δzkh, wh

)
E

= −
{(

(φρ)n+1,k − (φρ)n, wh
)
E

+
(
∆t∇ · zkh, wh

)
E

− (∆tqk, wh)E

}
(2.19)

2.3.1 Reduction to a Cell-Centered Stencil

Ingram et al. (2010) described the process of eliminating velocity de-

grees of freedom resulting in a cell centered pressure system for an MFMFE

scheme. In this section we follow the same procedure for a non-linear system.

The four velocity degrees of freedom at a face ê on the reference element Ê are

chosen to be normal component of velocities at the vertices of ê. Thus there

are three degrees of freedom associated with each corner r̂i, i = 1,.....,8. Let

v̂ij, j = 1,2,3 be the basis functions associate with r̂i. The quadrature rule,

given by Eqn. (2.15), then couples the three basis functions associated with

the corner-point such that,

(
K−1v̂11, v̂11

)
Q̂,Ê

=
K−1

11 (r̂1)

8
,
(
K−1v̂11, v̂12

)
Q̂,Ê

=
K−1

21 (r̂1)

8
,(

K−1v̂11, v̂13

)
Q̂,Ê

=
K−1

31 (r̂1)

8
,
(
K−1v̂11, v̂ij

)
Q̂,Ê

= 0 ∀ ij 6= 11, 12, 13.

(2.20)
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Thus, taking v = v1 in Eqn. (2.18) results in coupling of δz1 with δz5, δz8, δz9

and δz12.

Figure 2.1: Velocity degrees of freedom associated with the corner marked red
along x (left), y (middle) and z (right) directions

We can form a local linear system of equations, corresponding to a

corner point, in δz1, ....., δz12 by taking v = v1, ....., v12. An interior corner-

point is surrounded by eight elements E1, ....., E8 and twelve faces e1, ....., e12

with normal velocity components z1, ....., z12 in x, y and z directions as shown

in Fig. 2.1. For example, if we take v = v9 then the left hand side of Eqn.

(2.18) can be written as,(
K−1ν

ρ
δzh, v9

)
Q,E

=

(
K−1ν

ρ
δzh, v9

)
Q,E1

+

(
K−1ν

ρ
δzh, v9

)
Q,E2

. (2.21)

Using Eqn. (2.15) the first and second terms on the right hand side of Eqn.

(2.21) can be expanded as,(
K−1ν

ρ
δzh, v9

)
Q,E1

=
1

8

(
K−1

11,E1

ν

ρe9
|e9|δz9+K−1

12,E1

ν

ρe5
|e5|δz5+K−1

13,E1

ν

ρe1
|e1|δz1

)
|e9|,

(2.22)
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(
K−1ν

ρ
δzh, v9

)
Q,E2

=
1

8

(
K−1

11,E2

ν

ρe9
|e9|δz9+K−1

12,E2

ν

ρe6
|e6|δz6+K−1

13,E2

ν

ρe2
|e2|δz2

)
|e9|.

(2.23)

The right hand side of Eqn. (2.18) can be written as,

(δph,∇ · v9) = (δph,∇ · v9)E1
+ (δph,∇ · v9)E2

=
1

4
(δp1 − δp2) ||e9|, (2.24)

where p1, ....., p8 are the cell centered pressures corresponding to elements

E1, ....., E8 shown in Fig. 2.1 Using Eqns. (2.21)-(2.24) in Eqn. (2.18),{
ν

ρe9

(
1

2
K−1

11,E1
+

1

2
K−1

11,E2

)
|e9|δz9 +

ν

2ρe5
K−1

12,E1
|e5|δz5 +

1

2ρe6
K−1

12,E2
|e6|δz6

+
ν

2ρe1
K−1

13,E1
|e1|δz1 +

ν

2ρe2
K−1

13,E2
|e2|δz2

}
= δp1 − δp2.

(2.25)

Here ρe1 , ..., ρe9 , ..., ρe12 are the fluid densities on faces e1, ..., e9, ..., e12 approx-

imated as an average density. For example,

ρe9 =
ρE1 + ρE2

2
=
ρp1 + ρp2

2
. (2.26)

We can similarly write 11 more equations using remaining vjs (j 6= 9) thus

forming a total of 12 linear equations in unknowns δz1, ....., δz12 and δp1, ....., δp8.

Thus δz can be expressed in terms of cell-centered δp using these 12 linear

equations. Fig. 2.2 shows the coupling of velocity and pressure degrees of

freedom around a corner point. The saddle point system from Eqns. (2.18)

and (2.19) can be written as,(
A −B
BT C

)(
δzh
δph

)
=

(
−R1

−R2

)
. (2.27)

15



R1 =

{〈
ν

ρk
K−1zkh, vh

〉
Q,E

−
(
pkh,∇ · vh

)
E
−
(
ρkg∇d, vh

)
E

+

∫
∂E

pvh · n
}
,

(2.28)

R2 =

{(
(φρ)n+1,k − (φρ)n, wh

)
E

+
(
∆t∇ · zkh, wh

)
E
− (∆tqk, wh)E

}
. (2.29)

A cell-centered pressure stencil is obtained by substituting the above ex-

Figure 2.2: Coupling velocity and pressure degrees of freedom corresponding
to a vertex

pressions in the mass conservation equation (Eqn. (2.19)). For a logically

rectangular grid it can be shown that this results in a 27 point and 9 point

pressure stencils for 3D and 2D cases, respectively. The matrix A is positive

definite and therefore invertible for the symmetric quadrature rule. The same

hold true for the non-symmetric quadrature rule with mild restrictions on the

regularity of the grid and/or permeability anisotropy (Wheeler et al. (2011b)).

Eliminating fluxes δzh from Eqn. (2.27) result in a cell-centered system for

δph with a symmetric positive definite matrix BTA−1B.

(
BTA−1B + C

)
δpkh = BTA−1R1 −R2. (2.30)
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This linear system of equations is then solved to obtain an updated pressure

following a Newton step given by,

pk+1
h = pkh + δpkh. (2.31)

The MFMFE scheme presented here will be used for spatial discretiza-

tion of degenerate parabolic equations corresponding to phase or component

mass conservation in the following chapters. As will be seen, the general hex-

ahedral elements allow complex geometries to be captured with ease without

requiring substantial changes in the associate petrophysical properties. Fur-

ther the multipoint flux feature utilizes a full permeability tensor as opposed

to the diagonal tensor for two-point flux approximation scheme. The front at

the injected and displaced fluids contact is therefore captured more accurately.
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Chapter 3

Two-phase Flow

In this chapter, we use the MFMFE scheme discussed in the previous

chapter to a two phase flow problem. A treatment of capillary pressure and

relative permeabilities in the mixed methods framework is presented. In order

to avoid inverting zero mobility values at the relative permeability end-points

either a total mass conservation approach (Hoteit and Firoozabadi (2008b))

or an expanded mixed finite element method (Arbogast et al. (1997)) is used.

Two different model formulations are discussed for solving this problem. This

is used to develop an understanding of the applicability of the two model

formulations to different two-phase flow systems.

We begin by describing a slightly compressible, two-phase flow problem

in porous media. The constitutive equation relating phase fluxes zβ to phase

pressures pβ given by a multiphase Darcy’s law (3.1).

zβ = −Kρβ
krβ
νβ

(∇pβ − ρβg∇D) in Ω (3.1)

Here β = w or o representing water (wetting) and oil (non-wetting) phases,

respectively.
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3.1 Formulation I

The primary unknowns are chosen to be pw and Sw to simplify the

model description with water as the reference phase. However either choice of

pβ and Sβ can be chosen as the primary unknowns and a similar treatment as

presented below will apply. The phase mass conservation equations are given

by Eqn. (3.2).

∂(φρβSβ)

∂t
+∇ · (zβ) = qβ in Ω× (0, T ] (3.2)

Here, qβ represents a source or sink term and is evaluated using a well model.

The reader is referred to Appendix A for details regarding well bore modeling

approaches followed in this work. Summing the mass conservation equation,

over all the phases β, (3.2) leads to a total mass conservation equation,

∂
(
φ
∑

β ρβSβ

)
∂t

+∇ · (zt) = qt in Ω× (0, T ], (3.3)

with the total phase mass flux given by,

zt = −K
∑
β

(
ρβ
krβ
νβ

(∇pβ − ρβg∇D) in Ω

)
, (3.4)

and the total point source/sink term by,

qt =
∑
β

qβ (3.5)

3.1.1 Boundary & Initial Conditions

Here we discuss boundary and initial conditions pertinent to two-phase

flow system. For the sake of brevity we restrict ourselves to only two types
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of boundary conditions: (1) no-flow (∂ΩN) and (2) Dirichlet (∂ΩD) boundary

conditions with ∂ΩN ∪ ∂ΩD = ∂Ω. The no-flow boundary condition is given

by,

zβ · n = 0 for β = w and o on ∂ΩN× (0,T] (3.6)

The Dirichlet boundary condition is,

pw = pDw

Sw = SDw

 on ∂ΩD × (0, T ] (3.7)

Please note that the choices described here are not restrictive and more general

boundary conditions can also be treated. Furthermore initial conditions are,

pw = pw(0)

Sw = Sw(0)

 in Ω. (3.8)

3.2 Formulation II

Let Nβ be the concentration of phase β given by,

Nβ = ρβSβ. (3.9)

A different formulation is obtained by choosing pw and Nβ as the primary

unknowns. The phase mass conservation equation can then be written as,

∂(φNβ)

∂t
+∇ · (zβ) = qβ in Ω× (0, T ]. (3.10)

Please note that there are three unknowns for this systems: pw, No and Nw.

As will be seen later in the fully discrete and further linearization sections this

results in a more implicit treatment of the unknowns compared to the previous

formulation.

20



3.2.1 Boundary & Initial Conditons

The boundary conditions corresponding to Eqn. (3.13) for the current

system is given by,

zβ · n = 0 for β = w and o on ∂ΩN× (0,T], (3.11)

pw = pDw

Nβ = ND
β

 for β = w and o on ∂ΩD × (0, T ]. (3.12)

Here, ∂ΩN ∪ ∂ΩD = ∂Ω. Similarly the initial condition is given by,

pw = pw(0)

Nβ = Nβ(0)

 in Ω. (3.13)

3.3 Closure & Other Conditions

The capillary pressure is a defined as a continuous and monotonic func-

tion of Sw,

pcβ =

{
0 for β = w

f(Sw) for β = o
. (3.14)

Here pw,SC is the water phase pressure at standard conditions, cβ is the com-

pressibility and pcβ is the capillary pressure of phase β. Similar to single phase

flow, we assume a slightly compressible flow for both wetting and non-wetting

phases,

ρβ = ρβ0exp [cβ(pw + pcβ − pcβ,SC − pw,SC)] , (3.15)

The value of pcβ,SC is usually assumed to be zero at standard conditions and

its use is therefore curtailed hereafter. The porosity variation with pressure is
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given by Eqn. (3.16) where φ0 is the porosity at standard conditions.

φ = φ0 [1 + cr(pw − pw,SC)] (3.16)

Further the saturation constraint is given by,

Sw + So = 1. (3.17)

3.4 Fully Discrete Formulation

In this section, we present the fully discrete forms of the two previously

described model formulations. An iteratively coupled implicit pressure explicit

saturation approach (IMPES) and an implicit pressure explicit concentration

(IMPEC) method is used to solve formulations I and II, respectively. Fig.

3.1 shows a schematic of the iteratively coupled IMPES/IMPEC. Similar to

Start

Pressure Solve

Tol < ϵ
Yes

Time Step

No

Stop

n = n + 1

m = m + 1

Explicit Saturation/
Concentration Update

Figure 3.1: Flowchart depicting iteratively coupled IMPES/IMPEC schemes
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single phase flow, a backward Euler scheme is used for temporal discretization

along with an MFMFE scheme for spatial discretization of pressure equations.

The saturation and concentration equations are time and space discretized

using forward Euler and finite volume schemes, respectively. Please note that

a discussion on the finite element spaces and quadrature rules associated with

the MFMFE scheme has already been presented in section 2.2. Eqn. (3.3)

and (3.2), with β = o, w along with the associated Darcy phase fluxes form

the pressure and saturation equations, respectively.

3.4.1 Formulation I

Let ‘n’ and ‘m’ be the time and iterative coupling iterates, respectively

then the discrete variational problem for the pressure equation reads: Given

Sn+1,m
w,h , P n

w,h ∈ Wh, P
n+1,m
w,h ∈ Wh and zn+1,m

t,h ∈ Vh, find pn+1,m+1
w,h ∈ Wh and

zn+1,m+1
t,h ∈ Vh such that,〈

K−1

λn+1,m̃
t

zn+1,m̃
t,h , vh

〉
Q,E

−
(
pn+1,m+1
w,h ,∇ · vh

)
E

=

([
λw
λt

]n+1,m̃

pn+1,m
cw ,∇ · vh

)
E

+

(∑
β

[
λβ
λt

]n+1,m̃

ρn+1,m+1
β g∇d, vh

)
E

−
∫
∂E∩∂Ω

[
λw
λt

]n+1,m̃

pcwvh · n−
∫
∂E∩∂Ω

pw,hvh · n ∀vh ∈ Vh.
(3.18)(∑

β

φn+1,m+1ρn+1,m+1
β Sn+1,m

β,h

∆t
, wh

)
E

+
(
∇ · zn+1,m̃

t,h , wh

)
E

= (qn+1,m
t , wh)E +

(∑
β

(φρβSβ,h)
n

∆t
, wh

)
E

∀wh ∈ Wh

(3.19)
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The saturation update problem then reads: Given Sn+1,m
w,h , pn+1,m+1

w,h ∈ Wh and

zn+1,m+1
w,h ∈ Vh, find Sn+1,m+1

w,h such that,(
φn+1,m+1ρn+1,m+1

w Sn+1,m+1
w,h

∆t
, wh

)
E

+
(
∇ · zn+1,m̃

w,h , wh

)
E

= (qn+1,m
w , wh)E +

(
(φρwSw,h)

n

∆t
, wh

)
E

∀wh ∈ Wh

(3.20)

The superscript m̃ describes quantities containing both pn+1,m+1
w and satura-

tion Sn+1,m
w where the mobilities λs are given by,

λn+1,m̃
t =

∑
β

λn+1,m̃
β =

∑
β

ρn+1,m+1
β

kn+1,m
rβ

νβ
. (3.21)

An updated oil saturation is then obtained from the saturation constraint as,

Sn+1,m+1
o,h = 1− Sn+1,m+1

w,h . (3.22)

3.4.2 Formulation II

Please note that compared to formulation I, formulation II cannot be

classified into pressure and concentration equations as of yet. This serves as

another important distinction between the two and would be clarified later

in the linearization section. Since relative permeabilities (krβ) become zero

at residual and irreducible saturations an expanded mixed form is employed

to avoid inverting zero. An intermediate phase flux (z̃β) is defined which is

related to the phase fluxes as,

zβ =
krβρβ
νβ

z̃β. (3.23)
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The discrete, expanded mixed variational problem similar to formulation I

reads: Given Nn
β,h, p

n
w,h, N

n+1,m
β,h and pn+1,m

w,h ∈ Wh and zn+1,m
β,h ∈ Vh, find

pn+1,m+1
w,h ∈ Wh and zn+1,m+1

β,h ∈ Vh, where β = o, w, such that,〈
K−1z̃n+1,m+1

β,h , vh
〉
Q,E
−
(
pn+1,m+1
w,h ,∇ · vh

)
E

=
(
pn+1,m
cβ ,∇ · vh

)
E

+
(
ρn+1,m+1
β g∇d, vh

)
E

−
∫
∂E∩∂Ω

pcβvh · n−
∫
∂E∩∂Ω

pw,hvh · n ∀vh ∈ Vh,
(3.24)

(zβ,h, vh)E =

(
krβρβ
νβ

z̃β,h, vh

)
E

= (λβ z̃β,h, vh)E, (3.25)(
φn+1,m+1Nn+1,m+1

β,h

∆t
, wh

)
E

+
(
∇ · zn+1,m+1

β,h , wh
)
E

= (qn+1,m
t , wh)E +

(
(φNβ,h)

n

∆t
, wh

)
E

∀wh ∈ Wh.

(3.26)

Similar to the previous formulation the superscript m̃ describe quantities con-

taining both pn+1,m+1
w and Nn+1,m

β . Further the saturation constraint can be

rewritten as,

No,h

ρo
+
Nw,h

ρw
= 1. (3.27)

The explicit concentration update problem is: Given Nn+1,m
β,h , pn+1,m+1

w,h ∈ Wh

and zn+1,m̃
β,h ∈ Vh, find Nn+1,m+1

β,h , where β = o, w, such that:(
φn+1,m+1Nn+1,m+1

β,h

∆t
, wh

)
E

+
(
∇ · zn+1,m̃

β,h , wh

)
E

= (qn+1,m
β , wh)E +

(
(φNβ,h)

n

∆t
, wh

)
E

∀wh ∈ Wh.

(3.28)
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3.5 Linearization

In this section we apply an inexact Newton method to linearize the

implicit system of equations corresponding to the two formulations presented

above. The Newton step iterate is represented by superscript ‘k’. For the sake

of convenience we drop time iterate ‘n’ in the description below. All terms are

evaluated at time ‘n+1’ unless stated explicitly otherwise.

3.5.1 Formulation I

〈
K−1

λm̃,kt

δzkt,h, vh

〉
Q,E

−
(
δpkw,h,∇ · vh

)
E

= −R1 (3.29)

(∑
β

(
crpw,SCρ

m+1,k
β + φm+1,kcβρ

m+1,k
β

) Smβ,h
∆t

δpkw,h, wh

)
E

+
(
∇ · δzkt,h, wh

)
E

= −R2

(3.30)

R1 =

〈
K−1

λm̃,kt

zm̃,kt,h , vh

〉
Q,E

−
(
pm+1,k
w,h ,∇ · vh

)
E
−
{([

λw
λt

]m̃,k
pmcw,∇ · vh

)
E

+

(∑
β

[
λβ
λt

]m̃,k
ρm+1,k
β g∇d, vh

)
E

−
∫
∂E∩∂Ω

[
λw
λt

]m̃,k
pcwvh · n

−
∫
∂E∩∂Ω

pw,hvh · n
}

(3.31a)

R2 =

(∑
β

φm+1,kNm+1,k
β,h

∆t
, wh

)
E

+
(
∇ · zm+1,k

β,h , wh

)
E

−
{

(qn+1,m
t , wh)E +

(∑
β

(φρβSβ)n

∆t
, wh

)
E

} (3.31b)
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Eliminating δzt,h from Eqns. (3.29) and (3.30) results in a linear system of

equations in δpw,h.

(
BTA−1B + C

)
δpkw,h = BTA−1R1 −R2. (3.32)

3.5.2 Formulation II

〈
K−1

λm̃,kβ

δz̃kβ,h, vh

〉
Q,E

−
(
δpkw,h,∇ · vh

)
E

= −R1β (3.33)

(δzkβ,h, vh)E − (λβδz̃
k
β,h, wh)E = −R2β (3.34)((

crpw,SCρ
m+1,k
β + φm+1,kcβρ

m+1,k
β

) Nm
β,h

∆t
δpkw,h, wh

)
E

+

(
φm+1,kρm+1,k

β

δNk
β,h

∆t
, wh

)
E

+
(
∇ · δzkβ, wh

)
E

= −R3β

(3.35)

−
∑
β

cβN
m+1,k
β,h

ρm+1,k
β

δpkw,h +
∑
β

1

ρm+1,k
β,h

δNk
β,h = −R4β (3.36)

Thus forming a linear system of equations. Eliminating δzβ,h, δz̃β,h, δNβ,h

from Eqns. (3.33)-(3.36) gives a linear system of equations in δpw,h.

Now that we have laid the groundwork for the two formulations it is

important to discuss some of the distinguishing features between the two.

Firstly, where the former has only two unknowns (pw and Sw) the latter has

three unknowns (pw, Nw and No). Secondly, the second formulation differs in

the use of the saturation constraint to form an implicit pressure system. This

is in contrast to the first formulation where the sum of the two mass conserva-

tion equations is used. Thus first formulation satisfies the volume constraint
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explicitly compared to the second formulation where the mass conservation

equations are satisfied explicitly.

The two formulations are equivalent for fluid systems where densities

are strong functions of pressure and are weak functions of saturation or con-

centrations. However if density is strongly dependent on both pressure and

saturation then the second formulation is more appropriate. Therefore, in this

work, we use the first approach for two-phase slightly and incompressible flows.

Although not presented here the second approach is more suitable for a black

oil system where the oil phase density changes substantially with the amount

of dissolved gas. The second approach is also used for studying an equation of

state, fully compressible, three-phase compositional flow and will be presented

later.

3.6 Results

In this section, we present two numerical experiments for two-phase

slightly compressible flow using formulation I. The first example simulates

capillary end effects seen in core-flooding experiments in the absence of pres-

sure gradient applied across a core. The second experiment shows spontaneous

capillary imbibition and consequent saturation distribution inside the core bal-

ancing capillary and gravity forces. Figures 3.2 and 5.8 show the relative per-

meability and capillary pressure curves during these numerical experiments.

