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Group travel planning poses unique challenges such as choosing hotels, 

restaurants and venues while catering to everyone’s wants and needs, or sharing 

trip itineraries and artifacts among trip participants. State of the art travel planning 

applications such as Yelp and TripAdvisor, while integrating with social networks 

and making recommendations, don’t offer recommendations for specific groups 

of travelers. On the other hand, while TripCase offers trip planning capabilities 

and email sharing, it doesn’t offer a full interactive travel planner that allows 

groups to contribute to the travel planning process. This report proposes an 

approach to making personalized group travel recommendations based on hybrid 

recommendation techniques that aggregates individual recommendations to find 

common ground between trip participants. This is achieved by designing a 

recommender system that uses data from a location based social network(LBSN) 

and makes recommendations based on the trip location, then refines them by 

applying incremental filters which are responsible for incorporating user 

preferences, similarity to other users and user context. Finally, it takes the 

generated recommendations for each trip participant and ranks them such that the 

items most highly ranked are the ones most likely to fit everyone’s preferences. 

The rationale for choosing a hybrid recommender system is to address common 

issues such as the cold start problem, where the quality of the recommendations is 
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affected by either too few reviewers for a certain point of interest(POI) or too few 

reviews generated by trip participants. These issues, along with a coverage of 

related work is detailed in the first part of this report. In order to make the 

applicability of the recommender more tangible, I integrated it into a proof of 

concept mobile application that also allows travelers to collaborate and share 

travel planning artifacts, and generates itineraries based on the recommendations 

made. The recommender accuracy was measured against recommendations made 

by state of the art applications, while individual filters were evaluated using 

commonly used metrics. The recommender was tested in a series of relevant 

scenarios proving the effectiveness of the approach in making group travel 

recommendations, versus individual recommendations generated by other 

applications. 
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Chapter 1: Introduction 
 

Travel planning has moved in the past decade from travel agencies into the 

online environment and, more recently, into the mobile environment. The first 

phase of travel planning, namely research, is strongly influenced by crowd-

sourced information such as ratings and reviews on travel websites and social 

streams. This creates a need for mobile travel planning tools to augment their 

existing functionality and incorporate user’s opinions and preferences, the so-

called sentiment analysis, when making travel recommendations in order to assist 

the travel planning process. 

Another aspect that seems to be ignored by travel planning apps is catering 

to groups of travelers. Traveling is more often than not a social activity, where 

people travel in pairs or groups. While some apps offer the ability for trip 

members to participate in the travel planning process, none of them offer 

personalized suggestions for group of travelers such as hotel, venue and restaurant 

recommendations based on the common interests and preferences of the specific 

group of users that is traveling together. 

This paper proposes a new approach to group travel planning, by creating 

a mobile travel planning platform that makes personalized group travel 

recommendations and generates travel itineraries for those groups of travelers. 

The proposed approach uses a hybrid recommender system for making group 

specific recommendations and shortest path algorithms for generating travel 

itineraries. It also employs trip and artifact sharing to support user collaboration. 
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1.1 Motivation and Objectives 
According to the US Travel Association1, the US travel industry has 

generated over $2.1 trillion in 2015, with $650 billion accounting for leisure 

travel. Moreover, the US travel industry has seen a 5% increase in the past year. 

When surveyed2, 87% of travelers responded that they perform the bulk of travel 

planning online, with 43% of them reading online reviews and 70% documenting 

their trips on social networks. As travel planning moves from the traditional brick 

and mortar agencies to the online travel sites and users move to mobile platforms, 

30% of travelers use mobile apps for their travel planning. 

These statistics indicate that more of the travel planning process is moving 

to mobile, with a strong influence from social media, which opens the door to new 

opportunities that make use of social streams to enhance the mobile travel 

planning process. 

With leisure travel accounting for a third of total tourism, travel in pairs, 

with family or groups is a natural consequence. When confronted about the 

challenges of collective travel, these vary from difficulty in communication to not 

being able to satisfy everyone’s time/budget constraints or their preferences. Out 

of the top ten most pressing challenges3, I have identified three that would be 

addressable in the context of a mobile travel planning application: 

1. Communicating trip details within a group, via trip and trip artifact 

sharing. 

2. Working with different budgets, by aggregating multiple users’ constraints 

in making travel recommendations. 

                                                
1 https://www.ustravel.org/answersheet 
2 http://infographicsmania.com/online-travel-statistics-2012/ 
3 http://blog.makeitsocial.com/misc/the-top-ten-challenges-of-travelling-as-a-group/ 
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3. Addressing different preferences for activities, accommodations, 

destinations, by computing an affinity model between the users’ 

preferences. 

Putting all this together and my passion for travel, my proposal is to build 

a mobile platform for travel planning to capitalize on the massive amounts of 

travel ratings and reviews available via Location Based Social Networks such as 

Yelp or TripAdvisor, and address the shortcomings of traveling in groups. 

My objectives for this report are: 

● To research different strategies for performing personalized 

recommendations for groups of travelers.  

● Design a recommender architecture focused on group travel. 

● Deliver a proof of concept mobile application that incorporates the 

recommender architecture and travel planning tools, to make group 

focused recommendations and generate appropriate itineraries. 

● Measure the effectiveness of the chosen approach both by using 

quantitative methods, like accuracy, coverage and novelty, and qualitative 

methods such as real user input. 

● Refine the approach to minimize poor recommendations by incorporating 

action feedback into the learning agents. 
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1.2 State of the Art 
With a plethora of travel planning apps that are emerging daily from the 

app stores, I often end up with multiple applications that serve different purposes, 

from research, to booking, to keeping track of flights and reservations. In order to 

identify which are the most frequently used travel apps and determine their 

suitability for group travel, I queried AppAnnie4 and chose the best performing 

apps from each of the following categories. 

 

Travel Research Apps 

In this category, I chose travel apps that help in the initial research phase 

of the travel planning process, namely when users search for hotels, things to do 

and read reviews. One of the most popular apps in this category is TripAdvisor. 

With a huge worldwide user base and an excellent feature vector for their Points 

Of Interest (POIs), TripAdvisor users can filter results by contextual criteria such 

as: time of year, suitability for a couple, a group or a family. This filtering is made 

possible by the existence of a set of numeric and boolean attributes that each POI 

possesses, the so-called feature vector mentioned above. However, it offers little 

personalization based on individual user profiles and no option to aggregate 

multiple profiles. Although my profile has more than 200 places visited and more 

than 600 POIs rated, ranked or reviewed, the only recommendations I get are for 

certain hotel categories based on my previous stays.  

Yelp also ranks high in this category, as less of a travel planning app and 

more of a Location Based Social Network. It is mostly suited for researching 

businesses and places to eat. I often use it while traveling in the US, as most of 

the countries I visited do not have a strong Yelp presence. While Yelp offers more 

context to researching POIs (like the ability to filter by opening hours and the 

                                                
4 https://www.appannie.com/indexes/all-stores/rank/aggregator/?month=2016-07-01&country=US 
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ability to zoom in on a certain map area) and personalized recommendations 

(mostly collaborative-based), it also lacks a group recommendation solution. 

 

Travel Booking Apps 

As the name says, this app category is mainly used for booking hotels, 

flights and travel packages, but also for window shopping and price comparison. 

At the top of the travel booking apps stays the giant booking engine Expedia, 

who owns Travelocity and Homeaway and other travel booking engines and is 

one of the few to offer their EAN dev API for free. While their recommended 

packages are often subject to paid advertising, Expedia offers some flexibility by 

allowing groups of travelers to book multiple rooms and cater to specific room 

arrangements. Much like TripAdvisor, it can filter based on user constraints and 

preferences, but again it falls short on making personalized recommendations. 

 

Travel Planning Apps 

This category of apps contains apps that are widely used to create and 

keep elaborate travel itineraries. Two notable mentions go to TripCase and 

Travefy. TripCase is the longer standing app that allows to combine different trip 

artifacts like flights, hotels, packages and rental cars, integrating with booking 

engines and airlines to retrieve trip details from booking codes, as well as 

integrating with flightstats to keep track of flight statuses. Despite its usefulness, 

it has no intelligence built in with respect to recommendations or group travel. 

Sharing an itinerary means sending an email to someone who can “follow” your 

trip, but there are no import features per se and no way to truly collaborate on a 

trip itinerary.  

Travefy is a new-comer app launched in 2016 that focuses on group travel. 

