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Electrolessly deposited CoWP capping layers have been demonstrated to 

effectively reduce electromigration of Cu at the interconnect/dielectric-barrier cap 

interface while reducing resistivity relative to SiCN. However, as device dimensions scale, 

the need for alternative methods for the selective deposition of sub-5 nm, ultrathin, 

conformal Co capping layers is apparent. To develop methods for area-selective atomic 

layer deposition (AS-ALD) of Co caps for next-generation Cu interconnects, the ALD 

behavior of bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) (CoAMD) is evaluated 

on Cu, SiO2, and a porous low-k (𝑘 ~2.6) dielectric, CDO. The first and second ALD half 

reactions of CoAMD on the respective substrates is evaluated with H2 coreactant by 

adsorbing the precursor on the substrates under ALD cycling conditions at 265 °C with and 

without coreactant exposure. The adsorption studies indicate that CoAMD preferentially 

deposits most on Cu and least on CDO. Further, CoAMD, like other amidinate precursors, 

readily dissociates on the Cu transition metal surface but the ultimate per-cycle coverage 

is self-limited by the slow desorption of amidinate ligands and fragments from the Cu 

surface. Co films deposited by ALD from CoAMD on Cu at 265 °C indicate that Co 

burrows into the lower energy Cu surface as the film grows in order to reduce the free 
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surface energy. The Cu remains as a surfactant-like layer on the topmost Co surface up to 

film thicknesses of at least 16 nm. Moreover, considerable intermixing at the Co/Cu 

interface and Cu concentration several nm into the Co films are observed indicating high 

surface mobility of the two materials and Cu diffusion at polycrystalline Co grain 

boundaries. Finally, employing low-tempurature ALD and selectively passivating the 

dielectric surfaces with OH targeting passivants leads to enhanced selectivity of CoAMD 

for deposition on Cu versus SiO2 and CDO. Depositing Co from CoAMD on Cu and CDO 

at 165 °C after 500 kTorr-s exposure to trimethylchlorosilane at 50 °C leads to a 30:1 

preference for Co accumulation on Cu, a twelve times improvement compared to 

deposition on cleaned Cu and CDO at 265 °C. 
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INTRODUCTION 

I.1 BACKGROUND 

In efforts to maintain the profitability of integrated circuit (IC) devices and improve 

their performance, device features must decrease in size. However, the scaling of 

microelectronics produces many materials and manufacturing challenges for back end of 

line (BEOL) processes. The BEOL comprises the Cu and dielectric metallization structure 

that allows for power and signal transfer to and from the devices. Device scaling has led to 

premature device failure due to Cu electromigration (EM) [1,2]. This research addresses 

methods to reduce the effect of EM in BEOL Cu interconnects.  

BEOL interconnects comprise multiple layers of intra- and interlevel Cu 

connections (interconnects and vias, respectively, see Figure I.1) separated from one 

another by interlayer dielectric (ILD) material. The industry defines technology nodes 

specifying the benchmark size of the smallest device dimension, i.e., node denotes the half-

pitch of a metallization layer (see Figure I.2). Each technology node reduces the size of the 

Cu interconnect lines that comprise the BEOL structure. Today, IC performance is limited 

by resistance (R) capacitive (C) delays in the BEOL metallization structure [3,4]. Given 

interconnect lines of resistivity (𝜌), width (𝑊), thickness (𝑇), and length (𝐿), and ILD 

material with dielectric constant (𝑘), we can approximate the RC delay by the following: 

 

𝑅 =  
𝜌𝐿

𝑊𝑇
         (I.1) 

 

𝐶 =  2 𝑘𝐿 (
𝑇

𝑊
+

𝑊

𝑇
) = 2(𝐶𝐿 + 𝐶𝑉)      (I.2) 

 

𝑅𝐶 =  2 𝜌 𝑘𝐿2(
1

𝑊2 +
1

𝑇2 )       (I.3) 
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where we assume the dielectric thickness above and below the interconnect is equal to 𝑇 

and that the dielectric width next to the interconnect is also 𝑊 and 𝐶𝐿 and 𝐶𝑉 represent the 

intralevel and interlevel capacitance between interconnect lines. The dielectric constant 𝑘 

is an effective dielectric constant that accounts for the different dielectric materials used at 

the various metallization levels from M1 (connected to the active device) to the final 

metallization level. Six levels of interconnects, M1-M6, are depicted in Figure I.1 though 

many ICs now have around nine metallization layers, M9, depending on their application 

[3,5,6]. From equations I.1-I.3, very long interconnect lengths and decreases in line width 

and thickness contribute to the RC delay. For this reason, continued IC scaling dictates that 

𝜌 and 𝑘 must be kept as low as possible. 

 

 

Figure I.1. Cross sectional SEM of 65 nm node metallization scheme. Darkest regions are 

Cu interconnects (intralevel connections) and vias (interlevel connections). 

Adapted from [7].  
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However, scaling also introduces considerable durability challenges for IC design. In 

particular, low-k dielectric materials present new materials constraints that were not a 

challenge for SiO2. Low-k dielectrics are necessary to mitigate resistance-capacitive (RC) 

delay increases in BEOL structures due to capacitance between interconnects, signal cross-

talk, and resistivity increases associated with Cu/dielectric interfaces [4–6]. SiO2 has 𝑘 

~4.0. By comparison, low-k dielectrics are expected to have 𝑘 ranging from  2.5 to 3.0 for 

2014 and 2015 shipments and 𝑘 as low as 1.65 by 2025 [3]. While organosilica glasses 

(OSG), in which Si-O terminations are replaced in part by –H or –CH3, achieve 𝑘 ~2.7-

3.0, achieving 𝑘 < 2.5 generally requires some degree of porosity as 𝑘 air = 1.0 [3,7,8]. 

Porous media generally sacrifice mechanical strength such that too much porosity may lead 

to device fracture during packaging [3,10]. For the 45 nm technology node, the dielectric 

has 𝑘 ~2.5 and may be an OSG with many Si-CH3 terminations and a small degree of 

porosity. Such a dielectric is the model ILD for this work and is denoted CDO for carbon-

doped oxide. 

 

 

Figure I.2. Concepts of pitch and node displayed on 45 nm-node Cu interconnects with 

low-k ILD. 
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Another considerable challenge affecting ICs is premature failure due to copper  

EM. EM concerns have existed in IC fabrication for many generations and plagued the 

original Al interconnects. Due to the strong failure mode of Al interconnects by void 

formation at grain boundaries, they were supplanted by Cu interconnects that exhibited 

more resistance to EM and a different dominant failure mode: EM at the dielectric-barrier 

interface [11]. The Si(C)N dielectric barrier cap serves to protect the Cu metallization lines 

from oxidation during the growth of the next highest dielectric layer but also to help resist 

Cu EM. However, it has been demonstrated that the Cu/Si(C)N is an accelerated Cu 

diffusion path and beginning with the 90 nm node, new solutions to reduce Cu EM have 

been necessary [3,9]. 

I.2 ELECTROMIGRATION 

Electromigration is the mechanism by which momentum from flowing electrons is 

conferred on the metal through which it passes, leading to self-diffusion of the metal atoms 

in the direction of the electron flow. Over time the EM of Cu can result in a loss of 

connection in an interconnect line due to void failure (Figure I.3). For many technology 

 

 

Figure I.3. Example of EM-induced void failure (taken from [1]). 
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nodes, the fastest EM pathway for Cu interconnects has been at the Cu-Si(C)N dielectric 

barrier interface. This is due in part to the relatively poor adhesion between the Cu and 

Si(C)N layers relative to metal capping layers [13]. 

Cu EM Reduction 

Various methods for reducing Cu EM have been developed. In particular, Cu 

interconnect alloying and capping have been widely investigated to reduce Cu EM [1,4–

8]. Silicidation of the Cu surface before application of the Si(C)N dielectric barrier may 

yield 50% improvement in EM lifetime with about 3% resistance increase [17,18]. 

Alloying with Al or Mn  are the most common options with concentrations of only 0.3% 

yielding  up to more than one-hundred fold improvements in device lifetime, though the 

alloyed interconnects exhibit nearly four-fold greater resistance than CoWP caps [3]. The 

resistance increase results in greater parasitic power loss and RC delay reducing the 

maximum computing speed of an IC [3,19]. Figure I.4 depicts a comparison of the 

interconnect lifetime benefits of various EM solutions as they relate to their increase in 

interconnect resistance relative to untreated Cu interconnects  [3]. 

Capping layers are generally preferred to Cu alloying due to the increased 

interconnect resistivity associated with alloying [3]. The Si(C)N dielectric barrier cap itself 

reduces Cu EM relative to uncapped Cu lines. CuSiN layers exhibit two times or more 

resistivity increase than CoWP caps though they have shown similar EM lifetimes for 

which one-hundred fold improvements are common in the literature [3,16]. To minimize 

RC delay and maximize device lifetime, Co capping layers represent the best candidate for 

Cu EM reduction as IC scaling continues.  
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Figure I.4. EM Lifetime improvements versus resistance increases of various EM 

resistance solutions [3]. 

Considering CoWP as an EM solution includes determining how best to implement 

the films in a manufacturing process. As the current benchmark, CoWP may be selectively 

deposited by electroless deposition [17,18]. However, to avoid ILD contamination by the 

plating bath and to increase control of the deposition of ultrathin EM barrier caps (< 5 nm) 

much interest exists to develop selective atomic layer deposition (ALD) and chemical 

vapor deposition (CVD) processes [3,11]. Selective ALD processes are optimal as they can 

be tuned for surface selectivity based on surface chemistry and deposit highly-controllable, 

conformal films. In this work, methods to enable the area-selective ALD of Co capping 

layers from bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) are investigated. 

I.3 FILM GROWTH AND CHEMICAL METHODS FOR AREA-SELECTIVE ALD 

The deposition of thin films concerns thermodynamic and kinetic relationships. It 

begins with an adsorption event during which precursor adsorbate atoms impinge on the 

substrate surface. Once on the surface they may (i) desorb, (ii) diffuse, (iii) bond to surface 
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“defect” sites, (iv) interdiffuse with the substrate material, (v) coalesce with adjacent 

adsorbate molecules and nucleate an overlayer island, or any combination of (ii) – (v) 

(Figure I.5). 

 

 

Figure I.5. Surface processes of adsorbate molecules. Adapted from [22], p. 147. 

Of particular importance to the film structure of an overlayer on a homogenous 

substrate is the discussion of surface energies [22]. We can consider the interaction of a 

depositing material A on a substrate surface B by examining the respective surface energies 

𝛾𝐴 and 𝛾𝐵 and their interfacial energy 𝛾𝐴𝐵. Figure I.6 depicts the common growth modes 

and how they correspond to the respective surface and interfacial energies. If 𝛾𝐴 + 𝛾𝐴𝐵 <

 𝛾𝐵 then layer by layer, or Frank-van der Merwe, growth ensues (Fig I.6a). The converse 

of this being a substrate with lower surface energy than growing interface and film yields 

island or Volmer-Weber growth (Fig I.6c). A third case exists that is fairly common in 

heteroepitaxial film deposition for which the depositing film first forms layers but as the 

film thickens islands form on top of the conforming film. This mode is called Stranski-

Krastanov (SK) growth and may be explained by considering that the initial conformal film 

layers are forced to match the substrate crystalline structure, the mismatch between the two 

materials causes strain in the growing film which increases until the strain must be 

reconciled and islands result (Fig I.6b) [22]. 
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Figure I.6. Growth modes with surface energy considerations. 𝛾𝐴𝐵 is the interfacial 

energy between the substrate B and the depositing film A. (a) represents 

Volmer-Weber or island growth, (b) Stranski-Krastanov or layer plus island, 

and (c) Frank-van der Merwe or layer by layer growth. (adapted from [22], 

p. 146).   

For materials that are closely matched in energy like the Co/Cu system, these 

considerations are complicated. Co deposition on Cu may yield 2D films up to a finite 

thickness at which point the films roughen and grow three dimensionally. SK type growth 

might support that reconciliation of heteroepitaxial strain between the Co and Cu leads to 

the 2D-3D transition. Another explanation may be that the apparent transition from 2D to 

3D growth reflects preferential deposition at grains of a specific crystallographic 

orientation [23–28]. That Co/Cu multilayers made for magnetic systems exhibit mixed hcp 

and fcc Co on fcc Cu (111) suggests that the latter theory is probable [26,27].  