Table 3.1 provides the associated rock and fluid property information. The

simulations were carried out for a period of four days. Figure 3.4 shows the
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φ 0.2 Kx = Ky = Kz 50 mD
cw 1.E-7 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3

νw 1 cP νo 2 cP
S0
w 0.2 P 0

w 1000 psi
Swirr 0.1 Sor 0.2

Table 3.1: Rock and fluid property information
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Figure 3.2: Oil and water phase relative permeability curves

cylindrical core represented using general hexahedral elements.

3.6.1 Capillary End Effect

This numerical experiment simulates spontaneous capillary imbibition

of water phase at the two non-curved, circular cross sections of the cylindrical

core. The curved surface is assumed to be no-flow to mimic conditions during

core flooding experiments. Further a Dirichlet boundary condition of 1000 psi

(same as initial condition) and Sw = 1 is assumed. Due to horizontal flow
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Figure 3.3: Rock matrix capillary pressure curve

through the core, gravity is assumed to be negligible and hence set to zero for

this simulation. The capillary pressure decreases from positive values to zero as

we move from the centre of the core toward the circular opening. This results in

a spontaneous imbibition of water phase in the absence of a pressure gradient

across the core. Figures 3.5 and 3.6 show pressure and saturation distributions,

respectively after 2 and 4 days. The saturation distribution approaches an

equilibrium after large time as the the phase fluid fluxes approach zero in the

limit.

3.6.2 Capillary and Gravity Equilibrium

In this example, we use the same setup as describe before. The core is

kept vertical with the gravity acting in the downward direction. Further the

top circular cross-section is assumed to be no-flow in addition to the curved

surface of the cylindrical core. A Dirichlet boundary condition is assumed
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Figure 3.4: Cylindrical core

Figure 3.5: Water phase pressure distribution after 2 (left) and 4 (right) days

at the bottom circular cross-section. Under these conditions water rises

up the core from the bottom due to capillary imbibition. The gravity acts

against water imbibition and an equilibrium water saturation distribution is

achieved where gravity and capillary forces balance each other. Figures 3.7,

3.8 and 3.9 show water phase pressure, oil phase pressure and water saturation

distributions, respectively after 0 and 4 days.

The numerical experiments show that complex surfaces can be cap-
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Figure 3.6: Water saturation distribution after 2 (left) and 4 (right) days

Figure 3.7: Water phase pressure distribution after 0 (left) and 4 (right) days

tured using general hexahedral elements. Further relative permeability, capil-

lary pressure and gravity features associated with the two phase flow problem

are accurately represented. The MFMFE scheme for solving two-phase flow

problem presented here serves as a precursor to the more involved flow models

in the following chapters. In the next chapter, we discuss a compositional flow

formulation which is similar to formulation II described above.
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Figure 3.8: Oil phase pressure distribution after 0 (left) and 2 (right) days

Figure 3.9: Water phase saturation distribution after 20 (left) and 2 (right)
days
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Chapter 4

Compositional Flow

4.1 Introduction

Compositional flow modeling has been used for simulating CO2 seques-

tration, ground water remediation and contaminant plume migration. In the

oil and gas industry it is widely used for evaluating gas flooding scenarios as

a tertiary recovery process. The gas flooding targets achieving either direct

or multi-contact miscibility, of the displacing and displaced fluids, to counter

adverse mobilities to maximize recovery. A number of variants of the above

process exist, based upon economical considerations, such as gas slug injec-

tion along with a chase fluid or water alternating gas (WAG). The modeling

involves solving a system of non-linear equations, invoking a local equilib-

rium assumption, including an equation of state. This combined with partial

differential equations representing mass conservation represent a differential

algebraic system which is known for its numerical difficulties. An extensive

amount of literature is available which elaborate on different model formula-

tions and solution algorithms to address this problem.

This work has been partly presented at the ECMOR XIV conference (Singh and Wheeler
(2014a)) and published as an ICES report (Singh and Wheeler (2014b)). The research is
done primarily by Gurpreet Singh under the supervision of Prof. Mary F. Wheeler.
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Some of the earliest expositions in compositional flow modeling were

carried out by Roebuck et al. (1969) using a fully implicit solution scheme.

Coats (1980) later presented another implicit formulation where the trans-

missibility terms (relative permeabilities) were treated implicitly during the

construction of Jacobian matrix. A similar formulation with explicit transmis-

sibility terms (relative permeabilities) was presented in Young and Stephenson

(1983). These schemes were later categorized as primary variable switching

(PVS) due to change of primary variables associated with phase appearance

and disappearance. Here a phase is assumed to be present only if the phase

saturations lie between 0 and 1. A local criteria based upon saturation pres-

sure test is employed to test the stability of single phase grid-blocks. Lauser

et al. (2011) pointed out some of the issues which may arise due to primary

variable switching for near critical conditions. This was addressed by the lat-

ter using non-linear complimentarily condition defined such that negativity of

phase-compositions imply that the phase is not present.

A sequential solution scheme was presented by Acs et al. (1985) and

Chang (1990) for solving compositional flow equations. An implicit pressure

equation, with explicit treatment of transmissibility terms, is formed using vol-

ume balance assuming pore volume is equal to fluid volume. This is followed

by an explicit concentration update. The approach was later named implicit

pressure explicit concentration scheme on the lines of the well known implicit

pressure explicit saturation (IMPES) scheme. Please note that the implicit or

explicit treatment implies Newton iteration or time lagging terms to construct
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an approximation of the exact Jacobian. Watts (1986) also presented an ex-

tension of the IMPES scheme for compositional flow following Acs et al. in the

construction of a pressure equation based upon a volume balance or constraint.

Once the pressure equation is solved the total fluxes are evaluated. A system

of implicit saturation equations are then solved with implicit saturations. This

is followed by phase flux evaluation and then component transport.

So far the sequential solution approaches discussed above march for-

ward in time assuming the pressure and saturation equations are decoupled.

Sun and Firoozabadi (2009) discuss a coupled IMPEC scheme where iterations

are performed between implicit pressure equation and explicit concentration

updates, for a given time-step, until a desired tolerance is achieved. The

implicit pressure and saturation equations are discretized using mixed finite

element (MFE) and linear, discontinuous-Galerkin (DG) scheme, respectively.

In this work, we employ a similar iteratively coupled IMPEC solution scheme

presented by Thomas (2009) while using a multipoint flux mixed finite el-

ement (MFMFE) method and lowest order DG for discretizing the pressure

and saturation equations, respectively. This provides accurate and locally mass

conservative fluxes and eliminates grid orientation effects owing to gradient in

pressure. The MFMFE discretization also utilizes a full permeability tensor.

We also differ in the use of a logically rectangular grid with general hexahedral

elements. These elements lower the number of unknowns when compared to

tetrahedral meshes. Further, the general hexahedral elements capture com-

plex reservoir geometries without requiring substantial adjustment of associ-
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ated petrophysical properties. This also allows for capturing of non-planar

fractures (Singh et al. (2014b)) as a future prospect for compositional flow

modeling in fractured poroelastic reservoirs.

It is also imperative to discuss some of the restrictions placed on phase-

behavior modeling owing to a choice of solution algorithms discussed before.

The Rachford-Rice (RR) (Rachford and Rice (1952)) equations allows a better

treatment of the non-linearities presented by the phase behavior model. The

constant-K flash represented by RR equations can be easily reformulated as

a constrained optimization problem (Michelsen (1994)). The objective func-

tion for this minimization problem is known to be convex and therefore robust

solution schemes can be utilized (Okuno et al. (2010)). However, the model

formulations used in Lauser et al. (2011); Coats (1980) cannot take advantage

of this due to the restrictive choice of primary unknowns. Furthermore, for

implicit solution schemes, phase appearance and disappearance due to near

critical fluid phase behavior poses significant problems. For primary vari-

able switching (PVS) schemes this can introduce oscillations due to frequent

changes in the rank of the Jacobian. Whereas, for complementarity condition

based method the Jacobian can become ill-conditioned or rank deficient. The

IMPEC schemes circumvent these issues at the cost of relatively expensive

but robust phase-behavior calculations based upon successive substitution as

opposed to fully implicit solution algorithms.

In the sections below, we begin by describing the compositional model

formulation along with boundary, initial and closure conditions. This is fol-
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lowed by a description of the hydrocarbon phase behavior model based upon

the local equilibrium assumption. Please note that the aqueous phase is as-

sumed to be slightly compressible. For the sake of brevity, we skip directly to

the fully discrete formulation where a weak formulation of the problem is pre-

sented along with the associated finite element spaces and quadrature rules.

We also briefly discuss the linearization choices leading to the construction

of the implicit pressure equation. Finally, we present a number of numerical

results comprising of verification and benchmarking results along with a com-

parison between TPFA (two-point flux approximation) and MFMFE schemes.

A synthetic field case where gas flooding is used as a tertiary recovery process

further demonstrates the model capabilities for complex cases.

4.2 Model Formulation

We first present a continuum description of the compositional flow

model. The general mass balance equation can be written in the differential

form (also referred to as the strong form) and is given by Eqn. (4.1),

∂Wiβ

∂t
+∇ · Fiβ −Riβ − rmiβ = 0. (4.1)

Where, Wiβ is the concentration of component i in phase β, Fiβ the flux of

component i in phase β, Riβ the rate of generation/destruction of component

i in phase β owing to reactive changes and rmiβ the rate of increase/decrease

component i in phase β owing to phase changes. The mass balance equation
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(4.1) can be expressed in an expanded form given by,

∂(εβρβξiβ)

∂t
+∇ · (ρβξiβzβ − εβDiβ · ∇ (ρβξiβ)) = εβriβ + rmiβ. (4.2)

Here, εβ it the volume occupied by phase β, ρβ the density of phase β, ξiβ the

fraction of component i in phase β and Diβ the dispersion tensor. Please note

that the equations outlined in this section can have either a mass or molar

basis. For the purpose of simplicity, a number of assumptions were made as

stipulated below:

1. Rock-fluid interactions are neglected i.e., no sorption processes are con-

sidered.

2. Non-reactive flow.

Appying these assumptions to Eqn. (4.2), we obtain Eqn. (4.3).

∂(φSβρβξiβ)

∂t
+∇ · (ρβξiβzβ − φSβDiβ · ∇ (ρβξiβ)) = qiβ + rmiβ (4.3)

4.2.1 Component conservation equations

Summing eqn. (4.3) over the total number of phases (Np) and noting

that
∑

β rmiβ = 0 results in eqn. (4.4).

∂

∂t

(∑
β

φSβρβξiβ

)
+∇ ·

∑
β

(ρβξiβzβ − φSβDiβ · ∇ (ρβξiβ)) =
∑
β

qiβ (4.4)

The phase fluxes (zβ) are given by Darcy’s law,

zβ = −Kkrβ
νβ

(∇pβ − ρβg) . (4.5)
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Here, Sβ is the saturation of phase β (ratio of volume of phase β to pore

volume), φ the porosity (ratio of pore volume to bulk volume), qiβ the rate

of injection of component i in phase β (mass/mole/volume basis), and uβ the

Darcy flux of phase β. Also let, Ni =
∑

β ρβSβξiβ and qi =
∑

β qiβ then the

component conservation equations can be written as,

∂

∂t
(φNi) +∇ · Fi −∇ ·

(∑
β

φSβDiβ (∇ρβξiβ)

)
= qi. (4.6)

We define component flux Fi as,

Fi = −K
∑
β

ρβξiβ
krβ
νβ

(∇pβ − ρβg) , (4.7a)

Fi = −K
(∑

β

ρβξiβ
krβ
νβ

(∇pref − ρβg) +
∑
β 6=ref

ρβξiβ
krβ
νβ
∇pcβ

)
. (4.7b)

4.2.2 Boundary and initial conditions

For simplicity of model description we assume no flow external bound-

ary condition everywhere (∂ΩN = ∂Ω). However, this is by no means restric-

tive and more general boundary conditions can be also be treated.

zβ · n = 0 on ∂ΩN (4.8)

The initial condition is as follows,

pref = p0, (4.9a)

Ni = N0
i . (4.9b)
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4.2.3 Closure and constraints

Assuming the water component (i=1) is present only in the water phase,

the phase saturations Sβ are calculated as follows:

Sw =
Nw

ρw
,

So =
(1− ζ)

ρo

Nc∑
i=2

Ni,

Sg =
ζ

ρg

Nc∑
i=2

Ni.

(4.10)

Where, ζ is the mole fraction of the hydrocarbon gas phase, and o, w and g

represent the hydrocarbon oil, water and hydrocarbon gas phases, respectively.

A saturation constraint exist on phase saturation given by,

∑
β

Sβ = 1. (4.11)

The capillary pressure is a monotonic and continuous function of reference

phase saturation (Sref). The relative permeabilities are continuous functions of

reference phase saturation (Sref). A more general table based capillary pressure

and relative permeability curve description has also been implemented.

pcβ = pβ − pref (4.12)

Further, a slightly compressible and cubic equation of states are used for water

and hydrocarbon phases, respectively.

ρw = ρw,0exp [Cw(pref + pcw − pref,std)] (4.13a)
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ρβ =
pβ

ZβRT
, β 6= w (4.13b)

Here, ρβ is the molar density of phase β including water. The porous rock

matrix is assumed to be compressible, with Cr as the rock compressibility,

satisfying the following relationship,

φ = φ0 [1 + Cr(pref − pref,std)] . (4.14)

4.3 Hydrocarbon Phase Behavior Model

The phase behavior modeling for hydrocarbon phases is based upon

a local equilibrium assumption. The equilibrium component concentrations

are then calculated point wise given a pressure (pref), temperature (T) and

overall mole fraction (ξi). A normalization of component concentrations Ni

give overall component mole fractions ξi.

ξi =
Ni∑Nc
i=2Ni

(4.15)

Let, ξiβ be the mole fraction of component i in phase β and ζ the normalized

moles of gas phase, then from mass balance we have,

ζξig + (1− ζ)ξio = ξi, (4.16a)

Nc∑
i=2

ξio = 1, (4.16b)

Nc∑
i=2

ξig = 1. (4.16c)
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The partitioning coefficientKpar
i of a component i between hydrocarbon phases

is given by,

Kpar
i =

ξig
ξio
. (4.17)

Rearranging the above equations we have,

ξio =
ξi

1 + (Kpar
i − 1)ζ

, (4.18a)

ξig =
Kpar
i ξi

1 + (Kpar
i − 1)ζ

. (4.18b)

The Rachford-Rice equation is given by,

f =
Nc∑
i=2

(Kpar
i − 1)ξi

1 + (Kpar
i − 1)ζ

= 0. (4.19)

At equilibrium, the fugacities of a component i are equal in all the phases

given by the iso-fugacity criteria (4.20).

g = ln(Φio)− ln(Φig)− lnKpar
i = 0. (4.20)

Where the fugacity of component i in phase β is given by,

ln(Φiβ) =− Ci +
Bi

Bβ

(Z̄β − 1)− ln(Z̄β −Bβ)

− Aβ

2
√

2Bβ

(
2
∑Nc

j=2 ξjβAij

Aβ
− Bi

Bβ

)
ln

(
Z̄β + (1 +

√
2)Bβ

Z̄β + (1−
√

2)Bβ

)
.

(4.21)

For a given pressure (P ∗), temperature (T) and composition (~z) equations

(4.19) and(4.20) can be linearized in terms of lnKi and ζ.(
∂f/∂lnKpar ∂f/∂ζ
∂g/∂lnKpar ∂g/∂ζ

)(
δlnKpar

δζ

)
=

(
−R1

−R2

)
(4.22)
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Eliminating δζ from the linear system,(
∂f

∂lnKpar
− ∂f

∂ζ

(
∂g

∂ζ

)−1
∂g

∂lnKpar

)
δlnKpar = −R1 +

∂f

∂ζ

(
∂g

∂ζ

)−1

R2.

(4.23)

Since the system under consideration is highly non-linear with multiple so-

lutions we must either provide good initial guesses or constraint the system

appropriately so as to get a unique solution. The phase behavior model relies

upon providing a good initial estimates for lnKpar
i and consequently ζ based

upon heuristics. The Wilson’s equation (4.24) is an empirical correlation which

provides initial guesses for Kpar
i s.

Kpar
i =

1

pri
exp

[
5.37(1 + ωi)

(
1− 1

Tri

)]
(4.24)

Using these partitioning coefficients (Kpar
i ) and the given composition (ξi)

equation (4.19) is then solved to get an initial estimate for ζ. We use three dif-

ferent ways of determining phase stability and consequently the compositions

of unstable phases using iso-fugacity flash calculations. The three methods

differ either in the calculation of initial estimates of Kpar
i s or the determina-

tion of phase stability (negative flash vs. tangent plane distance). However,

the primary unknowns and equations for the three methodologies are the same

as presented in this section.

For non-polar molecules (hydrocarbon) Peng-Robinson cubic equation

(B.1) of state empirically correlates pressure, temperature and molar volume.

The values of Zβ are calculated using this cubic equation of state, given in

the appendix. For given pressure, temperature, composition (~n), partitioning
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coefficients ( ~Kpar) and vapor fraction (ζ), the cubic equation of state provides

three values of Zβ. A unique solution is obtained by selecting the root which

has the minimum Gibb’s free energy given by,

∂G

∂ni

∣∣∣∣
β,T,P

= νiβ = νoi +RTlnΦiβ, (4.25a)

dG|β,T,P =
Nc∑
i=2

∂G

∂ni

∣∣∣∣
β,T,P

dni = h(Zβ). (4.25b)

Where νoi represents the reference state and is a different constant for each

component. Amongst the three roots of the cubic EOS, Zβ corresponding to

the minimum dG|β,T,P is chosen. The cubic EOS, or alternatively Zβ, is not a

part of the Jacobian (Eqn. (4.22)) due to the restriction placed by minimum

Gibb’s free energy constraint. The algorithm for flash iteration can be outlined

as follows:

1. Calculate an initial estimate of Kpar
i s from Wilson’s correlation (4.24).

2. For a given P, T, ~z and Kpar
i s calculated above, solve the Rachford-Rice

equation (4.19) for ζ.

3. Calculate ξiβ from (4.18).

4. Evaluate Zβ using equation (B.1).

5. Evaluate residuals of fugacity equations (4.20), stop if convergence tol-

erance is achieved.

6. If tolerance is not achieved, solve (4.23) for new values of Kpar
i s.
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7. Stop if Kpar
i is trivial i.e., Kpar

i = 1.

8. Return to 1.

4.4 Fully Discrete Formulation

We now consider the fully discrete variational formulation of the com-

positional flow model. The variables are taken at the most recent time iterate

level everywhere except whenever explicitly indicated by index n. An itera-

tively coupled implicit pressure explicit concentration (IMPEC) approach is

used to solve equations in pressure (pref) and concentration (Ni) variables. The

pressure and concentration equations are discretized in time using backward

and forward Euler schemes, respectively. Figure 4.1 shows a flow chart of the

iteratively coupled IMPEC scheme used in this work. The corresponding it-

erate level is represented by the index k. The discrete variational problem,

similar to the one described in the single phase flow chapter, for reservoir

pressure then reads: Given Nk
i,h ∈ Wh, find F k+1

i,h ∈ Vh and pk+1
ref,h ∈ Wh such

that, 〈
1

Λk̃
i,h

K−1F k+1
i,h , vh

〉
Q,E

−
(
pk+1

ref,h,∇ · vh
)
E

=−
∫
∂E∩∂Ω

prefvh · n−
(

1

Λk̃
i,h

∑
β 6=ref

ρk̃β,hξ
k̃
iβ,hλ

k̃
β,h∇pk̃cβ,h, vh

)
E

+

(
1

Λk̃
i,h

∑
β

(
ρ2
β,h

)k̃
ξk̃iβ,hg, vh

)
E

,

(4.26)
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(
φk+1
h Nk

i,h

∆t
, wh

)
E

+
(
∇ · F k+1

i,h , wh
)
E
−
(
∇ ·

∑
β

{
φk+1
h S k̃β,hDiβ,h

· ∇
(
ρk̃β,hξ

k̃
iβ,h

)}
, wh

)
E

=
(
qk̃i,h, wh

)
+

(
φnNn

i

∆t
, wh

)
E

.

(4.27)

Here, k̃ is used to represent iterate level for quantities which depend on both

pressure and concentrations such that pk+1
ref and Nk

i . The discrete variational

problem for the concentration update is: Given pk+1
ref,h ∈ Wh, F

k+1
i,h ∈ Vh and

Nk
i,h ∈ Wh, find Nk+1

i,h ∈ Wh such that,(
φk+1
h Nk+1

i,h

∆t
, wh

)
E

+
(
∇ · F k+1

i,h , wh
)
E
−
(
∇ ·

∑
β

{
φk+1
h S k̃β,hDiβ,h

· ∇
(
ρk̃β,hξ

k̃
iβ,h

)}
, wh

)
E

=
(
qk̃i,h, wh

)
+

(
φnNn

i

∆t
, wh

)
E

.

