

The Report committee for Sonia-Roxana Marginean Certifies that this is the
approved version of the following report:

VoyageWithUs: A recommender platform that enhances group

travel planning

 APPROVED BY
SUPERVISING COMMITTEE:

__

Christine Julien, Supervisor

 __
Suzanne Barber

VoyageWithUs: A recommender platform that enhances group

travel planning

by

Sonia-Roxana Marginean, B.E.

Report

Presented to the Faculty of the Graduate School of
The University of Texas at Austin

in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
December 2016

 iii

VoyageWithUs: A recommender platform that enhances group

travel planning

by

Sonia-Roxana Marginean, M.S.E.

The University of Texas at Austin, 2016

SUPERVISOR: Christine Julien

Group travel planning poses unique challenges such as choosing hotels,

restaurants and venues while catering to everyone’s wants and needs, or sharing

trip itineraries and artifacts among trip participants. State of the art travel planning

applications such as Yelp and TripAdvisor, while integrating with social networks

and making recommendations, don’t offer recommendations for specific groups

of travelers. On the other hand, while TripCase offers trip planning capabilities

and email sharing, it doesn’t offer a full interactive travel planner that allows

groups to contribute to the travel planning process. This report proposes an

approach to making personalized group travel recommendations based on hybrid

recommendation techniques that aggregates individual recommendations to find

common ground between trip participants. This is achieved by designing a

recommender system that uses data from a location based social network(LBSN)

and makes recommendations based on the trip location, then refines them by

applying incremental filters which are responsible for incorporating user

preferences, similarity to other users and user context. Finally, it takes the

generated recommendations for each trip participant and ranks them such that the

items most highly ranked are the ones most likely to fit everyone’s preferences.

The rationale for choosing a hybrid recommender system is to address common

issues such as the cold start problem, where the quality of the recommendations is

 iv

affected by either too few reviewers for a certain point of interest(POI) or too few

reviews generated by trip participants. These issues, along with a coverage of

related work is detailed in the first part of this report. In order to make the

applicability of the recommender more tangible, I integrated it into a proof of

concept mobile application that also allows travelers to collaborate and share

travel planning artifacts, and generates itineraries based on the recommendations

made. The recommender accuracy was measured against recommendations made

by state of the art applications, while individual filters were evaluated using

commonly used metrics. The recommender was tested in a series of relevant

scenarios proving the effectiveness of the approach in making group travel

recommendations, versus individual recommendations generated by other

applications.

 v

Table of Contents
Chapter 1: Introduction………………………………………………………….... 1

1.1 Motivation and Objectives………………………………………………... 2
1.2 State of the Art…………………………………………………………..... 4

Chapter 2: Related Work……………………………………………………........7
2.1 Recommender Systems and the role of Social Networks…………………7
2.2 Location and Context based POI recommendations…………………….. 10
2.3 Travel planning and itinerary generator tools………………………….... 12

Chapter 3: Approach…………………………………………………………...... 14
3.1 Methodology…………………………………………………………...... 14
3.2 Recommender Architecture……………………………………………... 16
3.3 Dataset Description……………………………………………………… 21
3.4 Algorithms for generating itineraries……………………………………. 24
3.5 Evaluation Metrics………………………………………………………. 24
3.6 Technologies…………………………………………………………….. 25
3.7 Challenges Identified……………………………………………………. 27

Chapter 4: Implementation……………………………………………………… 28
4.1 Yelp Dataset preprocessing…………………………………………….... 28
4.2 Recommender Agent Implementation…………………………………... 29
4.3 Mobile Application Frontend and Backend Implementations…………... 30
4.4 Limitations Of The Implementation………………………………….... 36

Chapter 5: Experimental Results………………………………………………... 37
5.1 Test Scenarios………………………………………………………….... 37
5.2 Recommender Results Comparison…………………………………… 43
5.3 Recommender Performance……………………………………………... 46

Chapter 6: Future Work…………………………………………………………..50

Chapter 7: Conclusions………………………………………………………….. 52

Appendix A: The Yelp Challenge Dataset Format……………………………… 52

Appendix B: Application Screenshots…………………………………………...54

Appendix C: REST API Endpoints Description…………………………………57

 vi

Bibliography…………………………………………………………………….. 62

1

Chapter 1: Introduction

Travel planning has moved in the past decade from travel agencies into the

online environment and, more recently, into the mobile environment. The first

phase of travel planning, namely research, is strongly influenced by crowd-

sourced information such as ratings and reviews on travel websites and social

streams. This creates a need for mobile travel planning tools to augment their

existing functionality and incorporate user’s opinions and preferences, the so-

called sentiment analysis, when making travel recommendations in order to assist

the travel planning process.

Another aspect that seems to be ignored by travel planning apps is catering

to groups of travelers. Traveling is more often than not a social activity, where

people travel in pairs or groups. While some apps offer the ability for trip

members to participate in the travel planning process, none of them offer

personalized suggestions for group of travelers such as hotel, venue and restaurant

recommendations based on the common interests and preferences of the specific

group of users that is traveling together.

This paper proposes a new approach to group travel planning, by creating

a mobile travel planning platform that makes personalized group travel

recommendations and generates travel itineraries for those groups of travelers.

The proposed approach uses a hybrid recommender system for making group

specific recommendations and shortest path algorithms for generating travel

itineraries. It also employs trip and artifact sharing to support user collaboration.

2

1.1 Motivation and Objectives
According to the US Travel Association1, the US travel industry has

generated over $2.1 trillion in 2015, with $650 billion accounting for leisure

travel. Moreover, the US travel industry has seen a 5% increase in the past year.

When surveyed2, 87% of travelers responded that they perform the bulk of travel

planning online, with 43% of them reading online reviews and 70% documenting

their trips on social networks. As travel planning moves from the traditional brick

and mortar agencies to the online travel sites and users move to mobile platforms,

30% of travelers use mobile apps for their travel planning.

These statistics indicate that more of the travel planning process is moving

to mobile, with a strong influence from social media, which opens the door to new

opportunities that make use of social streams to enhance the mobile travel

planning process.

With leisure travel accounting for a third of total tourism, travel in pairs,

with family or groups is a natural consequence. When confronted about the

challenges of collective travel, these vary from difficulty in communication to not

being able to satisfy everyone’s time/budget constraints or their preferences. Out

of the top ten most pressing challenges3, I have identified three that would be

addressable in the context of a mobile travel planning application:

1. Communicating trip details within a group, via trip and trip artifact

sharing.

2. Working with different budgets, by aggregating multiple users’ constraints

in making travel recommendations.

1 https://www.ustravel.org/answersheet
2 http://infographicsmania.com/online-travel-statistics-2012/
3 http://blog.makeitsocial.com/misc/the-top-ten-challenges-of-travelling-as-a-group/

3

3. Addressing different preferences for activities, accommodations,

destinations, by computing an affinity model between the users’

preferences.

Putting all this together and my passion for travel, my proposal is to build

a mobile platform for travel planning to capitalize on the massive amounts of

travel ratings and reviews available via Location Based Social Networks such as

Yelp or TripAdvisor, and address the shortcomings of traveling in groups.

My objectives for this report are:

● To research different strategies for performing personalized

recommendations for groups of travelers.

● Design a recommender architecture focused on group travel.

● Deliver a proof of concept mobile application that incorporates the

recommender architecture and travel planning tools, to make group

focused recommendations and generate appropriate itineraries.

● Measure the effectiveness of the chosen approach both by using

quantitative methods, like accuracy, coverage and novelty, and qualitative

methods such as real user input.

● Refine the approach to minimize poor recommendations by incorporating

action feedback into the learning agents.

4

1.2 State of the Art
With a plethora of travel planning apps that are emerging daily from the

app stores, I often end up with multiple applications that serve different purposes,

from research, to booking, to keeping track of flights and reservations. In order to

identify which are the most frequently used travel apps and determine their

suitability for group travel, I queried AppAnnie4 and chose the best performing

apps from each of the following categories.

Travel Research Apps

In this category, I chose travel apps that help in the initial research phase

of the travel planning process, namely when users search for hotels, things to do

and read reviews. One of the most popular apps in this category is TripAdvisor.

With a huge worldwide user base and an excellent feature vector for their Points

Of Interest (POIs), TripAdvisor users can filter results by contextual criteria such

as: time of year, suitability for a couple, a group or a family. This filtering is made

possible by the existence of a set of numeric and boolean attributes that each POI

possesses, the so-called feature vector mentioned above. However, it offers little

personalization based on individual user profiles and no option to aggregate

multiple profiles. Although my profile has more than 200 places visited and more

than 600 POIs rated, ranked or reviewed, the only recommendations I get are for

certain hotel categories based on my previous stays.

