Copyright

by

Timothy Andrew Box

2015

The Report committee for Timothy Andrew Box

Certifies that this is the approved version of the following report:

Swapbeat.com: A Streaming, Adaptive Music Service in the Browser

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:

Christine Julien

Joydeep Ghosh

Swapbeat.com: A Streaming, Adaptive Music Service in the Browser

by

Timothy Andrew Box, B.A.; M.P.Aff.

Report

Presented to the Faculty of the Graduate School
of the University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2015

“Necessity is a ferocious teacher.” - Michel de Montaigne

Acknowledgements

[would like to thank my family - Jim, Nancy and Emily - for their
unconditional love and their unwavering support in helping me pursue my dreams. |
would also like to thank my advisor, Christine Julien, and my reader, Joydeep Ghosh,
for their contributions to this project. Finally, | would like to acknowledge the

support of the late Tim Mauldin, a great friend and mentor who passed too soon.

Swapbeat.com: A Streaming, Adaptive Music Service in the Browser

by

Timothy Andrew Box, M.S.E.

The University of Texas at Austin, 2015

SUPERVISOR: Christine Julien

In recent years, ongoing shifts in the economics of the music industry have
driven many artists to reevaluate how they intend to make money, with some artists
now deciding that they will give their music away for free if it will increase their
popularity and drive more fans to buy tickets to see their live shows.

Sites such as SoundCloud.com cater to this dynamic, allowing artists to host
their music on the site for unlimited free streaming and download by fans. However,
the sheer volume of music being uploaded to SoundCloud makes it impossible for
even the most diehard music fans to keep tabs on what has been released and what
is becoming popular with other listeners.

This paper therefore discusses the creation of swapbeat.com, a browser-
based music streaming service. The site operates by first measuring how frequently
new songs are being reviewed across 175+ popular music review sites on the
Internet. The most frequently reviewed songs are then added to the swapbeat.com
site, where score-based playlists of the songs are regenerated at frequent intervals,

based on several explicit and implicit measures of sentiment gathered from users as

vi

they listen to music on the site. Experiences and observations from the first two
months of operation for swapbeat.com are then reviewed, and areas for further

work are proposed.

vii

Table of Contents

Table Of CONTENTS ..o viii
TS 1= o) T PPN xi
LIST Of FIGUIES ..ottt seessesss s ssses s s s s xii
(04 0= o1l IER0 B0 0 Yo L ot 1) o VOO PT 1
Chapter 2: INitial DESIGN c..vuereereeereeeerreeresseessesseessesssessesssssseessssssessssssessesssesssssesssessessssssssssssssessssssesass 4
0L 06 L (1 0) o P 4
Creating the WebDCraWler .. . e seeseeesssessessesse s sses e sses s s ssssssans 4
How the Targeted Crawler WOTKS ... seesssseessesssssesssessesssessssssssssssssssssens 4
From SOLR to Default-Enabled RSS feeds in WordPress........ccmnenernsisninnne. 6

The SIMPIE Pie LIDIary ... seeeesseesesseesesseesssssesssssessssssessessessessssssssssssssssssssssssssssssssans 7
Extending Simple Pie t0 FINd MUSIC...cooereneneenreeseeseeseesseessesseesesseessesseessesssessssssssssesssens 7

What is a2 SoundCloud WidGet?.......cceeerrereereesreesesseesesseessessessesssessessssssessssssessssssesans 8

The Format of the Embeddable SoundCloud Widget Code.....ccccouuunreureereereenenns 8

Parsing posts for SoundCloud Widgets and Unique IDS.....c.cconereenreereeneerecnneens 9
Scenario 1: No Track FOUNd.....sssssessssssssssssssssssssssssssens 10
Scenario 2: New Track FOUNd ... 10
Scenario 3: Known Track FOUNd.....ssssssssessssssssssens 11
Performance and Potential Webcrawler Improvements.........oooeneeneenseeseesseeseenns 13
Migrating the Crawler from Single-threaded to Multi-threaded..........ccosuene.... 13
Adding Tracks t0 Be PIayed.......cenreneeeeeeseesesseeseseessessessessssssesssssessssssesssssessnees 14
Creating the APPLICATION .. ceeereereesseeees s sees s seeees e ssss s s s s s snsanes 16

0 Q0 N =) 4 T PN 16

The Importance of USer EXPEri€NCe......oeneereererseesesseessessessssssessesssesssessssssessesses 16
Creating a Single Page Application and the Application Data Map......ccccueeen. 17
Caching for PEIrfOrmMancCe ... seesesssesssesessssssesssssssssessssssssssssssessessssssseens 21
Special Case: Maintaining the Cache when a User Favorites a Track........... 22

Playing SOUNA ..cucueeeeeeereeeeeseereeseesssesessesssessesssesssssessses s s s s ssss s ssses s ssssssans 23

SOUNA MANAZET 2 ...oreeeeereerreeeesseessesseessessessesssessssssessssssssssssssssssssssssssssssessssssasssesssssssssssans 24

Sound Manager 2 Extensions: Bar Ulneneenseeeseeseeesessesseesseseeens 25

viii

Bringing it all TOGETNET ...t 26

Rendering the TracCKIiSt ... ssessessesssessessssssssssssssssseens 27
Function of FormatReturnedTracKks.jsuereeeesseeserseesesseessesssessssssessesssesseeens 28
Track Elements Formatted........ossssssssssssssssssssesens 29

0 0 (00 o013 1 1) o P 29
Track Movement INAiCator......rsss s 29
ATTWOTK Frame ... sssssssssssssssssssssssssssssssssssaes 30
0 0 (60 1 L (=P 30
ATEIST NAIMES oo 31
Formatting Site Names......coneeiriseiseisssisssssseseses s sssssessessessessesssens 33
The Favorite BULtON ... sssssssssssssssssssssssssans 34
Like and Dislike BUtLONS.....ccoeiisisssnes 35
g P =) ol 010) 41 /o) 3 TSP 35
Linking to SoundCloud Artist Pages......ccoenmeeneeneennesneeseeseessesssesseessesseesseseees 36

Event Tracking and Updating the Marqueeoeenesneemesssessesssessesssesseeens 37

User Accounts with FAac€D0OK LOZIN ... sessesseesessesssesseessessseseeses 38
Registering the Application with FacebooK.......ceneenneenceneeneeeseesreeseeseeeenns 38
Initializing the Facebook Authentication SDK.......cooncenneenrensenseeseeseeseenns 38
Integrating with the Facebook Log-in Button........enneeoneenscensenseeseesseeseenns 39

MiIAAIEWATE.....couiruirireseerises s 41
BaCKENA ...t s 43

Specific Design Choices for @ MUSIC Site.......eneeneeneennesseesesseessesseessessesseessesseeens 43
Storing JSON in the Databasecoenenenreeneeneeseeseesessessessesssesssesssssessesssesseens 44
Preprocessing the “Most Popular” playlists by Time Period.......cccouuerreuenn. 46
Scoring Tracks for Playlist INCIUSION ...t seesessensseseeens 47

Events Weighted DY TYPEe ... eceeeseereesesseeseeeessessesseessessesssesssessessssssssssssssees 47
Events Weighted by TrackliSt POSItiONcccereeeeneenneeneeseeseessessesseessesseessesneees 48
Events Weighted DY Timeereneeneeeeeeseeeessessesseessessesssessessessssssesssesssees 49
Calculating the FINal SCOTE ... sesses s sssssssssessesssessseens 50
The TrackliSt AUAIt LOEG .oeceeeereereeeesseesesseeseeseesssessessessssssesssessessesssessssssssssesssssssssssens 51
Other Database Design CONSiderationseneesesseemesseessesssessssssesseessesseeens 51

ix

Returning Tracklists and User FAVOTitesceneeneeneensesseesesseessesseees 51

Retrieving Tracks by ATtiSt IDneeeeeeeseesesseeseesesssessessesssessesssesanees 52
Infrastructure and DePlOYMENTt ... seesessees s sessessssssessesssssssssssssesssssnes 53
Deploying the Application t0 HETOKU ...t seesesseessesseesseesseeseens 54
Deploying the DB t0 AWS ...t ssssss s sssssesssssssssssssssssssssssssssssssseans 55
o 2 T T PPN 56
(O153 =) o= a0V B =V i (ol 57

Yo L0121 L (=T b 57

LOT0 T LI L) o PO 58
Observations from the First Release ... 59
[ssues for Search ENGine Crawls......eeeneneeeeseeseesessessessessssssessssssesssssssssseens 59

301 and 302 Redirectsrrmsesses 59

High Reliance on Custom JavaScript and AJAX.....enenenseseeneesseeseeens 60

NOt MODIlE-FIieNdLyoceieereeeeereereeeesseeeessessesseesesseessessessesssessssssesesssesssssssssesssssssssseens 61

No Direct and/or Deep LinkKing StruCtureeeenmeeneeseesseessessessesssesseeens 62

High BOUNCE RALE ...t sees s s sssss s ssssssssssens 63

Chapter 3: Further ImprovVemMents ... eeneeeeseessessesssessessesssesssssssssesssssssssssssssssessssses 65
Short-term IMPIrOVEMENTScciereeeesrereesrereesseesseesesssesssessssssesssssssssessessssssssssssssssssssssssssssesssssnes 65

1LY B oa O RTe P U T Ty o4 oV TP 65
Mobile-detection and Mobile-only Style Sheets ... 67
Longer-term IMProVemMENtS......o e sssssssssssssssessssssssssans 68
Redesigning the application with ANGuIar JS..... e seesseeseeens 68
BasicS Of ANGUIAT JS ot sesses s ss s ssssssns 68
Client-side MVC: Angular Controllers, Scopes, and Templatescccccreerreereenn. 69

The Route Provider Module.......ossssssssssssssssssssssssssssssssnns 70
Problems Angular JS can resolve dir€Ctly......oeneeneneennesseeseeseesseesesseesseeseeens 72
Additional Problems Angular]S can help resolve indirectly......ccconerrinecrennee. 73
Google’s retraction of the AJAX / JavaScript crawler SPecoenreereeseeseenns 74
Chapter 4: Vision and ROAAMADccereeeerereesneesesseesssessesssssessesssessessssssessssssssssssssssssssssssssssssnes 76
Appendix: Sites Included in the Crawl for Swapbeat.comcovoneerrernecreenneeseeseeseenns 78
12 10) D0 ea'=1 0] 4|0 TS 83

List of Tables

Table 1: Objects Embedded in the AppDataMap......coereereereeseeseeseessessesssessessesssesseessesssees

Table 2: PHP files supporting client communication with the MySQL database.........

Table 3: Event Types and Relative Weightings

Xi

Figure 1:
Figure 2:
Figure 3:

Overview of the Site Crawler FUNCHION .ot eeseeseesens

List of Figures

The iframe for a SoundCloud Widgertcuereereereeneerreenerseeserseesseseesseessesseesssseeseens 8
A Rendered SoundCloud WIdGEtcoeeeereereeureeserneesesseessesseessesssessessssssessssssessesssesans 9

Figure 4: A Screenshot of SoundCloud Widgets Rendered at Crawler Completion... 15
Figure 5: Three-Tiered Architecture OVEIVIEW ... eeenmeeneessesneessessesssessssssessssssessessnes 17
Figure 6: The Bar Ul PIAYET ... ceeeeseeecseeseeseesssesesssssssssesssessssssesssessssssssssssssssssssssssessssnes 26
Figure 7: Screenshot of a formatted tracklist......onencenneneeseeeeseeseeseeseeseessessesseeaes 29
Figure 8: Showing a tracklist for an individual artist's tracks........emenseseesnesseennes 32
Figure 9: An example with several selectable artist NaAMESccocoeereeerereerreeseerreesnesseenes 32
Figure 10: Showing the formatted list of site names where a track was posted......... 34
Figure 11: Example code for the checkLoginState() method with callback.................. 40
Figure 12: An example of a call to the Facebook Open Graph APL.......couoneeneenrerncens 41
Figure 13: An example using the MYSQLi extension in PHP ... 43
Figure 14: Example SQL for CONCAT and GROUP_CONCAToocrerrereenreereerreereesseesresseennes 45
Figure 15: Formatted JSON stored in the database......coeoereneeneeneenseeseeseeseesssesesseenes 45
Figure 16: Formatted JSON for multiple "featured"” artistscoenreneerseessesseessesseenns 45
Figure 17: Calculating the Chart Position and Time Component Scores........ccoueeseennee 50
Figure 18: Metrics for a popular tweet sent from the project's Twitter account 58
Figure 19: The initial Google cache view for the swapbeat.com site.......ccouuereerrerreennee 61
Figure 20: Example track markup with highlighted micro-data tags.......cccouereseennee 66
Figure 21: Google's structured data teSting toO0l......coenereerreeseeseeneesseeseeseesseeseesseeseesseeaes 67
Figure 22: An example of the Route Provider syntax in Angular]S.......conereenreneennes 71

xii

Chapter 1: Introduction

Nearly 15 years after the courts declared the online music file-sharing
service Napster illegal, the ethos of free (or very cheap), all-you-can-eat digital
music that it unleashed continues to shape the music industry and bedevil those that
seek to profit from it (Kaplan, 2001).

The most-recent attempts at monetization by the music industry have
centered on partnering with digital music streaming services that provide
unrestricted access to large catalogues of music for a monthly fee, a rate typically
equal to around ten dollars per month. Companies such as Spotify and Pandora were
among the first to demonstrate the potential of these streaming subscription
services. Then, other major technology players such as Google and Amazon began
offering their own branded streaming services as well. In the summer of 2015, one
of the final holdouts, Apple, Inc., launched its own “Apple Music” subscription
service, potentially cannibalizing its own sales in its iTunes store, in reaction to the
growing popularity of these services with users.

Yet one statistic recently put forth in a L.A. Times article shows the
continuing enormity of the problem of getting listeners to pay for music in any form:
20 million people used a file-sharing network to illegally download music for free in
2014, while only 7 million paid for a music subscription service (Faughnder, 2015).

These services, the record labels and the artists are therefore left to divide a

shrinking pie of revenues from music sales and music subscription services, with

artists in particular often believing that they are unfairly or inadequately
compensated for their creative work.

In this environment, an entire generation of music artists now expects and
accepts that they will make little or no money on direct record sales. This is
particularly true in specific genres of music where the concept of “sampling” audio
from another artist’s work will often increase the popularity of a song, while also
raising the possibility that the artist using the sample may never secure the legal
rights to include that track on an album that they can sell commercially. In these
genres, albums are therefore often given away for free by artists, in the hopes of
building a fan base that will pay to see the artist perform live shows.

One of the main benefactors of this new dynamic has been the music-sharing
site “SoundCloud.com”. Founded in 2007 by two music artists working in the “dance
music” genre where sampling is most prevalent, the site has grown to become the
premier location on the Internet for finding music from new and emerging artists.
With 175 million unique monthly listeners, SoundCloud.com ranks as the 159t most
popular site on the Internet (Alexa Global Site Rankings, 2015). Currently,
SoundCloud generates revenue by charging artists a subscription fee to host a page
where they can post their music, which can then be streamed and, at the artist’s
choosing, offered for download by users.