It allows trip participants to contribute to building the trip itinerary, add artifacts 

and even split the bill. It incorporates a chat platform that allows group 
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communication, but it also fails short on making group or any other type of POI 

recommendations. 

My proof of concept app incorporates elements of travel planning from 

TripCase and Travefy, enhanced with POI recommendations based on user 

feedback, group preferences, contextual information and given constraints.  
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Chapter 2:  Related Work 
 

This chapter summarizes the main takeaways from my research into 

recommender architectures, the use of social streams and LBSNs in 

recommenders and the application of recommender systems in travel planning. In 

order to better understand the mechanisms used in recommender systems, I have 

conducted research into the following areas: general recommender systems, 

location based recommender systems, and contextual recommender systems. I 

then looked into how streams from Location Based Social Networks can be 

integrated with recommender systems to add context to recommendations and 

how they can be used in collaborative-based recommenders. Finally, I researched 

travel planning papers that had as their main focus generating itineraries based on 

context, constraints, and recommendations. 

2.1 Recommender Systems and the role of Social Networks 

According to the literature [2,3,6], recommender systems can be grouped 

into three main categories, based on the strategies they employ to make 

recommendations: 

1. Content-based recommenders use the user’s past experiences in order to 

make future predictions. The advantage of this approach is that it 

incorporates feedback from the user based on their history and 

preferences, predicting to a higher degree their future preferences. The 

downside is that content-based recommenders  are subject to the cold start 

and over-specialization issues described below. 

2. Collaborative-based recommenders rely on the user’s similarity to other 

users and make predictions based on user affinity models. The authors of 

[3] start from the premise that if users were similar in the past, they will be 

similar in the future and therefore one can make recommendations for one 
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user based on the preferences of their kins. This type of system is ideal if I 

do not want to deal with item specifics, since the system only needs to 

know about user preferences, abstracting completely from the 

recommended items. Its drawback is addressing the cold start situation, 

when I do not know much about a specific user, therefore it is difficult to 

infer which users are going to be similar to them. This system is also 

problematic when new items are introduced. 

3. Knowledge-based recommenders match factual knowledge about the 

recommended item with the user’s needs. This is the ideal system to use in 

absolute cold start environments, when not much is known about a user 

and there are not many users in the system to begin with, since it matches 

objective facts to inputted user needs.  

Some of the shortcomings identified in recommender architectures [2] 

come from insufficient user or item profile data, either because the user has not 

generated enough actions to be able to make high confidence prediction, there are 

not many users in the system for collaborative-based recommenders, or there are 

not enough items or item ratings in the system. The main shortcomings according 

to the literature [2] are: 

● The new user problem or the cold start problem, present in content-based 

and collaborative-based recommenders. When a new user joins that has no 

previous history, one cannot make high confidence recommendations 

since she has no preference history that can match other items or other 

users. This issue can be addressed by integrating social network activity 

into the user profile, such as accessing their friends list in order to find 

users that are like them or their checkins to find places they have visited 

and liked in the past. A few papers that discuss the importance of social 

networks in recommender systems are [2] and [3].  
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● The sparsity problem is manifested when there are too few items in the 

recommender. This can be addressed by tapping into LBSNs such as Yelp, 

TripAdvisor, or Foursquare and importing new items.  

● Limited content analysis goes hand in hand with the sparsity problem and 

is characterized by the lack of sentiment content for a specific item. This 

can make an item less desirable for a recommender, but can be addressed 

by curating content from other sources. 

● Over-specialization is when the recommender is inflexible and does not 

have any novelty and serendipity factors built into it. It can be addressed 

by introducing some randomness or novelty factor when making user 

recommendations, regardless of user preferences. 

In order to address shortcomings of each strategy, most recommender 

systems in the literature are hybrid [2], employing multiple strategies and 

sometimes adding dimensions, like user context [6] and constraints (time, 

location, cost) [5,9] and social network artifacts such as check ins, ratings and 

reviews from other LBSNs. In [3], the authors combine all three strategies using 

filtering and fuzzy clustering for computing user affinity.  

In [2], the authors emphasize the importance of social networking in 

making recommendations. They start from the premise that users want to make 

informed decisions, therefore they seek information from past experiences of 

other users: friends and influencers. With the ability to make ratings and rankings 

and leave reviews, Location Based Social Networks (LBSNs), such as Yelp, 

Foursquare and now Facebook have become an increasingly powerful tool in 

building user trust. The paper also briefly addresses techniques for group focused 

recommendations:  

● Merging sets of recommendations and recommending the resulting set. 

● Aggregation of recommendation items and recommending only the items 

that are present in all individual sets of recommendations. 
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● Construction of group preference models, which is the technique that I 

will be adopting in this paper and allows aggregation based on similarity 

rather than perfect matches. 

The authors of [4] discuss recommender systems based on cellular 

learning automata (CLA) for website navigation prediction patterns. The proposed 

innovation comes from dynamically incorporating feedback into 

recommendations and improving the reward-punishment criterion of the CLA, 

evaluating the improvement using formal metrics such as recommendation 

accuracy and coverage.  

Some other metrics commonly used in evaluating recommender systems 

are discussed in [2,7]: 

● Recommendation accuracy metrics - Mean Absolute Error, Classification 

Error, Precision and recall, ROC Curves, Rank accuracy and prediction-

rating correlation. 

● Coverage of system - percentage of items in the system recommended. 

● Learning rate - measured by how fast the recommender converges.  

● Novelty and serendipity - the ability of the recommender to make novel 

suggestions. 

● Recommendation confidence - based on probabilities. 

● User evaluation - direct feedback from user actions rating/ranking 

recommendations. 

2.2 Location and Context based POI recommendations 

The authors of [1] focus their research on the efforts made to predict 

future user locations based on social network check ins and make appropriate 

recommendations. Their approach compares three machine learning techniques: 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and 

Probabilistic Neural Networks (PNN), proving the superiority of the latter over 
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the former two. Their proposed architecture consists of a mobile agent that 

collects the data and a cloud computation service that makes the 

recommendations. While they mainly focus on individual preferences, they 

incorporate affinity with other users (friendship relationships on LBSNs) when 

making recommendations.  

VISIT [6], the prototype for a mobile tour guide system, focuses on the 

importance of incorporating context in recommendations. The authors discuss the 

boom of LBSNs with the use of mobile devices and the rise of interactive travel 

as users use mobile for navigation and discovery. While most apps, like Yelp, use 

distance from location to make suggestions of POIs nearby, there are many other 

sources of context coming from both hardware and soft sensors that can help 

make recommendations, sensors such as the user’s current location, weather, day 

of the week and time of day. Therefore, VISIT proposes to add elements such as: 

current weather, time, user preferences and social media sentiment gathered from 

social activity. The proposed architecture is an ANN, however the paper lacks 

experimental results, since the VISIT architecture had not yet been implemented.  

In [7], the authors focus on predicting user checkin behavior by relying on 

soft sensing, namely app usage, phone calls, messages, and social media activity. 

Similar to VISIT [6], the paper points out the importance of context when making 

predictions and how location alone is not a sufficient indicator of user context, 

proposing a learning agent that samples soft sensor data in the background in 

order to be able to make suggestions readily available. They address the 

shortcomings of sampling hardware sensors and sampling very often, which could 

lead to battery depletion, however they do not discuss privacy issues arising from 

the use of soft sensing. 
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2.3 Travel planning and itinerary generator tools 

The travel planning tool proposed in [5] recommends travel packages that 

conform to time and budget constraints by modeling the travel itinerary 

generation as a knapsack problem. The travel packages are composed of multiple 

POIs that each have a cost associated to them (which is a combination of time, 

money, and other constraints), and they are ranked by that cost. The recommender 

then iterates over the same knapsack algorithm until it converges to an optimal 

solution. The solution takes into account also the cost to travel between POIs and 

the compatibility between them (i.e., if a user likes landmarks and museums, the 

suggested POIs will be from the same family of POIs).  

Another similar itinerary generator, this time for flight+hotel packages 

[10] takes a set of destinations and a time interval and uses a shortest path 

algorithm to find the best packages. It models the itineraries as a Traveling 

Salesman Problem and uses Dijkstra’s algorithm for recommending the best flight 

options.  

