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Abstract 

 

Zero to Sixty Hertz: Electrifying the Transportation Sector and 

Enhancing the Reliability of the Bulk Power System 

 

Michael Elazar Legatt, M.S.E. 

The University of Texas at Austin, 2015 

 

Supervisor:  Ross Baldick 

 

A revolution is underway in the energy sector. Traditional approaches for managing 

a bulk power system are beginning to give way to a “smart grid” world, in which controllers 

may have bidirectional communications, with engaged users. At the same time a second 

transformation has been underway and growing in strength, namely the transition from 

petroleum as a transportation fuel source towards natural gas for large fleet vehicles, and 

electricity for consumer vehicles. This thesis focuses primarily on the synergy between the 

“smart grid” and vehicle electrification transitions. 

Moving the transportation sector to electricity as a fuel source, at least in Texas, 

has a myriad of benefits: Charging an electric vehicle without significant growth in 

renewable or lower-emitting SOFC technologies leads to very significant (80% per mile, 

58% per neighborhood) reductions in CO2 emissions, as well as significant reductions in 

NOX (41% per mile, 17% per neighborhood), PM10 (73% / 62%), PM2.5 and UFPM (62% 

/ 55%). SOX levels rose by 37%, but could be mitigated with controlled EV charging 

strategies.  
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Vehicle charging strategies also significantly improved the neighborhood’s total 

emissions profile. Adding in distributed energy resources, microgrid generation and 

intelligent charging, when optimally allocated, can further reduce these emissions. Vehicle 

charging schemes that respond dynamically to distributed renewable generation can even 

be thought of as having zero emissions due to the continual balance of PV generation and 

EV load on the low side of the distribution transformer. 

This thesis argues that there may be additionally significant societal benefits by 

shifting vehicle transportation to electricity, likely far in excess of what could be achieved 

by controlling power plant emissions alone. Based on an analysis of the ERCOT region, 

this shift would be expected to produce significant cost reductions for overall energy, 

improve health (due primarily to the relocation of UFPM far away from major population 

centers), and lower societal costs. Further gains can be considered as electric vehicles are 

significantly more energy efficient than their ICE counterparts. Also, on a larger scale, it’s 

generally easier to reduce emissions from hundreds of fixed power plants than millions of 

moving ICE vehicles. 
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CHAPTER 1: INTRODUCTION: MOTIVATION AND SCOPE 

In recent years, several different motivations and opinions have started to converge 

around the electrification of the transportation sector. Electric vehicles (EVs) offer a means 

to reduce fossil fuel usage in the United States, which corresponds to 30.5% of CO2 

emissions between 1990-2013 (Environmental Protection Agency, 2015). The fossil fuel 

contributions to electricity generation and thus vehicle charging are primarily domestic, 

thus transitioning from a perceived imported fuel to a perceived domestically sourced fuel 

(although this common perception is not entirely accurate). Certainly, though, local energy 

markets are less connected to international markets than gasoline, and thus less variable. 

Adding electric vehicles also allows for greater contribution of intermittent 

renewable resources into the fuel mix, thus reducing the overall emissions per mile driven. 

Electric vehicles have, on average, fewer parts at risk of failure, with growing possibilities 

for non-vehicular uses of its depleted primary cost component, the lithium-ion battery pack. 

EV prices have significantly dropped in cost from 2011-2015, indicating likely economies 

of scale, as well as continued innovations and economies of scale around its battery packs 

(Legatt, 2015).  

Since the 2011 release of the mass market Chevrolet Volt and Nissan Leaf, electric 

vehicle driving patterns, battery degradation, and efficiencies continue to be studied. These 

vehicles are far more than transportation devices, incorporating cellular connectivity, 

satellite navigation, and power electronics that could be leveraged to improve, or at least 

not negatively impact, the bulk and distribution power systems to which the vehicles are 

connected.  

At the same time that electric vehicles are decreasing in cost (along with their 

primary cost component, the lithium-ion battery), the cost of photovoltaics are also 
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decreasing. These factors have led to a promulgation of distributed energy resources 

throughout the state of Texas. If one has a goal of decreasing emissions, whether at the 

global (CO2) or local (SOX, NOX,, PM10, PM2.5, UFPM) levels, it may seem growing levels 

of wind and solar generation throughout the state would suffice. However, when one takes 

into account the differences in efficiencies between the internal combustion engine (ICE) 

and bulk power system, electric vehicle motor, battery and conversion systems (21% vs. 

62%; (U.S. Department of Energy, 2011)), shifting transportation to the bulk power system 

can produce a far more significant reduction in statewide emissions. Of further benefit, this 

change would shift the emissions that are most harmful to human health farther away from 

major population centers, and offer both economies of scale and simplified scaled 

management of overall emissions. Therefore, this paper argues that policies that incentives 

towards vehicle electrification have a larger positive impact to the public good. 

 This thesis focuses on an analysis of a simulated neighborhood, considered to be a 

marginal load within the Northwest Hills area of Austin, Texas. Chapter 2 discusses the 

backgrounds of vehicle transportation, the ways in which ultrafine particulate matter 

(UFPM) significantly affects human health, and the theoretical advantages of vehicle 

electrification, including emissions reductions (including CO2 and UFPM). It further 

includes an analysis of several psychological factors that can help to better understand and 

predict human behavior around transportation decisions. It also analyzes several 

constraints on the transmission and distribution systems, constraints that could be 

negatively or positively impacted by electric vehicle adoption, depending on the ways in 

which the integration occurs. Chapter 3 describes the background and configuration of the 

neighborhood being analyzed, and chronicles the agent-based simulation software 

development carried out for this project. Chapter 4 analyzes the outcomes of the research 
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and its implications, and Chapter 5 concludes with an overview of the results and its 

implications, and the areas of note for future works. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a background analysis of factors at the human level (overall 

health, behavioral, and neurological), that are impacted or impact transportation. This 

includes health issues associated with distributed emissions, prior studies analyzing the 

transition from gasoline to electricity as a light transportation fuel source, psychological 

factors that impact drivers’ decision making, constraints on the transmission and 

distribution systems, and an overview of several issues that provide challenges in 

electrifying large portions of the transportation sector, and emerging concerns as the bulk 

power system becomes more of a “smart grid”. 

Health issues associated with distributed air quality detractors 

VEHICLES 

Traditionally, road-based transportation has relied on the internal combustion 

engine, burning a petroleum variant to power movement. These vehicles typically emit 

several different classes of molecules, including carbon monoxide (CO), unburned 

hydrocarbons, oxides of nitrogen (NOX), partial oxidation products, and particulate matter 

of varying sizes. Between 50 and 80% of urban air pollution has been attributed to these 

vehicle-generated emissions. Some emissions, such as carbon monoxide and hydrocarbons, 

are the primary byproduct of an idling vehicle, while at high speeds or accelerating, other 

byproducts such as nitrous oxides, with  lead (Schneiderman, Cohn, & Paulson, 1970)., or 

other additives now found in gasoline (Frey, Unal, Rouphail, & Colyar, 2012)) and are the 

predominant emissions  

 However, vehicle emissions are also a far more complicated issue, as are the 

environmental factors associated with the vehicle’s manufacture and disposal. Many newer 

ICE vehicles are tending to outlast their emissions limiting equipment (e.g., engine life vs. 
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catalytic converter life), leading to a question about the overall lifetime emissions 

associated with an ICE vehicle.  

It is certainly the case that vehicles have grown in their capacity to self-monitor 

emissions of increasing types and accuracies. However, these technologies rely on the 

driver as an integral part of the control circuit, in the sense that it is the driver’s decision to 

get the needed vehicle maintenance in response to the “check engine light”, should one 

come on. The driver’s decision would therefore affect the emissions output, and often 

drivers may defer maintenance until the need for the next inspection, potentially until the 

next legally mandated inspection, or even after if one fails to get the inspection by its 

deadline. Driving vehicles with expired inspection stickers is a noted issue in law 

enforcement. For example, 21,000 citations for expired inspections (plus an additional 700 

for no inspections) were issued by the Austin police department in 2010 (Austin American 

Statesman, 2011)  

Behaviorally, this means that, aggregated across all high-emitting vehicles, 

emissions reduction equipment is of concern to society, while to the individual driver the 

“check engine light” is perceived as a non-immediate concern, and economically likely 

more affordable in the short term sense to continue, allowing them to continue driving a 

higher-emitting and less efficient vehicle, rather than paying for the needed work to reduce 

emissions. 

This behavior is also accentuated by the variability among vehicles and the 

differentials between the “average” vehicle emissions between different areas. For 

example, one study measuring PM2.5 and UFPM emissions from ICE engines found that 

over 50% of emissions came from 13% of vehicles in a neighborhood with low average 

socioeconomic status (SES). Emissions vary depending on a variety of host factors, 

including maintenance and the state of the vehicle, ambient temperature, the quality of the 
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fuel, altitude of the vehicle, and a great many other factors (Minnesota Pollution Control 

Agency, 2013) 

PARTICULATE MATTER 

The term “particulate matter” generally serves as a catch-all term for extremely 

small airborne particles and droplets. Typically, PM consists of a variety of different 

components, including nitrates, sulfates, organic chemicals, metals, soil, and dust particles. 

One of the main factors to consider when analyzing PM is its size, as different sizes of PM 

behave in different fashions. The primary concern from a human health standpoint is 

around the inhalable particles, including the fine particles (2.5µm to 10µm), and ultrafine 

particles (<2.5 µm). Both particle types, when they enter the nose, are inhaled into the 

lungs, and can pass into the blood stream. The ultra-fine particles are sufficiently small as 

well to traverse the blood-brain barrier, and thus enter the brain and spinal cord, potentially 

causing damage to the blood-brain barrier and increasing the admittance to subsequent 

larger particles in the bloodstream. 

Particulate matter inhalation has been associated with premature death in people 

with heart or lung disease, increased risk of cardiac arrest for healthy people, cardiac 

arrhythmia, and increased risk of asthma exacerbation, decreased lung capacity, and 

increased difficulty with respiration (EPA). Estimates of mortality due to particulate matter 

are significant. The World Health Organization estimates 800,000 premature deaths per 

year due to PM2.5, ranking it as the 13th leading cause of worldwide mortality.  

Unfortunately, monitoring of particulate matter emissions is rather sparse, both at 

the vehicle and electric power generation level. For places where emissions are measured, 

they tend to be far more at the PM10 level, rather than the UFPM level, and not as directly 

linked to power plants as CO2, SOX or NOX sensors. Several source-level methods have 
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been employed to track emissions from coal plants, and are affected by a variety of factors, 

including combustion temperature, coal type, and presence of scrubbing technology. An 

analysis using electron microscopy on combusted coal indicated approximately 15% of 

small-size particle emissions from Montana coal fly ash are less than 2.5µm in diameter, 

although when larger-size particle are taken into consideration, the percentage of volume 

drops to near zero. Western Kentucky coal fly ash is somewhat different, at about 3% of 

volume for small particle size, and near zero overall. This research measured 

experimentally combusted coal without scrubbing technology, and therefore may not 

represent real-world output of coal power generation (Chen, et al., 2004). However, if the 

relationship holds, it would indicate that the proportion of the most harmful particles to 

human health from electric power generation from coal is fairly low. 

It is likely that the chemical composition of the ultrafine particulates are also related 

to human health, and that further relationships between certain types of heavy metals and 

other elements have different implications for human health (for example, peeling an 

orange generates a significant amount of ultrafine particles, however they may be less 

harmful than equivalently-sized metals). Overall, the transit of external organic and metal 

particles into the central nervous system ultimately is undesirable, and thus particles are 

thought of in this paper based on their capacity to transit into the central nervous system, 

rather than a more detailed analysis of the types. 

The particle emissions from vehicles are also highly variable. Analysis of emissions 

near a London major roadway between 1998 and 2001 indicate that particles > 60 nm in 

diameter tend to be emitted by heavy-duty (primary diesel-fueled) vehicles, while smaller 

particles between 30 and 60 nm are primarily emitted by light duty traffic. As wind speed 

increased, or distance from the roadway grew, the overall particle counts reduced 

significantly, in an inverse-square distribution. However, the smallest particles, between 
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11 and 30 nm in size, tended to be moved less by wind, and also showed an inverse 

association with temperature, peaking in the early morning (Charron & Harrison, 2003). 

Overall, a great many significant relationships between particulate matter exposure 

and human health have been noted. These included increased pediatric emergency room 

visits, type II diabetes, obesity, hypertension, depression and anxiety even when accounting 

for socioeconomic status, sex, age, tobacco use, education, BMI and occupational exposure 

e.g., (Pearson, Bachireedy, Shyamprasad, Goldfine, & Brownstein, 2010). 

SMOG 

 Simplifying a very complex series of interactions, smog is formed through the 

combination of emissions and sunlight. There are a great many studied interactions 

between smog and human health. For example, a person who has already had a heart attack 

is three times more likely to have a subsequent one on a high-smog day, as compared to a 

low-smog day. Similarly, patients with implanted cardioverter defibrillators had roughly 

an 80% increase in probability of a defibrillation event two days after a high smog day 

(Peters, et al., 2000). 

One of the most significant high-smog days recorded was on January 12 2013, in 

Bejing. There, the Air Quality Index (AQI; measured by ozone, O3 + fine particulate 

matter, PM2.5) was at a level of 755, well in excess of the formerly theorized limit of 500 

when the EPA generated the index. PM2.5 was measured at 886 µg/M3. The event was 

described as, “… all of Bejing looked like an airport smokers’ lounge.” This had the effect 

of reducing visibility to less than 50 meters. (Wong, 2013).  

Based on hospital intake records, this high AQI event corresponded to a 16% 

increase in emergency room visits, 12% increase in outpatient visits, and 69% increase in 

hospital admissions. As the event ended, there was a heavy decline in these factors, as was 
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also noted in London’s severe 1952 smog event.  When analyzing hospital records against 

air quality metrics in Bejing between December 2012 and January 2013, each 10 µg/M3 

increase in PM10 was associated with a 1% increase in ER visits, 0.7% in outpatient visits, 

and a 3.9% increase in hospital admissions (Chen, Zhao, & Kan, 2013). Another analysis 

on particulate inhalation in China concluded a linkage of roughly a three-year life 

expectancy reduction for every 100 µg/M3 average daily air particulate levels. When 

scaling this number to the Chinese population, the authors conclude an aggregate loss of 

2.5 billion years of aggregate life expectancy for its 500 million residents, due to 

cardiopulmonary disease (Chen, Ebenstein, Greenstone, & Li, 2013). 