Each day, more than 150,000 new tracks are added to SoundCloud. Assuming
an average runtime of approximately three and a half minutes per song, the
equivalent of one year’s worth of new music is now being uploaded to the site in

each 24-hour period. Such a large volume of music is a daunting challenge for even

the most devoted music listener to try to keep track of. Therefore, many music fans
now rely on a vast ecosystem of secondary music sites and blogs to help them
identify new and emerging artists on SoundCloud.

This report outlines a series of interrelated coding efforts that were
undertaken with the sole purpose of discovering the best new music being made
available on SoundCloud, and making those discoveries quickly and conveniently
available to users for streaming. To do so, the work of this project was divided into
two primary efforts. First, a dedicated crawler was created to analyze the popularity
of tracks on SoundCloud by evaluating which new tracks were being posted most
frequently across music review sites around the Internet. Second, a dedicated site
capable of streaming playback of these popular tracks by users was developed and
made available to the public at www.swapbeat.com. The actions of users on this site
as they listened to music and liked or disliked certain tracks were then recorded
and, at frequent intervals, evaluated by automated scripts to periodically regenerate
a new set of playlists that ordered tracks based on their popularity over a series of
different time intervals.

The chapters that follow provide a detailed discussion of the initial creation
of both the crawler and the application. This is then followed by a discussion of the
positive and negative observations made from the initial launch of the application
and its operation over the course of the first two months of its existence, a period
running from early-September to late-October 2015. A series of potential
improvements in response to these observations are then discussed, along with a

roadmap for the site’s further expansion going forward.

Chapter 2: Initial Design

Introduction

In order to detect what is popular across music review sites - and by
extension, the Internet at large - this project created a targeted crawler that
attempts to determine when the same song is posted across more than one of these
sites as a proxy for that song’s popularity. The approach behind this targeted

webcrawler is discussed below.

Creating the Webcrawler

How the Targeted Crawler Works
Prior to creating the crawler, several months were spent evaluating which
music sites on the Internet would be good candidates for inclusion in the crawl. The
primary considerations for a site’s inclusion in the crawl were:
1.) Does the site post SoundCloud-specific links?

Given that the application portion of the site would stream from
SoundCloud, it was important that SoundCloud-specific links be
available. This precluded a number of newer sites, which tend to post
music videos from video-sharing sites like YouTube and VEVO. It also
excluded tracks posted in track widgets available from Audiomack
(Audiomack, n.d.), an emerging audio-sharing platform and
competitor to SoundCloud, which focuses primarily on new or

“leaked” hip-hop and rap releases.

2.) How frequently is the site updated?

Evidence that the site was posting more than once a week was initially
considered an important criterion for inclusion in the crawl. However,
once the actual technical solution for the crawl became apparent
(particularly in the ability to “bypass” sites that have not been
updated) this criterion became less important, and some of these sites
were later added back in to the crawl.

3.) What is the ratio of SoundCloud-linked posts to the overall number of posts?
Posts are stored in the database for 30-60 days after they are crawled,
even if they do not contain SoundCloud links (for reasons discussed
later in this report). Therefore, a site that posts SoundCloud links, but
in insufficient proportion to their other posts (common on general
“entertainment” sites), was generally removed from the sample to

reduce the raw number of posts that needed to be stored.

The initial list of sites for the project started at approximately 100, and has
grown to over 175 as of this writing. As described below, the approach for locating
songs within posts from a site does not rely on English-language processing or
semantics. Therefore, numerous non-English speaking sites were able to be included

in the crawl.

From SOLR to Default-Enabled RSS feeds in WordPress

When this project was first conceived, considerable time was spent
researching how to implement a custom webcrawler using the open source crawling
tools available from Apache under the SOLR project (SOLR, n.d.).

However, it quickly became apparent that many of the sites being evaluated
for this project have been built using WordPress or similar platforms. By default,
WordPress provides a PHP- and MySQL-based content management platform that
has now become the de facto standard for the web, with “more than 23.3% of the
top 10 million websites using WordPress as of January 2015.” (WordPress, n.d.)

One very fortunate side effect of this de facto standardization is that
WordPress enables RSS feeds by default when setting up a new site. This means
that, for the majority of sites that accept/use the WordPress defaults at creation, an
RSS feed will be available. In order to locate this default feed, all one generally needs
to do is append “/feed” to the site’s existing domain name, or one of several other
similar variants.

Utilizing RSS feeds over a more general indexing tool like SOLR was
preferable in a targeted crawl, such as the one required for this project, because the
WordPress default RSS follows well-formed standards, providing dates of posting
and consistent permalinks to the posts. Because so many of the sites were already
using WordPress with RSS feeds enabled by default, the decision was made to
develop an RSS-dependent crawl.

Therefore, one final question also became key for a site’s inclusion in the

crawl: Does the site have an identifiable RSS or Atom Feed?

The Simple Pie Library

Once the lists of RSS-specific URLs had been collected, several RSS reader
libraries were evaluated for use in parsing the RSS feeds and locating the posts that
would need to be crawled.

The Simple Pie library, written in PHP, was chosen for its ease of use and
well-documented API (Simple Pie, n.d.). First made available in 2004, the Simple Pie
library exposes easy-to-understand methods for handling the various blocks of a
standard RSS feed. It also abstracts away the differences between the 8 common RSS
formats and 2 common Atom formats to give you a consistent, fault-tolerant
mechanism for retrieving RSS feeds. Furthermore, Simple Pie also makes extensive
use of caching and hashing to lower its footprint on the sites it targets, and allows
users to configure the cache as a directory in the local file system, or as a set of
custom tables in a MySQL database with the SQL scripts they provide.

Simple Pie also exposes configurable timeout parameters for the local cache,
which allows the user to set an amount of time for which a local copy of the RSS can
be considered “fresh” before an update of the actual RSS must be retrieved from the
site. Furthermore, Simple Pie will hash the RSS feed itself at each return visit to
determine if any new posts have been added since the last visit to that specific RSS’s

URL.

Extending Simple Pie to Find Music
Once Simple Pie was chosen, it was incorporated into a larger script for
identifying and recording SoundCloud links available in each post. The process for

identifying SoundCloud links in each of the posts is described in the section below.

7

What is a SoundCloud Widget?

In order to help artists get discovered, SoundCloud makes available several
mechanisms to allow site owners to host and play music on their site. By far, the
most popular of these is the “SoundCloud Widget”. The code to embed a SoundCloud
widget can be easily copied via the “Embed” option available under every song
found on SoundCloud. Music site owners therefore copy this code and embed the
HTML directly into their reviews when discussing a track on their site. Once posted,
the iframe renders from SoundCloud on the third-party site and users are able to
listen to the tracks provided. The SoundCloud widget can be customized in several
different ways to match the format of the site it is posted on; however, importantly,
the SoundCloud widget always contains the unique ID of the track at some position

within the iframe.

The Format of the Embeddable SoundCloud Widget Code
The following is an example of the SoundCloud Widget (iframe) code for the
song “Love for That” by the artist Mura Masa. As the red bolded text demonstrates,

the SoundCloud Widget always includes the track’s SoundCloud unique id.

<iframe width="100%" height="166" scrolling="no" frameborder="no"
src="https://w.soundcloud.com/player/?url=https%3A//api.soundcloud.com/
tracks/228076072&color=ff5500&auto_play=false&hide_relate
d=false&show_comments=true&show_user=true&show_reposts
=false"></iframe>

Figure 1: The iframe for a SoundCloud Widget

An example of a rendered SoundCloud Widget iframe is shown below.

Inspected b s [
Sorrow - No More Hesitation (feat. CYN) w (3 Share

Cookie policy

Figure 2: A Rendered SoundCloud Widget

Parsing posts for SoundCloud Widgets and Unique IDs

In initial tests, a regular expression pattern match was used to try to locate
the unique ID of the track within the context of the iframe. However, this yielded
poor results due to the varying parameters that can be included within the
SoundCloud Widget.

Upon further evaluation though, it became apparent that a much simpler
string matching approach might be possible. This approach set a series of possible
pattern matches that accounted for different possible encoding standards for the
widget above. The start position of the pattern match was then captured, the length
of the pattern that matched added to it, and a substring taken at the next character
for the nine-digit SoundCloud unique ID.

When the first pattern cannot be matched within the post, the script then
iterates to the next possible match type and rescans the document. Although this
can result in multiple scans of the post body, the linear nature of the string pattern
matching using if-then has provided more clarity into how matches were found
during testing and this approach continues to be used. Once a post has been parsed,

the script then proceeds by examining which of the following scenarios is applicable.

Scenario 1: No Track Found

In the instance where no track is found, the post details are written to the
“Posts” table in the database. This is done so that upon a return to the RSS where
new posts have been added and the links in the RSS are to be re-crawled, the script
can check the database to see if the link is to a “known” post, based on the permalink
listed for that post. Once a post is “known”, it will not be crawled again for as long as

it remains in the database.

Scenario 2: New Track Found
If, during the scanning of a post, a new SoundCloud unique track id is found, a
call is then made to the SoundCloud API with the unique id for that track. The
SoundCloud API exposes a large quantity of data for each track. The following fields
are of particular importance for the discussion of the application and the streaming
of sound later in this report:
1.) SoundCloud User ID (for the original user posting the track, typically the
artist)
2.) Song Title
3.) Number of Plays on SoundCloud (both on the SoundCloud site and in
SoundCloud Widgets)
4.) Date Posted to SoundCloud
5.) URL Link to Album Cover Art in a variety of sizes (conveniently hosted via

SoundCloud’s Content Delivery Network)

10

Each of the data points above provide valuable information either for the display
of the track in the application or for determining the popularity of the track when
examining whether to add it to Swapbeat.

Once the call to SoundCloud returns, the details above are stored in the database
in the “SC Details” table. Finally, a record is inserted in a join table between the Post
and the SoundCloud details. The use of this join table is particularly important for

the following scenario.

Scenario 3: Known Track Found

Given that this project seeks to identify popular tracks as they are posted
across multiple sites, it is quite common that the result of parsing a post will be the
discovery of a SoundCloud unique id that is already known to the database and for
which details from SoundCloud have already been retrieved. In this scenario, the
script will simply insert a record in the join table matching the new post with the
existing SoundCloud details.

An overview of the crawler function is provided in the figure below.

11

aseqejeg
u sjie3ag

pnojopunos
21035

OoN

sjie3aq ypeiL
3A3U3RY 0} 1Y
pnojopunos
1122

1504 Ui
siapeiey auu
IX3U 3A3N3Y

uawnn
3Je siapesey)
3UIN IV

jun 3sod
Suisn 3315 wouy
350d 331433y

4o

A

uianed yueas
103 Apog

1504 uo yoep

Suins wioyad

aseqeleq
ursjielag
504 210315

aseqejeq
urspelag
pnojopunos
03 jui 33e3.1)

N

i3seqeieq

343 03 umouy Apease

juljew.iad 150d

SSY 2yl wouy
Jjujew.ad 1504
IXaN S52004d

A

A

=A

U 3N
SBH Ssy

80 TosAn

ON
N

+|m>

Syuljeulad
1504 J0 3517
10} S5y 35184

149N SSY
X3 N SS3004d

7'y

EN

duaun)
S| UOISIaA
3yde) 2207

oN
A 4

¢SSY 3N SeH
17740 SSY 2¥S

ayre) S5y
1220733y

Aueigr aid
3jdwis 3eiyu|

OoN

S9N SSY

23U 301817

aus

woJy paad ssy
3G JO UOISIIA

153127339

ayre) uj 21035

on

Overview of the Site Crawler Funct.

Figure 3

12

Performance and Potential Webcrawler Improvements

During the course of this project, approximately 25,000 posts from 175 sites
have been crawled, yielding roughly 4,000 unique SoundCloud track ids. While the
CPU time used by the crawler is not of great concern, the self-imposed waits of the
crawler when fetching pages from sites means that on particularly high-volume
days - typically Tuesdays, when most new music is released in the US - the crawler
can take approximately two hours to complete.

Nevertheless, the performance of the webcrawler remains adequate for the
volume of posts evaluated daily. However, due to the waits, further improvements
to the crawler’s performance might be advisable were the number of sites in the
crawl to rise. The primary mechanism for performance improvement would be
multithreading the crawler itself, although this is not without some potential

obstacles, as discussed below.

Migrating the Crawler from Single-threaded to Multi-threaded

PHP has traditionally been a single-threaded language, with only unofficial
support for multi-threading having been recently introduced. While these new
multi-threading extensions do technically make it possible to introduce a multi-
threaded structure for the crawler, the following points would also need to be
addressed.

First, the current crawler self-imposes a random wait of between 3-5 seconds
between fetches. This is done because site links are gathered one site after the other,
so it is assumed that the next fetch is quite frequently from the same site, and that

the crawler might be imposing a performance hit on that site were it to fetch one

13

site’s posts/pages too aggressively. In a multi-threaded setup, this concern could be
alleviated if all links from all sites were gathered in a first stage, with the links
themselves being shuffled before being sent out to the individual threads for
fetching in a second stage. In that way, the odds would be sufficiently lowered so
that more aggressive fetching with less wait time could be imposed, based on the
assumption that no one site is being targeted repeatedly.

However, a further consideration concerns the use of the SoundCloud API
key required to fetch the SoundCloud details for a new track. While not official,
SoundCloud does watch the usage of API keys for information retrieval, and can
revoke privileges for keys calling too aggressively (generally perceived to be more
than once per second). Several options, including the queuing/centralization of
requests to SoundCloud, could allow for waits to be centrally monitored and

controlled when gathering track details from SoundCloud.

Adding Tracks to Be Played

Once the crawl is complete, simple SQL queries embedded in PHP are used to
sort the tracks according to how frequently they have been posted, and the PHP file
then formulates the iframe for each track’s related SoundCloud widget, listing the

relevant details and the widgets in order in a single page, as shown below.

