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Abstract 

 

Tasking on Natural Statistics of Infrared Images 

 

Todd Richard Goodall, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Alan Bovik 

 

 Natural Scene Statistics (NSS) provide powerful perceptually relevant tools that 

have been successfully used for image quality analysis of visible light images. NSS 

capture statistical regularities that arise in the physical world and thus are relevant to 

Long Wave Infrared (LWIR) images. LWIR images are similar to visible light images 

and mainly differ by the wavelengths captured by the sensors. The distortions unique to 

LWIR are of particular interest to current researchers. We analyze a few common LWIR 

distortions and how they relate to NSS models. 

 Humans are the most important factor for assessing distortion and quality in IR 

images, which are often used in perception tasks. Therefore, predicting human 

performance when a task involving LWIR images needs to be performed can be critical 

to improving task efficacy. The National Institute for Standards and Technology (NIST) 

characterizes human Targeting Task Performance (TTP) by asking firefighters to identify 

the locations of fire hazards in LWIR images under distorted conditions. We find that 
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task performance can be predicted using NSS features. We also report the results of a 

human study. 

 We analyzed the NSS of LWIR images under pristine and distorted conditions 

using four databases of LWIR images. Each database was captured with a different 

camera allowing us to better evaluate the statistics of LWIR images independent of 

camera model. We find that models of NSS are also effective for measuring distortions in 

the presence of other independent distortions. 
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Chapter 1:  Introduction 

Long Wavelength Infrared (LWIR) images have many uses in industry, military, 

medicine, and science. Non-destructive testing uses thermal imagers for detecting defect 

locations in manufactured materials, thereby allowing for better quality control [1]. 

Unmanned Airborne Vehicles (UAV) and security cameras often couple a thermal imager 

with a visible light camera to enhance night vision for scouting and to improve automatic 

threat detection over large distances [2]. Firefighters carry handheld imagers while 

scouting for critical burn points in burning buildings and possible thermal hazards [3] [4] 

[5]. Thermographers use high-resolution thermal imagers for detecting inflammation, 

irregular blood-flow, and tumors [6].  

A broad theme of this thesis is the development and practical application of 

Natural Scene Statistics (NSS) models of LWIR images. NSS models describe statistical 

regularities that are observed on images taken of the natural world.1 Examples of NSS of 

visible light images include the 
 

 
 behavior of the amplitude spectrum [7] [8], the sparse 

coding characteristic of visual cortical filters in response to natural image stimuli [9], and 

the Gaussian distribution exhibited by visual signals following band-pass filter and 

adaptive gain control operations [10]. Early cortical processing in higher mammalian 

visual systems appears to have adapted to these natural statistics [7], and much research 

into biological visual functioning has been guided by the “efficient coding” hypothesis 

                                                 
1 In essence, captured photographically, of any real-world scenes, including both man-made and natural 

objects. 
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which assumes that visual neurons have adapted to efficiently encode natural visual 

stimuli [11] [12]. 

Given their widespread use and application, LWIR images have been well 

studied. Mooney characterized sources of spatial noise [13] and the effect of noise on 

minimum resolvable temperature differences (MTD) as a function of frequency [14]. 

Lopez-Alonso further characterized spatial noise in IR images by using Principle 

Components Analysis (PCA) to separate spatial and temporal noise from a sequence of 

frames [15]. This led Pezoa and Medina to model the Non-Uniformity (NU) noise 

common in LWIR images in the frequency domain [16] as distinct from independent 

spatial noise. Using the NU model in place, Pérez et al. measured and compared the 

efficacy of several Non-Uniformity correction (NUC) algorithms [17] and developed 

methods for extracting the structure of the underlying fixed-pattern noise (FPN) [18]. 

Although NSS have proven to be highly successful tools in applications on visible 

light images, the development and use of similar models has not been nearly as 

widespread on LWIR images. Morris et al. compared LWIR image statistics with natural 

visible light image statistics, and found that the spectral power of LWIR images is more 

“heavy-tailed” and that LWIR wavelet histograms are generally peakier, likely due to the 

smooth behavior of infrared images. Kaser [19] and Goodall [20] modeled the fit of the 

BRISQUE [21] and NIQE [22] image quality models to LWIR images, and showed that 

these visible light models fit reasonably well to LWIR image data. To measure NU, 

noise, blur, and changes in brightness, Amon et al. developed four Image Quality 

Indicators (IQIs) [4] [5] which include making measurements on the amplitude spectrum. 
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To measure NU in LWIR images, Hayat et al. introduced a Roughness Index computed 

from discrete spatial derivatives, while Martina et al. produced an improved version of 

this index called the Effective Roughness Index [23] which measures spatial derivatives 

computed on a high-pass image. To our knowledge, we have described the extent of 

previous work in modeling or utilizing NSS on LWIR images. 

LWIR images are certainly 'natural' in the sense that we use the term, and 

understanding and modeling the NSS of LWIR images has the potential to underlie new 

algorithms for both identifying distortions present in any given LWIR image and for 

enhancing images to reduce the degree of distortion. Important distortions that we study 

here include Non-Uniformity (NU) noise, ferro-electric “Halo Effects,” sensor noise, 

JPEG artifacts, blurring, and hotspots.  

CHARACTERISTICS OF LWIR IMAGERS AND IMAGES 

Thermal imagers have a spectral sensitivity in the 7 µm to 14 µm wavelength 

band, although long wavelength infrared refers to wavelengths in the electromagnetic 

spectrum from around 4 µm to approximately 15 µm. Thermal imagers are sensitive to 

the radiation emitted by objects in the scene and the background radiation reflected by 

those objects. The relationship between the irradiation collected at the sensor and the 

temperatures of imaged materials is nontrivial. For example, the emissivity of different 

materials varies, and the surface properties of that object alter its emissivity. Similarly, 

the reflective properties of an object will vary the amount of background radiation 
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reflected by the object and subsequently collected by the imager. All this variability can 

lead to errors in the measurement of an object's temperature.  