Bridge Apartments Study 

One of the early long-term health psychology studies was conducted on residents 

of Brown and Guenther’s 1963 Bridge Apartments complex, over Interstate 95 in New 

York City, adjacent to the George Washington Bridge. Between 1974 and 1991, over 8,000 

residents were followed and studied for health, air quality, and neuropsychological function 

measures, across the apartment’s 32 floors. 

As early as 1973, children participating in the study were noted to have significant 

impairments in auditory discrimination (ability to determine a signal sound from noise) 

and delayed reading skill, for children living on the lower floors, as compared to children 

living on the upper floors. Initially, this effect was attributed to simple noise levels (Cohen, 

Glass, & Singer, 1973). Over time, additional analyses indicated that while noise was a 

major factor at lower levels, additional factors such as higher carbon monoxide and PM10 

levels were far more dangerous. For example, CO was measured peaking at 22 ppm on the 

third floor, averaging 14 ppm throughout the day. Unlike the noise factors, CO levels were 
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not significantly reduced at the 30th floor. Other factors, such as particulate counts, were 

noted to significantly decrease at higher floors.  

Studies across multiple apartment complexes have found significant relationships 

between proximity to major roadways and indoor PM10 and CO levels. These values are 

confounded by tobacco use and other emissions generation (e.g., balcony barbeques), but 

generally trend to significant decreases in PM10 levels at higher floors, with roughly similar 

CO levels throughout the buildings. Interestingly, there are also seasonal factors, with peak 

levels measured both in summer and winter, potentially due to increased heating or air 

conditioner use by drivers nearby the homes (Jo & Lee, 2006).  

Given these factors, two interesting conclusions could be drawn. First, given 

roughly similar CO levels across floors but differing particulate counts, the delayed reading 

time, shorter life expectancies and other factors are likely related to the higher particulate 

counts. Second, that there may be an aggregate compounding effect in high smog 

situations, namely that vehicle drivers are likely to spend more time with their windows up 
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running climate control systems, and thus increasing vehicle emissions and therefore 

contributing in greater proportion to smog.  

 

 

Figure 1: A view of the Bridge Apartments, George Washington Bridge, and Interstate 95 

in New York City (jag9889) 

Mexico City Study 

Much of the history and importance of poor air quality have been learned through 

studies in Mexico City over time. While on the uptrend now, air quality was so poor prior 

to 1992 that children, when asked to draw a picture with the sky then, tended to use green 

or yellow crayons instead of blue. Even back in the 1940s, air quality was sufficiently poor 

to obscure visibility to a mile or less, often occluding the snow-capped mountains. 

Particulate matter was traced back to a variety of sources, including industrial manufacture, 

electric power generation, and sewage being pumped into open air areas. It is one of the 

few places in the world that diseases that are typically fluid-borne (e.g., hepatitis, 

dysentery) can be inhaled (Western Hemisphere, n.d.).  

http://www.flickr.com/photos/jag9889/2393178733/sizes/l/in/photostream/
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Studies on both children and dogs living in Mexico City showed several signs of 

neurological trauma, including increased neuroinflammation, amyloid plaques, and 

neurofibrillary tangles. For example, 56.5% of the children studied showed white matter 

lesions in the prefrontal cortex, as compared to 7.6% of controls in a nearby town. The 

dogs showed a similar rate of neurological trauma (57%), and dog autopsy studies indicated 

the presence of ultrafine particulate matter (UFPM) in their brains, comprised of equivalent 

particle types to airborne ultrafine particulates. These studies are particularly alarming for 

human health, as the prefrontal cortex is responsible for higher-order and abstract 

reasoning, and thus a key structure used by members of a society striving to improve 

complex situations such as this one. Children followed who moved to Mexico City showed 

growing brain injury on MRI, corresponding to equivalent decreases in IQ, particularly in 

areas associated with frontal lobe injury (Calderón-Garcidueñas, et al., 2012). 

  

 

Figure 2: Dog (left) and human (right) MRI studies showing white matter hyperintense 

legions and neuroinflammation in Mexico City participants 

In addition to the prefrontal cortex, ongoing studies have shown ultrafine 

particulate matter in the olfactory bulbs, hippocampus, and brainstem. Overall, this has 

led to a loss of > 10 IQ points, failure to recognize several smells (particularly soap), and 
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a significant increase in risk factors for Alzheimer’s disease (Calderón-Garcidueñas, et 

al., 2015). 

PARTICULATE MATTER AND ELECTRIC POWER GENERATION 

In June 2011, CPS Energy announced that the coal plant located at the J.T. Deely 

Station would be shutting down. This plant, having run since the early 1970s, was the first 

publicly-announced coal power plant to be slated for retirement. In the past several years, 

many studies have cited the issues associated with electric power generation emissions, 

including CO2, SO2, NOX, PM10, PM2.5, and UFPM. In the final report on the clean air act 

in 2011, the EPA states that the benefits of the clean air act “exceed its cost by a wider 

margin, making the CAAA a very good investment for the nation”, citing effectiveness of 

over $2.0 trillion by 2020, due to reductions in mortality and injuries associated with those 

emissions.  

 

 

Figure 3: Avoided health impacts due to emissions, including particulate matter 
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Interestingly, the EPA study cites the primary reductions in health impacts due to 

reduction in electric power generation related production of NOX and SO2
,, while 

reductions to particulates are ascribed to local area sources such as tilling, dry cleaners, 

open burning, and wild fires, as well as other industrial combustion sources not 

associated with electric power generation. Improvements on the vehicle side were seen to 

occur in NOX reductions, as well as VOCs and carbon monoxide. (U.S. Environmental 

Protection Agency Office of Air and Radiation, 2011) 

 

 

Vehicle Electrification – moving transportation to the grid 

AUSTIN ENERGY STUDY 

Austin Energy owns a large fleet of vehicles, including non-hybrid ICE vehicles, 

parallel hybrid vehicles, and some early converted Prius vehicles that were capable of 

running in electric-only mode. In 2009, Austin Energy analyzed tailpipe emissions from 

their existing gasoline-only fleet vehicles, as compared to the emissions from their fossil-

fuel generation fleet. Based on analysis of their driving patterns and emissions, 

transitioning emissions from the tailpipe to smokestack yielded a 95% reduction in NOX, 

and 54% reduction in CO2. This early research indicated a strong potential overall 

improvement to society in transitioning to electricity as a fuel source (Alford, 2010).  

However, these studies did not look at the myriad complex factors associated with energy 

demand, such as the time of day when the charging occurred and state of power flow on 

the system (and thus what plants contributed to that vehicle charging, along with its 

associated emissions).  
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Figure 4: Austin Energy emissions comparison between tailpipe and smokestack 

 

 

MEEHAN STUDY 

Previous research at University of Texas at Austin also looked at the emissions 

implications of vehicle electrification. These analyses included multiple scenarios looking 

at various charging patterns for both the Chevrolet Volt and Nissan Leaf.  The research 

further highlighted the emissions reductions due to renewable generation, despite leading 

to slight increases in fossil fuel plant emissions due to ramping. Overall, the models 

indicate vehicle electrification leads to significant reductions in CO2 emissions, a trend that 

holds until ICE vehicles achieve an efficiency of around 58 ± 8.3 mpg.   According to the 

model, the cross-over point for NOX is around 39 ± 9.5 mpg, while SO2 emissions favor 

ICE vehicles generally at 0.6 ± 0.4 mpg, indicating a societal cost for SO2. However, when 

taken in balance, from both public health and climate change concerns, the reductions in 

CO2 are likely more valuable to society than the marginal increases in SO2 emissions. For 

example, a recent analysis on the health impacts associated with coal plant emissions 
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indicated a cost to society of $0.214/kWh due to CO2 emissions, and $0.012/kWh for SO2 

emissions. (Johnson & Hope, 2012) 

The research further noted that the generation that would serve vehicle charging 

would be primarily served by combined cycle natural gas units, and then coal units. The 

increased generation of the coal units was identified as the primary cause of increased SO2 

emissions (Meehan, 2013). However, considering that in 2014, the Government 

Accountability Office (GAO) significantly increased its 2012 estimates of the number of 

coal plants that would have retired by 2025, with the expectation that the bulk of 

retirements will occur in 2015, it is possible that in a few years’ time, the SO2 impact would 

be reduced by changes in the generation fleet (US Government Accountability Office, 

2015).   

 

 

Figure 5: Anticipated coal-powered unit retirements 2014-2025 
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ECONOMICS OF ENERGY AND POVERTY 

Just as tailpipe emissions are not evenly distributed across vehicles, so are energy 

costs varied across the population. One can imagine a scenario between two energy 

consumers in Austin.  

One individual is of a high socioeconomic status. This individual lives in a home 

they own, a factor that increases the probability of building or enhancing the energy 

efficiency of their home. In fact, if that individual were to choose to add rooftop PV and 

get subsidized by the city, an energy efficiency audit would have to indicate a certain level 

of efficiency before the subsidies would be allowed to take effect. This individual also 

owns an electric vehicle, and pays somewhere in the $0.02 - $0.04 per mile range, given a 

flat rate of $0.11 / kWh, rooftop solar decreasing their overall bill, and a vehicle efficiency 

of roughly 35 kWh per 100 miles. Overall, this individual has a highly energy efficient 

home and vehicle, and PV reducing the cost per kWh of energy overall. Given they drive 

an electric vehicle, their cost per mile is low and relatively stable, given the flat rate of 

electricity. They are able to afford the high upfront cost of the electric vehicle, and lock in 

low and stable per-mile costs due to the nature of electricity and its costs. 

Take the second individual, and imagine them living at a lower socioeconomic 

status. They live in a multifamily housing area, and pay rent every month. The landlord, 

the owner of the building, has less of an economic incentive to audit or improve the energy 

efficiency of the building, as the renter is paying the utility bill, so the landlord has little 

way to recover the cost associated with the efficiency improvements. Therefore, the 

apartment is highly leaky, with poor ceiling and wall insulation, and thus requires higher 

energy costs to maintain the interior temperature. There are no PV panels on the roof of 

the apartment, or if there are, the moneys associated with the generation flow to the 

landlord, not to the tenant. While one could theoretically expect a reduction in expenditures 
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to flow down to the tenant, a high probability of the tenant moving in the near-term future 

makes such flowbacks to be less likely. 

From the transportation energy perspective, this individual is paying a much higher 

and variable energy cost. Over the past 11 years, gasoline prices in Austin have been highly 

variable, peaking at $3.97/gallon for 87-octane gasoline in mid-2008, with a minimum of 

$1.44/gallon at the end of 2008. At the time of this writing, fuel costs are averaging roughly 

$2.20/gallon. (GasBuddy.com, n.d.) The vehicle driven by this individual is likely to be far 

less energy efficient. This individual may have purchased a used car to save costs, and 

while the sticker at the time of the vehicle’s original purchase may display an overall MPG 

of 20 MPG, long-term vehicle maintenance, both by the original owner and this individual 

may be deferred or outright avoided, and ageing climate control and other systems leading 

to increased inefficiencies. With these presumptions, one can conclude that at peak 

gasoline prices, with a low efficiency rating (10 mpg), one could pay up to $0.40 / mile, 

while at the minimum gasoline prices and high efficiency rating (20 mpg), one could pay 

a cost of $0.07 / mile, all well above the costs of charging an electric vehicle. 

Given the understanding that tailpipe emissions also are significant detractors of 

local air quality, one must also consider the overall emissions from the tailpipe of the ICE 

vehicle. When this individual’s “check engine light” comes on, the probability that the 

vehicle will be taken for immediate maintenance may be lower, due to greater financial 

concerns on their part. As the issue with their vehicle might be associated with increased 

particulate matter emissions from the tailpipe, it is therefore expected that a vehicle driven 

by someone in this situation could also account significantly for increases in local AQI and 

the health of the individual and their neighbors.  
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Combining both the transportation and home energy costs, the individual at a lower 

socioeconomic status could be expected to pay higher energy costs per square foot or per 

person, both on average and in variability. 

 

Figure 6: Changes in gasoline prices (87 octane) in Austin, TX, from 2005 through 2015. 

TAX IMPLICATIONS OF VEHICLE ELECTRIFICATION 

One additional factor to consider is the current series of structures to maintain 

roadways, and other infrastructure. Currently, Texas uses gasoline taxes to cover schools 

($0.05 / gallon), and highway maintenance ($0.15 / gallon), as well as fees in motor vehicle 

registration. The federal government also taxes gasoline sales at a rate of $0.184 / gallon 

(Texas A&M Transportation Institute, 2011). Transitioning to EVs would reduce the funds 

associated with fuel taxes, and therefore one might want to consider means of recouping 

those costs. If one were to use the national average of 13,476 miles driven annually (US 

Department of Transportation, 2015), that would lead to a driver paying an annual rate of 

$86 towards federal, state highway, and state school funds (for a higher efficiency, 60 MPG 

vehicle), to $134 annually for a low efficiency vehicle at 15 MPG. When one considers the 
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effects of parallel hybrid vehicles that achieve 45+ MPG, a diminishing return in tax 

revenues are already noted. Using the EPA MPG equivalent (MPGe) for a variety of 

vehicles from www.fueleconomy.gov, this indicates a steep diminishing return of tax 

revenues as MPG grows. A vehicle like the Tesla P85D can be expected, based on an 

assumed MPGe model, to pay 1/3 the annual taxes to Texas and the federal government 

that a Honda Civic driver would pay, although at this time the Tesla driver is not paying 

these fees at all, as no fees are recouped from these highway funds from the driver’s electric 

bill or vehicle registration fees.  

If one were to take the standpoint that societal equity would be created by having 

electric vehicle drivers pay annual taxes at the same fuel proportions per mile to state and 

federal governments, this would mean a Tesla driver (at 93 MPGe) would pay annually 

$21.73 to Texas highways, $7.25 to Texas schools, and $26 to the federal government. This 

would correspond to a roughly 10% increase to $0.115 in flat rate electricity prices.  