Area-selective ALD 

Area-selective processes allow for the patterned deposition of one material onto 

another. Patterning may be achieved through processes like photolithography in which 

masks are used with light to selectively etch patterns into a light-sensitive photoresist film. 

It is also possible to match existing patterns, e.g., Cu lines in a BEOL metallization layer, 



 9 

by leveraging chemical selectivity such that deposition only occurs in desired areas. 

Physical patterning like photolithography and self-assembled monolayers have many 

interesting applications and might be used to selectively deposit Co capping layers. 

However, these processes generally require many more preparation and post-processing 

steps making them less desirable than processes that rely only on chemical selectivity. As 

previously mentioned, CoWP capping layers for Cu interconnects may be selectively 

deposited by electroless deposition. Nevertheless, post-processing surface cleaning steps 

are necessary and, ultimately, the plating bath can contaminate the ILD [4,5]. 

Consequently, next generation deposition processes like selective ALD are of great interest 

to develop ultrathin metal caps.  

For selective ALD to work, it is important to tune the precursor and substrate 

surface chemistries as well as the operating conditions. Specifically, the precursor should 

deposit preferentially on the desired surface or methods to chemically passify the adjacent 

surfaces should be used. Further, exceeding the ALD temperature window can lead to 

thermal degradation of the precursor leading to loss of selectivity. For BEOL materials the 

disparity between the Cu metal surface and the reactive surface species on the ILD 

materials lends itself to chemically-selective ALD.  

BEOL Materials – Surface Chemistry Considerations 

Silicon dioxide surface chemistry is well documented experimentally and 

theoretically [22-24]. According to the Zhuravlev model, SiO2 surfaces after an HF etch 

and vacuum annealing to 250 °C are fully hydroxylated (~4.6 OH/nm2) with no residual 

physisorbed water. Apart from OH surface species, SiO2 surfaces comprise Si-O-Si bonds 

in the form of siloxane bridges. After neighboring OH moieties on SiO2 are condensed 

under annealing, they form strained siloxane bridges that relax to stable Si-O-Si bonds if 

annealed > 400 °C. Strained siloxane bridges are generally less stable and more reactive 
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than relaxed siloxane bridges but less reactive than surface OH species [23]. Stable 

siloxane bridges do not generally hydrogen bond and are hydrophobic, whereas the shifted 

electron density in strained siloxanes allows for hydrogen bonding and more reactivity.  

Due to the large concentration of Si-CH3 terminations in CDO, it exhibits fewer of 

the same reactive surface sites than SiO2. The concentration of reactive surface sites, 

especially OH moieties, holds important implications for the ALD and passivation 

strategies that facilitate selective ALD. To target surface OH for passivation, silane 

chemistries including amino-silanes and chlorosilanes are explored for their effectiveness 

at inhibiting Co nucleation on SiO2 and CDO while leaving the accumulation on Cu 

unaffected. 

It has been demonstrated that transition-metal amidinate precursor chemistries 

readily deposit on other transitional metal surfaces with H2 or NH3 coreactants [25–29]. In 

particular bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) CoAMD has shown 

promise as a CVD or ALD precursor for Co thin films deposition and will be the focus of 

this work [30,31]. 

I.4 OBJECTIVES AND OVERVIEW OF CHAPTERS 

The purpose of this work is to investigate chemical methods that improve metal 

nucleation and support the development of selective ALD of Co metal capping layers on 

BEOL Cu interconnects. 

Chapter 1 examines the adsorption behavior of a chelating Co ALD precursor on 

Cu, SiO2, and CDO. Adsorption of the atomic layer deposition (ALD) precursor bis(N-tert-

butyl-N’-ethylpropionamidinato) cobalt(II) (CoAMD) on SiO2, carbon-doped oxide 

(CDO), and Cu is reported. Adsorption was performed under ALD cycling conditions with 

and without H2 coreactant to mimic the first and second ALD half reactions on the 

substrates. Resultant surface chemistries were evaluated by X-ray photoelectron 
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spectroscopy (XPS). Adsorption of CoAMD proved self-limiting and the precursor 

reduced readily on Cu with and without H2 coreactant to form Co0. Residual C and N 

signals on Cu suggest that amidinate ligands and decomposition fragments from CoAMD 

adsorb on the Cu surface. On SiO2 and CDO, CoAMD chemisorbs on O containing 

moieties, primarily OH, to form Co2+. Accumulation of Co after three ALD cycles was 

greatest on Cu and least on CDO.  

Chapter 1.2 evaluates the Co film properties as deposited on Cu substrates.  Co 

films were deposited on Cu substrates at 265 °C by ALD with H2 coreactant from the 

chelating Co amidinate precursor bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) 

(CoAMD). The deposited films were depth profiled with ex situ time-of-flight secondary 

ion mass spectrometry (ToF-SIMS) to reveal film properties. XPS, atomic force 

microscopy (AFM), scanning and transmission electron microscopy (SEM and TEM, 

respectively) measurements reveal additional film characteristics. The data suggest 

Stranski-Krastanov deposition comprising a Co wetting layer, and, at the surface, Co 

islands resulting from reconciliation of the heteroepitaxial strain between the mismatched 

Co and the FCC Cu substrate. Moreover, XPS and ToF-SIMS data reveal that Cu diffuses 

through the Co film, likely at facile Cu diffusion pathways along the polycrystalline Co 

grain boundaries, and that some Cu segregates to the surface of the Co during deposition. 

The surface-segregated Cu is believed to stabilize Co nucleation and film growth against 

the Co/Cu lattice mismatch strain and minimize the free surface energy.  Strong Co/Cu 

intermixing suggest a complex chemical interaction between CoAMD and Cu under ALD 

conditions. 

Chapter 1.3 evaluates the chemical passivation of reactive surface sites on CDO to 

enable selective ALD of Co on Cu features in BEOL metallization structures. ALD of the 

precursor bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) (CoAMD) on relevant 
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BEOL materials, e.g., SiO2, CDO, and Cu has been demonstrated. CoAMD was evaluated 

for its inherent deposition selectivity on Cu versus CDO and SiO2. Selectivity enhancing 

passivants were employed to inhibit the reactivity of the dielectric surfaces to CoAMD. 

CoAMD deposited preferentially on the Cu surface which interacts favorably with AMD 

type ligands. Accumulation of Co was appreciable on SiO2 due to reactive free hydroxyl 

species and slowest on CDO which exhibited fewer reactive sites at which CoAMD could 

adsorb and nucleate. Trimethylchlorosilane (TMCS) most effectively eliminated CoAMD 

nucleation on SiO2 and CDO without hindering Co accumulation on Cu substrates. 

Hexamethyldisilizane also reduced the surface reactivity of SiO2 and CDO but required 

considerably higher exposures than TMCS to effect the same passivation and, ultimately, 

reduced Co accumulation on Cu as well. 

Additional Research 

A second section is presented of separate work performed during this Ph.D. study. 

Namely, Chapter 5 discusses the use of hot-wire filament cracked B2H6 (diborane) to create 

substitutional impurities in a graphite lattice to act as preferred nucleation and adhesion 

sites. The nucleation of Pt particles from CH3CpPt(CH3)3 on boron-treated highly oriented 

pyrolytic graphite (HOPG) was investigated. HOPG was enhanced with B from diborane 

using hot wire chemical vapor deposition to generate BDx fragments that dissociatively 

adsorbed on the HOPG surface and subsequently reacted with the sp2 C lattice. Unreacted 

BDx fragments either reacted with the HOPG or desorbed during annealing. Pt was 

deposited using chemical vapor deposition. Platinized B-treated HOPG samples exhibited 

enhanced Pt dispersion and uniform nucleation as compared with cleaved and annealed 

HOPG samples. Pt particle density is shown to be tunable using varying B exposures. This 

study demonstrates that the optimization of Pt dispersion and adhesion to HOPG substrates 

is achievable using a scalable chemical enhancement method.  
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SECTION 1: CHEMICAL SELECTIVITY IN ATOMIC LAYER 

DEPOSITION OF COBALT CAPPING LAYERS 

 

Chapter 1: XPS investigation of the atomic layer deposition half 

reactions of bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) 

1.1 INTRODUCTION 

Economic and performance demands drive the scaling of microelectronics. 

Maintaining chip performance while reducing feature size involves many manufacturing 

and materials challenges. In particular, increasing current density in back end of line 

(BEOL) interconnects has led to premature chip failure from electromigration-induced Cu 

diffusion. Material interfaces, such as the Cu-interlayer dielectric (ILD) barrier interface, 

have been demonstrated as accelerated pathways for Cu electromigration (EM) [1-4]. 

Consequently, Cu EM challenges are an important focus of BEOL materials research [3,5-

9]. To improve device lifetimes, EM can be reduced by alloying of Cu interconnects but 

depositing thin EM resistant metal caps on the metallization lines is preferred due to large 

resistivity increases associated with alloying [10,11]. As device scaling continues to the 7 

nm node and beyond, capping layers will likely be necessary to mitigate Cu EM. Co makes 

an effective capping material and is less expensive than alternatives like Ru [10,11]. 

To ensure device performance and maintain a low RC constant, Co capping layers 

must resist Cu EM, deposit conformally, and be the thinnest possible continuous film [12]. 

Ideally, capping layers should also deposit selectively on Cu. Co has been demonstrated to 

deposit conformally on Cu using a variety of methods including chemical vapor or atomic 

layer deposition (CVD or ALD), physical vapor deposition (PVD), and electroless 

deposition [2,3,13]. Moreover, selective CVD of Co on Cu from a carbonyl-based 

precursor has been previously demonstrated [13]. Selective ALD processes are desirable 
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because they provide controlled deposition of film thicknesses below five nm and may be 

able to meet ITRS expectations of 0.5 nm barrier films by 2025 [14]. Enabling selective 

deposition avoids costly post processing inherent in lithography and physical deposition 

methods. To develop selective ALD of Co as a Cu EM barrier, this work investigates the 

relevant ALD half reactions of a chelated Co amidinate ALD precursor by focusing on the 

first few adsorption reaction cycles on Cu, SiO2, and carbon-doped oxide (CDO) surfaces. 

Chelated metal-organic precursors find widespread application in ALD processes 

[12,15-20]. Chelated amidinates in particular have become commonplace in metals 

deposition and a number are commercially available. For instance, Cu and Co amidinate 

(AMD) chemistries have shown promise for ALD and CVD using reducing coreactants H2 

and NH3. Deposition of Co films from AMD complexes has been shown to be sensitive to 

temperature and coreactant species. Bis(N,N’-diisopropylacetamidinato)cobalt(II) is 

reported for ALD of thin Co films at substrate temperatures exceeding 260 °C with 

appreciable deposition rates beginning at 300 °C [12,17-19,21]. This study concerns itself 

with the less-reported bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II), referred to 

herein as CoAMD. CoAMD is a liquid at room temperature with adequate vapor pressure 

at moderate temperature for inert sweep-based delivery. We demonstrate that CoAMD 

deposits readily on Cu surfaces at lower temperatures than bis(N,N’-

diisopropylacetamidinato)cobalt(II), as low as 215 °C, potentially making it a better 

candidate for low-temperature ALD operations that are important in BEOL processing for 

which the thermal budget is of ongoing concern. 

Silicon dioxide surface chemistry is well documented experimentally and 

theoretically [22-24]. According to the Zhuravlev model, SiO2 surfaces after HF etch and 

vacuum annealing to 250 °C are fully hydroxylated (~4.6 OH/nm2) with no residual 

physisorbed water. Apart from OH surface species, SiO2 surfaces comprise Si-O-Si bonds 
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in the form of siloxane bridges. After neighboring OH moieties on SiO2 are condensed 

under annealing, they form strained siloxane bridges that relax to stable Si-O-Si bonds if 

annealed > 400 °C. Strained siloxane bridges are generally less stable and more reactive 

than relaxed siloxane bridges but less reactive than surface OH species [23]. Stable 

siloxane bridges do not generally hydrogen bond and are hydrophobic, whereas the shifted 

electron density in strained siloxanes allows for hydrogen bonding and more reactivity.  