(4.28)

Please note that a description of algebraic equations associated with the im-

plicit pressure (Eqn. (4.27)) and explicit concentration (Eqn. (4.28)) systems

is omitted to avoid redundancy. The reader is referred to earlier sections on

compositional and phase behavior model formulations for necessary relations.
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Start

Pressure Solve

Tol < ϵ
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Time Step
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n = n + 1

k = k + 1

Explicit Concentration Update

Figure 4.1: Iteratively coupled implicit pressure explicit concentration (IM-
PEC) scheme.

4.4.1 Treatment of diffusion/dispersion

The diffusion-dispersion tensor is the sum of molecular diffusion and

hydrodynamic dispersion given by:

Diβ = Dmol
iβ +Dhyd

iβ , (4.29a)

Dmol
iβ = τβdm,iβI, (4.29b)

Dhyd
iβ = dt,β|zβ|I + (dl,β − dt,β) zβz

T
β /|zβ|. (4.29c)

Here τβ is the tortuousity of phase β, dm,iβ, dl,β, dt,β are the molecular,

longitudinal and transverse dispersion coefficients, respectively. We define the

diffusive/dispersive flux as:
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Jiβ = φSβDiβρβ · ∇ (ξiβ) , (4.30)〈
1

φρβSβ
D−1
iβ Jiβ, vh

〉
Q,E

− (ξiβ,∇ · vh)E = −
∫
∂E∩∂Ω

ξiβvh · n. (4.31)

The diffusion-dispersion tensor is evaluated locally for each corner-point sim-

ilar to the permeability tensor. The molecular diffusion (Dmol
iβ ) is evaluated

using cell-centered values of dm,iβ. Further, the hydrodynamic dispersion ten-

sor (Dhyd
iβ ) is calculated using the three flux degrees of freedom associated with

each corner-point.

4.5 Linearization

A Newton method is applied to form a linear system of equations fol-

lowed by elimination of component concentrations and fluxes resulting in a

implicit pressure system. Once the pressures are evaluated an explicit update

of Nc component concentrations is performed (IMPEC). The three phase sat-

urations are calculated using equations (4.10) independently. Linearizing the

above system of equations,〈
1

Λi,h

K−1δFi,h, vh

〉
Q,E

− (δpref,h,∇ · vh)E = −R3i, (4.32)(
φn+1,k
h δNi,h

∆t
, wh

)
E

+

(
Nn+1,k
i,h

∆t

∂φ

∂pref,h

δpref,h, wh

)
E

+ (∇ · δFi,h, wh)E = −R4i.

(4.33)

The local mass matrix and right hand side for component i can be written as,(
Ai B 0
BT Ci Di

) δF i

δpref

δN i

 =

(
−R3i

−R4i

)
. (4.34)
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Please note that C contains contribution from ∂φ
∂pref

and D contains
∂ρβ
∂pref

indirectly through N. We then eliminate δF i in favor of cell centered quantities

δpref and δN i. The saturation constraint, iso-fugacity criteria and RR equation

can be linearized in terms of the unknowns pref, Ni, K
par

i and ζ using equations

(4.15) and (4.18) as,

∑
β

∂Sβ
∂pref

δpref +
∑
β

∑
i

∂Sβ
∂Ni

δNi+
∑
β

∑
i

∂Sβ
∂lnKpar

i

δlnKpar
i +

∑
β

∂Sβ
∂ζ

δζ

= 1−
∑
β

Sβ = −R5,

(4.35)

Φiβ = Φiβ(pref, ξiβ) = Φiβ(pref, ξi, K
par
i ) = Φiβ(pref, Ni, K

par
i ), (4.36)

∂lnΦio

∂pref

δpref +
Nc∑
k=2

∂lnΦio

∂Nk

δNk +
Nc∑
k=2

∂lnΦio

∂lnKpar
k

δlnKpar
k +

∂lnΦio

∂ζ
δζ

−
(
∂lnΦig

∂pref

δpref +
Nc∑
k=2

∂lnΦig

∂Nk

δNk +
Nc∑
k=2

∂lnΦig

∂lnKpar
k

δlnKpar
k +

∂lnΦig

∂ζ
δζ

)

− ∂lnKpar
i

∂lnKpar
k

δlnKpar
k = −R6i.

(4.37)

The above equations can also be written in the matrix form as,

E F G H
I J K L
0 N O P




δpref

δN
δlnKpar

δζ

 =

−R5

−R6

−R7

 . (4.38)

We then construct the pressure equation by further eliminating δN and δlnKpar.

Eliminating δF , δN and δlnKpar from the above linear system of equations
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results in an implicit pressure system. Note that the diffusion is handled ex-

plicitly for both the implicit pressure solve and the concentration update. The

values of phase compressibilities (Zβ) are Newton iteration lagged and are

evaluated explicitly given pressure P, temperature T and component concen-

trations Nis. The derivatives of Zβ with respect to P and Ni are therefore set

to zero in the Jacobian. The Zβ contribution is accounted for in the residual

term. A more rigorous treatment would be to expand the Jacobian in terms of

Zβ as well. However, the minimum Gibbs free energy constraint (for a unique

Zβ) given by equation (4.25) is difficult to utilize.

4.6 Results

In this section, we present numerical experiments to verify and demon-

strate the capabilities of MFMFE discretization scheme for compositional flow

modeling. We begin with a verification case where a comparison is made

between TPFA and MFMFE discretization schemes for matching conditions.

This is followed by another numerical experiment where we use a checker-

board pattern permeability field to demonstrate better fluid front resolution

for MFMFE scheme. Finally, we present a synthetic Frio field example where

CH4 is injected to achieve multi-contact miscible flooding.

4.6.1 Verification and benchmarking

Here we present a comparison between TPFA and MFMFE discretiza-

tions with a diagonal permeability tensor. A quarter five spot pattern with 3
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components (C1, C6 and C20) in addition to the water component. Both the

injection (bottom left corner, Figure 4.2) and production (top right corner, Fig-

ure 4.2) wells are bottom hole pressure specified with a pressure specification

of 1200 and 900 psi, respectively. The injection composition is kept constant

at 100% C1 with reservoir and grid block dimensions of 1000ft × 1000ft × 20ft

and 20ft × 20ft × 20ft, respectively. The initial reservoir pressures and water

saturations are 1000 psi and 0.2, respectively. The gas saturation profiles as

Figure 4.2: Gas saturation profile after 500 days using TPFA (left) and
MFMFE (right) discretizations.

the end of 500 days for the two schemes are shown in Figure 4.2. A homoge-

neous, isotropic and diagonal permeability tensor field of 50 mD was assumed

with a homogeneous porosity field of 0.3. The temperature was kept constant

at 160 F. Figure 4.3 shows variation of component concentrations along the

line joining injector and producer for both TPFA (circle) and MFMFE (solid

line) discretizations.
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Figure 4.3: Component concentrations along the injector-producer line after
500 days for MFMFE (solid line) and TPFA (circles) schemes

4.6.2 Full permeability tensor test

This numerical experiment demonstrates the differences in saturation

profiles between MFMFE and TPFA discretization due to the use of a full

permeability tensor. Two bottom hole pressure specified wells are used with

the injector (Fig. 4.4, bottom left corner) at 2200 psi and producer (Fig. 4.4,

top right corner) at 900 psi. A homogenous, isotropic, diagonal permeability

tensor of 100mD is assumed for the TPFA scheme. For the MFMFE scheme

a homogeneous, full permeability tensor with 100mD diagonal and 50mD off-

diagonal values is used. Other fluid and reservoir properties are kept the

same as in the previous example. The reservoir and grid block dimensions

for the numerical simulation are 1000ft×1000ft×20ft and 100ft×100ft×20ft,

respectively.
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Figure 4.4: Oil saturation profiles after 50 days for MFMFE (left) and TPFA
(right) discretizations.

Figure 4.4 shows oil saturation profile for the two schemes after 50 days.

As can be see, the oil saturation front for the TPFA scheme has a larger radius

of curvature compared to the MFMFE scheme.

4.6.3 Checker-board pattern test

In this example, we demonstrate the diagonal flow capability of the

MFMFE scheme. The reservoir and fluid property information is kept the

same as the previous example differing only in permeability values. A checker-

board permeability field, as shown in figure 4.5 (left), is taken with values of

1mD (blue) and 100mD (red) to exaggerate the effects. The injection (bottom

left corner) and production (top right corner) wells are bottom hole pres-

sure specified with a pressure specification of 2200 and 900 psi, respectively.

Additionally, small off diagonal permeability values of 0.5mD were taken to

construct a full permeability tensor for the MFMFE scheme.
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Figure 4.5: Permeability field (left) and gas saturation profiles after 3000 days
for MFMFE (middle) and TPFA (right) discretizations.

Figure 4.5 also shows the oil saturation profiles for the two discretization

schemes after 3000 days. The saturation profile on the left indicates a faster

breakthrough of the injected gas compared to the right. The MFMFE scheme

is able identify the high permeability diagonal path and is therefore able to

better resolve pressure and saturations at the fluid front.

4.6.4 Frio field test case

In this example, we present a synthetic field case using a section of

Frio field geometry information to demonstrate some of the model capabili-

ties. Note that the general hexahedral elements allows us to capture reservoir

geometry accurately without requiring substantial changes in the available

petrophysical data. We consider six hydrocarbon components (C1, C3, C6,

C10, C15 and C20) in addition to water forming the fluid composition. The

fluid system can be at most three phases at given location, depending upon

phase behavior calculations, including water, oil and gas phases. The initial
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hydrocarbon composition in the reservoir is taken to be 5% C3, 40% C6, 5%

C10, 10% C15 and 40% C20 with an initial reservoir pressure of 2000 psi. Fur-

ther, the water saturation (Sw) at time t = 0 is taken to be 0.2. A total of 8

bottom hole pressure specified wells were considered comprising of 3 produc-

tion and 5 injection wells. The permeability and porosity fields are shown to

be around typical values of 50 mD and 0.2, respectively. The injection compo-

sition was kept constant at 100% C1 during the entire simulation run spanning

1000 days. An isothermal reservoir condition was assumed at a temperature

of 160 F.

Figure 4.6: Concentration profiles for lightest (C1) and heaviest (C20) compo-
nents after 1000 days.

A multi-contact miscible (MCM) flood is achieved at the given reser-

voir pressure and temperature conditions. Figure 4.6 shows the concentration

profiles for the lightest and heaviest hydrocarbon components after 1000 days.

Further, figure 4.7 shows the gas and oil saturation profiles after 1000 days.

56



Figure 4.7: Saturation profiles for gas (left) and oil (right) phases after 1000
days.

4.6.5 Brugge field CO2 flooding

In this example, we use CO2 gas flooding(Peters et al. (2009); Chen

et al. (2010)) as the tertiary mechanism for recovering hydrocarbons. The

complex reservoir geometry is captured using 9×48×139 general hexahedral

elements and then discretized using a MFMFE scheme. A constant temper-

ature of 160 F is specified assuming an isothermal reservoir condition. The

initial hydrocarbon composition is 40% (C6) and 60% (C20) with an initial

reservoir pressure of 1500 psi. The permeability and porosity fields are shown

in Figures 4.11 and 4.12.

An injected gas composition of 100% CO2 is further specified. Fig.

shows the Brugge field geometry with 30 bottom-hole pressure specified wells

with 10 injectors at 3000 psi and 20 producers at 1000 psi. The porous rock

matrix is assumed to be water wet as reflected by the relative permeability
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Figure 4.8: Brugge field geometry with well locations.

and capillary pressure curves in Figs. 4.9 and 4.10 ,respectively. A constant

extrapolation is used, wherever necessary, for saturation values less than 0.2.

Fig. 4.13 shows the oil and gas saturation profile after 1000 days whereas Fig.

4.14 shows the pressure distribution and concentration profiles for light (CO2),

intermediate (C6) and heavy (C20) components. A multi-contact miscible flood

is achieved with miscibility occurring at the tail end of the injected gas front.
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Figure 4.9: Water, oil and gas relative permeabilities.
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Figure 4.10: Capillary pressure curves.

Figure 4.11: X (left) and Y (right) direction permeability fields.
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Figure 4.12: Z direction permeability (left) and porosity (right) fields.

Figure 4.13: Oil and gas saturation profiles after 1000 days.

Figure 4.14: Pressure and concentration profiles after 1000 days.
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Chapter 5

Coupled Two-Phase Reservoir Fracture Flow

and Geomechanics Model

Multiphase flows in fractured reservoirs are of immense importance for

energy security. The recovery of hydrocarbons in a reservoir is strongly depen-

dent on the fractures, both natural and artificial. To model these processes, it

is imperative to have a reliable model that captures the effects of these fractures

with high accuracy. Moreover, the geometric complexities of the fractures re-

quire sophisticated numerical approaches. Further the pore pressure from the

flow may also cause geomechanical effects. These effects are more pronounced

when the fractures are present. The geomechanical effects and multiphase

flows in a fractured porous medium are modeled by coupled nonlinear system

of differential equations. Additionally, we need to account properly for reser-

voir heterogeneities due to discontinuous rock properties. This manifests in

the form of discontinuous changes in absolute permeability, relative perme-

ability and capillary pressure curves. The simulation of this system presents

This work has been partly presented at the SPE Hydraulic Fracturing Technology con-
ference (Singh et al. (2014b)) and also published as an ICES report (Singh et al. (2014c)).
The research is done primarily by Gurpreet Singh under the supervision of Prof. Mary F.
Wheeler with the help of constant inputs, suggestions and improvements by Drs. Gergina
Pencheva, Kundan Kumar, Thomas Wick and Benjamin Ganis.
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important challenges from both modeling and computational points of view.

In this work, we perform a quantitative and qualitative study of these

effects and describe a numerical approach for solving this problem. Our ap-

proach offers high accuracy and fidelity in capturing the physics of the prob-

lem. The model consists of two parts: geomechanics and flow equations. The

flow equations in fractured reservoirs have been a subject of intensive study

by several authors. Our approach fully resolves the flow by considering sep-

arate equations for the fractures and reservoirs which are coupled together.

As we shall see later in this section (see Fig 5.2), this resolution of fracture

flow is important as a crude approximation may lead to unacceptable errors.

The fracture flow model is formulated by reducing a higher dimensional (Rd)

model to a lower dimensional (Rd−1) manifold by averaging procedure. The

derivation of this reduction procedure has been undertaken by Martin et al.

(2005) and Frih et al. (2008) for Darcy and Forchheimer flows. The reduction

leads to a set of equations defined for both fractures and reservoirs with frac-

tures acting as interfaces inside the reservoirs. The purview of these studies is

however limited to single phase flow accounting for permeability heterogeneity

at the reservoir-fracture interface. We will follow a similar approach here for

multiphase flows.

We begin by reviewing some of the work that is relevant to our pre-

sented approach. Hoteit and Firoozabadi (2008a) present a introduction of

different finite volume and finite element based discretizations for such prob-

lems. A mixed finite element for multiphase, reservoir-fracture flow model
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was proposed by Hoteit and Firoozabadi (2005, 2006) assuming a cross-flow

equilibrium across reservoir-fracture interface. This assumption was later re-

moved (Hoteit and Firoozabadi (2008b)) by considering additional degrees

of freedom at the interface. Here, they consider a hybrid mixed method to

solve an implicit pressure equation along with a higher order discontinuous

Galerkin method with a slope limiter for an explicit saturation update follow-

ing an IMPES (implicit pressure explicit saturation) scheme. Further, Grillo

et al. (2010) discuss density driven flows where fractures are represented as 2

and 3-dimensional manifolds assuming a multi-component, single-phase flow

system. A finite-volume based numerical discretization is used, with each

fracture having two degrees of freedom. Our method is inspired by Hoteit and

Firoozabadi (2008a) and uses mixed finite element methods and an IMPES

solution scheme. We differ in the usage of a multipoint flux scheme based

upon an appropriate choice of finite element spaces and quadrature rule (In-

gram et al. (2010),Wheeler and Yotov (2006), Arbogast et al. (1997), Wheeler

et al. (2011c)). This approach provides flexibilities in capturing the complex

geometric features of fractures.

Earlier, a finite-volume based approach was presented by Bastian et al.

(2000) and Monteagudo and Firoozabadi (2004) on unstructured grids. The

reservoir-fracture interfaces have only one pressure and saturation degree of

freedom and thus jumps in these quantities cannot be considered, thereby

assuming a cross-flow equilibrium. Their model takes into account capillary

pressure discontinuity due to rock heterogeneity. However, saturation calcula-
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tion at the interface requires inversion of capillary pressure, which may pose

problems if the capillary pressure curve is either identically zero or has a small

gradient. Monteagudo and Firoozabadi (2007) address this issue by using two

different formulations based upon threshold values requiring calibration. More

recently, a coupled flow in a fractured-reservoir models is considered in Al-

Hinai et al. (2013) where different discretization schemes were utilized inside

the fracture (mimetic finite difference) and reservoir (mixed finite element) in

the absence of capillary pressure and time invariant fracture permeabilities.

The geomechanical effects in the reservoir are accounted for by con-

sidering an elastic deformable medium. The theoretical groundwork for one-

dimensional flow in a deformable porous medium was first developed by Terza-

ghi (1943). This was later extended to a general theory of three-dimensional

consolidation for anisotropic and heterogeneous materials by Biot in his subse-

quent works (Biot (1941a,d, 1955a)). For the coupling of multiphase flow and

geomechanics, Settari and Walters (2001) categorize the various schemes as de-

coupled and explicit, iterative and fully coupled. An explicit or loose coupling

has lower computational time with little control on solution accuracy. Further,

a time-step size guidance is often required for the geomechanics solve, which

is empirical or heuristic in nature (Dean et al. (2006)). On the other hand, a

fully implicit method is both accurate and stable, however solving the implicit

system of equations results in a complex nonlinear system requiring suitable

linearization schemes and specialized linear solvers for convergence. In this

work, we apply an iterative coupling scheme based on fixed stress splitting
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for which convergence analysis has been presented by Mikelic and Wheeler

(2012); Mikelic et al. (2014); Kim et al. (2012). The analysis shows that the

iterative scheme converges geometrically. An iterative coupling approach com-

bines the advantages of both methods while maintaining numerical solution

accuracy, fast convergence, and ease of implementation in existing legacy flow

simulators.

The poroelastic models rely upon pore-pressure to account for changes

in material stress. Accuracy of flow models, especially in capturing sharp

pressure changes across a reservoir-fracture interface, plays a pivotal role when

poroelastic behavior of reservoir and fracture mechanics comes into play. For

a single phase flow, Ganis et al. (2013) presents a coupled flow model fractures

in a poroelastic medium. The multipoint flux mixed finite element method

(MFMFE) used in this work is defined for general hexahedral grids with non-

planar edges. This allows non-planar fracture geometry to be captured. A

detailed numerical analysis for single phase reservoir-fracture flow coupling

presented here can be found in Girault et al. (2013).

There are several novelties in this work. We use hexahedral grids with

an MFMFE scheme which allows non-planar fractures and an accurate com-

putation of a locally mass-conservative flow profile. Secondly, we resolve the

flow equations for both the fractures and reservoir in a coupled manner. This

is achieved by assuming a lubrication equation (Reynolds (1886))inside the

fractures and multiphase Darcy law for the reservoir. Thirdly, the fixed stress

splitting scheme for the geomechanics effects in a reservoir has been extended
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to include fractures where the permeabilities of the fracture are functions of

the deformations. Furthermore, our numerical results have been compared

with physical core-scale experiments and benchmark problems demonstrating

the capabilities of our approach.

We begin with a simplified 2D example to qualitatively outline some

of the differences between conventional modeling techniques and the approach

presented here. This is followed by a reservoir-fracture flow and geomechanics

model formulation with a brief description of conservation and constitutive

equations along with the required closure conditions. We then discuss a choice

of boundary, interface and initial conditions used to describe the problem.

Next in the algorithm and discretization section we briefly outline the spatial

and temporal discretization schemes used for flow and mechanics as well as

the iterative schemes used to couple the various systems of equations. Finally,

in the results section we present five numerical experiments including a com-

parison with experimental lab results to confirm the validity of our model and

to further demonstrate the features and long-term prediction capabilities.

5.1 An Illustrative Example

In this section, we motivate this work by emphasizing the need to fully

resolve the fracture geometry. The following simplified example underlines the

need for a detailed modeling. This will be achieved by considering and com-

paring different approaches for fractured reservoir flow modeling. A reservoir

domain of size 10 ft × 10 ft is considered with bottom-hole pressure specified
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injection (520 psi) and production (500 psi) wells located at diagonally oppo-

site ends. Further, a homogeneous and isotropic reservoir permeability of 5

mD and porosity of 0.2 are assumed.