Several different alternatives to a per-gallon fuel tax are available, many of which 

will capture support needed infrastructure given increasingly efficient parallel and series 

hybrid electric vehicles, and battery electric vehicles. It seems that a per-gallon fuel tax 

may no longer be the proper mechanism for supporting education and roadways, given the 

overall trend of vehicles towards greater efficiencies. Other novel approaches, such as flat 

fees at the time of sale and annual registration, a tax on vehicle miles traveled, or future 

public-private partnerships around road maintenance are options that may better maintain 

infrastructure in the light of growing per-mile vehicle efficiencies (Whalton & Hall, 2012).  
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Figure 7: Gasoline taxes and vehicle efficiencies (presuming 13,476 miles/year) 

2015 Vehicle 
MPG / 
MPGe 

Annual Taxes (if 
charged per 

MPGe) 

Efficiency 
(kWh / 
100mi) 

kWh / 
year 

Annual cost 
at 

$0.11/kWh 

Honda Civic 33  $156.81     

Chevrolet Volt - gas 37  $139.86     

Honda Civic Hybrid 45  $115.00     

Toyota Prius 50  $103.50     

Tesla P85D 93  $55.64  36  4,851   $533.65  

Chevrolet Volt - electric 98  $52.80  35  4,717   $518.83  

Chevrolet Spark 119  $43.49  28  3,773   $415.06  

BMW I3 124  $41.73  27  3,639   $400.24  

Table 1: Projected tax revenues of specific vehicles based on MPG/e (presuming 13,476 

miles/year) 

Psychological Factors associated with Electric Vehicles 

Traditionally, the bulk power system was thought of as a “predict, command and 

control” system, in which consumers of electricity were seen as being comprised of 

predictable and stochastic elements, but with no interaction other than serving their 

anticipated load. In order to transition to a bidirectional relationship between grid operator 
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and energy consumer (and thus in this case vehicle driver), a series of psychological factors 

must be considered and engineered into the system. 

SITUATIONAL AWARENESS 

Both at the ISO and at the end-user level, situational awareness is a key factor in 

decision making, as a loss of situational awareness significantly increases the probability 

of a decision that is to the detriment of the bulk system. Situational awareness is classically 

defined as, “The perception of elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status into the near 

future.” Ultimately, situational awareness can be thought of as three components, from 

knowing the status of the situation and system (perception), to understanding the meaning 

of that status (comprehension), and ultimately the direction of that system into the near 

future (projection). Situational awareness is a concept thought of both at the individual and 

team level, as individuals attempting to communicate about a situation with different levels 

of situational awareness may in fact have different assumptions and thus have difficulties 

communicating or increased chances of errors due to misperception (Endlsey, 1995). 

At the level of the grid operator, systems are explicitly developed and measured by 

their capacity to interface with end-users, and support situational awareness and decision 

making. One such example, Macomber Map, was developed to integrate a variety of core 

energy, market, model, outage scheduling, and GIS data so that control room reliability 

coordinators are able to build a strong situational awareness (Behr, 2010). 

Ultimately, at the consumer level, the needs for situational awareness are somewhat 

different. All of the existing constraints, such as basecase or contingency thermal issues on 

transmission lines, do affect end-users, but the contribution of a single user to that concern 

is relatively small. Furthermore, the user’s situational awareness should also include the 
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profile of their own behavior, such as their real-time consumption, real-time or time-of-use 

prices, and other factors.  

Strong end-user situational awareness would also merit the idea that a small change 

by a single user with good situational awareness may be insignificant, a single point lost in 

the large noise of the system. However, if that situational awareness and thus improved 

dynamic behavior were to scale across a neighborhood or other large population of users, 

the effects could be quite dramatic. 

At the energy consumer level, several new devices, such as the current transformer-

based eGauge (a circuit breaker-level energy meter), and advanced-meter interfacing 

displays offer the potential for end users to have a much greater sense about their energy 

use. As an example, simply giving end-users a meter measuring instantaneous whole-house 

consumption leads to shifting energy use off-peak, although not to significantly lower 

overall energy consumption (Sexton, Brown Johnson, & Konakayama, 1987).  

END-USER MARKET UNDERSTANDING 

At the transmission level, the energy market is a highly dynamic, fast-acting, and 

complex system, comprised of real-time and day-ahead pricing, markets for congestion 

revenue rights, renewable energy credits, and a great many other markets and systems. 

Nearly all residential customers in Texas are on flat-rate plans, so their energy usage is 

charged in the same way regardless of the time of day or state of the system, and thus they 

have little economic incentive (save altruism) to alter behavior to support the reliability or 

economic efficiency of the bulk power system.  

Similarly, for most users, that limited understanding of the bulk power system 

means that decision making will be based on the economic structures to which they are 

exposed. From that perspective, energy decisions such as rooftop solar or vehicle 
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electrification become focused on through monthly reductions in utility bills. While this 

trends in a positive direction both in conservation and environmental factors, it is not 

favorable regarding certain factors, such as the decision to use a flexible load device (e.g., 

vehicle charger) regardless of time of day. From an aggregate perspective, vehicle charging 

during times of daily peak demand on the system, such as in the late afternoon during 

summer months, can lead to increased costs spread across all users on the system, due to 

increased spot market purchases of retail providers (as load forecasts scramble to catch up 

with increased vehicle load), increased usage of units with lower heat rates on peak, and 

increased probabilities of equipment failures at the distribution level that lead to increased 

maintenance or replacements. 

 

TIME DIFFERENTIAL DISCONNECT BETWEEN USAGE AND PAYMENT 

From the perspective of operant conditioning (a method of behavioral learning in 

which reinforcements and punishments determine the subsequent probability of the 

behavior), one of the major factors that lead to reduced perceived connection between 

electricity consumers and their usage is in its large delays. This concept, termed delayed 

reinforcement, has been theoretically and experimentally shown to make learning new 

behaviors, or changing existing behaviors, far more difficult (Lattal, 2010). Therefore, if 

one can imagine making a single energy decision, which, along with all the other energy 

decisions over a 30 day period, leads to a utility bill, it becomes easy to conceptualize why 

they may continue making a series of disconnected decisions, given a reduced feedback 

loop.  

In a modern-day case, retail provider Direct Energy has shown that daily SMS 

messages to consumers of the prior day’s electricity costs (in dollars, not kWh 
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consumption) leads to approximately 18% decreases in consumption (Khan, 2015). 

Therefore, by simply decreasing the time between the behavior and result, one can 

significantly induce behavioral change. 

 

DISCONNECTS FROM STATUS OF TRANSMISSION, DISTRIBUTION, GENERATION SYSTEMS 

Ultimately, energy consumers are generally unaware of the status of the generation, 

transmission, and distribution systems to which they are connected. One exception to this 

rule occurs at ERCOT, when physical responsive reserves drop below particular MW 

levels, leading to energy emergency alerts (EEAs). These EEA messages have been 

communicated from ERCOT to control centers for some years, and to the general public 

through media releases that are transmitted via radio, television, and online feeds. Since 

2012, a smartphone application, the ERCOT Energy Saver, has been downloaded by over 

20,000 users. The application allows both high-level information about the real-time status 

of the bulk system, and also allows for push notifications to end-users when ERCOT enters 

an EEA.  

Typically, one would expect an EEA to correspond to significant increases in 

wholesale prices across part or the entire ERCOT grid, due to exceptionally limited 

remaining capacities, and such prices have become institutionalized through the Operating 

Reserve Demand Curve. However, consumers, typically on flat-rate pricing that does not 

reflect wholesale price variations, have no economic incentives to shed their load. 

However, through a variety of outreach efforts including the push notifications, significant 

behavioral changes at the residential and small C&I load levels have been observed, due to 

altruistic and mutually beneficial behaviors on the part of consumers, once this information 

became available to them.  
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This certainly does not mean that all consumers would be willing to reduce their 

energy use continuously. In fact, experimental evidence indicates a “fatigue effect’, in 

which continued messaging and behavioral change on the part of the user leads to an 

overwhelmed feeling, especially when the information in multimodal and about multiple 

aspects of life. Humans can be seen as able to thrive reasonably well on a dynamic system, 

but likely less so on a great many dynamic systems at the same time. 

DISCONNECTS FROM EMISSION IMPACTS OF BEHAVIORS 

Similarly, the relationship between an end-user’s energy decisions and a marginal 

change in air quality emissions are even more difficult to link. Adding or removing a load 

from the system will change the output at one or more marginal units, and the emissions 

associated with those increases will then be moved based on wind speeds, particulate sizes, 

presence of sunlight, and a variety of other factors. However, if the end user were to have 

more information about an energy decision, such as “charging your car now would lead to 

two nearby power plants to emit and additional X pounds of CO2, NOX, SOX, and PM, and 

wind flows are anticipated to blow these emissions towards your home,” one could imagine 

the end user making a different choice, especially if those emissions would pass over their 

home as their children play in the back yard. If the wind flows would move the emissions 

elsewhere, it may be the case that a different decision would be made. This is, of course, a 

theoretical construct, and based on the assumptions that several complicated models could 

be summarized down to the individual consumer level, creating sufficient enough levels to 

garner their attention.  

 Reductions in emissions may also have further advantages for society, beyond 

energy. For example, presuming the 95% NOX reduction highlighted in the Austin Energy 

study, transitioning 30% of city cars from ICE vehicles to electric vehicles would 
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significantly reduce city-wide overall CO2 emissions, and also eliminate any non-

attainment issues. 

AGENTS AND SITUATIONAL AWARENESS 

The human inability to process large volumes of data from multiple dynamic 

systems leads to difficulties in controlling and predicting the overall functioning of a 

system. This facet of human function may potentially lead to the use of fully or partially 

autonomous agents acting on their behalf at the energy level, able to respond to real-time 

pricing and system conditions, engaging in behaviors that match the user’s pattern of 

preference. For example, a user with a primary focus on air quality may choose to charge 

their electric vehicle when the proportion of renewables on the grid is quite high; another 

user with a primary focus on cost savings may instead charge their vehicle when the system 

(or at least the portion on which they are connected) is minimally congested and prices are 

lowest.  

RANGE ANXIETY AND DRIVER MENTAL MODELS 

Popular media frequently has used the term “range anxiety” to denote an electric 

vehicle drivers’ fear that they will run out of charge, and end stranded or unable to take 

needed trips. Experimental data has found that range anxiety decreases with driver 

experience in their electric vehicle, due to improved mental models on the drivers’ part 

about the functioning of their vehicle (Rauh, Franke, & Krems, 2015), likely in the same 

fashion that all drivers get to better understand and predict the function of new vehicles 

over time. Generally, fairly new electric vehicle drivers tend to prefer electric vehicle 

ranges significantly in excess of their historic daily miles driven (Franke & Krems, 2013), 

and have concerns around limited availability and charging times associated with DC fast 

public charging stations. 



 28 

From another perspective, range anxiety and its tendency to shift can be thought of 

from the perspective of changes in the mental model of the driver. Over time, as a driver is 

exposed to the use of their electric vehicle and availability of home, work, and/or 

commercial charging, their internal representation of their electric vehicles tends to become 

more granular and refined. Based on measured patterns of electric vehicle driving between 

2011-2014, it now also appears that EV batteries can be expected to support driver needs 

at or below 70% of nameplate capacity, indicating a need to refocus on driver patterns and 

needs more than an abstract capacity figure (Saxena, 2015)., as well as potentially new 

inputs around the placement of EVSEs (Chen, Kockelman, & Khan, 2013) 

Overall, range anxiety can be thought of as affecting the drivers as a complex 

system, including perceptions of range buffering, the availability of resources to assist with 

range insufficiency, and stress indicators across all layers of function (Rauh, Franke, & 

Krems, 2015) 

As is the case in the management of the bulk power system, human errors associated 

with EV driving can come from the application of the incorrect mental model. One recent 

example is with electric vehicle drivers in Atlanta, GA, near the North American Electric 

Reliability Corporation’s headquarters. Thanks to tax incentives at both the federal and 

state levels, there are a great many Nissan Leaf vehicles in Atlanta, and high speed 

ChaDeMo stations throughout the city. Some drivers are able to lease their Leaf BEVs for 

less than $75/month, which when incorporated with fuel savings and potentially free 

workplace charging, becomes quite attractive as compared to ICE alternatives. However, 

one of the interesting noted phenomena in Atlanta is that, in the winter, several Leaf drivers 

run out of range and require tow trucks or to stop and charge en route to a destination. It is 

an interesting study on the application of incorrect mental models. 
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In an ICE engine, climate control leverages the ICE engine and its function. 

Therefore, in the winter, when a driver turns on the defogger or cabin heater, waste heat 

from combustion is siphoned off to provide heat as needed; from an energy perspective, 

this means an increase only primarily in fan speeds. In the summer, air conditioning use is 

more energy intensive, due to the need to increase engine RPM to power the compressor 

and cool the vehicle. In an electric vehicle, the opposite is true; electric cooling is generally 

less energy intensive than electric heating (which is essentially resistive heating, except for 

the recent BMW BEV model, which uses a more efficient heat pump). Therefore, drivers 

presume their ranges will change less in the winter than they actually do, leading to issues 

in forecasting total vehicle ranges.  

 

 

Figure 8: A psychological framework of range anxiety (Rauh, Franke, & Krems, 2015) 
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 “CURSE OF THE DEFAULT” 

One of the major challenges to adoption of any new technology has to do with the 

preponderance of users leaving the technologies in their original, or near-original 

configurations. In the early days of remote garage door openers, this meant that dip switch-

based openers were set to ‘000000’ leading to several rashes of thefts, given off-the-shelf 

openers could open garage doors. When looking at web browser users, users who indicate 

that they would prefer not to be tracked as they browse across the web are not very likely 

to have enabled their browser’s ‘do not track’ header feature, which exactly accomplishes 

that function. That is why changes in defaults, like Firefox’s switch from Google to Yahoo 

as the default search provider, are seen as having tremendous market shifting power 

(Lunden, 2015).  

When applied to electric vehicles, this means that the vast majority of electric 

vehicles can be expected to behave exactly in the same configuration as they had when 

they first leave the dealership lot, meaning that today, they are likely to charge immediately 

on plug-in, which typically increases aggregate on-peak load for charging starting in the 

early evening, particularly in regions that have heavy early evening air-conditioning use. 

Therefore, if vehicle control is not seen as a near-term viability, it is strongly recommended 

that part of the final interactions with the dealership before leaving the lot include 

programming the vehicle to charge off-peak, or programming to do so at the factory. 

MORAL SELF-REGULATION AND PRO-ENVIRONMENT / PRO-RELIABILITY DECISIONS 

One of the interesting facets of human behavior is that, while it’s far easier to think 

of human decisions in an independent, probabilistic fashion, real-world behavior tends to 

be more linked between decisions. For example, the phenomenon of moral self-regulation 

describes a person making a decision they believe to be kind, moral, or environmentally 

friendly, which paradoxically increases the probability they will, in short order, make an 
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unkind, immoral, or environmentally harmful decision. Interestingly, this seems to be 

heavily related to one’s perception of self; affirmations to moral identity increase the 

probability of an immoral behavior, while threats to moral identity lead to more moral 

behaviors, presumably to re-acquire the sense of moral self-worth. Across many empirical 

and experimental studies, these phenomena are both observed and affected by these moral 

perceptions (Sachdeva, Illiev, & Medin, 2009). 