Yelp also ranks high in this category, as less of a travel planning app and

more of a Location Based Social Network. It is mostly suited for researching

businesses and places to eat. I often use it while traveling in the US, as most of

the countries I visited do not have a strong Yelp presence. While Yelp offers more

context to researching POIs (like the ability to filter by opening hours and the

4 https://www.appannie.com/indexes/all-stores/rank/aggregator/?month=2016-07-01&country=US

5

ability to zoom in on a certain map area) and personalized recommendations

(mostly collaborative-based), it also lacks a group recommendation solution.

Travel Booking Apps

As the name says, this app category is mainly used for booking hotels,

flights and travel packages, but also for window shopping and price comparison.

At the top of the travel booking apps stays the giant booking engine Expedia,

who owns Travelocity and Homeaway and other travel booking engines and is

one of the few to offer their EAN dev API for free. While their recommended

packages are often subject to paid advertising, Expedia offers some flexibility by

allowing groups of travelers to book multiple rooms and cater to specific room

arrangements. Much like TripAdvisor, it can filter based on user constraints and

preferences, but again it falls short on making personalized recommendations.

Travel Planning Apps

This category of apps contains apps that are widely used to create and

keep elaborate travel itineraries. Two notable mentions go to TripCase and

Travefy. TripCase is the longer standing app that allows to combine different trip

artifacts like flights, hotels, packages and rental cars, integrating with booking

engines and airlines to retrieve trip details from booking codes, as well as

integrating with flightstats to keep track of flight statuses. Despite its usefulness,

it has no intelligence built in with respect to recommendations or group travel.

Sharing an itinerary means sending an email to someone who can “follow” your

trip, but there are no import features per se and no way to truly collaborate on a

trip itinerary.

Travefy is a new-comer app launched in 2016 that focuses on group travel.

It allows trip participants to contribute to building the trip itinerary, add artifacts

and even split the bill. It incorporates a chat platform that allows group

6

communication, but it also fails short on making group or any other type of POI

recommendations.

My proof of concept app incorporates elements of travel planning from

TripCase and Travefy, enhanced with POI recommendations based on user

feedback, group preferences, contextual information and given constraints.

7

Chapter 2: Related Work

This chapter summarizes the main takeaways from my research into

recommender architectures, the use of social streams and LBSNs in

recommenders and the application of recommender systems in travel planning. In

order to better understand the mechanisms used in recommender systems, I have

conducted research into the following areas: general recommender systems,

location based recommender systems, and contextual recommender systems. I

then looked into how streams from Location Based Social Networks can be

integrated with recommender systems to add context to recommendations and

how they can be used in collaborative-based recommenders. Finally, I researched

travel planning papers that had as their main focus generating itineraries based on

context, constraints, and recommendations.

2.1 Recommender Systems and the role of Social Networks

According to the literature [2,3,6], recommender systems can be grouped

into three main categories, based on the strategies they employ to make

recommendations:

1. Content-based recommenders use the user’s past experiences in order to

make future predictions. The advantage of this approach is that it

incorporates feedback from the user based on their history and

preferences, predicting to a higher degree their future preferences. The

downside is that content-based recommenders are subject to the cold start

and over-specialization issues described below.

2. Collaborative-based recommenders rely on the user’s similarity to other

users and make predictions based on user affinity models. The authors of

[3] start from the premise that if users were similar in the past, they will be

similar in the future and therefore one can make recommendations for one

8

user based on the preferences of their kins. This type of system is ideal if I

do not want to deal with item specifics, since the system only needs to

know about user preferences, abstracting completely from the

recommended items. Its drawback is addressing the cold start situation,

when I do not know much about a specific user, therefore it is difficult to

infer which users are going to be similar to them. This system is also

problematic when new items are introduced.

3. Knowledge-based recommenders match factual knowledge about the

recommended item with the user’s needs. This is the ideal system to use in

absolute cold start environments, when not much is known about a user

and there are not many users in the system to begin with, since it matches

objective facts to inputted user needs.

Some of the shortcomings identified in recommender architectures [2]

come from insufficient user or item profile data, either because the user has not

generated enough actions to be able to make high confidence prediction, there are

not many users in the system for collaborative-based recommenders, or there are

not enough items or item ratings in the system. The main shortcomings according

to the literature [2] are:

● The new user problem or the cold start problem, present in content-based

and collaborative-based recommenders. When a new user joins that has no

previous history, one cannot make high confidence recommendations

since she has no preference history that can match other items or other

users. This issue can be addressed by integrating social network activity

into the user profile, such as accessing their friends list in order to find

users that are like them or their checkins to find places they have visited

and liked in the past. A few papers that discuss the importance of social

networks in recommender systems are [2] and [3].

9

● The sparsity problem is manifested when there are too few items in the

recommender. This can be addressed by tapping into LBSNs such as Yelp,

TripAdvisor, or Foursquare and importing new items.

● Limited content analysis goes hand in hand with the sparsity problem and

is characterized by the lack of sentiment content for a specific item. This

can make an item less desirable for a recommender, but can be addressed

by curating content from other sources.

● Over-specialization is when the recommender is inflexible and does not

have any novelty and serendipity factors built into it. It can be addressed

by introducing some randomness or novelty factor when making user

recommendations, regardless of user preferences.

In order to address shortcomings of each strategy, most recommender

systems in the literature are hybrid [2], employing multiple strategies and

sometimes adding dimensions, like user context [6] and constraints (time,

location, cost) [5,9] and social network artifacts such as check ins, ratings and

reviews from other LBSNs. In [3], the authors combine all three strategies using

filtering and fuzzy clustering for computing user affinity.

In [2], the authors emphasize the importance of social networking in

making recommendations. They start from the premise that users want to make

informed decisions, therefore they seek information from past experiences of

other users: friends and influencers. With the ability to make ratings and rankings

and leave reviews, Location Based Social Networks (LBSNs), such as Yelp,

Foursquare and now Facebook have become an increasingly powerful tool in

building user trust. The paper also briefly addresses techniques for group focused

recommendations:

● Merging sets of recommendations and recommending the resulting set.

● Aggregation of recommendation items and recommending only the items

that are present in all individual sets of recommendations.

10

● Construction of group preference models, which is the technique that I

will be adopting in this paper and allows aggregation based on similarity

rather than perfect matches.

The authors of [4] discuss recommender systems based on cellular

learning automata (CLA) for website navigation prediction patterns. The proposed

innovation comes from dynamically incorporating feedback into

recommendations and improving the reward-punishment criterion of the CLA,

evaluating the improvement using formal metrics such as recommendation

accuracy and coverage.

Some other metrics commonly used in evaluating recommender systems

are discussed in [2,7]:

● Recommendation accuracy metrics - Mean Absolute Error, Classification

Error, Precision and recall, ROC Curves, Rank accuracy and prediction-

rating correlation.

● Coverage of system - percentage of items in the system recommended.

● Learning rate - measured by how fast the recommender converges.

● Novelty and serendipity - the ability of the recommender to make novel

suggestions.

● Recommendation confidence - based on probabilities.

● User evaluation - direct feedback from user actions rating/ranking

recommendations.

2.2 Location and Context based POI recommendations

The authors of [1] focus their research on the efforts made to predict

future user locations based on social network check ins and make appropriate

recommendations. Their approach compares three machine learning techniques:

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and

Probabilistic Neural Networks (PNN), proving the superiority of the latter over

11

the former two. Their proposed architecture consists of a mobile agent that

collects the data and a cloud computation service that makes the

recommendations. While they mainly focus on individual preferences, they

incorporate affinity with other users (friendship relationships on LBSNs) when

making recommendations.

VISIT [6], the prototype for a mobile tour guide system, focuses on the

importance of incorporating context in recommendations. The authors discuss the

boom of LBSNs with the use of mobile devices and the rise of interactive travel

as users use mobile for navigation and discovery. While most apps, like Yelp, use

distance from location to make suggestions of POIs nearby, there are many other

sources of context coming from both hardware and soft sensors that can help

make recommendations, sensors such as the user’s current location, weather, day

of the week and time of day. Therefore, VISIT proposes to add elements such as:

current weather, time, user preferences and social media sentiment gathered from

social activity. The proposed architecture is an ANN, however the paper lacks

experimental results, since the VISIT architecture had not yet been implemented.

In [7], the authors focus on predicting user checkin behavior by relying on

soft sensing, namely app usage, phone calls, messages, and social media activity.

Similar to VISIT [6], the paper points out the importance of context when making

predictions and how location alone is not a sufficient indicator of user context,

proposing a learning agent that samples soft sensor data in the background in

order to be able to make suggestions readily available. They address the

shortcomings of sampling hardware sensors and sampling very often, which could

lead to battery depletion, however they do not discuss privacy issues arising from

the use of soft sensing.

