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Transcriptional regulation is a complicated process controlled by numerous 

factors such as transcription factors (TFs), chromatin remodeling enzymes, nucleosomes, 

post-transcriptional machineries, and cis-acting DNA sequence. I explored the complex 

transcriptional regulation in eukaryotes through three distinct studies to comprehensively 

understand the functional genomics at various steps. 

Although a variety of high throughput approaches have been developed to 

understand this complex system on a genome wide scale with high resolution, a lack of 

accurate and comprehensive annotation transcription start sites (TSS) and 

polyadenylation sites (PAS) has hindered precise analyses even in Saccharomyces 

cerevisiae, one of the simplest eukaryotes. We developed Simultaneous Mapping Of 

RNA Ends by sequencing (SMORE-seq) and identified the strongest TSS and PAS of 

over 90% of yeast genes with single nucleotide resolution. Owing to the high accuracy of 

TSS identified by SMORE-seq, we detected possibly mis-annotated 150 genes that have 
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a TSS downstream of the annotated start codon. Furthermore, SMORE-seq showed that 

5’-capped non-coding RNAs were highly transcribed divergently from TATA-less 

promoters in wild-type cells under normal conditions. 

Mapping of DNA-protein interactions is essential to understanding the role of TFs 

in transcriptional regulation. ChIP-seq is the most widely used method for this purpose. 

However, careful attention has not been given to technical bias reflected in final target 

calling due to many experimental steps of ChIP-seq including fixation and shearing of 

chromatin, immunoprecipitation, sequencing library construction, and computational 

analysis. While analyzing large-scale ChIP-seq data, we observed that unrelated proteins 

appeared to bind to the gene bodies of highly transcribed genes across datasets. Control 

experiments including input, IgG ChIP in untagged cells, and the Golgi factor Mnn10 

ChIP also showed the strong binding at the same loci, indicating that the signals were 

obviously derived from bias that is devoid of biological meaning. In addition, the 

appearance of nucleosomal periodicity in ChIP-seq data for proteins localizing to gene 

bodies is another bias that can be mistaken for false interactions with nucleosomes. We 

alleviated these biases by correcting data with proper negative controls, but the biases 

could not be completely removed. Therefore, caution is warranted in interpreting the 

results from ChIP-seq. 

Nucleosome positioning is another critical mechanism of transcriptional 

regulation. Global mapping of nucleosome occupancy in S. cerevisiae strains deleted for 

chromatin remodeling complexes has elucidated the role of these complexes on a genome 

wide scale. In this study, loss of chromodomain helicase DNA binding protein 1 (Chd1) 
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resulted in severe disorganization of nucleosome positioning. Despite the difficulties of 

performing ChIP-seq for chromatin remodeling complexes due to their transient and 

dynamic localization on chromatin, we successfully mapped the genome-wide occupancy 

of Chd1 and quantitatively showed that Chd1 co-localizes with early transcription 

elongation factors, but not late transcription elongation factors. Interestingly, Chd1 

occupancy was independent of the methylation levels at H3K36, indicating the necessity 

of a new working model describing Chd1 localization.  
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Chapter 1 Introduction 

 

1.1 From DNA to Life 

1.1.1 Central Dogma of Molecular Biology 

Deoxyribonucleic acid (DNA) is a molecule that encodes inheritable information 

in every living organism. It is composed of a sugar (deoxyribose) and a base, which is 

one of adenine (A), thymine (T), guanine (G), and cytosine (C). Long polymers of DNA 

bases are called DNA sequences, and there are rules that determine the functionality of 

the genetic codes embedded in the DNA sequences. Transcription refers to a process by 

which genetic information is transferred from DNA to ribonucleic acid (RNA) molecules 

by RNA polymerases. Ribosomes bind to messenger RNA (mRNA) and interpret RNA 

sequence by synthesizing polymers of amino acids, called translation. Finally, mature 

proteins produced via translation act as structural building blocks, transporting vehicles, 

energy storages, immune response molecules, and enzymes. This process, called the 

central dogma of molecular biology, was suggested in 1970 by Francis Crick [1]. This 

dogma represents a main conduit of genetic information in cells, but modern biology has 

discovered additional mechanisms by which DNA can determine the characteristics of 

life. For example, reverse transcription, from RNA to DNA, is a widespread process in 

many viruses, in particular retroviruses [2]. Another recent example is the identification 

of functional non-protein coding RNAs such as microRNAs (miRNA), long non coding 

RNAs (lncRNA), enhancer RNAs (eRNA) [3-5]. These examples of novel genetic coding 
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open the possibility that a new dogma of molecular biology may yet be discovered. 

1.1.2 Control of Gene Expression 

Every step in the process from DNA to protein is tightly controlled, and the 

regulatory mechanisms at each layer allow biological systems to precisely maintain 

cellular homeostasis and efficiently respond to external conditions. Overall, the control 

system is comprised of six layers: 1) transcriptional control, 2) RNA processing control, 

3) RNA transport and localization control, 4) translation control, 5) mRNA degradation 

control, 6) protein activity control [6]. This dissertation represents research on the first 

step, transcriptional control, using multiple genome wide approaches, and further detail is 

introduced in the next sub-section. In brief, this earliest stage signifies cellular decisions 

regarding RNA synthesis and the quantity of RNA to be synthesized. The process of 

RNA synthesis involves many proteins including general and sequence-specific 

transcription factors (TFs), chromatin modifying enzymes, splicing machineries, and 

auxiliary machineries. These proteins collaborate to initiate, elongate, and terminate 

transcription in service to the needs of cells that differentiate and dynamically adapt to 

environmental variation. For instance, cell type and tissue specific transcription has been 

extensively connected to cell and tissue phenotypes [7, 8]. More importantly, 

transcription control is a master regulatory step in cell fate determination, reflected by the 

fact that expression of four TFs (Oct4, Sox2, c-Myc, and Klf4) can generate induced 

pluripotent stem (iPS) cells from fully differentiated somatic cells [9]. Moreover, 

dynamic control of transcription against changes in environmental conditions is another 
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necessary mechanism for cells or organism to survive. Cells have evolutionarily acquired 

stress responsive transcription factors such as HSF1 and TP53 to protect against heat 

shock and DNA damage, respectively [10, 11]. Mutations in key transcription factors 

lead to mis-regulation of transcription, and subsequently cause a number of diseases 

including many cancers, autoimmune disorders, and developmental abnormalities [12-15]. 

Therefore, research on gene expression control is vital for not only understanding basic 

mechanisms of transcription but also identifying potential therapeutic targets in the 

treatment of human diseases. 

 

1.2 Transcriptional Regulation 

1.2.1 DNA Binding Proteins 

Yeast and human RNA polymerase II (RNAPII) is made of 12 subunits, and is 

recruited by conserved general TFs (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH) that 

bind to promoters [16, 17]. TATA-Binding-Protein (TBP) in TFIID recognizes TATA 

box elements at promoters. Interestingly, TATA-containing genes in yeast tend to be 

highly regulated by stress conditions [18]. Genome-wide high-resolution ChIP-seq in 

combination with exonuclease treatment (ChIP-exo) in yeast revealed that previously 

known TATA-less promoters also contain TATA-like elements, which contain one or 

two mismatches to canonical TATA box consensus sequences [19]. Additionally, this 

study showed that pre-initiation complexes (PIC) at TATA-like elements containing 

genes are well-aligned with +1 nucleosomes, suggesting that well-positioned 
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nucleosomes proximal to nucleosome depleted regions (NDR) could be indicators of PIC 

presence. 

Sequence specific TFs are functionally more specialized TFs that bind to 

promoters and enhancers using DNA-binding domains, and trans-acting domains recruit 

co-activators or co-repressors. Through forming DNA loop, TFs can regulate gene 

expression despite binding to remote enhancers [20].  In other words, TFs, other than 

RNAPII-associated TFs, are unlikely to randomly bind to gene bodies, because protein-

coding regions only constitute about 1.5% of the human genome [8, 21]. Since open 

chromatin structure generally correlates with high DNA accessibility for TFs [20], it is 

possible that non-functional stochastic binding of TF could be observed at highly 

transcribed genes. This topic is discussed in chapter 2. 

1.2.2 Chromatin Structure 

The nucleosome is a basic unit of eukaryotic chromatin. It consists of about 147 

bp DNA wrapped around a histone octamer that is made of two copies each of H2A, 

H2B, H3, and H4 [22]. DNA that connects two nucleosomes is called “linker” DNA. 

Eukaryotic chromatin is highly compact, but maintains a more open structure at regions 

of transcriptional activity. When nucleosomes block TF access to DNA by localizing at 

TF binding sites, transcription is inhibited even in euchromatin [23]. In other words, 

nucleosome occupancy is highly dynamic in order to regulate transcription levels. For 

example, acute heat shock evicted nucleosomes at the promoter and gene bodies of heat-

activated genes [24]. This dynamic re-positioning of nucleosomes is executed by ATP-
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dependent chromatin remodelers [25]. The functionality of yeast chromatin remodelers is 

redundant, as the deletion of a single chromatin remodeler gene has little effect on 

nucleosome organization [26, 27]. Interestingly, loss of Chd1 led to severe nucleosome 

disruption in yeast [26, 28, 29]. However, loss of Chd1 paradoxically has negligible 

effect on the levels of transcription based on previous reports of the roles of nucleosome 

positioning in transcription regulation [26, 30-32]. Therefore, the relationship between 

transcription and nucleosome positioning deserves further study. 

1.2.3 Post-transcriptional Control 

The localization, stability, and translation efficiency of mRNAs are highly 

regulated, with not only a number of proteins but also a variety of non-coding RNAs 

involved in post-transcriptional regulation. In higher eukaryotic cells, the RNA 

interference pathway is one well-studied example [33]. Briefly, long double-strand RNAs 

are processed and cleaved in the nucleus by Drosha and Dicer, respectively, then 

subsequently exported to the cytoplasm. The RNA-induced silencing complex (RISC) 

incorporates a single strand of the exported RNA, which guides the RISC to sequence 

complementary to the short RNA sequence in the 3’ untranslated region (UTR) of 

mRNAs, resulting in either mRNA cleavage and degradation or translational inhibition 

[34]. The key subunit that has catalytic activity in RISC is Argonaute 2. Meanwhile, 

bacteria and Saccharomyces cerevisiae do not have Argonaute proteins, so they were 

thought to have relatively simple post-transcriptional controls by ncRNA. However, high 

resolution tiling arrays and deep sequencing technologies have identified several classes 
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of non-coding RNAs in yeast, including stable unannotated transcripts (SUTs), cryptic 

unstable transcripts (CUTs), and Xrn1-sensitive unstable transcripts (XUTs) [35, 36]. 

Most of XUTs are antisense to open reading frames, and antisense XUTs are associated 

with transcriptional gene silencing [36]. Therefore, post-transcriptional control via 

ncRNAs is also widespread in yeast, but a vast majority of newly identified ncRNAs 

have unknown functions. 

 

1.3 Genome-wide approaches 

1.3.1 Microarray 

The advent of microarray technology enabled biologists to study gene regulatory 

networks in a systematic manner. The microarray is a hybridization-based high 

throughput tool to detect nucleic acids. Labeled nucleic acids are hybridized to DNA 

probes attached to the surface of a slide, and subsequent automatic scanning allows the 

identification and quantification of nucleic acid abundance. Depending on how DNA 

probes are attached to an array slide, microarrays are classified into two types: spotted 

microarrays and in-situ synthesized oligonucleotides arrays. Correspondingly, there are 

two different types of probes: cDNA and oligonucleotide [37]. For highest density, 

resolution, and consistency, in-situ synthesized oligonucleotides arrays are more widely 

used, and oligo length resides between 25 to 75 nucleotides (nt). However, it is 

impractical to make whole genome microarray with high-resolution (< 10 bp) for higher 

eukaryotes due to the limitations of scanner resolution and slide size. At present, the 
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highest resolution of yeast whole genome microarrays is 4 bp [38]. 

1.3.2 Next generation sequencing 

Relative to “first generation” Sanger sequencing, new sequencing methods are called 

“Next-generation sequencing (NGS)”.  The terms “deep sequencing” or “massive parallel 

sequencing” are also referred to as NGS. In NGS, each heterogeneous short DNA 

template is clonally amplified, and then a sequence from each population of identical 

templates is optically detected with fluorescence-based methods. The chemistry of each 

step varies by NGS platform. For instance, emulsion PCR or bridge PCR can be used for 

clonal amplification, and the types of fluorescence incorporation methods include cyclic 

reversible termination, single-nucleotide addition, and dinucleotide ligation [39]. Because 

each heterogeneous DNA template is sequenced in parallel, NGS of large genomes and 

transcriptomes is enormously faster and cheaper than Sanger sequencing. Additionally, a 

key advantage over microarrays is single nucleotide resolution. Therefore, NGS has 

dominated genomics research over Sanger sequencing and microarray in the last 5 years. 

1.3.3 ChIP-seq 

Chromatin immunoprecipitation followed by deep sequencing is called “ChIP-seq”. 