This phenomenon can be especially interesting moving towards a smart grid world, 

in which user behaviors on highly dynamic systems can cause instabilities. It means that 

not all LEED-certified buildings may use significantly less energy than their equivalent 

non-LEED counterparts (Newsham, Mancini, & Brit, 2009), EV drivers with rooftop PV 

may be more likely to lower their air conditioner cooling set points or leave their doors 

opened, or any other number of behaviors that lower the efficiency of a system from its 

theoretical maxima.  

SOCIAL AND FINANCIAL DOMAINS 

Furthermore, from a behavioral economics perspective, one can think of two 

separate domains of function, one social exchange, and one financial exchange. We tend 

to think of activities in either realm, but crossing from one to the other (especially social to 

financial) can also produce unexpected results. As an example, at a daycare center in Israel 

with frequently-late parents picking up their children, a late fine began to be assessed after 

baseline tracking. While this was intended to curb lateness, it had the opposite effect, in 

that parental tardiness increased significantly and did not recede when the fines were 

removed.  

While some view the fines as being insufficient, it appears a subtler shift happened 

with the parents: beforehand, while sometimes late, parents had a cognizance of the social 
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factors associated with their tardiness. The teachers were not able to go home to their 

families as quickly, or were otherwise inconvenienced, and often late parents frequently 

apologized despite being late. After enacting the fine, it appears that these parents shifted 

their thought process about their lateness from social exchange (being part of a society 

shared with the teachers and administrators) to a financial exchange domain (fee for 

service). Once in the financial domain, the parents were performing far simpler cost-benefit 

analyses around their behavior. Through that lens, a higher fine might produce less 

tardiness, but still weaken the empathy and sense of community that the parents had with 

their teachers (Gneezy & Rustichini, 2000).  

 

 

Constraints on the distribution system 

DISTRIBUTION TRANSFORMER THERMAL MANAGEMENT 

The vast majority of distribution-level transformers in the United States operate as 

passive devices, not providing telemetry to its owners. Instead, their operational states are 

based on simulations and observations of load profile curves, with many assumptions. For 

example, in Texas, the presumption is that the transformers would be sized to support the 

peak load of a summer afternoon, with the presumption that over midnight to early 

morning, the transformer would be in a cool-down period. Electric vehicles have the 

potential to violate these assumptions, either adding significant additional load on peak due 

to drivers arriving home, starting their vehicles charging and then adjusting their air 

conditioners, or charging their cars overnight and reducing the cool-down periods. This 

can be exacerbated by the cluster effect, which relates to increased probabilities of 

neighbors being similar to you; thus, if you plug in an electric vehicle when you come 
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home from work, there is a strong chance your neighbors will have electric vehicles as 

well, and plug them in when they return home from work. 

Distribution providers tend to continue with existing mental models, treating low 

voltage transformers as passive elements on the system. Should a distribution transformer 

fail, one would expect an AMI to signal the loss of voltage, leading to a truck dispatch to 

repair it. Should that be the case due to increased EV load, one might assume that simply 

adding a larger-capacity transformer solves the issue. 

However, the approach of continuing to grow the capacity of the system for 

infrequent use, rather than engineering controllable portions of the peak load to off-peak 

times, may in the long run lead to significantly higher costs of building and maintaining 

the system in the typical context where costs of transformer replacement are socialized 

broadly, whereas the benefits of increased capacity accrue to individuals. In order to better 

understand the capacities at the transformer level, therefore, one would require additional 

telemetry from the transformer, likely measuring real and reactive power, as well as 

thermals in the transformer. One could also think of additional benefits for the distribution 

provider, such as a simpler means for identifying unauthorized and parasitic taps on the 

system, when the aggregation of AMI 15-minute data is significantly lower than the 

transformer’s 15 minute load data. 

POWER FACTOR VARIATIONS AT DISTRIBUTION TRANSFORMERS 

One recent insight on distribution transformer data has come from Pecan Street 

Project’s research in the Mueller neighborhood, indicating significant variation in the 

direction of MW flow across the day, due to rooftop photovoltaic panels, and thus a 

significantly changing power factor at the transformer level (Toliyat, Kwasinski, & Uriarte, 

2012). Based on that assumption, the development of a distribution system operator (DSO) 
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can be thought of as incorporating measurements at the low side of a distribution 

transformer, in order to determine the status of the system on which multiple homes are 

connected (Carvallo & Cooper, 2011), thus incorporating the state of both the transmission 

and distribution systems. These costs of reactive power support have been suggested for 

some time (e.g., (Lamont, 1999)). However, given increasingly dynamic systems due to 

distributed energy resources, additional loads like electric vehicles, and other factors, 

reactive power needs may change often, and thus some future form of pricing signal might 

provide an effective means to reducing their swing.  

HARMONIC FACTORS WITH LARGE PROLIFERATIONS OF POWER ELECTRONICS 

As the bulk power system moves to a much more dynamic system, several different 

factors could potentially come together to increase harmonic content on the system. Power 

electronics, devices that utilize high-speed switching to convert between DC and AC, 

change voltage levels and more efficiently control motor loads, and also have the byproduct 

of rapidly changing load profiles. Power electronics have the potential to create predictable 

harmonics at the PV inverter level (Ngo & Santoso, 2014), and in a variety of different 

applications, including at the electric vehicle level, where power electronics determine the 

rate at which batteries are charged. Multiple interconnected pulsed width modulation 

(PWM) drives can potentially aggregate together and create large harmonic currents. 

Similarly, energizing a capacitor bank has the effect of a short-term series of 

harmonics on the system. If one considers a situation where most consumer electronics 

may use power electronics to convert between different voltages, between AC and DC, or 

to serve motor control functions, and intermittent renewables lead to the need for varying 

reactive power on the system (and thus more switching such as in a static var 
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compensators), one can imagine a system with swings in harmonic levels, especially at 

times of significant change in generation or load. 

Vehicle to Grid Integration Issues 

LOCAL RESPONSE OF ELECTRIC VEHICLES 

In order to ensure the reliability of the bulk power system, and in situations where 

control signals cannot reach the equipment, devices need to have the capacity to 

independently change their functionality based on local measurements of the state of the 

system on which they are connected. This can occur, for example, with a device that can 

detect when the system moves outside its normal range of function. As an example, a 

charging electric vehicle that detects frequency drop below some set point (for example, 

59.8 Hz) should reduce or delay its charging, to give the system room as local generation 

is ramped up to rematch system-wide load. Similarly, one could imagine an EV or EVSE 

deferring charge when the system harmonics cross a certain THD threshold, thus protecting 

the vehicle from transients on the system. 

SYNCHROPHASOR INTEGRATION: LOCAL AND REMOTE 

Modern-day electric vehicles are quite sophisticated and connected devices. Given 

the functionality that EVs have, including battery charging management, GPS navigation, 

and cellular data and voice connectivity, one could imagine utilizing these features with 

additional AC waveform analysis, providing GPS time-stamped synchrophasor 

measurements back to an aggregator or utility. Aggregation of these points could 

potentially build an interesting view of the overall status and health of the system, all the 

way from transmission to distribution level. This would also offer additional early-warning 

indicators about common distribution-level issues, such as transformer tap changer 
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difficulties, and about other equipment that may be transmitting harmonic currents and 

voltages on the system. 

While this information is likely not directly helpful (and in fact due to information 

overload potentially a risk) to the grid operator to maintain, a distribution system operator 

could serve to aggregate this data, and create automated behaviors based on multiple 

synchrophasor measurements. For example, a growing angular divergence between two 

electric vehicles could indicate a fault on the system, and thus lead to some automated 

action on the part of the vehicles, such as a 20 second pause of charging. Of course, these 

same functions could also be carried out at the low side of the transformer, although 

leveraging the existing technologies already in the EV and many EVSEs may offer a 

reduced cost for acquiring that data. 

Special question – businesses with backup power or microgrids 

From the perspective of city management, a ton of CO2, SOX, or NOX, whether 

generated by a coal power plant, from an ICE engine’s tailpipe, or from a data center’s 

diesel backup are considered nearly identical, as they are all measured and all can aggregate 

to non-attainment and climate-concern levels. From a statistical standpoint, the varying 

levels of informational availability may lead to disparities in terms of data collection and 

root cause comprehension. For example, should a data center with a diesel generator 

choose, based on spot market prices, to disconnect from the grid and transfer their load to 

their generator, they are free to do so. However, estimating the impact of policies both at 

the regulatory and grid management levels that change the probabilities of such events are 

also of great importance to the city trying to maintain its overall CO2 footprint below a 

certain level. An electric vehicle providing synchrophasor telemetry may be able to at some 

degree show changes in phase angle not replicated by other nearby EVs (thus indicating a 
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potential islanding event or transfer to a different circuit). This would allow for better 

understanding of the dynamics of distribution circuits and how they are integrated into the 

system. This is especially interesting around data centers, considering how the move 

towards cloud computing has lead them to be some of the fastest-growing load tranches 

(Howland, 2014). 

LIMITED COMMUNICATIONS PIPELINES BETWEEN VEHICLE, SUPPLY, AND SYSTEM 

One of the concerns around integrating electric vehicles and the bulk power system 

is around the limited communications pipelines between the two. The current J1772 

specification supports a very limited exchange of information between the vehicle and 

charger, namely safety and maximum charge rate in amps. Some vehicles and chargers are 

compliant with open standards such as OpenADR, but not most. Closed and proprietary 

systems at both the vehicle and charger levels further make integration across a wide area 

of devices far more difficult, and unknown black box systems, with multiple vendors with 

financial incentives to over-market their products may lead to unrealistic timing, reliability, 

or control estimates, thus damaging overall model accuracy. Ultimately, in order for these 

systems to connect to the power system from the market services perspective, reliability 

statistics need to be far better understood, and end-to-end testing with transparent data 

acquisition is needed.  Ultimately, this data would lead to more accurate models (and thus 

likely better compensation to the providers), as well as additional protections to the user, 

ensuring those vehicles have sufficient charge when needed. 

 

ON-PEAK CHARGING 

Generally, uncontrollable load systems are engineered to offer sufficient capacity 

at peak levels.  Within the ERCOT region, Texas climate has yielded the primary predictive 
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factor for system load temperature. For example, contrasting two days, one a mild day 

(Dallas temperature 64° F, March 9, 2011), and a hot day (Dallas temperature 109°F, 

August 3, 2011), the largest increase in load was from the residential sector, which 

increased fourfold. Similarly, when analyzed at the residential level on a hot August day, 

circuit-breaker level data indicates the vast majority of home energy use is associated with 

temperature control, with additional smaller components in the late afternoon associated 

with homeowners activities, returning home from work (ERCOT, Inc., 2012).  

If one were to supplement the household peak in the afternoon (approximately 6 

kW) with a level 2 charging station (typically running between 3.3 and 7.2 kW), one can 

imagine a significant increase in distribution transformer loading at those peak times. Such 

effects were typical in studied communities with electrified vehicles, in which EV charging 

tended to begin at approximately 4 PM, peaking approximately 8 PM on weekdays. 

Interestingly, time of use pricing participants instead ramped at 12 AM, and peaked at 1 

AM, attributed to the change in pricing tier at those points, creating an economic incentive 

for drivers to program their vehicles to defer charging to those times (Schey, Scoffield, & 

Smart, 2012) 
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. 

Figure 9: An example of ERCOT system load based on ambient temperature 

 

 

 

Figure 10: An example of residential load on a high temperature day 
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Line Capacity issues on peak 

One of the major sources of locational marginal price growth on the transmission 

system has to do with the limited carrying capacity of transmission lines. As transmission 

lines carry more electricity, thermal factors associated with the transmission can lead to the 

line deforming if heated for sustained intervals. Therefore, security-constrained economic 

dispatch approaches lead to market signals engineered to induce behaviors that will prevent 

lines from being at those levels for long durations.  

Similarly, in order to maintain the reliability of the bulk power system, the grid 

operator is directed to maintain the system to be able to withstand a N-1 contingency event, 

meaning that the system can maintain proper function after any single failure of generator, 

transmission line, transmission level transformer (NERC, 2012).  Recently, in the ERCOT 

region, further modeling of loss of reactive support devices (capacitors, reactors and static 

var compensators) are also being studied.  

When one considers the possibility that a large scale growth of electric vehicles 

could all hit the transmission system at the same time on a high temperature day with 

significant HVAC load, one can become concerned both about the security and economics 

of maintaining the bulk power system function. From a perspective of social equity, devices 

that can potentially be shifted (a vehicle charged starting at 6 PM or 12 AM, provided it 

has sufficient time to charge fully, is not differently charged in the early morning) should 

be encouraged to load shift, while other devices that are less easily shifted perhaps should 

be allowed to function. The impetus for this shift could come from differential pricing 

models from the market signals perspective, or grid or locally-controlled behavior from the 

smart grid perspective. 

One of the interesting phenomena that occurs on a power system is that sometimes, 

increasing load at a particular point will actually reduce the flow on a particular 
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transmission line. Therefore, controllable loads such as electric vehicles can be thought of 

as providing potential reliability-strengthening behaviors, both in increasing and in 

decreasing load, although proportionally, is it anticipated that the ratio is heavily tilted 

towards load curtailment, and away from load augmentation. 

Distribution transformer overheating on peak/loss of cool-down off-peak 

Typical distribution transformers are run as unintelligent devices, simply changing 

from higher distribution-level voltages to residential levels, whether as three-phase 480 

volt, or single-phase split 220/110 volt systems. It seems as though the general trend is to 

see these devices as replaceable, with indication of device failure partially automated 

through its downstream advanced meters reporting outages. As passive devices, the 

transformers are expected to work by providing increased flow-through on peak, which 

include generation of waste heat from internal resistances and other losses. As with other 

devices, this heat can build up and shorten the lifespan of the transformer’s coils, oil, core, 

or other components, and other factors, such as low oil levels, can exacerbate the problem. 

In a traditional system, on-peak use on hot days would lead to increased thermal loading 

on the transformers, with cool-down periods overnight as home energy consumption drops 

overnight. Shifting electric vehicle charging from on-peak to this cool-down period may in 

fact better support the transmission system or system-wide energy prices, but potentially 

at the expense of reduced distribution transformer life compared to non-EV serving 

transformers. However, this shifting behavior is still preferable to both on-peak HVAC and 

EV loads, for economic dispatch, emissions, and reliability concerns. 