CDO substrates with dielectric constants between 2 and 3 are generally highly 

methlylated amorphous SiO2, leading to a large concentration of Si-CH3 terminations, and 

are semi-porous. Consequently, CDO exhibits fewer of the same reactive surface sites than 

SiO2. In fact, freshly cleaned SiO2 is fully wetted by water, whereas cleaned CDO is 

hydrophobic, yielding water contact angles in excess of 60° with no additional treatment 

(Goniometer measurements not shown). The concentration of reactive surface sites, 

especially OH moieties, holds important implications for the expected ALD half-reactions 

of the first monolayers and of the incubation period for ALD deposition, which depends 

on the chemical nature of the adsorption site(s) and their reactivity. It is expected that CDO, 

with a lower surface OH concentration, will accumulate Co less quickly than fully 

hydroxylated SiO2.  

1.2 EXPERIMENTAL SECTION 

SiO2 (600 nm thermal oxide), CDO (𝑘 ~ 2.6), and Cu (300 nm PVD on Si) 

substrates were provided by Intel. AccuDep® CoAMD was supplied by Dow Chemical 

and used without modification. Coreactant H2 and Ar sweep gases were provided by 

Matheson (99.999%). The as-received substrates were cleaned by rinsing, in order, with 

acetone, ethanol (Fisher ACS grade), and deionized (DI) water (18.2 MΩ cm). Following 

the rinse, Cu substrates were cleaned of the majority of the surface oxide by etching in 35 

°C glacial acetic acid (99.9%, Fisher Scientific) for 1 min [25]. SiO2 samples were placed 
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in a piranha bath (6 : 2 : 1 - H2SO4 (Fisher ACS plus) : H2O2 (Fisher 30%) : DI H2O) for 

15 min followed by a 10 s HF (2% in H2O) etch. CDO was cleaned in a 1 : 1 : 1 

tetramethylammoniumhydroxide (Acros Organics 25% in H2O) : ethylene glycol (Fisher) 

: DI H2O bath for 2 min at 50 °C. 

 

 

Figure 1.1. ALD and analysis chamber.  

Cleaned samples were transferred via load lock into a previously described, in-

house built ALD system (Figure 1.1) [26]. The ALD system comprises in situ transfer 

between a hot-walled ALD chamber and an analysis chamber. The analysis chamber 

houses an X-ray photoelectron spectrometer (PHI model 1600/2057) with Ar+ sputtering 

capabilities. 

Adsorption experiments were performed in the ALD chamber. Within the ALD 

chamber, substrates are positioned perpendicular to the flow of precursors and reactant 

gases. The CoAMD is held at 80 °C and delivered by 50 sccm Ar carrier gas. An upstream, 

heated diffusion plate is employed to improve mixing during ALD to facilitate even 

substrate surface exposure to the process gases. Calibrated substrate surface temperatures 

are measured relative to a K-type thermocouple positioned just below the substrate. 

Substrate surface temperatures were 265 °C for ALD cycling unless otherwise specified. 
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The ALD base operating pressure is 260 mTorr and is a function of the gas flow and 

pumping rates. During adsorption experiments, the respective substrates were exposed to 

ALD cycling of CoAMD, Ar purge and carrier gas, and H2 coreactant. The exposures were 

controlled by temperature, mass flow, and time of exposure via automated pneumatic 

valves. A typical ALD cycle comprises a 2 s CoAMD exposure, corresponding to ~7×105 

L including Ar carrier gas fed at 50 sccm (1L = 1×10-6 torr×s), and 15 s H2 coreactant 

exposures (1.0×107 L) separated by 15 s Ar purges (5.4×106 L). Three different ALD 

schemes were employed: one cycle without H2 (1×2s no H2), one cycle with H2 (1×2s), and 

3 cycles with H2 (3×2s). Exposures were varied between one and three ALD cycles to 

demonstrate Co accumulation and the influence of the H2 coreactant on the reduction and 

dissociation of adsorbed AMD ligands from the respective substrates. Condensation 

experiments comprised one 4 s CoAMD exposure (1.4×105 L) without H2 at a substrate 

temperature of 100 °C. 

 

 

Figure 1.2. Co 2p XP spectra of 3x2s CoAMD cycles on the respective substrates. All 

signals have been normalized with background subtraction (Shirley type). 

The Co signal intensity on Cu is reduced by one order of magnitude. 
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Figure 1.3. Co 2p XP spectrum following a 1×4s-no-H2 CoAMD exposure on SiO2 at 100 

°C.  

1.3 RESULTS 

CoAMD was adsorbed under ALD cycling conditions on SiO2, CDO, and Cu 

substrates and the resulting surface species were analyzed by X-ray photoelectron 

spectroscopy (XPS). One CoAMD ALD cycle, with and without H2 coreactant, and three 

ALD cycle adsorptions with H2 were performed to understand the relative reactivity of the 

precursor on the three substrates and the surface reactions that lead to Co nucleation.  

Figure 1.2 depicts Co XP spectra of 3×2s CoAMD cycle adsorptions on each of the 

substrates. The figure indicates the difference in Co oxidation state on the respective 

substrates. Co is mostly reduced on Cu with a Co 2p3/2 binding energy (BE) of 778.3 eV. 

The Co 2p3/2 BE for CoAMD adsorbed on SiO2 and CDO at 782.5 eV is consistent with 

Co2+ and Co3+; Co 2p3/2 and Co 2p1/2 shakeup peaks at 788 and 804V, respectively, on SiO2 

and CDO correspond to paramagnetic Co2+ indicating the Co is in an oxidized state on 

these substrates.  In separate experiments, SiO2 and CDO were exposed to CoAMD at 100 

°C for 1×4s-no-H2 exposure. Figure 1.3 presents the resulting Co 2p spectrum from the 
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SiO2 substrate. The figure serves to better illustrate the Co 2p primary emission and 

shakeup peaks corresponding to Co2+.  

 

 

Figure 1.4. Co 2p XP spectra from adsorption cycling on each substrate. The spectra 

indicate oxidized Co formed on SiO2 and CDO and reduced Co formed on 

Cu, with or without H2 exposure. 

Figure 1.4 demonstrates Co accumulation on each substrate after 1 or 3 ALD cycles. 

The Co XP spectra show step-wise accumulation on Cu and CDO upon increasing the total 

exposure. The amount of Co accumulated on SiO2 did not increase from 1 – 3 cycles. A 

comparison of the 1×2s with 1×2s-no-H2 spectra illustrate that CoAMD adsorbs and 

transforms into Co0 on Cu before the addition of H2 and is unchanged after one complete 

ALD cycle, i.e., after 1×2s. 



 23 

After 1×4s-no-H2 exposure at 100 °C, 2.53 at. % Co was observed on SiO2 (Figure 

1.3) while 2.52 at. % adsorbed on CDO (not shown). Further, 1.28 at. % and 2.01 at. % N 

was observed on SiO2 and CDO, respectively. The Co:N atomic ratio for CoAMD is 0.25 

: 1. After 1×4s-no-H2 at 100 °C and 3×2s at 265 °C on SiO2, the Co:N ratios were 1.98 : 1 

and 5.09 : 1, respectively. On CDO, the corresponding Co:N ratios were 1.25 : 1 and 1.15 

: 1, respectively.   

The adsorption of CoAMD on Cu is self-limiting and the saturation exposure of 

CoAMD was determined on the Cu substrate by 1× ALD exposures at 265 °C. By XPS, 

the Co:Cu ratio is 0.19 : 1 after 1×2s exposure, 0.38 : 1 after 1×4s, and 0.35 : 1 after 1×10s 

exposure. Therefore, 1× exposures saturate the Cu surface by 4 s after which Co does not 

continue to accumulate without a coreactant cycle. It was also observed that the addition 

of H2 causes a slight reduction in Co signal intensity relative to a 1×2s-no-H2 exposure 

(Figure 1.4).  

The effect of temperature on Co accumulation on Cu was studied from 215-290 °C 

(Figure 1.5). The greatest accumulation after 3 ALD cycles occurs at 265 °C; however, the 

accumulation at 215 °C is not substantially reduced in magnitude. Therefore, the ALD 

process with CoAMD affords a larger temperature range than has been used with the 

bis(N,N’-diisopropylacetamidinato) cobalt(II) precursor and may be relevant for low or 

reduced temperature ALD applications [12,17-19,21]. 
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Figure 1.5. 3×2s CoAMD adsorption on Cu at different temperatues. Co 2p3/2 signals 

indicate reduced Co0 (778.3eV) for all tested substrate temperatures. 

 

Figure 1.6. Residual C 1s and N 1s spectra on Cu after 1 or 3 ALD cycles and after one 

CoAMD half-cycle. N is present in small amounts. N 1s signals overlap but 

are offset deliberately for clarity. 

Residual C and N signals on Cu (Figure 1.6) following 1 or 3 ALD cycles and after 

the first CoAMD half-cycle at 265 °C demonstrate that CoAMD may readily give up its 

ligands to the Cu surface and the subsequent desorption of those ligands is incomplete. 

While the majority of the AMD fragments are removed during the inert gas sweep and the 

second half-cycle, some AMD fragments are incorporated into the subsequent Co film as 
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C and N impurities. 800 ALD cycles on Cu at 265 °C (not shown) indicate that 4.4 nm 

thick Co films contain about 17 at. % C and 2 at. % N. 

1.4 DISCUSSION 

The scheme in Figure 1.7 suggests a possible ALD process for CoAMD on the Cu 

surface. The affinity of AMD fragments for transition metal surfaces leads to the initial 

dissociative chemisorption of CoAMD on Cu during which the AMD fragments complex 

with the Cu surface.  Ma, et al. previously demonstrated that adsorbed AMD ligands 

undergo complex decomposition and desorption mechanisms on transition metals [27]. In 

particular, it is likely that the CoAMD fragments partially decompose on the Cu surface 

leaving residual amidinate and alkyl fragments. AMD ligand and fragment desorption is 

likely incomplete before the next ALD cycle for reasonable purge times. Incomplete ligand 

desorption leads to C and N incorporation as film impurities (Figure 1.6). 

 

 

Figure 1.7. One possible dissociative adsorption process of CoAMD on Cu during ALD 

cycling is depicted (the Ar purge after the H2 exposure in the second half 

reaction is not shown). Circles represent Co and triangles represent 

amidinate ligands and fragments from the CoAMD precursor while the 

black line represents the Cu surface. 

The ALD of Co on Cu from CoAMD appears limited by the reaction and desorption 

of the AMD ligand fragments, which requires exposure to a coreactant like H2 or NH3. H2 

exposure decreased the Co signal intensity on Cu relative to 1×2s-no-H2 exposure (Figure 
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1.4) suggesting that CoAMD may form a partial multilayer that is not fully removed during 

the Ar purge step. Close inspection of the high BE shoulder of the 1×2s Co 2p3/2 peak 

indicates some higher oxidation state of Co is present on Cu before H2 exposure.  In order 

to mitigate multilayer formation and better reflect the interaction between CoAMD and the 

Cu substrate, 2 s rather than 4 s CoAMD cycles comprise the majority of our experiments.   

The presence of Co2+
 (Figure 1.2) and the Co:N ratios greater than 0.25 : 1 on CDO 

and SiO2 indicates that CoAMD dissociatively chemisorbs at O containing surface moieties 

on CDO and SiO2. In particular, reactive surface (OH) species are suspected as the primary 

sites for Co nucleation on SiO2. Dai, et al. demonstrated that the Cu amidinate, copper(I) 

di-sec-butylacetamidinate, reacts at (OH) ligands on SiO2 surfaces to form Si-O-CuR 

linkages [28]. We expect CoAMD behaves similarly on hydroxylated SiO2 and CDO 

surfaces resulting in Si-O-CoR linkages. On CDO, many Si atoms are methylated. 