The ChIP technique was developed approximately 30 years ago [40]. Since then, its 

usage has broadened as new DNA detection methods have been developed: ChIP-PCR, 

ChIP-qPCR, ChIP-chip, and ChIP-seq. Currently, ChIP-seq is the most comprehensive 

method to map protein binding sites on chromatin. There are three key steps in ChIP, 

each with its own possible limitations. The first step is the crosslinking of DNA and 
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protein by formaldehyde. It has been shown that proteins need to stay on chromatin at 

least 5 seconds to be effectively fixed by formaldehyde [41], so ChIP for dynamically 

moving chromatin remodelers is notoriously difficult [42]. Although formaldehyde 

fixation is generally used, it has been recently reported that fixation-free ChIP reduced 

false positive peak calling [43]. Second, chromatin is randomly sheared using an ultra-

sound sonicator, which is necessary for effective immunoprecipitation. However, open 

chromatin (e.g. highly transcribed loci and linker regions) tends to be more susceptible to 

shearing, meaning that shearing is not random [44, 45]. In order to computationally 

correct for background chromatin structure, input or mock ChIP sequencing is commonly 

performed as a negative control. Third, DNA-protein complexes are incubated with 

antibodies to pull down specific proteins and their bound DNA. This is the most 

experimentally difficult step because the availability of high-quality antibodies 

determines the specificity and efficiency of immunoprecipitation. If an antibody to a 

native protein is unavailable, tagging the protein of interest can be an alternative method 

[46]. In S. cerevisiae, about 80% of endogenous proteins have been tagged by tandem 

affinity purification (TAP) at their C-terminus, and the TAP-tag strain library is 

commercially available [47]. Because TAP has strong affinity to IgG, proteins of interest 

can be easily immunoprecipitated by IgG conjugated beads. 

1.3.4 MNase-seq 

Micrococcal nuclease (MNase) is a deoxyribonuclease that digests linker DNA. Due 

to the nature of MNase, DNA wrapping around nucleosomes is isolated through MNase 
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digestion followed by size-selection for ~147 bp in a gel [48]. This mononucleosomal 

DNA can be sequenced with NGS, an experimental protocol called MNase-seq, and the 

regions where sequencing reads map represent the genomic location of nucleosomes. 

Based upon several publicly available MNase-seq datasets, the number of nucleosomes in 

yeast was estimated to be approximately 50,000 [49]. This estimation was correlated with 

sequencing depth: the more sequencing reads, the higher number of nucleosomes 

estimated [49]. To quantitatively measure the extent of nucleosome re-positioning, the 

centers of individual nucleosomes were compared after nucleosome calling [50]. The idea 

of nucleosome calling is adapted from the concept of peak calling in ChIP-seq [51]. 

However, nucleosomal peaks are too numerous and too low relative to background, 

compared to peaks observed in ChIP-seq. Also, this approach to studying nucleosome 

dynamics is accurate only when the MNase-seq datasets have similar sequence depths,  

because sequence depth changes the number of identified nucleosomes [49]. Therefore, 

the comparison of nucleosome occupancy shape is more reasonable approach, and the 

method is described in chapter 4. 

1.3.5 RNA-seq 

RNA sequencing (RNA-seq) refers to the sequencing of whole RNA molecules with 

NGS. Although direct RNA sequencing with NGS has been developed using the Helicos 

platform [52], prior cDNA synthesis from the RNA sample is required for most NGS 

platforms. Currently, there are over 20 different RNA-seq library construction protocols, 

but two methods dominate for strand specific RNA-seq: RNA ligation and deoxy Uridine 
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Triphosphate (dUTP) methods. In the RNA ligation method, RNA is fragmented, and 

sequencing adaptors are directly ligated to the RNA. Then, cDNA is synthesized and 

sequenced. In the latter method, in contrast, cDNA is first synthesized in the presence of 

dUTP, and then adaptors are ligated to the DNA/RNA duplex. Subsequently, treatment 

with uracil specific excision reagent (USER/dUTPase) removes the U residues in the 

cDNA strand, so strand information can be preserved [53]. Many variations of  RNA-seq 

library construction protocols have been developed to obtain more specific information 

from the whole RNA population. For example, the cap analysis of gene expression 

followed by deep sequencing (deepCAGE) protocol maps the 5’ end of capped RNAs 

[54], and the 3’ region extraction and deep sequencing (3’READ) protocol maps the 

3’end of polyadenylated RNAs [55]. Beyond the simple quantification of RNA 

abundance, structural characterization of RNA is also achievable using RNA-seq 

methodologies [56], thus novel development of RNA-seq protocols is crucial to 

improving the efficiency of current protocols, and to the deep exploration of RNA 

biology on a genome wide scale.  
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Chapter 2 Simultaneous Mapping of RNA Ends by Sequencing 

1 

2.1 Abstract 

Understanding the relationships between regulatory factor binding, chromatin 

structure, cis-regulatory elements and RNA regulation mechanisms relies on accurate 

information about transcription start sites (TSS) and polyadenylation sites (PAS). 

Although several approaches have identified transcript ends in yeast, limitations of 

resolution and coverage have remained, and definitive identification of TSS and PAS 

with single-nucleotide resolution has not yet been achieved. We developed SMORE-seq 

(Simultaneous Mapping Of RNA Ends by sequencing) and used it to simultaneously 

identify the strongest TSS for 5207 (90%) genes and PAS for 5277 (91%) genes. The 

new transcript annotations identified by SMORE-seq showed improved distance 

relationships with TATA-like regulatory elements, nucleosome positions and active RNA 

polymerase. We found 150 genes whose TSS were downstream of the annotated start 

codon, and additional analysis of evolutionary conservation and ribosome footprinting 

suggests that these protein coding sequences are likely to be mis-annotated. SMORE-seq 

detected short non-coding RNAs transcribed divergently from more than a thousand 

promoters in wild-type cells under normal conditions. These divergent non-coding RNAs 

                                                
1 This work was published in Park D., Morris A.R., Battenhouse A. & Iyer V.R. Simultaneous 
mapping of transcript ends at single-nucleotide resolution and identification of widespread 
promoter-associated non-coding RNA governed by TATA elements (2014) Nucleic Acids Res. 
42(6): 3736-49. ARM, DP, and VRI conceived and designed the experiments. ARM and DP 
performed the experiments. DP, ARM, and AB analyzed the data. All authors wrote the 
manuscript. Permission to adapt the contents of the publication was acquired from the co-authors. 



 

 12 

were less evident at promoters containing canonical TATA boxes, suggesting a model 

where transcription initiation at promoters by RNAPII is bidirectional, with TATA 

elements serving to constrain the directionality of initiation. 

 

2.2 Introduction 

Transcription initiation depends on interactions between general transcription 

factors and RNA polymerase with promoter sequences and nucleosomes near the 

transcription start site (TSS) [18], while posttranscriptional regulation typically depends 

on sequences in 5’ and 3’ untranslated regions (UTRs) of mRNAs [57]. Understanding 

the overall relationships between these aspects of gene regulation requires knowledge of 

TSS and transcript ends, or polyadenylation sites (PAS), of mRNAs genome-wide at 

single-nucleotide resolution. Although genes often have multiple TSS and PAS, 

identifying the most prominent transcript ends is useful for revealing their relationships to 

cis elements like TATA boxes, polyadenylation control sequences, and other features like 

positioned nucleosomes. Definitive annotation of transcript ends is also critical for 

accurate mapping of reads generated by next-generation sequencing (NGS) to reference 

transcriptomes. High-resolution tiling microarrays and NGS methods are increasingly 

used for transcript analysis, but even for a well-studied model organism like 

Saccharomyces cerevisiae, currently available and commonly used transcript annotations 

remain inaccurate and potentially obscure relationships between the above-mentioned 

aspects of gene regulation. 
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Figure 2.1 Absolute difference between tiling microarray annotations  

Absolute difference between TSS coordinates reported in previous analyses by David et 
al. and Xu et al. shows 8 nt periodicity which corresponds to the maximum resolution of 
the tiling microarray platform used in these studies [35, 38]. 

S. cerevisiae has many qualities that make it an ideal model organism for studying 

gene expression and chromatin architecture, including a relatively small number of genes 

and a compact genome. The first high-throughput TSS identification in yeast was based 

on Sanger sequencing of 5' end tags from cDNAs, and mapped 2231 TSS with single-

nucleotide resolution [58]. A subsequent study used a “vector-capping” approach with 

Sanger sequencing to identify TSS, but coverage was limited to only about 60% of all 

genes [59]. More importantly, although the Sanger sequencing provided single-nucleotide 
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resolution, the number of sequence tags counting towards a given TSS was low. This 

inherently low sampling of ends with Sanger sequencing makes it difficult to assign one 

prominent TSS for a gene with high confidence, especially for genes with low transcript 

levels. 

Subsequent approaches used tiling oligonucleotide microarrays to study the yeast 

transcriptome at high resolution and defined TSS of mRNAs and non-coding RNAs 

(ncRNAs) [35, 38]. However, in these studies, which are the highest resolution 

microarray analyses of transcripts carried out to date in any organism, the resolution was 

limited to 8 nucleotides (nt), the distance between adjacent probes interrogating 

transcripts from each strand of genomic DNA. This 8 nt resolution is apparent for both 

TSS and PAS, in a comparison of independently published datasets using the same 

microarray platform (Figure 2.1). Although these TSS and PAS have been used in many 

recent landmark analyses of transcription factor and nucleosome localization datasets [19, 

42], the 8 nt resolution remains a limitation. RNA-seq can potentially identify TSS and 

PAS at single-nucleotide resolution [60]. However, RNA-seq signals are complex and do 

not necessarily show an easily identifiable boundary corresponding to transcript ends. In 

addition, this strategy will tend to identify the most distal 5’ or 3’ ends, which may not be 

the site most frequently used in vivo. 

In order to overcome these limitations, refinements of NGS-based methods have 

been developed to map TSS and PAS. One approach involves the use of tobacco acid 

pyrophosphatase (TAP) to remove the 5' cap and allow ligation of a sequencing adapter 
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specifically to the 5’ end of the RNA [61-63]. To map PAS, methods based on oligo(dT) 

priming or poly(A) capture have been used [55, 64-69]. Existing methods work well to 

map TSS or PAS but only identify one end of transcripts. The recently introduced TIF-

seq method can be utilized to simultaneously map TSS and PAS [70], but this study 

focused on the diversity of transcript isoforms in yeast and did not define canonical TSS 

and PAS. Thus, none of these methods has been employed to identify a definitive set of 

TSS and PAS in yeast, which has the most extensive complementary data on the location 

of the general transcription machinery [19, 71] and nucleosome positions [42]. 

Here, we describe SMORE-seq (Simultaneous Mapping Of RNA Ends with 

sequencing), a method for identifying both mRNA TSS and PAS from a common set of 

experimental data with single-nucleotide resolution. We demonstrate that SMORE-seq 

maps TSS and PAS more accurately and efficiently than existing methods. The improved 

annotations of transcript ends revealed a significant fraction of likely mis-annotated 

protein coding sequences in the genome, and showed sharper relationships between cis-

regulatory elements, chromatin features and transcript ends. SMORE-seq also revealed 

pervasive bidirectional transcription from most promoters, and our analysis suggests that 

the TATA element serves to constrain the direction of transcription initiation by RNA 

polymerase. 

 

2.3 Materials and Methods 

2.3.1 Yeast growth and RNA preparation 
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The S. cerevisiae strain used in this study was BY4741, and cells were grown in 

yeast extract-peptone-dextrose (YPD, Difco) at 30°C to an A600 OD of 0.8. We 

harvested the cells by centrifugation at 3000 rcf for 5 min, and the cell pellets were 

frozen in liquid nitrogen after discarding supernatant. Total RNA was extracted with a 

standard hot phenol method [72]. 

2.3.2 Construction of SMORE-seq libraries 

Poly(A)+ RNA was purified from yeast total RNA using the MicroPoly(A) Purist 

kit from Life Technologies. 500 ng poly(A) RNA was mixed with 5 units (1 μl) Tobacco 

Acid Pyrophosphatase (TAP) (Epicentre) and 2.5 µl 10x TAP buffer in a 25 μl total 

volume. A parallel reaction without TAP enzyme was also performed. TAP reactions 

were carried out at 37 °C for one hour, followed by heat inactivation at 65 °C for 5 

minutes. RNA was purified with the RNEasy MinElute kit (Qiagen) and eluted in 26 μl 

of water. 23.5 μl of this RNA was combined with 1 μl of a 1/2 dilution of 5’ SR Adaptor, 

3 μl 10x Ligation Reaction Buffer, and 2.5 ul 5’ Ligase Enzyme Mix (for descriptions of 

these components see NEBNext Small RNA Library Prep Set for Illumina). This reaction 

was incubated one hour at 25 °C, followed by purification with Agencourt AmPure XP 

beads (Beckman Coulter) following manufacturer’s instructions at a 1.5x concentration 

and elution in 18 μl water. This RNA was then fragmented for 4 minutes at 94 °C using 

NEB fragmentation reagent, followed by cleanup with AmPure XP (1.8x) and elution in 

10 μl of water. This RNA was then ligated to a 3’ sequencing adapter as described in the 

manufacturer’s protocol (NEBNext Small RNA Library Prep Set for Illumina), followed 
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by reverse transcription and 10 cycles of PCR according to manufacturer’s instructions. 