A more elaborate travel planning tool is discussed in [9], which takes 

different types of POIs from LBSNs: food, venue, and entertainment and builds 

personalized travel packages, similar to VISIT. It uses collaborative-based 

filtering to generate personalized itineraries, while employing geospatial 

constraints to allow their algorithms (a form of heuristic search based travel route 

planning) to converge to an optimal solution. Individual candidate POIs are 

selected based on: user feature vectors built from their LBSN profiles, location 

popularity, user location and time of day, which accounts for a fair amount of the 

user’s context. 

The main takeaways from the conducted research that I plan on applying 

in my work are: 
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● Recommender systems should be a hybrid of the three main recommender 

categories: content, collaborative, and knowledge based, in order to 

account for cold start and other challenges. 

● Both collaborative and content based location recommenders can benefit 

from integrations with social streams from LBSNs like Yelp, Foursquare, 

or Facebook, which can provide user activity and POI rankings and ratings 

to address the cold start problem. 

● User context and constraints are core to making personalized 

recommendations, as is dynamically incorporating user feedback. 

● Soft sensing opens new avenues to inferring user context, but it comes 

with concerning privacy issues that need to be addressed. 

● Recommenders designed to address group recommendations need to 

incorporate a form of aggregation or build group preference models. 

● Most approaches for effectively computing itineraries are variations of a 

shortest path problem. 

● In addition to recommendation accuracy, metrics such as coverage, 

serendipity and novelty are fundamental in evaluating a recommender’s 

performance. 
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Chapter 3: Approach 

This chapter details the proposed approach to building a group focused 

recommender system and a complex itinerary generator, with immediate 

application to a group travel planning mobile application. I will talk about the 

general methodology used to gather user and POI (Point of Interest data), build 

user and POI profiles, make recommendations, and interpret feedback from the 

users. 

The available datasets will be described and an approach to selecting 

relevant features from the datasets will be proposed. Next, I will discuss the 

algorithms that were evaluated for performing recommendations and itinerary 

generation. I will talk about how the approach was evaluated and what metrics 

were used. 

Finally, the technologies employed will be discussed and some of the 

challenges identified will be addressed. 

3.1 Methodology 
The approach chosen to address the group travel recommendation problem 

identified is to build a collaborative travel planning mobile application that allows 

users to collaborate in the travel planning process while making personalized 

group recommendations for trip artifacts and travel itineraries. For the sake of 

simplicity, the app will: 

● Allow users to create, join, and invite their friends from their phonebook 

to trips.  

● Allow users to add artifacts to trips, such as: flight, hotel, and package 

reservations from Expedia, car rentals and points of interest. The reason 

for choosing Expedia is that they offer their REST API free of charge. 
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● Be able to make group recommendations for three types of artifacts: 

hotels, food venues, and landmarks.  

● Be able to recommend flight plus hotel packages from Expedia based on 

group preferences and constraints such as trip dates and price. 

● Compute walking itineraries at a certain location based on preferences and 

constraints. 

The architecture of the mobile application and the technologies that were 

used to build the full software stack are described in sections 3.7 and 3.8. 

The POI data that was used to make recommendations was meant to be an 

aggregate of multiple social media and LBSN streams, such as TripAdvisor, Yelp, 

Facebook, and Instagram. However, the aggregation of multiple streams in 

realtime and generation of consistent views of the POI dataset is a complex 

research topic in itself, that is outside the scope of this paper. Therefore, I chose to 

use a static dataset from a LBSN that is publicly available, has a big enough POI 

and user set such that the cold start will not be an issue, but small enough such 

that I did not have to spend a great amount of time optimizing queries and data 

access. The description of the dataset and the criteria for selecting it is described 

in section 3.3 of this chapter. 

For making recommendations I chose to build a hybrid recommender 

system that incorporates all the three major recommender systems: knowledge, 

content, and collaborative-based, augmented with three dimensions: group 

preferences, user feedback, and context. The recommender uses multiple levels of 

filtering to sieve the original set the POIs and identify only the artifacts that have 

a high probability to match the group preferences. The architecture of the 

recommender is described in detail in section 3.2 below. 

In order to measure the performance of the recommender, I evaluated it 

against two other recommenders and computed the following metrics: Mean 

Absolute Error with respect to the test samples, coverage and evaluate 
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serendipity. The first system for comparison is a random POI generator on the 

chosen dataset and the second one is the Yelp recommender. Since none of them 

are focused on group recommendations, I generate predictions for multiple users 

and then merged them. 

For the user profile model generator, I evaluate it by splitting the user 

profile dataset into a training and test set and incrementally improving the model 

by evaluating the model’s predictions against the test dataset.  

3.2 Recommender Architecture 
As most of the literature discussing recommender systems suggests, the 

proposed recommender architecture is a hybrid one, combining elements from 

knowledge, collaborative, content and context based recommenders.  

A recommendation agent is dispatched for each user, each time they 

perform a direct query to find a POI or they join a trip. The agent takes the initial 

set of POIs, apply the factual constraints, such as POI category and location and 

filter out all the POIs that do not conform to the constraints. Next, the remaining 

POIs are filtered twice: once through a collaborative filter that surfaces POIs that 

are popular with similar users and once through a filter that surfaces POIs that are 

recommended by the User profile model and past feedback. The union of these 

two sets of POIs constitutes the individual user’s recommendations and are 

precomputed and stored in her trip profile. The individual recommendations from 

each trip participant are aggregated and the resulting set is filtered at the time of 

the ad-hoc queries based on the user’s context, inferred from soft sensing (day of 

week, time of day, weather), or given by the users (hours and money to spend). 

A visual representation of the Recommender Architecture and the data 

flow through the system is depicted in Figure 1. 



17 

 
Figure 1: Recommender Architecture 

3.2.1 User profiles 
The user profile is based on all the recommendations the user has made 

and is built dynamically when recommendations are requested by the app. The 

reason for building the profile dynamically is that it is contingent on realtime user 

data and needs to be updated as the user makes new recommendations. 

The agent that is built to generate the user profiles relies on supervised 

learning techniques. All the user sentiment data is gathered and then split into two 

sets: one containing 80% of the samples that are used for training and another 

containing 20% of the samples that are used for test purposes. The training data is 

then fed to a model builder that attempts to build a model using Linear 

Regression(LR) and Multiple Linear Regression(MLR) using individual features 

and feature sets from the yelp dataset. The proper model is then chosen during the 

implementation phase with accuracy and performance in mind. The 20% test set 

is then used to make predictions and evaluate the accuracy of the model. I used 

common accuracy metrics such as RMSLE (Root Mean Squared Logarithmic 

Error ) to measure accuracy. The predictions are made on the ratings column, 

while other features are used for building simple and multiple linear regression 
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models. Then, depending on the accuracy, I will build a feedback loop and 

improve the prediction model. Finally, this model will be used to make 

predictions on new POIs. 

A conceptual diagram of the user profile model builder is presented below. 

Figure 2: User Profile Builder 

3.2.2 Recommender Filters 

As mentioned in the previous sections, the recommender is essentially a 

set of cascading filters that fulfills different roles and addresses the common 

recommender issues that were identified in Chapter 2. 

The four recommender filters and their functionalities are: 

● The Knowledge-based filter is responsible for filtering based on 

constraints that the user either manually inputs as part of an in-app query 

or that the app infers from the trip details. The main constraint types are 

the POI category and the POI location. Since this is the first filter in the 

chain, I need to ensure that it will not constitute a bottleneck; therefore I 

experimented with different clustering and indexing techniques on the POI 

database, such that I optimize it for the knowledge-based filter queries. 

This filter is meant to address the cold start issue that recommenders have 

when there are not enough user preferences in the recommender system. 
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Applying this filter guarantees that at least the POIs at the trip location 

will be recommended to the user. 

● The Collaborative-based filter makes recommendations based on the 

similarity with other users. Since the POI dataset chosen comes from a 

LBSN that contains info about a user’s friends network, I used that to 

determine affinity between users. I propose a fuzzy clustering technique to 

extract the list of recommended POIs. Each friend in the user’s network 

represents a cluster, while POIs have a probability of belonging to a 

cluster, based on the user’s past preferences (their profile model). Based 

on that probability, I select a number of POIs that have a high degree of 

belonging to more than one cluster. Another strategy I tested for this filter 

is majority voting, where the most frequent score in the user’s friends 

sentiments is chosen as the POI score. The collaborative-based filter 

addresses issues such as novelty since it will expand the recommendation 

pool, going outside the user’s past experiences and preferences. In 

combination with the content-based filter, it also addresses the POI 

coverage issue, because the two filters are applied in parallel and their 

results combined. 