Care must be taken when selecting a thermal imager for a given application. Two 

classes of thermal imagers exist - cooled and uncooled. Cooled detector imagers require 

expensive and bulky helium cryocoolers that need regular maintenance. Internal 

thermally-induced noise reduces the sensitivity of the sensors and the coolers regulate the 

temperature close to the phase-transition temperature. Currently, cooled imagers are most 

cost-effective for long range (≥ 5 km) surveillance imaging given their detector 

sensitivity, and they can be used to capture image data at high frame-rates as a result of 

modifiable integration time [24].  

Uncooled thermal imagers are most popular and are the ones considered herein. 

Also known as Focal Plane Array (FPA) imagers, they use either an array of resistors 

(called a microbolometer) or an array of ferro-electric ceramic transistors. The 

microbolometer works by measuring large changes in resistance corresponding to small 

changes in temperature. Unlike cooled detectors, uncooled imagers cannot modify their 

sensor integration time thus they usually capture images at a lower frame rate. The ferro-

electric technology operates by measuring a temperature differential across a pyro-

electric material which is refreshed by a constantly spinning wheel, called the “chopper.” 

As a result of the “chopper,” the images obtained by these detectors exhibit additional 

artifacts such as the “Halo Effect” which is lowering their adoption in the market. 

Overall, the main advantage of uncooled imagers over their cooled counterparts is their 

lower power consumption, cheaper components, and size [25] [26]. 
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Figure 1:  Non-Uniformity 

 

 

Figure 2:  “Halo Effect” 
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Figure 3:  Hotspot 

Non-Uniformity (NU) noise as exemplified in the image in Fig. 1 is a distortion 

specific to LWIR images. NU is an additive FPN which appears as a grid-like or striping 

pattern. These patterns result from manufacturing defects, dark current, and segmented 

sensor capture areas [15] [16] [27]. 

The “Halo Effect,” depicted in Fig. 2, is another distortion which occurs mostly in 

thermal cameras equipped with ferro-electric sensors. This effect causes the region 

surrounding a bright object to grow darker and it causes the region around dark objects to 

grow lighter [25] [28]. This effect can be caused by both the physical operation of 

cameras containing ferro-electric sensors and back-reflection of IR illumination sources. 

The “chopper” which modulates the signal for ferro-electric detectors fails to entirely 

shield incoming infrared light which leads to overcompensation when subtracting the 

differential response from the average signal producing a halo. Reflective materials 
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situated next to highly emissive materials within the scene have also been shown to 

produce a similar effect [29]. 

LWIR images commonly contain hot-spot areas exhibiting only small variations 

in image intensity, arising from highly emissive objects which stand out from the 

background as in Fig. 3. In general, LWIR images contain many smooth surfaces as a 

result of temperature diffusion. Hot-spots are less a distortion than a symptom of the 

environment, but they still produce interesting statistical regularities worthy of study. 

Other unique degradations of LWIR images not covered include radiometric 

distortions, geometric distortions, noise from reflective materials, and the history effect. 

Radiometric distortion refers to non-linear mapping of thermal energy to pixel values in 

an image which may destroy relevant sensitivity information. Geometric distortions occur 

when the sensors in the FPA are mis-aligned, causing blur. As discussed previously, 

materials imaged with an infrared camera are often assumed to be only emissive, but they 

can also be reflective which can produce false inferences. Lastly, heat in the Long 

Wavelength band can fluctuate faster than frame rate, which can be difficult to detect 

given the physical limits of infrared sensors. Geometric distortions are specific to 

individual imagers, radiometric distortions appear during the capture process, reflective 

noise measurements require knowledge of the captured objects, and the history effect is a 

time-varying distortion. These distortions and accompanying side information are not 

currently available for study thus they are not included here. 

The same distortions that occur in visible light images can of course also occur in 

LWIR images. For example, blur may arise from camera destabilization, especially in 



 8 

handheld devices, non-optimal lens focus moving the depth of field away from the object 

of interest, or object motion. Sensor noise may be induced by light sensitivity based on 

the integration times of the sensors. Over and under-exposure can occur as a function of 

exposure time, or from quantization or local saturation. JPEG distortion such as blocking 

artifacts and blurring can also be present, since most thermal cameras utilize the JPEG 

compression format. 

LWIR IMAGE SOURCES 

Our study of the NSS of LWIR images has benefited from the availability of four 

separate IR image databases which we denote as NIST [30], KASER [19], MORRIS [31], 

and OSU [32]. Example images from each database are provided in Figs. 4, 5, 6, and 7. 

The NIST database includes 180 images from indoor office and home environments each 

containing multiple hot objects and some containing fire hazards. The KASER database 

includes 37 images from outdoor environments taken using unknown camera models and 

suffering various distortions including Non-Uniformity, blur, and noise. The MORRIS 

database contains both indoor and outdoor images of urban environments including cars, 

pedestrians, and buildings. Finally, the OSU database contains images captured by a 

surveillance camera monitoring pathway intersections on the Ohio State University 

campus. Gathering a diverse set of images from a diversity of cameras allows for better 

generalization of the NSS of LWIR images. 
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Figure 4:  MORRIS 

 

Figure 5:  JENNY 
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Figure 6:  NIST 

 

Figure 7:  OSU 
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Database Detector Material Lens Diameter (mm)  Bit Depth Resolution Sensitivity (mK) 

OSU Ferro-Electric 75 8 360x240 100 

MORRIS Microbolometer 50 8 384x288 60 

NIST Microbolometer 10 14 640x480 55 

KASER Unknown unknown 8 640x480 unknown 

Table 1: Cameras associated with the 4 LWIR Databases 

The general characteristics of the uncooled thermal cameras associated with each 

database are listed in Table 1. Images from the microbolometer sensor types appear 

smoother and cleaner than the images from the ferro-electric sensor type used in OSU. 

Images obtained from this camera required processing by an additional non-linearity 

(using a log transform) in order that the NSS followed the same regularities observed in 

the images obtained from the other cameras. This non-linearity may be a result of the 

values being captured at the ferro-electric sensors being proportional to a non-linear 

function of luminance, like power. 