14

#1 | SCID = 230795304 | SC Count = 8 | Created in DB 3 days ago | Created on SC 4 days ago | SC Playback Ct = 189782 | IsStreamable = 1
' v
‘\ 5 . il SOUNDCLOU)

) RL Grime - Halloween Mix 2015 3 * (2 Share

..MU[WHHMMI_I!II.||||||I||||||ﬂ]ﬂllIII||l|||HIjIp[JI||||||||_|[||I|I.|I||||1u||l|||||H|||||I|,|w|||IIM|l|l...|m|||||||||l|ll__|umllll_|lvl_l|lmI]Illh.u]mnh||IIIM|||!AIIW|M|WM .HN.IIIIIIII...quu...lIIn.lll.nmu||||||m||umnu|i|nnnm||..|l||||||...|||muwl..ul..nl,llum,5'“; 1

Cookie policy . -
#2 1 SCID = 231007728 | SC Count = 5 | Created in DB 1 days ago | Created on SC 2 days ago | SC Playback Ct = 82269 | IsStreamable = 1

~ - .
illls SOUNDCLOUD

) SoX RADIO- JUKE OR TREAT &~ ! * (2 Share

; ‘
‘le||I||||l!WI|I||h||IIIJQI||I|IhI|Iphm|In||um|||||uuhl|I||l|I|||||Ill|||||IIIIWWIWWIHh||||||||I|I||||I|||||Il||I|||||l|l|l|llll|l|l|III1I|||||l||||||||qu.|||I||uI||||||III|IIIIIImulI|IlIIIIIIIIlIlIIII|I|IIlIlJI|||||||||u|||||||IIIIIIIIIIIIIIIIIIIII|IIIIII||||I||||I||||Il|lIIIII“""

Cookie policy

#3 1 SCID = 230757807 | SC Count = 5 | Created in DB 3 days ago | Created on SC 4 days ago | SC Playback Ct = 8733 | IsStreamable = 1

ilfls SOUNDCLOUD

[+ T s

1] P

OKAY-KAYA]
I'm Stupid (But | Love You

Figure 4: A Screenshot of SoundCloud Widgets Rendered at Cravﬁer Completion

The tracks are then played in order to ensure that the recording quality is
high, and that there are no unnecessary audio snippets, such as radio promotions or
“dead air”, to start the recording that would make it unsuitable for playback as part
of a playlist. Some discretion is also exercised in regards to the lyrical content of the
songs, as well as the duration.

Finally, some effort is made to determine if the user account that the song has
been posted on is the true right’s owner for the track. SoundCloud assiduously
responds to “takedown requests” from copyright holders and will remove a track
when notified that it has been posted illegally. When a track is removed from
SoundCloud, any attempt to stream it via the API will result in an error.
Swapbeat.com is coded to handle these errors, recognizing the condition and
cascading to the next streaming endpoint to play the next song. Furthermore, the

site is built to remove the track from all displays, including from users’ favorites,

15

with the simple change of a Boolean value for “isVisible” listed for every track in the
database. However, this still results in confusion for the user, so attempts are made
to avoid this scenario altogether by validating the ownership of the track at the time

of posting.

Creating the Application

Front-end

The Importance of User Experience

Because this project sought to gather information from real anonymous
users, it was important to create a front-end application that would perform well, be
easily and immediately understandable by a wide-array of users, and entice users to
return for subsequent visits.

The following section details the approach taken to create the front-end
necessary to provide a high-quality user experience. It starts by discussing several
of the technical aspects for creating the single-page application (SPA) for Swapbeat
in JavaScript, which was underpinned by client-side storage in the form of an
“Application Data Map”, discussed in detail below.

Then follows a discussion of the various libraries needed to support
consistent playback of audio across a wide array of potential browser and device
types, primarily by using the SoundCloud SDK and the open-source Sound Manager

2 library, along with its “Bar UI” extension for controlling playback and audio.

16

Finally, the creation of User Accounts, utilizing integration with Facebook’s

JavaScript SDK for authentication, is discussed, followed by an overview of other key

considerations for the layout of the application.

The following diagram shows the placement of many of these components

within the three-tier architecture of the application, as well as the application’s

interaction with the results of the crawler function outlined in the previous section.

Application Tier

Figure 5: Three-Tiered Architecture Overview

Creating a Single Page Application and the Application Data Map

Custom Swapbeat
Javascript (including Facebook Bootstrap Library
AppDataMap), Log-in SDK SoHpianagerd (Css)
HTML and CSS Code
y
Middle Tier l External Sites/Services
Application Code Crawler Code
e R Custom Callsto SoundCloud API
Application PHP (P‘:iP] e RSSW SoundCloud AP1 || 2
(Returning JSON) Al and DB Storage N a
(PHP) Music Review Sites
and RSS Feeds
A F Y
Database Tier
S
Application DB Crawler DB
Tables MySQL Database Tables

In recent years, JavaScript has continued to grow in prominence as the

primary tool for creating rich user interfaces. Initially employed as an enhancement

to otherwise static HTML pages, JavaScript is now frequently used as the primary

17

mechanism for application organization and display, with HTML frequently being
relegated to the role of the “container” for the results of the executed JavaScript.

JavaScript’s allure is further enhanced with the continued use of AJAX to
asynchronously load data from remote servers, along with newer data delivery
mechanisms arriving with HTMLS5, such as websockets, which can provide
persistent, non-blocking communication with the server.

All of this is intended to provide the user with the quintessential “Web 2.0”
user experience - typically defined as navigation within a website that does not
require a full reload of a page each time information changes. Instead, Web 2.0 sites
focus on only modifying the minimal portion of the page that needs updating, which
is typically achieved by asynchronously loading data and updating the related
portion of the page upon completion of the request.

In the scenario of a full, “single-page application”, this means that only one
Document Object Model (DOM) equivalent to the browser window is actually
available to the developer, and libraries such as JavaScript and JQuery must be
employed to traverse the DOM, locate the elements to be altered, and make the
specific updates without a full refresh.

While this approach greatly enhances the end-user experience, it can create
new difficulties for the developer. Now, instead of thinking in “web pages”,
developers must think in terms of DOM elements, and must find mechanisms to
keep clear the state of the page and its subsections at varying points in time.

To help address this issue in this project, a single, globally available

JavaScript class, referred to as the “Application Data Map” for the application, was

18

developed. Whenever the application is loaded, the first script to be executed is the
“ApplicationDataMap.js” file.

Upon execution of this script, a series of asynchronous calls are made to
initialize data for the application, utilizing JavaScript’s self-invoking function syntax.
When these calls are returned, the results are then stored as variables within the
Application Data Map with corresponding getter and setter methods available.

The end result of the Application Data Map script execution is that an
“AppDataMap” object is directly appended to the “window” object of the DOM. From
this, all calls to retrieve or set data in the AppDataMap can be completed in
JavaScript by locating the AppDataMap on the window object using the
“window.AppDataMap.[function]” prefix.

Several objects are embedded within the AppDataMap to more clearly
delineate functions and data into logical units. These embedded objects are

described in the table below:

19

Embedded Object Name

Functional Description

AppDataMap.appConfig

Launches asynchronous calls to retrieve
application configuration information from the
Server.

AppDataMap.appDataCache

Client-side storage of tracklist datasets after
they have been lazy-loaded from the server.
Available methods calculate, set and evaluate
timeouts for tracklists, and the cache is
checked first before reloading a tracklist from
the server.

AppDataMap.spinner

Tracks the status of the “spinner” icon shown
when asynchronously loading data from the
server.

AppDataMap.soundcloud

Stores the API Key for SoundCloud and tracks
other SoundCloud-related details.

AppDataMap.user

Stores logged-in user information for event
tracking, along with helper methods for
translating Facebook log-in IDs to database
user IDs.

AppDataMap.marquee

The marquee object tracks which message to
display in the top navbar (yellow highlight).
This object also includes “back” and “forward”
message stacks enabling the app to retrieve
and show the correct marquee message for the
application at all times.

AppDataMap.currentTracklistInfo

An object with methods for tracking which
song is currently playing.

AppDataMap.chainedPlays

A count of the total number of plays that have
occurred without a user interaction.
Implemented so that “Are you still listening?”
checks can easily be added later on should
streaming rate limits from SoundCloud become
an issue.

AppDataMap.history

A custom object implemented to track the
“pages” a user has visited within the
application. Used particularly when a user
makes a series of requests for tracks by
particular artists and then browses back and
forth between them.

Table 1: Objects Embedded in the AppDataMap

20

Caching for Performance

As mentioned in the previous table, the AppDataMap object contains an
embedded object called appDataCache. The appDataCache initializes an empty array
defined as tracklistDataSets when it is instantiated. This array is capable of holding
multiple tracklist datasets as they are lazy-loaded and retrieved by the user (by
clicking the available tabs in the application). Each tracklist dataset contains not
only the information for the tracks in the list, but also defines a metadata set for the
tracklist that includes variables for “tracklist type” and “timeout”.

Whenever the data for a tracklist is returned from the database, the result set
is therefore wrapped in a tracklist dataset object, with a type listed and a timeout
defined. This timeout amount is set in the database and retrieved at application
launch as part of the calls made by appConfig.

The timeout duration is typically set at 15 minutes, which allows subsequent
requests for that tracklist type to be satisfied directly on the client side without
making a subsequent request to the database until after the timeout has passed.

At a summary level, this means that once all of the available tracklist types
represented by the different tabs on the front-end have been requested and cached,
no further loads of data are required until the timeouts are exceeded and it is time
to reload the datasets (possibly because new tracks have been added in the 15
minute interval). In fact, the only communications between the client and server

that occur are to register “user events”, which are discussed later in this section.

21

The benefits of this approach are twofold: Users see a near-instantaneous
response when switching between already-cached playlists on the front-end, and
the application server can support a far higher number of users than a non-cached

version.

Special Case: Maintaining the Cache when a User Favorites a Track

While the process of tracking events and, specifically, user favorites is
discussed in detail later in this paper, a particularly interesting set of use cases
resulted from trying to maximize cache performance while also allowing users to
“favorite” tracks from whichever tracklist they were reviewing.

Owing to the design of how tracklists are retrieved from the database, each
track on each tracklist received from the database includes a column with a
true/false value for “Is Favorite”, representing whether the track is a favorite for
that particular user.

While the status of a track as either a favorite or not is therefore correct
when the tracklist is received from the database, once the tracklist dataset is cached
and the user makes changes to their favorites, the client-side version of the tracklist,
and specifically the “Is Favorite” value, risks being out of sync with what’s been
updated in the database.

Therefore, helper functions were added to the appDataCache object
specifically to address this problem. In instances where a track is removed from
being a favorite (from any tracklist), the removal event and the trackID are passed
to a method on the appDataCache. From here, each tracklist dataset in the

tracklistDataSets array is inspected individually to see if the track is present within

22

that dataset. If so, the status of the “Is Favorite” field is modified and the entire
dataset is placed back in the cache, ready for the next retrieval.

More interestingly, in the event that a track is being added to the Favorites, in
addition to the values previously mentioned, the track data itself is passed to the
method. Similar to before, the corresponding values for the “Is Favorite” field are
inspected within each of the datasets, except, in this instance, when the method
finds that the dataset being inspected is the “My Favorites” dataset, it will also
prepend the track data for the new favorite to the head of the tracklist data set, so
that the track will appear at the top of the list of “My Favorites” when the user
migrates to that tab, all without having to reload any of the tracklists prior to their

timeout.

Playing Sound

The single most important function of the Swapbeat application is, of course,
playing sound. From the beginning, it was clear that the application would target
streaming music from SoundCloud using the streaming abilities SoundCloud makes
available to its developer community. The single-most important of these is the
“streaming endpoint” defined for each track by sending the trackID and your
application’s API key to the appropriate endpoint on the SoundCloud API. This
returns a URL from which to stream the requested track.

As simple as this sounds, getting this audio to reliably stream across a wide
variety of browsers is still a fairly daunting proposition. For starters, different
browsers support only certain subsets of audio formats. And while newer browsers

may be able to play the audio via new methods defined by the HTML5 standard,

23

older browsers that do not support HTML5 may still be best served by utilizing a
Flash-based player, with the actual player rendered off-screen while audio is
emitted.

Moreover, mobile browsers define different behaviors and standards when
implementing music players that support tracklists. For instance, Mobile Safari
typically requires a user action in its browser window before a sound can play.
While this is fine for starting the initial song in a playlist, it will unnecessarily
prevent the next track in a playlist from automatically playing if not properly

addressed.

Sound Manager 2

Fortunately, an open source project called Sound Manager 2, maintained by
Scott Schiller, bridges nearly all of these gaps for reliably playing audio in browsers
(Schiller, Sound Manager 2, n.d.). Sound Manager 2 works by defining a “Sound
Manager” object on the “window” of the DOM and then operating as a wrapper for
controlling sound. The benefit of using Sound Manager 2 is that the complexity of
“falling back” between HTML5 and Flash-based audio is completely abstracted away
from the developer. At over 6,000 lines of JavaScript, Sound Manager 2 contains
powerful code for detecting browser support for playing audio at launch, and
accounts for numerous variations and quirks between browsers, such as by
seamlessly “chaining” the next play event to the previous play event to address the

Mobile Safari issue discussed above.

24

Developers are therefore able to call simplified methods, such as “play”,
“pause” and “stop”, on the Sound Manager 2 object, and can trust that the correct,
browser-specific version of those actions will be reliably completed.

In order to fully incorporate the Sound Manager 2 library into this project,
only a handful of logging functions were inserted into the base Sound Manager?2
code, primarily to allow for event tracking between play events when playing off a

tracklist.

Sound Manager 2 Extensions: Bar Ul

In addition to the base Sound Manager 2 AP]I, Scott Schiller also makes
available several JavaScript-based players for browsers that interact natively with
the SoundManager object on the window, referred to as “Bar UI” players (Schiller,
Bar Ul Player, n.d.). One particular benefit of using these players is the integrated
ability to use the “scroll” object to navigate the point in time at which to play the
track.

JavaScript supporting the Bar Ul defines functions for relating the width of
the bar player to the length of the track, calculating the percentages for the
placement of the slider on the Ul bar in order to calculate the requisite percentage of
the track from which to start playback. This “scanning” function is further made
possible by the in-built buffering mechanisms of Sound Manager 2, which
aggressively buffers the start of the track to begin playback before loading the
remainder of the track at a less-aggressive pace.

An example of the Bar Ul player in use on the site is shown below.

25

’ Show Me Love — Hundred Waters
0:01 @ 3:47

Figure 6: The Bar Ul Player

Bringing it all Together

While the Sound Manager 2 API and Bar Ul display element greatly simplify
the technical complexities of playing sound in the browser, difficulties specific to the
particular vision for the customized Ul of the playlist for this site nevertheless arose.

Specifically, Sound Manager 2 and Bar Ul define a set of HTML elements that
are appended to the DOM with CSS classes added to display the player as a bar,
which, in the case of this project, was placed in a fixed location at the bottom of the
screen. Within this set of HTML, the Bar Ul player defines specific HTML elements
for appending audio resources to be queued for playing in order, constituting the
player’s tracklist.

However, because these elements are already styled as part of the Bar Ul, and
therefore could not also be displayed as part of the scrollable center portion of the
application, a second “displayable” version of the tracklist had to be developed.
Challenges then arose because both the “visible” and “actual” tracklist data now
needed to be kept in sync.