12

2.3 Travel planning and itinerary generator tools

The travel planning tool proposed in [5] recommends travel packages that

conform to time and budget constraints by modeling the travel itinerary

generation as a knapsack problem. The travel packages are composed of multiple

POIs that each have a cost associated to them (which is a combination of time,

money, and other constraints), and they are ranked by that cost. The recommender

then iterates over the same knapsack algorithm until it converges to an optimal

solution. The solution takes into account also the cost to travel between POIs and

the compatibility between them (i.e., if a user likes landmarks and museums, the

suggested POIs will be from the same family of POIs).

Another similar itinerary generator, this time for flight+hotel packages

[10] takes a set of destinations and a time interval and uses a shortest path

algorithm to find the best packages. It models the itineraries as a Traveling

Salesman Problem and uses Dijkstra’s algorithm for recommending the best flight

options.

A more elaborate travel planning tool is discussed in [9], which takes

different types of POIs from LBSNs: food, venue, and entertainment and builds

personalized travel packages, similar to VISIT. It uses collaborative-based

filtering to generate personalized itineraries, while employing geospatial

constraints to allow their algorithms (a form of heuristic search based travel route

planning) to converge to an optimal solution. Individual candidate POIs are

selected based on: user feature vectors built from their LBSN profiles, location

popularity, user location and time of day, which accounts for a fair amount of the

user’s context.

The main takeaways from the conducted research that I plan on applying

in my work are:

13

● Recommender systems should be a hybrid of the three main recommender

categories: content, collaborative, and knowledge based, in order to

account for cold start and other challenges.

● Both collaborative and content based location recommenders can benefit

from integrations with social streams from LBSNs like Yelp, Foursquare,

or Facebook, which can provide user activity and POI rankings and ratings

to address the cold start problem.

● User context and constraints are core to making personalized

recommendations, as is dynamically incorporating user feedback.

● Soft sensing opens new avenues to inferring user context, but it comes

with concerning privacy issues that need to be addressed.

● Recommenders designed to address group recommendations need to

incorporate a form of aggregation or build group preference models.

● Most approaches for effectively computing itineraries are variations of a

shortest path problem.

● In addition to recommendation accuracy, metrics such as coverage,

serendipity and novelty are fundamental in evaluating a recommender’s

performance.

14

Chapter 3: Approach

This chapter details the proposed approach to building a group focused

recommender system and a complex itinerary generator, with immediate

application to a group travel planning mobile application. I will talk about the

general methodology used to gather user and POI (Point of Interest data), build

user and POI profiles, make recommendations, and interpret feedback from the

users.

The available datasets will be described and an approach to selecting

relevant features from the datasets will be proposed. Next, I will discuss the

algorithms that were evaluated for performing recommendations and itinerary

generation. I will talk about how the approach was evaluated and what metrics

were used.

Finally, the technologies employed will be discussed and some of the

challenges identified will be addressed.

3.1 Methodology
The approach chosen to address the group travel recommendation problem

identified is to build a collaborative travel planning mobile application that allows

users to collaborate in the travel planning process while making personalized

group recommendations for trip artifacts and travel itineraries. For the sake of

simplicity, the app will:

● Allow users to create, join, and invite their friends from their phonebook

to trips.

● Allow users to add artifacts to trips, such as: flight, hotel, and package

reservations from Expedia, car rentals and points of interest. The reason

for choosing Expedia is that they offer their REST API free of charge.

15

● Be able to make group recommendations for three types of artifacts:

hotels, food venues, and landmarks.

● Be able to recommend flight plus hotel packages from Expedia based on

group preferences and constraints such as trip dates and price.

● Compute walking itineraries at a certain location based on preferences and

constraints.

The architecture of the mobile application and the technologies that were

used to build the full software stack are described in sections 3.7 and 3.8.

The POI data that was used to make recommendations was meant to be an

aggregate of multiple social media and LBSN streams, such as TripAdvisor, Yelp,

Facebook, and Instagram. However, the aggregation of multiple streams in

realtime and generation of consistent views of the POI dataset is a complex

research topic in itself, that is outside the scope of this paper. Therefore, I chose to

use a static dataset from a LBSN that is publicly available, has a big enough POI

and user set such that the cold start will not be an issue, but small enough such

that I did not have to spend a great amount of time optimizing queries and data

access. The description of the dataset and the criteria for selecting it is described

in section 3.3 of this chapter.

For making recommendations I chose to build a hybrid recommender

system that incorporates all the three major recommender systems: knowledge,

content, and collaborative-based, augmented with three dimensions: group

preferences, user feedback, and context. The recommender uses multiple levels of

filtering to sieve the original set the POIs and identify only the artifacts that have

a high probability to match the group preferences. The architecture of the

recommender is described in detail in section 3.2 below.

In order to measure the performance of the recommender, I evaluated it

against two other recommenders and computed the following metrics: Mean

Absolute Error with respect to the test samples, coverage and evaluate

16

serendipity. The first system for comparison is a random POI generator on the

chosen dataset and the second one is the Yelp recommender. Since none of them

are focused on group recommendations, I generate predictions for multiple users

and then merged them.

For the user profile model generator, I evaluate it by splitting the user

profile dataset into a training and test set and incrementally improving the model

by evaluating the model’s predictions against the test dataset.

3.2 Recommender Architecture
As most of the literature discussing recommender systems suggests, the

proposed recommender architecture is a hybrid one, combining elements from

knowledge, collaborative, content and context based recommenders.

A recommendation agent is dispatched for each user, each time they

perform a direct query to find a POI or they join a trip. The agent takes the initial

set of POIs, apply the factual constraints, such as POI category and location and

filter out all the POIs that do not conform to the constraints. Next, the remaining

POIs are filtered twice: once through a collaborative filter that surfaces POIs that

are popular with similar users and once through a filter that surfaces POIs that are

recommended by the User profile model and past feedback. The union of these

two sets of POIs constitutes the individual user’s recommendations and are

precomputed and stored in her trip profile. The individual recommendations from

each trip participant are aggregated and the resulting set is filtered at the time of

the ad-hoc queries based on the user’s context, inferred from soft sensing (day of

week, time of day, weather), or given by the users (hours and money to spend).

A visual representation of the Recommender Architecture and the data

flow through the system is depicted in Figure 1.

17

Figure 1: Recommender Architecture

3.2.1 User profiles
The user profile is based on all the recommendations the user has made

and is built dynamically when recommendations are requested by the app. The

reason for building the profile dynamically is that it is contingent on realtime user

data and needs to be updated as the user makes new recommendations.

The agent that is built to generate the user profiles relies on supervised

learning techniques. All the user sentiment data is gathered and then split into two

sets: one containing 80% of the samples that are used for training and another

containing 20% of the samples that are used for test purposes. The training data is

then fed to a model builder that attempts to build a model using Linear

Regression(LR) and Multiple Linear Regression(MLR) using individual features

and feature sets from the yelp dataset. The proper model is then chosen during the

implementation phase with accuracy and performance in mind. The 20% test set

is then used to make predictions and evaluate the accuracy of the model. I used

common accuracy metrics such as RMSLE (Root Mean Squared Logarithmic

Error) to measure accuracy. The predictions are made on the ratings column,

while other features are used for building simple and multiple linear regression

18

models. Then, depending on the accuracy, I will build a feedback loop and

improve the prediction model. Finally, this model will be used to make

predictions on new POIs.

A conceptual diagram of the user profile model builder is presented below.

Figure 2: User Profile Builder

3.2.2 Recommender Filters

As mentioned in the previous sections, the recommender is essentially a

set of cascading filters that fulfills different roles and addresses the common

recommender issues that were identified in Chapter 2.

The four recommender filters and their functionalities are:

● The Knowledge-based filter is responsible for filtering based on

constraints that the user either manually inputs as part of an in-app query

or that the app infers from the trip details. The main constraint types are

the POI category and the POI location. Since this is the first filter in the

chain, I need to ensure that it will not constitute a bottleneck; therefore I

experimented with different clustering and indexing techniques on the POI

database, such that I optimize it for the knowledge-based filter queries.

This filter is meant to address the cold start issue that recommenders have

when there are not enough user preferences in the recommender system.

19

Applying this filter guarantees that at least the POIs at the trip location

will be recommended to the user.