Therefore, O-based surface species are expected in lower concentrations than on SiO2, 

resulting in fewer facile Co nucleation sites and slower Co accumulation on CDO relative 

to SiO2. This is supported by the greater accumulation of Co on SiO2 versus CDO after one 

cycle at which point facile nucleation sites on SiO2 are saturated (Figure 1.4). After three 

cycles, the Co concentration on CDO and SiO2 is, 1.7 at. % and 2.5 at. %, respectively. 

On CDO, the smaller Co:N ratio after 1×4s-no-H2 exposure at 100 °C indicates 

more unreacted or partially reacted CoAMD on its surface than on SiO2. Further, the fact 

that Co:N is high on CDO and SiO2, 8 times and 5 times what is present in unreacted 

CoAMD, suggests that most adsorbed CoAMD on both surfaces have lost one AMD ligand 

and many have fully reacted at the surface. Though the broadness of the primary emission 

peak could indicate some Co3+ character, the shakeup peaks indicate paramagnetic Co2+. 

Additionally, the ratio of the shakeup peaks to the primary peaks is effectively unchanged 

between the 1×4s no H2  exposure at 100 °C and 3×2s exposure at 265 °C indicating that 
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the average Co oxidation state is unchanged from Co2+ on the dielectric surfaces. Although 

dissociation was unexpected at this temperature, Ma et al. have recently reported that 

copper(I)-N,N’-di-sec-butylacetamidinate partially dissociated at temperatures as low as -

73 °C on Ni(110) [27]. The apparent partial dissociation of CoAMD on SiO2 and CDO at 

100 °C speaks to the reactivity of CoAMD and to the reactivity of the available surface O 

and, especially, OH groups. After 3×2s adsorption on SiO2, the Co:N ratio is 20 times that 

of CoAMD and indicates that H2 coreactant cycles readily clear N moieties from the 

surface. On the other hand, the Co:C ratio after 3×2s adsorption on SiO2 is only 6 times 

that expected from CoAMD, suggesting that C moieties bond more strongly to the surface. 

Ma et al.’s Cu amidinate work indicates that C does not fully desorb from Ni surfaces even 

as substrates are annealed up to 800 K [27]. The net accumulation of Co on SiO2 after 1×4s 

no H2 exposures at 100 °C and 3×2s exposures at 265 °C was 2.53 and 2.7 at. %, 

respectively, suggesting that multilayer adsorption occurs especially at low temperatures. 

Further, while the Co accumulation after 1×4s no H2 exposures on CDO and SiO2 was the 

same, the accumulation on CDO was 30% lower than on SiO2 after 3×2s cycling. This 

indicates both multilayer adsorption on the CDO and that the SiO2 surface comprises more 

reactive surface sites than CDO.   

The difference in Co accumulation on the respective surfaces is an indication of the 

nature of CoAMD chemisorption on each substrate. On a metal surface, the precursor and 

dissociated AMD ligands compete for metal adsorption sites.  Whereas, Co accumulation 

on SiO2 saturates after the first cycle indicating that the most reactive surface sites, OH 

groups, are populated very quickly under ALD conditions. After the OH sites are occupied, 

CoAMD must react at previously adsorbed Co or less-reactive siloxane bridges. Due to its 

lower OH surface concentration, CDO exhibits slower initial Co accumulateion than SiO2. 
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Extended Co depositions, reported elsewhere, confirm that Co continues to nucleate at Co 

islands and O surface species. 

1.5 CONCLUSIONS 

The interactions of CoAMD on Cu, SiO2 and CDO were investigated by XPS.  Co 

from CoAMD accumulates preferentially on Cu metal substrates via a complex dissociative 

chemisorption mechanism. Accumulation of Co on Cu from CoAMD is ALD-like and self-

limiting; the desorption of chemisorbed AMD ligand fragments is completed during 

exposure to a reducing coreactant like H2. CoAMD interactions with SiO2 and CDO 

surfaces appear strongest with exposed OH moieties as indicated by faster initial 

accumulation of CoAMD on SiO2 than on CDO but may also deposit on strained siloxane 

surface species.  CoAMD readily deposits at existing, unoccupied Co surface species. Both 

SiO2 and CDO favored the formation of oxidized Co species and some partially reacted 

CoAMD precursor. The inherent preference of CoAMD to deposit on transition metals like 

Cu versus dielectric surfaces bodes well for applications in selective ALD. 
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Chapter 2: Interdiffusion and diffusive stabilization of cobalt by copper 

during atomic layer deposition from bis(N-tert-butyl-N’-

ethylpropionamidinato) cobalt(II) 

2.1 INTRODUCTION 

Known generally to exhibit good adhesion on Cu surfaces, Co and Co alloy films 

have recently been applied as Cu capping layers to mitigate premature microelectronic 

device failure due to Cu interconnect electromigration (EM) [1–3]. Decreasing 

microelectronic device dimensions continue to exacerbate the EM induced self-diffusion 

of Cu. Therefore, reducing Cu EM-induced failures in back end of line (BEOL) 

interconnects without increasing resistance-capacitive (RC) delay is an ongoing concern 

[4]. Cu alloys and EM-resistant metal capping layers are possible solutions to the EM 

challenge; however, capping is preferred to alloying due to resistivity increases associated 

with alloying Cu interconnects [5]. Co/Cu layers have been of great interest for many years 

for their applications in magnetic and microelectronic materials. The Co/Cu interface and 

structure has garnered particular interest and efforts have demonstrated lattice matching of 

Co on Cu (111) surfaces [6,7]. Further, Co capping layers have been demonstrated to 

reduce Cu EM more effectively than silicidation of the Cu surface. Co caps result in less 

resistance-capacitance increase in the metallization structure than SiCN caps and adhere 

better to Cu [1–3,5,8].  Currently selective, electrolessly deposited CoWP is a benchmark 

Cu EM barrier [1,3,5]. Nevertheless, contamination of the adjacent dielectric materials 

from the plating bath is a concern and much interest exists to develop alternative deposition 

methods [9]. Chemical vapor deposition (CVD) and atomic layer deposition (ALD) 

processes are of particular interest due to their ability to deposit ultrathin and conformal 

films and their potential application for surface selective deposition of barriers [10,11]. 

Previous work from Lim et al. demonstrated the deposition of Cu, Ni, and Co 

transition metals from a series of chelating amidinate precursors under ALD and CVD 
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conditions [12]. Bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) (CoAMD) is a 

proven ALD precursor for Co deposition that is amenable to carrier-gas-based vapor 

delivery and can be deposited using reducing agents like H2 or NH3 rather than O2 [13]. 

Avoiding oxidation is important for BEOL components, especially the Cu metallization 

lines. We have separately demonstrated that CoAMD exhibits self-limiting adsorption on 

Cu and a preference to deposit on Cu rather than on SiO2 or carbon-doped oxides that might 

comprise the BEOL interlayer dielectric materials [14]. The inherent selectivity of CoAMD 

for Cu over Si-based dielectric materials makes it an interesting candidate for selective-

ALD processes.  

In this study, we deposit sub-20 nm Co films by ALD from CoAMD on Cu to better 

understand the Co/Cu interface and Co film properties. Understanding the properties of 

ultrathin films is important for meeting the ITRS roadmap goal of 0.5 nm barrier films by 

2025 [5]. In situ X-ray photoelectron spectroscopy (XPS) and ex situ depth profiling time 

of flight secondary ion mass spectrometry (ToF-SIMS) measurements reveal film 

composition. Ex situ characterization by scanning electron microscopy (SEM), cross-

sectional transmission electron microscopy (TEM), and atomic force microscopy (AFM) 

provide structure and surface morphology of the films. 

 

2.2 EXPERIMENTAL SECTION 

AccuDep CoAMD was acquired from DOW and Cu substrates (300 nm PVD on 

Si) were provided by Intel. Co films were deposited by ALD in an in-house constructed 

vacuum system with in situ XPS. The vacuum system comprises a load lock and an ALD 

chamber with a base pressure of ~ 1×10-7 Torr and in situ transfer to a PHI model 1600 

XPS for chemical analysis (base pressure ~1×10-9 Torr). System gases include Ar and H2 

(99.999 %, Matheson) each used with 50 sccm flow rate. Ar is used as the precursor carrier 
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gas and inert sweep. Prior to deposition, the Cu substrates were cleaned by rinsing in order 

with acetone, ethanol, and deionized water (18 MΩ) and then rinsed in a 35 °C bath of 

glacial acetic acid (99.9%, Fisher Scientific) for one min to remove surface oxide. The 

wafers were blown dry with pressurized Ar and loaded immediately into the vacuum 

system load lock. A typical ALD cycle comprises a 2-s CoAMD exposure and 15-s H2 

exposure separated by 15-s purges with Ar. Films are deposited at 265 °C with a precursor 

temperature of 80 °C.  

Time of flight secondary ion mass spectrometry (ToF-SIMS) was employed to 

identify and spatially locate the species of interest throughout the films. Known as a highly 

elemental- and surface-sensitive analytical technique, ToF-SIMS comprises directing a 

high-energy but very low-intensity primary-ion beam onto a sample surface and analyzing 

the resulting ionized, ejected material (secondary ions, SI) by a time-of-flight technique. A 

TOF.SIMS 5 instrument (ION-TOF GmbH, 2010) was used for data acquisition. For depth-

profiling chemical analysis of the Co films and Co/Cu interfaces, a short-pulsed (18 ns) 

primary ion beam (Bi1
+, 30 keV energy, ~3.1 pA measured sample current) was typically 

raster-scanned over a 100×100 µm2 area centered within a 250×250 µm2 regressing area 

that was previously sputtered by a secondary-ion beam (Cs+, 500 eV energy, ~53 nA 

measured sample current). The depth profiles were acquired at a base pressure of about 

7.5×10-10 Torr in non-interlaced mode (i.e., sequential data acquisition and sputtering) and 

with the primary-ion beam set in high current bunched mode. All detected SI had negative 

polarity. The sputtering rates for Co and Cu were calculated as 1.2 Å/s and 2 Å/s, 

respectively, based on the TEM determined thicknesses and the corresponding time to 

sputter through the respective film layers. For converting the sputtering time, 𝑡, into a 

depth, 𝑧, a rate model assuming the instantaneous sputtering rate, 𝑅(𝑡), at the interface of 
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two films (referred to herein as 𝐴 and 𝐵) as a linear combination of the individual sputtering 

rates was used [15]: 

 

                𝑅(𝑡) = |
𝐼(𝑡)−𝐼𝐵

𝐼𝐴−𝐼𝐵
| 𝑅𝐴 + |

𝐼(𝑡)−𝐼𝐴

𝐼𝐴−𝐼𝐵
| 𝑅𝐵 = 𝑧̇                                       (1)  

where 𝐼(𝑡) is the normalized secondary ion yield of a marker representative to one of the 

two films forming the interface, 𝐼𝐴 and 𝐼𝐵 are the values of 𝐼(𝑡) in the film 𝐴 and 𝐵, 

respectively and 𝑅𝐴 and 𝑅𝐵 are the individual sputtering rates of the films 𝐴 and 𝐵, 

respectively. The linear coefficients are essentially proportional to the molar fractions of 

the two materials at the sputtering time, 𝑡 [16]. Following naturally, the sputtering depth, 

𝑧(𝑡) corresponding to a certain sputtering time, 𝑡, reads: 

 

                            𝑧(𝑡) = ∫ 𝑑𝑡′𝑅(𝑡′)
𝑡

𝑡0
                                                        (2) 

where 𝑡0 is the initial sputtering time. Application of this model on the Cu2 marker for 

Co/Cu interfaces leads to the conversion 𝑡 → 𝑧(𝑡). The Co2 and Cu2 secondary ions were 

chosen as markers for the Co and Cu films, respectively, to avoid the intrinsic artifacts Co 

and Cu signals have due to residuals originating from CoO and CuO, respectively.  