Generators exceeding EPA emissions limits 

Another factor to consider about electric vehicle charging integration with the 

distribution and generation system has to do with the generation fleet. In Texas, south-
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facing photovoltaic panels tend to generate electricity peaking in the early afternoon, 

several hours before the ramp-up of home energy consumption due to HVAC, vehicle 

charging, and other energy demands of residents returning home from work. Overall, these 

south-facing systems cut peak demand by about 54%, while a change in orientation to west-

facing leads to a greater peak demand reduction of 65%, even with overall annual 

reductions in total generation (Pecan Street Project, 2013) . 

While this trend is impressive, vehicle electrification also adds an additional 

constraint on the system. If one imagines vehicle charging being conducted off-peak, in 

Texas the energy sources powering the vehicle charging can be thought of as mixed 

between West Texas wind, which generally peaks overnight, base-load coal generation, 

and natural gas generation. Many of these plants have run with the expectation of lower 

generation levels over night. Increasing their output at these times may not affect the 

system in terms of congestion, but for those units powered by fossil fuels, increased annual 

production levels will be expected to lead to increased emissions. Given that fossil fuel 

plants have emissions limits, one could expect permits to violate limits in emergency 

situations such as reliability-must-run scenarios, but not likely on a daily basis to cover 

increased generation associated with increased electric vehicle charging. If in fact the 

reductions in CO2 emissions due to shifting away from ICE vehicles lead to increased CO2 

emissions at the plant level, a further investigation to the total cost to society of the 

generation emissions limits (as they now are including vehicle emissions as well) should 

be considered. 

“BIRTHDAY CAKE” CURVE 

When one looks at the profile of a home with its HVAC activated, one notices a 

large curve (most often, the largest intermittent household load), as the unit turns on and 
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off. It is often the case that an individual will come home from work, and the act of their 

coming home, turning on their HVAC system, lights, cooking, etc. This leads in aggregate 

to a peak load demand. At the household level, if one also charges an electric vehicle, this 

leads to a combined jump in load during the time that both the EV and HVAC are active.  

Given the cluster effect, this means that an EV driver who is likely going to come 

home, turn on their HVAC and start charging their car, is also likely to have many 

neighbors who do the same. This curve, as demonstrated in Figure 11, may also be an 

underestimation; it was collected by Pecan Street Project in 2010, and based on its 3.3kW 

load, is likely a Nissan Leaf or Chevrolet Volt. At the time of this writing, many electric 

vehicles maximum charge rates are higher (7.2 kW or more for the Tesla Model S, 6.6 kW 

for the Nissan Leaf, Ford Focus Electric, and several others).  

From the implications both to the distribution transformers and the overall grid 

during peak hours (especially summer heat-related peak), this on-peak charging has the 

risk of leading to significant issues from both grid reliability and distribution-level 

reliability. 
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Figure 11: The Birthday Cake Curve, with on-peak EV charging (red) and HVAC usage 

(blue) 

ERCOT ELECTRIC VEHICLE TO GRID INTEGRATION RESEARCH 

The approach of using electric vehicles to balance renewable generation has been 

tested as part of ERCOT’s electric vehicle to grid integration, since 2011. Currently, this 

research project consists of several EVSEs at both ERCOT’s Taylor, Texas facility, and its 

Austin, Texas facility. Both sites additionally include eGauge devices, measuring power 

use per circuit, at a 1-second resolution. Additionally, the Taylor installation has a 5kW 

PV array. By sending demand response signals to an EVSE every minute, one can roughly 

charge an EV under a PV array’s generation envelope. While sounding simple in theory, 

there are several practical limitations with this approach  

The ultimate goal of integrating electric vehicles (at the vehicle and/or EVSE point) 

with the bulk power system is to provide the appropriate levels of controllability of EV 

charging in order to support both economic efficiency and to enhance the reliability of the 
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system. A very simple example of such a behavior was conducted at the ERCOT EV 

research test bed, during which over the course of a day, a 2011 Chevrolet Volt was sent 

(via EVSE) a one-minute max charging rate signal, based on the average generation levels 

from the test bed’s 5 kW photovoltaic array. As shown in Figure 12, while overall charging 

trended towards the PV line, vehicle response tended to lag behind with high variability, 

attributed in part to the black box network surrounding the EVSEs and network lag. 

Furthermore, given the substantial variability of PV generation during the experiment (it 

was a day with some cloud covering and high wind moving the clouds quickly), a one-

minute average failed to fully compensate for the variability of the generation curve. In 

order to alleviate that variability, one might need to add some capacitors on the DC side of 

the solar array, or use some other strategy to better smooth out the generation curves.  

Subsequent experiments have shown far more reliable charging behaviors when the 

time ranges are shortened, and the control loop is more integrated. For example, in this 

study, a server located in Austin read from an eGauge in Taylor (over a Sprint data 

connection) to determine the last minute average generation, which in turn led to a signal 

being sent to a control center in California, which is then rebroadcast back to Taylor via an 

AT&T cellular connection. 
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Figure 12: An example of EVSE remote control to charge an electric vehicle under a PV 

envelope 

It is also the case, as shown in Figure 13, that internal vehicle controls may not 

behave as intended by the controller. In this example, a 2015 Nissan Leaf was instructed 

to charge at 10% (0.6kW), but instead chose to not charge at all. When instructed to charge 

at 25% (1.65 kW), the vehicle instead chose to charge at 1.5kW, but only after being first 

allowed back to the 6.6kW full rate for a brief period of time. This is partially attributable 

to the J1772 specification, in which the EVSE is actually modulating a pulse width signal 

to indicate maximum charge rate, with some discrete set of values, but it also attributable 

to logic on the vehicle side, likely optimized to maximize battery life or some other 

function, which may not always align with rapid charge rate response to the maximum rate 

as specified by the controller. 
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Figure 13: Nissan Leaf response to varying levels of DR commands 

 “DUCK” CURVE 

A fascinating trend has started to emerge with systems in California and Hawaii, 

both with strong incentives and rollouts of distributed photovoltaics. This “duck curve” 

leads to significant drops in system net load from late morning to early afternoon, due to 

large proliferations of behind-the-meter PV generation.  In contrast to ERCOT, both 

Hawaii and California have more modest penetrations of air-conditioning load. This can 

lead to issues at the distribution transformer level (e.g., heating due to real power upflow), 

potentially negative load at the transmission interconnection point, and at the transmission 

level changes in congestion patterns on the system, as well as leading to situations where 

base load plants do not have sufficient demand to stay online at minimum MW levels. 

These offlining units can lead to concerns about reliability support later in the day, or the 

possibility for needing rapid ramping of both real power flow and direction should clouds 
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occlude an area. From the California perspective, if the trend of rooftop PV panels 

continues at the current rate, it could lead to potential system over-generation by 2020, or 

over 13 GW of needed generation ramping within three hours.  

This phenomena also has interesting human factors questions associated with it. 

Energy users, especially in places like California, are used to receiving messaging about 

not using unnecessary loads during peak times, instead delaying the load to off-peak times 

in the evenings. As these people are not home during mid-day, they are less likely to allow 

their washing machine to run (the clothing may sit for hours waiting to be transferred to 

the dryer), cannot charge their electric vehicle, and are encouraged not to use their pool 

pumps. Now, with this new issue, some of these messages to Californians may in fact begin 

to shift, although it is unclear that there is sufficient elastic load available in the system 

mid-day. This may lead to increased incentives for energy storage, or additional subsidies 

for research and development. 

As with many intersections between the engineering of the bulk system, the 

development of its markets, government policies and incentives, and human behavior, the 

duck curve problem highlights the need to plan ahead for the proliferation of devices, and 

in an increasingly dynamic way, leverage the total of uncontrollable generation assets and 

controllable load and generation assets to balance the system. Furthermore, it highlights 

the need for a more holistic and anticipatory view into future system planning from an 

overall integration standpoint. 

Generalizing from the examples above, one could imagine scaling out California’s 

workplace EV charging, adding controls to have vehicles charge and modulate against the 

distributed solar resources in the state. This has an interesting effect in theory, though, as 

essentially it uses the distribution system as a generation aggregation asset, not just a load 
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serving asset. While it may be a good solution in California, it is likely less viable in Texas, 

given the additional exacerbation of peak load associated with EV charging on peak. 

 

 

Figure 14: The California "duck curve" as a result of DER growth 
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CHAPTER 3: METHODS 

The goal of this research was to take the parameters associated with grid-level 

generation, and simulate a variety of scenarios in which distributed energy resources, 

centralized renewable generators, microgrid-level SOFC generation devices and controlled 

electric vehicle charging can be modulated to alter both the emissions per-mile driven, and 

the overall carbon footprint of the combination of electric power generation and light 

transportation.  

The approach used in this research consists of an agent-based model, simulating a 

neighborhood and its combined electric power and automotive transportation emissions. 

Several different agent components were created to anticipate individual driver and 

household behaviors and their associated emission and financial costs. The model was 

designed to allow for significant flexibility. Some of the parameters were designed for 

distributions against a Gaussian curve (e.g., the mean and standard deviation of cars per 

household, or PV array capacity). 

This chapter includes a detailed analysis of the inputs to the simulation, including 

an overview of the simulation’s user interface and controllable parameters. It then discusses 

the components within the agent-based model, including the home (with PV installations) 

and vehicles, and provides a detailed overview of the agent-based modeling approach. It 

further details the steps of analysis conducted during each hour, as well as a discussion of 

the assumptions made during the analysis process. It concludes by reviewing the 

permutations of analysis conducted over the course of this research.  
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Figure 15: Simulation configuration UI for the EV to Grid Integration simulation 

Vehicle models 

The generic vehicle model includes parameters for annual miles driven per vehicle 

(the current EIA average of 13,476 was used), and the mean and standard deviation of 

hours that the driver left and returned from home. The ICE vehicle model adds emissions 

(CO2, SO2, NOX, PM10, PM2.5, and UFPM) in grams per mile, vehicle efficiency, fuel tank 

size, and historic gas price data for the simulated neighborhood. The vehicle parameters 

were based on the 2014 Honda Civic averages as provided by the EPA, and assumed values 

for PM2.5 and UFPM, as no authoritative values were located. The electric vehicle model 

adds vehicle efficiency, battery capacity, maximum charging rate, and probabilities for a 
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remote start (pre-conditioning the batteries and cabin prior to leaving for work or home), 

and for an immediate charging session start, as opposed to delayed charging. These 

parameters were based on the 2011 Chevrolet Volt. 

 

Neighborhood models 

The neighborhood model contains a scaling factor as compared to a particular 

substation’s load, the probability that a selected vehicle would be a plug-in electric 

vehicle, the number of homes in the neighborhood, the distribution of vehicles per home, 

and the historic ambient weather data for the region. While running, the simulation 

system takes the load and its estimated associated emissions at the specified transmission 

level, and scales them to the neighborhood level.  

Given the expectation of a fairly dynamic system, including new generators coming 

online, modifications to scrubbing technologies at existing power plants, and changes since 

the build-out of the CREZ system, and in order to align with the author’s home PV system, 

a range of data were selected from December 2011 to October 2012.  

 

Agent-based Energy Modeling 

PURPOSE 

In order to create models of neighborhoods with differing numbers of homes, load, 

distributed generation, ICE vehicles, electric vehicles and microgrids, an agent-based 

modeling system was developed. Due to the expectations that a variety of factors could 

influence a neighborhood’s load and distributed generation, a small neighborhood was 

simulated, rather than a city or state-level agent modeling. The inputs to this model include 
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selection of a transmission-level load, assigned to serve the neighborhood (which could 

include a scaling factor for the neighborhood against the total of the transmission-level 

load), 15-minute telemetry from a PV inverter, SCED data for marginal unit determination, 

LMP costs at the transmission bus, AMPD hourly emissions data, and overall systems data 

scaled on a per-MWh level to the neighborhood. When possible, available real-world data 

are provided in mean and standard deviation, and individual values are determined 

randomly based on a Gaussian distribution with this mean and standard deviation. 

Neighborhood and home assumptions 

The Northwest Hills area of Austin, Texas is located near several major highways 

including MoPac, 183 and Loop 360. Its center is approximately 1.5 miles away from the 

Austin Energy Steck substation, which also contains three electrical buses (STECK, 

STECKY, and STECKZ), on which locational marginal prices are computed every five 

minutes. For purposes of economic analysis, the STECK LMP (and its corresponding 

single load) was chosen as a benchmark LMP, and presumed to provide a representative 

sample of a residential load. 

During the time range in question, the substation transformer saw loads between 

3.1 and 28.77 MW, averaging 8.39 ± 3.40 MW. Interestingly, as shown in Figure 16, the 

load tended to peak during the winter months, even more so than the summer months, a 

likely indicator of electric heating systems being the most active loads in the winter. This 

neighborhood was modeled to include 5,754 homes, based on the assumption that 1 MW 

of load on peak translates to approximately 200 homes, as is often quoted in news media 

in Texas.  
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Figure 16: Monthly analysis of a load in the STECK substation 

 

Transmission-Level generation assumptions 

Emissions from transmission level resources were generated from the EPA CEMS 

data, and prices from LMP data. The simulation engine can be configured to perform four 

different types of analyses to determine which generators serve the neighborhood’s load. 

These per-unit load numbers are used to determine emissions levels. For those that are 

based on a unit being marginal, the marginality is identified by a unit’s SCED base point 

being greater than its low dispatch limit (LDL) and less than its high dispatch limit (HDL).  

 Average weighting (All online units share equal proportionality of 

generation). 

 Marginal average weighting (All marginal units share equal proportionality 

of generation) 
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 Marginal distance weighting (Each marginal unit’s generation is determined 

by the weighted distance between the unit and the load, based on direct 

distance). This is defined by 𝑤 =
∑ 𝐷𝑖
𝑛
𝑖=0 −𝐷𝑥

∑ 𝐷𝑖
𝑛
𝑖=0 −(𝑛−1)

 

 Marginal shift-factors weighting. This approach utilizes shift factor data 

(often termed power transfer distribution factors, which show the linearized 

impact of power transfer between buses), if available, to determine the 

sources of changes in each unit’s generation based on a modulation of load 

at a sink bus. Unfortunately, holistic shift factor data were not available for 

this thesis, although the application is configured for future work to be able 

to perform this analysis. Of the four approaches, this one is seen as the most 

accurate. The generation change can be computed as R-1*L1, where R-1 is a 

matrix with values of 1 across the first row, and subsequent rows with the 

shift factor N*N matrix where N is the number of marginal generators, and 

L1 is a column vector with a 1 in its first entry, and 0 elsewhere.  