For instance, when a user presses play for a given track, this track’s audio is
“selected” in the Bar Ul player’s tracklist. Visually, this must also be tracked in the
“visible” playlist in the scrollable portion of the application. When a user navigates
to a different playlist while the audio is playing, the visible playlist needs to

represent the just-selected playlist info; however, the actual playlist still needs to

26

continue to play the currently playing song. Add to this the complication of what
song should play if the user stays on the just-rendered playlist and the previous
song ends. In this scenario, the most common expectation is that the song from the
top of the second playlist should begin playing; however, this track data is not
present in the “actual” playlist at this time.

Therefore, to get around these complications, a set of helper functions,
previously alluded to in the AppDataMap were created. Their primary focus was to
document the current tracklist being shown to the user and help compare it to the
current audio sources queued in the “actual” tracklist. After some trial and error, it
became possible to accurately track and compare the visual playlist against the
actual playlist, using a series of JQuery-based checks. The results of these checks are
then used to decide whether the existing data in the actual tracklist is still valid after
a new tracklist has been loaded, or if the data from the tracklist currently being
displayed in the scrollable portion of the app should be queued for play in the actual

tracklist.

Rendering the Tracklist

Because the primary focus of the application is to display and play tracklists
of songs varying by different time intervals, it became possible to create a single
“view” file for rendering the tracklists. The workings of this file are discussed in

detail in the following section.

27

Function of FormatReturnedTracks.js
After researching different aspects of DOM modification in a Single-Page
Application, it became apparent that directly manipulating the DOM to remove and
append individual tracks sequentially could result in sub-optimal performance.
Instead, the design leveraged the HTML “Document Fragment” approach,
which allows a developer to create a document fragment separate from and
unattached to the DOM’s window object. This fragment can then be manipulated
with all the normal DOM operations available in JavaScript and JQuery, and once
finalized, can then be inserted into the DOM as a single element update operation.
The process of creating this document fragment, formatting and appending
the child elements for each track, and then appending the fragment to the DOM was
centralized in a single JavaScript file, called “Format Returned Tracks”, which serves
as the formatting mechanism for all the tracklists shown on the site. Centralizing
these operations had the added benefit of greatly reducing testing efforts and
allowed for rapid prototyping of designs during the early phases of this project.
The Format Returned Tracks script defines a for-each loop for every track in
a tracklist data set sent to the function. Within this loop, the script creates and
appends various document elements, classes, ids and onclick handlers to support
the operations defined on tracks in the tracklist once displayed. An example of a

formatted tracklist for the “Most Loved - Last 7 Days” playlist is shown below.

28

75778 Now More Again My > |
§ ¢, Bo Rocha B KN
0 d ;;- Posted on: The Autumn Roses | The Line of Best Fit ille sounpcLoup
Bullar & Glass Mic] > |
Happy Ferns ﬂ “

Posted on: Fresh New Tracks | Run the Trap il sounpcLouD

Fallin' Away MIc) > |
Kudu Blue ﬂ “

Posted on: Pause Musicale | PressPLAY .""l‘ SOUNDCLOUD
[o]
4
4 We Can Hold On
- Du Tone =
Posted on: La.Ga.Sta. | Harder Blogger Faster | Kick Kick Snare +1 more miiile sounpcLoup

Figure 7: Screenshot of a formatted tracklist

The creation of each child element needed for the display of each individual

track is described in the following section.

Track Elements Formatted

Track Position

The track position represents the relative location of the track within its
tracklist. The number is created via a counter that is incremented after each track is
formatted and added to the tracklist document fragment. The script also assigns a

track position class to this element for CSS formatting.

Track Movement Indicator

The Track Movement Indicator is created by evaluating the concatenated
string of prior tracklist positions captured in the Tracklist Audit Log discussed later
in this document. By evaluating the most recent value from this string against the
current tracklist position, the script can determine the absolute value of the

movement and the direction. The script then applies Bootstrap glyphicons

29

representing “up”, “down”, or “no change” indicators, along with classes to define

green, red, or black coloring depending on the direction of the movement.

Artwork Frame

As discussed in the crawler portion of this report, SoundCloud provides an
artwork URL for each track added on SoundCloud. SoundCloud conveniently offers
this cover artwork in several preformatted sizes, available by appending different
size parameters within the URL. These sizes range from 16-pixel by 16-pixel
thumbnails to 500-pixel by 500-pixel album cover sizes. Furthermore, this artwork
is hosted via SoundCloud’s Content Delivery Network, which allows for rapid
loading to the end user. For the current version, the 100-pixel by 100-pixel size was
chosen as a good compromise of visibility and speed for the tracklist, although no
noticeable decrease in speed was observed when loading the largest format sizes in

later testing.

Track Title

The track title is directly taken from the “Title” field in the JSON. However,
this portion of the JavaScript also includes a check to see if there is a “remix” artist
on the track. If so, the track title portion of the script will pass the remixer name text
to the Artist Name script for further formatting and then will add this name to the
title.

For example, if the song “Divinity” is remixed by the group “Odesza”, the
Track Title will pass “Odesza” to the artist name formatting function, and once

returned, the formatted name for Odesza will be placed within the title to make the

30

text read, “Divinity (Odesza Remix)”, with the “Odesza” portion of the title selectable

as further outlined in the Artist Name section below.

Artist Names

Because this project sought to make it simple to see all tracks by a given
artist, onclick event handlers are assigned to every artist name displayed on the site,
which, when clicked, return the set of all tracks by that artist in the database.

To make this possible, the required fields for the onclick handler
“GetArtistTracks” are pre-registered using string concatenation during formatting.
To simplify this process, a helper script called “Format Artist Name” was defined.
This script serves two primary purposes.

First, when the function is called with an individual name and artist ID, it will
format the Artist Name for display and will assign the onclick handler with the artist
ID already present in the method signature to retrieve the artist’s tracks.

Its second function, however, is to allow for multiple artist names to be
formatted and returned. In particular, the function can accept any number of artists
as input and will return a properly separated list with an “and” inserted for two
artists or commas and a concluding “and” for more than two artists.

The Format Artist Names function can therefore be called with all the names
of the artists, and then can be called again with all the artists that are featured.
These two sets of artists can then be concatenated with an appropriate “featuring”

inserted between them. Several examples of this formatting are shown below.

31

Thanks for logging in, Tim Box!

JUWa pibxe@@ Tracks for "Big Wild")

Brewed in Austin, TX | @swapbeatmusic

Newest Most Loved - Right Now = Most Loved — Last 7Days = Most Loved - Last 30 Days | Most Loved - Past Year | Most Loved - A11-Time & My Favorites

<<BACK Showing 3 trackse..

“esavs Show Me Love (Big Wild Remix)

' Hundred Waters
FGWLORINX il sounpcLouD
=~ " For The Love (Big Wild Remix) M) >
L) GRiZ featuring Talib Kweli ﬂ “

wille sounbcLoup

2 Aftergold Ml > |
([&

wille sounpcLoup

Handcrafted in Austin, Texas | Copyright 2015 e swapbeat.com | On Twitter: @swapbeatmusic

Show Me Love - Hundred Waters

> 0:01 @ 3:47

Figure 8: Showing a tracklist for an individual artist's tracks

In the example above, the artist “Big Wild” appears as both a primary artist in
the third track, and as a remix artist in the first two tracks. The example below
shows a more complicated formatting case, where “Major Lazer” and “DJ Snake” are
both listed as primary artists, “MO” is listed as the featured artist, and the producer
“CRNKN” is shown as the remixer. Each of these artists’ names can be clicked to
retrieve a listing of all the tracks in the database for which they are listed as a

contributor, as was done to capture the “Big Wild” screenshot above.

Lean On (CRNKN Remix)
Major Lazer and DJ Snake featuring MO

Figure 9: An example with several selectable artist names

32

Formatting Site Names

Because the site evaluates which tracks to add based on the postings of
numerous music sites, it was important to show the posts themselves along with the
track, both to assign appropriate credit to the sites that discovered the track, as well
as to lend credibility to the decision to add the track to the site.

Furthermore, because the user interface of the site needed to be kept
minimalistic to more closely mirror the display of a standard list of tracks, it was
important to be able to show the individual links to the posts without cluttering the
interface.

To do so, a helper script was written, called “Format Site Names”. This script
takes as input a JSON object consisting of a list of sites, each with a permalink to the
post where the track was found on that site.

For an individual site post, the Format Site Names script places the site name
in the displayable text of the HTML element and assigns a “href” to the permalink for
the post. The links are then pipe-separated and returned by Format Site Names for
display.

Due to space constraints, a decision was made to only show a maximum of
three site names at a time for each track. In instances where the number of sites is
greater than three, the Format Site Names script selects a random value that is
between zero and three less than the number of site posts passed in the JSON. The
script uses this random number as an index into the JSON, taking a slice of the JSON
for the next three site names. These sites are then formatted as described above. In

addition, the script will then calculate the additional number of sites, concatenating

33

this to the end of the list of pipe-separated site names as “+ [Number of sites - 3]
more”.

An example of the site formatting for the track “Love For That”, which was
posted on 23 different sites, is shown below. Clicking on the links will take the user

to the specific post on the named site where the track was found.

v4

Love For That

Mura Masa

Posted on: Future Dance Music | Disco Naivete | Stereo Fox +20 more

Figure 10: Showing the formatted list of site names where a track was posted

The Favorite Button

As described elsewhere in this report, emphasis was placed on allowing
logged-in users the ability to favorite (or unfavorite) a track from any playlist they
view. To do this, an “Is Favorite?” Boolean value is passed for every track on every
playlist.

When evaluated by the Format Returned Tracks script, the favorites button,
represented by a heart icon, is styled to represent whether the song is or is not
currently a favorite. An onclick handler is also assigned that will update the favorite
status from “favorite” to “not favorite” or vice versa, depending upon the current
status when it is clicked.

In addition, to help with the client-side maintenance of the Favorites as
described in the Application Data Map portion of this report, the element ID of each

individual Favorite button is passed in to its onclick event handler, which allows the

34

handler to modify the display class for the Favorite button to its new status, either
from favorite to not favorite, or from not favorite to favorite, along with updating
the button’s event handler to correctly handle the next possible favorite/not

favorite event.

Like and Dislike Buttons

Simple “Like” and “Dislike” buttons were also added for each track in order to
gather user sentiment. Unlike the favorite button, these buttons did not require the
user to have an account or to be logged in. When selected, the onclick handler
records information about the event and sends an asynchronous call to the database
to record it. A temporary message is also posted on the marquee that reads, “Thanks

for voting!”

Player Controls
The player controls portion of the Format Returned Tracks script is

responsible for creating the “play” and “pause” buttons available for each track. The
onclick event handler for the “pause” button assigns a simple pause method that
requires minimal logic: any click on any pause button in the tracklist pauses the now
playing track.

However, the pause functionality creates several potential scenarios to be
considered when the “onclick” for the “play” button is invoked. Specifically, since a
“play” button is available for each track, the handler needs to be aware that a track

may:

35

1.) Not be playing,

2.) Be playing and be the track to which this play button is assigned,

3.) Be playing and not be the track to which this play button is assigned,
4.) Be paused and be the track to which this play button is assigned, or

5.) Be paused and not be the track to which this play button is assigned.

Therefore, the “play” click handler needs to be able to evaluate the information
above and respond appropriately. In scenarios 1, 3, and 5, the handler should simply
play the track immediately as a new track. For scenario 2, the handler should do
nothing (and assume that it was a user mistake). For scenario 4, the handler should
resume the track from the current position - i.e. if the track is paused at 30 seconds,
it should resume playing at the 30-second mark. These scenarios are further
complicated by the need to keep in sync the Bar Ul player displayed at the bottom of
the screen.

Therefore, the “play” click handler became a moderately complicated entity,
requiring further tracking of the “play” state in the centralized “App Data Map” so
that the correct decision on which track to play could be made consistently

throughout the application.

Linking to SoundCloud Artist Pages

Finally, the SoundCloud terms of use require that applications that stream
music from their service display any of several SoundCloud “marks” provided to
developers. Furthermore, these terms also require that applications provide a link

to the artist’s individual SoundCloud page or to the specific page for the track.

36

In order to meet these requirements and to conserve space, the decision was
made to format the SoundCloud mark as a skin for a button and assign the onclick
event of that button to open a link to the artist’s page on SoundCloud in a separate

window, thereby meeting both requirements in one element.

Event Tracking and Updating the Marquee

Embedded in the event handlers for the “Favorite”, “Like/Dislike” and “Play”
Buttons are AJAX calls to the Application Server to register the event. These events
are then recorded in the database and later used in the evaluations for determining
and recreating the tracklists as described in the “Backend” portion of this report.

For events triggered by the user, such as “Favoriting” and “Liking” or
“Disliking” a track, a simple “marquee” was created at the top of the page. Whenever
one of these events was invoked, the handler would invoke an “Update Marquee”
function. This function allows for the caller to also define a timeout. Therefore, when
“Favoriting” the example track “No More Hesitation”, the click handler can invoke
“Update Marquee” with the message “Adding ‘No More Hesitation’ to Favorites”,
along with a timeout of 2 seconds. The Update Marquee function will then use
JQuery to select the current Marquee text and store it, before modifying the
Marquee with the temporary text. Once the timeout expires, Update Marquee will
retrieve the previous message and will return it to the display in the Marquee. This
allows feedback to be shown to the user without needing to clear pop-up messages

or otherwise detracting from the user experience.

37

User Accounts with Facebook Login

The final key component for the site was the integration of Facebook
authentication with the Swapbeat application. Facebook’s authorization mechanism
continues to rise in popularity due to the pervasive use of Facebook and the fact that
Facebook tracking cookies are typically already present on a user’s browser if they
have logged into Facebook previously. Facebook’s authentication mechanism for 3rd
party applications primarily consists of allowing registered applications access to
the cookie in order to determine who the user is and whether they are currently

logged into Facebook.

Registering the Application with Facebook

The Facebook developer’s page allows developers to register their
application and receive an API key. Furthermore, a developer can register both a site
URL and several applications all tied under the same API Key. This allows
developers to provide a consistent user experience across multiple platforms and
devices all without requiring additional logins for each device if the user is already
logged into Facebook or a Facebook cookie is present.

Furthermore, the Facebook developer pages also allow developers to create

test instances for their applications, along with sample users for testing.

Initializing the Facebook Authentication SDK
In order to initialize the Facebook Authentication in a JavaScript application,
the developer only needs to include the self-executing initialization script in their

home page. Developers are required to supply the version of the SDK they wish to

38

use along with their application’s API key in the initial call to load the SDK. The
script will then load the Facebook SDK in the DOM, which can be called to check
whether the user is “known” and whether they are already logged in.

If so, the Facebook SDK returns that the user is logged in and provides the
user’s ID for this particular application.! An individual application can then typically
compare this ID against their list of known IDs to find the user details and proceed
with the login process.

Of particular note, the use of Facebook login obviates the developer’s need to
encrypt, store, manage, and reset users’ passwords for their application. In fact,
passwords are never seen by the 3rd-party application during the Facebook
authentication process, only acknowledgement that the user is a registered user and

is currently signed in.