PCR products of ~250 bp were selected by E-gel (Invitrogen) and subjected to another 8 

cycles of PCR. The resulting libraries were verified on an Agilent Bioanalyzer and 

sequenced on an Illumina HiSeq 2000 with single-end or paired-end 100 base reads. 

2.3.3 Analysis of sequencing reads 

Alignment of sequencing reads was performed with bwa (version 0.6.2) using 

default options for paired end or single end libraries, as appropriate [73]. The reference 

genome was sacCer3 (April 2011) from UCSC, derived from the Saccharomyces 

Genome Database. The 100 bp read sequences were trimmed to 50 bp before alignment. 

Aligned R1 (5’ reads) were extracted from the resulting BAM files using samtools 

(version 0.1.18) [74] and merged for the three TAP+ and TAP- replicates, respectively. 

Reads that mapped to snRNA and rRNA were removed. Plus (Watson) and minus (Crick) 

strand aligned reads were then extracted and processed separately for TSS calling. 

2.3.4 TSS calling algorithm 

According to previous studies that mapped TSS in yeast, the estimated median 5’-

UTR length is 50-60 bp, and approximately 90% of 5’-UTRs are shorter than 300 bp [38, 

58, 60, 75]. For each verified and uncharacterized gene, we searched for TSS within a 

window ranging from 300 bp upstream of the annotated ORF to the midpoint of the ORF 

downstream from its annotated start codon. In order to correct TAP+ by TAP-, Gaussian 

kernel density estimation was utilized for peak calling, and a bandwidth of 5 and a read 

threshold of 2 were applied. When TAP+ peaks were present within ±50bp of TAP- 
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peaks, the peaks were corrected. Then, the base position with the highest read stack 

within the highest corrected peak was called as the TSS. Manual curation was mainly 

aimed at calling TSS for the genes with a 5’-UTR longer than 300 bp. In addition to 

recovering TSS with long 5’-UTRs, potential TSS that showed the following examples 

were dropped during manual curation: evenly distributed peaks with a low number of 

reads, TSS adjacent to tRNA, snRNA, or rRNA, TSS overlapping with a neighboring 

gene, and TSS in close proximity to a neighboring gene. 

2.3.5 TATA element data processing 

The ChIP-exo technique previously identified the TATA box as well as TATA-

like elements at “TATA-less” promoters [19]. In this study, a canonical TATA represents 

a TATA-box with no mismatches, and TATA-elements include canonical TATA with 

0,1, or 2 mismatches. TATA element data for sacCer3 were downloaded from the SGD 

Genome Browser (http://browse.yeastgenome.org/fgb2/gbrowse/scgenome/). 

2.3.6 High resolution tiling array data processing 

Although these data are available in SGD, the data were downloaded from the 

journals where the papers were originally published because the authors assigned gene 

names but SGD provided only segment information [35, 38]. The data were lifted over 

into sacCer3 from the genome version the authors originally used. 

2.3.7 RNAPII Ser 5-P and nucleosome localization 

150 ml of WT cells were grown in YPD, and harvested at 0.8 A600 OD for each 

sample. Cells were cross-linked with formaldehyde to a final concentration of 1% for 15 
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min, then quenched with glycine to a final concentration of 125 mM. For ChIP, cells 

were resuspended in 2 ml of lysis buffer, and were lysed by glass bead beating for 9 min. 

Chromatin was sheared with a probe-sonicator to 150 bp – 200 bp fragments. After pre-

clearing with protein A-agarose beads (Roche), the fragmented chromatin was incubated 

with 8 μg of RNAPII Ser 5-P specific antibody (Abcam, cat.# ab5131) overnight, then 

further incubated with 100 μl protein A beads. Serial washing was performed, and finally 

DNA was reverse-crosslinked at 65 °C overnight, then collected by ethanol precipitation. 

For mononucleosome isolation, we followed the protocol described in [24]. Briefly, cells 

were resuspended 20 ml of zymolyase buffer, and spheroplasts were made with 250 μg of 

zymolyase. The spheroplasts were spun down and resuspended in 2 ml NP buffer. Then, 

micrococcal nuclease (MNase) was added at a concentration from 40 U-100 U for 10 min 

at 37 °C. Digested chromatin was reverse-crosslinked with Proteinase K in 1% SDS and 

10 mM EDTA solution at 65 °C overnight. After RNase A treatment, DNA was purified 

by phenol chloroform extraction followed by ethanol precipitation. Finally, DNA 

fragments of ~147 bp were size-selected with an E-gel system (Invitrogen). Sequencing 

libraries for both ChIP and mono-nucleosomes were prepared using NEB Library Prep 

Kit and Bioo multiplex adapter for Illumina, then sequenced by paired-end sequencing. In 

order to profile occupancy, coordinates of mapped reads were shifted toward the center of 

the insert DNA by a distance equal to half of the insert size, then reads were counted in 

bins of 5 bp. 

2.3.8 Conservation and ribosome footprinting analysis 
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WIG files of conservation scores were downloaded from the UCSC Genome 

browser (http://hgdownload.cse.ucsc.edu/goldenPath/sacCer3/phastCons7way/). Using a 

customized python script, we extracted base-by-base conservation scores near annotated 

start codons of all genes and internal TSS genes. 

Raw sequencing data of ribosome footprinting in rich media were downloaded 

from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) (accession number 

GSE13750) [76]. Only the first 21 nucleotides were mapped onto sacCer3 with bwa using 

default options, and for any given gene, only reads that mapped to the sense strand were 

considered. 

2.3.9 Polyadenylation site analysis 

The sequenced read fastq files from both TAP+ and TAP- (three replicates each) 

were first processed to remove 3’ adapter sequences with cutadapt (version 1.2.1). Each 

resulting sequence set was filtered, retaining only the R1 sequences with at least 35 bases 

followed by a stretch of at least 8 A bases within 5 bp of the adapter-trimmed 3’ end. For 

each resulting poly(A) selected sequence set, a corresponding trimmed version was 

created such that only bases 5’ of the poly(A) stretch were retained. The poly(A) selected 

full length and poly(A) selected trimmed fastq files were then single-end aligned to 

sacCer3 with bwa as described above (Table 2.1). 

Polyadenylation site data in sacCer3 were downloaded from the SGD Genome 

Browser [66]. Since Ozsolak et al. provided the genomic coordinates of the read clusters 

and the scores of the clusters as the read counts that support the highest peak, we 
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processed the data to call one poly(A) site per gene. In order to process the data in the 

same way as the SMORE-seq, we assigned the clusters into ranges from annotated stop 

codons to 300 bp downstream. Among the clusters per gene, the position that had the 

highest read count was defined as the poly(A) site for the gene. 

2.3.10 Accession number  

The SMORE-seq data from this study have been deposited in NCBI GEO under 

accession number GSE49026. The MNase-seq data for nucleosome mapping is also 

available from GEO under accession number GSE52355. 

 

Sample Selected 
reads 

Mapped reads 
Before trimming 

Mapped reads 
After trimming 

Trim-only 
reads 

PAS 
reads 

TAP+ 402,728 33,444 
(8.30%) 

355,881 
(88.37%) 

322,457 304,035 

TAP- 1,066,647 69,440 
(6.51%) 

975,941 
(91.50%) 

906,526 859,568 

Table 2.1 Counts of poly(A) selected reads and PAS reads 

From raw sequencing reads, poly(A)-containing reads were selected. The reads were 
mapped before and after poly(A) trimming. The reads that were mapped after trimming 
but unmapped before trimming were called “Trim-only reads”. The reads that included 
non-M in the CIGAR string in the bam file were excluded in PAS reads. 

 

2.4 Results 

2.4.1 5’ cap sites with single-nucleotide resolution in SMORE-seq 
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Figure 2.2 Overview of the SMORE-seq method.  

TAP enzyme is used to convert mRNA 5’ caps into phosphates, followed by 5’ adapter 
ligation, fragmentation, 3’ adapter ligation, RT-PCR, size selection, and additional PCR.  

We constructed SMORE-seq libraries according to the flowchart shown in Figure 

2.2. Two technical replicate libraries and one biological replicate library were prepared, 

with a control library that was not treated with the TAP enzyme prepared in parallel for 

each sample. In total, we produced 12,652,059 and 11,161,171 single-end, 100 base reads 

for the TAP+ and TAP- samples respectively, after filtering reads mapping to snRNA and 

rRNA regions. 7,622,443 (60.2%) reads in the TAP+ libraries were mapped within 300 
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bp region upstream of ORF start codons, whereas only 890,128 (8.0%) reads were 

mapped to those regions in the TAP- libraries. Most reads mapped to or near genes in 

both TAP+ and TAP-, and the strongest read signals were observed just upstream of 

annotated start codons in TAP+, whereas relatively few reads in TAP- mapped to these 

locations (Figure 2.3). This difference in the read pattern in the TAP+ and TAP- libraries 

suggests that our TAP+ library was selective for the TSS. 

Figure 2.3 Heat map representation of SMORE-seq read data.  

Genes are sorted by ORF length. The arrow represents the positions of start codons in 
SGD annotation, and genes are aligned by the start codon. Color scale is read count per 
10 bp. 
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Figure 2.4 Comparison of SMORE-seq to standard RNA-seq and ChIP-seq  

The data are visualized in the UCSC Genome Browser mirror. TAP+ has similar 
background signal as TAP-, including appreciable signal at the 3’ end, indicating that 
correction by TAP- is necessary for TSS identification. The peak shape of transcription 
factor (TF) binding sites in ChIP-seq is different from that of TSS peaks in TAP+, thus 
adjustments to peak-calling algorithms used in ChIP-seq were required for analysis of 
SMORE-seq data. 

To identify candidate TSS, we employed a modified version of our peak-finding 

algorithm based on Gaussian kernel density estimation, followed by correction of the 

TAP+ data by the TAP- control. Although TAP+ reads were highly enriched in 5’-UTRs, 

there was appreciable background signal within ORFs and 3’-UTRs, necessitating its 

correction by TAP- in order to reduce false positives. We adapted the parameters of our 

peak finding algorithm to exploit the characteristics of the SMORE-seq data, which was 

distinct from standard RNA-seq and ChIP-seq data in terms of its strand-specificity, 

localization relative to ORFs, and sharpness (Figure 2.4). This procedure resulted in the 

identification of 138,352 candidate TSS that were defined by 2 or more reads. To identify 

the most prominent TSS for a gene, we assigned the corrected peaks at 5' ends to genes, 

then determined the position of the most abundant read stack within the most significant 

peak for each gene. By doing so, we obtained the most frequently used TSS for a gene 

rather than the most upstream TSS identified in previous studies [35, 38]. We applied this 
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procedure independently to the three replicates, and ascertained that the identification of 

TSS with single base resolution was highly reproducible across replicates (Figure 2.5A). 

 

 

Figure 2.5 Highly reproducible SMORE-seq 

(A) Absolute difference between TSS coordinates among SMORE-seq replicates shows 
high reproducibility of TSS calls at single nucleotide resolution. (B) Correlation of read 
counts at TSS between SMORE-seq replicates. Identical TSS have higher read counts 
and correlation, indicating that non-identical TSS are caused by low read counts of low 
abundance mRNAs. 
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Figure 2.6 Flowchart of TSS calling  

Out of 5774 verified and uncharacterized genes, TSS was computationally defined for 
5289 genes. All 5774 genes were visually inspected for possible manual adjustments if 
necessary. We were not able to call TSS for 382 genes due to low coverage or correction 
by TAP-. TSS for 103 genes were manually assigned mainly due to long 5’-UTRs > 300 
nt. 185 genes were dropped because they had few reads (<10) that were evenly 
distributed across the promoter and ORF or because proximal/overlapping neighboring 
genes led to ambiguity in TSS calling and assignment. The TSS coordinate of 186 genes 
was corrected during manual curation, with incorrect TSS calls mostly due to either long 
5’-UTRs or proximity to other genes. 
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Figure 2.7 Histogram of 5’-UTR and 3’-UTR lengths estimated from S-TSS and PAS 

The median and mean 5'-UTR lengths are 52 and 84 nt, respectively (n= 5203). The 
number of genes with 5'-UTR longer than 500 nt is 41. The median and mean 3'-UTR 
lengths are 120 and 137 nt, respectively (n= 5277). 