● The Content-based filter also takes the list of POIs generated by the first 

filter and applies the user’s model to them in order to determine which 

POIs to recommend based on the user’s preferences. The user model is 

built first for the existing users in the dataset by splitting the dataset into 

two sets: training and test. I attempted building a few models, such as 

regression and multiple linear regressions and evaluated their accuracy 

before settling on one model. The resulting set from this filter is merged 

with the set from the collaborative-based filter to form the user’s 

individual recommendation set, that will be kept in the user’s trip profile 

such that it can be retrieved at a later time without having to recompute 
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everything from scratch, which will improve user experience and app 

performance. 

● The Context-based filter is used as an ad-hoc filter for location aware 

queries and infers user context from the mobile soft sensors or directly get 

context from the user’s input. What I mean by this is that the context-

based filter will be activated only when the user does a nearby-type of 

search. At that point, the app will sample the day of week, time of day and 

weather and filter out POIs that are closed or not appropriate for the 

weather or time of day. Additional context can come directly from the 

user, such as cost and time available. Some of the intelligence behind this 

filter is contingent on the POI having attributes that allow us to perform 

said filtering. The attributes could be features like: outdoors, good for 

groups, price ranges or indicators of affordability, time to spend, etc. 

 

A detailed implementation of each filter will be given as part of the 

implementation in Chapter 4. 

3.2.3 Aggregator 
The aggregator takes the recommendations generated for each trip 

participant and build a common list of recommendations, ranking higher the POIs 

that are popular with most participants and the items that have overall higher 

ratings, computed by averaging the individual user scores. Another alternative 

that I explored is majority voting, where a POI will only be surfaced in the 

recommendations if it has a majority vote from trip participants, meaning that the 

POI ranking will have the most frequent rating among the individual POI results. 

This ranking is based on a computed score, that I call the SmartTrip score, and 

POIs will be surfaced in descending order of this score. 
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3.3 Dataset Description 
While researching potential data sets that I can use to mimic LBSN 

generated data, I came across a series of potentially good freely available ones 

provided by Expedia and Yelp or gathered by third parties from LBSNs. The 

Expedia dataset fell through because it was limited to hotels only and I wanted a 

dataset that incorporated other types of POIs. Moreover, Expedia does not provide 

access to anonymized user profiles like the Yelp dataset does, which will be 

useful in testing different scenarios like: user with many and few reviews, user 

with many and few friends. Finally it came down to the Yelp public dataset and a 

dataset gathered by crawling TripAdvisor pages. Both had multiple types of POIs, 

rating and reviews data correlated to user profiles and a fairly big set, but the Yelp 

dataset was superior for reasons that I will cover in the following subsections.    

3.3.1 Yelp Public Dataset 

The Yelp public dataset is published by Yelp as part of their data mining 

challenge. The current set is 3GB large without photos and contains 2.7M reviews 

for 86K businesses in 10 cities across 4 countries and contains data from 687K 

users. In addition to the reviews, the dataset contains also user profiles, tips, 

business descriptions, social check-ins, and photos. 

The dataset contains the following object types, which are expressed as 

JSON objects: 

● Business, containing the business’ name, address, coordinates, categories, 

hours of operations, ratings, number of reviews. This factual data is core 

to the knowledge-based filter. 

● Review, containing the business reviewed, reviewer ID, text of the review, 

rating, date and votes. Since I am not focusing on natural language 

processing to get user sentiment for reviews, I rely on ratings alone, 

combined with number of votes, to determine usefulness of the review. I 
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use the ratings information in the user’s feedback loop and in the 

collaborative-based filter. However, I might want to retrieve the review 

text for display purposes alone. 

● User, containing their names, their Yelp stats and their list of friends. 

Having their list of friends readily available makes this dataset valuable 

for building the collaborative recommendation filter. 

● Check-in, containing the time and number of checkins for a certain 

business. I could easily use this information to make educated guesses 

when building the context-based recommendation filter. 

● Tip, containing a textual tip from a user for a certain business, together 

with the number of likes for that tip. Tip information could be parsed to 

identify features like: appropriate for groups, families or couples. 

● Photo, containing the id of the photo, associated business and some 

metadata fields. For this project, I am not be using the photo data 

provided, which is over 5GB. Rather I used a coordinates-based photo 

API, such as Panoramio to retrieve photos for a certain POI or location. 

Each object type is stored in a separate file, so in order to be able to make 

complex queries across the whole dataset, such as retrieving all the preferred 

locations of a certain group of users, I exported the relevant data into a relational 

database and create appropriate indexes depending on which database operations 

are most frequent. 

A complete description of the dataset can be found in Appendix A. 

3.3.2 Choosing the appropriate dataset and designing the datastore 
While the TripAdvisor dataset is fairly large and offers detailed reviews of 

POIs, it lacks a few features that the Yelp dataset contains. Things like: user 

profile, list of friends, and social check-ins made the Yelp dataset more attractive 

and easier to use out of the box. Moreover, the Yelp dataset is official, newer and 
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already cleaned up, while the TripAdvisor dataset has been created by crawling 

TripAdvisor pages that are already stale. 

Having said that, I split the dataset into a training set and a test set, with 

80% of the records going into building the individual recommendation model and 

20% into testing out the derived model. 

The relational database I propose is represented in Figure 3 below: 

Figure 3: Relational database for the Yelp Dataset 
 

In order to optimize the queries I experimented with indexes and 

clustering. Some of the optimizations I considered are: 

● Clustering the POI table on location or category. 

● Clustering the Sentiment table on Business or User. 

● Creating secondary indexes on fields and composite fields that will most 

commonly be used in queries, like location and category. 
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3.4 Algorithms for generating itineraries 
There will be two types of itineraries generated by the app: flight plus 

hotel packages and POI sightseeing packages. While the first type of itinerary is 

sourced from Expedia, based on the user’s time and monetary cost constraints, the 

second type of itinerary is generated based on the user’s current or selected 

location, the group recommendations that were pre-computed, and the time and 

monetary cost specified. 

For generating trip itineraries I looked into shortest path algorithms, like 

variations of Dijkstra’s algorithm. I built a network of POI nodes for a given area, 

where the nodes have a symbolic cost associated to them (combination of time to 

spend there and monetary cost), and each edge has a cost associated to it based on 

physical distance and time to traverse it. The origin node is the user’s current or 

selected location, and the end node will be selected by the user. I am keeping not 

only the shortest path value but also the intermediary nodes. The algorithm only 

stores paths that have a lower cost than the maximum cost inferred from user 

constraints. 

3.5 Evaluation Metrics 
With respect to evaluating the approach proposed, there were multiple 

criteria and levels at which I evaluated performance and accuracy: 

● Overall accuracy was measured by comparing the recommendations list 

with another recommender system, like Yelp. Since Yelp does not have 

group recommendations, I looked into recommendations made for 

different individual profiles in the same context.  

● The user profile model generator accuracy was evaluated using the 

RMSLE metric on the test data predictions. I took the predictions ratings 

vector and compare it to the actual ratings vector of the test dataset. 
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RMSLE or Root Mean Square Logarithmic Error, which is a popular 

metric for Kaggle data mining competitions, is computed as: 

Figure 4: RMSLE metric description from Kaggle5 
 
● Recommender performance was measured by computing mean and 

average times for producing group recommendations. The goal is to be 

able to produce the recommendations in under 5 seconds, which is half the 

time the user can stay engaged without losing interest, according to UX 

Research6. 

● Mobile application performance was evaluated by recording application 

metrics, which were collected via Android Monitor. 

○ Memory usage over time 

○ CPU usage over time 

○ Battery usage over time 

3.6 Technologies  
In this section I will list the technologies chosen with a brief motivation of 

the rationale behind choosing each of them. Each subsection is centered around 

one of the three tiers of the proof of concept application: infrastructure, backend 

and frontend. 

                                                
5 https://www.kaggle.com/wiki/RootMeanSquaredLogarithmicError 
6 https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/ 
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3.6.1. Infrastructure 
In order to minimize infrastructure concerns and not have to deal with 

concerns such as auto scaling, load balancing and server maintenance, I chose 

Google App Engine to handle the server side infrastructure to host the web 

application and REST API that implements the business application logic in the 

backend. Google App Engine also offers a generous free tier that resets its quotas 

daily, such that at the scale of the proof of concept application I will not have to 

pay for usage. 