Fig. 5.2 shows saturation profiles for three approaches: (1) an average

permeability representation (1st row, 1st column), where the dotted red region

has been assigned higher average permeability of 5 × 106 mD assuming the

fracture goes through those blocks, (2) a meshed-in representation where the

fracture itself is gridded (1st row, 2nd column) and has a permeability value

of 5× 1010 mD, and finally, (3) the interface approach presented in this work

(1st row, 3rd column) where the fracture is represented as a lower dimensional

manifold shown by the red dotted line. Further, the capillary pressure is taken

to be identically zero everywhere. The relative permeability curves are shown

in Fig. 5.1.
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Figure 5.1: Oil and water phase relative permeability curves for reservoir and
fracture.
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The fracture aperture is chosen such that the fracture conductivity is

same as high permeability for the meshed in approach. Note that an actual

fracture width of 1 mm is used for the interface approach when compared to

the meshed-in approach where the grid-block width normal to the fracture

surface is 1cm. The saturation profiles at t = 50 and 100 days (2nd and 3rd

row in Fig. 5.2) shows differences in sweep pattern for the different approaches.

The averaging approach mobilizes additional fluid resulting in overesti-

mation of recoveries. The meshed-in approach, although more accurate, poses

a few challenges. A mesh refinement is required to capture the fracture, which

may not always be possible. Furthermore, a time-step size restriction due to

an order of magnitude difference between fracture and reservoir grid block

sizes is observed. A relatively large fracture width (1cm) has been chosen

due to time-step size restriction imposed by CFL (Courant-Friedrichs-Lewy)

condition. The interface approach overcomes these issues while preserving the

physics. Fig. 5.2 (2nd row 3rd column) shows fluid entering fracture at one end

and leaving at the other end without mobilizing additional fluid in between.

In the numerical results section, we further elaborate on the merits and the

limitations of the averaging approach. We also show that the orientation and

location of fractures are important parameters in determining the choice of

fracture modeling.
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Figure 5.2: Saturation profiles for averaging, meshed-in and interface ap-
proaches (left to right) for time t = 0, 50 and 100 days (top to bottom).
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5.2 Model Formulation

In this section, we provide a brief description of the fractured reservoir

flow and geomechanics model where fractures are treated as lower dimensional

manifolds in (Rd−1) in a reservoir domain Ω ∈ Rd, (d = 2 or 3). The model has

two components: two-phase flow and mechanics. The modeling equations are

defined separately in the reservoir and on the fracture surfaces along with the

associated interface conditions. For the flow model, a slightly compressible,

two-phase, locally mass conservative Darcy flow is assumed for the reservoir

domain and a lubrication equation for the fractures. We further assume oil

and water are the two phases denoted by subscripts o and w, respectively. A

schematic of a fractured reservoir is shown in Fig. 5.3. Note that the frac-

ture geometry is not necessarily planar and as explained later, our numerical

method allows for non-planar geometries.

Ω
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Figure 5.3: Schematic of a fractured reservoir flow model.

We treat the fracture as a pressure specified internal boundary in the

reservoir domain and provide the jump in flux across this interface as a leakage
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term to the fracture. The fracture pressure is also treated as an internal trac-

tion boundary condition for the reservoir geomechanics. The resulting jump in

displacements (fracture width or aperture) is used to calculate fracture perme-

ability. For the model description, we consider a fractured reservoir domain

(Ω) where the fracture is represented as an interface (Γ) with two surfaces

(Γ±), as shown in Fig. 5.3. Here ∂ΩN and ∂ΩD represent the Neumann and

Dirichlet parts, respectively of the external boundary of the reservoir domain

Ω.

5.2.1 Equations in the reservoir (Ω\Γ)

We begin by describing the flow equations everywhere except for the

fracture interface Γ.

5.2.1.1 Flow equations

The mass-conservation equation for the phase β reads,

∂

∂t
(φ∗Sβρβ) +∇ · zβ = qβ. (5.1)

Here, φ∗ is the fluid fraction, Sβ the saturation, ρβ the density, zβ the flux of

phase β = o (oil phase), w (water phase). The source/sink term qβ is treated

using an appropriate well model (Peaceman (1978)). The Darcy equation

relates the flux zβ to the gradient of the phase pressure and is given by

zβ = −Kρβ
krβ
νβ

(∇pβ − ρβg) . (5.2)
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In the above, K is a full tensor absolute permeability, krβ the relative perme-

ability, and νβ the viscosity of phase β. The second term in the parenthesis

models the effect of gravity.

5.2.1.2 Mechanics

The displacement u of the porous medium is described by the qua-

sistatic poroelastic equations. Eqn. (5.3) represents the momentum conserva-

tion (force balance) and Eqn. (5.4) the constitutive equation relating stress

(σpor) and displacements (u):

−∇ · σpor(u, pref) = f , (5.3a)

f =

[
ρs(1− φ∗) + φ∗

∑
β

ρβSβ

]
g, (5.3b)

φ∗ = φo + α∇ · u+
1

M
pref. (5.3c)

σpor(u, pref) = σ(u)− αprefI, (5.4a)

σ(u) = λ(∇ · u)I + 2µε(u), (5.4b)

ε(u) =
1

2
(∇u+∇uT ). (5.4c)

Here, σpor is the Cauchy stress tensor, ε the strain tensor, f the body force,

ρs density of the solid matrix, g acceleration due to gravity, α the Biot coeffi-

cient, pref the reference phase pressure, I the identity matrix, φo the reference

porosity, µ and λ are Lamé parameters.
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5.2.2 Equations in the fracture (Γ)

A lubrication equation is assumed as the constitutive relation between

fracture fluxes (zΓ
β) and gradient of fracture pressure (pΓ). Here, the fracture

gradient (∇̄) and divergence (∇̄·) operators are defined on a lower dimensional

space (Rd−1). Eqns. (5.5) and (5.6) represent the mass conservation and

Darcy’s law for the phase ‘β’ in the fracture domain:

∂

∂t

(
WSΓ

βρ
Γ
β

)
+ W∇̄ · zΓ

β = qΓ
β + qlβ, (5.5)

zΓ
β = −KΓρΓ

β

krβ
νβ

(
∇̄pΓ

β − ρΓ
βg
)
. (5.6)

Here, qlβ is the fracture leakage term as defined below. The absolute perme-

ability KΓ is given by Eqn. (5.7) where (W) is the fracture width,

KΓ =
W2

12
. (5.7)

5.2.3 Closure conditions

A slightly compressible, equation of state relating fluid densities and

pressures is assumed (Eqn. (5.8)) for both reservoir and fracture. Further,

the capillary pressure and saturation constraints are given by Eqns. (5.9) and

(5.10), respectively. For simplicity of notation we let ? = Ω\Γ or Γ and for a

given function fΩ\Γ to be equal to f. Thus, we have

ρ?β = ρβ0exp
[
cβ(p?ref + p?cβ − p0)

]
, (5.8)

p?cβ(S?β) = p?o − p?w, (5.9)
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S?w + S?o = 1. (5.10)

Here, cβ is the fluid compressibility, pcβ the capillary pressure for the fluid

phase β and Sref the reference phase saturation. The relative permeabilities

are continuous functions of reference phase saturation (Sref) for both reser-

voir and fracture. A more general table based capillary pressure and relative

permeability curve description has also been implemented.

5.2.4 Boundary, interface and initial conditions

For the sake of simplicity, we consider no-flow or pressure specified

external boundary conditions for the reservoir domain (Ω);

zβ · n = 0 on ∂ΩN . (5.11)

For saturations, we specify Dirichlet boundary conditions on ∂ΩD. However,

the choice is not restrictive and is used for convenience. That is,

pref = pD on ∂ΩD,

Sref = SD on ∂ΩD.
(5.12)

Furthermore, the proposed model assumes a pressure-specified internal bound-

ary condition (Eqn. (5.13)) given by,

pref = pD on Γ±. (5.13)

Assuming capillary pressure functions are monotone functions whenever uni-

formly non-zero and therefore invertible, three modeling choices are considered.
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5.2.4.1 Case I

pc is identically equal to zero everywhere:

Sref = SD on Γ±. (5.14)

5.2.4.2 Case II

pc is strictly greater than zero everywhere:

S−ref = (p−c,ref)
−1(pΓ

c,ref(S
Γ
ref )) on Γ− ,

S+
ref = (p+

c,ref)
−1(pΓ

c,ref(S
Γ
ref )) on Γ+ .

(5.15)

5.2.4.3 Case III

pc is strictly greater than zero in the reservoir and identically equal to

zero in the fracture:

S−ref = (p−c,ref)
−1(0) on Γ− ,

S+
ref = (p+

c,ref)
−1(0) on Γ+ .

(5.16)

Here (p±cβ)−1) is the inverse of capillary pressure on top and bottom (or left

and right) surfaces of the fracture. Note that fluid mass exchange between

reservoir and fracture is accounted for by the leakage term ‘qlβ’ in Eqn. (5.5).

Assuming the two fracture surfaces have the same normal, a jump in reservoir

fluxes and displacements across the fracture interface (Γ±) is provided as a

leakage (source term) and fracture width, respectively to the fracture mass

conservation:

qlβ = [zβ · n]Γ = zβ · n|Γ− − zβ · n|Γ+ , (5.17a)
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W = [u · n]Γ = u · n|Γ− − u · n|Γ+ . (5.17b)

The geomechanics boundary conditions are given by

(σpor(u, p)n)Γ± = −pΓ
refn, (5.18a)

[σpor(u, p)n]Γ = 0, (5.18b)

u = 0 on ∂ΩD
s , (5.18c)

σporn = σN on ∂ΩN
s , (5.18d)

where ∂Ωs are the external boundaries. The initial conditions at time t = 0

are as follows:

pref = p0, (5.19)

Sref = S0, (5.20)

u = u0. (5.21)

5.3 Solution Algorithm and Discretization

A fixed stress iterative coupling scheme, Settari and Walters (2001);

Mikelic and Wheeler (2012), is employed as shown in Fig. 5.4. Here we iter-

ate between the flow solution assuming a fixed stress field and the mechanics

solution assuming fixed pressure and saturation fields. For the reservoir ge-

omechanics equations, a continuous Galerkin (CG) finite element method used

for spatial discretization. The mechanics solve provides a jump in displace-

ments across the fracture interface (fracture width) which is used to calculate
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the fracture permeability (Eqn. 5.7). The fracture pressure from the reservoir-

fracture flow solve is then treated as a traction boundary condition for the me-

chanics solve. Iterations are performed until a desired tolerance ε1 is achieved.

Please note that the fracture widths vary both spatially and temporally. Our

formulation has been extended to propagating fracture based on a phase field

approach Wick et al. (2013); Mikelić et al. (2014a); Wheeler et al. (2014b)

Start

Fixed stress flow solve 

Tol < ϵ1
Yes

Time Step

No

Stop

n = n + 1

Mechanics solve

m = m + 1

Figure 5.4: Fixed stress flow and mechanics coupling

The MFMFE method, developed by Wheeler and Yotov (2006) for gen-

eral hexahedra, is used for spatial discretization of reservoir and fracture flow

equations. Mixed finite element methods are preferred over other variational

formulations due to their local mass conservation and improved flux approx-

imation properties which includes diagonal flow across a grid-block. A 9 and

27 point pressure stencil is formed for logically rectangular 2D and 3D grids,

respectively.
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Reservoir-Fracture 
pressure solve

Tol < ϵ2

Yes

No

l = l + 1

Saturation update

Figure 5.5: Iteratively coupled IMPES scheme

The flow equations are solved using an iteratively-coupled IMPES scheme

as shown in Fig. 5.5. The reference phase pressure is solved implicitly by

solving the total mass conservation equation with a backward Euler time dis-

cretization assuming the reference phase saturations are given. This is fol-

lowed by an explicit update of reference phase saturations using a forward

Euler time discretization for the phase mass conservation equation. The so-

lution algorithm allows for smaller saturation time-step sizes than pressure

time-steps. Further, the Courant-Frederichs-Lewy (CFL) condition on the ex-

plicit saturation updates are then obeyed using different time-step sizes for the

reservoir and the fracture. The fluid property data for intermediate saturation

time steps are calculated by linear interpolation of pressure. The demarcation

of reservoir and fracture as separate domains allows for special treatment of
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Reservoir pressure 
solve

Tol < ϵ3

Yes

No

k = k + 1

Fracture pressure 
solve

Figure 5.6: Iteratively coupled reservoir and fracture pressure solve

computationally challenging regions. Please note that since the pressures are

solved implicitly, there are no restrictions on the pressure time-step size. A

tolerance of ε2 determines convergence of the iterative scheme.

We finally turn our attention to the non-linear, reservoir-fracture flow

system. The reservoir pressure solve provides a jump in fluxes across the

fracture interface. These in turn act as source/sink terms for the fracture

pressure solve. The resulting fracture pressure is then treated as a pressure

specified internal boundary for the reservoir domain. We couple the reservoir

and fracture pressure solves by iterating between the two implicit systems until

a desired tolerance ε3 is reached. Fig. 5.6 provides an outline of the coupled

reservoir-fracture flow model used in this work.
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5.4 Iterative Coupling

In this section, we discuss the solution algorithm for the model formula-

tion described before. A number of iterative coupling schemes can be devised

based upon decoupling choice such as time or iteration lagging certain terms.

We restrict ourselves to two such choices, namely the implicit and explicit

schemes. The fixed stress iterative coupling (explicit coupling) of reservoir

flow and geomechanics, in the absence of fracture, is known to be convergent

(Mikelic and Wheeler (2012)) in the presence of a stabilization term. A simi-

lar stabilization term allows an explicit coupling of reservoir fracture pressure

equations to be convergent. However, the numerical scheme was found to be

very sensitive to the value of this term and therefore the numerical test, later

in the results section, are based upon the implicit coupling approach.

5.4.1 Reservoir and fracture pressure coupling

The implicit coupling scheme is found to be strictly convergent for

slightly compressible flow, with convergence rates dependent on the ratio of

fluid compressibilities to time step size. Please note that the terms implicit

and explicit are used here only to differentiate the two formulations in the

sense described below. It is by no means indicative of the strict definitions

associated with these two terms and is utilized to represent an implicit or

explicit treatment of leakage term and internal boundary condition. Before

we delve into further details, it is important to discuss some of the indices we

use for representing the iterates in our numerical formulation. In the sections
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below and thereafter, k is the reservoir-fracture pressure coupling iterate, l

the reservoir-fracture pressure and saturation coupling iterate, m flow and

mechanics coupling iterate and n the time iterate. Please note that g̃, g = k, l

superscript is used below to represent quantities which contain terms at both

g and g + 1 level iterate.

5.4.1.1 Explicit coupling

The term explicit here represents an explicit treatment of the jump

in fluxes zβ · n and leakage terms qlβ for the reservoir and fracture pressure

equations, respectively. A coupling is then achieved by iterating between the

non-linear reservoir and fracture pressure equations, for given saturation and

fracture width distributions, until a desired tolerance is achieved. A stabiliza-

tion term γf is added to achieve convergence as will be shown in the description

below. However, the numerical scheme is extremely sensitive to the values of

this stabilization.

Pressure equation in Ω\Γ

∑
β

(
φ∗m,n+1Sl,m+1,n+1

β ρk+1,l̃,m+1,n
β − (φ∗ρβSβ)n

∆t

)
+ γmrp

m+1,n+1
ref

+
∑
β

∇ · zk+1,l̃,m+1,n+1
β =

∑
β

qk+1,l̃,m+1,n+1
β + γmrp

m,n+1
ref

(5.22a)
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zk+1,l̃,m+1,n+1
β = −Kρk+1,l̃,m+1,n+1

β

kl,m+1,n+1
rβ

νβ

(
∇pk+1,l+1,m+1,n+1

ref

+∇pl,m+1,n+1
cβ − ρk+1,l̃,m+1,n+1

β g
) (5.22b)

φ∗m,n+1 = φo + α∇ · um,n+1 +
1

M
pm,n+1

ref (5.22c)

ρk+1,l̃,m+1,n+1
β = ρβo

[
1 + cβ(pk+1,l+1,m+1,n+1

ref + pl,m+1,n+1
cβ − po)

]
(5.22d)

Interface conditions

pk+1,l+1,m+1,n+1
ref = pΓk,l+1,m+1,n+1

ref on Γ± (5.23a)

qk+1,l̃,m+1,n+1
lβ = [zβ · n]Γk̃,l̃,m+1,n+1 (5.23b)

Wm,n+1 = [u · n]m,n+1 (5.23c)

Pressure equation in Γ

∑
β

(
Wm,n+1SΓl,m+1,n+1

β ρΓk+1,l̃,m+1,n
β −

(
WSΓ

βρ
Γ
β

)n
∆t

)
+ γfp

Γk+1,l+1,m+1,n+1
ref

+ γmfp
m+1,n+1
ref +

∑
β

W∇̄ · zΓk+1,l̃,m̃,n+1
β =

∑
β

(
qΓk+1,l̃,m+1,n+1
β + qk+1,l̃,m+1,n+1

lβ

)
+ γfp

Γk,l+1,m+1,n+1
ref + γmfp

m,n+1
ref

(5.24a)

zβ
Γk+1,l̃,m̃,n+1 = −

(
W2

12

)m,n+1

ρΓk+1,l̃,m+1,n+1
β

kΓl,m+1,n+1
rβ

νβ

(
∇pΓk+1,l+1,m+1,n+1

ref

+∇pΓl,m+1,n+1
cβ − ρΓk+1,l̃,m+1,n+1

β g
)

(5.24b)
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ρΓk+1,l̃,m+1,n+1
β = ρβ0

[
1 + cβ(pΓk+1,l+1,m+1,n+1

ref + pΓl,m+1,n+1
cβ − p0)

]
(5.24c)

5.4.1.2 Implicit Coupling

Contrary to explicit coupling an implicit treatment of jump in fluxes

and leakage term results in an implicit coupling scheme. Iterations between

the linearized reservoir and fracture pressure systems are performed until a

desired linear tolerance is achieved. This is followed by a Newton update and

will be described later in the linearization section.

Pressure equation in Ω\Γ

∑
β

(
φ∗m,n+1Sl,m+1,n+1

β ρk+1,l̃,m+1,n
β − (φ∗ρβSβ)n

∆t

)
+ γmrp

m+1,n+1
ref

+
∑
β

∇ · zk+1,l̃,m+1,n+1
β =

∑
β

qk+1,l̃,m+1,n+1
β + γmrp

m,n+1
ref

(5.25a)

zk+1,l̃,m+1,n+1
β = −Kρk+1,l̃,m+1,n+1

β

kl,m+1,n+1
rβ

νβ

(
∇pk+1,l+1,m+1,n+1

ref

+∇pl,m+1,n+1
cβ − ρk+1,l̃,m+1,n+1

β g
) (5.25b)

φ∗m,n+1 = φo + α∇ · um,n+1 +
1

M
pm,n+1

ref (5.25c)

ρk+1,l̃,m+1,n+1
β = ρβo

[
1 + cβ(pk+1,l+1,m+1,n+1

ref + pl,m+1,n+1
cβ − po)

]
(5.25d)

Interface conditions

pk+1,l+1,m+1,n+1
ref = pΓk+1,l+1,m+1,n+1

ref on Γ± (5.26a)
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qk+1,l̃,m+1,n+1
lβ = [zβ · n]Γk+1,l̃,m+1,n+1 (5.26b)

Wm,n+1 = [u · n]m,n+1 (5.26c)

Pressure equation in Γ

∑
β

(
Wm,n+1SΓl,m+1,n+1

β ρΓk+1,l̃,m+1,n
β −

(
WSΓ

βρ
Γ
β

)n
∆t

)
+ γmfp

Γm+1,n+1
ref

+
∑
β

W∇̄ · zΓk+1,l̃,m̃,n+1
β =

∑
β

(
qΓk+1,l̃,m+1,n+1
β + qk+1,l̃,m+1,n+1

lβ

)
+ γmfp

Γm,n+1
ref

(5.27a)

zβ
Γk+1,l̃,m̃,n+1 = −

(
W2

12

)m,n+1

ρΓk+1,l̃,m+1,n+1
β

kΓl,m+1,n+1
rβ

νβ

(
∇pΓk+1,l+1,m+1,n+1

ref

+∇pΓl,m+1,n+1
cβ − ρΓk+1,l̃,m+1,n+1

β g
)

(5.27b)

ρΓk+1,l̃,m+1,n+1
β = ρβ0

[
1 + cβ(pΓk+1,l+1,m+1,n+1

ref + pΓl,m+1,n+1
cβ − p0)

]
(5.27c)

5.4.2 Pressure and saturation coupling

A number of saturation timesteps are taken in order to alleviate time-

step size constraint imposed by the CFL criteria. The residual calculation

and convergence criteria is different from when compared to a fully implicit

method given in appendix. The iterative coupling steps decrease as the number

of saturation timesteps are increased, which is consistent with the expected be-

havior. Please note that the saturation timestep is different from the pressure
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timestep represented by iterates ‘l’ and ‘n’, respectively. The residual calcu-

lation for multiple saturation timesteps utilize interpolated fluxes as opposed

to residuals based upon fluxes at timstep ‘n+1’.