All images were linearly mapped from their bit depth to the range 0 to 1 for 

comparability and ease of applying artificial distortions consistently. This does not 

change the image statistics beyond normalizing them to this range. 
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Chapter 2:  NSS of LWIR Images 

PROCESSING MODEL 

 

Figure 8:  MSCN histograms of center patches extracted from both NIST and 

MORRIS LWIR image databases. The left-most figure depicts the scale-

invariant behavior of the MSCN statistics of non-distorted images. The 

remaining three figures depict increasing levels of distortion from left to 

right at the first scale. The terms org, NU, AWN, blur, JPEG, hotspot, and 

halo refer to pristine images, images with NU distortion, images with AWN 

distortion, images with blur distortion, images compressed with JPEG, 

hotspot image patches, and halo image patches, respectively. 

In a pioneering deep study of the statistics of visible light images, Ruderman 

observed that applying a local bandpass filter combined with a non-linear operation to a 

natural image has a decorrelating and gaussianizing effect [10]. Highly successful Image 

Quality Assessment (IQA) models have used this property to measure distortions in 

images. Given an input luminance image,  , define its Mean-Subtracted Contrast 

Normalized (MSCN) coefficients 

 ̂      
              

        
 

over spatial indices with             ,             where M and N are the image 

height and width, respectively, and C is a constant which prevents instabilities when the 

denominator tends toward zero. The factors µ and σ are weighted estimates of the local 

luminance mean and standard deviation given by  
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where                            is a 2D circularly-symmetric weighting 

function sampled out to 3 standard deviations and normalized to unit volume. 

The MSCN histograms of natural LWIR images appear similar (Gaussian) to 

those of visible light images, as shown in Fig. 8. To compute these histograms, 

coefficients were pooled by selecting center patches from images taken from the NIST 

and MORRIS databases. 

The histograms of the pooled MSCN coefficients selected from center patches of 

LWIR images afflicted by three levels (severities) of common distortions (NU, AWN, 

blur, and JPEG) are compared in Fig. 8. Only one distortion level for hotspot and halo 

types is available. 

In the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) model 

[21], the MSCN histograms are supplemented by empirical paired product distributions 

which are computed by multiplying neighboring MSCN coefficients. Four directional 

coefficient products are computed at each coordinate 

        ̂      ̂        

         ̂      ̂        

         ̂      ̂          
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         ̂      ̂          

 

The center patches of images from the NIST and MORRIS databases were used to 

compute the paired product histograms of both distortion-free and distorted images over 

multiple distortion levels as tabulated in Fig.9. 
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Figure 9:  Paired product histograms of center patches extracted from both NIST and 

MORRIS LWIR image databases. The left-most column depicts the scale-

invariant behavior of paired products extracted from non-distorted images. 

The remaining 3 columns depict increasing levels of distortion from left to 

right at the first scale. The terms org, NU, AWN, blur, JPEG, hotspot, and 

halo refer to pristine images, images with NU distortion, images with AWN 

distortion, images with blur distortion, images compressed with JPEG, 

hotspot image patches, and halo image patches, respectively. 
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Figure 10: Full caption next page. 
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 Figure 10: Paired Log-Derivative histograms of center patches extracted from both 

NIST and MORRIS LWIR image databases. The left-most column depicts 

the scale-invariant behavior of the Log-Derivative coefficients extracted 

from non-distorted images. The remaining 3 columns depict increasing 

levels of distortion from left to right at the first scale. The terms org, NU, 

AWN, blur, JPEG, hotspot, and halo refer to pristine images, images with 

NU distortion, images with AWN distortion, images with blur distortion, 

images compressed with JPEG, hotspot image patches, and halo image 

patches, respectively.  
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In an interesting extension of BRISQUE called the Derivative Statistics-based 

QUality Evaluator (DESIQUE) model [33], the MSCN histograms are supplemented by 

seven log-derivative distributions that are computed by differencing the logarithms of the 

intensities of neighboring pixel values. The following function is defined 

             ̂         

where K is a stabilizing constant, and the log-derivative coefficients are computed as 

                         

                         

                           

                           

                                             

                                             

                                                     

The Log-Derivative distributions of both pristine and distorted images over multiple 

distortion levels are plotted in Fig. 10. 

Perceptual neurons in the early processing stages of the human visual system form 

responses that capture information over multiple orientations and scales. These responses 

have been successfully approximated by steerable filters, with the steerable pyramid 

decomposition being most popular [34] [35] [36]. 
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Figure 11: Full caption next page.  
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Figure 11: Steerable Pyramid histograms of center patches extracted from both NIST 

and MORRIS LWIR image databases and divisively normalized. Each of 

the six orientations is shown. The left-most column depicting changes in 

standard deviation of the coefficients across scales for non-distorted images. 

The remaining three columns indicate a qualitative change in histogram 

shape for changes in distortion level. The terms org, NU, AWN, blur, JPEG, 

hotspot, and halo refer to pristine images, images with NU distortion, 

images with AWN distortion, images with blur distortion, images 

compressed with JPEG, hotspot image patches, and halo image patches, 

respectively. 

  



 21 

The Distortion Identification-based Image Verity and INtegrity Evaluation 

(DIIVINE) [36] index predicts image quality using coefficients generated from the 

steerable pyramid overcomplete wavelet decomposition. Oriented image subbands are 

divisively normalized by dividing the local contrast estimated from neighboring subbands 

and scales. The divisively normalized steerable pyramid orientation subbands for center 

patches extracted from one scale and six orientations for both distortion-free and distorted 

images are plotted in Fig 11. Each band is denoted    
  where α denotes the level (scale) 

and                             . 