● The Collaborative-based filter makes recommendations based on the

similarity with other users. Since the POI dataset chosen comes from a

LBSN that contains info about a user’s friends network, I used that to

determine affinity between users. I propose a fuzzy clustering technique to

extract the list of recommended POIs. Each friend in the user’s network

represents a cluster, while POIs have a probability of belonging to a

cluster, based on the user’s past preferences (their profile model). Based

on that probability, I select a number of POIs that have a high degree of

belonging to more than one cluster. Another strategy I tested for this filter

is majority voting, where the most frequent score in the user’s friends

sentiments is chosen as the POI score. The collaborative-based filter

addresses issues such as novelty since it will expand the recommendation

pool, going outside the user’s past experiences and preferences. In

combination with the content-based filter, it also addresses the POI

coverage issue, because the two filters are applied in parallel and their

results combined.

● The Content-based filter also takes the list of POIs generated by the first

filter and applies the user’s model to them in order to determine which

POIs to recommend based on the user’s preferences. The user model is

built first for the existing users in the dataset by splitting the dataset into

two sets: training and test. I attempted building a few models, such as

regression and multiple linear regressions and evaluated their accuracy

before settling on one model. The resulting set from this filter is merged

with the set from the collaborative-based filter to form the user’s

individual recommendation set, that will be kept in the user’s trip profile

such that it can be retrieved at a later time without having to recompute

20

everything from scratch, which will improve user experience and app

performance.

● The Context-based filter is used as an ad-hoc filter for location aware

queries and infers user context from the mobile soft sensors or directly get

context from the user’s input. What I mean by this is that the context-

based filter will be activated only when the user does a nearby-type of

search. At that point, the app will sample the day of week, time of day and

weather and filter out POIs that are closed or not appropriate for the

weather or time of day. Additional context can come directly from the

user, such as cost and time available. Some of the intelligence behind this

filter is contingent on the POI having attributes that allow us to perform

said filtering. The attributes could be features like: outdoors, good for

groups, price ranges or indicators of affordability, time to spend, etc.

A detailed implementation of each filter will be given as part of the

implementation in Chapter 4.

3.2.3 Aggregator
The aggregator takes the recommendations generated for each trip

participant and build a common list of recommendations, ranking higher the POIs

that are popular with most participants and the items that have overall higher

ratings, computed by averaging the individual user scores. Another alternative

that I explored is majority voting, where a POI will only be surfaced in the

recommendations if it has a majority vote from trip participants, meaning that the

POI ranking will have the most frequent rating among the individual POI results.

This ranking is based on a computed score, that I call the SmartTrip score, and

POIs will be surfaced in descending order of this score.

21

3.3 Dataset Description
While researching potential data sets that I can use to mimic LBSN

generated data, I came across a series of potentially good freely available ones

provided by Expedia and Yelp or gathered by third parties from LBSNs. The

Expedia dataset fell through because it was limited to hotels only and I wanted a

dataset that incorporated other types of POIs. Moreover, Expedia does not provide

access to anonymized user profiles like the Yelp dataset does, which will be

useful in testing different scenarios like: user with many and few reviews, user

with many and few friends. Finally it came down to the Yelp public dataset and a

dataset gathered by crawling TripAdvisor pages. Both had multiple types of POIs,

rating and reviews data correlated to user profiles and a fairly big set, but the Yelp

dataset was superior for reasons that I will cover in the following subsections.

3.3.1 Yelp Public Dataset

The Yelp public dataset is published by Yelp as part of their data mining

challenge. The current set is 3GB large without photos and contains 2.7M reviews

for 86K businesses in 10 cities across 4 countries and contains data from 687K

users. In addition to the reviews, the dataset contains also user profiles, tips,

business descriptions, social check-ins, and photos.

The dataset contains the following object types, which are expressed as

JSON objects:

● Business, containing the business’ name, address, coordinates, categories,

hours of operations, ratings, number of reviews. This factual data is core

to the knowledge-based filter.

● Review, containing the business reviewed, reviewer ID, text of the review,

rating, date and votes. Since I am not focusing on natural language

processing to get user sentiment for reviews, I rely on ratings alone,

combined with number of votes, to determine usefulness of the review. I

22

use the ratings information in the user’s feedback loop and in the

collaborative-based filter. However, I might want to retrieve the review

text for display purposes alone.

● User, containing their names, their Yelp stats and their list of friends.

Having their list of friends readily available makes this dataset valuable

for building the collaborative recommendation filter.

● Check-in, containing the time and number of checkins for a certain

business. I could easily use this information to make educated guesses

when building the context-based recommendation filter.

● Tip, containing a textual tip from a user for a certain business, together

with the number of likes for that tip. Tip information could be parsed to

identify features like: appropriate for groups, families or couples.

● Photo, containing the id of the photo, associated business and some

metadata fields. For this project, I am not be using the photo data

provided, which is over 5GB. Rather I used a coordinates-based photo

API, such as Panoramio to retrieve photos for a certain POI or location.

Each object type is stored in a separate file, so in order to be able to make

complex queries across the whole dataset, such as retrieving all the preferred

locations of a certain group of users, I exported the relevant data into a relational

database and create appropriate indexes depending on which database operations

are most frequent.

A complete description of the dataset can be found in Appendix A.

3.3.2 Choosing the appropriate dataset and designing the datastore
While the TripAdvisor dataset is fairly large and offers detailed reviews of

POIs, it lacks a few features that the Yelp dataset contains. Things like: user

profile, list of friends, and social check-ins made the Yelp dataset more attractive

and easier to use out of the box. Moreover, the Yelp dataset is official, newer and

23

already cleaned up, while the TripAdvisor dataset has been created by crawling

TripAdvisor pages that are already stale.

Having said that, I split the dataset into a training set and a test set, with

80% of the records going into building the individual recommendation model and

20% into testing out the derived model.

The relational database I propose is represented in Figure 3 below:

Figure 3: Relational database for the Yelp Dataset

In order to optimize the queries I experimented with indexes and

clustering. Some of the optimizations I considered are:

● Clustering the POI table on location or category.

● Clustering the Sentiment table on Business or User.

● Creating secondary indexes on fields and composite fields that will most

commonly be used in queries, like location and category.

24

3.4 Algorithms for generating itineraries
There will be two types of itineraries generated by the app: flight plus

hotel packages and POI sightseeing packages. While the first type of itinerary is

sourced from Expedia, based on the user’s time and monetary cost constraints, the

second type of itinerary is generated based on the user’s current or selected

location, the group recommendations that were pre-computed, and the time and

monetary cost specified.

For generating trip itineraries I looked into shortest path algorithms, like

variations of Dijkstra’s algorithm. I built a network of POI nodes for a given area,

where the nodes have a symbolic cost associated to them (combination of time to

spend there and monetary cost), and each edge has a cost associated to it based on

physical distance and time to traverse it. The origin node is the user’s current or

selected location, and the end node will be selected by the user. I am keeping not

only the shortest path value but also the intermediary nodes. The algorithm only

stores paths that have a lower cost than the maximum cost inferred from user

constraints.

3.5 Evaluation Metrics
With respect to evaluating the approach proposed, there were multiple

criteria and levels at which I evaluated performance and accuracy:

● Overall accuracy was measured by comparing the recommendations list

with another recommender system, like Yelp. Since Yelp does not have

group recommendations, I looked into recommendations made for

different individual profiles in the same context.

● The user profile model generator accuracy was evaluated using the

RMSLE metric on the test data predictions. I took the predictions ratings

vector and compare it to the actual ratings vector of the test dataset.

25

RMSLE or Root Mean Square Logarithmic Error, which is a popular

metric for Kaggle data mining competitions, is computed as:

Figure 4: RMSLE metric description from Kaggle5

● Recommender performance was measured by computing mean and

average times for producing group recommendations. The goal is to be

able to produce the recommendations in under 5 seconds, which is half the

time the user can stay engaged without losing interest, according to UX

Research6.

● Mobile application performance was evaluated by recording application

metrics, which were collected via Android Monitor.

○ Memory usage over time

○ CPU usage over time

○ Battery usage over time

3.6 Technologies
In this section I will list the technologies chosen with a brief motivation of

the rationale behind choosing each of them. Each subsection is centered around

one of the three tiers of the proof of concept application: infrastructure, backend

and frontend.

5 https://www.kaggle.com/wiki/RootMeanSquaredLogarithmicError
6 https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/

26

3.6.1. Infrastructure
In order to minimize infrastructure concerns and not have to deal with

concerns such as auto scaling, load balancing and server maintenance, I chose

Google App Engine to handle the server side infrastructure to host the web

application and REST API that implements the business application logic in the

backend. Google App Engine also offers a generous free tier that resets its quotas

daily, such that at the scale of the proof of concept application I will not have to

pay for usage.

The recommender system is implemented as a set of Amazon Web Service

Lambdas, again in order to avoid using a paid service tier and not worry about

implementation details. The rationale for using Lambdas is that I plan on using

the Python Scientific Kit (SciKit Learn), which is not supported on Google App

Engine, but can be deployed on AWS lambdas.