Figure 2.8 Relative utilization of multiple (alternative) TSS and PAS  

The relative utilization of 2nd, 3rd or 4th strongest TSS (or PAS) compared to the 
primary (1st) TSS (or PAS) is plotted in the standard box plot in terms of read counts. 
The Y axis shows the proportion of read counts in the alternative TSS (or PAS) compared 
to the primary TSS (or PAS). 
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The major cause of non-identical TSS calls between replicates was low read 

coverage in genes with low expression (Figure 2.5B); therefore to increase coverage, we 

combined all replicates, then identified TSS again as described above using the combined 

datasets. These computationally-defined TSS were further manually curated by visual 

inspection of the raw read data in our UCSC genome browser mirror. For a small fraction 

of cases (289/5207, or 5.6%), our computational procedure had missed the TSS that was 

evident by visual inspection of the data; these were therefore manually corrected (Figure 

2.6). This rate of manual correction is significantly lower than in previous studies [35], 

and could potentially be reduced further by incorporating steps in our algorithms tailored 

to address the main reasons for erroneous assignment that we observed during curation. 

Based on our TSS annotations, we determined that the median and mean 5'-UTR lengths 

in yeast are 52 and 84 nt, respectively (n= 5203, Figure 2.7A). Thus, SMORE-seq 

provides a systematic framework to reproducibly identify TSS with single-nucleotide 

resolution in a largely automated manner. These and all subsequent analyses in this study 

are based on the primary TSS that we identified for each gene. However, we also used 

our data to determine the extent of utilization of additional TSS for a given gene. As 

expected, secondary TSS tend to be used less than the primary TSS, but their distribution 

of relative utilization varied over a broad range, indicating that for some genes, the 

secondary TSS are used at rates comparable to the primary one (Figure 2.8). 

2.4.2 SMORE-seq TSS and other transcriptional features 

Currently, the most complete and widely utilized yeast TSS annotations are based 
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on the study of Xu et al [35, 49, 77, 78], because the data are strand specific, manually 

curated, replicated several times, generated under various perturbation conditions, and 

cover almost all genes. We therefore assessed the accuracy of the TSS from SMORE-seq 

(S-TSS) by comparison to the TSS from Xu et al (X-TSS). The S-TSS and X-TSS were 

generally in agreement, with 80% of the S-TSS located within 40 bp of the X-TSS 

(Figures 2.9).  

Figure 2.9 Comparison of SMORE-seq TSS with the commonly referenced TSS 

SMORE-seq TSS (S-TSS) is compared with the commonly referenced TSS coordinates 
reported by Xu et al (X-TSS) [35] by histogram (A), cumulative distribution (B) and box 
plot (C), demonstrating that S-TSS and X-TSS are in high agreement. Overall, 5’-UTRs 
of S-TSS are shorter (S-TSS are more downstream). 

Globally, 5’-UTRs from S-TSS were shorter than X-TSS by a median of 11 

nucleotides. Our algorithm was designed to pick the nucleotide position with the 
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strongest read signal as the TSS whereas Xu et al picked the upstream coordinate of the 8 

nt tile containing the most upstream signal for a given gene as its TSS. Because of this 

systematic difference, the finding that our S-TSS were closer to the start codon with a 

median difference of 11 nt is likely due to the improved accuracy of our TSS calls. 

However, to independently verify the accuracy of S-TSS, we evaluated both sets of TSS 

calls with regard to TATA element positions, consensus sequences at TSS, nucleosome 

positions near the TSS, and localization of active RNAPII phosphorylated at Serine 5.  

Interaction between TATA-boxes or TATA-like elements in promoters and 

general transcription factors serves to recruit RNAPII and initiate transcription some 

distance away [79]. Distances between the TSS and canonical TATA boxes are believed 

to be distributed in a narrow range of 45-125 bp for most yeast genes [58, 80]. Compared 

to X-TSS, S-TSS showed a narrower distance distribution from canonical TATA boxes 

(n=716) (Figure 2.10A and 2.10B). A similar pattern was also observed for the distance 

between TATA-like elements and the TSS in TATA-less genes (n=4065) (Figure 2.10C 

and 2.10D). Together, these results suggest that initiation of transcription within a narrow 

distance window from TATA elements generates the sharper distribution of distances 

between TATA elements and S-TSS, supporting the higher accuracy of SMORE-seq. A 

consensus sequence of PyA has previously been identified at TSS in yeast [58, 80]. This 

sequence was readily identifiable in TSS identified by SMORE-seq, but could not be 

identified using X-TSS coordinates or a typical RNA-seq data set (Figure 2.11A). 
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Figure 2.10 Distance between TATA elements and either S-TSS or X-TSS 

(A-B) Distance between canonical TATA box motifs (n=716) [19] and either S-TSS or 
X-TSS demonstrates a narrower distance distribution from TATA boxes to S-TSS. (C-D) 
Distance between TATA-like elements in TATA-less genes (n=4065) [19] and S-TSS or 
X-TSS. S-TSS shows a narrower distribution with a larger average distance. 
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Figure 2.11 High resolution and accuracy of S-TSS 

(A) Consensus sequence around TSS identified by SMORE-seq, Xu et al., and RNA-seq 
data [35, 60], visualized by WebLogo [81]. The consensus motif identified in S-TSS 
matches what has been previously described [58]. (B) Nucleosome occupancy profiles 
relative to the TSS in each of 4 groups of 1000 yeast genes, arranged by the distance 
between S-TSS and X-TSS in descending order. Nucleosome positions relative to X-TSS 
(blue line) differ between the groups whereas their positions relative to S-TSS (red line) 
are constant. Nucleosomes also show the expected periodicity in group 1 (top) relative to 
S-TSS but not X-TSS. (C) Localization of RNAPII Ser 5-P in the same groups as in 'B'. 

A core promoter in yeast is situated within a nucleosome-depleted region (NDR) 

and is followed by a well-aligned array of nucleosomes starting from the TSS [82]. This 

property of nucleosome organization allowed us to test the accuracy of TSS calls by 

examining their relationship to nucleosome profiles. We generated nucleosome 
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occupancy maps using MNase-seq and plotted their profiles for each of four groups of 

1000 genes formed in descending order of absolute difference between S-TSS and X-TSS 

coordinates (Figure 2.11B). Interestingly, the centers of the nucleosomes relative to the 

TSS did not change between these gene groups when using S-TSS coordinates. In 

contrast, when using X-TSS coordinates, nucleosomes appeared to be shifted downstream 

with decreasing rank of the gene groups. Because the rank of the groups had no prior 

relationship to nucleosome positions, the S-TSS coordinates, which yielded a similar 

nucleosome occupancy pattern across all four groups are likely to be more accurate. 

Moreover, the nucleosome profile in group 1 was flatter and poorly defined relative to X-

TSS, whereas the S-TSS coordinates showed a more characteristic NDR and nucleosome 

periodicity. Thus, the inaccuracy of X-TSS leads to lower definition and offset of 

nucleosome occupancy profiles for a subset of genes. 

Phosphorylation of RNAPII at Serine 5 (Ser 5-P) is a marker of transcription 

initiation and early elongation [83]. RNAPII Ser 5-P occupancy is therefore expected to 

start at the TSS and increase toward mid-ORF. We used ChIP-seq to measure the 

localization of RNAPII Ser 5-P relative to S-TSS and X-TSS, in the same four groups of 

genes as for the nucleosome analysis above. RNAPII Ser 5-P occupancy increased from 

the TSS to 200 bp downstream in all four groups, but as with the nucleosome profiles, its 

pattern of occupancy relative to S-TSS was more invariant than the occupancy relative to 

X-TSS (Figure 2.11C). Thus, S-TSS shows a more consistent relationship with a 

genome-wide mark of transcription initiation. Taken together, these analyses show that 
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the genome-wide TSS identified by SMORE-seq are not merely more downstream than 

TSS identified by other global methods, but show more clear-cut relationships to 

biological features of transcription initiation and are therefore likely to be more accurate. 

2.4.3 SMORE-seq identifies mis-annotated start codons 

We identified 222 genes with TSS downstream of their annotated ATG start 

codons: we refer to these as internal TSS. We defined the putative start codon of these 

genes as the first ATG downstream of the TSS. Of the 222 genes, 127 had a putative start 

codon in frame with the annotated ORF, 91 had a putative start codon out of frame with 

the annotated ORF, and 4 had no start codon between the TSS and the annotated stop 

codon. We reexamined these 95 genes with an out of frame or no start codon and flagged 

72 genes because they either had a secondary, well-represented upstream TSS that agreed 

with the SGD start codon, an apparently incorrect TSS call, or low, ambiguous signal that 

prevented a confident TSS call. The 23 genes that were not flagged were grouped with 

the 127 that contained an in frame start codon, and the 123 verified genes out of this 

combined group of 150 were used for further analysis. 

Although previous studies have reported internal TSS and confirmed several by 

quantitative PCR (qPCR) and primer extension assays [38, 58, 60], the veracity of such 

internal TSS, which would be indicative of potentially mis-annotated protein coding 

regions, has not been systematically evaluated. We evaluated whether these internal TSS 

were indeed the bonafide TSS by examining the propensity of such genes to have an 

alternative start codon downstream of the annotated start codon, evolutionary 
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conservation, ribosome footprinting profiles, and presence of a preferred Kozak 

consensus sequence for translation initiation. 

We observed that internal TSS genes tended to have an in-frame methionine 

codon just downstream of the internal TSS (Figure 2.12). For most genes, the likelihood 

of having an internal methionine downstream of the annotated start codon is expected to 

increase monotonically with increasing distance from the start codon. Indeed, all verified 

genes showed this expected pattern (Figure 2.13A). However, internal TSS genes showed 

a markedly steeper increase, indicative of a higher likelihood of having another 

methionine shortly downstream of the annotated start codon. This distinctive behavior 

suggests that the internal TSS of this subset of genes could be the true TSS, with 

translation initiating from an internal methionine to generate a polypeptide that is 

truncated at the N-terminus relative to the currently annotated protein coding sequence.  

Figure 2.12 Example of an internal TSS downstream of the annotated start codon 

Ribosome footprinting and conservation score are visualized in the UCSC Genome 
Browser mirror [76, 84]. In-frame methionine codons are indicated in red within the ORF 
track. 
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Figure 2.13 Mis-annotated start codons identified by SMORE-seq 

(A) Cumulative proportion of genes that have an in-frame methionine at the indicated 
distance from the SGD annotated start codon, for each of the indicated groups. (B) 
Seven-species yeast conservation near start codons of all verified genes according to 
SGD annotations (All Genes), internal TSS genes according to SGD (Internal TSS 
Genes), and internal TSS genes with start codon predicted based on SMORE-seq 
(Corrected Internal TSS Genes). (C-D) Ribosome profiles near start codons as predicted 
in 'C'. Ribosome profiling data was taken from [76] and plotted as the average proportion 
of reads. (E) Consensus sequence upstream of the start codon of the indicated gene sets, 
where the start codon used was as described in 'C'. 
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Protein-coding regions of yeast genes show significantly higher evolutionary 

conservation than non-coding regions [84-86]. To determine if this conservation could 

shed light on the potential usage of internal TSS, we analyzed conservation around the 

start codon between seven yeast species. The set of all genes showed a sharp increase in 

conservation downstream of the start codon. This increase in conservation was not seen 

in the internal TSS genes when using the SGD start codon (Figure 2.13B). However, if 

we used the first methionine downstream of our internal S-TSS as the start codon, 

conservation just downstream of the start was restored for this set of genes. This data 

strongly suggests that the internal methionine downstream of the internal S-TSS is the 

true start of the protein coding region for these genes, rather than the currently annotated 

start codon. 

Next, we analyzed published genome-wide ribosome footprinting data to obtain 

experimental evidence regarding translation at either annotated or internal start codons 

[76]. Ribosome footprinting measures occupancy of ribosomes along mRNAs, and has 

shown that there is high ribosome occupancy 12-13 nt upstream of start codons [76]. We 

analyzed ribosome footprints from the previously published study in the three groups of 

genes described above. The set of all genes showed a strong ribosome occupancy peak 

12-13 nt upstream of the start codon. This peak was largely absent near the SGD-

annotated start codons of internal TSS genes (Figure 2.13C), but was clearly restored 

when we used start codons downstream of the internal TSS predicted by SMORE-seq 

(Figure 2.13D). This analysis provides strong evidence of the accuracy of SMORE-seq 
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TSS coordinates and start codon predictions for internal TSS genes. 

Consensus sequence analysis of the regions near annotated start codons for all 

genes showed strong enrichment of A residues at the -3 position relative to the ATG start 

codon, which is a characteristic of the Kozak consensus sequence in yeast [87, 88] 

(Figure 2.13E). In contrast, enrichment of A at the -3 position was not observed for 

internal TSS genes, indicating that the annotated start codons are unlikely to be used for 

translation initiation. Strikingly, the Kozak consensus sequence was restored at the 

corrected, internal start codon for the internal TSS genes. Thus, start codons predicted by 

SMORE-seq for internal TSS genes have a more appropriate sequence context for 

initiation of translation than the current SGD annotations. 

2.4.4 SMORE-seq identifies polyadenylation sites 

Visual inspection of SMORE-seq data indicated a large number of reads mapped 

to 3’ regions of mRNAs, near ORF stop codons (Figure 2.3 and 2.15). Because of the 3’ 

bias of these reads and their abundance in both TAP+ and TAP- samples, we 

hypothesized that these reads originated from mRNA degradation products. One of the 

main mRNA degradation pathways in eukaryotes starts with shortening of poly(A) tails 

to ~10-15 A bases, followed by decapping and 5’-3’ exonuclease-mediated degradation 

[89]. These degradation products have a 5’ phosphate that is amenable to ligation during 

the SMORE-seq protocol, and thus would be represented in both TAP+ and TAP- 

samples. Because some of these reads would also be expected to contain the PAS, the site 

where the mRNA is cleaved and an untemplated stretch of A residues is added, we 
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reasoned that these reads could be used to map PAS. 