Vehicle assumptions 

These homes are assumed to have the 2010-average 1.7 vehicles per home, and thus 

roughly 9,781 vehicles in the neighborhood. This is likely an underestimation to Austin’s 

overall averages (Musti & Kockelman, 2011). If each of these vehicles were to travel the 

2014-average 13,476 miles per year, that would translate to 131,808,756 miles driven 

annually. If all these vehicles were ICE engines, the total emissions would include 53,614 

tons of CO2 (presuming 369 g CO2/mile), 15,781 pounds of NOx (presuming .054 g 

NOX/mile), 5,521 pounds of PM10 (presuming .019 g PM10/mile), and 2,905 pounds of 

PM2.5 + UFPM (presuming .01 g PM2.5 +UFPM/mile). With an average vehicle efficiency 
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of 27.6 MPG, and average fuel price of $3.40/gallon, this would translate to an annual 

neighborhood expenditure of $16,237,311. 

While it is the case that homeowners’ vehicles in this region will travel outside it, 

due to the region’s proximity to several highways and its shopping centers, it is likely that 

more vehicle miles and local air quality degradation occur than are reflected by the property 

owner-only model. However, one can also assume that drivers leaving the neighborhood 

for work may be partly offset by drivers coming into the area. 

Photovoltaic generation assumptions 

PV data was collected for a single home in the Northwest Hills Austin area between 

December 3, 2011, and April 16, 2015. This installation is comprised of seventeen 260-

watt PV panels at a 209° azimuth, 24° tilt (fixed). During the time range, this 4.42kW 

installation produced a total of 17,009 kWh, with a peak generation of 3.895 kW. The 

distributed PV model presumes a 95% probability that a home will have a PV array, sized 

at 5 ± 3 kW. For homes with PV panels, their generation profile was presumed to follow 

proportionately with the historic data collected from the single home. 

Driving Model 

Both electric and ICE vehicles were analyzed in the model, and several common 

behaviors are observed between the two. Drivers are presumed to leave for work according 

to a Gaussian distribution (7 AM ± 1.5 hours), and return home according to another 

Gaussian (6 PM ± 1.5 hours).  The two Gaussian random variables are assumed to be 

independent.  

ICE Vehicle Model 

In 2014, the average car fuel economy reached 27.6 mpg, and emitted an average 

of 369 g/mile CO2 (Environmental Protection Agency, 2014). Therefore, this average 



 57 

vehicle at the annual average miles travelled of 13,476, would use 488.3 gallons of fuel 

and produce 10,963 pounds of CO2. Using the AFLEET tool (Argonne National 

Laboratory, 2013), this vehicle would also be expected to emit 34.9 pounds of carbon 

monoxide, 1.6 pounds of nitrous oxides, 0.6 pounds of PM10 (including particles generated 

by disc breaking), 0.1 pounds of PM2.5, and 0.1 pounds of volatile organic compounds. It 

should be noted that, for both hybrid and electric vehicles, the probabilities of the particles 

due to breaking would be significantly less, as those vehicles leverage regenerative 

breaking technologies. 

The vehicles are presumed to have gasoline tank capacities of 14 gallons, and 

drivers are expected to fuel their vehicles when their tanks have less than 2 gallons 

remaining. Based on the modeling, this includes the assumption that their fueling will either 

occur after leaving home, or before returning. In order to track the associated emissions 

with refueling their vehicles, the model tracks gallons of fuel pumped for each hour (en 

route to work or home), and relates emissions based on ambient historic temperature in the 

neighborhood. During this analysis, the impact of smog contributions associated with ICE 

refueling during sunlight hours was not included, and thus may be included in future works. 

Electric Vehicle Model 

The electric vehicle model is based on the Chevrolet Volt, including a maximum 

usable capacity of 13.2 kWh, and a maximum charging rate of 3.3kW. Drivers are 

expected, on occasion, to remote start their vehicles (pre-cool or pre-heat the cabin), and 

are expected at some probability to being charging immediately when they return home, as 

opposed to doing a delayed-start charging, or allowing the neighborhood energy 

management system to control the vehicle. 
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Emissions rationale: Vehicle electrification 

At a high level, using national averages for coal and natural gas CO2 emissions, and 

assuming an electric vehicle efficiency of 35 kWh/100mi, it becomes clear that an electric 

vehicle may be lead to somewhat lower emissions of CO2 than from a tailpipe of an average 

vehicle, but that the transition to natural gas, overall mixed fleets or SOFCs yield far more 

significant reductions in emissions. 

Combining EIA data on pounds CO2 per kWh for coal and natural gas, and the 

proportions of coal (averaged across bituminous, sub-bituminous, and lignite) and natural 

gas (EIA, 2015), against 2014 average and capacity generation proportions for the ERCOT 

region (ERCOT, 2015), the emissions savings from the grid’s fuel mix sources become 

clear.  

 

Emissions source lb CO2 lb CO2 / kWh % Reductions 

Tailpipe 10,963  0% 

Lignite coal 10,235 2.17 7% 

Sub-bituminous coal 10,141 2.15 8% 

Bituminous coal coal 9,763 2.07 11% 

ERCOT grid by 2014 average generation 5,962 1.26 46% 

Natural gas 5,707 1.21 48% 

ERCOT grid by 2014 capacity 5,550 1.18 49% 

Renewables 0 0.00 100% 

Nuclear 0 0.00 100% 

Table 2: Estimated annual CO2 emissions from tailpipe and electric power generation 

(EIA, 2015) 

However, the emissions associated with vehicle charging do not simply reflect 

proportions of emissions from annual average fuel sources. Renewables, both at the 

distribution and transmission level, play significant roles in determining the average 

systems emissions per kW, and often system dynamics are even more complex. Adding or 
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removing an extra kW of load on the system could be thought of as changing one or more 

marginal generators.  On-peak, this would likely be peaking units that would need to 

change their output in order to maintain the system balance between generation and load. 

Or, one could think of that kW, if controlled, as coming on- or offline in response to a 

corresponding change of kW at an intermittent renewable. If that were the case, then the 

emissions associated with that change should be virtually zero, as the marginal system 

change is captured by our controlled vehicle. 

 

MODEL LIMITATIONS 

While models exist for wheels-to-wells analysis, such as Argonne’s GREET model, 

the purpose of this model is to provide a different view of the ERCOT region, to analyze 

permutations of complete and partial integration of vehicles and renewables with the bulk 

power system. There are externalities of both financial and environmental output costs not 

included in this model, such as the emissions associated with the manufacture of ICE and 

electric vehicles, the upfront cost of EV or ICE vehicle purchase, the emissions costs 

associated with gasoline fueling stations (at which smog-forming emissions are particularly 

affected by sunlight), airflow modeling of SO2, NOX and PM, and so forth. The purpose is 

to produce an initial feasibility assessment that is hoped will lead to more complex models 

and more detailed experiments. 

In addition, the transition to a community microgrid includes a great deal of 

additional costs, from property space, natural gas pipelining, fuel costs, emissions 

monitoring equipment, SCADA equipment, and so forth. Again, the purpose is to 

determine more of a ceiling on emissions associated with the combined electric power/light 

vehicle transportation sectors. 
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Furthermore, due to limitations in data availability, a hybrid approach of marginal 

emissions was taken, first by determining the marginal generating units by their SCED  

basepoints lying between their low and high dispatch limits (which is not entirely accurate, 

as a unit could be marginal and at either edge, but only able to move in one direction). 

Furthermore, as the constellation of shift factors was not readily available, critical 

constraint-associated factors were included, while others were inferred by the total 

transmission line distance between the load substation and its shortest path to particular 

units. 

When possible, state estimated data were used for analysis, as opposed to four-

second SCADA telemetry. While this decision reduced the temporal resolution of the input 

signals (e.g., unit MW output), state estimation was seen as producing more overall 

consistent signaling across all the devices and device types in the system. 

 

Algorithmic Analysis 

Analysis of a particular point in time is conducted using a series of linear steps with 

some controllable parameters, with primary inputs from ERCOT, CEMS, fuel cost, 

weather, and agent behaviors. After all the data are integrated for that hour period, and 

unit information are integrated between ERCOT state estimated (physical-unit based), 

LFC (logical-unit based), and CEMS (physical-unit based with different nomenclature), 

the selection process continues. The following steps are undertaken to construct the point 

in time. All stochastic parameters are determined using a mean and standard deviation 

input against a Gaussian curve to produce a random number. 
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1) Computing the state of each electric vehicle: whether traveling from home to 

work, work to home, or remaining at its current location, based on the departure 

times. 

a. If the EV undergoes transit (for simplicity’s sake, all transportation is 

presumed to take place within one hour), the driver may opt for a brief 

remote start session, to thermally condition the cabin and/or battery pack 

b. If the EV undergoes transit and then plugs in, and is either on an average-

rate charging model, or average-rate peak-avoiding charging model, the 

set charge rate per hour is determined at this point. In the average-rate 

charging model, the EV charge rate is set to the total needed charge over 

the anticipated charging period (battery capacity – current state of 

charge)/hours of charging. In the peak-avoiding charging model, the hours 

of charging include only hours that are not on-peak, and the vehicles will 

only charge during those hours (Kefayati, 2014). 

2) Computing the state of each ICE vehicle: whether traveling from home to work, 

work to home, or remaining on its location, based on the departure times. 

a. If the vehicle is traveling, its emissions are computed and aggregated. 

b. If the vehicle’s gasoline tank, upon arrival, has less than two gallons, the 

costs of a full refueling are added.  

3) Computing grid-level uncontrolled intermittent renewables. 

4) Computing the transmission-level prices at the sink electrical bus. 

5) Computing the uncontrolled distributed energy resources, by determining the PV 

generation on each roof. 

6) Computing the total system-wide fossil fuel-associated emissions from electric 

power generation. 
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7) Determining whether each electric vehicle is charging, depending on its mode: 

a. If the charging mode is average-rate or average-rate peak-avoiding, charge 

at the previously computed rate. 

b. If the charging rate is based on emissions, avoid charging when the grid’s 

overall CO2 footprint is greater than a certain rate. 

c. If the charging mode is based on prices, avoid charging when the sink 

electrical bus’ LMP exceeds a set value. 

d. If the charging mode is designed to avoid on-peak charging, charge at full 

when off-peak, and not at all on-peak. 

e. If the charging mode is designed to offset the distributed solar, charge all 

vehicles up to the level of the total neighborhood PV generation. 

f. If the charging mode is designed to offset the grid-level wind, charge all 

vehicles up to the level of grid wind generation. 

g. If the charging mode is designed to offset distributed and grid-level 

renewables, charge all vehicles up to the level of the combined renewable 

generation. 

h. If the charging mode is designed to offset all non-emitting generation 

sources, charge all vehicles up to the level of those resources (grid-level 

wind, grid-level solar, distributed energy resources, nuclear power 

generation, and hydroelectric power generation). Note that for the steamer 

components on combined cycle units are not included in this analysis. 

8) Computing the behavior of the solid oxide fuel cell (SOFC) generation: 

a. If the SOFC is set to always run, generate the maximum capacity of the 

unit. 
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b. If the SOFC is set to offset solar, generate the difference between the 

maximum capacity of the distributed PV panels and their current total 

generation. 

c. If the SOFC is set to offset vehicle charging, generate as much as possible 

to compensate for the electric vehicle charging behavior. 

d. If the SOFC is set to generate when the PRC falls below a certain level, 

and thus generation supports reliability, then the unit will follow 

accordingly. 

e. If the SOFC is set to generate when the LMP at the sink electrical bus 

rises above a certain level, the unit will follow accordingly. 

9) Computing the marginal units that serve the remainder of our load, by 

determining all units that have a basepoint in between, but not equal to, the unit’s 

HDL and LDL values. 

10) Determining the prices and emissions that are associated with the load not served 

by the distributed resources or SOFCs: 

a. Average grid rate determines the prices and emissions based on all the 

average per-MW prices and emissions across all online emissions-

generating plants, multiplied by the neighborhood load. 

b. Marginal average determines the prices and emissions based on the 

average per-MW prices and emissions across all emissions-generating 

marginal units, multiplied by the neighborhood load 

c. Marginal distance weighted determines the prices and emissions based on 

the weighted average of prices and emissions across all emissions-

generating marginal units and their straight-line distances to the sink 

electrical bus, multiplied by the neighborhood load. 



 64 

d. Shift factor-weighted determines prices and emissions based on a matrix 

computation between all marginal units and the sink bus, using the 

following components: 

i. C – The row vector of prices corresponding to the marginal 

generators (1 x N) 

ii. E – The row vector of emissions corresponding to the marginal 

generators (1 x N) 

iii. R – An inverse of a matrix whose first row is all 1s, and 

subsequent rows correspond to a sub-matrix with columns of 

changes in output, and rows of the binding constraints (N x N) 

iv. L1 – A column vector with its first entry as 1, 0s elsewhere (N x 1) 

v. The total cost of the generation change is defined as C * R * L1 

vi. The total emissions associated with the generation change are 

defined as E  * R * L1. 

11) Determining the remaining total plugged-in EV battery capacity and state of 

charge, as well as the total gasoline capacity and storage within the neighborhood.  

ASSUMPTIONS 

 A great many parameters for the Texas bulk power system were unavailable. While 

most fossil fuel facilities reported hourly gross MW emissions, and rates and total weights 

of CO2, SO2, and NOX, no such information was easily available for PM10, PM2.5, and 

UFPM. Therefore, the most specific proxy for emissions locatable was the EPA Emissions 

inventory, which includes particulates and NOx, and are downloadable by county. Thus, 

plant emissions are assumed to follow a similar ratio to NOx, and thus are inferred from 
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them. As the EPA emissions monitoring equipment classifies all equipment at 2.5μm or 

smaller as PM2.5, those numbers are split 50% between PM2.5 and UFPM. 

 Unfortunately, shift factor data were not easily locatable at the necessary level of 

granularity within the time scope of this research. As such, while the code base is able to 

handle a matrix of shift factors, none were easily available. Thus, average and location-

based rates were used for purposes of this research. 

Analysis Factors 

In order to provide sufficient means for analysis, 346 permutations of the 

neighborhood simulation were conducted.  These included the following parameters: 

 Sensitivity analysis of uncontrolled EV and PV adoption 

o Probability of a home having an EV, 5%, 50%, 75%, and 95% 

o Probability of a home having PV panels, of 5 ± 3 kW capacity, 5%, 

50%, 75%, and 95% 

 Integrated neighborhood management analysis. 

o Number of SOFCs: 5, 25, 50, 100, and 143. Each of these are based 

on the Bloom Energy SOFC, generating at 200 kW ± 50 kW. The 

upper value of 143 was determined as a proxy for the full generation 

capacity being able to support the neighborhood’s historic summer 

load, although this certainly would lead to extreme levels of over 

generation in many circumstances. 