The recommender system is implemented as a set of Amazon Web Service 

Lambdas, again in order to avoid using a paid service tier and not worry about 

implementation details. The rationale for using Lambdas is that I plan on using 

the Python Scientific Kit (SciKit Learn), which is not supported on Google App 

Engine, but can be deployed on AWS lambdas. 

3.6.2. Backend Technologies 
For the backend application, I chose as the main language Python 2.7.3 

since it is a language that allows for fast prototyping and has powerful web api 

and data mining frameworks. 

I used webapp2 for the REST API routing layer, which is the framework 

that Google App Engine works with. I use Pandas and SciKit Learn for Yelp data 

pre-processing and building the linear regression models and making the 

predictions since the library has built-in adjustable models and I have previous 

experience using the kit. 

3.6.3. Frontend Technologies 
Our application has a single frontend, an Android mobile app, developed 

for SDK version 24 (Nougat) and backwards compatible with the oldest supported 
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Android version, which as of today is Lollipop (SDK versions 21-22). The 

language of choice for the frontend is Java 8. 

3.7 Challenges Identified 
While defining the approach there were several challenges identified, 

ranging from recommender typical problems, such as those defined in Chapter 2, 

to performance problems related to web api round trip times and battery usage to 

privacy concerns.  

Two of the challenges I considered during implementation are: 

● The cold start problem that I defined above. I made an attempt to get 

around that at first by associating a Yelp pre-existing profile to the first 

users of the app. I also simulated making recommendations for new users 

without any pre-existing sentiment data and introducing POIs without any 

sentiment data associated to them.  

● Privacy concerns arising from the fact that the app has access to the user’s 

location, address book and LBSN data. Our backend will never store PII 

(Personal Identifiable Information) such as email/password combination, 

but rely on social authentication such as Google and only store hashed 

emails for user profile matching. With respect to accessing user location 

and address books, Android SDK 24 already requires you to implement 

privacy mechanisms in your app by default. 
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Chapter 4: Implementation 
 

In this chapter I detail the main implementation concerns for the main 

different pieces of our group recommendation mobile application proof of 

concept: 

1. The recommender system implementation is detailed, specifying the 

techniques and libraries used and the tradeoffs considered during 

implementation. 

2. The mobile application software architecture is presented, with details 

about the application backend REST API, the activity screens and the third 

party APIs interfaces. 

This chapter also covers two adjacent topics: 

● The data pre-processing I performed on the yelp dataset, explaining what 

data I extracted and how I modeled it such that it fits our applications’ 

needs. 

● The technical limitations I have run into while developing certain software 

components or trying to integrate software components across different 

realms. 

4.1 Yelp Dataset preprocessing 
 The Yelp dataset was first loaded into a relational database with the 

schema presented in Figure 3. This allowed for complex querying of users, POIs 

and user sentiments and for eliminating any attributes in either dataset that are not 

useful for the recommender. A few statistics were extracted in order to establish 

the basis for the test cases, in order to simulate cold start problems and other 

corner cases, and measure the performance of the recommender. The statistics 

computed are: 

● Top 10 most reviewed and bottom 10 least reviewed cities. 
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● Top 10 most reviewed and bottom 10 least reviewed POIs. 

● Top 10 most and bottom 10 users with respect to number of reviews. 

For the content-based filter, since I only needed the business (POI), but 

needed all the POI features in order to choose the best Linear Regression (LR) or 

Multiple Linear Regression (MLR) model, I transformed the business dataset into 

a csv file, that was then imported in pandas dataframes, a data structure used 

frequently with Python SciKit learn.  

4.2 Recommender Agent Implementation 
 The recommender agent was logistically split into a server side 

recommender and a client side recommender. The server side recommender 

contains three out of four filters: knowledge, content and collaborative, as well as 

the aggregator. The context-based filter was implemented on the client side, in 

this case in the mobile application. The rationale for splitting the recommender 

like this is the fact that the context-based filter needs user context that can only be 

retrieved from soft sensors on the user’s device. On the other hand, the other 

filters and aggregator are more computational-intensive so they need more 

computing power. Moreover, considering the performance numbers, it is very 

likely that the results of the server side recommender will have to be computed 

asynchronously and cached. 

4.2.1 Knowledge-based Filter Implementation 
 The knowledge-based filter simply performs a query on the POI database 

and retrieves the POIs that fulfill the query constraints for a given area. The area 

is computed as a radial area computed using a point specified by a set of 

coordinates and a distance relative to the point. The POI list is sorted based on 

proximity to the point and all POIs in the list receive the same score, 1.0 out of a 
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maximum of 5.0, because their only merit is being close to the coordinates 

specified. 

4.2.1 Content-based Filter Implementation 

 The content-based filter takes the list of POIs generated by the knowledge-

based filter and uses that to generate the pandas POI test dataframe whose ratings 

will be predicted by the regression model computed for a particular user. The 

content-based filter uses a machine learning library to perform LR and MLR, 

namely the LinearRegression methods in Python SciKit Learn. The model is 

generated and evaluated using the user’s previous ratings. Since the model is 

computed on the fly, the model always takes into account the latest user feedback 

on POIs. The POIs are scores are generated by the model’s prediction operation 

applied to the test dataframe. 

4.2.3 Collaborative-based Filter Implementation 
While building the collaborative filter, I approached two strategies that I 

tested with extensively: majority voting and clustering. In the first approach, the 

score of the POI is determined by performing a majority vote, meaning that the 

most frequent score from friends’ sentiments is selected as the POI final score in 

the collaborative filter. In case of a tie, an optimistic approach is implemented and 

the highest score is selected. In case of the clustering approach, the score is 

computed by computing the cumulative probability that a POI belongs to a cluster 

and multiplying by a coefficient that translates the probability back to a score. 

Majority voting was the winning strategies, for reasons explained in Chapter 5, 

Section 5.1.7. 

4.3 Mobile Application Frontend and Backend Implementations 
The mobile application software stack presented in Figure 5 is composed 

of 4 tiers: 
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● The Web Server is implemented using Google App Engine  and the  NDB 

Datastore. This component provides the services backend and data storage 

for the application. 

● The Web API is implemented in Python using the webapp2 framework 

included in Google App Engine. This component exposes the REST API 

described below, which is used to transfer data between the mobile app 

and the GAE Datastore and interface with third party libraries and APIs. 

All data is JSON serialized.   

● Third party Services and APIs are used for authentication, location 

awareness, image retrieval and POI and itinerary search services. 

● The Mobile Application Frontend provides the UI, interfaces with the 

Web API and communicates with a subset of the third party APIs like 

Google+ and Facebook for authentication, Panoramio for location-based 

image retrieval and Expedia for travel package research. The Mobile App 

is the container for the Recommender Agent proxy as described above and 

is responsible for triggering the lambda jobs that compute group 

recommendations on trip creation or ad-hoc. 
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Figure 5: Proof of concept mobile application architecture diagram 

4.3.1 REST API Endpoints 
The REST API exposes the following endpoints, grouped into functions: 

● Trip creation and management endpoints, implemented via the CRUD 

operations detailed in Appendix C, Table 1.   

● Trip artifact creation and management, where artifacts can be: flights, 

hotels, cars, trains, cruises. These are covered in Appendix C, Table 2. 

● User profile creation and management operations. User creation is self-

managed, with user profiles being created upon first application login and 

user deletion and user updates performed from the backend app only. The 

endpoints exposed can be found in Appendix C, Table 3. 

● Sentiment creation and retrieval operations that are used to update the 

sentiment database with user ratings as the user rates them in the app. For 

authenticity purposes, sentiments cannot be edited or deleted. A sentiment 
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object contains a review and/or rating, the POI ID and User ID. Sentiment 

endpoints are enumerated in Appendix C, Table 4. 

● POI creation and management operations. POIs are created by calling into 

the API directly. Since the proof of concept app assumes that the POIs 

already exist and are sourced from LBSN streams, I do not allow POI 

creation from the app, but I expose the endpoint, such that I can add POIs 

at a later time to simulate some cold start problem scenarios. These 

endpoints can be found in Appendix C, Table 5. 

● Recommender endpoints are used to trigger the recommender lambda jobs 

and compute recommendations based on given filters. Some examples of 

the recommender endpoints are given in Appendix C, Table 6. The full list 

of filters for the recommender endpoints can be found in Appendix C, 

Table 7. 

● Trip itinerary generator endpoints, described in Appendix C, Table 8. The 

same filters that apply to recommendation endpoints also apply to trip 

itinerary endpoints. 