3.6.2. Backend Technologies
For the backend application, I chose as the main language Python 2.7.3

since it is a language that allows for fast prototyping and has powerful web api

and data mining frameworks.

I used webapp2 for the REST API routing layer, which is the framework

that Google App Engine works with. I use Pandas and SciKit Learn for Yelp data

pre-processing and building the linear regression models and making the

predictions since the library has built-in adjustable models and I have previous

experience using the kit.

3.6.3. Frontend Technologies
Our application has a single frontend, an Android mobile app, developed

for SDK version 24 (Nougat) and backwards compatible with the oldest supported

27

Android version, which as of today is Lollipop (SDK versions 21-22). The

language of choice for the frontend is Java 8.

3.7 Challenges Identified
While defining the approach there were several challenges identified,

ranging from recommender typical problems, such as those defined in Chapter 2,

to performance problems related to web api round trip times and battery usage to

privacy concerns.

Two of the challenges I considered during implementation are:

● The cold start problem that I defined above. I made an attempt to get

around that at first by associating a Yelp pre-existing profile to the first

users of the app. I also simulated making recommendations for new users

without any pre-existing sentiment data and introducing POIs without any

sentiment data associated to them.

● Privacy concerns arising from the fact that the app has access to the user’s

location, address book and LBSN data. Our backend will never store PII

(Personal Identifiable Information) such as email/password combination,

but rely on social authentication such as Google and only store hashed

emails for user profile matching. With respect to accessing user location

and address books, Android SDK 24 already requires you to implement

privacy mechanisms in your app by default.

28

Chapter 4: Implementation

In this chapter I detail the main implementation concerns for the main

different pieces of our group recommendation mobile application proof of

concept:

1. The recommender system implementation is detailed, specifying the

techniques and libraries used and the tradeoffs considered during

implementation.

2. The mobile application software architecture is presented, with details

about the application backend REST API, the activity screens and the third

party APIs interfaces.

This chapter also covers two adjacent topics:

● The data pre-processing I performed on the yelp dataset, explaining what

data I extracted and how I modeled it such that it fits our applications’

needs.

● The technical limitations I have run into while developing certain software

components or trying to integrate software components across different

realms.

4.1 Yelp Dataset preprocessing
 The Yelp dataset was first loaded into a relational database with the

schema presented in Figure 3. This allowed for complex querying of users, POIs

and user sentiments and for eliminating any attributes in either dataset that are not

useful for the recommender. A few statistics were extracted in order to establish

the basis for the test cases, in order to simulate cold start problems and other

corner cases, and measure the performance of the recommender. The statistics

computed are:

● Top 10 most reviewed and bottom 10 least reviewed cities.

29

● Top 10 most reviewed and bottom 10 least reviewed POIs.

● Top 10 most and bottom 10 users with respect to number of reviews.

For the content-based filter, since I only needed the business (POI), but

needed all the POI features in order to choose the best Linear Regression (LR) or

Multiple Linear Regression (MLR) model, I transformed the business dataset into

a csv file, that was then imported in pandas dataframes, a data structure used

frequently with Python SciKit learn.

4.2 Recommender Agent Implementation
 The recommender agent was logistically split into a server side

recommender and a client side recommender. The server side recommender

contains three out of four filters: knowledge, content and collaborative, as well as

the aggregator. The context-based filter was implemented on the client side, in

this case in the mobile application. The rationale for splitting the recommender

like this is the fact that the context-based filter needs user context that can only be

retrieved from soft sensors on the user’s device. On the other hand, the other

filters and aggregator are more computational-intensive so they need more

computing power. Moreover, considering the performance numbers, it is very

likely that the results of the server side recommender will have to be computed

asynchronously and cached.

4.2.1 Knowledge-based Filter Implementation
 The knowledge-based filter simply performs a query on the POI database

and retrieves the POIs that fulfill the query constraints for a given area. The area

is computed as a radial area computed using a point specified by a set of

coordinates and a distance relative to the point. The POI list is sorted based on

proximity to the point and all POIs in the list receive the same score, 1.0 out of a

30

maximum of 5.0, because their only merit is being close to the coordinates

specified.

4.2.1 Content-based Filter Implementation

 The content-based filter takes the list of POIs generated by the knowledge-

based filter and uses that to generate the pandas POI test dataframe whose ratings

will be predicted by the regression model computed for a particular user. The

content-based filter uses a machine learning library to perform LR and MLR,

namely the LinearRegression methods in Python SciKit Learn. The model is

generated and evaluated using the user’s previous ratings. Since the model is

computed on the fly, the model always takes into account the latest user feedback

on POIs. The POIs are scores are generated by the model’s prediction operation

applied to the test dataframe.

4.2.3 Collaborative-based Filter Implementation
While building the collaborative filter, I approached two strategies that I

tested with extensively: majority voting and clustering. In the first approach, the

score of the POI is determined by performing a majority vote, meaning that the

most frequent score from friends’ sentiments is selected as the POI final score in

the collaborative filter. In case of a tie, an optimistic approach is implemented and

the highest score is selected. In case of the clustering approach, the score is

computed by computing the cumulative probability that a POI belongs to a cluster

and multiplying by a coefficient that translates the probability back to a score.

Majority voting was the winning strategies, for reasons explained in Chapter 5,

Section 5.1.7.

4.3 Mobile Application Frontend and Backend Implementations
The mobile application software stack presented in Figure 5 is composed

of 4 tiers:

31

● The Web Server is implemented using Google App Engine and the NDB

Datastore. This component provides the services backend and data storage

for the application.

● The Web API is implemented in Python using the webapp2 framework

included in Google App Engine. This component exposes the REST API

described below, which is used to transfer data between the mobile app

and the GAE Datastore and interface with third party libraries and APIs.

All data is JSON serialized.

● Third party Services and APIs are used for authentication, location

awareness, image retrieval and POI and itinerary search services.

● The Mobile Application Frontend provides the UI, interfaces with the

Web API and communicates with a subset of the third party APIs like

Google+ and Facebook for authentication, Panoramio for location-based

image retrieval and Expedia for travel package research. The Mobile App

is the container for the Recommender Agent proxy as described above and

is responsible for triggering the lambda jobs that compute group

recommendations on trip creation or ad-hoc.

32

Figure 5: Proof of concept mobile application architecture diagram

4.3.1 REST API Endpoints
The REST API exposes the following endpoints, grouped into functions:

● Trip creation and management endpoints, implemented via the CRUD

operations detailed in Appendix C, Table 1.

● Trip artifact creation and management, where artifacts can be: flights,

hotels, cars, trains, cruises. These are covered in Appendix C, Table 2.

● User profile creation and management operations. User creation is self-

managed, with user profiles being created upon first application login and

user deletion and user updates performed from the backend app only. The

endpoints exposed can be found in Appendix C, Table 3.

● Sentiment creation and retrieval operations that are used to update the

sentiment database with user ratings as the user rates them in the app. For

authenticity purposes, sentiments cannot be edited or deleted. A sentiment

33

object contains a review and/or rating, the POI ID and User ID. Sentiment

endpoints are enumerated in Appendix C, Table 4.

● POI creation and management operations. POIs are created by calling into

the API directly. Since the proof of concept app assumes that the POIs

already exist and are sourced from LBSN streams, I do not allow POI

creation from the app, but I expose the endpoint, such that I can add POIs

at a later time to simulate some cold start problem scenarios. These

endpoints can be found in Appendix C, Table 5.

● Recommender endpoints are used to trigger the recommender lambda jobs

and compute recommendations based on given filters. Some examples of

the recommender endpoints are given in Appendix C, Table 6. The full list

of filters for the recommender endpoints can be found in Appendix C,

Table 7.

● Trip itinerary generator endpoints, described in Appendix C, Table 8. The

same filters that apply to recommendation endpoints also apply to trip

itinerary endpoints.

4.3.2 Datastore Entities
In addition to the database storing the POIs, user checkins and sentiment data,

our application also requires us to store the following type of entities in the

datastore:

● Trips object that represent user created trips.

● Trip Artifacts that represent the different artifacts in the trip itineraries.

● User profiles that are associated with trip histories.

The relationships and fields stored for each type of entity are presented below in

Figure 6.

34

Figure 6: Relationships between Trip, User and Artifact entities

4.3.3 Mobile Application Frontend Design
The mobile application, called VoyageWithUs, was built for Android devices,

using Android Studio. I targeted the Android SDK version 24 and made it

backwards compatible down to version 21 of the Android SDK. The application

consists of the following activities:

● Authentication activity, which allows users to login via social login, using

either the Facebook or Google+ authentication API.

● Main Activity for trip management, containing multiple fragments for

different views: past trips, current trips, all trips and trip invites.