Figure 2.14 Strategy used to extract PAS containing reads 

Strategy used to extract PAS containing reads, those with a 3’ stretch of untemplated As, 
from SMORE-seq data. Reads that ended in a stretch of A residues were selected, and 
those that mapped to the genome only after removal of the 3’ poly(A) stretch were 
retained as PAS reads. 

We used a simple but effective workflow to obtain reads representing potential 

PAS in our data (Figure 2.14). We first selected all reads ending in a string of As (see 

Methods). We then mapped these reads to the yeast genome and sorted the results into 

unmapped or mapped groups, with the expectation that reads with an untemplated stretch 

of As, representing a potential PAS, would be unmapped, whereas those reads that 

mapped represented a genomic poly(A) stretch and should be discarded. We then 

trimmed the poly(A) stretch off the unmapped reads and mapped these trimmed reads 

again, with the expectation that the reads that mapped after trimming represented PAS. 

This set of reads, which we called PAS reads, mapped almost exclusively to likely 3’-
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UTR regions of mRNAs (Figure 2.15), indicating that our strategy was effective in 

identifying PAS. This procedure yielded a total of 55,419 candidate PAS where each 

PAS was defined by at least 2 reads. In order to identify a dominant PAS for each gene, 

we determined the base position with the highest read stack in the PAS reads in the range 

from the gene’s stop codon to 300 bases downstream. We were able to identify a PAS for 

5,277 (91%) yeast genes using this strategy. Based on SMORE-seq PAS annotations, the 

median and mean 3'-UTR lengths in yeast are 120 and 137 nt, respectively (n= 5277, 

Figure 2.7B). 

Figure 2.15 Heat map representation of PAS reads from SMORE-seq 

SMORE-seq reads near gene stop codons (vertical line) before and after applying 
filtering described in A. PAS reads mostly mapped just downstream of stop codons. (D) 
PAS reads in all genes sorted by ORF length and aligned by start codon (arrow), 
demonstrating that few PAS reads mapped within ORFs. 
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Figure 2.16 High resolution and accuracy of S-PAS 

(A) Occurrence of the polyadenylation efficiency element (EE) and positioning element 
(PE), elements utilized for PAS selection, relative to PAS identified by SMORE-seq. (B) 
Difference between SMORE-seq PAS and those identified by Ozsolak et al. [66] using 
Helicos NGS-based method. The inset shows the cumulative difference profile. 

Sequence elements that contribute to PAS selection have been discovered in 

yeast, and although these elements are less conserved and less well-defined than in higher 

eukaryotes, a positioning element (PE) with sequence AAWAAA and an efficiency 

element (EE) with sequence TAYRTA have been identified about 10-30 nt and 25-75 nt 

upstream of PAS, respectively [90]. A search for these elements in the sequences 

surrounding PAS as determined by SMORE-seq revealed enrichment of these sequences 

with expected positioning relative to PAS, indicating that SMORE-seq was successful in 

determining correct PAS (Figure 2.16A). 
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Polyadenylation sites have been previously measured in yeast with a specialized 

deep-sequencing based strategy [66]. To further verify the accuracy of SMORE-seq PAS, 

we compared our results to this study. In order to define PAS with single-nucleotide 

resolution from the published data, which reported PAS regions rather than a single base 

position, we downloaded their data and found the position with the highest read stack as 

described above (see Methods). We could identify a PAS for 5,314 genes in the published 

data, and of these genes, 5,119 also had a PAS identified by SMORE-seq. There was 

striking agreement between PAS identified by the two methods, with almost 80% of PAS 

within 30 bases and almost 800 genes showing an identical PAS between samples (Figure 

2.16B). Thus, SMORE-seq can accurately map both TSS and PAS from the same 

sequencing dataset with single-nucleotide resolution. Similar to TSS, many genes also 

showed alternative PAS, which were used at rates lower than the primary PAS (Figure 

2.8). 

2.4.5 SMORE-seq reveals widespread bidirectional transcription 

We observed more than a thousand regions where reads aligning in the opposite 

direction of the coding strand were concentrated in a region 50-300 bp upstream of the S-

TSS, indicating non-coding RNA (ncRNA) transcripts resulting from bidirectional 

promoters. Previous studies have reported ncRNAs at bidirectional promoters only in 

strains deleted for genes associated with gene looping or the nuclear exosome [35, 91], as 

the directionality of transcription was thought to be tightly regulated and antisense 

ncRNAs rapidly degraded in wild-type (WT) strains. For example, the promoter 
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associated ncRNA at the bidirectional promoter between OPY1 and SHE3 was previously 

identified only in an ssu72-2 mutant and therefore interpreted as arising due to disruption 

of a gene loop [91]. However, this RNA was readily identifiable by SMORE-seq in a 

wild-type strain, likely due to the higher sensitivity of our method (Figure 2.17A). 

SMORE-seq identified more than a thousand new bidirectional promoter-associated 

ncRNAs (Figure 2.17A). Here, we refer to the antisense ncRNAs detected by SMORE-

seq at promoters as bncRNAs (bidirectional non-coding RNAs). 

In order to visualize the prevalence of bncRNAs in WT cells under normal growth 

conditions, we separately plotted the SMORE-seq reads aligning to each strand near 

promoters, split according to the orientation of two adjacent genes. The terms “same” and 

“opposite” for read directionality are defined with respect to the downstream gene, and 

“tandem” and “divergent” define the orientation of the upstream gene (Figure 2.17B and 

2.17C). Interestingly, opposite reads showed a strong signal 50-300 bp upstream from the 

S-TSS of the downstream genes (Figure 2.17B). In particular, the widespread signal from 

opposite reads in tandem genes, where this signal is unequivocally independent from the 

TSS of the upstream gene, shows that products of bidirectional transcription are much 

more pervasive than previously appreciated in WT yeast cells. 
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Figure 2.17 Widespread occurrence of bncRNAs 

(A) A previously known ssu72-restricted transcript (SRT) in the promoter of OPY1 is 
detected by SMORE-seq in WT cells under normal growth conditions [91] (top 2 panels). 
A novel antisense ncRNA that may share a bidirectional promoter with LPT1 is shown 
below. (B,C) Widespread occurrence of bncRNAs (antisense ncRNAs at bidirectional 
promoters). Genes were clustered by K-means clustering (k=5, repeat=1000) of bnc 
signal in a range 300 bp to 50 bp upstream of TSS. 'B' shows genes in the indicated 
tandem arrangement, and 'C', in the divergent arrangement. Divergent genes whose TSS 
are closer than 300 bp are excluded in 'C' The vertical line represents the TSS of 
downstream genes. The number of tandem genes and divergent genes in this heat map are 
2401 and 1635, respectively. 
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Figure 2.18 A canonical TATA-box element suppresses bidirectional transcription 

(A) Opposite reads in tandem genes grouped by presence or absence of a canonical 
TATA-box in the gene’s promoter. TATA-less tandem genes (n=2031) show stronger 
bncRNA signal than TATA-box containing tandem genes (n=370). (B) Average 
proportion of reads in this window, demonstrating that TATA-less genes have higher 
bncRNA expression. The P-value for the difference in bnc signal between TATA (blue) 
and TATA-less (red) signals at -200 was 3.67 X 10-7 by Welch's t-test. 
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Figure 2.19 The proportion of TATA-containing genes related to levels of bncRNA  

The proportion of TATA-containing genes is inversely related to levels of bncRNA 
transcription. Tandem genes were sorted by the strength of their bncRNA transcription 
read counts between -50 and -300 (X-axis). The proportion of TATA-containing genes in 
each group of 100 genes in this ranked set is plotted on the Y-axis. The overall proportion 
of TATA-containing genes among all tandem genes is 14.9 % (far right). 

 
2.4.6 A canonical TATA-box element suppresses bidirectional transcription 

Previous studies reporting the expression of promoter-associated ncRNAs in 

mutants defective in RNA processing have noted that highly expressed genes show 

higher levels of the promoter-associated non-coding RNAs [91]. In order to assess the 

correlation between the bncRNAs identified by SMORE-seq and downstream gene 

expression, we generated heat maps showing bncRNAs with their downstream genes 

sorted by mRNA abundance [92]. The intensity of the bncRNA signal did not appear to 

correlate with expression of the downstream gene. The correlation coefficient between 

levels of bncRNAs and downstream gene expression was close to zero (Spearman rank r 

= -0.02), indicating that expression of the downstream gene is unrelated to bncRNA 

levels. 
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Mutation of the TATA-box in the TPI1 promoter has been reported to increase 

antisense transcription from its bidirectional promoter [93]. We hypothesized that the 

presence of a TATA-box in promoters correlates genome-wide with levels of bncRNAs. 

To test this hypothesis, we separated tandem genes based on whether the downstream 

gene contained a canonical TATA-box, then plotted reads arising from the opposite 

strand in a heat map (Figure 2.18A). The signal from bncRNAs in TATA-box containing 

genes was significantly lower compared to TATA-less genes (Figure 2.18B, P = 3.67 X 

10-7 by Welch’s t-test). Moreover, the proportion of TATA-containing genes was lower 

for genes with higher levels of bncRNA transcription (Figure 2.19). Thus, promoters 

lacking a canonical TATA box, or TATA-less promoters, have a higher chance of giving 

rise to a bidirectional non-coding RNA in the opposite direction. Additional evidence in 

favor of the TATA-box model for bncRNA transcription comes from nucleosome 

localization data. A well-positioned +1 nucleosome is believed to help form the pre-

initiation complex and recruit RNAPII at TATA-less promoters [19, 94]. If bncRNA 

transcription uses the same mechanism as normal initiation, the -1 nucleosome with 

respect to sense genes could act as the +1 nucleosome with respect to bncRNA, and 

similarly facilitate bncRNA transcription. Supporting this hypothesis, TATA-less genes, 

which have high bncRNA expression, have well-positioned -1 nucleosomes (Figure 

2.20A), and the highly expressed bncRNAs have a more well defined +1 nucleosome 

(Figure 2.20B). 
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Figure 2.20 Average nucleosome profile of tandem genes  

Y-axis represents read counts per million reads (bin size=5 bp) (A) TATA box containing 
versus TATA-less genes. (B) Highly expressed bncRNAs have more well defined -1 
nucleosomes with respect to sense genes. bncRNA expression levels were defined as the 
sum of TAP+ reads between 300 bp upstream and 50 bp upstream of TSS. From top to 
bottom, cut-offs for defining bncRNAs are 50, 20, and 10 reads. The number of genes 
with bncRNAs are 287, 566, and 883. 

 

2.5 Discussion 

We have shown that the high accuracy and sensitivity of mapping transcript 5' and 

3' ends using SMORE-seq reveals more well-defined relationships of transcript ends with 

cis-elements and chromatin structure, identifies widespread bidirectional transcriptional 

initiation, and suggests a novel role for a canonical TATA-elements in orienting 

transcription initiation. The singular advantage of SMORE-seq is that it can identify TSS 

and PAS using the same deep sequencing data derived from a single RNA-seq library, 
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allowing the investigation of transcription initiation as well as 

termination/polyadenylation in the same RNA sample. Despite this gain in efficiency, 

SMORE-seq is also a relatively simple method. Other comparable approaches to map 

TSS using next-generation sequencing, are generally more tedious. For example, CAGE 

(Cap analysis of gene expression), which has been adapted for deep sequencing, is a 

relatively cumbersome procedure that involves biotinylated oligos and contains 18-25 

major steps spread over 8-14 days to generate a sequencing library [95]. Various NGS-

based methods to map PAS have been recently utilized to map PAS [96]. Some PAS 

mapping methods involve the use of specialized primers, and others require deep 

sequencing technologies that are not commonly available [55, 66, 97]. While these 

methods map PAS with single-nucleotide resolution, they provide no data that can be 

used to map TSS. In contrast, SMORE-seq avoids any specialized primers and can be 

completed by one researcher in one day using standard reagents and deep sequencing 

kits. The improved efficiency of SMORE-seq will be valuable in situations where there is 

a limited amount of material available, such as human patient samples or microbial 

species that are difficult to propagate. 