Integrating with the Facebook Log-in Button

Facebook provides two primary mechanisms for completing the login
process for both new and existing users that are not currently signed in to Facebook.
First, the SDK exposes all the methods required to submit the login request to
Facebook, along with providing success callbacks for when the login process
completes. This allows for complete customization for the user interface during the
login process; however, it requires the developer to observe the login status and

provide appropriate visual cues as to whether the user is logged in.

L In an attempt to increase security, Facebook now assigns an app-specific user ID
for each user for each application, and no longer directly transmits the user’s actual
Facebook user ID as it previously did. This, however, has exploded the size of ids
needed and developers are now advised to store the “Facebook User ID” as an
unsigned “BIGINT” value.

39

The second method involves using the preformed “Facebook login” button.
This method provides far less Ul customization but is much simpler to implement
overall.

The Facebook login button operates by defining an onclick event handler of

checkLoginState(). The basic format of this function is shown below:

function checkLoginState() {
FB.getLoginStatus(function(response) {
statusChangeCallback(response);
3
}

Figure 11: Example code for the checkLoginState() method with callback

Once the call to getLoginStatus() completes, the “statusChangeCallback” is
invoked. It is within this callback that developers can include their application-
specific login functions, which often involve querying the Facebook Open Graph API
for the logged-in user’s details.

To demonstrate this functionality, this project included calls to the Open
Graph API to get the user’s name and the user’s profile pic, both available without
requesting additional user permissions when they register.

One example of these calls is provided below. Here the Open Graph API is
called with the API to get the ‘me’ (current) user’s profile picture and place itin a
DIV element on the page as shown below. (Note: the “response.id” is the application-

specific user ID for the logged-in user.)

40

FB.api(“me”, function(response) {
if(response && !response.error) {
var picDiv = document.getElementByld(‘userPic’);
if (picDiv.innerHTML ==") { //prevent loading duplicate images
mylmage = document.createElement(“img”)
mylImage.src =
“https://graph.facebook.com/”+response.id+”/picture?type=small”;

}

Figure 12: An example of a call to the Facebook Open Graph API

Middleware
Owing to the heavy reliance on the Single-Page Application for formatting
responses into the appropriate pages for viewing, the primary role of the middle

layer for this application became the retrieval and return of JSON between the client

and the database.
Because of this, only five PHP files, constituting a mere 600 lines of code,

were required to support the communication between the client and database. An

overview of these six files and their role is given below:

41

File name

Purpose

GetTracklists.php

Retrieval and return of tracklists from the
database based on the time interval
selected.

InitAppConfig.php

Invoked by the App Data Map, this retrieves
configuration parameters, such as timeout
intervals and API keys, from the database
at startup.

ManageLogin.php

This is invoked during the log-in process to
register both new user log-ins and to
update the “last log-in” of existing users.

RegisterEvent.php

Accepts metadata regarding the different
tracked user events, such as “like/dislike”,
“favorite”, and “play”, and registers these
events in the database.

GetTracksByArtistID.php

Invoked when a user requests the
application display all the tracks for an
artist. Accepts the artist ID as a search
parameter.

Table 2: PHP files supporting client communication with the MySQL database

Each of these files use PHP’s “MYSQLI” extension to manage communication

between PHP and the MySQL database instance described in the following section.

The MYSQLI extension primarily implements an interface for creating a database

connection, executing a statement, and closing the connection when complete.

In each of these files, once the results array is returned to PHP, the

json_encode() function is called on the array and the results are “echoed” back to the

client, as shown in the example below.

42

$jsonData = array();

while($array = $result->fetch_array(MYSQLI_ASSOC)) {
$jsonData[] = $array;

}

echo json_encode($jsonData);

Figure 13: An example using the MYSQLi extension in PHP

Backend

For the backend datastore, a MySQL database was created using MySQL
Workbench'’s data modeler. The original schema consisted of 42 tables, 6 views, and
8 stored procedures. Five of these tables specifically relate to the “crawler” function
described previously, while the remaining tables support the storage, retrieval, and
playback of music in the online application.

Throughout the database, a focus was maintained on using many-to-many
join tables, as, for example, artists frequently have many tracks and tracks
frequently have many artists.

In addition to standard data modeling, indexing and normalization
considerations, several modeling choices specific to the support of an online music

application were made for the creation of the site, which are discussed below.

Specific Design Choices for a Music Site

As mentioned previously, an early design choice for Swapbeat included
minimizing the performance requirements on the middle layer created in PHP. One
mechanism for doing so included the preprocessing and storage of application-

ready data directly in the database. This took two primary forms: one, storing the

43

data from multiple corresponding rows as a single, preformatted JSON string; and,
two, preprocessing the results for the different “Most Loved” playlists and storing

them in tables for quick retrieval. Each of these enhancements is discussed below.

Storing JSON in the Database

As JSON has continued to rise in prominence for communicating data from
servers to clients, new “page-based” data stores such as MongoDB have been
developed to directly store JSON and more rapidly serve this information to front-
end clients at the expense of relaxing some of the “ACID” properties of more
traditional databases.

While this project used a MySQL database and did not implement a newer
page-based storage solution, it quickly became apparent that some direct storage of
pre-formatted JSON would be useful in the “high-volume” tables returning the
different “Most Loved” playlists. This was particularly true of several different data
points for which multiple rows relating to a given track might exist in another table.
For example, multiple individual artists’ names may be present for a track, and
multiple posts related to a track may need to be returned for display in the front
end. In order to properly format this data in JSON using SQL, extensive use was
made of the “concat” and “group_concat” functions available in the MySQL variant of
SQL.

For example, the following SQL will look for all the artists associated with a
given track, and will “group_concat” (i.e. group concatenate) their Artist ID and their
Artist Name, into properly formatted JSON. The concat function will then repeat this

for any additional artist names, with properly inserted commas and parentheses

44

added between each individual group_concat result, maintaining proper JSON

formatting.

(select trackid, concat(\'[\',group_concat(distinct \'{\"artistID\":\"\’,
at.artistID, \'\",\"artistname\":\"\', a.artistname, \'\"}\' order by at.artistID
separator \',\'),\']\') as artists

from artiststracks at, artists a

where a.artistID = at.artistID

and at.isartist =1

group by trackid) as artistsTemp

Figure 14: Example SQL for CONCAT and GROUP_CONCAT

Results from this query can then be selected for and stored in the “artists”
column for a track as the following properly formatted JSON (w/ escape slashes for

quotes):

[{\"artistID\":\"16\",\"artistname\":\"The Chainsmokers\"}]

Figure 15: Formatted JSON stored in the database

As mentioned above, if there are multiple artists, such as in the example of
two “featured” artists below, these will be added together by the outer concat
function to render the following properly formatted JSON, which can then be stored

in the “features” column for the track:

[{“artistID”:"462”,"artistname”:”"SiR"},{“artistID”:"463”,”artistname”:"Joyce Wrice"}]

Figure 16: Formatted JSON for multiple "featured” artists

In addition to formatting artists’ names, this approach was also used for site
names, where, for several particularly popular tracks, 20 or more site posts related

to a single track have been concatenated into a single “Post Info” column for

45

retrieval. Interestingly, occurrences such as these exceeded MySQL’s default setting
for the maximum character count allowed when performing a group_concat,
requiring this setting to be manually increased in the MySQL instance to 15,000

characters at one point in the project.

Preprocessing the “Most Popular” playlists by Time Period

One of the main areas where performance improvements were sought was in
pre-processing the playlist data for the “most popular” playlists for each of the time
intervals available to users. Preformatting and storing JSON in the database was
particularly important to this approach, as it meant the tracklist could be served to
the client immediately, without computationally intensive queries being performed
for each new request to the database. The finished results of these queries were
therefore processed once per interval and then stored in individual tables
representing each playlist. These playlist tables were then dropped and recreated
every 12 hours to capture the updated results.

To assist in this process, stored procedures were developed to analyze the
available data for each of the time periods required.? At runtime, the results of these
stored procedures are written to temporary tables, the main tables dropped, and the
main tables recreated using “select from” syntax on the temporary tables. Once the
main tables have been successfully recreated, the temporary tables are dropped.

Allowing all of the processing to complete before the “main” table is dropped

and recreated, when combined with the caching mechanism for each of the playlists

2 The stored procedure approach was necessary because MySQL does not natively
support materialized views.

46

on the client-side, greatly reduces the chances that a user will request a playlist
table that is unavailable in the database in the specific moment when it is being

dropped and recreated.

Scoring Tracks for Playlist Inclusion

In addition to the mechanics of dropping and recreating these tables, these
stored procedures also contained involved logic for determining how to order the
tracks into the playlist for the period.

One specific consideration for creating the updated playlist for each interval
was recording different forms of sentiment towards tracks as they existed on the
site. The primary mechanisms for registering sentiment for a given track included
“plays”, “likes” and “dislikes” registered for the track, as well as the number of times
the track was “favorited”, and the number of times a “buy link”, when present, was
clicked.3

Each of these four event types is registered in the database whenever they
occur. Specifically, for each event, the event type, the user ID for the event (if
present), the track ID, the tracklist position, the tracklist type and the timestamp for

the event are recorded.

Events Weighted by Type
In addition to the raw scoring based on the number of times each event type
occurs, two measures were also applied to each event. The first is a simple filter,

which applies a fractional proportion to each event type based on its perceived

3 Buy links were included in the early design of the application, but were removed
for the initial go-live phase of the project on the swapbeat.com domain.

47

relative importance and informational value in comparison to the other event types.

During the course of this project, the multipliers applied to each event type were as

follows:

Event Type Relative Weighting
“Play” Event Registered 0.1

“Like” or “Dislike” Registered 0.4

“Favorite” Registered 0.6

“Buy Link” Click Registered 0.6

Table 3: Event Types and Relative Weightings

Each of these weightings were set in a parameters table in the DB, allowing
them to be read at runtime by the stored procedure, and therefore changed
dynamically throughout the course of the project. It is important to note that these
relative weightings also incorporate the current use pattern information from the
site. Thus, were play events on the site to rise dramatically, these weightings would
need to be readjusted to keep the different events in relative balance.

In addition to the simple filtering done above, two additional forms of
weighting are applied to each event type to further utilize the information received

as a result of each event.

Events Weighted by Tracklist Position

The first of these two weightings applies to the position of the track on the
tracklist in which it was presented when the event occurred. A tracklist can consist
of up to 50 songs, laid out vertically on the page. Because users are consistently
presented with the top portion of the playlists when it is first loaded, and thus

shown tracks that are, in theory, already popular for that time period, additional

48

events registered on these “top” tracks have a lesser informational value than events
registered on tracks lower down the playlist.

To capture the information difference between these two types, an inverse
decay function calculates an additional score for each event type, based on the
tracklist position when the event occurred, so that, for instance, when a track from
lower down the playlist is played, liked, etc., its score is “boosted” more than when a
track already at the top of a playlist is played, liked, etc. One special case for these
weightings is also applied in regard to “dislikes”. In this case, when a track at the top
of a given tracklist is “disliked”, this event is weighted more strongly (a more
negative scoring impact) than when a track already positioned lower down the list
is disliked. These differences in weightings are applied non-linearly using
exponential functions. Generally, the differential applied between “infrequent”
events, such as liking a track in position 50 versus liking a track in position 1, were
set at 4x, resulting in dynamic track movement without overpowering other

contributing factors.

Events Weighted by Time

A similar weighting mechanism is also applied to the timestamp of each
event. Here, the theory is that events registered more recently have higher
informational value than events registered further in the past. In order to apply this
weighting, the events are grouped into the intervals between regeneration of the
playlists. A weighting is then applied that is inversely proportional to the number of

periods that have occurred since the event was registered. For instance, an event

49

occurring one period ago is given a higher time-weighted value than an event

happening five periods ago.

Calculating the Final Score

The relative importance of these two weighting measures is demonstrated in
the graph below. In this graph, the “points” assigned to an event for the weighting
type are represented by the y-axis, and both the tracklist position and the number of
time intervals that have passed are represented on the x-axis.

Here, the blue line shows that when a track is in first position and “liked”, it
will receive approximately one weighted point; however, a track in 50t position
that is “liked” will receive nearly 4.5 points.

Similarly, an event occurring only one period ago will receive approximately
one weighted point for its time component, while an event occurring 50 periods ago

will receive approximately .25 of a point for its time component.

@===(Chart Position Component

es==»Time Interval Since Now

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49

Figure 17: Calculating the Chart Position and Time Component Scores

Once the different weighting components for each event have been

calculated, the points available for each track according to each of the weighting

50

calculations are summarized in a series of temporary tables. The stored procedure
then completes several “union” queries to summarize the results from the different
temporary tables, and then orders the tracks by their cumulative adjusted scores for

inclusion in the playlist.

The Tracklist Audit Log

One final component of the stored procedure for updating and recreating the
“Most Loved” playlists is the storage of all tracklists, tracks, and positions in a single
database table called the Tracklist Audit Log. This table allows for the detailed
analysis of how a track progresses through the application as it moves higher and
lower across playlists through time, since the information for each track is stored
for every track on every playlist at the generation of each new set of playlists.

In addition to analysis, this table allows for a detailed listing of the last 10 (or
more) positions of a given track on a given tracklist type to be concatenated and
stored in a single column with each track. Initially, this time-series information for
the movement of the track within the playlist was displayed as a graph using Chart
JS (Chart]JS, n.d.). However, this visualization was removed during the course of the
project in favor of a simpler display of the up/down green and red colored arrows

displayed alongside the number of positions moved.

Other Database Design Considerations

Returning Tracklists and User Favorites
Another key design decision from the application was that users who have

created accounts should be able to favorite any track they see on the site and have it

51

show in their “My Favorites” tab immediately. Furthermore, whenever a user views
a track they have already favorited, they should be able to see that it is a favorite
directly in the display for the track wherever it appears.

The mechanism for updating the favorite from the front-end application,
including its interaction with the client-side caching mechanism, was discussed
earlier in this report. However, when first returning a playlist from the database to
the client, it was important to also identify which tracks on a given “popular” playlist
have already been favorited by a given user.

To do this, a stored procedure for returning tracklists to the client was
implemented. This “Get Tracklist” procedure takes as input the tracklist type to
return, along with the User ID. Then, using a case statement to match the tracklist
type to return, the procedure determines if any of the tracks returned for the given
playlist are user favorites by performing a “left outer join” between the tracklist
table and “user favorites” table based on the track ID. When a match is found, a
“true” value is registered in the “Is Favorite” column for that track prior to returning
the tracklist back to the user.

This allows for the “Heart” icons, representing the user’s favorites to be
quickly and correctly displayed at the initial display of each tracklist in the
application without having to make a separate round trip to the database to gather

the user’s favorites and compare them on the client side.

Retrieving Tracks by Artist ID
One of the key challenges in modeling independent musical data correctly is

acknowledging that a single musical artist may be the primary artistic talent, a

52

featured artists or the remixer for a given track. This is particularly true today of
newer artists, who will typically attempt numerous remixes and collaborations in
order to get discovered.