4.3.2 Datastore Entities 
In addition to the database storing the POIs, user checkins and sentiment data, 

our application also requires us to store the following type of entities in the 

datastore: 

● Trips object that represent user created trips. 

● Trip Artifacts that represent the different artifacts in the trip itineraries.  

● User profiles that are associated with trip histories. 

The relationships and fields stored for each type of entity are presented below in 

Figure 6. 
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Figure 6: Relationships between Trip, User and Artifact entities 

4.3.3 Mobile Application Frontend Design 
The mobile application, called VoyageWithUs, was built for Android devices, 

using Android Studio. I targeted the Android SDK version 24 and made it 

backwards compatible down to version 21 of the Android SDK. The application 

consists of the following activities: 

● Authentication activity, which allows users to login via social login, using 

either the Facebook or Google+ authentication API. 

● Main Activity for trip management, containing multiple fragments for 

different views: past trips, current trips, all trips and trip invites. 

● Create trip activity, used to create a trip in a specific location in a certain 

time interval. 

● Trip view activity with fragments for different views: timeline view, 

artifact view, members view and recommendations view. 

● Add/Modify/Rate trip artifact activity, which allows for adding artifacts 

such as hotels, flights, cars and cruises to trips. This activity interacts 
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behind the scenes with the recommender to make relevant artifact 

recommendations. 

● Trip itinerary activity, which shows generated travel packages based on 

cost and time available. This activity interacts with the Expedia API for 

flight packages. 

● Nearby activity which makes recommendations based on user context. 

A few screenshots of the Mobile Application’s basic functionality are 

included in Appendix B. 

4.3.3 Third Party APIs 
The mobile application uses a series of third party APIs and services to 

accomplish functionality such as: 

● Authentication: The mobile application relies on Google authentication 

services to perform user authentication. 

● Social Networking: The mobile app uses Google+ and the Contacts list to 

retrieve friends list that will be used for sending trip invites and viewing 

trip participants. 

● Location services: The mobile app uses Google Play Services in order to 

be able to implement location awareness. 

● Panoramio was used to enhance the mobile UX with pictures from the 

trip locations. 

● Affiliate Networks Integration - The web API uses the Expedia Affiliate 

Network7 and its associated API to generate trip itineraries based on given 

user time, location and cost constraints.  

                                                
7 http://developer.ean.com/docs/ 
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4.4 Limitations Of The Implementation 
 While developing the recommender, I ran into limitations from the free 

infrastructure that I attempted to use, which made the full integration of the 

different software components challenging at best. First of all, AWS lambda does 

not allow for stacks larger than 500MB to be deployed in their free tier. Since the 

recommender was using a fair amount of Python packages, once I needed to add 

the POI dataframe to the stack for the content-based filter and the full database for 

the knowledge-based filter, I was no longer able to deploy to the free tier. 

Therefore, my integration testing was limited to retrieving pre-computed 

recommendations that I previously uploaded to AWS lambda. 
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Chapter 5: Experimental Results 
 This chapter covers the series of experiments conducted to test the results 

and performance of the recommender and the mobile app. The first section 

describes the representative test scenarios used, interpreting the results obtained. 

Next, I compared the results of the recommender against a random recommender 

and against the Yelp recommender. Finally, performance is analyzed, both for the 

recommender and the mobile app and some suggestions for improvement are 

discussed.  

5.1 Test Scenarios 
 In order to assess the performance of the recommender, I put together a 

series of scenarios that I tested the recommender against. These scenarios were 

chosen to simulate and compare extreme corner cases, such as: 

● The users with the most number of reviews traveling together 

● The users with the least number of reviews traveling together 

● The users with most friends traveling together 

● The users with least friends traveling together  

 For each test case, I ran the recommender with one, two, three, four and 

five users, building the travel groups incrementally from the previous user set. 

The location chosen for all test cases was Las Vegas, and the type of POI chosen 

was “Hotel”, because this was the location with the most reviews and the most 

reviewed POI type for this location was “Hotel”. This allowed running all the test 

case scenarios on the same POI set. In order to reduce the number of 

recommendations, I restricted the area searched to 0.5km area.  

5.1.1 Users With Most Reviews Traveling Together 
 This use case was chosen to simulate an environment where all trip 

participants have issued many reviews, therefore the individual profiles will likely 
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produce different scores and rankings for most of the POIs. Incidentally, users 

with many reviews also have many friends, which was reflected in the final 

results that can be seen in Figure 7. One interesting thing to notice from the graph 

below is how the sentiment changes for a POI as more people join the trip. For 

instance, when one or two users participate, POI 5 is one of the top rated ones(it is 

ranked 4 by one user and ranked 6 by a group of 2 users), but as more people join 

the trip, that have a less favorable score, POI 5 drops to the bottom 5 choices. One 

other noticeable aspect is that a POI score can never increase as more people join, 

because the score is computed such as the most negative individual score has the 

final weight in the overall score. This is due to the policy of the recommender, 

which is to err on the safe side and recommend POIs that all trip participants have 

a good sentiment for, rather than suggesting POIs that one participant loves, but 

another one hates. However, ranking of POIs can increase even if their overall 

score decreases.   

Figure 7: Recommendations made for groups of travelers with most reviews  



39 

5.1.2 Users With Least Reviews Traveling Together 
 This use case was chosen to simulate the cold start problem, where users 

have reviewed little or no POIs. The users were chosen among the bottom ten 

users with least reviews. Aside from User 1, which has 0 reviews and 0 friends, 

all the other users have 1 review and 1 or more friends. As you can see from 

Figure 8 below, when only 1 user is participating, since he has no reviews, all the 

POIs are ranked equally, with a score of 1.0, which is the default score that the 

knowledge-based recommender assigns to the POIs. Once another user joins, the 

scores of the POIs change, but since the new user has only 1 review, all the POIs 

will get the same score and be ranked equally. But the second user also has 

friends with reviews, so POI number 8, gets a lower score based on the friends’ 

profile. Adding more users will adjust the final scores based on the same 

rationale. One thing to notice in this cold start scenario is that there is little 

variation in the ranking of the POIs since all participants have so few reviews, so 

most of the suggestions will be ranked by distance.  

Figure 8: Recommendations made for groups of travelers with least reviews  
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5.1.3 Users With Least VS Most Reviews Traveling Together 
 I also compared the POI scores generated by groups of five users with 

most and least reviews as depicted in Figure 9 below. As mentioned previously, 

users with least reviews will produce a recommendation set with little variety, 

where the POIs will be ranked mostly in the order given by the knowledge-based 

filter, which is the distance from the selected location. 95% of the POIs have the 

same rank as the default location-based recommendation. By contrast, the group 

of users with most reviews exhibits much greater variety in POI ranking, with 

only 15% of the POIs having the same rank as in the location-based ranking. 

Figure 9: Comparison between users with least and most reviews 

5.1.4 Users With Most Friends Traveling Together 
 Another scenario I explored is choosing the users with most friends 

traveling together. One interesting observation from this scenario, as seen in 

Figure 10, is that POI scores averaged in the [3.0, 4.0] range, indicating no strong 

dislike or like for any of them. Also, the recommendations for some POIs 

converged to the final score even for a small number of trip participants. 
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Figure 10: Recommendations made for groups of travelers with most friends  

5.1.5 Users With Least Friends Traveling Together 
 In the case where users with least friends are traveling together, users also 

had a small number of reviews. Out of the five users with least friends, only one, 

User 2, had written any reviews. Therefore Figure 11 below only shows the 

individual recommendations for User 1 and User 2, and the aggregate results for 

both users. Since User 1 has no review and no friends, the POIs are going to be 

ranked by distance. However, since User 2 has past reviews, a model could be 

built that reflects her preferences, which in the end gives the final scores and 

ratings for the group. 
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Figure 11: Recommendations made for groups of travelers with least friends  

5.1.6 Majority voting versus distance to clusters 
 In order to determine which strategy to use for the collaborative filter, I 

conducted multiple experiments with both clustering and majority voting. As it 

can be seen from Figure 13 below, for the Las Vegas Hotel recommendations, 

clustering has produced higher scores, since each friend’s score has equal weight 

when computing the score. In the case of majority voting, some of the POIs had 

visibly lower scores, due to a greater number of negative reviews. This implies 

that the clustering approach can amortize low scores and obfuscate the fact that 

some POIs are generally poorly rated, therefore I chose majority voting as the 

better approach for the collaborative filter.   
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Figure 12: Majority voting VS distance to clusters comparison  

5.2 Recommender Results Comparison 
 Among the experiments I performed to compare the recommender with 

other recommenders and itself, there were two particular scenarios that prove the 

VoyageWithUs recommender’s two distinctive features: 

● Making group recommendations, that accounts for each individual’s 

personal preferences. 