Saturation equation in Ω\Γ

∂

∂t
φ∗Srefρref +∇ · zref = qref (5.28)

(
φm,n+1Sl+1,m+1,n+1

ref ρl̃,m+1,n+1
ref

)
− (φ∗Srefρref)

n

∆t
+∇ · z l̃,m+1,n+1

ref = q l̃,m+1,n+1
ref

(5.29a)

z l̃,m+1,n+1
ref = −Kρl̃,m+1,n+1

ref

kl,m+1,n+1
rref

νref

(
∇pl+1,m+1,n+1

ref +∇pl,m+1,n+1
cref − ρl̃,m+1,n+1

ref g
)

(5.29b)

ρl̃,m+1,n+1
ref = ρref0

[
1 + cref(p

l+1,m+1,n+1
ref + pl,m+1,n+1

cref − p0)
]

(5.29c)

a0,m+1,n+1 =am,n+1, a = pref,u

a0,0,n+1 =an

b0,n+1 =bn, b = Sref

(5.30)

Saturation equation in Γ

∂

∂t
WSΓ

refρ
Γ
ref + W∇̄ · zΓ

ref = qΓ
ref + qlref (5.31)
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(
Wm,n+1SΓl+1,m+1,n+1

ref ρΓl̃,m+1,n+1
ref

)
−
(
WSΓ

refρ
Γ
ref

)n
∆t

+ wm,n+1∇̄ · zΓl̃,m+1,n+1
ref

= (qref + qlref)
Γl̃,m+1,n+1

(5.32a)

zΓl̃,m+1,n+1
ref = −KΓρΓl̃,m+1,n+1

ref

kΓl,m+1,n+1
rref

νref

(
∇pΓl+1,m+1,n+1

ref

+∇pΓl,m+1,n+1
cref − ρΓl̃,m+1,n+1

ref g

)
(5.32b)

ρΓl̃,m+1,n+1
ref = ρref0

[
1 + cref(p

Γl+1,m+1,n+1
ref + pΓl,m+1,n+1

cref − p0)
]

(5.32c)

5.4.3 Flow and mechanics coupling

An iterative coupling between the fracture reservoir flow and geome-

chanics can be achieved similar to reservoir and geomechanics coupling, in

the absence of fractures, in four ways:(1) Drained and (2) un-drained where

the mechanics problem is solved first or (3) fixed strain and (4) fixed stress

schemes where the flow precedes the mechanics problem. In this work, we

rely on fixed stress scheme which has been shown to be stable and convergent

(contraction mapping) for iterative coupling by Kim et al. (2011); Mikelic and

Wheeler (2012)

−∇ · σpor(um+1,n+1, pm+1,n+1
ref ) = f m̃,n+1 (5.33)

f m̃,n+1 =

[
ρs(1− φ∗m̃,n+1) + φ∗m̃,n+1

∑
β

ρm+1,n+1
β Sm+1,n+1

β

]
g (5.34)
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σpor(um+1,n+1, pm+1,n+1
ref ) = σ(um+1,n+1)− αpm+1,n+1

ref I (5.35)

φ∗m̃,n+1 = φo + α∇ · um+1,n+1 +
1

M
pm,n+1

ref (5.36)

Interface conditions

(σpor,m+1(um+1, pm+1
ref )n)Γ± = −pΓm+1

ref n (5.37)

5.5 Fully Discrete Formulation

We utilize a multipoint flux mixed finite element method to construct

a fully discrete form of the coupled fractured reservoir and mechanics problem

described earlier. In this section, we only discuss the implicit scheme for

the reservoir and fracture pressure equation coupling. The quantities in the

discrete variational formulation are all in R3 along with ∇ and ∇· operators,

hence W acts as a scaling factor. Also note that the stabilization term (γmr/f )

for the contraction mapping of flow and mechanics coupling, as described in

section 5.4, are omitted here for the sake of convenience of description. Further,

the time index ‘n’ is dropped and invoked whenever necessary. The discrete

variational formulation for the reservoir pressure reads: Given pΓk,l+1,m+1
ref,h ∈

W Γ
h , SΓl,m+1

ref,h ∈ W Γ
h and Sl,m+1

ref,h ∈ Wh, find zk+1,l+1,m+1
t,h ∈ Vh and pk+1,l+1,m+1

ref,h ∈
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Wh, such that〈
1

λ̃k+1,l̃,m+1
t,h

K−1zk+1,l+1,m+1
t,h ,vh

〉
Q,E

−
(
pk+1,l+1,m+1

ref,h ,∇ · vh
)
E

= −
∫

Θ

pref,h vh · n−
∑
β 6=ref

∫
Θ

λ̃β,h

λ̃t,h
pcβ,h vh · n

+

∑
β 6=ref

[
λ̃β,h

λ̃t,h

]k+1,l̃,m+1

pn+1,k
cβ,h ,∇ · vh


E

−

∑
β

[
λ̃β,h

λ̃t,h

]k+1,l̃,m+1

ρn+1,k+1
β g,vh


E

∀vh ∈ Vh,

(5.38)

where, Θ ∈ (∂E ∩ Γ) ∪ (∂E ∩ ∂Ω).(
1

∆t

∑
β

(
φ∗mSl,m+1

β,h ρk+1,l̃,m+1
β,h

)
, wh

)
E

+
(
∇ · zk+1,l̃,m+1

t,h , wh

)
E

=

(
1

∆t

∑
β

(φ∗Sβ,hρβ,h)
n , wh

)
E

+
∑
β

(
qk+1,l̃,m+1
β,h , wh

)
E
∀wh ∈ Wh

(5.39)

The pressure continuity on ∂E ∩ Γ is given by,

pk+1,l+1,m+1
ref,h vh · n = pΓk,l+1,m+1

ref,h vΓ
h · n (5.40)

The jump in flux on ∂E ∩ Γ is given by,(
qk+1,l̃,m+1
lβ,h , wΓ

h

)
= [zβ,hvh · n]k+1,l̃,m+1 (5.41)

qk+1,l̃,m+1
lβ,h = zk+1,l̃,m+1

β,h · n
∣∣∣
Γ+
− zk+1,l̃,m+1

β,h · n
∣∣∣
Γ−

(5.42a)

qk+1,l̃,m+1
lβ,h =ck+1,l̃,m+1

1β pk+1
1h + ck+1,l̃,m+1

2β pΓk+1
1h

+ ck+1,l̃,m+1
3β pk+1

2h + ck+1,l̃,m+1
4β pΓk+1

2h

(5.42b)
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z1

z3

z2

Figure 5.7: Coupling pressure and velocity degrees for a corner point

Here, ci = ci(pref, Sref). The velocity and pressure degrees of freedom are

coupled (Fig. 5.7) due to the multipoint flux scheme and are related as follows,

A

z1

z2

z3

 =

p1 − pΓ
1

p2 − pΓ
2

p1 − p2

 (5.43)

The jump in displacements on ∂E ∩ Γ gives the fracture width as,

Wm
h = [umh rh · n] (5.44)

Similarly, the discrete variational formulation for the fracture pressure equa-

tion reads: Given umh ∈ Rh, z
k+1,l+1,m+1
β,h ∈ Vh and Sl,m+1

ref,h ∈ Wh, find zΓk+1,l+1,m+1
h ∈

V Γ
h and pΓk+1,l+1,m+1

ref,h ∈ W Γ
h , such that〈

1

λ̃Γk+1,l̃,m+1
t,h

(KΓ)−1zΓk+1,l+1,m+1
t,h ,vΓ

h

〉
Q,EΓ

−
(
pΓk+1,l+1,m+1

ref,h ,∇ · vΓ
h

)
EΓ

=

∑
β 6=ref

[
λ̃β,h

λ̃t,h

]Γk+1,l̃,m+1

pΓl,m+1
cβ,h ,∇ · vΓ

h


EΓ

−

∑
β

[
λ̃β,h

λ̃t,h

]Γk+1,l̃,m+1

ρΓk+1,l̃,m+1
β,h g,vΓ

h


EΓ

∀vΓ
h ∈ V Γ

h

(5.45)
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(
1

∆t

∑
β

(
Wm

h S
Γl,m+1
β,h ρΓk+1,l̃,m+1

β,h

)
, wΓ

h

)
E

+
(
Wm

h ∇ · zΓk+1,l̃,m+1
t,h , wΓ

h

)
E

=

(
Wm

h

∆t

∑
β

(
SΓ
β,hρ

Γ
β,h

)n
, wΓ

h

)
E

+
∑
β

((
qΓ
β,h + qlβ,h

)k+1,l̃,m+1
, wΓ

h

)
E
∀wΓ

h ∈ W Γ
h

(5.46)

The saturation equation is solved using lowest order DG once the water-

phase fluxes are evaluated for a given pressure. The weak formulation for

the reservoir saturation equation reads: Given pl+1,m+1
ref,h ∈ Wh, z

l+1,m+1
ref,h ∈ Vh,

Sl,m+1
ref,h ∈ Wh and umh ∈ Rh find Sl+1,m+1

ref,h ∈ Wh, such that(
Sl+1,m+1

ref,h , wh

)
E

=
∆t

φ∗mρl̃,m+1
ref,h

[(
(φ∗Sref,hρw,h)

n

∆t
, wh

)
E

+
(

(qref,h + qlref,h)
l̃,m+1 , wh

)
E
−
(
∇ · zl+1,m+1

ref,h , wh

)
E

]
(5.47)

The weak formulation of the fracture saturation equation reads: Given pΓl+1,m+1
ref,h ∈

W Γ
h , zΓl+1,m+1

ref,h ∈ V Γ
h and SΓl,m+1

ref,h ∈ W Γ
h find SΓl+1,m+1

ref,h ∈ W Γ
h , such that(

SΓl+1,m+1
ref,h , wΓ

h

)
EΓ

=
∆t

Wm
h ρ

Γl̃,m+1
ref,h

[((
WhS

Γ
ref,hρ

Γ
w,h

)n
∆t

, wΓ
h

)
EΓ

+
((
qΓ

ref,h + qΓ
lref,h

)l̃,m+1
, wΓ

h

)
EΓ
−
(
Wm

h ∇ · zΓl+1,m+1
ref,h , wΓ

h

)
EΓ

]
(5.48)

The discrete variational formulation for the reservoir geomechanics equations

(5.3) reads: Given pm+1
ref,h ∈ Wh, p

Γm+1
ref,h ∈ W Γ

h , Sm+1
ref,h ∈ Wh and, SΓm+1

ref,h ∈ W Γ
h

find um+1
h ∈ Rh such that,∫
E

σ(uh) : ε(vh)E − (αpref,h,∇ · vh) = (fh,vh)E +

∫
∂E

gNs · vh

−
∫
E

σ0,h : ε(uh)− (αp0,h,∇ · vh)
(5.49a)
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∫
E

σ(uh) : ε(vh)E = (λ∇ · uh,∇ · vh) + (2µε(uh), ε(vh)) (5.49b)

The traction boundary condition for the fracture is then given by,

gNs · vh = −pΓ
ref,hn · vh

∣∣
∂E∩∂EΓ 6=∅ (5.50)

Note that the external boundary conditions are omitted in the weak formula-

tion presented above to avoid a tedious description.

5.6 Linearization

In this section, we use an inexact Newton method to linearize pressure

equations associated with reservoir and fracture domains. Since the poroelastic

equations for reservoir geomechanics are linear we omit its discussion here. The

computation of an exact Jacobian is tedious and computationally expensive.

We therefore rely on an inexact Newton method ,with density terms in the flux

are Newton-iteration lagged, to form a linear system of equations in reservoir

and fracture pressures and fluxes. The residuals are not altered and thus the

final solution remains unchanged.

5.6.1 Explicit Coupling

The linearized reservoir flow system can be written as,(
Ar B
BT Cr

)(
δztr
δpref

)
= −

(
R1r

R2r

)
(5.51)

Eliminating δzt in favor of δpref in Eqn.(5.51),

(
BT
r A
−1
r Br + Cr

)
∂pref = −R2r +BT

r A
−1
r R1r. (5.52)
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Similarly, the linearized fracture flow system is,(
Af Bf

BT
f

(
Cf + C̃f

))( ∂zΓ
tf

∂pΓ
ref

)
= −

(
R1f

R2f + C̃f
(
pΓ
ref

)k) (5.53)

Here, C̃f = Diag(γf ) and
(
pΓ
ref

)k
reservoir fracture coupling iteration lagged,

fracture pressure vector of size R2f . Further, eliminating zΓ
t in favor of pΓ

ref in

Eqn.(5.53), (
BT
f A
−1
f Bf + Cf

)
δpΓ

ref = −R2f +BT
f A
−1
f R1f (5.54)

Iterations between the reservoir and fracture Newton systems are performed

conducted until a desired tolerance is achieved.

5.6.2 Implicit coupling

The linearized system of equations for the implicitly coupled reservoir-

fracture flow can be written as,
Ar Br 0 L
BT
r Cr 0 0

0 0 Af Bf

LT 0 BT
f Cf



δztr
δpref

δztf
δpΓ

ref

 = −


R1r

R2r

R1f

R2f

 . (5.55)

The right hand side terms Rir/fs can be evaluated similar to those presented

in the previous chapters. Eliminating δztr and δztf results in a linear system

of equation in δpref and δpΓ
ref .

(
Cr −BT

r A
−1
r Br

)
δpref −BT

r A
−1
r LδpΓ

ref = BT
r A
−1
r R1r −R2r (5.56)(

Cf −BT
f A
−1
f Bf − LTA−1

r L
)
δpΓ

ref − LTA−1
r Brδpref

= BT
f A
−1
f R1f + LTA−1

r R1r −R2f

(5.57)
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An important point to note here is that the third term in the coefficient of

δpΓ
ref in Eqn. (5.57) appears only for an implicitly coupled reservoir fracture

flow system. The presence of this term makes the linear system in δpref and

δpΓ
ref strictly diagonally dominant.(

Drr Drf

Dfr Dff

)(
δpref

δpΓ
ref

)
= −

(
R3

R4

)
. (5.58)

A block Gauss-Siedel method is used to solve this resulting linear system of

equations which is known to be convergent for strictly diagonally dominant

matrices. The rate of convergence is dependent on the strength of the diagonal

terms. It can be easily seen from Eqn. (5.55) this is in turn in dependent on

two ratios:(1) saturation weighted fluid compressibilities to time step and (2)

fracture to reservoir absolute permeabilities. The block Gauss-Siedel method,

with j as the linear iterate, can be written as,

Drr (δpref)
j+1 = −R3 −Drf

(
δpΓ

ref)
)j

(5.59a)

Dff

(
δpΓ

ref

)j+1
= −R4 −Dfr

(
δpΓ

ref

)j+1
(5.59b)

5.7 Results

In this section, we consider a number of numerical experiments to

demonstrate our modeling and computational approaches. We begin with val-

idation of the coupled reservoir-fracture flow model by comparing with physi-

cal experimental results for spontaneous imbibition of the wetting phase. The

second numerical experiment studies the significance of fracture orientations
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for recovery processes in a reservoir. An injection scenario for a multi-stage

hydraulic fracture is shown in the third example. The fourth example demon-

strates stress field reorientations for injection and production from a hydraulic

fracture. Finally, a field case for Frio (Juntunen and Wheeler (2012)) is pre-

sented showing long term production from a fractured reservoir with multiple

injection and production wells. The numerical experiments have been con-

ducted for both lab scale as well as field scale. Please note that the fracture

aperture (or width) is time invariant and varies spatially from 1 mm - 3 mm

along the fracture length in all numerical experiments except example 4. For

the couple flow and mechanics the above is used as an initial guess since frac-

ture widths vary spatially and temporally and are solved as a part of the

system of equations.

5.7.1 Capillary imbibition in a fractured core

We compare the results of our numerical model to experimental data,

given by Karpyn (2005), for a fractured Berea sandstone core. The core is

initially saturated only with water (Sw = 1.0) followed by a primary drainage

until an irreducible water saturation of (Swirr = 0.25) is achieved. This is

followed by a secondary spontaneous capillary imbibition of water, without

imposing a pressure gradient across the core until an equilibrium saturation is

achieved.

The numerical experiment aims to simulate the secondary imbibition

process which is then compared with experimental values of average satura-
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φ 0.178 Kx = Ky = Kz 68 mD
cw 1.E-7 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3

νw 1 cP νo 2 cP
S0
w 0.2 P 0

w 1000 psi
Swirr 0.1 Sor 0.2

Table 5.1: Capillary imbibition: rock and fluid property information
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Figure 5.8: Rock matrix capillary pressure curve

tion and saturation profiles for validation purposes. The relative permeability

curves for the fracture are chosen to be linear functions of water saturation.

This is in agreement with a zero capillary pressure assumption in the frac-

ture implying no preference of the fracture domain towards a specific fluid

phase. The capillary pressure and relative permeability curves for the matrix

and fracture are shown in Figs. 5.8 thru 5.10. Further a no-flow boundary

condition is assumed everywhere except the bottom surface which is open to

flow in accord with the experiments.
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Figure 5.9: Rock matrix relative permeability curve

Table 5.1 provides fluid and rock property information for the core.

This example demonstrates that the model can be used to simulate both core-

scale and later field-scale scenarios while accurately capturing the physics.

The cleaned Berea core is conventionally water wet as can be seen in the

matrix relative permeability and capillary pressure curves. Figs. 5.11 and

5.12 show experimental saturation profiles obtained using digital radiography

and numerical results at different time instances, respectively. Furthermore,

the fracture width varies spatially for an accurate depiction of fracture flow.

The saturation profiles and average saturations are in good agreement with

experimental values. The differences in curvatures between experimental and

numerical saturation profiles is attributed to the core holder properties. The

numerical simulation does not take into account the wetting characteristics of

the core holder.
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Figure 5.10: Fracture relative permeability curve

Figure 5.11: Experimental saturation profiles from Karpyn (2005) using digital
radiography at different times
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Figure 5.12: Numerical saturation profiles (left to right)

5.7.2 Discrete natural fractures

In the introduction section, we presented a single fracture example to

motivate a detailed interface based modeling approach. In the introduction,

we presented an example (Fig. 5.2) where the saturation front channeled

through the fracture thereby reducing sweep area. Here, we present a similar

case with two discrete fractures in a reservoir domain of size 10 ft × 10 ft

(approximately) with bottom-hole pressure specified injection (520 psi) and

production (500 psi) wells located at diagonally opposite ends. The reservoir

and fluid property data along with initial and boundary conditions remain

unchanged.
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Figure 5.13: Saturation profiles at t = 1, 100, 150 and 200 days (left to right).

The fracture closer to the injector (Fig. 5.13) acts as a shield against

the fluid front preventing it from channeling through the other fracture thereby

improving sweep area. Thus a fracture can enhance or deteriorate sweep based

upon its orientation to the fluid front. This example shows the impact of

accurately capturing non-planar fracture geometries and their orientation with

respect to the reservoir as well as each other. We also infer that fractures

orthogonal to the line joining injector and producer will increase recovery

efficiency. On the other hand, a fracture parallel to this line will be detrimental

to the recovery of hydrocarbons due to poor sweep efficiency and therefore

early breakthrough. It is interesting to note that the former type can be

represented using a permeability averaging based approach without significant

loss of accuracy. However, the latter still requires a high resolution modeling

approach to maintain accuracy. Exploiting the cheaper computational cost of

averaging and incorporating this in our detailed modeling will be addressed

elsewhere. The insights from this example can be used for studying field

scale fractured-reservoirs and as an assistive tool during various planning and

developmental stages.

99



5.7.3 Multi-stage hydraulic fracture

A three-stage hydraulic fracture with fracture aperture varying along

the length is considered. In this example, we stress on the interaction between

hydraulic fractures and their consequent impact on injectivity enhancement.

Fig. 5.14 gives a schematic of the problem description. We consider a reservoir

domain of size 200 ft ×600 ft ×300 ft with three hydraulic fractures (shaded

green) connected to a bottom-hole pressure specified (1000 psi) injection well

(shaded blue). A no-flow boundary condition is assumed everywhere except

for a part of external boundary (shaded red) where pressure has been specified

(400 psi) to show the effect of boundary conditions on injectivity.

Figure 5.14: Schematic of a three-stage hydraulic fracture connected to a well-
bore.

Note that the fracture geometry is non-planar and the depiction in Fig.

5.14 is a simple representation. The fracture half-lengths are approximately 50

ft with apertures varying from 3mm at the center to 1 mm towards the edges.

Table 6.1 provides the reservoir and fluid property data along with the initial

conditions. Fig. 5.15 shows the pressure (top) and saturation (bottom) at

three time instances. The pressure profile remains almost invariant with time,

however saturation profile indicates differences in injectivities from the three
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φ 0.2 Kx = Ky = Kz 50 mD
cw 1.E-6 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3

νw 1 cP νo 2 cP
S0
w 0.2 P 0

w 800 psi

Table 5.2: Multi-stage hydraulic fractures: reservoir and fluid properties

fractures. These differences arise due to a combined effect of proximity to

other hydraulic fractures and the external boundary conditions. The fracture

closest to the pressure specified boundary (least shielded) exhibits maximum

injectivity whereas the one farthest (most shielded) contributes the least.

Figure 5.15: Pressure (top) and saturation (bottom) profiles at t = 1, 2 and 6
days (from left to right).