● Create trip activity, used to create a trip in a specific location in a certain

time interval.

● Trip view activity with fragments for different views: timeline view,

artifact view, members view and recommendations view.

● Add/Modify/Rate trip artifact activity, which allows for adding artifacts

such as hotels, flights, cars and cruises to trips. This activity interacts

35

behind the scenes with the recommender to make relevant artifact

recommendations.

● Trip itinerary activity, which shows generated travel packages based on

cost and time available. This activity interacts with the Expedia API for

flight packages.

● Nearby activity which makes recommendations based on user context.

A few screenshots of the Mobile Application’s basic functionality are

included in Appendix B.

4.3.3 Third Party APIs
The mobile application uses a series of third party APIs and services to

accomplish functionality such as:

● Authentication: The mobile application relies on Google authentication

services to perform user authentication.

● Social Networking: The mobile app uses Google+ and the Contacts list to

retrieve friends list that will be used for sending trip invites and viewing

trip participants.

● Location services: The mobile app uses Google Play Services in order to

be able to implement location awareness.

● Panoramio was used to enhance the mobile UX with pictures from the

trip locations.

● Affiliate Networks Integration - The web API uses the Expedia Affiliate

Network7 and its associated API to generate trip itineraries based on given

user time, location and cost constraints.

7 http://developer.ean.com/docs/

36

4.4 Limitations Of The Implementation
 While developing the recommender, I ran into limitations from the free

infrastructure that I attempted to use, which made the full integration of the

different software components challenging at best. First of all, AWS lambda does

not allow for stacks larger than 500MB to be deployed in their free tier. Since the

recommender was using a fair amount of Python packages, once I needed to add

the POI dataframe to the stack for the content-based filter and the full database for

the knowledge-based filter, I was no longer able to deploy to the free tier.

Therefore, my integration testing was limited to retrieving pre-computed

recommendations that I previously uploaded to AWS lambda.

37

Chapter 5: Experimental Results
 This chapter covers the series of experiments conducted to test the results

and performance of the recommender and the mobile app. The first section

describes the representative test scenarios used, interpreting the results obtained.

Next, I compared the results of the recommender against a random recommender

and against the Yelp recommender. Finally, performance is analyzed, both for the

recommender and the mobile app and some suggestions for improvement are

discussed.

5.1 Test Scenarios
 In order to assess the performance of the recommender, I put together a

series of scenarios that I tested the recommender against. These scenarios were

chosen to simulate and compare extreme corner cases, such as:

● The users with the most number of reviews traveling together

● The users with the least number of reviews traveling together

● The users with most friends traveling together

● The users with least friends traveling together

 For each test case, I ran the recommender with one, two, three, four and

five users, building the travel groups incrementally from the previous user set.

The location chosen for all test cases was Las Vegas, and the type of POI chosen

was “Hotel”, because this was the location with the most reviews and the most

reviewed POI type for this location was “Hotel”. This allowed running all the test

case scenarios on the same POI set. In order to reduce the number of

recommendations, I restricted the area searched to 0.5km area.

5.1.1 Users With Most Reviews Traveling Together
 This use case was chosen to simulate an environment where all trip

participants have issued many reviews, therefore the individual profiles will likely

38

produce different scores and rankings for most of the POIs. Incidentally, users

with many reviews also have many friends, which was reflected in the final

results that can be seen in Figure 7. One interesting thing to notice from the graph

below is how the sentiment changes for a POI as more people join the trip. For

instance, when one or two users participate, POI 5 is one of the top rated ones(it is

ranked 4 by one user and ranked 6 by a group of 2 users), but as more people join

the trip, that have a less favorable score, POI 5 drops to the bottom 5 choices. One

other noticeable aspect is that a POI score can never increase as more people join,

because the score is computed such as the most negative individual score has the

final weight in the overall score. This is due to the policy of the recommender,

which is to err on the safe side and recommend POIs that all trip participants have

a good sentiment for, rather than suggesting POIs that one participant loves, but

another one hates. However, ranking of POIs can increase even if their overall

score decreases.

Figure 7: Recommendations made for groups of travelers with most reviews

39

5.1.2 Users With Least Reviews Traveling Together
 This use case was chosen to simulate the cold start problem, where users

have reviewed little or no POIs. The users were chosen among the bottom ten

users with least reviews. Aside from User 1, which has 0 reviews and 0 friends,

all the other users have 1 review and 1 or more friends. As you can see from

Figure 8 below, when only 1 user is participating, since he has no reviews, all the

POIs are ranked equally, with a score of 1.0, which is the default score that the

knowledge-based recommender assigns to the POIs. Once another user joins, the

scores of the POIs change, but since the new user has only 1 review, all the POIs

will get the same score and be ranked equally. But the second user also has

friends with reviews, so POI number 8, gets a lower score based on the friends’

profile. Adding more users will adjust the final scores based on the same

rationale. One thing to notice in this cold start scenario is that there is little

variation in the ranking of the POIs since all participants have so few reviews, so

most of the suggestions will be ranked by distance.

Figure 8: Recommendations made for groups of travelers with least reviews

40

5.1.3 Users With Least VS Most Reviews Traveling Together
 I also compared the POI scores generated by groups of five users with

most and least reviews as depicted in Figure 9 below. As mentioned previously,

users with least reviews will produce a recommendation set with little variety,

where the POIs will be ranked mostly in the order given by the knowledge-based

filter, which is the distance from the selected location. 95% of the POIs have the

same rank as the default location-based recommendation. By contrast, the group

of users with most reviews exhibits much greater variety in POI ranking, with

only 15% of the POIs having the same rank as in the location-based ranking.

Figure 9: Comparison between users with least and most reviews

5.1.4 Users With Most Friends Traveling Together
 Another scenario I explored is choosing the users with most friends

traveling together. One interesting observation from this scenario, as seen in

Figure 10, is that POI scores averaged in the [3.0, 4.0] range, indicating no strong

dislike or like for any of them. Also, the recommendations for some POIs

converged to the final score even for a small number of trip participants.

41

Figure 10: Recommendations made for groups of travelers with most friends

5.1.5 Users With Least Friends Traveling Together
 In the case where users with least friends are traveling together, users also

had a small number of reviews. Out of the five users with least friends, only one,

User 2, had written any reviews. Therefore Figure 11 below only shows the

individual recommendations for User 1 and User 2, and the aggregate results for

both users. Since User 1 has no review and no friends, the POIs are going to be

ranked by distance. However, since User 2 has past reviews, a model could be

built that reflects her preferences, which in the end gives the final scores and

ratings for the group.

42

Figure 11: Recommendations made for groups of travelers with least friends

5.1.6 Majority voting versus distance to clusters
 In order to determine which strategy to use for the collaborative filter, I

conducted multiple experiments with both clustering and majority voting. As it

can be seen from Figure 13 below, for the Las Vegas Hotel recommendations,

clustering has produced higher scores, since each friend’s score has equal weight

when computing the score. In the case of majority voting, some of the POIs had

visibly lower scores, due to a greater number of negative reviews. This implies

that the clustering approach can amortize low scores and obfuscate the fact that

some POIs are generally poorly rated, therefore I chose majority voting as the

better approach for the collaborative filter.

43

Figure 12: Majority voting VS distance to clusters comparison

5.2 Recommender Results Comparison
 Among the experiments I performed to compare the recommender with

other recommenders and itself, there were two particular scenarios that prove the

VoyageWithUs recommender’s two distinctive features:

● Making group recommendations, that accounts for each individual’s

personal preferences.

● Making personalized recommendations, by taking into account user

history, preferences and their friends’ influence.

5.2.1 Individual Versus Group Recommendations
 I chose to compare the top five users that have generated the most number

of reviews and run the recommender for each individually and for the group

containing all five users. While the POI scores had little variation, the ranking of

the POIs had more variation, which can be seen in Table 1 below. Looking at the

individual rank and then the group rank, one can see that the highest ranked POIs

in the group ranking are, as expected, those that have the highest individual

scores. Similarly, the lowest rated POIs are the ones that have low individual

44

scores. One can see that not all users in this scenario can absolutely agree on

highest ranked POIs, with User 1 and User 3 ranking the overall favorite,

Bellagio, in the bottom half of the twenty POIs in the location selected. However,

the delta between those users’ top and bottom rated POIs is negligible, all of their

scores being in the [3.6, 3.9] range. If that were not the case, it would have been

reflected in the final ranking. For instance, Flamingo had two scores: 2.5 and 2.0

which made it drop to the second to last position, despite getting similar scores as

Bellagio for users 1 and 3.