DISTORTION MODELS 

We next describe the generative noise models used to create distorted LWIR 

images. Pezoa and Medina developed a model of Non-Uniformity which can be used to 

artificially distort pristine images [16]. Based on a spectral analysis of NU, they proposed 

the model 

| ̃     |       (
       

 

   
 

)       (
       

 

   
 

) 

  ̃    [    ] 
where  ̃ is the Fourier Transform representation of the noise image,          , 

         , and where  [   ] denotes the uniform distribution on [   ]. The severity 

of NU can be controlled by scaling the dynamic range using a standard deviation 

parameter    . Levels 1-3 of distortion were generated by setting 

                          . The marginal histograms of images distorted by NU 

post-processed by MSCN, paired products, paired log-derivatives, and steerable pyramid 
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subbands are depicted in Figs. 8, 9, 10, and 11. These histograms match AWN behavior 

in MSCN histograms, appear to differ with respect to AWN asymmetrically in paired 

product histograms, appear distinctive in the log-derivative histograms, and have a 

distinctively large standard deviation in the horizontal and vertical subbands,   
  and   

  , 

of the steerable pyramid. 

The “Halo Effect” occurs naturally in the images in the OSU database. Davis's 

method [37], which is based on background subtraction and morphological techniques, 

was used to isolate moving objects (often people) in the images. Since not all objects 

extracted using this method exhibited the “Halo Effect,” patches with a clear visible 

“Halo Effect” were isolated by hand. A total of 188 example patches were thus selected 

from the OSU database for use here. The marginal histograms computed from MSCN 

coefficients exhibit a slight skew in Fig. 8, the paired product and paired log-derivative 

coefficients exhibit heavier tails in Figs. 9 and 10, and the steerable pyramid coefficients 

exhibit fatter histograms as depicted in Fig. 11. These histogram comparisons may not 

only reflect the “Halo Effect” in isolation since these artifacts are combined with the non-

linearity associated with ferro-electric sensors. 

Hotspots were isolated by hand from the NIST and MORRIS databases. A total of 

135 hotspot patches including people, environmental hazards, and other miscellaneous 

objects were extracted. When comparing to the natural LWIR image histrograms, the 

hotspot histogram shapes computed using MSCN coefficients demonstrate an asymmetry 

in Fig. 8, paired product and paired log-derivative coefficients exhibit peakiness in Figs. 

9 and 10, and steerable pyramid coefficients exhibit heavier tails in Fig. 11. 
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JPEG, Additive White Noise (AWN), and blur distortions were compared using 

the same set of images drawn from the NIST and MORRIS databases. JPEG images were 

generated at the 100, 90, and 80 percent quality settings corresponding to distortion levels 

1, 2, and 3 producing average respective bit rates of 3.6, 1.0, and 0.5 bpp. Distortion 

levels involving Gaussian white noise matched the levels of NU mentioned previously for 

comparability, using                             (recall the gray-scale range is 

[   ]). Blur was generated with a Gaussian blur kernel with scale parameter           . 

 JPEG distortions cause the MSCN, paired product, paired log-derivative, and 

steerable pyramid histograms to become narrower. These same histograms for AWN 

become wider. Blur distortion histograms become narrower as in JPEG, with the 

exception of the steerable pyramid histograms. 

FEATURE MODELS 

A parametric General Gaussian Distribution (GGD) [38] has been used to model 

the MSCN, Paired Log-Derivative, and steerable pyramid subband coefficients. The 

associated GGD probability density function is  

          
 

      ⁄  
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) 
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 An Asymmetric Gaussian Distribution (AGGD) [39] has been used to effectively 

model to the paired product coefficients. The pdf is 
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respectively. 

The parameters        of the GGD model fit can be estimated using the 

technique described in [38]. The parameters      
    

   of the AGGD model fits can be 

estimated using the moment matching technique described in [39]. Another parameter, η, 

given by 
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is also computed for each product image using the estimates of the other parameters.  

Therefore, the best-fit model of each set of paired product coefficients yields 4 features  

       
    

  . 

Since the hotspot images exhibit asymmetric histograms, negative and positive 

MSCN coefficients were measured separately. Negative and positive coefficients 

correspond to the left and right halves of the histograms. Therefore, four parameters 

      
       

   were extracted from the MSCN coefficients. The differences in value 

between the left and right halves,       and        are used to capture the 

asymmetry. An overview of the MSCN ( ), paired product (  ), paired log-derivative 

(  ), and steerable pyramid subband (  ) features is provided in Table 2. 

To visualize the clustering of the features over three scales, the features for each 

distortion class were projected into a two-dimensional space using Principle Component 

Analysis (PCA) as depicted in Fig. 12. The distorted images appear to cluster in this 

projection which reasonably preserves their class groupings. 
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Feature ID Feature Description Computation Procedure 

      Shape and Variance GGD fit to the MSCN coefficients 

      Shape and Variance difference GGD fit to right and left halves of 

MSCN coefficients 

        Shape, mean, left variance, right variance AGGD fit to H pairwise products 

        Shape, mean, left variance, right variance AGGD fit to V pairwise products 

         Shape, mean, left variance, right variance AGGD fit to D1 pairwise products 

          Shape, mean, left variance, right variance AGGD fit to D2 pairwise products 

        Shape and Variance GGD fit to PD1 pairwise log-derivative 

        Shape and Variance GGD fit to PD2 pairwise log-derivative 

        Shape and Variance GGD fit to PD3 pairwise log-derivative 

        Shape and Variance GGD fit to PD4 pairwise log-derivative 

         Shape and Variance GGD fit to PD5 pairwise log-derivative 

          Shape and Variance GGD fit to PD6 pairwise log-derivative 

          Shape and Variance GGD fit to PD7 pairwise log-derivative 

        Shape and Variance GGD fit to   
  subband 

        Shape and Variance GGD fit to   
   subband 

        Shape and Variance GGD fit to   
   subband 

        Shape and Variance GGD fit to   
   subband 

         Shape and Variance GGD fit to   
    subband 

          Shape and Variance GGD fit to   
    subband 

Table 2: Feature summary for MSCN ( ), pairwise products (  ), paired log-

derivatives (  ), and steerable pyramid subbands (  ) for the first scale 
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Figure 12:  A total of 46 features over 3 scales yields 138 features per image, projected 

here into 2 dimensional space using PCA. Even though the total explained 

variance ratio of top two components is 0.734, distorted images cluster away 

from the natural images. Note that hotspots were not included in the 

projection because they significantly produce a sparse distribution likely 

resulting from the limited size of the image patches. 