To measure the atomic mixing between the Cu substrate and the Co overlayer the 

so called mixing-roughness-information (MRI) model was used [17]. This model states 

that (i) the real interface is a convolution between the interface roughness (roughness) and 

atomic mixing due to preparation and (ii) the measured interface in a depth profile is a 

convolution between the real interface, atomic mixing and roughness induced by 

sputtering, and information depth (i.e., depth of origin for the secondary ions). All these 

factors are represented by functions of depth whose lengths are essentially defined by their 

full width at half maximum (FWHM). The measured interface length is simply the sum in 

quadrature of all the factors that are convoluted. The atomic mixing due to sputtering and 
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the information depth are usually in the range of a few atomic layers and thus negligible 

with respect to the actual atomic mixing length. This is provided by the low energy (Cs+, 

500 eV) of the sputtering ion beam and the very low sputtering current of the probing beam 

(Bi1
+, ~3 pA). Further, as the main interest is in the atomic mixing at the interface, the 

sputtering-induced interfacial roughness can be added to the intrinsic interfacial roughness 

originating from sample preparation. For inorganic (metallic) samples it was shown that 

the total roughness at the interface is an average of the roughness of the two individual 

films (unpublished). Therefore, the atomic mixing length at the interface, (Δ𝑧)mix, is given 

by: 

                                 (Δ𝑧)mix
2 = (Δ𝑧)meas

2 − (Δ𝑧)corr
2                                            (3) 

where (Δ𝑧)meas and (Δ𝑧)corr are the measured interface length (as provided by the depth 

profile) and the RMS roughness of the interface. In addition, the measured interface length 

is considered to be the distance between the normalized yields of two markers 

representative of the films that make up the interface taken at the 10% level of their 

maximum. A word of caution needs to be expressed here: atomic mixing and roughness 

cannot be completely disentangled. Within the MRI model one needs to define clearly the 

roughness such that it is completely separated from atomic mixing. In our case, we define 

the roughness as the RMS roughness given by a tool that can provide surface topography 

with nanometer resolution (i.e., AFM). 

2.3 RESULTS AND DISCUSSION 

Figure 2.1 depicts plan-view SEM images of Cu surfaces after 250 to 3000 ALD 

cycles (~1 to 16 nm films assuming conformal coverage and extrapolating from cross-

sectional TEM images of thicker 1000- and 3000-cycle films in Figure 2.2). The SEM 

images illustrate that minimal 3D faceting is evident after 250 cycles (Figure 2.2A). By 

500 cycles (2.3 nm Co), 3D faceting of the Co surface is apparent in SEM and is effectively 
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unchanged up to 1000 cycles (4.5 nm, Figures 2.2B and 2.2C, respectively). From 250 to 

1000 cycles, the relative Co:Cu atomic ratio detected in XPS increases from 3.3 to 26.5 

and doubles from 500 to 1000 ALD cycles and again from 1000 to 3000 cycles giving a 

final Co:Cu atomic ratio of 49.8. Although the surface faceting is indistinguishable 

between 500 and 1000 cycles, the increasing Co:Cu ratio suggests that the film thickens or 

increases in density with little surface modification. By 3000 cycles, the Co film surface 

appears polygranular and multifaceted (Figure 2.2D). 

 

 

Figure 2.1. Plan-view SEM images of (A) 250, (B) 500, (C) 1000, and (D) 3000 cycle 

ALD depositions of CoAMD on Cu at 265 °C. The calibrated Co:Cu atomic 

ratio detected in XPS is listed in the upper right-hand corner of each figure. 

Figure 2.2 presents AFM and cross-sectional TEM data from 1000- and 3000-cycle 

Co films. The TEM images indicate that the Co films are continuous and polygranular. The 
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1000- and 3000-cycle films, 4.5 and 16 nm thick, exhibit RMS roughnesses of 1.9 and 4.8 

nm, respectively. 

 

 

Figure 2.2. Cross-sectional TEM images and surface topography renderings from AFM 

of (A) 1000 cycle and (B) 3000 cycle ALD of CoAMD on Cu at 265 °C.  

Figure 2.3 presents normalized ToF-SIMS spectra of the 1000- and 3000-cycle 

films. From Figures 2.3A and 2.3B it is apparent that for both films a finite amount of Cu 

is segregated to the films’ free surfaces and that Cu is detected throughout the Co films as 

indicated by the black CuO- trace. A Co rich layer is observed preceding the Co/Cu mixing 

region after which only bulk Cu is detected. For the 3000-cycle film, a local minimum of 

Cu concentration occurs between the surface-segregated Cu and the Cu that diffused into 

the Co film between 8 and 12 nm depth. The extent of the Co/Cu intermixing region is 

indicated in Figures 2.3A and 2.3B and is 3.6 nm for the 1000-cycle film and 10.2 nm for 

the 3000-cycle film as determined by the MRI model (supporting information). Figures 

2.3C and 2.3D present more comprehensive ToF-SIMS profiles. Simplified schematics of 
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the relevant species in order of appearance during depth profiling are depicted in the insets. 

The insets in Figures 2.3C and 2.3D describe the sample as measured after storage in air 

before ex situ analysis by ToF-SIMS. Oxides of the film elements are due to ex situ storage 

before ToF-SIMS depth profiling. In situ XP spectra of the as deposited films show no O 

contamination of Co (Figure 2.4). 

 

 

Figure 2.3. ToF-SIMS depth profiles of 1000 cyc Co film: (A) and (C), and 3000 cycle 

Co film: (B) and (D). Adv. Matl. refers to adventitious material accumulated 

on the substrate during sample storage and after air transfer for analysis and 

was not present in situ following deposition. 
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Figure 2.4. As deposited Co (top) and Cu (bottom) 2p X-ray photoelectron spectra from a 

16 nm (3000 ALD cycle from CoAMD) Co film on Cu substrate. The 

reduced Co0 and Cu0 positions are depicted by arrows at the 2p3/2 peaks, 

778.3 eV and 932.7 eV, respectively. Some Cu signal is still apparent in 

XPS after Co deposition as indicated by the Cu 2p inset. 

Figure 2.5 is a schematic representation of Co film growth from CoAMD on Cu. 

The as-deposited Co films generally comprise a Co-rich, polycrystalline layer with a thin 

Cu surface coating and are free from oxidation. Co film growth on Cu proceeds first by the 

formation of a 2D wetting film and intermixing layer of Co and Cu. Cu is observed to 

segregate to the surface of the accumulating Co film in order to minimize the free surface 

energy [18]. The surfactant-like behavior that maintains Cu concentration at the uppermost 

layer of the Co film as it deposits suggests that Cu may stabilize the first several monolayers 

of Co leading to a wetting film [3]. Venables previously described a phenomenon by which 

higher energy overlayers burrow into lower energy surfaces and become coated in a thin 
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layer of the lower energy substrate [19]. This occurs especially during the deposition of 

magnetic materials on more noble metal substrates [16,17]. Moreover, Li and Tonner have 

demonstrated that annealing Co fcc films grown epitaxially on Cu (001) to 400 °C induced 

a thin layer of Cu to migrate to the Co free surface [21]. They suggested that Cu atoms 

undergo an inversion process by which Cu substrate atoms segregated to the surface of the 

Co film to act as a stabilizing layer for the mismatched Co film. 

 

 

Figure 2.5. Growth mode of Co films on Cu by ALD from CoAMD. 

Once the Co-rich layer is thick enough, 3D faceting of the Co begins. The apparent 

transition from 2D to 3D growth may reflect preferential deposition at grains of a specific 

crystallographic orientation or reconciliation of heteroepitaxial strain between the Co, for 

which bulk films prepared below 420 - 450 °C are generally hcp, and Cu for which an fcc 

structure is more stable [6,9,19,20]. 
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Figure 2.6. XRD data from Co films on Cu. (A) depicts the raw signal for a blank Cu 

substrate, 300 nm on Si, a 5 nm, 1000 ALD cycle Co film from CoAMD 

deposited at Ts: 265 °C, and a molecular beam epitaxy-deposited Co film on 

the same Cu substrate held at Ts: 265 °C. (B) depicts the inset from (A), 

boxed in red, and highlights the relevant XRD signals for the Co films. The 

fcc (111) signal may include information from Cu and Co from which the 

Co signal cannot be isolated. Further, hcp (100) and hcp (101) Co signals 

are not observed after ALD or MBE but are often indiscernible from the 

signal noise in sub-40 nm films [24]. A faint fcc (200) signal is apparent for 

the MBE sample. 

The crystalline structure of the Co is likely a mixture of fcc and hcp Co. X-ray 

diffraction studies revealed strong fcc (111) signals for blank Cu wafers and 4.5 nm Co/Cu 

film samples (Figure 2.6). However, distinct hcp signals were indiscernible from the signal 
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noise if present and the Co contribution to the fcc signal is inseparable from the Cu 

contribution due to the magnitude of the signal. A thicker (~25 nm) Co film was deposited 

by molecular beam epitaxy but revealed only a very weak fcc (200) signal in additional to 

those observed on blank Cu. Efforts by Deo et al. suggest that even very thick Co films (~ 

200 nm) exhibit small XRD signals and that data from Co films less than 40 nm thick are 

clouded by noise [24]. It is, therefore, reasonable to expect that hcp signals from the 4.5 

nm and 25 nm films are too small to observe. Nevertheless, evidence of pseudoepitaxial 

Co/Cu layers in superlattices formed by fcc/hcp stacking faults fit well with our Co film 

behavior [6,7].  

2.4 CONCLUSIONS 

In summary, Co deposition by ALD from CoAMD proceeds first by a metastable 

2D Co-rich layer that grows on the Cu substrate until enough Co is deposited that the film 

begins to roughen and grow three dimensionally. The Co-rich layer remains while Co 

continues to accumulate as indicated by ToF-SIMS depth profiling. Further, a surfactant-

like Cu layer is apparent on the surface of the Co up to at least 16 nm film thicknesses 

suggesting that the Cu plays a role in the Co deposition and may stabilize the Co film 

especially at the early stages of film deposition. The Cu surface layer may improve Co 

lattice matching as pseudoepitaxial fcc and hcp Co grains can be expected on the Cu 

surface. Finally, highly mobile Cu and Co at the film interface leads to significant 

intermixing of the species during Co deposition even at 265 °C as well as grain boundary 

diffusion of Cu through the Co film.  
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Chapter 3: Selectivity-enhanced Atomic Layer Deposition of Co on Cu 

relative to SiO2 and Carbon Doped Oxide Dielectrics 

3.1 INTRODUCTION 

The scaling of microelectronics necessitates further mitigation of Cu 

electromigration (EM). Cu EM in back end of line (BEOL) Cu interconnects leads to 

premature device failure and is exacerbated by higher current densities in the increasingly 

smaller metallization lines [1,2]. Co metal caps have proven effective at inhibiting Cu EM 

[1,3]. While Co can be deposited by a variety of processes including physical vapor 

deposition (PVD) and electroless deposition, vapor delivery processes, particularly area-

selective atomic layer deposition (AS-ALD), demonstrate great promise. AS-ALD 

improves on physical deposition methods by depositing ultrathin, highly conformal films 

while avoiding costly photolithography patterning processes. Avoiding extensive post-

processing for PVD films and removing contamination from the electroless deposition bath 

also allows for greater wafer throughput.  

Good-quality AS-ALD for BEOL materials requires highly controllable, reductant-

activated ALD precursors with adequate vapor pressure. The precursor should have a wide 

ALD temperature range and little CVD behavior to mitigate deposition on the adjacent 

interlayer dielectric (ILD). Furthermore, high-temperature ALD processes should be 

avoided to minimize the thermal budget of the device. It has been demonstrated that 

amidinate-based Co complexes are effective ALD precursors using either H2 or NH3 

coreactant. In particular, Bis(N,N’-diisopropylacetamidinato)cobalt(II) (Co-iPrAMD) and 

bis(N-tert-butyl-N’-ethylpropionamidinato) cobalt(II) (CoAMD) are commercially 

available from Dow and have been used for ALD and CVD processes [1–4]. However, 

appreciable deposition rates for Co-iPrAMD have not been reported for temperatures less 
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than 300 °C [8]. We have previously demonstrated self-limiting ALD of Co on Cu from 

CoAMD using H2 as the coreactant [9].  

To achieve complete selectivity, it is also necessary to passivate the ILD surfaces. 