During preparation of this manuscript, a study using another method to 

simultaneously map TSS and PAS, TIF-seq, was published [70]. SMORE-seq and TIF-

seq generate complementary data, but there are a few noteworthy differences. TIF-seq 

simultaneously sequences the TSS and PAS of the same mRNA molecule, whereas 

SMORE-seq identifies TSS and PAS separately for the same population of mRNAs. The 
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TIF-seq study provided a comprehensive catalog of all transcript ends and isoforms in 

yeast, but it did not provide a definitive annotation of the most prominent TSS and PAS 

for each gene, and therefore did not uncover the same biological insights about 

transcriptional regulation that we were able to with SMORE-seq. Although the two 

methods use a similar strategy to ligate a 5’ adapter at mRNA cap sites, TIF-seq follows 

this step with reverse transcription using a modified oligo(dT) primer. This may result in 

several potential complications: 1) efficiency of reverse transcription will be biased 

toward shorter RNA molecules, resulting in overrepresentation of shorter mRNAs and 

under-representation of longer mRNAs in final libraries, 2) mRNAs with a high degree of 

secondary structure may not be efficiently reverse transcribed and therefore under-

represented, 3) mis-priming with the modified oligo(dT) primer may result in improper 

PAS calls, and 4) intact full length mRNAs are likely to be rare in partially degraded 

RNA samples, such as those from human patient material. Points 1, 2, and 3 are 

addressed in SMORE-seq by direct ligation of sequencing adapters to both 5’ and 3’ ends 

of RNA molecules, whereas point 4 is a weakness of both methods. This weakness can be 

easily addressed in SMORE-seq by using ribosomal RNA depletion rather than poly(A) 

selection in the first step, and although the data would be noisier and contain more 

ncRNA signal, this could largely be addressed through deeper sequencing. Another minor 

weakness of the TIF-seq method is that 30 total cycles of PCR were necessary compared 

to just 18 cycles in SMORE-seq, likely due to the additional steps in the TIF-seq 

protocol. However, TIF-seq provides single molecule data that SMORE-seq cannot. We 
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compared transcript annotations generated by SMORE-seq with the major TSS and PAS 

sites identified in the TIF-seq study and found strong concordance between both methods 

(Figure 2.21A). This study also identified a set of genes with TSS downstream of the 

annotated start codon, similar to what we reported (Figure 2.13). There is strong and 

significant overlap of the two sets of genes with internal TSS genes (Figure 2.21B). We 

believe that the existence of these complementary methods will assist researchers by 

allowing them to choose the one best suited to their research goals and conditions. 

It is noteworthy that the dominant TSS of at least 150 genes is downstream of the 

annotated start codon, resulting in protein sequences that differ from SGD annotations. In 

127 of these genes the start codon predicted by SMORE-seq is in frame with the 

annotated start codon, resulting in truncation of the encoded proteins at the N-terminus, 

with implications for protein function and construction of N-terminal fusion derivatives 

in experimental studies. For 22 genes our predicted start codon is not in frame with the 

annotated start codon, resulting in either a protein with a completely different sequence or 

a short ORF that is unlikely to encode a functional protein. Interestingly, the TSS and 

predicted start codon are very close in many of these genes, which may prevent the 

ribosome from binding to this ATG and allowing initiation of translation at a downstream 

ATG that is in frame with the annotated protein. Another possibility is that these loci 

encode non-coding RNAs with regulatory, enzymatic, or structural function. 
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Figure 2.21 Comparison of SMORE-seq annotations with TIF-seq.  

(A) Data for major transcript isoforms (mTIFs) covering one intact ORF from the TIF-
seq data [70] was obtained and the most prominent TSS and PAS from this data was 
identified. The threshold of mTIF reads was set at ≥ 2. The plot shows the histogram of 
differences between SMORE-seq TSS or PAS and the corresponding mTIF coordinates. 
(B) Overlap of internal TSS genes. The figure shows the overlap between the 150 genes 
identified by SMORE-seq as internal TSS genes, and the 134 genes identified by TIF-seq 
where the TSS inside the ORF is at least 50% stronger than the TSS upstream of the ORF 
based on read counts, in YPD-grown cells. The P-value for the overlap is 2.4 x 10-95 by 
hypergeometric test. 
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The enrichment in SMORE-seq data of reads at the 3’ ends of mRNAs likely 

results from the sequencing of degradation products created by deadenylation and de-

capping dependent 5’ to 3’ degradation. mRNA poly(A) tails are shortened to ~10-20 A 

residues by the Ccr4-Caf1 deadenylase complex, followed by decapping by Dcp1-Dcp2 

and 5’ to 3’ exonucleolytic degradation by Xrn1 [89]. Although reads resulting from such 

degradation products might be expected to map along the entire length of the mRNAs, we 

propose two explanations for the observed 3' enrichment of reads: 1) Short poly(A) tails 

of degradation products do not support hybridization of long mRNA degradation 

products to oligo(dT) beads during poly(A) selection, and/or 2) kinetics of degradation 

result in accumulation of smaller degradation products. Either of these scenarios would 

result in the observed abundance of reads representing 3’ regions and polyadenylation 

sites of mRNAs. Notably, the presence of these reads in almost all genes indicates that 

degradation of the vast majority of yeast mRNAs depends at least partially on decapping 

and 5’ to 3’ decay, although further experimentation will be needed to confirm this 

hypothesis. It is also noteworthy that other TSS mapping methods treat RNA with a 

phosphatase enzyme before TAP [61, 62], but we were able to recover degradation 

intermediates used to map PAS only because we did not use phosphatase pre-treatment. 

Several previous studies have reported antisense ncRNAs [35, 93], but their 

transcriptional regulatory mechanisms are largely unknown. The observation that 

bncRNAs were detected in TAP+ samples but not in TAP- (Figure 2.17) strongly 

indicates that they are 5’-capped. The presence of these RNAs following poly(A) 
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selection also indicates either that these RNAs had poly(A) tails or that they were 

recovered via hybridization to sense transcripts during poly(A) selection. A recent study 

indicates that bidirectionally transcribed, promoter-associated RNAs are indeed 

polyadenylated in human cells [98], supporting the former possibility. However it is not 

known whether this is also true in yeast. One study suggested that highly expressed genes 

also show higher levels of promoter ncRNA transcription, although the evidence for this 

relationship was modest [91]. Another model suggested that a TATA-box in a sense 

promoter could suppress antisense transcription [93]. Since highly transcribed genes in 

yeast generally contain a canonical TATA-box within their promoter [18], these two 

models are contradictory. We observed no correlation between bncRNA and sense RNA 

abundance, but we did observe high expression of bncRNAs in TATA-less promoters of 

sense genes (Figure 2.18), supporting the latter model. The low correlation between 

bncRNA and sense RNA abundance is consistent with previous studies showing that 

distinct pre-initiation complexes are responsible for sense and antisense transcription, and 

that antisense transcripts are independently regulated [19, 99, 100]. The relationships that 

we observed between TATA elements, nucleosomes and bncRNAs support a model 

where the presence of a TATA-box strongly influences the directionality of transcription. 

We anticipate that the use of SMORE-seq in conjunction with other genomic assays of 

chromatin structure in different species and cellular states will shed new light on the 

genome-wide mechanisms of transcriptional control. 
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Chapter 3 2Widespread Misinterpretable ChIP-seq Bias 

 
3.1 Abstract  

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used 

to detect genome-wide interactions between a protein of interest and DNA in vivo. Loci 

showing strong enrichment over adjacent background regions are typically considered to 

be sites of binding. Insufficient attention has been given to systematic artifacts inherent to 

the ChIP-seq procedure that might generate a misleading picture of protein binding to 

certain loci. We show here that unrelated transcription factors appear to consistently bind 

to the gene bodies of highly transcribed genes in yeast. Strikingly, several types of 

negative control experiments, including a protein that is not expected to bind chromatin, 

also showed similar patterns of strong binding within gene bodies. These false positive 

signals were evident across sequencing platforms and immunoprecipitation protocols, as 

well as in previously published datasets from other labs. We show that these false 

positive signals derive from high rates of transcription, and are inherent to the ChIP 

procedure, although they are exacerbated by sequencing library construction procedures. 

This expression bias is strong enough that a known transcriptional repressor like Tup1 

can erroneously appear to be an activator. Another type of background bias stems from 
                                                
2 This work was published in Park D., Lee Y., Bhupindersingh G. & Iyer V.R. Widespread 
Misinterpretable ChIP-seq Bias in Yeast (2013) PLoS One 8(12): e83506. DP, YL, and VRI 
conceived and designed the experiments. YL performed ChIP-seq under 30°/39°C conditions and 
Hsf1 ChIP-seq, and YL and GB conducted mock ChIP qPCR. DP performed all the other 
experiments and analyzed the data. YL wrote the figure legends for mock ChIP qPCR data and 
“Materials and Methods”, except for the subsections of “Deep sequencing data analysis” and 
“Mock and input comparison”. DP and VRI wrote the rest of the manuscript. Permission to adapt 
the contents of the publication was acquired from the co-authors. 
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the inherent nucleosomal structure of chromatin, and can potentially make it seem like 

certain factors bind nucleosomes even when they don't. Our analysis suggests that a mock 

ChIP sample offers a better normalization control for the expression bias, whereas the 

ChIP input is more appropriate for the nucleosomal periodicity bias. While these controls 

alleviate the effect of the biases to some extent, they are unable to eliminate it 

completely. Caution is therefore warranted regarding the interpretation of data that 

seemingly show the association of various transcription and chromatin factors with 

highly transcribed genes in yeast. 

 

3.2 Introduction 

The genome-wide mapping of protein localization on chromatin at high resolution 

is crucial for understanding the molecular mechanisms of transcription in vivo. Chromatin 

immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) is currently the 

preferred and widespread method to accomplish this [51, 101, 102]. Because of the power 

of the ChIP assay, the Encyclopedia of DNA Elements (ENCODE) and Roadmap 

Epigenome Projects have adopted ChIP-seq to map the genomic locations of many 

transcription factors, histone marks, and DNA modifications in both cell lines and model 

organisms [103-106]. Because the localization of chromatin-associated factors is 

dependent on cell type and environmental conditions [8, 107], ChIP-seq is being 

increasingly used to explore hundreds of DNA-binding proteins in different types of cells 

and under different conditions. 
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Yeast is the first and only eukaryote for which nearly every transcription factor has 

been ChIP-ed and for which the resulting immunoprecipitated DNA has been mapped on 

a genome-wide scale using microarrays [108, 109]. With the advent of deep sequencing 

technology, ChIP-seq also has been broadly applied to yeast genomics [42, 71, 110]. 

Yeast is ideal for comprehensive studies on protein-DNA interactions due to its relatively 

small genome, the resulting low cost of experiments, and the availability of a tandem 

affinity purification (TAP)-tagged collection for 80% of its proteins [47]. This latter 

benefit is of particular importance, as TAP-tagged strains do not suffer from the same 

non-uniform quality as antibodies, whose variability can affect the efficiency of ChIP. 

Several algorithms have been developed to computationally identify peaks of 

enrichment in ChIP-seq data, indicative of protein binding locations, and to distinguish 

such peaks from background reads [101, 111]. Experimentally and computationally, the 

background signal is typically defined using either a parallel input sample which has not 

been subject to the immunoprecipitation step, after reversal of crosslinks, or a mock ChIP 

sample (where a non-specific IgG antibody, or pre-immune serum, or an untagged strain 

is used). 

In the course of carrying out ChIP-seq experiments for various yeast transcription-

related proteins, we unexpectedly found strong enrichment signals suggestive of proteins 

binding to genomic loci where genes were highly transcribed, regardless of which protein 

was being analyzed. The functions of the genes exhibiting this universally high protein 

occupancy however did not always align with the established roles of the proteins 
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apparently binding to them. Moreover, the enrichment for proteins binding to highly-

transcribed genes was observed even in controls like mock ChIP-seq data, which points 

to an overall bias that could contaminate any ChIP-seq data with false positives. A 

secondary bias of nucleosomal periodicity was also commonly observed across ChIP-seq 

datasets and contributed additional false positives in which proteins falsely appeared to 

interact with nucleosomes. We present our analysis of this phenomenon, and suggest 

ways in which these artifacts can be ameliorated by the proper choice of control 

experiments. Our data suggest however that the enrichment bias at highly transcribed 

genes could be an intrinsic characteristic of ChIP-seq experiments, and caution is 

therefore warranted in interpreting the results of ongoing and published results purporting 

to show the association of many proteins with the transcribed regions of genes. 

 

3.3 Materials and Methods 

3.3.1 Yeast strains and culture conditions 

The yeast strain used in this study as a WT was BY4741 (MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0). For ChIP, the TAP-tagged yeast strains including SWI6-TAP, TUP1-

TAP, RSC2-TAP and MNN10-TAP strains were obtained from the yeast TAP-fusion 

collection (Open Biosystems) [47]. We generated the HSF1-TAP strain from BY4741 by 

integrating the TAP-HIS3MX6 cassette into the 3'-end of HSF1 through homologous 

recombination, enabling the expression of C-terminal TAP-tagged Hsf1. Using the same 

scheme, we also generated a SWI6-13XMYC strain from BY4741. For gene expression 
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profiling, we used the TUP1 deletion strain from the yeast deletion collection (Open 

Biosystems) [112]. The identity of all engineered strains was verified by genomic PCR. 