A detailed analysis indicates that an optimal fracture spacing which

maximizes injectivity can be achieved while minimizing screening effects for

the current setting. It is also seen that decreasing fracture half-lengths as the

proximity to pressure boundary increases leads to similar results.
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5.7.4 Coupled flow and mechanics

In this example, we demonstrate the effect of fracture on the stress field

similar to stress field reorientation studies presented by Roussel and Sharma

(2009). A reservoir domain of size 250 ft × 250 ft with a single fracture of

half-length 25 ft is assumed with fracture apertures varying during injection

and production stages from 0.01 ft to 0.05 ft. The Youngs modulus, Poissons

ratio and max and minimum stress values are taken to be 7.3×106 psi, 0.2, 6400

and 6300 psi respectively. The initial pressure for the injection and production

cases is 500 psi and 5000 psi, respectively. A fracture pressure specification

of 5000 psi and 2000 psi was assumed for injection and production cases,

respectively with no flow external boundary conditions. We enforce a zero

tangential displacement condition at the midpoints of the domain edges to

avoid rigid body motion. The reservoir property data is given in Table 2 and

is same as in the previous example. Fig. 5.16 shows a schematic of the problem

description.

Figure 5.16: Problem description.
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Figure 5.17: Stress magnitude (contour, psi) and principal stress direction
(vector) for a single fracture injection case for t = 0.02, 0.2, 2.0 days( top row,
from left to right) and t = 3.7, 6.4 and 20 days (bottom row, from left to
right).

Figs. 5.17 and 5.18 show variations of principal stress directions and

magnitude contours for a single fracture injection and production cases, respec-

tively. It is observed that the principal stress directions around the fracture do

not vary significantly for the injection case. However, the changes away from

the fracture are primarily due to boundary conditions. Note that we solve on

a full domain compared to the quarter domain problem presented by Roussel

and Sharma (2009) owing to symmetry arguments. On the other hand, a stress

field re-orientation occurs around the fracture very early for the production

case. This is strongly influenced by the difference between initial pressure and
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bottom-hole pressure.

Figure 5.18: Stress magnitude (contour, psi) and principal stress direction
(vector) for a single fracture production case for t = 0.02, 0.1, 6.0 days (top
row, left to right) and t = 2.5, 7.5 and 20 days (bottom row, left to right).

5.7.5 Frio field case with natural fractures

In this example, we show an extension to field scale fractured reservoirs.

Fig. 5.19 shows a section of Frio field (Juntunen and Wheeler (2012)) with

discrete natural fractures (shaded orange) with 9 pressure-specified wells: 6

injectors (4000 psi) and 3 producers (2000 psi). The MFMFE discretization

allows for accurate representation of reservoir as well as fracture geometries.

The reservoir dimensions are approximately 8000 ft×7000 ft×2000 ft owing to

the complex geometry. A uniform fracture aperture of 0.003 ft is assumed for
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the three fractures. Table 5.3 lists the reservoir and fluid property information.

Figure 5.19: Frio field case with discrete fractures (shaded orange).

A deliberate choice of isotropic and homogeneous permeability field is made

in order to accentuate the presence of fractures. Fig. 5.20 shows the pressure

and saturation profiles after 800 days. We make two important observations:

(1) the two longer fractures (along the reservoir length) are detrimental to

recovery since the injected fluid shoots through and reduces sweep area, and

(2) the shorter fracture (along the reservoir breadth) acts as a screen or shield

to the fluid front and increases sweep area. Thus, well placement in a fractured

reservoir requires additional considerations as opposed to reservoirs with no

fractures.

The use of explicit flow models for fractures (hydraulic and natural)

provide us with an accurate depiction of flow fields. The coupled flow model,

presented here, captures pressure contrast between the reservoir and fracture
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φ 0.2 Kx = Ky = Kz 50 mD
cw 1.E-7 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3

νw 1 cP νo 2 cP
Sw,init 0.2 Pw,init 3000 psi

Table 5.3: Frio with fractures: reservoir and fluid properties

Figure 5.20: Pressure (left) and saturation (right) profiles after 2.2 years.

owing to the order of magnitude differences in permeability (or conductivity)

values. The model also utilizes different capillary pressure curves for reservoir

and fracture domains. Thus spontaneous capillary imbibition mechanism can

be studied as an alternative mechanism of recovery in water wet, oil shales

and tight formations. Furthermore, general hexahedral grids allows represen-

tation of non-planar fractures without requiring substantial changes in the

petrophysical properties of the adjacent reservoir. Finally, the model captures

sharp changes in pressure across the fracture which provides a better trac-
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tion boundary condition for the coupled geomechanics model. The stress and

displacement fields in a poroelastic reservoir due fluid pressure changes are

therefore accurately represented.
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5.8 Nomenclature

Γ = fracture domain

Ω = reservoir domain

∂ΩN,D = reservoir flow boundary

∂ΩN,D
s = reservoir mechanics boundary

φ∗ = porosity

φo = reference porosity

ref = reference phase

β = oil (o) or water (w) phase

Sβ = saturation of phase ‘β’

pβ = pressure of phase ‘β’

pcβ = capillary pressure of phase ‘β’

ρβ = density of phase ‘β’

ρβo = reference density of phase ‘β’

zβ = Darcy flux of phase ‘β’

zt = total flux

νβ = viscosity of phase ‘β’

cβ = compressibility of phase ‘β’

kβ = relative permeability of phase ‘β’

qβ = source or sink term for phase ‘β’
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qlβ = fracture leakage term for phase ‘β’

K = absolute permeability

g = acceleration due to gravity

W = fracture aperture or width

u = displacement

σpor = Cauchy stress tensor

ε = strain tensor

λ, µ = Lame parameters

α = dimensionless Biot coefficient

M = Biot constant

f = body force

Swirr = Irreducible water saturation

Sor = Residual oil saturation
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Chapter 6

Coupled Fracture Propagation and Reservoir

Flow Model

6.1 Introduction

Hydraulic fracturing is a well known method for recovering oil and

gas from tight gas and shale plays. It is pivotal for meeting a continually

growing energy demand. Concerns are also being raised regarding its impact

on long and short term environmental implications. Thus, there is an immi-

nent need for physically and mathematically consistent, accurate and robust

computational models for representing fluid filled fractures in a poroelastic

medium. The simplest model description involves coupling of (1) mechanical

deformation, (2) reservoir-fracture fluid flow, (3) and fracture propagation.

The rock deformation is usually modeled using the linear elasticity theory

(Biot (1941b,c, 1955b)). For fluid flow modeling, lubrication theory and Darcy

flow are assumed in the fracture and reservoir respectively, which are coupled

This work has been partly presented at the SPE Hydraulic Fracturing Technology con-
ference (Wick et al. (2014a)) and published as an ICES report (Wick et al. (2014b)). Phase
field fracture propagation models for poroelastic media are primarily developed by Drs.
Andro Mikelić, Thomas Wick and Mary F. Wheeler. The coupling of phase field fracture
propagation and reservoir flow models is done by Gurpreet Singh under the supervision of
Prof. Mary F. Wheeler with assistance from Dr. Thomas Wick. The phase field models
were also used here to study applications of interest to the oil and gas industry.
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through a leakage term. Finally, for fracture propagation the conventional

energy-release rate approach of linear elastic fracture mechanics (LEFM) the-

ory is used. We also note some of the concurring modeling and numerical

approaches for fracture propagation currently used such as cohesive zone mod-

els (Xu and Needleman (1994)), displacement discontinuity methods (Crouch

(1976)), partition-of-unity (Babuska and Belenk (1997)) based XFEM/GFEM

methods (Moes et al. (1999); de Borst et al. (2006); Secchi and Schrefler (2012);

Babuska and Banerjee (2012)), boundary element formulations (BEM) (Cas-

tonguay et al. (2013)) and peridynamics (Silling (2000)).

Variational approaches (Francfort and Marigo (1998); Bourdin et al.

(2008)) and a thermodynamically consistent phase field formulation (C. Miehe

(2010)) have been employed in solid mechanics. An application to hydraulic

fracturing is given in (Bourdin et al. (2012)). C. Miehe (2010) extended the

variational approach (Francfort and Marigo (1998); Bourdin et al. (2008)) by

modeling crack irreversibility through an entropy condition satisfying the sec-

ond law of thermodynamics and decomposing the strain tensor to account for

tension and compression. Our approach (Mikelić et al. (2013a,b)) is based

upon C. Miehe (2010) with an extension to porous media applications where

solids (geomechanics) interact with fluids. To develop a phase-field formula-

tion for such applications, geomechanics and porous media flows are decoupled

using fixed-stress splitting (Settari and Walters (2001); Mikelić and Wheeler

(2012)). With this methodology, modeling and simulations of hydraulic frac-

tures in poroelasticity have been considered (Mikelić et al. (2014a,b); Wheeler
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et al. (2014a); Wick et al. (2014a)).

We provide a brief recapitulation describing Griffith’s model for fracture

growth in brittle media. The classical theorem of minimum energy suggests

that an equilibrium state achieved by an elastic body deformed by surface

forces is such that the potential energy of the system is minimal. This was

later augmented by Griffith (1921), in his seminal work, assuming a different

equilibrium state is possible which accounts for formation of fractures as a

mechanism for lowering potential energy. This criterion of rupture assumes

that the cohesive forces, due to molecular attraction, act close to the frac-

ture tip. Thus, the contribution of cohesive forces (surface potential energy)

to the total potential energy can be assumed to be negligible. Based upon

these assumptions, a decrease in potential energy is proportional to the gener-

ated surface area with the critical energy release rate (Gc) as the constant of

proportionality. In this work, we rely upon this classical work along with its

assumptions on the fracture growth criteria. As noted by Barenblatt (1962),

we do not underestimate the significance of cohesive forces at the fracture tip.

However, the contribution of these forces to the total potential energy is as-

sumed to be significant only during fracture nucleation which diminishes as

the fracture grows. Based upon these arguments we assume that LEFM is

applicable.

Using a phase-field approach, a lower-dimensional crack surface is ap-

proximated as a diffusive transition zone by a phase-field function ϕ. Fig. 6.1

shows this diffusive transition zone (also brittle or mushy-zone) between the
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broken (white zone) and the unbroken (brown zone) states of the material.

A fixed-topology finite element phase-field approach is shown where a (lower-

dimensional) crack is approximated with the help of a phase-field function.

The phase-field function is an indicator function with values 0 and 1 inside

and outside the crack, respectively. The mushy-zone also provides a smooth

interpolation for the interface between a fracture and reservoir. A coupling of

reservoir fluids and geomechanics allows a comprehensive study of this mul-

tiscale problem where only few results have been published to date (see for

instance Dean and Schmidt (2008) and Lujun and Settari (2007)). Further,

we also describe an algorithm to integrate fracture growth patterns with our

reservoir simulator IPARS (Implicit Parallel Accurate Reservoir Simulator).

This allows for both short term transient pressure analysis and long term re-

covery predictions. We note that crack or fracture propagation, which will be

used interchangeably, implies both variation of fracture width (or aperture)

and its length.

The major advantages of using phase-field modeling for crack propaga-

tion are four-fold: First, and most important, the model is easy to implement

and uses a fixed-grid topology in which remeshing for resolving the exact frac-

ture location is avoided. Second, fracture nucleation, propagation, kinking,

and curvilinear path are intrinsically determined. This avoids computational

overheads associated with post-processing of quantities such as stress inten-

sity factors. Third, we can easily handle large fracture networks since complex

phenomena of joining and branching does not require keeping track of fracture
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interfaces. Fourth, modeling crack growth in heterogeneous media does not

require special treatment. Here however, the length-scale parameter ε should

be chosen accordingly. Additionally, the crack opening displacement (fracture

aperture) can be calculated using the phase-field function. We use the pres-

surized crack propagation model in a poroelastic medium using a phase-field

approach proposed by Mikelić et al. (2013a,b).

Figure 6.1: Evolution of two pressurized fractures: first joining, then nonplanar
growth and finally branching in heterogeneous porous media.

We investigate the phase-field approach for different crack propagation

scenarios including heterogeneous porous media including permeability and

geomechanical parameters. We perform numerical studies for multi-stage and

sequential hydraulic fracturing scenarios while discussing the effect of stress

shadowing, rock heterogeneities and fracture spacing. Third, we consider the

phase-field model as a fractured-well approach in a reservoir and we conse-

quently couple this approach to a reservoir simulator. This paper concentrates

primarily on the approach for fracture growth using slick-water injection. We

account for varying reservoir complexities such as natural fractures, faults and

barriers using a comprehensive fractured poroelastic reservoir flow model. This
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allows for a two-stage production optimization owing to (1) a well-engineered

hydraulic fracturing scheme followed by (2) an optimal fractured well place-

ment considering far from well-bore reservoir complexities. This chapter is

organized as follows: we first provide our motivation for the work and the rea-

son for our choice of using a phase-field model for hydraulic fracturing. In the

next section, we provide the governing equations for the fracture phase-field

approach as well as the reservoir flow equations. In the section after, we pro-

vide details on the coupling algorithm between the fracture phase-field model

and the reservoir simulator. In the final section, numerical tests are discussed

to demonstrate our method.

6.2 Pressurized and Fluid-filled Crack Propagation Mod-
els using Phase-field

In this section, we describe the proposed model development starting by

defining a two-field problem in two unknowns: (1) a vector displacement field

and (2) a scalar phase-field variable (ϕ), assuming a known pressure field (the

so-called pressurized fracture propagation). This is later extended to a three-

field problem, adding scalar pressure (p) as an unknown, accounting for flow

inside the porous rock matrix and the fracture (the so-called fluid-filled frac-

ture propagation). Therein, a single pressure diffraction equation (see Mikelić

et al. (2014a)), derived from the mass conservation equation and Darcy’s law,

is used for local flow field calculations. The elasticity and phase-field equations

are formulated as an energy minimization problem. We obtain a weak form of
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the differential equations by differentiating this energy minimization function

with respect to the solution variables. This serves as a natural setting for

using a Galerkin finite element method for spatial discretization. Before we

begin, it is important to discuss the key features of the classical brittle fracture

theory (Griffith (1921)) used in this work. The theory postulates two physical

phenomena: (1) linear elasticity and (2) fracture propagation, as energy dis-

sipation mechanisms, strictly separated by a threshold (critical energy release

rate) assuming a sharp transition between the fractured and non-fractured

media. The Griffith’s criterion for brittle fracture propagation assumes:

1. The crack growth is irreversible.

2. The energy release rate is bounded above by a critical energy release

rate.

3. The crack grows if and only if the energy release rate is critical.

Let Ω be the reservoir domain, as shown in Fig. 6.2, with the fracture C ⊂ Ω.

Ω

C

Figure 6.2: Problem description.
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6.2.1 Pressurized fracture propagation model (two-field problem)

We begin by describing the pressurized fracture approach where a

known pressure field is assumed on the domain Ω. The pressure remains

invariant along the fracture length varying only temporally based upon a sim-

ple correlation. The pressure variation along the fracture length is assumed

to be negligible. Later we show that this assumption is valid if the fracture

conductivity is substantially larger than the reservoir conductivity, which is

usually the case. The energy functional for a poroelastic material (Ω) with a

crack (C) reads:

E(u,C) =
1

2

∫
Ω

σE : e(u)︸ ︷︷ ︸
Elastic energy

−
∫

Ω

αB(p− p0)∇ · u︸ ︷︷ ︸
Pore pressure contribution

+ GcH
d−1(C)︸ ︷︷ ︸

Fracture energy

, (6.1)

with the following constitutive stress-strain equation and definition of strain

e(u):

σE = 2µe(u) + λtr(e(u))I, (6.2)

e(u) =
1

2
(∇u+∇uT ). (6.3)

where µ and λ denote the Lamé parameters, σE the Cauchy stress ten-

sor, e(u) the strain tensor, αB the Biot coefficient, p the pore pressure, po the

reference pressure, u the displacements. Gc is the critical elastic energy release

rate depending on the material and is determined experimentally and Hd−1

is the length (or surface area) in a 2D (or 3D) domain. Please note that Gc
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is related to stress intensity factor under certain assumptions on the material

such as an isotropic, linear elastic solid (Irwin (1958)). Further, we follow the

approach presented by Ambrosio and Tortorelli (1990) for approximating the

fracture length (Hd−1) using an elliptic functional

Hd−1 =
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2, (6.4)

thereby introducing an additional variable ϕ, referred to as the phase-field

variable hereafter. This variable is a quantity defined on the entire domain Ω

for a time span varying from 0 to T. A careful examination of Eqn. 6.4 shows,

for a given value of ε > 0, this functional assumes lowest values when ϕ is a

constant assuming values of either 0 representing a fracture or 1 representing

the porous rock matrix. Please note that these values are strictly 0 or 1

for a continuum (strong form) description of a pressurized fracture model.

We notice that the phase-field approach is related to gradient-type material

modeling with a characteristic length-scale. Here, the above regularization

parameter ε can be considered as such a length-scale parameter that has a

physical meaning (Pham et al. (2011); C. Miehe (2010) and references cited

therein). The second term ensures that ϕ changes smoothly between 0 and 1

allowing the representation of the fracture as a diffuse interface. Eqn. 6.4

represents a mathematically-consistent approximation of the true crack Hd−1.

In order to satisfy assumptions 2 and 3 the energy functional (Eqn. 6.1) is
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regularized with ϕ as follows:

Eε(u, ϕ) =
1

2

∫
Ω

((1− κ)ϕ2
+ + κ)σE : e(u)−

∫
Ω

αB(p− p0)ϕ2
+∇ · u

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
(6.5)

Here, ϕ+ is the maximum of ϕ and 0, κ ≈ 0 (determined by machine precision)

is a positive regularization parameter for the elastic energy and the length-scale

parameter ε denotes the width of the transition zone in which ϕ changes from 0

to 1 (this width is illustrated as the contour lines between the white and brown

regions in Fig. 6.1). One can see from Eqn. 6.5 that if ϕ is 0 (fracture), the

first and second terms become zero and the energy functional is dominated

by the critical energy release rate Gc. Similarly when ϕ is 1, the third term

becomes zero. An intermediate behavior can be seen for values between 0 and

1. Finally, we impose the irreversibility constraint (assumption (1)) on ϕ; i.e.,

∂tϕ ≤ 0, (6.6)

which ensures that the state variables change in the direction of energy min-

imization or entropy maximization, in accord with the 2nd law of thermody-

namics. Then, the final energy functional reads:

Eε(u, ϕ) =
1

2

∫
Ω

((1− κ)ϕ2
+ + κ)σE : e(u)− 1

2

∫
Ω

αB(p− p0)ϕ2
+∇ · u

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
+ IK(ϕn−1)(ϕ), (6.7)

where the last term IK(ϕn−1)(ϕ
n) is a penalization term to impose the irre-

versibility constraint (6.6). We are now ready to derive differential equations
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in a Galerkin fashion that can be easily adapted and implemented in legacy

reservoir simulators using finite element discretizations. For the sake of brevity,

we directly introduce these differential equations. The reader is referred to

Mikelić et al. (2013a) for a detailed derivation. The problem statement then

reads: Find u and ϕ such that,∫
Ω

(
(1− κ)ϕ2

+ + κ
)
Ge(η) : e(w)−

∫
Ω

(αB − 1)(ϕ2
+pdiv w) +

∫
Ω

ϕ2
+∇pw = 0

∀ admissible test functions w,
(6.8)

as well as,∫
Ω

(1− κ)(ϕ+ Ge(η) : e(η)ψ −
∫

Ω

2(αB − 1)(ϕ+ p div η)ψ + 2

∫
Ω

ϕ+∇p ηψ

+Gc

(
−
∫

Ω

1

ε
(1− ϕ)ψ +

∫
Ω

ε∇ϕ∇ψ
)

+

∫
Ω

(Ξ + γ(ϕ− ϕn−1))+ψ = 0 ∀ admissible test functions ψ.

(6.9)

Here, Ξ and γ are a penalization function and parameter, respectively, to

enforce the irreversibility constraint of crack growth with the help of an aug-

mented Lagrangian formulation (Wheeler et al. (2014a)). In the last term,

ϕn−1 denotes the phase-field solution to the previous time step.