In particular, O-containing surface moieties, e.g., OH terminations, have been 

demonstrated as favorable chemisorption sites for many ALD precursors, including Co 

amidinates [10]. Self-assembled monolayers and liquid passivant treatments of ILD 

materials are demonstrated in the literature however vapor-delivered passivants offer 

simpler scalability [7, 8]. Silane-based passivant chemistries are widely demonstrated on 

SiO2 surfaces and favor vapor delivery [13]. The effect of these passivants on low-k 

dielectrics like carbon-doped oxide, however, is not well known. CDO shares the Si-O 

backbone of SiO2 but also comprises a large amount of C. Many surface terminations are 

–CH3 or –H rather than O containing moieties like –OH. Further, depending on the surface 

pretreatment, Si from the SiO2 backbone may be terminated by -H in the case of acid etch, 

-OH for basic etches such as tetra-methyl ammonium hydroxide, or –OOH for carboxylic 

acid treatments. The surface terminations of CDO and SiO2 determine what passivation 

strategies will be most effective. In this work, CDO and SiO2 are cleaned to yield maximum 

–OH termination. Therefore, passivants that target –OH groups, Trimethyl chlorosilane 

(TMCS), hexamethyl disilizane (HMDS), and BDMAS, were evaluated for their 

passivation of CDO and SiO2 surfaces. This study demonstrates dielectric-surface-

passivation-enhanced area-selective ALD of Co capping layers from CoAMD on BEOL 

Cu interconnects. 

3.2 EXPERIMENTAL METHODS 

Initial passivation studies were performed on blanket Cu (300 nm PVD on Si), CDO 

(k ~ 2.6), and SiO2 (6kA thermal oxide) that were provided by Intel. Growths were also 

performed on Intel provided patterned wafers for cross-sectional transmission electron 



 47 

microscopy (TEM). AccuDep® CoAMD was supplied by Dow Chemical. Coreactant H2 

and Ar sweep gases were provided by Matheson (99.999%). The as-received substrates 

were cleaned by rinsing in order with acetone, ethanol (Fisher ACS grade), and deionized 

(DI) water (18MΩ). Following the rinse, Cu substrates were cleaned of the majority of the 

surface oxide by one min soaks in 35 °C glacial acetic acid (99.9%, Fisher Scientific) [14]. 

SiO2 samples were placed in a piranha bath (6:2:1 - H2SO4 (Fisher ACS plus) : H2O2 (Fisher 

30%) : DI H2O) for 15 min followed by a 10 s HF (2%) etch. CDO was cleaned in a 1:1:1 

tetramethylammoniumhydroxide (Acros Organics 25% in water) : ethylene glycol (Fisher) 

: DI H2O bath for 2 min at 50 °C. 

Cleaned samples were transferred via load lock into a previously described, in-

house built ALD system [Tuo]. The ALD system comprises in situ transfer between a hot-

walled ALD growth chamber, a characterization chamber, a chemical titration chamber, 

and a thermal evaporation source for metals deposition. The characterization chamber 

houses an X-ray photoelectron spectrometer (PHI model 1600) with Ar+ sputtering 

capabilities.  

Co depositions were performed in the ALD chamber. In the ALD chamber, 

substrates are held perpendicularly to the flow of precursor gases carried by an Ar sweep. 

Substrate temperature is measured by K-type thermocouple just below the substrate. ALD 

operating pressure is 260mTorr. A typical ALD cycle comprises alternating 2s CoAMD 

exposures, corresponding to ~7×105 L (1L = 1×10-6 torr×s), and 15 s H2 coreactant 

exposures (1.0×107 L) separated by 15 s Ar purges (5.4×106 L). ALD cycling was 

consistent for all Co deposition experiments and only the number of cycles and, in the case 

of the temperature dependence tests, temperature were varied. 

Surface passivations were performed in situ in the passivation chamber. The 

passivation chamber is a hot-wall chamber controlled by constant power input and sample 
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temperatures are measured on the stage immediately below the sample holder. Substrate 

surface temperature differs by < 5 °C from the measured temperature, typically 50 °C 

unless otherwise specified. Passivations were performed by delivering a set pressure of 

passivant vapor, determined by the vapor pressure of the passivant at its delivery 

temperature, for a set amount of time and is reported as Torr-s (the product of the pressure 

and exposure time). For exposures less than 50 kTorr-s, typical passivation pressures were 

~ 8 Torr. For extended exposures, greater than or equal to 50 kTorr-s, pressures of ~60 

Torr were used. During extended exposures a moderate substrate temperature increase of 

less than 10 °C occurred as the heating was power, not temperature controlled. After a 

passivation exposure the chamber was evacuated and the sample transferred to the ALD 

chamber in which it was annealed to a substrate surface temperature of 265 °C under 50 

sccm H2 and 50 sccm Ar flow to clear adsorbed surface species. Most samples were 

transferred in situ for X-ray photoelectron spectroscopy (XPS) measurements after 

annealing but before Co deposition. Control studies indicated that this transfer to and from 

the XPS before Co deposition did not affect the Co accumulation after passivation.   

3.3 RESULTS AND DISCUSSION 

SiO2 and CDO substrate surfaces share a backbone network of Si and O. While the 

C content of CDO reduces the amount of surface O sites, because O and OH surfaces 

species are the primary reactive surface species, similar passivation methods may be 

employed for SiO2 and CDO [10,15]. In this work, the surface OH species that result from 

substrate cleaning are targeted for chemical passivation. The freshly cleaned samples are 

exposed to a silane-based passivant before undergoing ALD with CoAMD and H2. The 

passivated, post-ALD surfaces are evaluated for improvements in selectivity by in situ 

XPS. Figure 3.1 provides a schematic for the general passivation methodology of this work. 
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Figure 3.1. Schematic for OH targeting passivation scheme. 

Preliminary passivant evaluations were performed to establish whether the 

passivation inhibited nucleation during the first few ALD cycles. Substrates were exposed 

the BDMAS, HMDS, or TMCS and then annealed in a reducing H2 atmosphere to remove 

physisorbed passivant and clear any remaining products of the passivation reaction. 

Substrates were then exposed to three ALD cycles of CoAMD and H2 at 265 °C. The Co 

accumulated on each substrate is normalized to the amount of Co present after three ALD 

cycles on the respective, untreated substrates and is presented in Figure 3.2. BDMAS and 

HMDS exposure decreased Co accumulation on all three substrates for 3 kTorr-s exposures 

at 50 °C. HMDS, in particular, negatively impacted Co accumulation on the Cu substrate. 

50 Torr-s TMCS exposure at 50 °C decreased accumulation on SiO2 and CDO by 45% and 

80%, respectively. Accumulation on Cu was only reduced by 25% relative to untreated Cu. 

In all cases, the total exposure time for HMDS and BDMAS exceeded TMCS by two orders 

of magnitude to achieve the same Cu to CDO selectivity. Further, the data indicate that 

while HMDS was most effective at inhibiting nucleation on SiO2 relative to Cu, TMCS 

was the most effective passivant for CDO. While SiO2 and CDO both exhibit surface OH 

species and siloxane bridges, it is apparent that their interactions with the passivants differ. 

From this test, it was determined that TMCS was the most likely candidate to enhance 
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CoAMD selectivity for Cu over the CDO substrates. BDMAS was eliminated entirely as it 

was the least effective passivant in the preliminary tests.  

 

 

Figure 3.2. XPS measured Co atomic percentages accumulated after 3×2s adsorption of 

CoAMD at 265 °C on passivant treated Cu, SiO2, and CDO substrates. Co 

accumulation is normalized for each substrate relative to their respective Co 

accumulation with no surface passivation. Passivant treatments are listed in 

the figure legend. 

To evaluate the efficacy of the passivants under thin-film deposition conditions, 

250 cycles of CoAMD was deposited at 265 °C on each substrate after passivation (Figure 

3.3). Under these conditions, 1 kTorr-s HMDS exposure proved ineffective and did not 

reduce Co accumulation at all on CDO or Cu, although accumulation on SiO2 was reduced 

by 25%. The 3 kTorr-s BDMAS exposure proved more effective and reduced accumulation 

on CDO, SiO2, and Cu by 48%, 85%, and 25%, respectively. In this set of experiments, 

TMCS was again the best at improving selectivity for Cu over CDO. Accumulation after 

50 Torr-s TMCS exposure at 50 °C was reduced by 60% on CDO and 25% on Cu.  At these 

conditions, TMCS exposure did not reduce accumulation on SiO2 significantly.  
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Figure 3.3. Co accumulation after 250 ALD-cycle deposition of CoAMD at 265 °C on 

passivant treated Cu, SiO2, and CDO substrates. Co accumulation is 

normalized for each substrate relative to their respective Co accumulation 

with no surface passivation. Passivant treatments are listed in the figure 

legend. 

To enable selectivity it is also important to avoid thermal decomposition of the 

precursor on the substrate, i.e., employ a temperature range that maximizes ALD behavior. 

Co 2p XP spectra indicate that when inert polyimide and Teflon substrates underwent 250 

cycle exposures to CoAMD at 265 °C Co accumulated appreciably on both substrates 

(Figure 3.4). Although ALD of this CoAMD has been generally reported at temperatures 

exceeding 250 °C [4], it is apparent that some thermal decomposition of CoAMD occurs 
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Figure 3.4. Co 2p XP spectra of Co accumulation after 250 ALD-cycle deposition of 

CoAMD at 265 °C on inert (A) polyimide and (B) Teflon surfaces. 

at elevated temperatures. Further, once Co is nucleated on CDO, CoAMD will continue to 

dissociate on Co surface clusters. To maintain selectivity, the initial nucleation of Co on 

CDO must be avoided. In order to leverage the inherent selective of CoAMD for Cu and 

avoid Co deposition on CDO from thermal decomposition, 50 ALD-cycle depositions were 

performed on CDO and Cu for temperatures between 165 and 265 °C were performed to 

evaluate the optimum deposition temperature for enhanced surface selectivity (Figure 3.5).  

For Cu, Co accumulation is nearly the same from 165 to 265 °C, 12-14 atomic percent with 

~ 1% standard deviation. Co accumulation on CDO, however, is highly temperature 

dependent above 190 °C. Decreasing the deposition temperature from 265 °C to 165 °C 

decreased Co accumulation on CDO after 50 cycles by two times. Moreover, at 265 °C, 

Co preferentially deposits three to one on Cu versus CDO. At 165 °C, the preference for 

Cu becomes nearly five to one before any passivation. Therefore, to fully leverage the 

inherent surface selectivity of CoAMD, ALD may be performed at temperatures as low as 
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165 °C. It is important to note that reducing the temperature also affects the desorption 

from or subsequent reaction of AMD ligands on the substrate surfaces. 

  

 

Figure 3.5. XPS derived Co atomic percentage accumulation on untreated Cu and CDO 

after 50 ALD cycles of CoAMD with H2 at various temperatures. 

 

Many precursors already suffer from relatively high C incorporation and we have 

previously reported Co films deposited on Cu from CoAMD containing C atomic 

concentrations around 18% [9]. 

By leveraging the disparity in deposition rate of Co on Cu relative to CDO and 

employing OH targeting passivation chemistries, the chemical surface selectivity of 

CoAMD can be increased significantly. Specifically, for depositions at 165 °C 
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pretreatments of 50 and 500 kTorr-s of TMCS at 50 °C (not shown) decreased the relative 

atomic percent of Co from 2.46% on untreated CDO to 1% and 0.4%, respectively. On Cu, 

Co deposition was unaffected by the passivation treatment. For 500 kTorr-s TMCS 

exposure a 30:1 deposition preference of CoAMD for Cu versus CDO was observed for 50 

cycle ALD depositions.  

Patterned line-spaced wafers (LSW) from Intel were used to test the effects of low 

temperature ALD and TMCS passivation for selective Co deposition on Cu interconnect 

lines. To remove surface oxide on the Cu lines, LSWs were dipped once in glacial acetic 

acid (1 min at 35 °C). Cross-sectional TEM images were obtained for 500 and 1000 cycle 

Co films (2.4 and 3 nm thick, respectively) deposited at 165 °C after 50 kTorr-s TMCS 

passivation at 50 °C (Figures 3.6 A and B, respectively). A thin, continuous Co film is 

discernible on each Cu interconnect while no Co is apparent on the Cu-ILD barrier. For the 

500-cycle film, a small amount of discontinuous Co is visible on the ILD. Co 

contamination on the 1000 cycle film ILD is more pronounced. In separate experiments 

(not shown) CDO blanket substrates were exposed to the same acetic acid treatment and 

50 ALD cycles of CoAMD at 165 °C. After acetic acid treatment, the blanket CDO wafers 

exhibited greater Co accumulation than TMAH cleaned or uncleaned CDO substrates. 