Normal growth conditions were 30°C in YPD media with shaking at 250 rpm. Yeast cells 

were grown to mid-log phase (O.D 600 nm of 0.6 to 0.8), fixed with formaldehyde and 

collected for ChIP; or, were collected without fixation for gene expression profiling. For 

heat shock, mid-log phase yeast cells were collected and re-suspended in pre-warmed 

39°C YPD media, then incubated for 15 min at 39°C. For rapamycin treatment, either 

DMSO or rapamycin was added to mid-log phase yeast cells and incubated for 30 min at 

30°C. Since DMSO is a solvent for rapamycin, control and rapamycin-added cells were 

treated with DMSO and rapamycin to be a final concentration of 0.1% and 100 nM, 

respectively. 

3.3.2 Chromatin immunoprecipitation 

Proteins were cross-linked to DNA by adding formaldehyde to the culture (final 

concentration of 1%) and the cross-linking reaction was quenched with glycine (final 

concentration of 0.125 M). Yeast cells were re-suspended with lysis buffer and disrupted 

by agitation with glass beads using a Bead beater (BioSpec Products). The cell lysates 

were sheared using a Branson Sonifier (Emerson Industrial Automation), and 

immunoprecipitated using the following beads or anti-body: IgG Sepharose 6 Fast Flow 

(GE Healthcare Life Sciences) to pull-down all TAP-tagged proteins used in this study, 

anti-Myc conjugated agarose bead (Sigma Aldrich, cat.# E6654) to pull-down Swi6 in the 

SWI6-13XMyc strains, and RNAPII Ser5P antibody (Abcam, cat.# ab5131) to pull-down 
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active RNAPII. Mock ChIP DNA was prepared by immunoprecipitation with IgG 

Sepharose in the wild type strain with no TAP-tagged protein expression. Input DNA was 

prepared in parallel with the SWI6-TAP ChIP sample but leaving out the 

immunoprecipitation step. The crosslinks were reversed and the immunoprecipitated 

DNA was purified using UltraPure Phenol:Chloroform:Isoamyl alcohol (25:24:1 v/v, 

Invitrogen). 

3.3.3 Sequencing library preparation 

Sequencing library preparation with ChIP-ed DNA and input DNA was carried 

out by following either the NEB ChIP-seq library preparation for Illumina (New England 

Biolabs) or the SOLiD V3 barcoded fragment library preparation protocol (Life 

Technologies). Sequencing was performed through either Illumina HiSeq 2000 or SOLiD 

V4 at the University of Texas at Austin Genome Sequencing and Analysis Facility (UT 

GSAF). 

3.3.4 Gene expression profiling 

The collected yeast cells were re-suspended with AE buffer (50 mM Sodium 

Acetate pH 5.2, 10 mM EDTA) containing 1.7% SDS, and total RNA was extracted with 

a hot acid phenol method [72]. Double-stranded cDNA was synthesized from total RNA, 

and labeled with Cy3 using the NimbleGen One-Color DNA labeling kits (Roche 

NimbleGen). The labeled cDNA was hybridized onto a NimbleGen S. cerevisiae HX12 

array (Roche NimbleGen), and the array was washed and scanned with a GenePix 4000A 

scanner (Molecular Devices). The scanned image was processed using NimbleScan for 
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quantification of signal intensities and Robust Multi-array Average normalization with a 

large set of other NimbleGen array datasets in our lab (Roche NimbleGen). Differentially 

expressed genes in tup1∆ relative to WT were identified with Bioconductor limma 

package version 3.14.4. 

3.3.5 Quantitative PCR 

Three high TR genes (CCW12, TDH3, and PDC1) and three low TR genes 

(PDR8, HKR1, and BIT61) were selected. Two control primers used for normalization 

were designed from the tail-to-tail intergenic regions between YHL004W (MRP4) and 

YHL003C, stated as iYHL004W, and between YCR023C and YCR024C, described as 

iYCR024C. Primer pairs used in qPCR were designed to amplify 80-100 bp regions 

within the respective ORFs. qPCR was performed using Power SYBR Green PCR Master 

Mix (Applied Biosystems) on a ViiA7 Real Time PCR System (Life Technologies). For 

relative quantification of target DNA compared to control DNA, qPCR data was analyzed 

through a standard curve-based method. 

3.3.6 Deep sequencing data analysis 

Deep sequencing data were mapped onto the sacCer3 reference using BWA 

(Version: 0.5.9-r16) with default options [73]. Non-uniquely mapped reads were filtered 

out in order to remove reads with low mapping quality. Wig files of sequencing data were 

loaded in a local mirror of the UCSC Genome Browser for snapshots [113]. For average 

read profiles, reads were counted by bin size 10 bp within 1.5 kb from transcription start 

sites (unpublished data), and counts were divided by the total number of mapped reads 
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and multiplied by 1 million. The graphs were drawn with Python module matplotlib. 

Peak calling was performed with MACS2 (version: 2.0.9) [114]. Cse4 and untagged 

control ChIP-seq were downloaded from Gene Expression Omnibus database (GEO) 

Series accession number GSE13322 and GSE20870 [110, 115], respectively. We also 

downloaded histone MNase ChIP-seq data from NCBI Sequence Read Archive accession 

number SRA012303 [77]. These published datasets were processed with the same 

analysis pipeline as above. 

3.3.7 Mock and input comparison 

We executed the MACS2 module (version: 2.0.9) for 4 different experimental 

pairs: 1) DMSO Tup1 ChIP and DMSO input, 2) DMSO Tup1 ChIP and DMSO mock 

ChIP, 3) Rap Tup1 ChIP and Rap input, and 4) Rap Tup1 ChIP and Rap mock ChIP. 

Also, two thresholds (log10[q-value] = 2 and 20) were chosen to compare the efficiency of 

a threshold to eliminate expression bias peaks based upon stringency (Table 3.1). Then, 

MAnorm was utilized to identify DBTs from the MACS generated data [116]. MAnorm 

allowed us to ignore regions where the control showed higher signals than the treated 

sample. Thus, by using different controls in MACS followed by MAnorm analysis, we 

were able to test the effect of controls on the removal of background signals based on the 

number of DBTs and the percentage of DBTs within gene bodies. We transferred the 

MACS peak data from experimental pairs 1 and 3 (see above) to MAnorm and repeated 

for experimental pairs 2 and 4 (see above). We applied the same cut-off p-value (-log10(q-

value) = 5) for DBTs to the MAnorm results. 
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3.3.8 Accession number 

Sequencing data reported in this manuscript are available from NCBI GEO as 

GSE51251 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51251). 

 

3.4 Results 

3.4.1 Common enrichment signals in ChIP-seq datasets  

In order to study the targets of chromatin binding proteins in response to 

transcriptional perturbations, we performed ChIP-seq against multiple chromatin-

associated factors after treatment of cells with rapamycin (with DMSO treatment serving 

as control) or heat shock (at 39°C, with growth at 30°C serving as control). Included 

among these experiments were two unrelated transcription factors, Swi6 and Tup1, and 

various negative controls. One type of control was a mock ChIP-seq, in which 

immunoglobulin G (IgG)-conjugated sepharose beads were incubated with wild-type 

(WT) yeast chromatin. In another control, the input of a Swi6 ChIP sample (the sheared 

chromatin from a SWI6 TAP-tagged strain) was sequenced. Finally, we also ChIP-ed a 

subunit of Golgi mannosyltransferase complex Mnn10; as a cytoplasmic complex, 

Mnn10 is unlikely to associate with chromatin and thus was not expected to pull down 

any DNA. 
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Figure 3.1 Example of high background signal across multiple datasets 

Sequencing datasets from different factors, controls, epitope tags, transcription factors 
and growth conditions as indicated ares represented in a browser view. Based on the read 
counts normalized by transcript lengths from RNA-seq data [36], PHO84 is the 82nd most 
highly expressed gene under normal conditions in WT yeast 

We noticed that surprisingly, common targets were enriched across several data 

sets, including Mnn10 ChIP (Figure 3.1). Such peaks were observed across different 

sequencing platforms (Illumina or SOLiD), epitope tags (SWI6 TAP-tagged or SWI6 

13XMyc tagged), bead types (IgG-tagged sepharose beads or c-Myc antibody-conjugated 

agarose beads), and immunoprecipitated factors (Swi6 or Tup1) (Figure 3.2), indicating 
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that the shared signals were not derived from the use of a specific protocol or reagent. 

Perhaps most significantly, the targets were shared between the standard mock ChIP and 

input control experiments, suggesting that these shared targets represented non-random 

false positives. 

Figure 3.2 High background signals at high TR genes in SOLiD sequencing data 

SWI6 Myc indicates ChIP against 13XMyc tagged Swi6 using c-Myc antibody 
conjugated agarose beads. We pulled down TAP tagged proteins for other ChIPs. The 
expression bias in TUP1 was the highest in SOLiD, and mock ChIP showed expression 
bias comparable to Swi6 ChIP. 
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Figure 3.3 Genes with high transcription rates (TR) have high average read counts  

Lines show average read counts in 10 bp bins for the indicated groups of genes, which 
are either the 100 most highly transcribed genes based on RNAPII Ser5P occupancy as 
described in the text (High TR genes, red line) or all the other genes (All ORFs, blue 
line). The shaded bands represent the 95% confidence interval of the data. All ChIP 
samples in this figure were sequenced using the Illumina platform. (A) Under normal 
growth conditions (30°C in YPD), mock ChIP had comparable bias to Swi6 ChIP. (B) 
Both SWI6 (an activator) and TUP1 (a repressor) show comparable high levels of the 
expression bias at high TR genes. (C) Input has a lower expression bias than mock ChIP. 
For (B) and (C) cells were treated with DMSO, which was a control for rapamycin 
treatment. 
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3.4.2 Highly expressed genes demonstrate widespread, strong ChIP-seq signals 

We next examined whether the phenomenon described above was generally 

observable genome-wide. We observed two features among the strong false positive 

signals. First, the signals were present within gene bodies and second, the strongest 

signals derived from yeast genes that are known to be highly expressed. Thus, we termed 

this artifact an "expression bias". In order to better define the set of highly transcribed 

genes, we performed ChIP-seq against active RNA polymerase II under the same 

conditions. The occupancy of RNAPII phosphorylated at serine 5 of its C-terminal 

domain repeats (RNAPII Ser5P) is a better indicator of transcription rate than steady state 

RNA levels [117]. We defined the top 100 open reading frames (ORFs) in terms of 

RNAPII Ser5P occupancy (after normalizing for gene length and sequencing depth) as 

high transcription rate (high TR) genes. 

Read counts over genes in several ChIP-seq and control experiments were 

strongly enriched for high TR genes compared to other genes (Figure 3.3). Consistent 

with the example shown in Figure 3.1, the expression bias was a recurrent artifact in all 

ChIP-seq data, although the degree of expression bias varied from factor to factor. To 

examine if the expression bias was an artifact specific to ChIP-seq data from our lab, we 

downloaded previously published ChIP-seq data from other labs and analyzed them using 

the same pipeline [110, 115]. Specifically, we compared ChIP for a centromere binding 

protein, Cse4, [110] and an independent mock ChIP that had been used as a negative 

control for the association of the transcription factor Tbf1 [115]. Cse4 in particular is a 
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centromere-specific histone H3 variant that is not expected to occupy transcribed regions. 

Both of these published datasets exhibited the same artifacts as we describe above 

(Figure 3.4), suggesting that the expression bias seen for high TR genes is a commonly 

occurring phenomenon in yeast ChIP-seq data and could confound the interpretation of 

many types of experiments. 

Figure 3.4 The expression bias in two independent, previously published datasets 

We downloaded two previously published ChIP-seq datasets and ran our pipeline. 
13XMyc tagged Cse4 was immunoprecipitated with the same beads as used in 13XMyc  
Swi6 ChIP in Figure S1 [110]. As a negative control ChIP for 13XMyc Tbf1 ChIP, 
monoclonal anti-Myc antibody was incubated with untagged W303-1A strain [115]. Both 
ChIP-ed DNA samples were sequenced using the Illumina platform. 

 

3.4.3 Human CTCF ChIP-seq has the expression bias 

Recent studies on the co-localization of TFs showed that the regions highly co-

occupied regions by TFs were associated with high levels of RNAPII occupancy [118, 

119], implying that expression bias could also be present in human ChIP-seq.  In order to 

examine the expression bias in human ChIP-seq, we chose CTCF ChIP-seq data because 
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the ENCODE project indicated that CTCF target sites were associated with both gene 

activation and repression [8]. The GM12892 cell line was used to conduct the ChIP 

experiments, and the total number of mapped reads was 148,671,491. To calculate gene 

expression levels in GM12892, we downloaded RNA-seq data from the ENCODE project 

data archive.  Human genes were sorted by the Fragments Per Kilobase of exon per 

Million fragments mapped (FPKM). After excluding genes that encode miRNAs, 

ribosomal proteins, and snoRNAs, the 1000 most highly transcribed genes were defined 

as “high TR genes”. Surprisingly, as observed in yeast TFs, CTCF showed similar high 

background signals at the high TR genes, suggesting that the expression bias could be 

universal in ChIP-seq data (Figure 3.5). 