● Making personalized recommendations, by taking into account user 

history, preferences and their friends’ influence.   

5.2.1 Individual Versus Group Recommendations 
 I chose to compare the top five users that have generated the most number 

of reviews and run the recommender for each individually and for the group 

containing all five users. While the POI scores had little variation, the ranking of 

the POIs had more variation, which can be seen in Table 1 below. Looking at the 

individual rank and then the group rank, one can see that the highest ranked POIs 

in the group ranking are, as expected, those that have the highest individual 

scores. Similarly, the lowest rated POIs are the ones that have low individual 
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scores. One can see that not all users in this scenario can absolutely agree on 

highest ranked POIs, with User 1 and User 3 ranking the overall favorite, 

Bellagio, in the bottom half of the twenty POIs in the location selected. However, 

the delta between those users’ top and bottom rated POIs is negligible, all of their 

scores being in the [3.6, 3.9] range. If that were not the case, it would have been 

reflected in the final ranking. For instance, Flamingo had two scores: 2.5 and 2.0 

which made it drop to the second to last position, despite getting similar scores as 

Bellagio for users 1 and 3.  

Table 1: POI ranking for individuals and group of individuals 

POI User 1 
rank 

User 2 
rank 

User 3 
rank 

User 4 
rank 

User 5 
rank 

Group 
rank 

Bellagio Hotel 16 2 15 1 1 1 

Caesar’s 
Palace 

19 16 10 4 19 16 

The 
Cosmopolitan 

18 1 1 3 14 2 

Flamingo 14 20 20 20 18 19 

Paris Las 
Vegas 

13 18 18 17 15 15 

5.2.2 VoyageWithUs Recommender Compared to Yelp a and Random 
Recommender 

 The data that I used to implement the predictor was taken from the Yelp! 

public dataset. Therefore, I chose to generate recommendations for the same 

location on Yelp! and compare the rankings with the rankings produced by the 

VoyageWithUs recommender for the group with most reviews and with the 

ratings obtained via a random recommender, that scores the POI in a certain area 

randomly with scores between 1.0 and 5.0.  
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When generating recommendations in Yelp!, I did a query for “Hotels”, in 

a specific area in Las Vegas and, as expected, most of the returned results 

matched what the VoyageWithUs location-based filter produced. I performed the 

query from an account that has no friends and no reviews, from an account that 

has some friends and some reviews and while logged out. In all three cases, the 

results were identical, proving Yelp! does not personalize recommendation 

results. The default POI ranking in Yelp!, which is branded as Best Match seems 

to be a composite score involving the rating, number of reviews, but also other 

attributes which are not obvious without knowledge of their ranking algorithm. 

As one can see from Table 2 below, there were some POIs that had similar 

if not identical ranking in VoyageWithUs and Yelp! (The Cosmopolitan, Aria Sky 

Suites and Mirage), while two others had significantly different ranking. I believe 

that both the similar and different rankings are a consequence of the fact the 

VoyageWithUs makes personalized group recommendations, they just prove two 

different points. First, looking at the similar recommendations, one can see they 

have more than a few thousand reviews concentrated around a very similar high 

score. Since VoyageWithUs uses past recommendations and friends influence to 

make suggestions, it is only natural that for those highly rated POIs with 

thousands of reviews, my recommender will produce similar scores and ranking. 

Second, the dissimilar results prove that a popular POI on Yelp!, like Vdara, can 

drop significantly below the fold in preferences, depending on the trip participants 

individual preferences or influencers.  

The reason for including the Random recommender is to show that both 

Yelp! And VoyageWithUs implement recommender algorithms that can generate 

more relevant results than just randomly scoring the POIs, although in this 

particular run of the Random recommender, the top results was coincidentally the 

same as Yelp!. 
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Table 2: POI Ranking Comparison 

POI VoyageWithUs 
ranking 

Yelp ranking Random 
recommender 

ranking 

The Cosmopolitan 2 1 1 

Bellagio Hotel 1 4 9 

Aria Sky Suites 5 5 20 

Mirage 11 9 17 

Vdara 18 10 7 

5.3 Recommender Performance 
 In order to measure recommender performance, I ran the recommender 

through various scenarios for ten to one hundred iterations, depending on the 

length of each iteration, measured and averaged the execution times. The plots of 

the scenarios are presented in the following sections. 

5.3.1 Impact of number of user reviews on performance 
 Since the user with most reviews generated just over one thousand 

reviews, I chose to measure performance for users with 1, 10, 100, 500 and 1000 

user reviews and 0 friends, in order to establish a baseline performance. As one 

can see in Figure 14, the recommender execution time averages to approximately 

one second for the minimum number of reviews and doubles for the maximum 

number of reviews, which is an acceptable increment if we wanted to compute the 

recommendations on demand from the mobile UI.   
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Figure 13: Execution times variance on number of user reviews 

5.3.2 Impact of number of friends on performance 
 In order to determine the impact of the number of friends on performance, 

used in the collaborative-based filtering, I ran the recommender against users with 

1, 10, 50, 100, 500 and 1000 friends, by taking the user with most friends and 

limiting the number of friends selected in the collaborative-based filter. Since 

users with most friends have many reviews and in turn, their friends have many 

reviews, I also made variations in the max number of reviews per user (1, 10, 100 

and 1000). As it can be seen in Figure 15 below, number of reviews has a minimal 

impact compared to number of friends. Increasing the number of reviews can 

result in a 10% increase in execution time for the same number of user friends. 

The real performance killer is the increase in number of friends, which determines 

the execution time to increase from a few seconds when a user has 1 friend, to 30 

minutes when the user has 1000 friends. 
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Figure 14: Execution times variance on number of user friends 

5.3.3 Impact of number of trip participants on performance 
 The effect of the number of trip participants on the execution times is 

presented on Figure 16. The numbers were obtained for the top ten users with 

most reviews, but I limited the number of friends to one, in order to reduce the 

execution times. Each travel group was obtained by adding one traveler to the 

previous travel group, starting with the user with most reviews and ending with a 

group containing all ten users. The number of reviews was limited to 500, because 

that was the minimum number of reviews among the ten users. It can be seen that 

increasing the number of trip participants also increases the execution time, but 

even with ten users, the maximum time is shy of 45 seconds, so the performance 

bottleneck is still caused by the performance of the collaborative-based filter 

when the users have many friends. 
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Figure 15: Execution times variance on number of trip participants 

5.3.4 Strategies for performance improvement 
 One strategy to improve performance is pre-computing the collaborative-

based filtering asynchronously and storing it server-side instead of computing it 

on the fly. The main trade off is storage and creating an index that would allow to 

quickly retrieve the pre-computed results. Another trade off is that the predictions 

will be made on stale data, so a proper schedule will have to be established to 

improve the freshness of the data. 
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Chapter 6: Future Work 
 

 In the scope of this report I implemented a recommender architecture and 

implemented basic integration with a proof of concept application that targets 

enhancing the group travel planning experience. I believe the system designed has 

the potential to be extended and productized, if the following aspects are 

addressed in the future: 

● Improving the collaborative-based filter performance by looking into 

periodically asynchronously precomputing the recommendations 

generated by this filter. 

● Integrating multiple LBSN streams which will provide user sentiments 

and edges in the friends network, instead of using a static dataset. This 

integration will require looking into technologies like Apache Spark to 

aggregate and process social-media streams to perform sentiment analysis.   

● Properly integrating all the software components by moving the 

infrastructure to a paid tier in AWS, which will allow implementing 

resilience and failover mechanisms via autoscaling. 

● Improving the mobile application UX and testing it on focus groups to 

ensure that the different flows in the application are intuitive. 