6.2.2 Fluid-filled fracture propagation model (three-field problem)

In the previous section, a given uniform fracture pressure was assumed

for crack propagation. Here we briefly describe an extension of this approach

where a pressure field is computed by solving a flow problem on the entire

domain (both reservoir and fracture). An extended Reynold’s lubrication
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equation and Darcy’s law are solved in the fracture and reservoir domains,

respectively along with the fluid mass conservation equations. The benefit of

our proposed approach is that both sets of equations have similar structure

identified by the phase-field variable as separate fracture (ΩF (t)) and reservoir

(ΩR(t)) domains. Here, ΩF (t) is the volume approximation of the crack C. The

reader is referred to Mikelić et al. (2014a). The mass conservation equations

for fluid flow are:

∂tρF +∇ · (ρFvF ) = qF − qL in ΩF (t),

∂t(ρRφR) +∇ · (ρRvR) = qR in ΩR(t).
(6.10)

Please note that the fracture porosity is set to one. The fracture volume is

accounted for by the spatial discretization. Here, the velocities are defined by

the Reynold’s lubrication equation and Darcy’s law for the fracture and the

reservoir, respectively:

zj = −Kj

νj
(∇pj − ρjg). (6.11)

The term qL represents the leakage from the fracture owing to the 3D approx-

imation of 2D Reynold’s lubrication equation for the fracture domain. Where,

j = F,R denotes the fracture and reservoir domains, φj the fluid fraction, Kj

the permeability tensor, νj and ρj the fluid viscosity and density, respectively,

g the gravity and qj the source/sink term. A comparison of Darcy’s law and

Reynold’s lubrication equation shows that KF = w(u)2

12µ
, where w(u) is the frac-

ture width (or aperture) calculated from jump in normal displacements u. A

detailed derivation of the leakage term can be found in Mikelić et al. (2014a).
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6.2.3 Discretization and solution algorithm

The flow and mechanics equations are solved using the fixed-stress it-

erative coupling scheme (Settari and Walters (2001); Mikelić and Wheeler

(2012)) and is described in detail in the algorithmic flow chart 1. We then

first discretize in time using a backward Euler scheme followed by spatial dis-

cretization with a continuous Galerkin finite element method on a hexahedral

grid with grid size parameter h. Here, all variables are discretized by continu-

ous bilinears in space. We note that h� ε, which requires fine meshes around

the fracture(s). To this end, we use local mesh refinement with hanging nodes

(see Figure 6.3).

6.3 Integrating Phase-field Crack Propagation and Frac-
tured Reservoir Flow Models

In this section, we describe the proposed coupling method while out-

lining a work-flow for translating fracture location, geometry and width infor-

mation between the phase-field crack propagation model and the production

reservoir code. The use of hexahedral elements for spatial discretization in

both models allows translation of fracture location and variables from one

model to another. The phase-field with crack growth and localized flow is

used as a pre-processor step for the fractured reservoir flow. This results in

a forward solution with the pertinent fracture geometry and width translated

at the end of the propagation.

We consider phase-field as an independent module that can be coupled
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Algorithm 1 Augmented Lagrangian fixed-stress solution algorithm

For each time tn

repeat
Solve augmented Lagrangian loop (outer loop)
repeat

Solve two-field fixed-stress (inner loop):
Solve the pressure diffraction Problem (6.10)
Solve linear elasticity in Problem (6.8)

until Stopping criterion

max{‖ul − ul−1‖, ‖pl − pl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied
Solve the nonlinear phase-field in Problem (6.9)

Update

Ξk+1 = (Ξk + γ(ϕk+1 − ϕn−1))+, k = 0, 1, 2, . . .

until Stopping criterion

‖Ξk−1 − Ξk‖ ≤ TOLAL, TOLAL > 0

is satisfied
Set: (un, ϕn) := (uk, ϕk).
Increment tn → tn+1.
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to other codes. This assumes hydraulic fracture growth to be a local or near

well bore phenomenon which is not affected by far-field reservoir complexities

such as reservoir boundaries, faults and barriers. Under this assumption, the

two processes: hydraulic fracturing and later production are decoupled. Thus a

local flow problem with appropriate boundary conditions is solved to compute

a local pressure field during fracture propagation. There are two possible

approaches for coupling phase-field crack propagation and fractured-reservoir

flow model:

1. Phase-field with crack growth and localized flow as a pre-processor step

for the fractured reservoir flow. This results in a forward solution with

the pertinent fracture geometry and width translated at the end of the

propagation. This approach considers phase-field as an independent

module that can be coupled to other codes.

2. Phase-field for crack growth with fractured reservoir flow model for fluid

flow computations leading to a stronger coupling between the two mod-

els.

In this work, we restrict ourselves to the first coupling approach and

consider the second one in a future work. The second approach accounts for

these far-field reservoir features owing to pressure field calculations using the

global fractured-reservoir flow model. A stronger coupling requirement leads

to higher computational costs in simulations and implementation.We discuss

step by step the coupling approach used to integrate the two models. This
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forward coupling is computationally inexpensive and adequately captures local

flow field variations effecting fracture growth. Another advantage is that the

phase field crack propagation model generates fracture growth information as

a standalone module.

The spatial and temporal scales associated with fracture growth and

later production from a hydraulically fractured reservoir are widely different.

Therefore, it is reasonable to treat the two processes separately. As discussed

previously, the phase-field model includes a localized fluid flow description and

can therefore generate crack growth information as a stand alone. We then

post-process and adapt this crack geometry data for our fractured poroelastic

reservoir simulator resulting in a one-way coupling. This approach can be

adapted for other legacy reservoir simulators.

6.3.1 Projection of variables/ mesh reconstruction

We start with the phase-field approach and solve for p, u, ϕ. At the end

of the fracturing process, the reservoir simulator needs the pressure p as initial

pressure, ϕ to detect the shape of the fracture and finally the width w := w(u),

which is computed as jump of the normal displacements. The shape of the

fracture is determined for all ϕ < thr, where thr denotes a certain threshold,

say thr = 0.1 (see Figure 6.3). If ϕ < thr in a cell, it is marked as fracture

cell. All unknown quantities are computed at cell centers with the associated

co-ordinate information to the reservoir simulator.

We post-process and adapt fracture geometry from crack growth model

125



Figure 6.3: Determination of crack shape using threshold of the phase field
variable to determine fracture cells (marked red). The phase-field module uses
locally-refined grids with hanging nodes, which allows to reduce the computa-
tional cost significantly.

for the fractured poroelastic reservoir flow model. Fig. 6.4 shows reconstruc-

tion of a coarse, locally distorted, hexahedral mesh which adequately captures

the three characteristic length scale variations of a typical elliptic fracture.

Fig. 6.5 outlines a work-flow for reconstructing 3D fracture geometry, for

Figure 6.4: Reconstructing the fracture geometry.

reservoir flow simulation, from 2D fracture information generated by the frac-

ture growth model. The first row shows geometry information for one and

126



three fractures (left and right, respectively) in the YZ plane. A typical frac-

ture growth pattern, in the XZ plane is then used to reconstruct 3D fracture

geometries. We use the fact that final fracture geometries after slick water in-

jection are strongly correlated to reservoir rock property data and can therefore

be scaled.
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Figure 6.5: Work-flow for reconstructing 3D fracture geometry from 2D infor-
mation.
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6.3.2 Fractured well model

As previously described, the crack propagation model already couples

fracture flow to reservoir and is therefore complete in itself. That means, start-

ing with a given setting, we commence with that model and compute a fracture

geometry, which might include curvilinear growth, branching and joining. The

fracture geometry is passed to the reservoir simulator, as described in the pre-

vious section. The width and the pressure information from the phase-field

model are set as the initial conditions for the reservoir simulator. Fig. 6.6

(right) shows fractured well placement (red blocks) in a reservoir with natural

fractures (shaded orange). The mesh adaption is convenient since both models

utilize hexahedral meshes thus avoiding computationally costly interpolation

between meshes with different mesh elements (tetrahedral, prisms etc.).
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Figure 6.6: Integrating fractures generated by phase field model as a fractured
well model.

The key advantage of our suggested ideas is concerned with the effort

in coupling. Rather than iterating in each time step between both frameworks,

the phase-field is used as a preprocessor step and as such acts as a own module.

This allows us to run different well placement scenarios with the reservoir sim-
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ulator using the same fracture geometry avoiding redundant fracture growth

calculations for each scenario. The accuracy of the phase-field approach for

modeling fracture propagation increases, as the mesh is refined.

The spatial and temporal scales associated with crack propagation are

much smaller when compared to reservoir flow. Therefore, the use of a fine

mesh for fracture growth computations followed by reservoir flow calculations

on a coarse mesh is computationally efficient. In order to expedite the calcu-

lations for the phase-field fracture growth model, we utilize a dynamic mesh

refinement approach with locally refined grids and hanging nodes (see Fig.

6.3). For example, if we run 20 time steps, we perform the first 15 on a coarse

mesh and refine the last 5 time steps to get more accurate fracture tip and

associated variable information. This procedure keeps the computational cost

very reasonable while increasing accuracy.

6.4 Results

We illustrate our methodology by several numerical tests in two and

three dimensions. First, we highlight the capabilities of the fractured-well

phase-field model and present some crack propagation scenarios including

multi-stage fractures, stress-shadowing effects and crack growth in heteroge-

neous porous media with nonplanar fractures.Second, we use one of these

scenarios, extract the fracture and run the reservoir simulator.

The fracture-well phase-field model is computed with the multiphysics

template (Wick (2013)) in combination with deal.II’s (Bangerth et al. (2012))
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step-31 for the usage of two different degree-of-freedom-handlers to build an

iterative solution algorithm as needed for the fixed-stress splitting. In the

following, we provide geometry information and parameters for the test cases.

Geometry, grid and time step parameters

The computational domain for all 2d tests is Ω = (0, 4)2. Here, two

fractures each with length 1 and midpoints x = 1.5 and x = 2.5 are pre-

scribed. In the second test, the distance is enlarged and the midpoints are

x = 1 and x = 3. In the cases of the three multi-stage fractures, we consider

the midpoints x = 1, 2, 3. Here, in the first test all three fractures have length

1, in the second test the middle fracture has length 0.5 and in the final test

1.5. In 3d, in the cube Ω = (0, 10)3, we prescribe a two penny-shape cracks

with radius r = 1.0 in the y = 5.0-plane with mid-points (5.0, 3.0, 5.0) and

(5.0, 7.0, 5.0). The crack is approximated as a volume by extending it with the

spatial discretization parameter h in up- and downward y-direction, respec-

tively (for details, we refer the reader to Wheeler et al. (2014a)). As boundary

conditions we set the displacements zero on ∂Ω. We compute 50 (2d) and

50 (3d) time steps with time step size ∆t = 0.01 (2d) and ∆t = 0.005 (3d),

respectively. We note that the characteristic fracture time scale is,

TF =
L2ηF cF

K̃F

=
1× 10−3 × 10−8

10−8
= 10−3,

in which we assumed a characteristic fracture length 1 and characteristic frac-

ture permeability K̃F = 10−4.
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Model parameters

The augmented Lagrangian penalization parameter is γ = 104 (2d) and

γ = 103 (3d). Several parameters and geometry-related issues depend on the

spatial mesh size parameter h. Namely, for the regularization parameters we

choose the relations κ = 10−6 × h, ε = 2h = 0.088 (2d) and κ = 10−6 × h, ε =

2h = 1.09 (3d).

Flow parameters

In all examples, the gravity g is set to zero and the fluid is only driven

by the point source injection q. We inject fluid at a constant rate into the

fractures. In 2d and 3d, we use q = 1. Furthermore, the permeability in the

reservoir is KR = 10−12. In the the second example, Test 2, we use a randomly

varying permeability between 5 × 10−12 and 10−13. Next, M = 2.5 × 10−8,

cF = 10−8, νR = νF = 1.0×10−3, ρ0
R = ρ0

F = 1. Regarding the Biot coefficient,

we perform computations with α = 0 because it has been shown in Mikelić

et al. (2014a) that α = 0 and α = 1 yield the same crack patterns if the

characteristic time scale of the fracture is taken into account.

Elasticity and phase-field parameters

The fracture toughness is chosen as Gc = 1.0. The mechanical pa-

rameters are µ = 4.2 × 107 and λ = 2.8 × 107. In the second example, we

employ randomly varying Lamé parameters µ = 4.2 × 106 − 9.4 × 107 and

λ = 2.6× 106 − 9.3× 107.
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6.4.1 Comparing fracture propagation in 3D and 2D domains

In this example, we first show a numerical experiment simulating si-

multaneous propagation of two penny-shaped fractures in a 3D domain. This

is followed by a 2D experiment, in a similar setting, to compare 2D and 3D

results. Fig. 6.7 shows fracture patterns during growth at T = 0, 15 and 25

seconds for the 3D case. Similarly, Fig. 6.8 shows fracture locations at T = 0,

20 and 30 seconds for the 2D case.

Figure 6.7: Crack pattern for simultaneous propagation of two penny-shaped
fractures at T= 0, 15 and 25 seconds in 3D domain.

Figure 6.8: Crack pattern for simultaneous propagation of two fractures at
T=0, 20 and 30 seconds in a 2D domain.
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Since the two cases presented here are symmetrical the temporal varia-

tion of pressures at the centers of the two fractures, for each case, are similar.

Figs. 6.9 and 6.10 shows the time evolution of pressure at the center of one of

the fractures for the 3D (top) and 2D (bottom) domains.
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Figure 6.9: Transient pressure at the center of the fractures for 3D case.

Note that the pressure builds up to threshold value and then starts

dropping as the fracture starts growing. The results show resemblance of the

fracture growth and transient pressure for the 3D and 2D cases.
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Figure 6.10: Transient pressure at the center of the fractures for 2D case.

6.4.2 Effect of fracture spacing on fracture growth

In this section, we present a numerical experiment, similar to the 2D

case presented earlier, with a larger initial fracture spacing and studying the

resulting effect on the fracture pattern. The fracture locations at time T = 0,

20 and 20 seconds are shown in Fig. 6.11. It can be observed by comparing

Figs. 6.10 and 6.11 that as the spacing is reduced the fracture pattern be-

comes diverging. This result demonstrates that an optimal fracture spacing

can be achieved which maximizes reservoir fracture interface area and therefore

productivity.
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Figure 6.11: Crack pattern for simultaneous propagation of two fractures, with
larger spacing, at T=0, 20 and 30 seconds.

6.4.3 Effect of discrete fractures on fracture growth

In this example, we study the effect of an existing fracture on the

propagation of another fracture. This setting is devised to provide insight

into growth patterns for sequential hydraulic fracturing. In Fig. 6.12 the

left fracture is stationary whereas the right fracture grows due to injection

of hydraulic fluids. The stationary fracture (left) is given a higher material

stiffness property compared to the reservoir in order to replicate a propped

fracture. As it can be seen, the hydraulic fracture does not show considerable

pattern change due to the presence of an adjacent discrete fracture. Although

a more detailed study can be conducted to evaluate the combined effect of

orientation, we restrict ourselves to the case of parallel fracture for the sake of

brevity. Fig. 6.13 shows the stress fields (Frobenius norm) at times T = 0, 20

and 40 seconds.
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Figure 6.12: Crack pattern for sequential hydraulic fracturing at T=0, 20 and
40 seconds.

Figure 6.13: Stress field for sequential hydraulic fracturing at T=0, 20 and 40
seconds.

6.4.4 Effect of heterogeneity on fracture growth

In this set of tests, we extend the case of two simultaneous fracture

propagation in a 2D domain to a heterogeneous porous media Fig. 6.15 and

non-constant reservoir permeabilities Fig. 6.16. Fig. 6.15 and Fig. 6.16 show

fracture growth with branching and joining for different times.
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Figure 6.14: Initial crack pattern (left), randomly distributed Lamé coefficients
(middle) and non-constant permeability (right). In the two latter figures, red
denotes high values and blue/green low values.

Figure 6.15: Crack pattern for fracture propagation in a heterogeneous medium
at T = 20, 30, 50 seconds.

Figure 6.16: Crack pattern for fracture propagation in a heterogeneous medium
and non-constant permeability at T = 5, 10 and 15 seconds.
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6.4.5 Effect of stress shadowing on fracture growth

Here, we investigate the effect of stress-shadowing and initial fracture

nucleation lengths on fracture growth for simultaneous propagation of three

fractures. The material properties (Lameé parameters) are kept homogenous

to accentuate observations and are by no means restrictive. Three cases were

considered: a) equal fracture nucleation lengths (Fig. 6.17), b) shorter nucle-

ation length for middle fracture (Fig. 6.19) and c) longer nucleation length

for middle fracture (Fig. 6.21). Please note that although boundary condi-

tions play an important role in fracture growth the emphasis here is solely on

fracture-fracture interaction.

Figure 6.17: Example 3, Test 1, crack pattern at T = 0, 20, 30, 50.

Figs. 6.18, 6.20 and, 6.22 show the stress-fields (Frobenius norm) for
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Figure 6.18: Example 3, Test 2, stress distribution at T = 0, 20, 30, 50.

the aforementioned three cases. In, Fig. 6.17 we observe that the growth of

the middle fracture is shunned due to the stress shadowing from the outer two

fractures. Similar behavior is observed for the case with shorter nucleation

length for middle fracture. However, the case with longer nucleation length

for middle fracture shows contrasting behavior. Here the stress shadow owing

to the middle fracture shuns the growth of outer fractures. This numerical

test shows that a careful evaluation of stress shadowing effects is pivotal for

planning a hydraulic fracturing job, beginning from perforation to propagation

using slick water injection.
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Figure 6.19: Example 3, Test 2, crack pattern at T = 0, 20, 30, 50.

Figure 6.20: Example 3, Test 2, stress distribution at T = 0, 20, 30, 50.
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Figure 6.21: Example 3, Test 3, crack pattern at T = 0, 20, 30, 50.

Figure 6.22: Example 3, Test 3, stress distribution at T = 0, 20, 30, 50.
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6.4.6 Coupling the phase-field model to a reservoir simulator

In this section, we present an example to demonstrate the aforemen-

tioned approach for an explicit coupling of fracture growth to a reservoir sim-

ulator based upon general hexahedral discretization. Two synthetic cases are

generated from Brugge field geometry (see e.g. Peters et al. (2009); Chen et al.

(2010)) where the wells are either relocated or augmented with hydraulic frac-

tures. Here the use of fractured wells reduces the number of injection wells

while improving sweep efficiency. The phase field fracture propagation model,

followed by production evaluation of reservoir, allows us to develop an intuitive

understanding of recovery predictions and serves as a decision making tool for

design, evaluation and long term field developments.

Figure 6.23: Coarse fracture mesh after adaptation.

Although not restrictive, for the sake of simplicity, we consider the

fracture pattern as shown in Fig. 6.7. The geometry information from the

phase field fracture propagation model is post-processed and adapted to obtain

a coarser mesh while maintaining mesh quality. This reduces time-step size
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φ 0.15-0.22 Kx 6= Ky = Kz 0-3800 mD
cw 1.E-7 psi−1 co 1.E-4 psi−1

ρw 62.4 lbm/ft3 ρo 56 lbm/ft3

νw 1 cP νo 2 cP
S0
w 0.31 P 0

w 1500 psi

Table 6.1: Brugge field: reservoir and fluid properties

restrictions and numerical errors associated with mesh elements. Fig. 6.23

shows the reconstructed, coarse, structured fracture mesh with quadrilateral

(hexahedral in 3D) elements. This fracture pattern is integrated with a well-

bore model and is used as a fractured well model in a reservoir simulator.

Figure 6.24: Brugge field geometry with fractured injection wells.
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Figure 6.25: Original Brugge field with injection and production wells.

Table 6.1 provides material and fluid properties required for solving flow

and geomechanics. The values presented in the table provide typical values

used for this simulation run. Figure 6.24 shows the fractured Brugge field

geometry with 20 bottom-hole pressure specified production wells at 1000 psi.

Here a pressure profile after 2 days is used to aid in visualizing the location

of the fractured injection wells. The three red regions show the hydraulically

fractured, injection wells with a bottom-hole pressure specification of 2600 psi.

The original Brugge field is shown in Fig. 6.25 with 30 bottom-hole pressure

specified wells with 10 injectors at 2600 psi and 20 producers at 1000 psi

where injectors are located at a higher elevation compared to the producers.

The distorted reservoir geometry and fractures are captured using 9×48×139

general hexahedral elements and then discretized using a MFMFE scheme
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(Singh et al. (2014a)). Figure 6.26 and 6.27 displays permeability fields in the

X, Y and Z directions.

Figure 6.26: X (left) and Y (right) direction permeability fields.

Figure 6.27: Z direction permeability (left) and porosity (right) fields.

Figs. 6.28 and 6.29 shows pressure and saturation profiles, respectively

at the end of 1000 days. The fractured injection wells are placed at greater

depths compared to production wells so that the gravity assists in oil recovery.

A comparison between the pressure and saturation profiles for the two cases

show that a lower number of fractured wells are required for improved sweep

efficiencies compared to conventional wells.
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Figure 6.28: Pressure profiles after 1000 days for fractured (left) and original
(right) Brugge field cases.

Figure 6.29: Saturation profiles after 1000 days for fractured (left) and original
(right) Brugge field cases.
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6.5 Nomenclature

Ω = reservoir domain

C = fracture domain

E(u,C) = energy functional

σE = stress tensor

e(u) = strain tensor

αB = Biot coefficient

p = fluid pressure

p0 = reference pressure

u = displacement vector

Gc = critical energy release rate

Hd−1(C) = length of fracture, Hausdroff measure

µ, λ = Lamé parameters

ν = fluid viscosity

I = identity tensor

ϕ = phase field variable

κ, ε = regularization parameters

w(u) = fracture aperture or width
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K = absolutre permeability

ρ = fluid density

g = acceleration due to gravity

qF,R = source/sink for fracture (F) or reservoir (R)

qL = fracture leakage term
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Chapter 7

Conclusions and Recommendations

We developed a compositional flow model using MFMFE for spatial

discretization. The use of general hexahedral grid leads to fewer number un-

knowns when compared to tetrahedral grids and therefore lower computational

costs. Further the discretization scheme allows sufficient flexibility in capturing

complex reservoir geometries including non-planar interfaces. The hexahedra

is a plausible choice for mesh elements since reservoir petrophysical data is

usually available on similar elements. An MFMFE scheme therefore facilitates

adaptation with minimal changes to given information. Finally, the general

compositional flow model presented here encompasses single, multi-phase and

black oil flow models. This presents a future prospect for multi-model capa-

bilities where different flow models can be used in separate reservoir domains.