One of the early design goals of the Swapbeat front-end application was to
have all artists’ names be selectable throughout the front-end, so that clicking on an
artist’s name would retrieve all tracks that that artist has contributed to, regardless
of the type of contribution.

Therefore, it was important to capture not only the link between an artist
and a track but also the nature of that relationship as well. Thus, in the data model, a
join table between artists and tracks was created, called “artists_tracks”, which also
contained columns to identify “isArtist”, “isFeature”, and “isRemixer”. This structure
opens up the possibility that users can therefore click on the artist name of an artist
in a track, and from that, a query can be run in the “Artists Tracks” table to locate all
tracks where that Artist ID is present (regardless of their role in the track). This list

can then be returned to the front-end for all of these tracks.

Infrastructure and Deployment

Because this application sought to replicate a commercial-grade music
playing experience for users, sufficient infrastructure was required to ensure
smooth, high-availability operation of the site, while also minimizing the
complexities of administering servers for high-availability and failover, completing
patches, etc.

After careful consideration, the Heroku “platform-as-a-service” (PaaS) was

enlisted for serving the application, and an Amazon Webservices MySQL instance

53

was chosen for the database. A short discussion of the experiences deploying and

managing the application with these two services is given in the sections that follow.

Deploying the Application to Heroku

As mentioned previously, Heroku markets itself as a “platform-as-a-service”
(PaaS) provider. Heroku’s product offering differs from that of a traditional cloud
hardware provider due to Heroku’s concept of a “dyno”. In Heroku'’s parlance, a
dyno provides both the virtual resources of a traditional cloud/virtual container
combined with the specific operating environment defined by the application.
Because of this standardization to a set number of supported dyno types, Heroku
allows applications to be scaled seamlessly across multiple dynos when needed
(Heroku, n.d.).

Heroku also provides several different simplified mechanisms for deploying
applications. By far, the most popular of these options is the Heroku command line
interface (CLI), which integrates with the user’s Git repository for their project.

Specifically, the Heroku CLI allows the user to associate their project with a
remote Git repository hosted on Heroku. Once this remote repository is created and
assigned, the developer can simply navigate to their root directory in the terminal
window, complete their Git “add” and “commit” operations for any new or modified
files, and then execute the statement “git push heroku master” to have their
application code pushed to the remote repository and automatically deployed to the
related dynos.

Once complete, the application is then available at a subdomain of

“herokuapp.com”, with the sub-domain name either randomly assigned or specified

54

by the user. When using a custom domain name with Heroku, such as the one
purchased for this project, www.swapbeat.com, one only needs to create a CNAME
reference from the custom domain name to the herokuapp subdomain.
Interestingly, Heroku’s platform is itself actually hosted on Amazon
Webservices (AWS) in the Northeast region. As discussed in the following section,
the MySQL database for this project was deployed directly to an AWS MySQL
instance. Because the MySQL instance was also in the Northeast region, the project
did not have to pay data transfer fees for communication between the application
server and the database that might have been incurred had the application not been
hosted on AWS or even hosted in a different region within AWS. And while these
costs were not an important consideration during the early stages of this project,
were the user base for the application to increase dramatically, the avoidance of

these costs could become much more important in the future.

Deploying the DB to AWS

In addition to deployment of the application to Heroku, as mentioned, a
MySQL instance was also created within Amazon Webservices (AWS RDS, n.d.). AWS
provides numerous compute and memory size options. To balance cost vs.
performance considerations, a db.m3.medium AWS RDS MySQL instance was
selected for this project. This provides 1 vCPU and approximately 3.75 GB of
memory, which has proven more than adequate for the initial stages of this project.
Once instantiated, AWS RDS MySQL instances are fully accessible using the standard

MySQL connection mechanisms.

55

Interestingly, Amazon has recently launched their proprietary “Aurora”
version of MySQL. Aurora is marketed as a fully compatible version of MySQL with
the added improvement that the backup and replication routines have been
rewritten and optimized to fully take advantage of AWS’s vast storage
infrastructure, which allows AWS to promise near-zero latency replication between
read-write and read-only copies (AWS Aurora, n.d.). This makes possible many
interesting architecture options for developing read and write strategies for MySQL-
based applications; however, Amazon currently only offers Aurora-based MySQL
instances at resource sizes and price points far above what was required for this

project.

First Release

The Swapbeat application - available at www.swapbeat.com - was released
on August 28th, 2015. Prior to this, several earlier releases were available at specific
Heroku subdomains and were shared to get feedback, which was incorporated to
the extent possible into the version launched at swapbeat.com.

While the author was able to share the site’s development with friends and
family, the project also depended in part on usage of the site by anonymous users on
the Internet. Therefore, to increase this type of traffic for the site, several efforts

were undertaken, as discussed below.

56

Generating Traffic

Social Media

In order to try to increase site traffic, a Twitter account was created for the
site: “@swapbeatmusic”. Throughout the course of the two months of the project,
frequent tweets were sent to artists’ Twitter accounts informing them that their
song had been posted. While these tweets often garnered a response from the artist
in the form of a “favorite” or a “retweet”, these efforts had minimal impact on
driving traffic to the site, as Twitter shares analytics for tweets with the author,
including the number of clicks on site links embedded in the tweet. Furthermore, all
links shared in tweets are minimized using Twitter’s proprietary link shortener.
Therefore, all link clicks from links shared in Twitter can be seen in Google Analytics
as originating from the “t.co” domain. Very few “t.co” domain origination visits were
observed in Google Analytics during the first two months.

Interestingly, the only tweet that garnered significant attention was a tweet
sent during the Austin City Limits festival of a popular artist named “GRiZ” who was
performing. This tweet was “retweeted” by the official Austin City Limits festival
twitter account. This resulted in 12,000 views of the tweet in the course of 24 hours
and over 14,000 views as of the time of this writing. However, even this tweet only
garnered minimal engagement with the actual swapbeat.com site, as shown in the

statistics from Twitter below.

57

Tweet Activity

Impressions 14,205
swapbeat @swapbeatmusic
Diggin' @mynameisGRiZ's live set
@aclfestival right now! Total engagements 452
pic.twitter.com/d0OL7pOkhU 397

Media engagements

Detail expands 85

Profile clicks 16
Reach a bigger audience Favorites 10
Get more el ng agements by promoting this Nee

Link clicks 10

Retweets 4

Figure 18: Metrics for a popular tweet sent from the project's Twitter account

Google Adwords

In addition to utilizing social media, a Google Adwords campaign of a few
dollars a day was utilized during the course of this project. Keyword selections for
“new music”, “indie music” along with several unique artist names were used to
drive traffic to the site. This keywords campaign was successful in bringing between
5 and 10 additional users to the site each day, with the obvious implication that
spending more money would have driven higher number of users, even though the
campaign’s average “click rate” of 1% was low compared to the common target of
approximately 2% (Measuring Traffic To Your Website, n.d.).

Of note, as much as 98% of the traffic sent to the site by the Adwords
campaign originated from mobile devices. This is in part due to the keywords

selected, particularly of the specific artist names, as well as the increasing migration

to mobile for many younger users.

58

The Adwords campaign was initially targeted to run only for desktop devices.
However, on several days, the campaign failed to reach its budgeted maximum,
indicating that far fewer searches for the targeted terms were originating from
desktop than they were from mobile. Therefore, the campaign was changed to run

across all devices in order to maximize exposure for the remainder of the project.

Observations from the First Release

The following sections cover observations gathered during the first two
months of operation of the site, along with what improvements would need to be
implemented to address several of the problematic observations stemming from the

current site’s design.

Issues for Search Engine crawls
The primary issues for the first iteration of the site related to the site’s
performance during web crawls for indexing by popular search engines like Google

and Bing. The primary issues are covered in the section below.

301 and 302 Redirects

In an attempt to help improve the visibility of the site and to attach a
moniker people would be able to remember, the domain name www.swapbeat.com
was purchased for this project. The purchase resulted in a formal transfer from the
original owner to the author, at which point the domain name was locked from
further transfer for 60 days, per ICAAN’s rules.

Unfortunately, the domain registration service used by the original owner to

register www.swapbeat.com did not support the more search-friendly domain name

59

assignment mechanism known as CNAME referencing. Instead, the domain registrar
only allowed for 301 and 302 redirects to be used. The unfortunate side effect of this
limitation was that search engine crawlers tend to ignore domains that use 301 and
302 redirects. This is reasonable from the perspective of crawlers because they
believe that they will have already indexed the site at the redirect elsewhere during
the course of their crawl. Furthermore, a 301 would usually (but not always) be
used to redirect from a “lower” importance domain to a “higher” importance
domain.

This was, however, the opposite situation of what was sought for this project,
where the top-level swapbeat.com domain was meant to direct to the application’s
subdomain on the herokuapp.com domain/platform. Because of this, crawlers
appeared to ignore the site for the period under which the site was forced to use a
301 redirect. Once the requisite period passed and a transfer to a registrant
allowing CNAME referencing from swapbeat.com was established, this was no

longer the case, and the site content was cached by the Google crawler.

High Reliance on Custom JavaScript and AJAX

In addition to the technical issues caused by the forced use of 301 and 302,
the site’s heavy reliance on custom JavaScript and AJAX also proved to be
detrimental to the site’s search engine crawl performance.

Specifically, Google’s crawler appeared to be unable to recognize/execute the
initialization script that loads tracks when a user first logs into the site. This
resulted in a Google “cache” view, shown in the screenshot below, after the first

round of crawls by Google.

60

8
w [

com (3 Openings & Spotify Web (3] Summer2014 © Ars Tochnica & Foedly \ apache-nutch 1.10 AWS - 58-Prod DB
Most Loved - Last 7 Days

Newest | Most Loved - Right How Most Loved - Last7Days ~ Most Loved - Last 30 Days Most Loved - Past Year Most Loved -/ L-Tim My Favorites

i
o

Hendcrafted in Austin, Texas | Coryight 2015 © swapbeat.com | On Twitter: @swapbestmusic

Figure 19: The initial Google cache view for the swapbeat.com site

Not Mobile-Friendly

In April of 2015, Google announced that a significant factor in the weighting
of a site’s prominence in search results is Google’s determination of whether the site
is “mobile-friendly” (Makino, Jung, & Phan, n.d.).

Due to the limitations of the crawler to execute the JavaScript for the site
during its initial crawls, the swapbeat.com site did not receive a mobile-friendly
designation, even though specific mobile-friendly stylesheets, based on Twitter
Bootstrap 3, were applied to the site to ensure relative spacing and visibility across
devices and screen sizes.

Google is thought to use the “mobile-friendliness” of a site even more
prominently when serving searches originating from mobile devices. Based on the

results of the Adwords searches in which upwards of 95% of Adword referrals

61

originated from mobile, it is highly-likely that a significant proportion of organic
search traffic is not currently being referred to swapbeat.com at the rate it could be

were a “mobile-friendly” designation received.

No Direct and/or Deep Linking Structure

In the first iteration of the application, significant time was expended
ensuring a fluid user experience with minimal waits. Moreover, the decision to
create a single-page application (SPA) enabled a user to navigate through the site
while maintaining a consistent header at the top of the page, and a player element
capable of continuing to stream sounds without interruption, even as “pages” of
playlists were browsed and navigated between.

However, when creating this user experience and the custom navigation to
move between tracklists, the URL structure, and specifically, facilities to allow direct
URL navigation to a specific playlist, artist or track were not included. Essentially
then, the only URL available for the application was the top-level “swapbeat.com”.
While this was tolerable for a proof of concept, it proved highly detrimental in two
areas: search engine crawling and social media sharing.

In regards to search engine crawling, the lack of a deep URL structure has
resulted in crawlers assuming there is only one page of content, the page that is
displayed when the site is first loaded. This means that later on during the project,
even when the crawler began executing the JavaScript to cache the first page, it did
not execute the content on other tabs within the DOM because it was not aware that
they existed, and did not know which JavaScript functions would need to be

executed to make additional content appear. This means that only a small portion of

62

the overall content of the site “exists” in the eyes of the crawlers, and is therefore of
limited use in answering user queries.

Secondly, the lack of a deep linking structure to specific artist or track
“pages” is detrimental to users’ ability to share the content of the site across social
media platforms. This is often a key driver for the organic growth of a site such as

this one, and its absence is therefore problematic.

High Bounce Rate

One final, important side effect that results from the absence of the linking
structure described above is its detrimental effect on an important search engine
performance metric, the “Bounce Rate”. A site’s bounce rate is measured as the
percentage of times that a user, when directed to a site, only views the first page
before leaving or “bouncing”. In the eyes of search engines, this metric is a proxy for
the usefulness of a site, as it is assumed that the higher the bounce rate, and thus the
fewer additional pages looked at by a user before leaving, the less
helpful/informative/satisfactory the site is relative to others.

This metric works adequately when evaluating traditional sites where new
pages are requested from the server each time a user wishes to see additional
information. However, in a Single-Page Application (SPA), all users are seen as
“bouncing”, unless additional steps are taken to inform search engines that the site
is both an SPA, and that certain navigational elements being requested within the
SPA correspond to that of a traditional page request.

Because neither of these elements were present in the initial iteration of this

application, the bounce rate for the site remained stubbornly high, regardless of the

63

amount of time users spent viewing the application, browsing playlists, or listening

to songs.

64

Chapter 3: Further Improvements
Based on the observations from the first iteration of the site discussed in the
previous sections, a series of improvements are planned for swapbeat.com over the
course of coming months. These improvements are divided into “short-term” and

“long-term” improvements and are discussed below.

Short-term Improvements
Two short-term improvements are being targeted for the site: Micro-data

tagging and Mobile-only Style Sheets.

Micro-data tagging

Due to the ever-growing number of AJAX and JavaScript-dependent sites, the
Schema.org project has been put forward, sponsored by major corporate partners
such as Google, Microsoft, Yahoo and Yandex, with the mission to “create, maintain,
and promote schemas for structured data on the Internet, on web pages, in email
messages, and beyond.” (Schema.org, n.d.) In the context of webpages, Schema.org
promotes the insertion by developers of specific meta tags into each element of
HTML in a page, which in turn help crawlers “digest” the content they are seeing
during a crawl.

Of particular interest for this project was the definition by Schema.org of
schemas for music recordings and specifically for individual recordings and
playlists. Examples of the additional markup tags defined by Schema.org for a single
musical track are highlighted in the overall markup of a track from the site in the

code snippet below. These include “name” for the track name and “byArtist” for the

65

i , wi Y% i . url”
artist’s name, along with several more generic Schema.org tags for “url” and

“image”.