Table 1: POI ranking for individuals and group of individuals

POI User 1
rank

User 2
rank

User 3
rank

User 4
rank

User 5
rank

Group
rank

Bellagio Hotel 16 2 15 1 1 1

Caesar’s
Palace

19 16 10 4 19 16

The
Cosmopolitan

18 1 1 3 14 2

Flamingo 14 20 20 20 18 19

Paris Las
Vegas

13 18 18 17 15 15

5.2.2 VoyageWithUs Recommender Compared to Yelp a and Random
Recommender

 The data that I used to implement the predictor was taken from the Yelp!

public dataset. Therefore, I chose to generate recommendations for the same

location on Yelp! and compare the rankings with the rankings produced by the

VoyageWithUs recommender for the group with most reviews and with the

ratings obtained via a random recommender, that scores the POI in a certain area

randomly with scores between 1.0 and 5.0.

45

When generating recommendations in Yelp!, I did a query for “Hotels”, in

a specific area in Las Vegas and, as expected, most of the returned results

matched what the VoyageWithUs location-based filter produced. I performed the

query from an account that has no friends and no reviews, from an account that

has some friends and some reviews and while logged out. In all three cases, the

results were identical, proving Yelp! does not personalize recommendation

results. The default POI ranking in Yelp!, which is branded as Best Match seems

to be a composite score involving the rating, number of reviews, but also other

attributes which are not obvious without knowledge of their ranking algorithm.

As one can see from Table 2 below, there were some POIs that had similar

if not identical ranking in VoyageWithUs and Yelp! (The Cosmopolitan, Aria Sky

Suites and Mirage), while two others had significantly different ranking. I believe

that both the similar and different rankings are a consequence of the fact the

VoyageWithUs makes personalized group recommendations, they just prove two

different points. First, looking at the similar recommendations, one can see they

have more than a few thousand reviews concentrated around a very similar high

score. Since VoyageWithUs uses past recommendations and friends influence to

make suggestions, it is only natural that for those highly rated POIs with

thousands of reviews, my recommender will produce similar scores and ranking.

Second, the dissimilar results prove that a popular POI on Yelp!, like Vdara, can

drop significantly below the fold in preferences, depending on the trip participants

individual preferences or influencers.

The reason for including the Random recommender is to show that both

Yelp! And VoyageWithUs implement recommender algorithms that can generate

more relevant results than just randomly scoring the POIs, although in this

particular run of the Random recommender, the top results was coincidentally the

same as Yelp!.

46

Table 2: POI Ranking Comparison

POI VoyageWithUs
ranking

Yelp ranking Random
recommender

ranking

The Cosmopolitan 2 1 1

Bellagio Hotel 1 4 9

Aria Sky Suites 5 5 20

Mirage 11 9 17

Vdara 18 10 7

5.3 Recommender Performance
 In order to measure recommender performance, I ran the recommender

through various scenarios for ten to one hundred iterations, depending on the

length of each iteration, measured and averaged the execution times. The plots of

the scenarios are presented in the following sections.

5.3.1 Impact of number of user reviews on performance
 Since the user with most reviews generated just over one thousand

reviews, I chose to measure performance for users with 1, 10, 100, 500 and 1000

user reviews and 0 friends, in order to establish a baseline performance. As one

can see in Figure 14, the recommender execution time averages to approximately

one second for the minimum number of reviews and doubles for the maximum

number of reviews, which is an acceptable increment if we wanted to compute the

recommendations on demand from the mobile UI.

47

Figure 13: Execution times variance on number of user reviews

5.3.2 Impact of number of friends on performance
 In order to determine the impact of the number of friends on performance,

used in the collaborative-based filtering, I ran the recommender against users with

1, 10, 50, 100, 500 and 1000 friends, by taking the user with most friends and

limiting the number of friends selected in the collaborative-based filter. Since

users with most friends have many reviews and in turn, their friends have many

reviews, I also made variations in the max number of reviews per user (1, 10, 100

and 1000). As it can be seen in Figure 15 below, number of reviews has a minimal

impact compared to number of friends. Increasing the number of reviews can

result in a 10% increase in execution time for the same number of user friends.

The real performance killer is the increase in number of friends, which determines

the execution time to increase from a few seconds when a user has 1 friend, to 30

minutes when the user has 1000 friends.

48

Figure 14: Execution times variance on number of user friends

5.3.3 Impact of number of trip participants on performance
 The effect of the number of trip participants on the execution times is

presented on Figure 16. The numbers were obtained for the top ten users with

most reviews, but I limited the number of friends to one, in order to reduce the

execution times. Each travel group was obtained by adding one traveler to the

previous travel group, starting with the user with most reviews and ending with a

group containing all ten users. The number of reviews was limited to 500, because

that was the minimum number of reviews among the ten users. It can be seen that

increasing the number of trip participants also increases the execution time, but

even with ten users, the maximum time is shy of 45 seconds, so the performance

bottleneck is still caused by the performance of the collaborative-based filter

when the users have many friends.

49

Figure 15: Execution times variance on number of trip participants

5.3.4 Strategies for performance improvement
 One strategy to improve performance is pre-computing the collaborative-

based filtering asynchronously and storing it server-side instead of computing it

on the fly. The main trade off is storage and creating an index that would allow to

quickly retrieve the pre-computed results. Another trade off is that the predictions

will be made on stale data, so a proper schedule will have to be established to

improve the freshness of the data.

50

Chapter 6: Future Work

 In the scope of this report I implemented a recommender architecture and

implemented basic integration with a proof of concept application that targets

enhancing the group travel planning experience. I believe the system designed has

the potential to be extended and productized, if the following aspects are

addressed in the future:

● Improving the collaborative-based filter performance by looking into

periodically asynchronously precomputing the recommendations

generated by this filter.

● Integrating multiple LBSN streams which will provide user sentiments

and edges in the friends network, instead of using a static dataset. This

integration will require looking into technologies like Apache Spark to

aggregate and process social-media streams to perform sentiment analysis.

● Properly integrating all the software components by moving the

infrastructure to a paid tier in AWS, which will allow implementing

resilience and failover mechanisms via autoscaling.

● Improving the mobile application UX and testing it on focus groups to

ensure that the different flows in the application are intuitive.

● Addressing privacy concerns related to sharing of different artifacts such

as user location and context, trip itineraries and travel artifacts.

51

Chapter 7: Conclusions

 The gaps in current travel planning systems have created an opportunity to

research and develop approaches that better serve groups of travelers, may they be

families or backpackers. VoyageWithUs is a mobile and REST API solution that

enhances group travel and tries to close some of the shortcomings of group travel

planning, The solution proposed by this paper caters to groups of travelers by

making personalized group travel recommendations and by allowing groups of

travelers to collaborate in the travel planning process. The first feature,

implemented via a hybrid recommender system, sets VoyageWithUs apart from

other recommender applications by aggregating individual recommendations into

a set of recommendations that are suitable for all trip participants. Experimental

results have proven the recommender can incrementally adapt as more trip

participants are added and the recommendations are generated such that they are

suitable to every trip participant. The second distinctive feature is the

collaborative aspect of VoyageWithUs, which allows users to share trips and trip

artifacts, invite others to trips and allow everyone to contribute to a trip. With

proper social streams integration, such as the ability to retrieve user sentiment and

create edges between users directly from Facebook and Instagram,

VoyageWithUs could be productized into a novel travel planning platform that is

targeted at people that travel in groups, whether they are physically co-located or

not.

52

Appendix A: The Yelp Challenge Dataset Format

business

{	
				'type':	'business',	
				'business_id':	(encrypted	business	id),	
				'name':	(business	name),	
				'neighborhoods':	[(hood	names)],	
				'full_address':	(localized	address),	
				'city':	(city),	
				'state':	(state),	
				'latitude':	latitude,	
				'longitude':	longitude,	
				'stars':	(star	rating,	rounded	to	half-stars),	
				'review_count':	review	count,	
				'categories':	[(localized	category	names)]	
				'open':	True	/	False	(corresponds	to	closed,	not	business	hours),	
				'hours':	{	
								(day_of_week):	{	
												'open':	(HH:MM),	
												'close':	(HH:MM)	
								},	...	
				},	
				'attributes':	{	
								(attribute_name):	(attribute_value),	...	
				},	
}

review

{	
				'type':	'review',	
				'business_id':	(encrypted	business	id),	
				'user_id':	(encrypted	user	id),	
				'stars':	(star	rating,	rounded	to	half-stars),	
				'text':	(review	text),	
				'date':	(date,	formatted	like	'2012-03-14'),	
				'votes':	{(vote	type):	(count)},	
}

user

{	
				'type':	'user',	
				'user_id':	(encrypted	user	id),	
				'name':	(first	name),	
				'review_count':	(review	count),	
				'average_stars':	(floating	point	average,	like	4.31),	
				'votes':	{(vote	type):	(count)},	
				'friends':	[(friend	user_ids)],	
				'elite':	[(years_elite)],	
				'yelping_since':	(date,	formatted	like	'2012-03'),	
				'compliments':	{	
								(compliment_type):	(num_compliments_of_this_type),	...	
				},	