A boxplot comparing the features in Table 2 between pristine LWIR images and 

pristine visible light images is provided in Fig. 13. A total of 29 pristine visible light 

images were obtained from the LIVE Image Quality Assessment Database [40] [41] [42]. 

The MSCN shape parameter,   , is not significantly different between visible and LWIR 

images when using 95 percent confidence intervals. Comparing   , we can infer that 
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LWIR images provide more symmetrically shaped MSCN histograms with 95 percent 

confidence. 

 

Figure 13:  Box plot comparison of features between natural LWIR and natural visible 

light images. The notches indicate 95 percent confidence intervals about the 

median. 

 The mean parameter,  , for each of the paired product features differs between 

LWIR and visible light images. Additionally most of the standard deviation parameters, 

   and   , differ between the modalities. Most shape parameters for paired products do 

not appear to differ between LWIR and visible light images. By contrast, most of the 

shapes and standard deviation parameters for    and    are significantly different from 
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visible light images. Note that individual parameter differences are bound to exist by 

chance with a low number of pristine images, but there does seem to be a difference 

between the two groups overall. 

NIST DESCRIPTORS 

Previous work by NIST has produced four Image Quality Indicators (IQIs) [3] [4] [5] 

which are described as Brightness (B), Contrast (C), Spatial Resolution (SR), and Non-

Uniformity (  ̂) defined as 

 B  is the average of the luminosity intensities: 
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 C is defined as RMS contrast: 
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 SR (cycles/pixel) is computed by 
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where             is the modulation transfer function defined by the 

Butterworth filter 
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of order 2. The cutoff frequency is 
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     *
       

   
+

    

 

where NEM=0.02861 is the Noise Equivalent Modulation. 

 

   ̂ is given by   ̂          , the SNR of the image. 

 

 As currently defined, the SR statistic, which depends directly on the parameter 

  , is not implementable. This dependency on    assumes that any loss of spatial 

resolution can be modeled based on the response of a Butterworth filter. According to 

Morris et al. [31], the log of the radial spectral power of LWIR images can be well 

described as following a GGD probability law. Unfortunately, this fit does not generalize 

when distortions are present in an image, thus a 10th order polynomial approximation 

was used to yield a much better fit. Overall, the IQIs provide a total of 13 features that are 

extracted from each image. Unlike the other features, the IQI features are not model 

based, but rather are sample statistics.  
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Chapter 3:  Tasking on NSS 

In this section, we study the practical usefulness of the LWIR NSS and IQI 

features just described for solving five different visual LWIR tasks. First, we use the 

features to develop a measure of NU on LWIR images. Second, we devise a method to 

determine presence of the “Halo Effect.” The third task is automated prediction of the 

ability of human experts to detect targets of interest on LWIR images. Fourth, we 

describe a human study that obtained subjective quality scores on LWIR images, and 

show that the NSS features are highly predictive of subjective image quality. Lastly, we 

will show how the LWIR NSS can be used to create localized distortion maps that can aid 

the identification of local distortions such as hotspots and occurrences of the “Halo 

Effect.” 

MEASURING NU 

In NUC algorithms, producing a no-reference estimate of the NU in an image is 

essential [17]. State-of-the-art methods for estimating the magnitude of NU include the 

Roughness index, Effective Roughness Index, and SNR. LWIR images commonly 

contain both fixed pattern noise and additive white noise, and the level of both types of 

noise should be estimated.  

The most common method for estimating NU is the spatial SNR of the image 

defined as     where σ and µ are the standard deviation and mean pixel intensities 

within a user-defined area. Another common and popular method is the Roughness [43] 

index:  
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‖    ‖  ‖    ‖ 

‖ ‖ 
 

where    is the 1-D differencing filter with impulse response [    ],      
 , and ‖ ‖  

is the    norm. The Effective Roughness [23] index: 

               

where   is a high-pass filter, with the additional modification that the    norm is used in 

place of the    norm. 

Two weaknesses of current NU estimation approaches are their inability to 

capture spatial structure and assumption of grid-like patterns of FPN, which, in reality, 

can often be striping [17]. Additionally, these approaches generally assume that NU is the 

only distortion within the image.  Often, other noise is present that can seriously hinder 

effectiveness in estimating NU. 

A new approach that we have devised to measure the performance of a NUC 

algorithm utilizes the proposed NSS features listed in Table 2. We find that these features 

are capable of capturing the type of NU, the magnitude of that NU, and the amount of 

Gaussian white noise that is present. 

 To compare existing NU estimation techniques, we degraded the images in the 

MORRIS and NIST databases by taking two samples           [            ] 

where     and      are the standard deviations of the Non-Uniformity and additive 

white noise respectively. Three categories of degradations were produced, those with just 

NU distortions, those with AWN distortions, and those with combined NU and AWN 

distortions. The two types of noise are thus independently embedded into the signal. 
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NR Method 

SRCC LCC 

None              None              

           0.974 0.966 0.964 0.966 0.977 0.969 0.967 0.969 

        0.975 0.964 0.966 0.965 0.977 0.967 0.969 0.969 

     0.972 0.96 0.96 0.961 0.975 0.963 0.963 0.965 

     0.969 0.955 0.957 0.96 0.972 0.959 0.96 0.963 

  0.963 0.95 0.952 0.954 0.966 0.953 0.957 0.958 

   0.967 0.962 0.961 0.961 0.971 0.965 0.965 0.965 

   0.955 0.948 0.953 0.948 0.959 0.953 0.956 0.952 

   0.957 0.964 0.955 0.957 0.957 0.96 0.952 0.956 

Ro,    0.697 0.504 0.499 0.509 0.747 0.571 0.569 0.578 

Ro,    0.714 0.567 0.556 0.593 0.718 0.583 0.565 0.6 

ERo,    0.651 0.709 0.703 0.663 0.693 0.761 0.756 0.702 

ERo,    0.795 0.695 0.619 0.736 0.786 0.693 0.609 0.71 

IQIs 0.601 0.653 0.615 0.629 0.589 0.637 0.603 0.612 

Table 3: Predicting foreground AWN with background distortion. SRCC and LCC 

measured over 1000 iterations using 80/20 train/test splits. “None” indicates 

no background distortion,     indicates presence of horizontal striping NU 

background distortions,     indicates presence of vertical striping NU 

background distortions, and      indicates presence of grid-like NU 

background distortions.    and    refers to    and    norms respectively. 