<div itemprop="track" itemscope="true" itemtype="http://schema.org/MusicRecording"
id="Playlist Track 14" class="track" data-trackid="339" data-trackpos="14"><div
id="trackMovementIndicator14" class="trackMoveNumNoChange"><span class="glyphicon
glyphicon-option-horizontal"></div><button id="faveButton-sm14" class="faveButton-
sm-notfave" onclick="createOrDeleteFavorite(1, 339, 14, 2, "Beyond Our Means",
"faveButton-sm14")"><span class="glyphicon glyphicon-
heart"></button><div class="sitenames">Posted on: <a
itemprop="url" href="https://indiemusicfilter.com/listen-beyond-our-means-by-foxtrott"
target="_blank">Indie Music Filter | <a itemprop="url"
href="http://pausemusicale.com/foxtrott-beyond-our-means/" target="_blank">Pause
Musicale | <a itemprop="url"
href="http://feedproxy.google.com/~r/dummymagazine/~3/Y98fjidLAAl/premiere-foxtrott-
beyond-our-means" target="_blank">Dummy Mag</div><a
class="scLinkButtonMain" itemprop="url"
href="http://soundcloud.com/foxtrottfoxtrott/beyond-our-means" target="_blank">#14Beyond Our
Means<span itemprop="byArtist" class="artistNameText"
onclick="fetchTracksByArtistID(454)">Foxtrott<button data-
trackidoffset="Track14" class="tracklistPlayButton" onclick="playButtonController(13)"
label="play"></button><button data-
trackidoffset="Track14" class="tracklistPauseButton" onclick="pauseButtonController()"
label="pause"></button><button
class="posSentButton" id="posSentButton14" onclick="registerEvent(2, 1, 339, 14,
"posSentButton14")"><span class="glyphicon glyphicon-thumbs-
up"></button><button class="negSentButton" id="negSentButton14"
onclick="registerEvent(2, -1, 339, 14, "negSentButton14")"><span class="glyphicon
glyphicon-thumbs-down"></button><div itemprop="image" id="artDivMain14"
class="artDivMain"><img src="https://il.sndcdn.com/artworks-000133572427-jj2k79-
large.jpg"></div></div>

Figure 20: Example track markup with highlighted micro-data tags

Inclusion of these tags has appeared to help the Google crawler better
understand the content of the site and has resulted in several keyword searches for
popular artists displaying content from swapbeat.com in the cached Google results.

Google also provides developers a convenient validation tool for reviewing whether

66

they have implemented their micro-data tags correctly (Structured Data Testing

Tool, n.d.).

{» Google Developers Q

G Structured Data Testing Tool

Structured Data Testing T... €)) Search

TABOX1@gmail.c. ‘W
Sign out

Eetch URL

Examples v

<div itemprop="track" itemscope="true"
itemtype="http://schema.org/MusicRecording" id="Playlist Track 14"
class="track" data-trackid="339" data-trackpos="14"><div
id="trackMovementIndicatorl4" class="trackMoveNumNoChange"></div><button
id="faveButton-sml4" class="faveButton-sm-notfave"
onclick="createOrDeleteFavorite(1l, 339, 14, 2, "Beyond Our

i+ "faveBu -sml4") "><span class="glyphicon
glyphicon-heart"></button><div class="sitenames">Posted on:
<a itemprop="url"
href="https://indiemusicfilter.com/listen-beyond-our by
foxtrott" target="_blank">Indie Music Filter | <a itemprop="url"
href="http://
target="_blank">Pause Musicale | <a itemprop="url"
href="http://feedproxy.google.com/~r/dummymagazine/~3/Y98fjidLAAI/pr
emiere-foxtrott-beyond-our-means" target="_blank">Dummy Mag
</div><a class="scLinkButtonMain" itemprop="url"
href="http://soundcloud.com/foxtrottfoxtrott/beyond-our-means"
target="_blank"><img src="image/buttons/sc_sbs_grey_130x20.png"
width="130" height="20">#14
Beyond Our Means<span

r-means/"

icale.com/foxtrott-beyond

Results - Filter by use case ~

~ MusicRecording (1) Allgood @

MusicRecording

url: :/indiemusicfilter. I beyond-our-means-by-foxt
ott

ur: ~ hitp; Isicale. beyond /

url: http: p google. ~r/ i /Y 98fjidL
AA iere-foxtrott-beyond

P Y

url: hip: ns

name: Beyond Our Means

byArtist [MusicGroup]:

name: Foxtrott

~ Custom Search Result Filters

pmr-creativework
pmr-musicgroup
pmr-musicgroup-name
pmr-musicgroup-name-foxtrott
pmr-musicrecording
pmr-musicrecordina-name

Figure 21: Google's structured data testing tool

In the screenshot above, the HTML from the earlier example has been pasted

into the tool on the left-hand side, and Google’s view of the data’s structure is shown

on the right side. In this example, the structured data tags help Google identify that

this is a music recording of the song “Beyond Our Means” by the artist “Foxtrott”.

Mobile-detection and Mobile-only Style Sheets

Another short-term improvement for the site will be the inclusion of mobile

detection scripts that will be run when the site is first launched, redirecting the user

to a mobile-focused version of the site driven by style sheets specifically targeted for

the smaller dimensions of mobile screens.

In addition to mobile detection and rerouting, more-aggressive use of
Bootstrap’s “extra small” and “small” grid formats can be employed if the style sheet
and class selectors are “mobile only”. This enables the possibility to keep the site’s
business logic untouched while repositioning (and in some instances removing)
elements for optimal display on smaller devices. This may allow the site to finally
garner a “mobile-friendly” designation, improving its placement in search results

temporarily while longer-term fixes are sought.

Longer-term Improvements

While the changes listed above may provide some marginal improvement for
the problems of the current site, true corrections for these problems will not be
possible until the site is transitioned from its current functional, “proof of concept”

format, to a more robust, framework-driven site.

Redesigning the application with Angular JS

In order to make this transition, much of the client-side code will need to be
refactored to align with the standard approach of the most-popular framework for
developing commercial-grade single-page applications: Angular JS. Some of this

work has already been undertaken and is included in the discussion below.

Basics of Angular JS
A Google test engineer named Misko Hevery first released Angular]S in June
2012 (Karpov & Netto, 2015). The goals of the project were primarily to help

standardize the approach for building single-page applications (SPAs) in JavaScript,

68

and to modularize the creation of “pages” within SPAs so that they could more easily

be separated from other components and the data mocked for testing.

Client-side MVC: Angular Controllers, Scopes, and Templates

One of the key differentiators in Angular]S’s framework was the strict
implementation of a Model-View-Controller paradigm within the browser. To do
this, Angular]S requires the developer to focus on creating individual “scopes” of
data for each JavaScript-based “page” they wish to display.

Each scope is instantiated by means of an assigned controller responsible for
retrieving data and storing it on that page’s scope. Scoped data can then be accessed
and used within HTML “templates” that use Angular |S’s directives to embed
references to the data to be used directly in the HTML element markup of the
element in which it will be displayed.

One example of this can be found in the syntax for the commonly used
“ngRepeat” directive, which is used to create repeating lists of HTML elements from
controller data. In order to create a list of tracks, for instance, the controller will
fetch a JSON-representation of the tracklist and store it on the scope as “tracks”.
Within the HTML template, once the scope has been assigned, the ngRepeat syntax
can be used to create a simple for-loop that easily and succinctly generates the
HTML needed to display the list, beginning with the syntax “for track in tracks”.

Angular developers can further enhance the functions within the for-loop of
ngRepeat by making use of “filters”. These filters primarily operate as simple
JavaScript functions where specific data elements can be passed to the filter and the

result returned while only needing to define a simple tag on the element. The

69

process of formatting artist names, previously discussed in this report, is a
prototypical example of how a filter will be used in Angular JS.

Essentially, these components constitute the basics of the MVC architecture
defined by Angular JS, with controllers fetching data and placing the results in the
scope, which represents the client-side portion of the “model”. The view is then
defined and displayed on the basis of the instructions embedded in the HTML
templates, directives such as ngRepeat, and further view enhancements made

possible by the use of filters.

The Route Provider Module

In addition to the improvements made possible by client-side MVC, Angular]S
also provides a sophisticated routing mechanism in the “route provider” module.
This module operates by “listening” for specific changes in the “post-hash” portion
of the URL. The essential functions of this module can be seen in the source code

below.

70

app.config([‘$SrouteProvider’,
function($routeProvider) {
$routeProvider.
when(‘/Playlists/:type’, {
templateUrl: ‘trackListTemplate.html’,
controller: ‘trackListCtr!’
3)-
when(‘/Artists/:artistID’, {
templateUrl: ‘trackListTemplate.html’,
controller: ‘artistTrackListCtrl’
3)-
when(‘/Tracks/:trackID’, {
templateUrl: ‘trackListTemplate.html’,
controller: ‘getTrackCtr!’
3)-
when(‘/Favorites’, {
templateUrl: ‘trackListTemplate.html’,
controller: ‘favoritesCtrl’

3)-
otherwise({

redirectTo: ‘/Playlists/Newest’
3

H);

Figure 22: An example of the Route Provider syntax in Angular]S

For example, when using the Route Provider module with swapbeat.com, the
module would observe a change from the base www.swapbeat.com domain to
www.swapbeat.com/# /Playlists/Newest as a call to request the playlist of “Newest”
tracks.

This functionality is made possible by defining a series of “when” statements
in the route provider, describing which “post-hash” request patterns should be
expected. Once a pattern is received and matched, Angular JS will load the controller
and template for that “route”, which in turn will result in the controller retrieving

data and placing it on the scope for that route. In the example above, the “Newest”

71

designation was passed to the controller as the “:type” via a set of data elements
Angular]S provides called “Route Parameters”. These parameters can be accessed at
the instantiation of the controller to further define what actions should be
undertaken based upon which “:type” is present. This has the added effect of greatly
increasing the reusability of these routes in instances where the same template and
controller may be leveraged with minimal parameterization. Finally, any route not
matching a pattern in the list of “when” statements will be caught by the “otherwise”
block, which in this example will default the route to “/Playlists/Newest”.

Angular]S not only utilizes the structure of the URL to drive the navigation of
the site/application, it also natively manages the history of the “post-hash” portion
of the site as part of the browser history. Therefore, a user pressing the “back” and
“forward” buttons in a browser will be able to move fluidly through the history of
the application, just as they would on a non-JavaScript dependent site.

Finally, the Route Provider module also makes possible the full site mapping
required by web crawlers. Although a rapidly evolving standard, crawlers will make
attempts to crawl the “post-hash” portion of a site if specific “SPA notification” tags
for crawlers are added to a site’s header. This then allows SPAs using Angular]S the
same search engine discovery and optimization benefits enjoyed by standard sites,

while also supporting the enhanced user experience made possible by SPAs.

Problems Angular JS can resolve directly
Angular]S provides a clear resolution for many of the problems experienced

by the first iteration of the swapbeat.com site. Specifically, as mentioned, Angular]S

72

squarely addresses the issues related to search engine crawlability for an SPA via
the Route Provider module and its handling of the post-hash portion of the URL.

In addition though, the Route Provider module also provides the knock-on
effect of creating copy-and-paste ready links that can be shared across social media
platforms, which, when entered into a browser, will drive the receiving user to the
same exact page display as seen by the original user, something that was not always
possible in the first iteration of the site due to a lack of integration with the browser
history and the absence of URL-based navigation.

Finally, Angular JS addresses the search engine optimization problems SPAs
face in regards to “Bounce Rate”, the generally negative measure of single-page
views discussed previously that can cause SPAs to perform poorly in search engine
results. By integrating URL navigation, Angular]S allows developers to represent
user activities as navigated “pages”, with each new load of a view equating to a

traditional “page load” in a non-SPA application.

Additional Problems Angular JS can help resolve indirectly

Because Angular |S strongly separates the view logic from that of controllers
and scopes/models, one additional benefit of Angular JS is the ability it affords to
rapidly prototype your view templates and experiment with multiple layouts.
Furthermore, media queries in regards to the dimensions of the screen the user is
currently accessing the site on can be included at the start of the application. Simple
Boolean statements can then be incorporated into the Route Provider module to
determine whether a mobile version or desktop version of a template should be

used when loading the route.

73

Alternatively, Angular JS provides custom directives and a series of open
source add-ons to standard Angular JS, such as “Mobile Angular UI”, which supply
custom directives for creating mobile apps. These projects will likely continue to
gain support as more sites seek to directly leverage the Angular JS framework for
their desktop sites and seek libraries for simplifying how the Angular-based mobile

version of their site displays as well.

Google’s retraction of the AJAX / JavaScript crawler spec

Finally, some gains in search engine crawl performance by Single-Page
Applications may come from changes to the search engines’ crawlers themselves. On
October 14, 2015, a post on the official Google Webmaster Central Blog was added
with the title “Deprecating Our AJAX Crawling Scheme” (Nagayama). Since 2009,
Google had “proposed a set of practices that webmasters can follow in order to
ensure that their AJAX-based applications are indexed by search engines”, known as
the “AJAX Crawling Scheme” (AJAX Crawling (Deprecated)). These practices
typically required webmasters to detect when crawler user agents were making
page requests and rerouting them to “pre-rendered” versions of the pages created
as standard HTML. This requirement was so pervasive it resulted in the launch of
several start-ups, such as “Prerender 10", that offer services to offload these
additional indexing requirements to their servers for a monthly fee (Prerender IO,
n.d.).

However, Google now acknowledges in “Deprecating Our AJAX Crawling
Scheme” that their crawler is executing sites as a browser would - i.e. as a user

interface - as opposed to the more text-based approaches used earlier. Because of

74

this, Google now states that they will directly index the “post-hash” portion of URLs.
In addition to improving Google’s own crawler performance, this shift will likely
also help to further drive the adoption of Angular JS (and its supported Route
Provider module for managing the “post-hash” portion of URLs) as the premiere

framework for developing Single Page Applications going forward.

75

Chapter 4: Vision and Roadmap

On June 16, 2015, SoundCloud announced on their developer blog that they
would be introducing rate limits for applications that use API keys to access their
streaming services (Hudson, n.d.). These limits went into effect on July 1st, 2015,
capping the number of streams per 24-hour period to 15,000 per API key. This move
came on the heels of several high profile news reports about SoundCloud’s financial
solvency and its efforts to work with record labels to monetize the music posted on
the site (Cookson, 2014), (Geddes, 2015).

To date, SoundCloud continues to make its revenues by charging artists for
the ability to create an account and post their music, based on a “free-mium” model,
with paid accounts starting at $6 per month for the “pro” level and $15 per month
for the “pro unlimited” level (Payments and Billing).

There is a great deal of speculation, however, that SoundCloud would like to
also begin charging users for the streaming service. Other monetization efforts are
already underway, with SoundCloud recently introducing audio ads that play
between songs for users accessing their home site, as is done with traditional
terrestrial and digital radio stations.