● Addressing privacy concerns related to sharing of different artifacts such 

as user location and context, trip itineraries and travel artifacts.   
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Chapter 7: Conclusions 
 
 The gaps in current travel planning systems have created an opportunity to 

research and develop approaches that better serve groups of travelers, may they be 

families or backpackers. VoyageWithUs is a mobile and REST API solution that 

enhances group travel and tries to close some of the shortcomings of group travel 

planning, The solution proposed by this paper caters to groups of travelers by 

making personalized group travel recommendations and by allowing groups of 

travelers to collaborate in the travel planning process. The first feature, 

implemented via a hybrid recommender system, sets VoyageWithUs apart from 

other recommender applications by aggregating individual recommendations into 

a set of recommendations that are suitable for all trip participants. Experimental 

results have proven the recommender can incrementally adapt as more trip 

participants are added and the recommendations are generated such that they are 

suitable to every trip participant. The second distinctive feature is the 

collaborative aspect of VoyageWithUs, which allows users to share trips and trip 

artifacts, invite others to trips and allow everyone to contribute to a trip. With 

proper social streams integration, such as the ability to retrieve user sentiment and 

create edges between users directly from Facebook and Instagram, 

VoyageWithUs could be productized into a novel travel planning platform that is 

targeted at people that travel in groups, whether they are physically co-located or 

not. 
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Appendix A: The Yelp Challenge Dataset Format 

business 

{	
				'type':	'business',	
				'business_id':	(encrypted	business	id),	
				'name':	(business	name),	
				'neighborhoods':	[(hood	names)],	
				'full_address':	(localized	address),	
				'city':	(city),	
				'state':	(state),	
				'latitude':	latitude,	
				'longitude':	longitude,	
				'stars':	(star	rating,	rounded	to	half-stars),	
				'review_count':	review	count,	
				'categories':	[(localized	category	names)]	
				'open':	True	/	False	(corresponds	to	closed,	not	business	hours),	
				'hours':	{	
								(day_of_week):	{	
												'open':	(HH:MM),	
												'close':	(HH:MM)	
								},	...	
				},	
				'attributes':	{	
								(attribute_name):	(attribute_value),	...	
				},	
} 

review 

{	
				'type':	'review',	
				'business_id':	(encrypted	business	id),	
				'user_id':	(encrypted	user	id),	
				'stars':	(star	rating,	rounded	to	half-stars),	
				'text':	(review	text),	
				'date':	(date,	formatted	like	'2012-03-14'),	
				'votes':	{(vote	type):	(count)},	
} 

user 

{	
				'type':	'user',	
				'user_id':	(encrypted	user	id),	
				'name':	(first	name),	
				'review_count':	(review	count),	
				'average_stars':	(floating	point	average,	like	4.31),	
				'votes':	{(vote	type):	(count)},	
				'friends':	[(friend	user_ids)],	
				'elite':	[(years_elite)],	
				'yelping_since':	(date,	formatted	like	'2012-03'),	
				'compliments':	{	
								(compliment_type):	(num_compliments_of_this_type),	...	
				},	
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				'fans':	(num_fans),	
} 

check-in 

{	
				'type':	'checkin',	
				'business_id':	(encrypted	business	id),	
				'checkin_info':	{	
								'0-0':	(number	of	checkins	from	00:00	to	01:00	on	all	Sundays),	
								'1-0':	(number	of	checkins	from	01:00	to	02:00	on	all	Sundays),	
								...	
								'14-4':	(number	of	checkins	from	14:00	to	15:00	on	all	Thursdays),	
								...	
								'23-6':	(number	of	checkins	from	23:00	to	00:00	on	all	Saturdays)	
				},	#	if	there	was	no	checkin	for	a	hour-day	block	it	will	not	be	in	the	dict	
} 

tip 

{	
				'type':	'tip',	
				'text':	(tip	text),	
				'business_id':	(encrypted	business	id),	
				'user_id':	(encrypted	user	id),	
				'date':	(date,	formatted	like	'2012-03-14'),	
				'likes':	(count),	
} 

photos (from the photos auxiliary file) 

This file is formatted as a JSON list of objects. 

[	
				{	
								"photo_id":	(encrypted	photo	id),	
								"business_id"	:	(encrypted	business	id),	
								"caption"	:	(the	photo	caption,	if	any),	
								"label"	:	(the	category	the	photo	belongs	to,	if	any)	
				},	
				{...}	
] 
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Appendix B: Application Screenshots 

 
Figure B.1: Create trip Activity 
 

 
Figure B.2: Adding Friends to a Trip  
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Figure B.3: Viewing Trip Members 
 

 
Figure B.4: Adding Trip Artifacts 
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Figure B.5: Trip Summary 
 

 
Figure B.6: List of User Trips 



57 

Appendix C: REST API Endpoints Description 

Table 1: Trip CRUD Operations 

Endpoint Method Description 

<api_url>/trips POST Creates a new trip object, needs a trip 
object to be passed in the request body. 

<api_url>/trips/{id} DELETE Deletes a trip. Needs ID of trip to 
delete passed in as a path parameter. 

<api_url>/trips/{id} PUT Updates a trip. Needs ID of the trip as 
a path parameter and updated trip 
object as body parameter. 

<api_url>/trips/{id} GET Gets detailed trip object. Needs ID of 
the trip to view as path parameter. 

<api_url>/trips GET Returns all trip IDs. 

<api_url>/trips/users/{id} GET Returns all the trip IDs for user with 
specified ID. 

<api_url>/trips/users/{id}/
current 

GET Returns all the current and future trip 
IDs for user with specified ID. 

<api_url>/trips/users/{id}/
past 

GET Returns all the past trip IDs for user 
with specified ID. 
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Table 2: Trip Artifact  CRUD Operations 

Endpoint Method Description 

<api_url>/trips/{id}/ 

artifacts 

POST Creates a trip artifact for a trip. I pass in 
an Artifact object to create as a body 
parameter and trip ID as a path 
parameter. 

<api_url>/artifacts/{id} DELETE Deletes a trip artifact with the specified 
ID. 

<api_url>/artifacts/{id} PUT Updates the trip artifact that had the ID 
specified in the path parameter with a 
trip artifact object specified in the 
request body. 

<api_url>/artifacts/{id} GET Gets the trip artifact with the specified 
ID. 

<api_url>/trips/{id}/ 

artifacts 

GET Gets all artifacts for a trip with the 
specified ID. 

Table 3: User CRUD Operations 

Endpoint Method Description 

<api_url>/users POST Creates a user profile object, given a user 
object in the request body. 

<api_url>/users/{id} GET Gets a user’s profile info with the specified 
ID. 

<api_url>/users/{id} PUT Updates the user who has  the ID specified 
in the path param with the user object 
specified in the body of the request. 

<api_url>/users/{id} DELETE Deletes the user with the ID specified. 
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Table 4: Sentiment CRUD Operations 

Endpoint Method Description 

<api_url>/sentiments POST Creates a sentiment object passed in the 
request body. 

<api_url>/sentiments GET Gets all sentiment IDs from the datastore. 

<api_url>/sentiments

/pois/{id} 

GET Gets sentiment IDs for a POI with the 
specified ID in the path parameter. 

<api_url>/sentiments

/users/{id} 

GET Gets sentiment IDs for a user with the 
specified ID in the path parameter. 

Table 5: POI CRUD Operations 

Endpoint Method Description 

<api_url>/pois POST Creates a POI object given in the request 
body. 

<api_url>/pois GET Gets all POI IDs. 

<api_url>/pois/{id} GET Gets specific details for a POI with the 
specified ID. 

<api_url>/pois/{id} DELETE Deletes the POI with the ID specified in the 
path parameter. 

<api_url>/pois/{id} PUT Updates the POI that has the ID specified in 
the path parameter with the POI object in 
the request body. 
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Table 6: Recommender Operations 

Endpoint Method Description 

<api_url>/recommend/trip/

{id} 

GET Gets all the recommendations for a trip 
with an ID given as path parameter. 

<api_url>/recommend/trip/

{id}?type=<poi_type> 

GET Gets the recommendations for certain 
POI types (hotel, restaurant, etc...) for 
a trip with an ID given as path 
parameter. 

<api_url>/recommend/near
by?location=<location> 

GET Gets nearby recommendations based 
on the passed in location. 

Table 7: Recommender Endpoints Filters 

Filter Query Parameter 

Location nearby=<location> 

Day of Week weekday=<day_of_week> 

Month month=<month> 

Day day=<day> 

Time of day time=<hh:mm> 

POI type type=<poi_type> 

User user=<user_id> 

Price category price=<$$$signs> 

 

  



61 

Table 8: Trip Itinerary Operations 

Endpoint Method Description 

<api_url>/itinerary/trip/{id} GET Triggers the computation of an 
itinerary for trip with the specified ID. 

<api_url>/itinerary/walking/

trip/{id} 

GET Triggers the computation of a walking 
tour for trip with the specified ID. 
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