 Vehicle charging styles: The following vehicle charging styles were 

computed: 

o When plugged in – all vehicles start charging immediately upon 

plug-in 
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o Defer to off-peak – the vehicles will not charge (although may 

remote start) during on-peak hours, which are defined as between 8-

10AM, and 5-8PM, inclusive.  

o Average rate charging – at the time of plug-in, with departure hour 

estimated, the vehicle will charge at a fixed rate of its remaining 

charge divided by the number of hours, whether those hours are on-

peak, off-peak, or mixed. 

o Average rate charging off-peak – at the time of plug in, with 

departure hour estimated, the vehicle will charge at a fixed rate only 

during off-peak hours, at fixed rate of its remaining charge divided 

by the number of off-peak hours. 

o Based on prices – When the spot market prices at the STECK load 

bus surpass a fixed value of $24/MWh, the vehicles will not charge. 

o Follow DERs – Vehicles will distribute their charging such that the 

hourly sum of their charging has a maxima of the aggregated 

neighborhood PV generation. 

o Follow grid renewables – Vehicles will distribute their charging 

such that the hourly sum of their charging has a maxima of the 

aggregated grid-level renewable generation, including wind and 

solar. 

o Follow grid and distributed renewables – Vehicles will distribute 

their charging such that the hourly sum of their charging has a 

maxima of the combination of the grid-level and neighborhood-level 

renewable generation. 
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o Follow all zero emitting sources – Vehicles will distribute their 

charging such that the hourly sum of their charging has a maxima of 

the combination of all zero emissions-generating output, including 

neighborhood PV and SOFC, grid-level wind, solar, nuclear, and 

hydroelectric power generation. 

 SOFC energization schedules: The following algorithms were used to 

determine whether an SOFC would generate during an hour. Some of the 

criteria handle offsetting other factors; as such, the total SOFC generation 

in those cases would equal the quantity to be offset. If no such parameters 

were specified, online SOFCs would each generate at their capacity. 

o Always off – Simulate the SOFCs being non-existent, never turning 

on 

o Always on – The SOFCs would run constantly 

o When price is above a certain level – The SOFCs would energize 

when the LMP at the STECK electrical bus surpasses a particular 

level 

o When PRC below a certain level – leverage the SOFCs to help 

provide additional capacity to the grid in situations where grid-level 

generators may have had forced outages, or other issues lead 

ERCOT to enter EEAs (energy emergency alerts). For this 

simulation, a PRC of 3,000 MW was used, so that the SOFCs could 

be thought of as an extra layer for grid security prior to the 2,500 

MW levels that would lead to EEA generation 

o Offset vehicle charging – The SOFCs would be used to offset 

charging from the vehicles, so that the hourly rate of EV charging 
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would be compensated for by the SOFCs. One could think of this 

approach as utilizing the SOFCs (and their natural gas fuel source) 

as being linked to the vehicle. 

o Offset solar – The SOFCs would be used to maintain a constant level 

of generation in the neighborhood, so should all PVs generate at 

their nameplate capacity, the SOFCs would be off, and otherwise, 

the SOFCs would make up the difference. 
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CHAPTER 4: RESULTS 

Analysis of the data included validation of the existing ERCOT and EPA data, 

validation of the algorithmic function of the application, development of a base case 

scenario, and comparisons between different simulation parameters to determine 

maximization of emissions and/or cost reductions. This chapter includes an overall analysis 

of the base case scenario and tests of differing levels of EV and PV adoption across the 

base case. It further looks for scenarios that optimize for a particular outcome, such as 

lowest total CO2, SOX, or UFPM. It further investigates a theoretical but likely difficult 

scenario, in which the neighborhood attempts to maximize its generation resources, both 

across distributed renewables and solid oxide fuel cells. 

SUMMARY OF DATA 

A total of 346 cases were generated and analyzed, to determine means of 

minimizing cost, environmental impact, and threats to reliability. All further cases analyzed 

herein are compared to a basecase that attempted to capture a neighborhood with light 

rooftop photovoltaics and light electric vehicle adoption (both at 5%).  

BASE CASE ANALYSIS: LIGHT SOLAR AND EV ADOPTION  

 In this basecase model, approximately 5% of homes had a PV array, and 5% an 

electric vehicle. From the transportation perspective, the neighborhood performed as 

expected. For the gas vehicles, drivers paid a total of $18.0M to refuel their vehicles, which 

translated to $0.126 per mile driven. The few electric vehicle drivers paid $294.4k to charge 

their EVs, which translated to $0.039 per mile driven. The neighborhood paid a combined 

$6.8 M for their electric power (which included EV charging). From this perspective, a 

home would tend to spend 2.5 times as much for fueling their vehicles as it would for home 

energy. 
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Base case analysis 

% miles EV driven 5% 

Largest home load (kW) 17,883 

Largest EV charging load (kW) 1,801 

Cost reductions 69% 

CO2 reductions 80% 

SO2 reductions 128x growth 

NOX reductions 41% 

PM10 reductions 73% 

PM2.5 reductions 62% 

UFPM reductions 62% 

Table 3: Analysis of cost and emissions changes in the base case scenario 

 During this time period, the grid generation totaled 30.7M pounds of CO2, while 

the ICE vehicles emitted a total of 116.9M pounds of CO2. This translated to 0.81 pounds 

of CO2 per mile driven ICE, and 0.16 pounds per mile driven EV, or an 80% reduction in 

per-mile emissions for EV driving, based on the emissions factors of the marginal units 

that would serve the increased vehicle charging load. The grid generation during this time 

period totaled 52k pounds of SO2, while the ICE vehicles emitted 317 pounds. On a per-

mile basis, however, ICE SO2 emissions were quite small (at 2.2 * 10-6 pounds), while per-

mile EV emissions were significantly higher (at 2.8 * 10-4 pounds), over a hundredfold 

increase in SO2 emissions. This pattern of increased SO2 emissions per-mile been noted in 

several studies; e.g., (Meehan, 2013). Per-mile emissions reductions were found for NOX 

(41%), PM10 (73%), PM2.5 (62%) and UFPM (62%). 

From the generation perspective, DER generation tended to be fairly light, totaling 

1.7GWh over the course of the time period. As there were no SOFCs online during this 

simulation, the remaining 65.3 GW load was served primarily by fossil fuel sources. The 
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patterns of behavior of winter load tended to follow an electric-heat pattern, with grid-level 

wind tending to offset night load. 

From the cost and emissions perspective, the electric vehicle drivers in this 

neighborhood enjoyed significant cost savings, and also produced 80% less CO2 per mile 

driven than their ICE counterparts (0.478 lb/mi EV, 0.814 lb/mi ICE). These drivers, 

presumed to have their vehicles initiate charging on arrival at home or work did not produce 

any significant effects on the system, and there were no instances of their vehicles being 

insufficiently charged for their travel. EV drivers also likely did not impact the distribution 

system significantly, as the combined instantaneous peak load by their charging was 

1.8MW, roughly an additional 10% over the peak home loads of 17.9MW, although this 

additional peak was not coincident with the peak home loads. Figures 16 and 17 highlight 

the load (orange) and total CO2 emissions (blue) over the course of a winter and summer 

month, respectively. The behavior of grid-level renewables and shifting proportions of base 

load and peaking units, and coal and gas units, tended to change the total CO2 emissions 

per MW over time. 
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Figure 17: Neighborhood load during a winter period 

 

Figure 18: Neighborhood load during a summer period 



 73 

Lowest emissions per mile 

If one were to focus on lowering CO2 emissions through the combination of electric 

vehicles and other technologies, one could take two approaches. First, looking at simply 

reducing or eliminating the per-mile emissions would be one approach. As expected, this 

required two activities: high adoption rates of distributed renewables, and vehicle charging 

strategies associated with renewable integration. When the vehicle controllers were set to 

charge to follow grid-level wind, or distribution level solar, they could be thought of as 

effectively having zero emissions, simulating a scenario in which the vehicles were 

dynamically following a renewable resource. Other strategies, however, produced nearly 

identical results with large PV adoption rates, and average rate charging behaviors. In these 

models, PV adoption rates were so high, that charging during peak hours still led to 

minimal need for grid-level generation, as conceptually, the distributed photovoltaics were 

offsetting the homes’ largest mid-day loads associated with heating and cooling. From an 

implementation standpoint, average-rate charging (either on- and off-peak or off-peak) is 

a far simpler algorithm to employ, and requires no dynamic controller in the control loop, 

whereas other strategies such as following distributed or grid level renewables, require a 

system to integrate information and provide control signals to the vehicles. In order to 

achieve further reliability-enhancing services, such as response to PRC, local frequency, 

or to offer ancillary services, a controller would likely be a required in the loop, especially 

in order to ensure that a large fleet of vehicles does not simultaneously change behavior or 

cause oscillations. 

LOWEST OVERALL NEIGHBORHOOD EMISSIONS 

Interestingly, the overall neighborhood emissions analysis tends to look quite 

similar to that of the lowest emissions per-mile, with a caveat. From the CO2 perspective, 

given the significant reductions observed with EVs, to achieve a significant reduction, a 
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neighborhood needed both 95% adoption of electric vehicles and photovoltaics, and 

SOFCs were of limited benefit. With that in place, the charging schemes tended to be less 

relevant to overall emissions reductions. Of course, in a real-world sense, significant PV 

generation during light load periods (e.g., the middle of a mild day) would lead to other 

reliability concerns, in which case charge management techniques may be more valuable.  

If the goal were to reduce SOX emissions, a different approach needed to be taken. 

As the only cases to evaluate EV adoption rates were the basecase, the lowest SOX emission 

case produced 32,123 pounds of SOX, and was one in which the neighborhood had a 5% 

EV adoption rate, and a 95% PV adoption rate. Effectively, this used photovoltaics to offset 

what would have been grid-sourced fossil generation.  

If reductions of NOX were the goal, the same approach of high EV and PV 

adoptions combined with average rate and average rate off-peak were highly effective in 

generating lower NOX levels. Like in SOX, from the vehicle perspective, these patterns 

produced significant (roughly 5.5x growth) in per-mile EV vehicle emissions, yet this is 

more than compensated for by the reductions in neighborhood grid loading, and thus 

overall, produces the lowest emissions. As SOFC generation came online with the three 

schemes, infrequent generation that occurs only when PRC drops below a certain level led 

to a 7% increase in emissions, while schemes that grew SOFC generation also increased 

SOX emissions. All of these levels, however, were significantly lower than the basecase, 

so all of these approaches led to reduced emissions compared to what likely actually 

occurred during the time period. 

The combination of EV and PV charging led to significant reductions in particulate 

matter, whether PM10, PM2.5, and UFPM. From a sensitivity analysis standpoint, adding 

solar had somewhat less effect in reducing the PM2.5 emissions than did EV adoption, 

although both worked together to reduce the overall footprint. 
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Emission CO2 SOX NOX PM10 PM2.5 UFPM 

Adoption PV EV PV EV PV EV PV EV PV EV PV EV 

Lowest value 44,362,469 32,123 17,779 2,992 2,992 1,046 

Lowest emitting 95% 95% 95% 5% 95% 95% 95% 95% 95% 95% 95% 95% 

  75% 95% 75% 5% 95% 75% 75% 95% 75% 95% 75% 95% 

  50% 95% 50% 5% 75% 95% 50% 95% 95% 75% 95% 75% 

  5% 95% 95% 50% 95% 50% 95% 75% 50% 95% 50% 95% 

  95% 75% 5% 5% 75% 75% 75% 75% 75% 75% 75% 75% 

  75% 75% 75% 50% 50% 95% 5% 95% 95% 50% 95% 50% 

  50% 75% 50% 50% 75% 50% 50% 75% 50% 75% 50% 75% 

  5% 75% 95% 75% 50% 75% 95% 50% 5% 95% 5% 95% 

  95% 50% 75% 75% 95% 5% 5% 75% 75% 50% 75% 50% 

  75% 50% 95% 95% 50% 50% 75% 50% 5% 75% 5% 75% 

  50% 50% 5% 50% 75% 5% 50% 50% 50% 50% 50% 50% 

  5% 50% 50% 75% 5% 95% 5% 50% 95% 5% 95% 5% 

  95% 5% 75% 95% 5% 75% 95% 5% 5% 50% 5% 50% 

  75% 5% 50% 95% 50% 5% 75% 5% 75% 5% 75% 5% 

  50% 5% 5% 75% 5% 50% 50% 5% 50% 5% 50% 5% 

Highest 
emitting 

5% 5% 5% 95% 5% 5% 5% 5% 5% 5% 5% 5% 

Highest value 140,720,983 92,053 30,536 7,955 7,955 2,339 

Effective 
reduction 

68% 65% 42% 62% 62% 55% 

Table 4: Basecase parameters for emissions reductions 

Lowest UFPM emissions 

Interestingly, based on the simulation parameters, UFPM emissions caused by the 

neighborhood tended to be far more stable, although there was a slight overall reduction in 

UFPM emissions by moving to vehicle electrification. Across all cases with a 95% EV 

adoption rate, between 13,139 and 13,146 pounds of UFPM were generated during the time 

range. By reducing the EV adoption rates to 75%, UFPM increased to 13,458 – 13,477 



 76 

pounds, at 50% adoption, UFPM increased to 13,872 – 13,892, and at 5% adoption, UFPM 

increased to 14,626 – 14,644.  

However, it should be noted that while the trend towards vehicle electrification 

does reduce UFPM in total, the increased distance between the UFPM emissions sources 

and neighborhood, combined with the inverse-square behavior of UFPM travel would 

mean that the local air quality and human health in this neighborhood would likely be 

significantly improved. It is the case, however, that this neighborhood would be just one 

of many served by a power plant. It should therefore also be considered what effect 

significant increases in UFPM emissions at power plant sites would have on nearby 

populations (based on their distances to the plants), and whether any other secondary 

effects would occur by consolidating UFPM to those sites. 

LIGHT SOLAR ACROSS VARYING LEVELS OF EV ADOPTION 

As expected, in a neighborhood with light PV adoption rates (5%), increasing EV 

adoption led to decreases in ICE miles driven (143.8M miles for the 5% EV adoption case, 

to 7.4M miles in the 95% case), and the EV miles driven complemented the difference. 