Further, passivating acetic acid treated CDO with 50 kTorr-s TMCS did reduce Co 

accumulation but the Co atomic concentration remained greater than 2.45% expected on 

CDO with no treatment. Therefore, the Co accumulation on the ILD in Figure 3.6 is greater 

than would be expected from patterned metallization layers that are processed in situ 

without the necessary cleaning steps performed in this work to remove oxidized Cu surface 

layers.   
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Figure 3.6. Cross-sectional TEM images of Co accumulation on TMCS (50 kTorr-s at 50 

°C) treated, acetic acid etched LSW substrates. (A) 500 cycle and (B) 1000 

cycle Co ALD at 165 °C. 

3.4 CONCLUSIONS 

In summary, enhanced surface selectivity for Co capping layers can be achieved 

using a surface selecting precursor, CoAMD, and by leveraging low-temperature ALD and 

surface chemical passivation. This scheme for selectivity is all vapor-delivery based, 

making it highly scalable. Further, given pristine samples with no air transfer, the 

selectivity of CoAMD for Cu over passivated CDO is expected to increase and complete 

inhibition of nucleation on the ILD should be possible.   
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Chapter 4: Summary 

4.1 CONCLUSIONS 

The interactions of CoAMD on Cu, SiO2 and CDO were investigated to support the 

development of area-selective atomic layer deposition (AS-ALD) of Co capping layers on 

Cu interconnects. Adsorption studies demonstrated that Co from CoAMD accumulates 

preferentially on Cu metal substrates via a complex dissociative chemisorption mechanism. 

Accumulation of Co on Cu from CoAMD is ALD-like and self-limited by the slow 

desorption of amidinate ligands and fragments from the Cu surface. Co deposition by ALD 

from CoAMD proceeds first by a metastable 2D Co-rich layer that grows on the Cu 

substrate until enough Co is deposited that the film begins to roughen and grow three 

dimensionally. The Co-rich layer remains while Co continues to accumulate as indicated 

by ToF-SIMS depth profiling. Further, a surfactant-like Cu layer is apparent on the surface 

of the Co up to at least 16 nm film thicknesses suggesting that the lower energy Cu plays 

a role in the Co deposition and may stabilize the Co film especially at the early stages of 

film deposition by surface segregating to reduce the free surface energy. The Cu surface 

layer may improve Co lattice matching as pseudoepitaxial fcc and hcp Co grains can be 

expected on the Cu surface. X-ray diffraction studies revealed strong fcc (111) signals for 

blank Cu wafers and 4.5 nm Co/Cu film samples. However, distinct hcp signals were 

indiscernible from the signal noise and the Co contribution to the fcc signal is inseparable 

from the Cu contribution due to the magnitude of the signal. Finally, highly mobile Cu and 

Co at the film interface leads to significant intermixing of the species during Co deposition 

even at 265 °C as well as grain boundary diffusion of Cu through the Co film. It should be 

mentioned that, as with most CVD and ALD process, finite C and N contaminants were 

incorporated in the Co films especially at lower temperature depositions. While the 

majority of the amidinate fragments are removed during the inert gas sweep and the second 
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half-cycle, some amidinate fragments are incorporated into the subsequent Co film as C 

and N impurities. CoAMD interactions with SiO2 and CDO surfaces appear strongest with 

exposed OH moieties as indicated by the faster initial accumulation of CoAMD on SiO2 

than on CDO during adsorption experiments. CoAMD may also deposit on strained 

siloxane surface species but to a lesser extent given the lower reactivity of strained siloxane 

bridges relative to OH moieties. Both SiO2 and CDO favored the formation of oxidized 

Co2+ and possibly Co3+ species and some partially reacted CoAMD precursor. The shakeup 

signals in the Co 2p X-ray photoelectron spectra are a strong indication of paramagnetic 

Co2+. The inherent preference of CoAMD to deposit on transition metals like Cu versus 

dielectric surfaces bodes well for applications in selective ALD.  Because CoAMD readily 

deposits at existing, unoccupied Co surface sites, it is critical to fully passivate the 

dielectric surfaces to eliminate Co accumulation on CDO during film growth. Enhanced 

surface selectivity for Co capping layers can be achieved using CoAMD and by leveraging 

low-temperature ALD with dielectric-surface chemical passivation. By reducing the 

deposition temperature from 265 °C to 165 °C the preference for Co accumulation on Cu 

versus CDO improved from 2.5:1 to 5:1 by atomic percent. Extended trimethylchlorosilane 

(TMCS) exposures were the most effective to produce surface selectivity for Co deposition 

on Cu rather than on CDO.  For a 50 cycle deposition at 165 °C, Co accumulated selectively 

on Cu 30:1 versus CDO after a 500 kTorr-s TMCS at 50 °C. 

4.2 RECOMMENDATIONS FOR FUTURE WORK 

Previous efforts have demonstrated that amorphous metal caps resist cross-barrier 

diffusion better than polycrystalline films. Electroless and CVD or ALD deposited CoWP 

is amorphous depending primarily on the concentration of P. W may also serve to fill grain 

boundaries of the polygranular Co films decreasing susceptibility to grain-boundary 

diffusion. The selectivity-enhanced deposition of Co from CoAMD presented in this 
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research would benefit from investigations that incorporate ALD with a W amidinate like 

bis(tert-butylimino)bis(dimethylamino) tungsten (W-AMD). CVD and ALD of Co(W) has 

been demonstrated using CoAMD and W-AMD with NH3 at 350-400 °C by Shimizu, et al. 

[1,2]. Further, Henderson et al. demonstrated that amorphous Co(P) films could be 

prepared under CVD conditions using trimethylphosphine (TMP) as the P source [3]. To 

extend these systems for applications in selectivity, it would be important to evaluate 

whether low-temperature ALD processes are feasible for the incorporation of P from TMP 

or W from W-AMD while maintaining the selectivity of the CoAMD process. Because the 

deposition of amidinates on transition metals proceeds by similar mechanisms, it is possible 

that the W-AMD process could be made selective by the same passivation treatments 

explored for CoAMD. Further, it would be important to understand how the TMP affects 

the surface reactivity of the CDO surface and, especially, whether the TMP exposure would 

generate new reactive surface species after passivation that might lead to unwanted Co 

accumulation. 

Further, the use of reversible adsorbates like CO has been demonstrated to improve 

thin film growth by encouraging more uniform nucleate formation on hydroxylated 

surfaces [4]. The reversible physisorption of CO might also be used as a passivant by 

maintaining a suitable overpressure of CO throughout the ALD of Co films by blocking 

free-hydroxyl sites at the surface. Moreover, if the dielectric surface passivation was 

incomplete after an exposure to, e.g., TMCS, CO might be used to augment the passivation 

and further improve the selectivity of CoAMD for the Cu surface versus CDO. One caveat 

to this proposal is that CO was also shown to block Ru deposition at exisiting Ru nucleates, 

leading to more uniform nucleation across the oxide surface. For the Co system, even if 

CO inhibited some accumulation at the Co or Cu surface, as long as the relative nucleation 
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rates strongly favored CoAMD deposition on Cu versus CDO, the improvement of 

selectivity would be a success. 

Finally, metals deposition from amidinate precursors has been performed using 

NH3 rather than H2 or with a mixture of the two gases. In these cases, the deposition rates 

are generally reported as being higher with NH3 than with H2 although some H2 is generally 

necessary for film densification and clearing of amidinate ligands and fragments [5–7]. 

Applying NH3 to the selective ALD methods presented herein might increase the Co film 

deposition rate on Cu. It would be important to evaluate whether NH3 is amenable to the 

chemical passivation schemes and, if amorphous Co(P) films are targeted, whether this is 

possible without H2 introduction.       
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SECTION 2: HETEROATOM ENHANCEMENT OF HOPG FOR 

ENHANCED PARTICLE NUCLEATION AND STABILIZATION 

 

Chapter 5: Enhanced Nucleation of Pt Particles on Boron-Treated 

Highly Oriented Pyrolytic Graphite via Chemical Vapor Deposition 

5.1 INTRODUCTION  

In the interest of extending the lifetime of available fossil-based energy resources, 

the development of alternative energies and energy devices is paramount. Fuel cells offer 

one such alternative. In particular, direct methanol fuel cells (DMFCs) offer a unique 

alternative to internal combustion engines and gasoline or diesel generators. Fuel cells are 

particularly appealing because of their higher operating efficiency and low pollutant 

production [1,2]. Nevertheless, DMFCs are still subject to technological and eco- nomic 

challenges. Specifically, there is impetus to reduce the cost and increase the performance 

of DMFC anodes by designing catalyst alloys that efficiently dissociate methanol into 

hydrogen and carbon substituents and by optimizing catalyst dispersion and size 

distribution [3-6]. DMFC anode catalysts are generally Pt or Pt/Ru alloys on carbon black 

or highly oriented pyrolytic graphite (HOPG) supports [5,6]. This study focuses on 

improving metal dispersion on and adhesion to HOPG.  

Generally, HOPG is a poor wetting surface for metals [7,8]. Consequently, metal 

adatoms tend to adhere to defects on the graphite surface. Aktary et al. described the 

nucleation of Pt on HOPG as a nanobead structure along grain-boundary defects at low 

coverage that catalyze adatom adsorption on the basal plane at higher Pt coverage [9]. To 

reduce the cost of DMFC anodes, however, it is necessary to limit the Pt coverage while 

maximizing catalytic surface area. Through careful control of synthesis variables, defect-

mediated growth is an effective means to control Pt particle size and distribution [10-13].  
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Defect-mediated growth is a well-researched method of trap site-controlled 

nucleation and has been widely applied to transition metal growth on carbon substrates [8-

17]. Defects are generated on HOPG by physical and chemical methods. Physical methods 

include ion-beam implantation, etching, and sputtering [7,8,17-21]. Chemical methods 

such as surface oxidation and heteroatom doping have also been demonstrated to generate 

traps on HOPG [14-16,19]. B and N dopants are common choices for HOPG because of 

their similar size to C and their ability to incorporate readily into sp2-hybridized C [3,14-

16]. Electron energy loss spectroscopy studies have investigated the sp2 nature of HOPG 

and demonstrated boron’s solubility in HOPG and its incorporation with sp2-hybridized 

graphite structures [22-24]. It has been further demonstrated that B dopant atom p-orbitals 

interact favorably with Pt d-orbitals to provide trap sites for particle nucleation [3,15,16].  

Previously, Zhou et al. and Acharya et al. used first principles calculations to 

demonstrate that Pt particles can be stabilized on HOPG by chemically modifying the 

HOPG surface with boron and nitrogen [14,16]. This work expands on their efforts by 

exposing HOPG to B using hot-wire chemical vapor deposition (HWCVD) and observing 

Pt nucleation behavior on the resulting surface. B-treatment is achieved by cracking B2D6 

with a hot- wire filament near the HOPG surface. 