The IQIs were used in place of SNR because SNR alone performed 

extremely poorly. 

Using these three sets of degraded images, we compared the performances of the 

state-of-the-art NU metrics. A Support Vector Regressor (SVR) was used to map the 

features to independently predict NU and AWN on each image. The images in each set 

were split into non-overlapping subsets: 80 percent for training, and 20 percent for 

testing. The Spearman Rank Correlation Coefficient (SRCC) was used as a measure of 

non-linear monotonicity between the actual and predicted values, and (Pearson's) linear 

correlation coefficient (LCC) was used as a measure of linear correlation between actual 

and predicted values. Random 80/20 splits were produced and scored 1000 times, and the 

median SRCCs and LCCs are reported in Tables 3 and 4. Table 3 shows the correlation 

between the actual and predicted white noise variance in images with and without 
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background NU distortion. Table 4 shows the correlation between actual and predicted 

NU magnitude in images with and without presence of background AWN distortion. 

 

NR Method 

SRCC LCC 

                          

None AWN None AWN None AWN None AWN None AWN None AWN 

            0.975 0.973 0.97 0.969 0.977 0.969 0.976 0.973 0.972 0.971 0.978 0.969 

        0.975 0.973 0.969 0.969 0.977 0.969 0.976 0.972 0.971 0.969 0.978 0.97 

     0.971 0.973 0.964 0.967 0.977 0.973 0.972 0.972 0.966 0.966 0.978 0.975 

     0.967 0.938 0.961 0.94 0.971 0.923 0.968 0.939 0.964 0.944 0.973 0.919 

  0.94 0.897 0.949 0.895 0.951 0.866 0.942 0.888 0.951 0.891 0.952 0.851 

   0.97 0.972 0.966 0.969 0.976 0.975 0.971 0.972 0.968 0.968 0.977 0.976 

   0.961 0.93 0.957 0.939 0.965 0.916 0.962 0.932 0.959 0.942 0.966 0.916 

   0.961 0.964 0.967 0.965 0.973 0.965 0.962 0.963 0.966 0.966 0.973 0.962 

Ro,    0.548 0.157 0.552 0.151 0.556 0.136 0.626 0.239 0.621 0.236 0.625 0.229 

Ro,    0.572 0.213 0.609 0.244 0.548 0.183 0.533 0.237 0.575 0.274 0.502 0.212 

ERo,    0.424 0.4 0.404 0.393 0.464 0.268 0.417 0.414 0.404 0.413 0.468 0.328 

ERo,    0.565 0.191 0.642 0.336 0.646 0.222 0.565 0.283 0.678 0.401 0.647 0.308 

IQIs 0.005 0.14 0.004 0.108 0.025 0.061 0.004 0.127 0.006 0.086 0.024 0.041 

Table 4: Predicting foreground NU with background distortion. SRCC and LCC 

measured over 1000 iterations using 80/20 train/test splits.     refers to 

horizontal striping NU foreground distortions,     refers to vertical striping 

NU foreground distortions, and      refers to grid-like NU foreground 

distortions. “None” refers to absence of background distortion, and “AWN” 

refers to presence of AWN background distortion.    and    refers to    and 

   norms respectively. The IQIs were used in place of SNR because SNR 

performed extremely poorly. 

As can be seen from Table 3, each of the NSS feature groups,  ,   ,   , and   , 

produce better predictors of AWN both with and without presence of NU as compared to 

Ro, ERo, and the IQIs. Combinations among these NSS feature groups do not increase 

predictor accuracy by much. In Table 4, each NSS feature group again produces better 

predictors of NU both with and without presence of AWN as compared to Ro, ERo, and 

the IQIs. The   group which does not measure directionality performs several percentage 

points lower than the other groups,   ,   , and   , which do. Comparing each of the 

previous methods, Ro, ERo, and the IQIs using Table 3, note a large difference between 



 35 

conditions with and without presence of background NU distortion. Similarly, Table 4 

indicates that these methods have low performance when detecting the amount of NU 

even without background distortion. ERo using the    norm performs better than the 

other previous methods, but it is still heavily influenced by the level of background noise 

present in the image signal. It is important to note that the IQIs have almost no 

correlation with the amount of NU distortion present for this test, and they were a 

mediocre predictor of the presence of white noise. 

 

Figure 14:  SRCC of features against two isolated distortions. When correlating features 

against NU, only the images degraded by NU were used. When correlating 

features against AWN, only the images degraded by AWN were used. 
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Fig 14 depicts the SRCC of each feature with the amount of NU and AWN in 

images without background distortion. Fig 15 depicts the SRCC as in Fig 14 but with 

background distortion. For AWN alone, the standard deviation feature,   , produced the 

highest correlation whereas the asymmetry features,    and   , did not correlate well with 

the listed distortions. With the presence of background distortion, the standard deviation, 

   was again the most predictive feature. For     and     with and without background 

distortion, the shape parameter    was the best predictor. 

 

Figure 15:  SRCC of features against two combined distortions. When correlating 

features against NU, the images degraded by both NU and AWN were used. 

When correlating features against AWN, this same image set was used. 
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 Since     and     are striping effects, they are highly oriented distortions. The 

   group features show significant correlation with directionality, with vertical striping 

effects being highly correlated with the   
  subband standard deviation, and horizontal 

striping effects being highly correlated with the   
   subband standard deviation. The 

paired product features indicate a similar oriented correlation, the horizontal paired 

product   ,     correlates highly with vertical striping, and the vertical paired product  

  ,    correlates highly with horizontal striping. This high degree of correlation between 

predicted and actual degree of distortion in single features is useful. 