A fractured poro-elastic reservoir model is also presented where the

fractures are modeled as surfaces. The contrast between reservoir and fracture

is fully resolved using different flow models and capillary pressure and rela-

tive permeability curves. A solution algorithm and numerical scheme based

on MFMFE approximation has been described. The fracture geometry along

with its non-planarity is accurately captured using general hexahedral ele-
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ments. The model is validated against experimental lab data for spontaneous,

capillary imbibition of a Berea sandstone core. Several numerical experiments,

including a field case, have been performed which demonstrate that the recov-

ery pattern is strongly influenced by the geometry and orientations of the

fractures. These examples provide both qualitative and quantitative under-

standing of the underlying physical processes. The use of explicit flow models

for both hydraulic and discrete fractures provide us with an accurate depiction

of flow fields. This allows design and evaluation of hydraulic fracture jobs con-

sidering intricate details. Incorporating the geomechanical effects show that

the influence of fractures on the stress field is more prominent around the

production than the injection wells.

We successfully coupled this phase-field approach with a reservoir simu-

lator. The integration is based on a computationally efficient one-way coupling

which allows the use of the phase-field approach as a pre-processor step. With

our proposed approach we are able to simulate hydraulic fracturing and pro-

duction stages. An extension to black-oil and compositional models for the

reservoir flow description can also be achieved.
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Appendix A

Wellbore Models

A.1 Introduction

This appendix presents horizontal and deviated well-bore models for

slightly compressible two phase flow systems. The elements/grid-blocks con-

taining well-bore are identified using an existing IPARS (Integrated Parallel

Accurate Reservoir Simulator) algorithm for tracing vertical wells given the

well-bore endpoints. For example, let us consider a horizontal/vertical well.

Figure A.1 shows a vertical, horizontal and deviated (from left to right) well

that communicates with the reservoir along a length L (shaded blue). The

well specifications are usually made either point wise (bottom hole pressure)

or at the well head as a mass/volume rate. A well model is therefore required

to calculate a continuous distribution of pressure ,for given well specifications,

as a function of distance from the bottom hole.

Well models are broadly classified into two categories: (1) bottomhole

pressure specified and, (2) rate specified wells. An outline of the existing

IPARS implementation of vertical well model is presented in order to famil-

iarize the reader with the theoretical approach and assumptions behind its

development. A description of horizontal well model theory and implemen-
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θ 

Figure A.1: Vertical, horizontal and deviated well (left to right)

tation is then presented following a brief discussion on the common factors

between horizontal and vertical wells. Conventional wellbore models (Joshi;

Economidies et al.) calculate pressure distribution along well-bore based upon

the type of well specification. The pressure drop (dP) across an incremental

wellbore length (dL) is obtained from macroscopic energy balance given by

eqn. (A.1).

dP

dL Total
=
dP

dL gravity
+
dP

dL friction
+
dP

dL inertia
(A.1)

A.2 Vertical Well Models

A number of assumptions are made during model developement, listed

as follows:
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1. Frictional losses owing to the solid-fluid surface interactions are assumed

to be negligible.

2. Inertial effects such as fluid acceleration due to expansion are neglected.

3. The fluid is assumed to be slightly compressible.

4. An average wellbore density (ρWB) equal to the density at the center of

wellbore is assumed.

5. The system is considered to be isothermal assuming negligible throttling

effect.

6. The well/reservoir interaction occurs along wellbore curved surface area.

First two assumptions imply that a hydrostatic equilibrium exists inside the

wellbore given by eqn. (A.2) whereas, the third suggests that fluid density

varies with pressure according to eqn. (A.3). The fourth assumption states

the density averaging approach that exists for vertical well models. One must

bear in mind that the last two assumptions are subjective. The model de-

scription may differ based upon the choice of incompressible, slightly or fully

compressible fluid and the density averaging approach employed.

P + ρgL = a (A.2)

ρ = ρ0exp [c(P − P0)] (A.3)

Here a is an arbitrary constant, c is the fluid compressibility. and ρ0 is the

reference density corresponding to a reference pressure P0.
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Let us now consider a discretized reservoir where the wellbore intersects

grid elements, as shown in figure A.2. Equation (A.2) can be rewritten for fluid

inside the wellbore and adjacent formation given by eqns. (A.4) and (A.5),

respectively. The fourth assumption provides the average wellbore density

from eqn. (A.3) given by eqn. (A.6). The mass flow rate of phase ‘f’ from the

wellbore to the grid element ‘i’ is given by eqn. (A.7), frequently referred as

inflow perfromance relationship.

PBH 

PWB,i Pf,i 

Figure A.2: Elements containing vertical well in a discretized reservoir

PWB,i = PBH + ρWBg (DWB,i −DBH) (A.4)

P̄f,i = Pf,i + ρf,ig (DWB,i −Di) (A.5)
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ρWB,f = ρo,fexp

[
cf

(
PBH + ρWB,fg

∆h

2
− Po

)]
(A.6)

qf,i = ρf,iGiLiKikf,i
(
PWB,i − P̄f,i

)
/µf,i (A.7)

Here,

Li = length of open wellbore intersecting element ‘i’.

Ki = permeability of element ‘i’ normal to wellbore.

kf,i = relative permeability of phase ‘f’ in element ‘i’.

Gi = dimensionless geometric factor.

ρf,i = density of phase ‘f’ in element ‘i’.

µf,i = viscosity of phase ‘f’ in element ‘i’.

P̄f,i = formation pressure of phase ‘f’ at the center of wellbore element ‘i’.

PWB,i = wellbore pressure at the center of element ‘i’.

PBH = bottom hole pressure (specification).

Pf,i = formation pressure of phase ‘f’ at the center of element ‘i’.

DWB,i = depth at the center of wellbore element ‘i’.

Di = depth at the center of element ‘i’.

DBH = depth of bottom hole.

ρWB,f = average wellbore density of phase ‘f’.

qf,i = mass flow rate of phase ‘f’ entering/leaving element ‘i’.

cf = compressibility of phase ‘f’.

∆h = total length of open wellbore.
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A.2.1 Bottomhole Pressure Specified Wells

The wellbore pressure distribution for bottom hole pressure specified

wells is rather straightforward. The average wellbore density is calculated

directly from eqn. (A.6) followed by evaluation of pressure distribution using

eqn. (A.4).

A.2.2 Rate Specified Wells

Rate specified wells present an added level of difficulty since neither

bottom hole pressure nor average wellbore density is known. The specified

total mass rate is related to the mass rate injected or produced from each

element ‘i’ is given by eqn. (A.8).

qsc,f =
∑
i

qf,i (A.8)

Eqns. (A.5) thru (A.8) solved for PBH results in eqn. (A.9). A pressure

distrubiton is then obtained using a successive substitution approach as shown

in figure A.3. A successive substitution type approach is adopted to solve

equations (A.6) and (A.9) for the evaluation of pressure distribution. An

intial guess for average wellbore density is given by eqn. (A.10).

PBH =

(∑
i

Fikf,iρf,i
µf,i

[
Pf,i + ρf,ig(DWB,i −Di)

− ρWBg(DWB,i −DBH)
]

+ qsc

)
1∑

i
Fikf,iρf,i
µf,i

(A.9)

ρWB =

∑
i Fikf,iρf,i∑
i
Fikf,i
µi

(A.10)
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Here, Fi = GiLiKi, qsc is the well mass rate specification and k is the successive

substitution iterate.

Start

Calculate P k
BH

Tol < ϵ

Yes

Initial Guess for ρkWB

No

Calculate ρk+1
WB

Stop

Figure A.3: Calculation of pressure distribution for rate specified vertical wells

A.3 Horizontal/Deviated Well Models

In this section, we formulate a general wellbore flow model which ac-

counts for horizontal as well as deviated wells. A more general two phase

flow model which accounts for changes in pressure distributions due to vary-

ing spatial distribution of fluid phases at a well bore cross section is given

by Singh (2009). One of the primary differences between vertical and hori-

zontal/deviated wells is the geometric factor (Gi), in Eqn. (A.7), for vertical
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wells. The basic assumptions remain the same as vertical wells with an excep-

tion of frictional term which will be included hereafter in pressure distribution

calculations. The gravity term disappears as we transition from vertical to

deviated to stricly horizontal wells. The incremental pressure drop, assuming

L is positive downwards, is then given by eqn. (A.11).

dP

dL
= ρ~g − fmρv

2

2d
− ρv dv

dL
(A.11)

1. Inertial effects such as fluid acceleration due to expansion are neglected.

2. The pressure distribution is assumed to be invariant with respect to the

spatial distribution of fluid phases at a given well bore cross section.

3. The fluid is assumed to be newtonian and slightly compressible.

4. A hydrostatic equilibrium is assumed inside the formation.

5. The system is isothermal.

6. The wellbore interacts with the reservoir along curved surface area.

For an injection well eqn. (A.11) reduces to eqn. (A.12) analogous to eqn.

(A.4) for vertical wells discussed previously. The formation pressure and fluid

density are given by eqns. (A.13) and (A.14), respectively in accord with

assumptions two and three.

PWB,i = PWB,i−1 + ρWB,ig(Li)cos(θ)− fmρWB,iv
2
i

Li
2d

(A.12)

P̄f,i = Pf,i + ρf,ig (DWB,i −Di) (A.13)

160



ρWB,i,f = ρo,fexp [cf (PWB,i − Po)] (A.14)

The wellbore/reservoir interaction is accounted using an inflow performance

relationship, expressed as eqn. (A.15). An additional mass conservation equa-

tion is required to form a consistent system given by eqn. (A.16).

qf,i = ρf,iGiLiKikf,i
(
PWB,i − P̄f,i

)
/µf,i (A.15)

vi = vi+1 +
qf,iLi

2πrρWB,i

(A.16)

Here fm is the dimensionless friction factor, vi is the average fluid velocity

inside wellbore intersecting element ‘i’ and θ is the angle between deviated

well with the gravity vector direction.

Equations (A.12) thru (A.16) form a consistent system which can be

solved in a fully implicit manner to obtain a pressure distribution.

A.3.1 Bottomhole Pressure Specification

A bottom hole pressure specification implies a value PWB,i along the

open wellbore is given. The value of PBH is therefore set explicitly to the given

value in the resulting Jacobian.

A.3.2 Rate Specified Wells

Similarly, a well rate specification implies a value of qSC,f is provided.

Thus, a corresponding equation in the resulting jacobian must explicitly reflect

this specification.
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Appendix B

Phase Behavior Model: Derivatives

B.1 Peng-Robinson Cubic Equation of State

Z̄3
α − (1−Bα)Z̄2

α +
(
Aα − 3B2

α − 2Bα

)
Z̄α −

(
AαBα −B2

α −B3
α

)
= 0 (B.1a)

Zα = Z̄α − Cα (B.1b)

Aα =
Nc∑
i=2

Nc∑
j=2

ξiαξjαAij (B.1c)

Aij = (1− δij)(AiAj)0.5 (B.1d)

Ai = Ωo
ai

[
1 +mi(1− T 0.5

ri )
]2 pri
Tri

2

(B.1e)

Bα =
Nc∑
i=2

ξiαBi (B.1f)

Cα =
P ∗

RT

Nc∑
i=2

ξiαci (B.1g)

Bi = Ωo
bi

pri
Tri

(B.1h)

Ci =
P ∗ci
RT

(B.1i)

pri =
P ∗

Pci
(B.1j)

Tri =
T

Tci
(B.1k)
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mi = 0.374640 + 1.54226ωi − 0.26992ω2
i if ωi ≤ 0.49

= 0.379642 + 1.48502ωi = 0.164423ω2
i + 0.0166663

i if ωi >0.49
(B.2)

Here,

δij = Binary interaction parameters between component ‘i’ and ‘j’ (constant).

pci = Critical pressure of component ‘i’ (constant).

Tci = Critical temperature of component ‘i’ (constant).

ωi = Accentric factor for component ‘i’ (constant, deviation of a molecule from

being spherical).

Cα = Volume shift parameter (constant).

Ωo
a/bi = Constants corresponding to the equation of state.

Zα = Compressibility of phase ‘α’.

B.2 Derivatives of Fugacity Equation

The fugacity equation is given by,

ln(Φiα) =− Ci +
Bi

Bα

(Z̄α − 1)− ln(Z̄α −Bα)

− Aα

2
√

2Bα

(
2
∑Nc

j=2 ξjαAij

Aα
− Bi

Bα

)
ln

(
Z̄α + (1 +

√
2)Bα

Z̄α + (1−
√

2)Bα

) (B.3)

Further, for the sake of convenience we define ∆ and Θ,

∆ =
Aα

2
√

2Bα

(
2
∑Nc

j=2 ξjαAij

Aα
− Bi

Bα

)
(B.4a)

Θ = ln

(
Z̄α + (1 +

√
2)Bα

Z̄α + (1−
√

2)Bα

)
(B.4b)
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B.2.1 Derivative with respect to pressure (P ∗)

∂ln(Φiα)

∂P ∗
=− ∂Ci

∂P ∗
+

{
(Z̄α − 1)

Bα

∂Bi

∂P ∗
+
Bi

Bα

∂Z̄α
∂P ∗

− Bi

B2
α

(Z̄α − 1)
∂Bα

∂P ∗

}
− 1

(Z̄α −Bα)

{
∂Z̄α
∂P ∗

− ∂Bα

∂P ∗

}
−Θ

{
1√
2Bα

Nc∑
j=2

ξiα
∂Aij
∂P ∗

−
∑Nc

j=2 ξiαAij√
2B2

α

∂Bα

∂P ∗
− Bi

2
√

2B2
α

∂Aα
∂P ∗

− Aα

2
√

2B2
α

∂Bi

∂P ∗
− Bi√

2B3
α

Aα
∂Bα

∂P ∗

}

−∆

(
Z̄α + (1−

√
2)Bα

Z̄α + (1 +
√

2)Bα

){
∂Z̄α
∂P ∗ + (1 +

√
2)∂Bα

∂P ∗

Z̄α + (1−
√

2)Bα

− Z̄α + (1−
√

2)Bα(
Z̄α + (1 +

√
2)Bα

)2

(
∂Z̄α
∂P ∗

+ (1−
√

2)
∂Bα

∂P ∗

)}
(B.5)

∂Bα

∂P ∗
=

Nc∑
i=2

ξiαΩo
bi

Tripci
(B.6a)

∂Aα
∂P ∗

=
Nc∑
i=2

Nc∑
j=2

ξiαξjα
∂Aij
∂P ∗

(B.6b)

∂Aij
∂P ∗

= (1− δij)
[(

Ai
Aj

)0.5
∂Aj
∂P ∗

+

(
Aj
Ai

)0.5
∂Ai
∂P ∗

]
(B.6c)

∂Ai
∂P ∗

= Ωo
ai

[
1 +mi(1− T 0.5

ri )
]2 2pri
pciTri

(B.6d)

∂Bi

∂P ∗
=

Ωo
bi

Tripci
(B.6e)

∂Ci
∂P ∗

=
ci
RT

(B.6f)
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B.2.2 Derivative with respect to component concentration (Nk)

∂ln(Φiα)

∂Nk

=− ∂Ci
∂Nk

+

{
(Z̄α − 1)

Bα

∂Bi

∂Nk

+
Bi

Bα

∂Z̄α
∂Nk

− Bi

B2
α

(Z̄α − 1)
∂Bα

∂Nk

}
− 1

(Z̄α −Bα)

{
∂Z̄α
∂Nk

− ∂Bα

∂Nk

}
−Θ

{
1√
2Bα

Nc∑
j=2

ξiα
∂Aij
∂Nk

− 1√
2Bα

Nc∑
j=2

Aij
∂ξjα
∂Nk

−
∑Nc

j=2 ξiαAij√
2B2

α

∂Bα

∂Nk

− Bi

2
√

2B2
α

∂Aα
∂Nk

− Aα

2
√

2B2
α

∂Bi

∂Nk

− Bi√
2B3

α

Aα
∂Bα

∂Nk

}

−∆

(
Z̄α + (1−

√
2)Bα

Z̄α + (1 +
√

2)Bα

){
∂Z̄α
∂Nk

+ (1 +
√

2)∂Bα
∂Nk

Z̄α + (1−
√

2)Bα

− Z̄α + (1−
√

2)Bα(
Z̄α + (1 +

√
2)Bα

)2

(
∂Z̄α
∂Nk

+ (1−
√

2)
∂Bα

∂Nk

)}
(B.7)

∂Bα

∂Nk

=
Nc∑
i=2

(
Bi
∂ξiα
∂Nk

+ ξiα
∂Bi

∂Nk

)
(B.8a)

∂Aα
∂Nk

=
Nc∑
i=2

Nc∑
j=2

(
ξiαξjα

∂Aij
∂Nk

+
∂ξjα
∂Nk

ξiαAij +
∂ξiα
∂Nk

ξjαAij

)
(B.8b)

∂Aij
∂Nk

= (1− δij)
[(

Ai
Aj

)0.5
∂Aj
∂Nk

+

(
Aj
Ai

)0.5
∂Ai
∂Nk

]
(B.8c)

∂Ai
∂Nk

= 0 (B.8d)

∂Bi

∂Nk

= 0 (B.8e)

∂Ci
∂Nk

= 0 (B.8f)

(B.8g)
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∂ξio
∂Nk

=
1

1 + (Ki − 1)ν

∂zi
∂Nk

(B.9a)

∂ξig
∂Nk

=
Ki

1 + (Ki − 1)ν

∂zi
∂Nk

(B.9b)

∂zi
∂Nk

=
1∑Nc
i=2Ni

∂Ni

∂Nk

− Ni(∑Nc
i=2Ni

)2

∂

∂Nk

Nc∑
i=2

Ni (B.9c)

∂Ni

∂Nk

∣∣∣∣
i 6=k

= 0 (B.9d)

∂Ni

∂Nk

∣∣∣∣
i=k

= 1 (B.9e)

B.2.3 Derivative with respect to lnKk

∂ln(Φiα)

∂lnKk

= Kk
∂ln(Φiα)

∂Kk

(B.10)

∂ln(Φiα)
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√
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(B.11)
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∂Bα

∂Kk

=
Nc∑
i=2

(
Bi
∂ξiα
∂Kk

+ ξiα
∂Bi

∂Kk

)
(B.12a)

∂Aα
∂Kk

=
Nc∑
i=2

Nc∑
j=2

(
ξiαξjα

∂Aij
∂Kk

+
∂ξjα
∂Kk
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ξjαAij

)
(B.12b)

∂Aij
∂Kk

= (1− δij)
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Ai
Aj

)0.5
∂Aj
∂Kk

+

(
Aj
Ai

)0.5
∂Ai
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]
(B.12c)

∂Ai
∂Kk

= 0 (B.12d)

∂Bi

∂Kk

= 0 (B.12e)

∂Ci
∂Kk

= 0 (B.12f)

∂ξio
∂Kk

= − ziν

[1 + (Ki − 1)ν]2
∂Ki
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(B.12g)

∂ξig
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{
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∂Ki
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∂Ki
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i 6=k

= 0 (B.12i)

∂Ki

∂Kk
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i=k

= 1 (B.12j)
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B.2.4 Derivative with respect to ν

∂ln(Φiα)

∂ν
=− ∂Ci

∂ν
+

{
(Z̄α − 1)

Bα

∂Bi

∂ν
+
Bi

Bα

∂Z̄α
∂ν
− Bi

B2
α

(Z̄α − 1)
∂Bα

∂ν

}
− 1

(Z̄α −Bα)

{
∂Z̄α
∂ν
− ∂Bα

∂ν

}
−Θ

{
1√
2Bα

Nc∑
j=2

ξiα
∂Aij
∂ν
− 1√

2Bα

Nc∑
j=2

Aij
∂ξjα
∂ν

−
∑Nc

j=2 ξiαAij√
2B2

α

∂Bα

∂ν
− Bi

2
√

2B2
α

∂Aα
∂ν
− Aα

2
√

2B2
α

∂Bi

∂ν
− Bi√

2B3
α

Aα
∂Bα

∂ν

}

−∆

(
Z̄α + (1−

√
2)Bα

Z̄α + (1 +
√

2)Bα

){
∂Z̄α
∂ν

+ (1 +
√

2)∂Bα
∂ν

Z̄α + (1−
√

2)Bα

− Z̄α + (1−
√

2)Bα(
Z̄α + (1 +

√
2)Bα

)2

(
∂Z̄α
∂ν

+ (1−
√

2)
∂Bα

∂ν

)}
(B.13)
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