5.2 EXPERIMENTAL METHODS 

ZYA grade HOPG substrates (10 mm × 10 mm × 1.5 mm) were obtained from NT-

MDT Co. The substrates were treated by one of three methods before Pt deposition. While 

all three methods include a previously described mechanical cleaving process [25,26], 

AHOPG and BHOPG samples underwent further treatment before synthesis. AHOPG and 

BHOPG samples were treated in a separate apparatus that comprises a furnace, analytical 

chamber, and HWCVD chamber connected through a transfer chamber. The details of the 

HWCVD apparatus have been previously described [27,28]. AHOPG samples were 
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annealed for 15min at 700-720 °C before deposition. BHOPG samples were annealed in 

the same manner as AHOPG samples but subsequently dosed with diborane (B2D6) (1% 

B2D6 in He, Voltaix). Except for the correlation tests between B-exposure and Pt surface 

density, BHOPG samples were exposed to 6.0 L (6.0 × 10-6 Torr × s) B2D6, that led to 7 × 

1014 B/cm2. Ptotal was 2.0 × 10-6 Torr for HWCVD including the He carrier gas. Treated 

AHOPG and BHOPG samples were transferred ex situ from the HWCVD apparatus to the 

deposition chamber (described below) for Pt deposition. The prepared substrates were 

attached to 1 in. diameter stainless steel pucks using Ta foil (Aesar, 99.95%) and mounted 

in the Pt deposition apparatus. The deposition apparatus comprises a cold-wall CVD 

chamber with multiple saturator-based precursor inlets and an analytical chamber housing 

a PHI (Physical Electronics) model 1600 X-ray photoelectron spectroscopy (XPS) system 

[29]. The chambers are connected via an in situ transfer tube, and samples are introduced 

to the chamber through a central load lock. Turbomolecular pumps on the analytical 

chamber and transfer tube maintain low pressure. The CVD chamber vacuum is controlled 

separately by a roughing pump or a diffusion pump depending on the operation. Samples 

in the CVD chamber underwent backside heating from an infrared bulb, and sample 

temperatures were approximated using a thermocouple attached to a fused silica wafer on 

an equivalent steel puck [29]. Sample temperatures are considered accurate to within 10 

°C. In the CVD chamber, the substrate was heated to 193 °C under pressure-controlled 

flow of H2 at 0.340-0.375 Torr. To approach thermal equilibrium under these conditions, 

the substrate was allowed to heat for a minimum of 2h. The trimethyl-

(methylcyclopentadienyl)platinum(IV) (CH3CpPt(CH3)3, Strem Chemicals, 99%) 

precursor was heated to 38 °C. Although many Pt CVD precursors are available, 

CH3CpPt(CH3)3 was chosen for its relative volatility, for simple handling (liquid at room 

temperature), and for the relatively carbon-free films produced using this precursor [30-
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32]. Once thermal equilibrium was achieved, the chamber was evacuated to between 0.020 

and 0.030 Torr and the chamber was sealed from vacuum. During Pt synthesis, H2 flows at 

a rate of 3.0 sccm through a saturator tube of the preheated CH3CpPt(CH3)3.The precursor-

carrying stream flows into the CVD chamber perpendicularly to the substrate. The chamber 

was allowed to pressurize under precursor flow for 5 min and reached a maximum pressure 

of 0.330-0.340 Torr for 5-min syntheses. Pt growth was controlled by substrate temperature 

and synthesis time, and the maximum pressure was a consequence of the carrier gas flow 

rate and the size of the synthesis chamber. Pressure-synthesis correlations were not 

investigated in this work. After 5 min, precursor flow and substrate heating were terminated 

and the chamber was evacuated. The platinized substrate was allowed to cool to <75 °C 

and transferred in situ to the analysis chamber. After XPS analysis, the samples were 

transferred in air to a Zeiss Supra 40 VP scanning electron microscope for SEM imaging. 

Thirty min depositions were performed in the same manner as 5 min depositions except 

that heating was maintained for the full thirty min while pressurization of the chamber 

ceased at 0.750 Torr after 10 min. Thermal stability experiments were performed in a 

Carbolite HST12/400 clam-shell oven. Ramp rates were controlled using built-in PID 

controls and monitored with a separate in situ thermocouple. Samples were heated under 

Ar flow (99.999%, Matheson) of 10-20 sccm. During stability tests, samples were heated 

to 250 °C at 20 °C/min and 5 °C/min to their final temperature. Heating ceased when the 

oven stabilized at the desired temperature. The sample surface was imaged after each sub- 

sequent anneal for variations in average Pt particle size. 

5.3 RESULTS 

XP spectra verified Pt content and C signatures. XPS sensitivity was insufficient to 

detect B species for 6 L B2D6 dosed BHOPG; however, B presence is demonstrated in 

HOPG for a larger, 12 L B2D6 dose (Figure 5.1). Li et al. proposed that B atoms are 
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incorporated into the sp2 C structure of carbon nanotubes and form pyridine-like structures 

to which the Pt adatoms adhere [3]. Figure 5.2 depicts possible B-C structures. While a 

larger variety of B-B-C and B-C structures are possible at higher B concentrations, these 

B-αC and B-C pyridine-like structures proposed by Li et al. and Acharya et al. are possible 

candidates for our BHOPG surfaces [3,15,16]. For such structures, the binding energy of 

Pt on B-doped graphite is proposed to increase by as much as 100% compared with pristine 

graphite (-9.41 kcal/mol, C70H22; -18.76 kcal/mol, C66H12B) [16]. Acharya et al. 

demonstrated with a first-principles graphene model that Pt6 adsorbed on C42B8 with an 

energy of -19.2 kcal/mol versus -2.3 kcal/mol on C50 [15]. 

 

 

Figure 5.1. XP spectra of B 1s signal (BE 189.4 eV) in HOPG that underwent 12 L B2D6 

exposure (––––) and no exposure ( • • • • ) 
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SEM images illustrate Pt growth patterns on HOPG, AHOPG, and BHOPG 

substrates (Figures 5.3 and 5.4). Results indicate that BHOPG substrates provided more 

disperse sites for Pt adatom nucleation. At low Pt coverage, BHOPG samples exhibit nearly 

monodisperse Pt particles, 5 ± 1.5 nm diameter, whereas HOPG and AHOPG substrates 

exhibit preferential growth along grain boundary defects and at isolated kink and island 

defects in the basal plane. Though we observed nucleation along grain boundaries for all 

samples, Figures 5.3 and 5.4 demonstrate that Pt particle nucleation in the basal plane is 

greatest for BHOPG samples (rightmost image in Figures 5.3 and 5.4). HOPG substrates 

(leftmost in Figures 5.3 and 5.4) exhibited some additional basal plane growth at kink and 

ledge defects most likely generated by uneven cleaving and the  

Figure 5.2. Possible structures for B enhanced Pt binding sites where Pt atoms are blue, B 

atoms orange, and C grey. A) represents pyridine-like bond structure and B) 

represents Pt bridging from B to α-C. 



 69 

 

Figure 5.3. SEM of Pt coverage after 5 min Pt synthesis. Left to Right: Pt on HOPG, Pt 

on AHOPG, Pt on BHOPG. 

 

Figure 5.4. SEM of Pt coverage after 30 min Pt synthesis. Left to Right: Pt on HOPG, Pt 

on AHOPG, Pt on BHOPG. 

nanobead catalyzing effect proposed by Aktary et al. [9]. Nanobead growth is evidenced 

by 30 min growth times for Pt on HOPG as depicted in Figure 5.4. This pattern is not 

observed for 5 min growths and minimally for BHOPG samples even at longer growth 

times. BHOPG samples exhibit essentially conformal growth at grain boundary defects and 

in the basal plane as evidenced by conformal Pt particle size across BHOPG substrates 

(rightmost image of Figures 5.3 and 5.4). In contrast, longer growths resulted in smaller Pt 

particles in the basal plane than at grain defects for HOPG and AHOPG substrates, in 

agreement with the nanobead effect [9]. AHOPG samples (middle image of Figures 5.3 

and 5.4) consistently showed little or no nucleation in the basal plane. Ledge and kink 

defects in the basal plane were likely ameliorated by the high 
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Figure 5.5. SEM images from thermal stability study – 30 min Pt deposition on BHOPG. 

Left to Right: unmodified Pt on BHOPG, annealed to 300 °C, annealed to 

500 °C. 

temperature annealing step for AHOPG and BHOPG samples. We infer that traps in the 

BHOPG basal plane are from B dosing and not from cleaving in the majority of the samples 

because kink and ledge defects are readily identified in SEM.  

It is noteworthy that large variations in nucleation were also observed for substrates 

from different stock and, less frequently, after successive cleavings of a single substrate. 

On several occasions, particle density increased by orders of magnitude after cleaving with 

no change to the experimental method. Such outliers were discarded from this study. All 

grouped images are from the same stock of HOPG.  

Thermal stability studies were performed on 30 min deposition samples to evaluate 

the adhesion of Pt particles to BHOPG substrates qualitatively (Figure 5.5). On average, 

particle agglomeration was not observed on samples annealed up to 500 °C. The average 

particle size was 15-20 nm for as-grown samples and samples annealed up to 500 °C. As 

the SEM images do not depict the same surface location and the Zeiss SEM did not have 

an in situ stage heater, the diffusion of Pt particles under higher temperature could not be 

followed and requires further research. The thermal stability of these Pt particles is not 

necessarily indicative of Pt resistance to electromigration for which further investigation is 

necessary.  
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Figure 5.6 illustrates that Pt particle density increases with increasing B2D6 

exposure. For 5 min Pt deposition, particles had an average size of 5 ± 1.5 nm. 

 

Figure 5.6. Particle density vs. boron exposure. 

5.4 DISCUSSION 

While ion-beam implantation and sputtering are effective methods of generating 

defects in the HOPG basal plane, chemical methods have also shown promise and scale 

more easily than electron gun-based processes. Endo et al. demonstrated that annealing 

HOPG in the presence of B4C powder chemically generates trap sites on the HOPG surface 

[33]. In contrast to the B4C powder method, we cracked B2D6 gas using a hot-wire filament 

near the substrate surface. Due to low B sensitivity in XPS, an extended, 12 L B2D6 

exposure was employed to demonstrate that B is delivered to the surface during HWCVD 

(Figure 5.1). Since there is no induction time in cracking B2D6, we infer that B is also 

present for the 6 L exposure used to prepare the BHOPG substrates. The B remaining on 

the HOPG surface after annealing is likely bonded to the sp2 carbon matrix of the HOPG. 

For XP spectra, the B 1s signature appears as a 189 eV peak. A broader B signature is 

apparent from 186 to 192 eV due to BxCy and BxCyOz species present on the substrate that 
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have been previously identified [34-36]. Sample oxidation is a result of multiple ex situ 

transfers during the detection of B. However, after a single transfer from the HWCVD to 

the synthesis chamber, the BHOPG XP spectra exhibited no O peak. Consequently, it is 

believed that BHOPG samples were negligibly oxidized prior to Pt deposition. Moreover, 

since all samples underwent the same air exposure before synthesis, it is reasonable to 

assume that oxide defects are negligible influences on nucleation as compared with B 

contributions. Further investigation is necessary to completely characterize the effect of B 

oxide species on Pt nucleation and dispersion. Nucleation density on the HOPG basal plane 

increased proportionally with increasing B2D6 exposure (Figure 5.6). That HOPG and 

AHOPG also exhibited nucleation in the basal plane is an indication of cleavage-generated 

defects and defects inherent on the basal-plane surface. However, the considerably higher 

Pt particle density on BHOPG substrates and the proportionality of Pt particle density to 

B2D6 exposure validate the stabilizing interaction between the B p-orbital and Pt d-orbital 

as indicated by Li et al. and Acharya et al. [3,15,16].  

The growth density and size of the deposited Pt nanoparticles can be controlled by 

manipulating the boron exposure and Pt synthesis time. Moreover, boron-treated Pt 

substrates exhibited Pt particle densities considerably higher than those for comparable 

HOPG and AHOPG substrates even at nominal 6 L B2D6 exposures (Figures 5.3, 5.4, and 

5.6).  

Nevertheless, B-doping occurs without preference across the HOPG surface. This 

means that intrinsic trap sites such as grain boundaries and cleavage-generated defects will 

also be exposed to BDx fragments. For instance, nanobead growth patterns reported by 

Aktary et al. were observed in HOPG, in AHOPG, and, to a lesser degree, in BHOPG 

samples particularly for longer growths as Pt particles grew beyond 10-20 nm in diameter 

[9]. The optimization of the Pt particle dispersion and size is, therefore, limited to the 
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HOPG basal planes for higher Pt content since nanobead growth patterns are exhibited 

along grain boundaries for all HOPG substrates, whether boron-treated or not.  

This study demonstrates that Pt particle nucleation on HOPG may be optimized 

using dopants such as B to promote scalable, defect-mediated growth. The defects likely 

comprise pyridine-like B-C and B-αC species that trap Pt adatoms as they diffuse across 

the HOPG surface [3,15,16]. As adatoms generally agglomerate at surface defects, 

nucleation is also observed at cleavage- generated defects [10,26,37]. 
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