DISCRIMINATING THE “HALO EFFECT” 

The authors of [28] developed a person-detector which used the statistical 

gradients of estimated halos to enhance the detection task. To our knowledge, no methods 

exist for detecting halo artifacts in LWIR images. 

To study how well the “Halo Effect” can be discriminated using our feature 

models, two sets of image patches (with and without halos) were constructed using 

background subtraction and manual classification to develop a supervised learner. Most 

of the image patches were of size 110x110. A total of 415 image patches were contained 

in both sets, with 227 image patches being halo-free, and 188 patches containing halos. 

AWN and NU distortions were applied to each patch in both sets to reduce the 

dependence on the correlation between ``Halo Effect'' and the level of other common 

noise distortions. Each of these 415 image patches thus contained two artificial 

distortions in addition to the halo effect distortions. The distortion magnitudes 
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           [            ] were randomly sampled and used as the variance of the 

white noise and Non-Uniformity distortions for each patch. The intervals for this uniform 

distribution were selected to scale the distortion from a just-noticeable to a significant 

difference. 

 

Figure 16:  ROC indicating the ability of NR algorithms to sort patches as either 

containing halos or as non-halo patches. Curves computed from 1000 

train/test iterations using 415 total patches from the OSU dataset without 

content overlap. 

Given these two distorted sets, those containing halos and those without, we 

devised a binary classification task. As in section A, we split the dataset into two non-

overlapping subsets: 80 percent for training and 20 percent for testing. A Support Vector 
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Classifier (SVC) was used to map the features between two classes. Random 80/20 splits 

were produced and classified with associated class probability estimates 1000 times. 

NR Feature Set Area Under ROC Curve 

            0.795 

        0.711 

     0.723 

     0.675 

  0.651 

   0.699 

   0.639 

   0.795 

IQIs 0.735 

Table 5: Areas under the ROC curves in Figure 16 

Receiver Operating Characteristic (ROC) curves for the binary classification task 

using the proposed feature groups and the IQIs are shown in Fig. 16. The areas under the 

ROC curves are provided in Table 5. The proposed NSS-based feature groups, except for 

   and combinations of   , achieved worse performance as compared to the IQIs for this 

discrimination task. Specifically, the    performed significantly above the IQIs providing 

the largest discrimination capability both alone and when combined with with  ,   , and 

   feature groups. 

 The steerable pyramid transform provides directionality of distortion which 

provides a great deal of information especially for the provided halo effect patches. Most 

objects in a scene are not circularly symmetric, thus their associated halo effect will not 

be symmetric. The steerable pyramid provides smooth directional features which are 

highly useful for the task. 
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TTP OF FIREFIGHTERS AND HAZARDS 

Researchers at NIST conducted a study involving firefighters whose task was 

two-fold [4]. First, given an LWIR image, the expert determined whether a hazard was 

present.  Second, if a hazard was present, the expert was asked to identify the location of 

the hazard. This study was broken up into two phases. The phase 1 study used 4500 

images. These images were created by degrading 180 pristine images. Five different 

levels of degradation corresponding to each IQI were generated and 25 sets of the four 

IQIs were used (for a total of 100 unique arrangements of the five values of each of the 

four IQIs). These 25 sets were deemed sufficient to represent the defined IQI space (  ). 

Phase 2 used 55 sets of the four IQIs (for a total of 9900 images). The larger number of 

sets served also to extend the range of IQIs to include more extreme values. Note that the 

IQIs in this study were used as distortion-generating settings, allowing for direct 

measurement of distortion with TTP. 

In this study, the experts were given a stimulus image, and tasked to either 

identify the location of the environmental hazard by clicking on it, or by indicating that 

there is no distortion. To better isolate detectability, we converted the dataset into patches 

centered about the hazards. Images with no hazards were discarded. Next, only the scores 

of observers that attempted to identify the location of the present environmental hazard 

were kept.  Hits and misses were measured depending on whether the cursor click was 

near the hazard. The probability of hit was computed over all observers. By modifying 

the dataset in this way, SRCC and LCC correlations between target quality and target 

detectability could be more directly measured. 
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NR Feature Set SRCC LCC 

            0.665 0.671 

        0.64 0.646 

     0.582 0.601 

     0.609 0.613 

  0.504 0.527 

   0.562 0.582 

   0.566 0.568 

   0.34 0.367 

IQIs 0.621 0.63 

Table 6: Median SRCC and LCC between actual and predicted TTP from 1000 

iterations 

 Using the probability of hit, the NSS quality features, and the IQIs, we used a 

SVR to estimate TTP. As a way of comparing the features, the median SRCC and LCC 

coefficients are reported in Table 6 from 1000 iterations. Combinations of features 

provide the best estimators of TTP, with the combination of all natural features providing 

the highest correlations for TTP. Note that the IQIs in Table 6 use the 13 features, while 

the degradations to the images provided in the study made modifications based on the 

original 4 parameters. 

BLIND IMAGE QUALITY ASSESSMENT OF LWIR IMAGES 

We conducted a lengthy and sizeable human study, the results of which we used 

to assess how well NSS-based blind image quality prediction models designed for LWIR 

images correlate with subjective quality scores. A collection of 28 indoor and outdoor 

images were selected from the NIST and KASER databases as “pristine” images. 

Artificial blur and noise distortions were applied to the pristine images. Three levels of 

blur, three levels of noise, and combinations of blur and noise produced a total of 252 

distorted images. 
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The subject test procedure was written using Matlab and the PsychToolbox [44] 

[45]. Each subject was first presented with a training session in which 10 images were 

shown before the main testing session, to give them an understanding of how to score 

images. Two testing sessions were performed with each session containing a unique set 

of 126 images. Subjects were presented with a single stimulus image for 10 seconds as 

depicted in Fig. 17. At the end of the 10 seconds, a continuous sliding quality bar with the 

labels “Bad,” “Poor,” “Fair,” “Good,” or “Excellent” was presented, as shown in Fig. 18. 