53

				'fans':	(num_fans),	
}

check-in

{	
				'type':	'checkin',	
				'business_id':	(encrypted	business	id),	
				'checkin_info':	{	
								'0-0':	(number	of	checkins	from	00:00	to	01:00	on	all	Sundays),	
								'1-0':	(number	of	checkins	from	01:00	to	02:00	on	all	Sundays),	
								...	
								'14-4':	(number	of	checkins	from	14:00	to	15:00	on	all	Thursdays),	
								...	
								'23-6':	(number	of	checkins	from	23:00	to	00:00	on	all	Saturdays)	
				},	#	if	there	was	no	checkin	for	a	hour-day	block	it	will	not	be	in	the	dict	
}

tip

{	
				'type':	'tip',	
				'text':	(tip	text),	
				'business_id':	(encrypted	business	id),	
				'user_id':	(encrypted	user	id),	
				'date':	(date,	formatted	like	'2012-03-14'),	
				'likes':	(count),	
}

photos (from the photos auxiliary file)

This file is formatted as a JSON list of objects.

[
				{	
								"photo_id":	(encrypted	photo	id),	
								"business_id"	:	(encrypted	business	id),	
								"caption"	:	(the	photo	caption,	if	any),	
								"label"	:	(the	category	the	photo	belongs	to,	if	any)	
				},	
				{...}	
]

54

Appendix B: Application Screenshots

Figure B.1: Create trip Activity

Figure B.2: Adding Friends to a Trip

55

Figure B.3: Viewing Trip Members

Figure B.4: Adding Trip Artifacts

56

Figure B.5: Trip Summary

Figure B.6: List of User Trips

57

Appendix C: REST API Endpoints Description

Table 1: Trip CRUD Operations

Endpoint Method Description

<api_url>/trips POST Creates a new trip object, needs a trip
object to be passed in the request body.

<api_url>/trips/{id} DELETE Deletes a trip. Needs ID of trip to
delete passed in as a path parameter.

<api_url>/trips/{id} PUT Updates a trip. Needs ID of the trip as
a path parameter and updated trip
object as body parameter.

<api_url>/trips/{id} GET Gets detailed trip object. Needs ID of
the trip to view as path parameter.

<api_url>/trips GET Returns all trip IDs.

<api_url>/trips/users/{id} GET Returns all the trip IDs for user with
specified ID.

<api_url>/trips/users/{id}/
current

GET Returns all the current and future trip
IDs for user with specified ID.

<api_url>/trips/users/{id}/
past

GET Returns all the past trip IDs for user
with specified ID.

58

Table 2: Trip Artifact CRUD Operations

Endpoint Method Description

<api_url>/trips/{id}/

artifacts

POST Creates a trip artifact for a trip. I pass in
an Artifact object to create as a body
parameter and trip ID as a path
parameter.

<api_url>/artifacts/{id} DELETE Deletes a trip artifact with the specified
ID.

<api_url>/artifacts/{id} PUT Updates the trip artifact that had the ID
specified in the path parameter with a
trip artifact object specified in the
request body.

<api_url>/artifacts/{id} GET Gets the trip artifact with the specified
ID.

<api_url>/trips/{id}/

artifacts

GET Gets all artifacts for a trip with the
specified ID.

Table 3: User CRUD Operations

Endpoint Method Description

<api_url>/users POST Creates a user profile object, given a user
object in the request body.

<api_url>/users/{id} GET Gets a user’s profile info with the specified
ID.

<api_url>/users/{id} PUT Updates the user who has the ID specified
in the path param with the user object
specified in the body of the request.

<api_url>/users/{id} DELETE Deletes the user with the ID specified.

59

Table 4: Sentiment CRUD Operations

Endpoint Method Description

<api_url>/sentiments POST Creates a sentiment object passed in the
request body.

<api_url>/sentiments GET Gets all sentiment IDs from the datastore.

<api_url>/sentiments

/pois/{id}

GET Gets sentiment IDs for a POI with the
specified ID in the path parameter.

<api_url>/sentiments

/users/{id}

GET Gets sentiment IDs for a user with the
specified ID in the path parameter.

Table 5: POI CRUD Operations

Endpoint Method Description

<api_url>/pois POST Creates a POI object given in the request
body.

<api_url>/pois GET Gets all POI IDs.

<api_url>/pois/{id} GET Gets specific details for a POI with the
specified ID.

<api_url>/pois/{id} DELETE Deletes the POI with the ID specified in the
path parameter.

<api_url>/pois/{id} PUT Updates the POI that has the ID specified in
the path parameter with the POI object in
the request body.

60

Table 6: Recommender Operations

Endpoint Method Description

<api_url>/recommend/trip/

{id}

GET Gets all the recommendations for a trip
with an ID given as path parameter.

<api_url>/recommend/trip/

{id}?type=<poi_type>

GET Gets the recommendations for certain
POI types (hotel, restaurant, etc...) for
a trip with an ID given as path
parameter.

<api_url>/recommend/near
by?location=<location>

GET Gets nearby recommendations based
on the passed in location.

Table 7: Recommender Endpoints Filters

Filter Query Parameter

Location nearby=<location>

Day of Week weekday=<day_of_week>

Month month=<month>

Day day=<day>

Time of day time=<hh:mm>

POI type type=<poi_type>

User user=<user_id>

Price category price=<$$$signs>

61

Table 8: Trip Itinerary Operations

Endpoint Method Description

<api_url>/itinerary/trip/{id} GET Triggers the computation of an
itinerary for trip with the specified ID.

<api_url>/itinerary/walking/

trip/{id}

GET Triggers the computation of a walking
tour for trip with the specified ID.

62

Bibliography

[1]. Kosmides, P., Remoundou, C., Demestichas, K., Loumiotis, I.,
Adamopoulou, E., & Theologou, M. (2014). A Location Recommender
System for Location-Based Social Networks. 2014 International Conference on
Mathematics and Computers in Sciences and in Industry.
doi:10.1109/mcsi.2014.39

[2]. Chen, S., Owusu, S., & Zhou, L. (2013). Social Network Based
Recommendation Systems: A Short Survey. 2013 International Conference on
Social Computing. doi:10.1109/socialcom.2013.134

[3]. Esfahani, M. H., & Alhan, F. K. (2013). New hybrid recommendation
system based On C-Means clustering method. The 5th Conference on Information
and Knowledge Technology. doi:10.1109/ikt.2013.6620054

[4]. Toozandehjani, H., Zare-Mirakabad, M.-R., & Derhami, V. (2014).
Improvement of recommendation systems based on cellular learning automata.
2014 4th International Conference on Computer and Knowledge Engineering
(ICCKE). doi:10.1109/iccke.2014.6993443

[5]. Xie, M., Lakshmanan, L. V., & Wood, P. T. (2011). CompRec-Trip: A
composite recommendation system for travel planning. 2011 IEEE 27th
International Conference on Data Engineering. doi:10.1109/icde.2011.5767954

[6]. Meehan, K., Lunney, T., Curran, K., & Mccaughey, A. (2013). Context-
aware intelligent recommendation system for tourism. 2013 IEEE International
Conference on Pervasive Computing and Communications Workshops (PERCOM
Workshops). doi:10.1109/percomw.2013.6529508

[7]. Rachuri, K. K., Hossmann, T., Mascolo, C., & Holden, S. (2015).
Beyond location check-ins: Exploring physical and soft sensing to augment social
check-in apps. 2015 IEEE International Conference on Pervasive Computing and
Communications (PerCom). doi:10.1109/percom.2015.7146518

63

[8]. Veningston, K., & Shanmugalakshmi, R. (2015). Personalized location
aware recommendation system. 2015 International Conference on Advanced
Computing and Communication Systems. doi:10.1109/icaccs.2015.7324140

[9]. Yu, Z., Xu, H., Yang, Z., & Guo, B. (2016). Personalized Travel
Package With Multi-Point-of-Interest Recommendation Based on Crowdsourced
User Footprints. IEEE Transactions on Human-Machine Systems IEEE Trans.
Human-Mach. Syst., 46(1), 151–158. doi:10.1109/thms.2015.2446953

[10]. Beirigo, B. A., & Santos, A. G. D. (2015). A parallel heuristic for the
travel planning problem. 2015 15th International Conference on Intelligent
Systems Design and Applications (ISDA). doi:10.1109/isda.2015.7489239