ICE fueling costs per mile were consistent at $0.126/mile, while the EV costs per mile 

varied greatly. As the adoption of electric vehicles went up, more energy needed to be 

purchased from the spot market, often served by marginal generators. This led to a cost per 

mile between $0.039 for the 5% adoption rates, up to $0.213 for the 95% adoption rates.  

Fossil fuel use for generation nearly doubled as well, from 65.4GWh for the low 

EV adoption rate group, to 114.5GWh for the high adoption rate group. Given these 

simulation parameters were looking at marginal generation, this had the effect of excluding 

grid-level renewables, so these numbers could be thought of as a worst-case scenario. As 

expected, adding in additional load served by the bulk power system, particularly marginal 
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peaking plans, produced increased emissions as well, and thus could be seen as a worst 

case scenario. While there were greater emissions (thus less reductions) as EV adoption 

rates increased, interestingly the primary change was in the cost per mile driven, which 

quickly became highly negative. Moving from 5% to 95% EV adoption in this scenario 

effectively reversed the effect size of the cost reductions (due to increased costs of greater 

on-peak charging), with ICE refueling at the same benefit that 95% adoption that EVs had 

at 5% adoption. 

This type of adoption also produced a great many other concerns, including 

significant growth in EV charging loads, more than doubling the maximum instantaneous 

household load. This type of scenario, were it to occur, would likely lead to a host of 

problems, from generators exceeding EPA limits, large congestion on the system (and thus 

growth in pricing that was not incorporated in this model), EEA risk, and damage if not 

outright failure of distribution transformers. Clearly, this is not a desirable outcome. While 

a sensitivity analysis was not conducted by incrementing EV adoption rates, it is clear that 

at some point between the 5% and 50% rates of EV adoption, the cost of charging large 

numbers of electric vehicles, without additional local generation sources becomes not 

economically beneficial. 
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Light PV adoption analysis 

PV Generation 5% 5% 5% 5% 

% miles EV driven 5% 50% 75% 95% 

Largest home load (kW) 18,117 25,364 32,054 39,153 

Largest EV charging load (kW) 1,801 18,193 27,269 34,367 

Cost reductions 69% -29% -55% -70% 

Per-mile CO2 reductions 80% 80% 80% 80% 

Per-mile SO2 reductions -128 -131 -131 -131 

Per-mile NOX reductions 41% 39% 39% 39% 

Per-mile PM10 reductions 73% 72% 72% 72% 

Per-mile PM2.5 reductions 62% 61% 61% 61% 

Per-mile UFPM reductions 62% 61% 61% 61% 

Table 5: Light solar adoption across EV adoption rates 

At the highest adoption rate, the vehicle-associated charging loads totaled 

51.9GWh, nearly the same as the homes’ non-vehicle total load of 62.8GWh, effectively 

doubling the size of the neighborhood’s load. If one were to imagine this scenario playing 

out with nearly every vehicle being electric and no distribution-side support from PV or 

SOFCs, it would likely mean significant risks for doubling of peaks, both in summer and 

winter. From the distribution perspective, SOFC generation might be useful to offset EV 

charging, but the distribution transformers at the home would still be a thermal overload 

risk with the combined EV charging and HVAC-associated loads during peak times.  

 

“ALL-OUT GENERATION” 

When analyzed, the scenarios with 143 SOFC generators (which, in theory, were 

designed to be able to fully handle the neighborhood load on peak), negative changes in 

emissions overall were noted during daylight hours, as the PV panels generated and SOFCs 
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ran all the time, thus generating beyond the neighborhood’s load and beginning to offset 

marginal generators. These cases were not considered as practical, as they violate the tenet 

of a distribution system largely acting as a sink, not a source for energy. Based on both the 

planning and management assumptions that are typically made in developing and 

maintaining the distribution system, and in modeling the transmission system, this change 

could produce new challenges. For example, the network model, market and settlement 

systems at the ISO level do not anticipate negative load, and questions about zonal load 

prices vs. nodal generation prices are ones not currently resolved. Furthermore, load 

resources are typically bid in based on a pause of load; in a world with negative load levels, 

there may be need for load resources to be dispatched to be energized. 

A 100-SOFC (20 MW) generation system was able to, combined with large 

photovoltaic and EV adoption, lower emissions across the neighborhood. In this scheme, 

CO2 emissions were reduced 68%, SOX emissions grew by 37% (although other EV 

charging schemes were seen to be able to compensate for this), NOX emissions were 

reduced by 42%, PM10 by 62%, and UFPM and PM2.5 by 55%.  

While this strategy could be seen as reducing emissions significantly, the cost 

factors were of import as well. It would be worthwhile to investigate of a single 20MW 

CNG unit as opposed to several SOFCs. It is possible this approach could scale to a single 

device, likely take up less space, and potentially leverage additional emissions control 

systems to further reduce its emissions. 
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CHAPTER 5: DISCUSSION 

Summary of key findings 

Overall, this work shows that the combination of distributed photovoltaic 

generation, microgrid SOFC generation and vehicle electrification can produce significant 

reductions in overall emissions, and help to move UFPM emissions far away from a 

population center.  

Across all emissions types, it appears that intelligent electric vehicle charging, 

combined with distributed renewable generation and microgrid generation, can produce 

significant reductions in emissions, and ongoing cost savings for both electric power and 

transportation. However, it also highlights the myriad of risks associated with stochastic 

driver behaviors, and the ways in which different control parameters for both SOFC 

generation and EV charging can lead to significantly different outcomes for costs, 

emissions, and the reliability of both the bulk power system. 

In many ways, this is the traditional problem seen as we move to a world of 

increased efficiencies and technology: as technologies scale and become more dynamic 

and responsive, the tolerance ranges tend to shrink. Either the technology, whether a 

catalytic converter, neighborhood energy management system, or mobile phone battery 

management system, is in an ideal state (as measured by far better than unmanaged-average 

efficiencies), or it is not (typically far worse performing than unmanaged-average).  

Therefore, the real-time communications between electric vehicles, homes, a 

neighborhood controller, and the bulk power system may be a requirement for this next 

level of efficiency and growth. This also certainly echoes Presidential Policy Directive 21, 

which highlights the energy and communications sectors as particularly critical for all 
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critical infrastructures, because of the enabling roles they play for all other critical sectors. 

This kind of dynamic system, if implemented, would rely heavily on the communications 

sector in order to maintain the health of the neighborhood’s energy operations. One could 

also imagine this system gaining additional economies of scale by providing CHP to a 

neighborhood, and in interfacing with the water and natural gas pipeline infrastructures, 

thus benefiting from additional strong links to those controllers. 

There are a great many reasons society may want to consider growth in distributed 

and grid-level renewable energies. Aside from a high upfront cost, renewable generation 

systems tend to have a fairly low cost for maintenance, with no ongoing fuel costs. 

However, their intermittencies pose a problem to both distribution and bulk electric 

reliability. Certainly, in areas like California and Hawaii, fears of DER overgeneration are 

seen as a risk, because they could so significantly offset the grid load, that fossil fuel plants 

would have to go offline, in order to avoid dropping below their low sustainable limits.  

From the ISO perspective, these intermittent generation sources pose additional 

challenges to those tasked with ensuring the reliability of the system. Sometimes, 

unanticipated ramps could occur in between state estimation and contingency analysis runs. 

This would mean that traditionally slow-moving data could change at a far more rapid pace, 

leading operators to have, either due to their memories or the differential rates of systems 

updating, incorrect assumptions about the state of the system. 

Historically, the mental model of grid operations was straightforward: one had a 

fleet of controllable generation that could reliably be dispatched. One also had a large, 

partially predictable (largely associated with time of day), partially stochastic (largely 

associated with weather), and anonymous collection of users whose loads needed to be 

served by those controllable generators. Furthermore, the operators had some reasonable 

tools to predict the aggregate behavior of those users, based on very few factors. The grid 
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operator’s job was also more simple, to maintain frequency, voltage, to avoid any real-time 

thermal or voltage violations, and to keep meeting the demand of the loads continuously. 

 In the past decade, this paradigm has shifted tremendously. Grid operations has 

continued to move towards a contingency (N-1) reliability model, rather than a basecase 

reliability model.  New factors need to be considered and risks averted, such as 

subsynchronous oscillations, cyber-attacks, geomagnetically induced currents, 

electromagnetic pulses, and recovery mode preparations such as black start. In real-time 

operations, grid operators have to contend with changes in controllable generation, such as 

shifting fuel sources, which leads to somewhat different mental models of plant function. 

In Texas, the increased adoption of natural gas as a fossil fuel source also implies increased 

interdependency between the energy and natural gas sectors.  

Furthermore, intermittent generation resources began to come online, first with a 

consistent set of behaviors, such as large West Texas wind farms behaving in one fashion, 

then later with Coastal Texas wind farms tending to behave somewhat differently. Now, as 

grid-tied solar is growing, operators will need to build additional mental models to 

understand, anticipate, and comprehend these new generators, in order to maintain a high 

level of situational awareness. 

One of the interesting facets of this research is due to the fact that while electric 

vehicles are not a new concept, in this consumer market, the 2011 Volt and Leaf are 

considered the first mainstream EVs to have entered the public consciousness. Therefore, 

these new devices are disrupting our pre-existing habits (such as traveling often to the gas 

station), and offering society the potential to build a series of new habits.  

If these habits included participating in an EV charging controller/aggregator 

system, then the grid operations story could be changed powerfully. In areas where “duck 

curve” concerns are significant, large numbers of EV charging sessions could be controlled 
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onto those time ranges, effectively offsetting the renewable generation. From an 

intentionality standpoint, this could also be seen (as this research does) of near-completely 

eliminating the emissions associated with vehicle charging and driving. If battery 

technologies continue to scale, this also means that residential energy storage devices have 

the capability of peak-shaving, or any other number of activities (including, potentially, 

simply storing energy for the EVs to use when they get home). 

Therefore, in aggregate, control of major load devices such as electric vehicle 

charging offers a significant benefit to reliability operations. If these devices loads were 

controlled in reaction to intermittent generation, then the grid operator’s function can be 

seen as moving somewhat back towards its prior, and more easily comprehensible 

modality:  predicting uncontrollable system load, and moving controllable generation 

assets to meet the demand in a reliable fashion. Of course, there would still be other issues 

such as congestion management associated with residential/workplace EV charging in 

Central Texas offsetting wind and solar spread throughout the state. The only way to avoid 

this issue would be to “double down” on rooftop solar, and utilize neighborhood microgrids 

to help neighborhoods provide more consistent load profiles, and also be able to 

dynamically adjust to co-optimize the grid and neighborhood’s electric reliability. If one 

also adds in constraints on distribution transformer and line thermal issues and cool-down 

periods, then rooftop solar, and potentially residential energy storage, would be needed to 

maintain the life of those devices. 

 

Future work 

This work suggests several different avenues that would benefit from further 

analysis. This tool has shown the power of controlled electric vehicle charging and 
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microgrid generation to save in energy costs, and to significantly reduce environmental 

impacts. However, further analyses are needed from the economic perspective, to 

determine the costs the additional infrastructure needed to support both the SOFCs and the 

aggregator/microgrid controller, as well as a detailed analysis of the gas pipeline 

infrastructure. Certainly, many costs of provisioning, permitting, and building a microgrid 

SOFC area are likely not inexpensive. Future analysis should also look at additional scaling 

benefits, such as using CHP, potentially providing neighborhoods with hot water and 

HVAC functionality. Just as is the case with transportation fuel sources, scaling these 

technologies (and presuming robust pipelines to transmit cold and hot water without 

significant losses) can produce significant economies of scale and efficiencies. 

Given the growing interconnectivity between electric power and natural gas (both 

in terms of growth of natural gas power plants, and natural gas compression stations using 

electric power), the future of the bulk power system will likely need a robust 

communications pipeline with the natural gas sector. Such issues are noted but outside the 

scope of this current project. The natural gas prices utilized during this analysis were based 

on the EIA spot market prices for natural gas; most likely these are not the most accurate 

pricing sources available. Furthermore, if the natural gas world is operating on a flat rate 

structure like electricity, it would be further of interest to analyze what time-of-use or 

congestion-based pricing might look like on the natural gas side. Already, as natural gas 

serves several critical roles, trade-offs need to be analyzed a priori. For example, in extreme 

cold weather, there is increased demand for CNG from homes with gas heating, but there 

is also increased demand for CNG from power plants that serve homes with electric 

heating. If one were to further add SOFCs with combined functionality, it may lead to the 

need for further analysis of the prioritization of different infrastructure points in N-1 

situations. 
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In order to better understand the sources of marginal emissions, incorporating shift 

factors will likely improve the accuracy of the study significantly. If one were to take the 

alternate approach of presuming a dynamic rather than marginal contribution, the analysis 

tool would need to be augmented to be able to process the entire ERCOT model, process 

four-second SCADA telemetry, and produce power flows and contingency analyses. Peak 

times are currently defined as 8-10AM and 5-8PM throughout the year, although in 

practicality, a summer peak in the afternoon, and a diurnal winter peak would better reflect 

historic load profiles in Texas. Also, one could imagine using either an absolute MW value, 

or PRC value as a proxy to peak generation, so that the computations are made based more 

on real-time system conditions.  

From the generation side, marginal unit detection can be further enhanced, so that 

no unit is ramped above its HDL, or below its LDL. One of the charging parameters further 

considered was avoiding charging when the grid or neighborhood’s overall CO2 or UFPM 

footprints exceeded certain values, although this was not implemented because it was the 

least realistic; real-time emissions monitoring is not currently transmitted. 

From the human side, several enhancements can be made to make the results a more 

reasonable measure. For example, drivers’ driving patterns could be can be different 

between non-holiday weekdays and other days. When an ICE vehicle is refueled with the 

sun shining, especially with extreme temperature, additional contributions to smog are 

generated through the escaped gases. While it is the case that many new vehicles have 

technologies to capture the additional vapors emitted during fueling (and thus the EPA has 

suggested removal those requirements although it’s estimated that 1/3 of vehicles on the 

road are not able to perform this function sufficiently (Sperry, 2012). 

In order to support the existing distribution system infrastructure, and considering 

the continued cost decreases of lithium ion batteries (primarily due to economies of scale), 
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future work should also simulate home energy storage devices, in a variety of configuration 

modes, such as supporting peak shaving, and storing PV generation to offset vehicle 

charging later in the day. While the software, as designed, can process shift factor matrices 

in order to determine the allocations of the neighborhood’s loads across the marginal 

generators, this analysis would be more accurate if such data were available and integrated 

into the analysis.   
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