 

 

Figure 17:  Example Stimulus 
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Figure 18:  Sliding Quality Bar 

Each image was scored by 24 subjects with each score discretized to integers on 

[0, 100]. In order to account for differences in image content, we computed the 

Difference Mean Opinion Scores (DMOS). Let      be the opinion score given by subject 

 , on image   during session        . Then the difference score for subject  , image  , 

and session   is given by 

                                 

where          is the score given to the (hidden) pristine image corresponding to the 

distorted one. The difference scores from each session were then converted to Z-scores:  

     
         

   
 

where 

     
 

   
∑    

   

   

 

and 
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and where     is the number of test images seen by subject   in session  . 

The subject rejection procedure specified in the ITU-R BT 500.11 

recommendation is useful for discarding scores from unreliable subjects. Z-scores are 

considered normally distributed if their kurtosis falls between the values of 2 and 4. The 

recommendation is to reject if more than 5 percent of the Z-scores lie outside two 

standard deviations of the mean. Using this procedure, all except one subject was found 

to be acceptable.  The one outlier chose the same value of 50 for all images.  Thus only 

one subject was rejected [45] [46]. 

After the subject rejection procedure, the values of      fell into a range on 

[    ]. A linear rescaling was used to remap the scores onto [     ] using 

   
  

          

 
 

Finally the Difference Mean Opinion Score (DMOS) of each image was 

computed as the mean of the      rescaled Z-scores: 

      
 

 
∑   

 

 

   

 

A plot of the histogram of the DMOS scores is shown in Fig. 19, indicating a reasonably 

broad distribution of the DMOS scores. 
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Figure 19:  Histogram of DMOS scores 

Table 7 shows the Spearman's Rank Correlation Coefficient (SRCC) and 

(Pearson's) linear correlation coefficient (LCC) between the subjective scores and the 

model predictions for NR feature groups. The results were computed using 1000 

iterations of randomly sampled training and testing groups. As in the previous sections, 

80 percent of the data is used for training and the remainder for testing. Care was taken to 

not overlap training and testing on the same content in any iteration since such an overlap 

could inflate performance results by training on the content rather than distortion. An 

SVR was used to fit the NSS feature parameters to the DMOS scores. 

We observe that the steerable pyramid group features provide the highest 

correlation with the human subjective scores which is only a slight improvement over the 
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BRISQUE model,     . The combinations of feature groups performs worse compared 

to the individual groups indicating possible overfitting with the training set. For these 

blur and AWN distortions, the directional feature groups provide the highest correlation 

with DMOS scores with the IQIs and NU distortion models providing comparatively low 

correlation. The proposed models provide a great deal of predictive capability with 

human opinion scores, but there appears to be additional variation not accounted for in 

our proposed models. 

 

Figure 20:  SRCC of NSS features against DMOS scores. The performance against each 

distortion (noise and blur) was isolated for the purposes of comparison. 
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NR Feature Set SRCC LCC 

            0.815 0.82 

        0.794 0.809 

     0.809 0.817 

     0.727 0.742 

  0.714 0.736 

   0.794 0.809 

   0.696 0.732 

   0.825 0.828 

IQIs 0.726 0.705 

Ro,    0.135 0.189 

Ro,    0.162 0.221 

ERo,    0.57 0.576 

ERo,    0.616 0.667 

Table 7: Median SRCC and LCC between DMOS and predicted DMOS measured 

over 1000 iterations 

Fig 20 depicts the SRCC of each feature's value with the human opinion scores. 

The highest individual feature correlations occur in the paired Log-derivative feature 

group,   , but Table 7 indicates that individual feature correlations are not as powerful as 

groups of features for predicting quality scores. In fact, the    feature group provides the 

highest correlations with DMOS scores when used together in a regression, but 

individually, they appear to make poor predictors. 

LOCAL DISTORTION MAPS 

Local distortion maps can be useful for identifying local distorted regions, which 

can occur as particular local distortions such as hotspots or halos, or they may arise from 

some unknown (combination of) distortions. It is possible to automatically find local 

distorted regions of LWIR images using NSS-based features. 

 A distortion map can be generated using a sliding window to capture patches from 

the image being analyzed.  We used a 96x96 sliding square window scanned along the 

image in 12 pixel step increments (strides). Thus each captured patch overlapped with 
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87.5 percent of the last patch in sequence.  Each patch was classified using multiple 

probabilistic SVCs, one per distortion type, to determine the likelihood that the patch 

belonged to that distorted class or to the natural image class. The probabilities of 

distortion were gathered and mapped into an image which highlights distorted areas. 

Example distortion maps are shown in Figs. 21, 22, and 23. Some distortion maps, such 

as JPEG appear to provide false positives, but this is an artifact of relative probability 

within the map and full-scale contrast stretching. This technique could be useful for both 

identifying likely distortions, and localizing them in an LWIR image. 

 

 

Figure 21:  Localized distortion map based on Figure 2  
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Figure 22:  Localized distortion map based on Figure 1 

 

Figure 23:  Localized distortion map based on Figure 3  



 50 

Chapter 4:  Discussion 

LWIR images possess statistical regularities similar to those of visible light 

images. The NSS of LWIR images are powerful descriptors that can be used to find 

localized distortions, provide global distortion estimates, predict human task 

performance, and predict human subjective quality scores. Maps of distortions are 

potentially useful for designing correction algorithms or LWIR image compression 

methods. 

Other distortions not studied here include geometric distortions, infrared 

reflections, and radiometric distortions. It's possible that studying these distortions in the 

context of LWIR NSS could also prove fruitful. 

 The NSS of LWIR videos are also of great interest. The LWIR videos used in 

surveillance could be modeled and studied to provide better compression techniques, 

better detection algorithms, and better overall video quality. The common visible light 

video compression formats including H.264/MPEG4 could be studied in light of thermal 

sensitivity requirements. Thermal variance, which is separate from and poorly 

represented by models of motion would be worthy of analysis as well. 
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