In the post discussing the introduction of rate limits, SoundCloud stated, “In
the coming months we'll be introducing an application process for developers who'd
like additional access.” (Hudson, n.d.) Four months later, this application process
and the associated terms still have not been outlined publicly. However, it seems

likely that SoundCloud will transition to either charging subscription fees to third-

76

party applications and sites that wish to stream music using the AP]I, or institute a
mandatory advertising mechanism for playing advertisements between streams.

The overall trajectory of SoundCloud’s streaming AP], and, in fact, the
financial health of SoundCloud itself, therefore bear heavily on the future growth
potential of swapbeat.com as of this writing. Nevertheless, the opportunity exists for
swapbeat.com to continue to operate and even grow as a niche site, targeting music
lovers who are committed to identifying the best new music within days of its
release.

Therefore, work will proceed on redeveloping the Angular S version of the
site, fully supporting mobile display and URL-based navigation within the next 3-6
months. Once the redevelopment is complete, efforts will focus on expanding the
site’s user base in a controlled manner - one that keeps the daily play count less
than 15,000 streams for now - while nevertheless providing a core set of frequent

users ready access to the best new music on the Internet.

77

Appendix: Sites Included in the Crawl for Swapbeat.com

The following is a list of the sites that were seeded to the crawler when
searching for new music on the Internet. Without the dedication and passion of

these sites’ owners and music reviewers, this project would not have been possible.

| Site Name Primary Music Review URL

1 | Trendable Music http://trendablemusic.com

2 | Dancing Astronaut www.dancingastronaut.com

3 | Lipstick Disco www.lipstickdisco.co.uk

4 | Gotta Dance Dirty www.gottadancedirty.com

5 | Wonky Sensitive http://wonkysensitive.blogspot.com/

6 | EDM Tunes http://www.edmtunes.com/

7 | Spincoaster www.spincoaster.com

8 | Pilerats www.pilerats.com/music

9 | Little Indie Blogs http://littleindieblogs.blogspot.com
10 | Surviving the Golden Age http://survivingthegoldenage.com/

11 | Run the Trap http://runthetrap.com/

12 | Yaqui http://yaqui.co/

13 | Waxhole http://waxholerecords.com/

14 | In the Junk Yard Music http://inthejunkyardmusic.co.uk/
15 | Perfect Midnight World http://perfectmidnightworld.com/
16 | Audio Femme http://www.audiofemme.com/

=
~N

The Wild Honey Pie

http://www.thewildhoneypie.com

18 | Apes on Tape http://apesontape.com

19 | DIY Mag http://diymag.com

20 | Site of Sound http://www.siteofsound.com

21 | The Fader http://www.thefader.com/music/
22 | Pop On And On http://poponandon.com

23 | Keep On Repeat http://www.keeponrepeat.com
24 | Stereogum http://www.stereogum.com

25 | Noisey http://noisey.vice.com

26 | trndmusik http://trndmusik.de

27 | Kick Kick Snare http://kickkicksnare.com

28 | Y Este Finde Que http://www.yestefindeque.com/

N
(Yo

Winnie Cooper

http://winniecooper.net

w
o

City & Sound

http://www.cityandsound.com

w
=

Mad Decent

http://maddecent.com

78

32 | Silence No Good http://silencenogood.net/

33 | The 405 http://www.thefourohfive.com

34 | Ear Milk http://www.earmilk.com

35 | Blushing Panda http://blushingpanda.org/blog

36 | Indie Shuffle http://indieshuffle.com

37 | Harder Blogger Faster http://www.harderbloggerfaster.com
38 | Consequence of Sound http://consequenceofsound.net

39 | Turntable Kitchen http://www.turntablekitchen.com

40 | EDM.com http://edm.com/

41 | Scientists of Sound http://www.sos-music.co.uk/

42 | Disco Belle http://www.discobelle.net

43 | Nialler9 http://nialler9.com/

44 | Drowned In Sound http://drownedinsound.com

45 | The Quietus http://thequietus.com

46 | FACT http://www.factmag.com/

47 | Boiler Room http://boilerroom.tv

48 | XLR8R http://www.xIr8r.com/

49 | Okayplayer http://www.okayplayer.com/

50 | Caveman Sound http://cavemansound.com

51 | Phuturelabs http://www.phuturelabs.com

52 | Brooklyn Vegan http://www.brooklynvegan.com/
53 | Dublab http://dublab.com

54 | Neonized http://neonized.net

55 | Hypetrak http://hypetrak.com

56 | The Line of Best Fit http://www.thelineofbestfit.com

57 | Decoder http://www.secretdecoder.net
58 | Spex http://www.spex.de

59 | Rockets Musik http://www.rocketsmusik.com/
60 | Stoney Roads http://stoneyroads.com

61 | Fluid Radio http://www.fluid-radio.co.uk
62 | Inverted Audio http://inverted-audio.com

63 | Tiny Mix Tapes http://www.tinymixtapes.com/

64 | Golden Scissors http://goldenscissors.info

65 | Baltimore Club http://www.baltimore-club.com/
66 | Mixmag http://www.mixmag.net

67 | Pigeons & Planes http://pigeonsandplanes.com/

68 | Oh So Fresh http://www.ohsofreshmusic.com/
69 | Lyfstyl http://lyfstylmusic.com/

70 | Indie Music Filter http://indiemusicfilter.com

71 | Mixtape Riot http://mixtaperiot.com

72 | Buzz Bands LA http://buzzbands.la

79

73 | Fool's Gold http://foolsgoldrecs.com

74 | Robot Dance Music http://www.robotdancemusic.com
75 | Impose Mag http://www.imposemagazine.com
76 | Igloo Mag http://igloomag.com

77 | Anthem Mag http://anthemmagazine.com/

78 | Ashley Outrageous http://ashleyoutrageous.com

79 | Fresh New Tracks http://freshnewtracks.com/
80 | My Music Dealers http://musicdealers.in
81 | Tonspion http://www.tonspion.de
82 | Chrome Music http://www.chromemusic.de
83 | IHEARTCOMIX http://iheartcomix.com
84 | Music You Want To Listen To http://musicyouwannalistento.blogspot.com
85 | Future Classics http://futureclassics.ca
86 | Exclaim! http://exclaim.ca/
87 | MOARRR http://moarrr.com/
88 | PressPLAY http://pressplayok.com
89 | When the Horn Blows http://whenthehornblows.blogspot.co.uk
90 | Oh My Rock http://www.ohmyrock.net
91 | Vehlinggo http://vehlinggo.com
92 | Pan od Muzyki http://panodmuzyki.pl
93 | Oblivious Pop http://www.obliviouspop.com
94 | Happy http://hhhhappy.com
95 | Idolator http://www.idolator.com
96 | Audio Aquarium http://www.audio-aquarium.com
97 | Free Indie http://www.freeindie.com
98 | Popped Music http://poppedmusic.co.uk
99 | Free Bike Valet http://freebikevalet.com
100 | The Revue http://therevue.ca
101 | Your EDM http://www.youredm.com
102 | Pitchfork http://pitchfork.com
103 | | Love Pie http://www.ilovepie.co.uk
104 | Stereo Fox http://www.stereofox.com
105 | The Autumn Roses http://theautumnroses.tumblr.com
106 | MPMBL http://mapambulo.blogspot.com
107 | Front Stage Music http://www.frontstagemusic.net
108 | The Morning After https://morningaftershow.wordpress.com
109 | Nicorola http://www.nicorola.de
110 | Ovrld http://ovrld.com
111 | Disco Naivete http://disconaivete.com
112 | Spin http://www.spin.com
113 | Drums Eat Everything http://www.drumseateverything.com

80

114 | Sodwee http://sodwee.com/blog/

115 | Going Solo http://www.wearegoingsolo.com
116 | Hilly Dilly http://www.hillydilly.com

117 | Democrazy http://www.democrazy.be

118 | Dummy Mag http://www.dummymag.com/
119 | Kicking the Habit http://kickingthehabit.nl

120 | Camels and Lions http://www.camelsandlions.com
121 | Poule d'Or http://www.pouledor.com/

122 | Nordic by Nature http://nordicbynatureberlin.com
123 | Hey http://www.letsgethey.de

124 | The Blue Walrus http://thebluewalrus.com/

125 | Sound of Aarhus http://www.soundofaarhus.com

126 | No Fear of Pop http://nofearofpop.net/

127 | Good Because Danish http://goodbecausedanish.com

128 | Don't Watch Me Dancing http://dontwatchmedancing.com
129 | YVYNYL http://yvynyl.com

130 | Abeano http://www.abeano.com/

131 | Breaking More Waves http://breakingmorewaves.blogspot.com/
132 | Cruel Rhythm http://cruelrhythm.tumblr.com

133 | Dots and Dashes http://dotsanddashes.co.uk

134 | Faded Glamour http://www.fadedglamour.co.uk/
135 | The Thin Air http://thethinair.net

136 | The VPME http://www.thevpme.com/

137 | Obscure Sound http://www.obscuresound.com/

138 | Buddyhead http://www.buddyhead.com/

139 | UPROXX Music http://uproxx.com/music

140 | Boi-1da http://boi-1da.net/

141 | Indietronica http://indietronica.org/

142 | The Jack Plug http://www.thejackplug.com

143 | Et Musique Pour Tous http://www.etmusiquepourtous.com
144 | Secret Delivery http://secretdelivery.net

145 | Passion Party http://passion-prty.de

146 | All Tomorrow Music http://www.alltomorrowmusic.com
147 | The Postie http://thepostie.de

148 | Electru http://www.electru.de

149 | HDIYL http://hdiyl.de

150 | Future Dance Music http://futuredancemusic.com

151 | JalJaJa http://jajajamusic.com

152 | Nothing But Hope and Passion | http://nbhap.com

153 | Gilles Peterson http://www.gillespetersonworldwide.com

154

Magnetic Mag

http://www.magneticmag.com

81

155 | High Clouds http://highclouds.org
156 | We Love That http://welovethat.de
157 | Fingers on Blast http://fingersonblast.com/

158

The Music Ninja

http://www.themusicninja.com

159 | Salacious Sound http://salacioussound.com

160 | Some Candy Talkin' http://www.somecandytalkin.com
161 | Complex http://www.complex.com/

162 | La.Ga.Sta. http://www.lagasta.com/

163 | New Dust http://www.newdust.com

164 | Syffal http://www.syffal.com

165 | Hear Ya http://www.hearya.com/

166 | Pop Justice http://www.popjustice.com

167 | Fake Shore Drive http://www.fakeshoredrive.com/
168 | All Hip-Hop http://allhiphop.com

169 | EDM Sauce http://www.edmsauce.com

170 | Indie Music Review http://www.indiemusicreview.com
171 | Jungle Indie http://jungleindierock.tumblr.com
172 | Aquarium Drunkard http://www.aquariumdrunkard.com

173 | La Musique Sismique http://lamusiquesismique.fr

174 | Int'l House of Sound http://intlhouseofsound.com

175 | The Interns http://theinterns.net

176 | Fist in the Air http://fistintheair.com

177 | Hullabaloo Tunes http://www.hullabalootunes.com

178 | Find A Song http://www.findasongblog.com

179 | Music and Other Drugs http://musicandotherdrugs.com

180 | Pause Musicale http://pausemusicale.com

181 | Melbourne Bounce http://www.melbournebounce.com.au

82

Bibliography
Audiomack. Retrieved September 15, 2015, from Audiomack: www.audiomack.com
SOLR. Retrieved September 15, 2015, from SOLR: http://lucene.apache.org/solr/
Simple Pie. Retrieved September 19, 2015, from Simple Pie: http://simplepie.org/
Chart JS. Retrieved September 3, 2015, from Chart JS: http://www.chartjs.org/

Heroku. Retrieved September 7, 2015, from Heroku:
https://www.heroku.com/home

AWS RDS. Retrieved September 6, 2015, from AWS RDS:
https://aws.amazon.com/rds/

AWS Aurora. Retrieved September 8, 2015, from AWS Aurora:
https://aws.amazon.com/rds/aurora/

Schema.org. Retrieved September 6, 2015, from Schema.org: www.schema.org
Prerender I0. Retrieved October 27, 2015, from Prerender 10: https://prerender.io/

AJAX Crawling (Deprecated). Retrieved October 28, 2015, from Google Developers:
https://developers.google.com/webmasters/ajax-crawling/docs/getting-
started?hl=en

Alexa Global Site Rankings. (2015, September). Retrieved September 26, 2015, from
www.alexa.com: http://www.alexa.com/topsites/global

Cookson, R. (2014, October 4). SoundCloud Hits An Impasse With Major Record
Labels. Retrieved September 16, 2015, from FT.com:
http://www.ft.com/cms/s/0/e549661c-4ef6-11e4-b205-
00144feab7de.html#axzz3qeQOH700

Faughnder, R. (2015, June 28). Music Piracy Is Still Very Much In Play. L.A. Times.

Geddes, J. (2015, September 22). Soundcloud CEO Alexander Ljung Talks About
Evolving the Platform, Negotiating with Labels. Retrieved October 14, 2015,
from Tech Times:
http://www.techtimes.com/articles/86434/20150922 /soundcloud-ceo-
alexander-ljung-talks-about-evolving-the-platform-negotiating-with-
labels.htm

83

Hudson, D. Introducing Rate Limits. Retrieved September 17, 2015, from Soundcloud
Developers: https://developers.soundcloud.com/blog/limits

Kaplan, C. S. (2001, February 23). Legal Expert Sees Napster Competitors Thriving.
New York Times.

Karpov, V., & Netto, D. (2015). Professional Angular |S. New York: Wrox.

Makino, T., Jung, C., & Phan, D. Finding More Mobile-Friendly Search. (Google)
Retrieved September 9, 2015, from Google Webmaster Central:
http://googlewebmastercentral.blogspot.com/2015/02/finding-more-
mobile-friendly-search.html

Measuring Traffic To Your Website. Retrieved September 7, 2015, from Google
Adwords Help: https://support.google.com/adwords/answer/1722035

Nagayama, K. Deprecating Our AJAX Crawler Scheme. Retrieved October 24, 2015,
from Google Webmaster Central:
http://googlewebmastercentral.blogspot.com/2015/10/deprecating-our-
ajax-crawling-scheme.html

Payments and Billing. Retrieved October 18, 2015, from Soundcloud.com:
http://help.soundcloud.com/customer/portal/articles/247820-what-s-the-
difference-between-each-subscription-level-

Schiller, S. (n.d.). Bar Ul Player. Retrieved September 4, 2015, from
www.schillmaina.com:
http://www.schillmania.com/projects/soundmanager2/demo/bar-ui/

Schiller, S. (n.d.). Sound Manager 2. Retrieved September 5, 2015, from
Schillmania.com: http://www.schillmania.com/projects/soundmanager2/

Structured Data Testing Tool. (Google) Retrieved September 9, 2015, from Google
Developers: https://developers.google.com/structured-data/testing-tool/

WordPress. (n.d.). Retrieved September 18, 2015, from Wikipedia:
https://en.wikipedia.org/wiki/WordPress

84