Figure 3.5 The expression bias in human CTCF ChIP-seq 

CTCF in GM12892 cells shows high levels of the expression bias at the 1000 most highly 
transcribed genes. 
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3.4.4 Expression bias of ChIP-seq by condition-specific transcriptional activation 

The transcript levels of stress-responsive genes are dramatically altered by 

rapamycin treatment and heat shock [120, 121]. Given the fact that upregulated genes 

under stress conditions show comparable transcription rates to high TR genes under 

normal conditions, we wondered whether the expression bias in ChIP would similarly be 

detectable in upregulated genes specifically under stress conditions. To answer this 

question, we first measured the condition-specific occupancy of active RNAPII on 

chromatin by ChIP-seq after rapamycin treatment and heat shock. The top 100 ORFs 

showing increased occupancy after treatment relative to normal were defined as 

transcriptionally upregulated genes in response to rapamycin and heat shock (or “Rap 

Up” genes and “Heat Up” genes), respectively. 

As the cell cycle is arrested at G1 by heat shock [122], we reasoned that Swi6, a 

well-known transcription activator of the G1/S transition [123, 124], would not bind 

strongly to heat shock-induced genes. Surprisingly, we found that Swi6 bound strongly to 

the transcribed regions of Heat Up genes specifically after heat shock (Figure 3.6A). A 

mock ChIP control sample for this experiment showed similar enrichment at Heat Up 

genes. While this illustrated the expression bias as manifested for differentially expressed 

genes during a perturbation, we investigated a different stress condition to rule out the 

possibility that the expression bias was specific to heat shock or to Swi6. We performed 

ChIP-seq for Rsc2, a component of the RSC chromatin remodeling complex, and Tup1, a 

component of the TUP1-CYC8 co-repressor complex, after rapamycin treatment of cells. 
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Both Rsc2 and Tup1 showed high occupancy over the transcribed regions of Rap Up 

genes after rapamycin treatment (Figure 3.6A). Thus, unrelated transcription factors 

appear to show increased binding to the ORFs of genes that are more actively transcribed 

after different environmental perturbations. 

3.4.5 Expression bias can give misleading information  

Despite the expression bias observed in mock ChIP and other control experiments 

above, it is possible that certain transcription factors also truly bind to ORFs as a means 

of regulating gene expression. For example, occupancy by a transcription factor of the 

ORFs of high TR genes, or of Heat Up genes specifically after heat shock might suggest 

a role in activating transcriptional elongation, something that cannot be formally ruled 

out based on our data for Swi6. However, the case of Tup1 offers a means of testing this 

notion. The molecular mechanism of the Tup1-Cyc8 complex as a general transcriptional 

repressor has been well established [125]. In order to confirm that Tup1 does not also 

serve as a transcriptional activator, we performed gene expression profiling of a tup1Δ 

strain compared to WT. Almost 90% of the differentially expressed genes were repressed 

by Tup1, showing that Tup1 does not, in fact, activate these genes in wild type cells 

(Figure 3.6B). Yet, ChIP-seq data for Tup1 suggested just the opposite. Tup1 occupied 

high TR genes as opposed to the low TR genes one would expect for a repressor. In this 

instance therefore, occupancy of high TR genes by Tup1 is likely to give a misleading 

picture regarding its biological function. 
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Figure 3.6 Condition-specific expression bias at genes that are transcriptionally activated 

(A) ChIP-seq data for an activator (Swi6), corepressor (Tup1), chromatin remodeler 
(Rsc2), and a mock ChIP control for genes that are transcriptionally activated by the 
indicated treatment. "Heat Up" are genes activated by heat shock, and "Rap Up" are 
genes activated by rapamycin treatment. Red lines show data after treatment (39°C or 
rapamycin), while blue lines show data before treatment (30°C or DMSO) for the same 
set of genes. (B) Differentially expressed genes comparing a WT strain to tup1∆. The 
majority of genes were activated upon deletion of TUP1, demonstrating that Tup1 is 
primarily a transcriptional repressor. 
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Figure 3.7 Misleading pictures showing that Tup1 is primarily a transcriptional activator 

Scatter plots show the differential transcriptional activation after rapamycin treatment as 
blue points. Differential RNAPII Ser5P occupancy before and after rapamycin treatment 
was measured by ChIP-seq and plotted on the X-axis. Differential mRNA expression 
levels in the same cultures were measured using microarrays and plotted on the Y-axis, in 
scatter plots showing 4929 genes. We used MACS to identify differential binding targets 
(DBTs) of Tup1 as described in the text and plotted them on the same plots in red. (A) 
The top 100 DBT peaks ranked by fold change were assigned to 55 ORFs, which are 
plotted in red. (B) The top 500 DBT peaks were assigned to 295 ORFs, which are plotted 
in red. Tup1 DBT ORFs tended to be upregulated genes in response to rapamycin. 
Uncorrected Tup1 differential binding targets misleadingly indicate that Tup1 is 
primarily a transcriptional activator. 

A common use of ChIP-seq is to examine binding of a given factor under 

different growth conditions or backgrounds. Since only a single variable is changed (the 

experimental or growth condition), it might be assumed that comparing binding under 

different conditions offers a reliable means of identifying biologically relevant targets, 

with most background artifacts being normalized out. We wondered whether the 

expression bias we noted earlier could nevertheless confound the interpretation of such 

experiments. We used the MACS algorithm to identify targets showing increased binding 
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of Tup1 in response to rapamycin treatment [114]. We used vehicle (DMSO) treated cells 

as the control and rapamycin treated cells as the experimental sample, and used MACS to 

identify differential binding targets (DBTs) from the ChIP-seq data for Tup1 under these 

two parallel conditions. 57 of the top 100 and 322 of the top 500 DBTs identified by 

MACS were in ORFs. Strikingly, the majority of these DBT ORFs were ORFs that were 

transcriptionally activated by rapamycin treatment. When superimposed on a scatterplot 

of gene expression versus RNAPII Ser5P occupancy, the Tup1 DBT ORFs were 

concentrated in the upper right quadrant (Figure 3.7). In the absence of other knowledge 

about Tup1 function, one would misinterpret this data to mean that Tup1, since it 

associates with the ORFs of rapamycin-upregulated genes after rapamycin treatment, 

likely functions in the activation of those genes. These results therefore raised the 

question of what type of normalization controls might be appropriate for minimizing false 

positives in ChIP-seq data, even when analyzing differential binding under different 

conditions. 

3.4.6 Mock ChIP is a better control for expression bias  

We observed that mock ChIP-seq data exhibited a stronger expression bias than 

the corresponding input samples (Figure 3.3C), and therefore hypothesized that 

correction by mock ChIP (normalization) would more effectively reduce the false-

positives exemplified by Tup1 DBT ORFs than normalization by input. To test this 

hypothesis, we first used MACS to normalize each condition specific ChIP-seq dataset to 

either its corresponding input or mock ChIP-seq sample. We used low and high 
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stringency thresholds to compare their effectiveness in minimizing false positives (Table 

3.1). We then used MAnorm to identify DBTs from this MACS-normalized data [116]. 

At a given p-value threshold, fewer Tup1 DBTs were identified when using mock ChIP-

seq data as the normalization control (Table 3.1)  

 

Category 
Cut-off 

Stringency 

Input 

Correction 

Mock 

Correction 

 

MACS2 Peak Calling 

Control 
Low 2478 726 

High 1120 296 

Rapamycin 
Low 2419 845 

High 725 309 

Rapamycin-specific targets by 

MAnorm 

Low 770 407 

High 384 165 

Rapamycin-specific targets within gene 

bodies 

Low 379 (49.2%) 149 (36.6%) 

High 139 (36.2%) 32 (19.4%) 

Table 3.1 Rapamycin-specific Tup1 peaks 

Rapamycin-specific Tup1 peaks were identified by using MACS followed by MAnorm 
analysis. Low and high stringency cut-offs were -log10(q-value) = 2 and 20, respectively. 
Rapamycin-specific targets were those differential binding peaks found by MAnorm with 
-log10(q-value) > 5. 
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Figure 3.8 Mock ChIP is a better control for minimizing false positive ChIP-seq targets 

Either ChIP input or mock-ChIP was used as a control, at two q-value thresholds to 
obtain high and low significant peaks (see text and Materials and Methods). The scatter 
plots were drawn as described in Figure 3.7, and the numbers of Tup1 DBT ORFs (red) 
were as follows: input low stringency=379, input high stringency=139, mock low 
stringency=149, mock high stringency=32. Mock ChIP is a better normalization control 
than input for minimizing false positive ChIP-seq targets. 
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Figure 3.9 Examples of high expression bias in rapamycin-specific targets  

Based on differential binding of RNAPII Ser5P (DB) and differential expression by 
microarray (DE) in response to rapamycin, GAP1 showed 59 and 10 positive fold-change 
in terms of DB and DE, respectively, ranking within the top 10 in both measurements. 
Although the rank of ASN1 in DE was 1466, the DB was ranked in top 56 as 15 fold 
change. The gene bodies had strong signals for rapamycin-specific occupancy by Tup1, 
which could not be corrected by rapamycin-treated mock ChIP. 

The use of mock ChIP as a normalization control resulted in a lower proportion of 

DBT ORFs (49.2% vs 36.6% and 36.2% vs 19.4% in Table 3.1), suggesting that mock 

ChIP is a more effective normalization control for expression bias than the input sample. 

The use of a more stringent threshold in conjunction with a mock ChIP normalization 

control reduced the number of DBT ORFs that were correlated with high transcription 

rates in an obvious manner (Figure 3.8). However, even this method of minimizing such 
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likely false positives is not infallible. For example, GAP1 and ASN1 were activated by 

rapamycin and showed Tup1 occupancy signals that were comparable to true peaks 

(Figure 3.9). GAP1 expression increased by 3.64 fold in a tup1Δ strain compared to WT, 

strongly suggesting that Tup1 is a repressor, rather than an activator of GAP1. 

Establishing a role for Tup1 in activating these genes in response to rapamycin is 

therefore non-trivial. Thus, while mock ChIP is a more stringent control for the 

identification of Tup1 DBTs in response to rapamycin, there is still strong evidence for 

apparent differential binding to several ORFs, where it is difficult to distinguish between 

expression bias or true binding with biological significance. 

3.4.7 Careful interpretation is required  

Unlike sequence-specific transcription factors, ChIP for chromatin remodelers 

and chromatin-modifying enzymes is inherently difficult because of how transiently these 

factors bind to chromatin [42]. Many chromatin remodeler ChIPs demonstrate weakly 

detectable signals to begin with, making it harder to distinguish them from expression 

bias. To investigate the effect of expression bias in chromatin remodeler ChIPs, we 

examined MNase ChIP-seq data for the ATP-dependent remodeler Chd1 from a 

previously published paper reporting that Chd1 associated with the transcribed regions of 

actively transcribed genes [126]. We mapped these reads with BWA and discarded non-

uniquely mapped reads because the paired-end reads had a read length of only 25 bp. We 

plotted the read profile relative to yeast transcription start sites and observed the 

nucleosomal periodicity expected for the association of chromatin remodelers with 
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chromatin. As reported, Chd1 occupancy on high TR genes was higher than other gene 

groups both before and after input correction (Figure 3.10A and 3.10B). However, the 

difference in Chd1 occupancy between high TR genes and low TR genes was very small 

using input correction. When we normalized Chd1 occupancy with our mock ChIP data, 

however, the correlation with the transcription rate was no longer observed (Figure 

3.10C). Thus, the association of Chd1 binding to ORFs and its relationship with 

transcription rate remains unclear when expression bias is properly accounted for. 

Figure 3.10 A misleading relationship between ORF binding and transcription rate 

(A, B) Previously published ChIP-seq data for Chd1 [126] was plotted either uncorrected 
(A) or corrected by input (B). Occupancy is higher at high TR genes compared to low TR 
genes, when genes are ranked by mRNA/hr [127]. (C) Same Chd1 ChIP-seq data, after 
correction by mock ChIP-seq data, no longer shows a strong relationship of Chd1 
occupancy with transcription rate 
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Figure 3.11 ChIP-seq signal from binding of Hsf1 to bidirectional promoters 

(A) Hsf1 strongly bound to the shared promoter of TAD2 and KAR2. The binding signals 
gradually decreased towards the 3’ end of KAR2 which is strongly activated upon heat 
shock, whereas the signal dropped sharply in the direction of TAD2 transcription. (B) 
Average Hsf1 occupancy over the 99 divergent genes out of the top 200 Heat Up genes 
(red), and all the other divergent genes (blue) under normal and heat shock conditions. In 
this representation, Heat Up genes were arranged on the right with respect to the genes 
whose promoter was shared, which reveals that Hsf1 binding decreases gradually over 
the Heat Up genes. 

3.4.8 Expression bias suggests directionality of transcription  

When a transcription factor binds to bidirectional (divergently regulated) 

promoters, it can be difficult to identify which of the two divergent ORFs, if any, is 

transcriptionally regulated by its binding. We examined ChIP-seq data for Hsf1 to see if 

expression bias could shed light on this issue. HSF1 is a key regulator of the 
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transcriptional response to heat shock, strongly binding to the promoters of the Heat Up 

genes after heat shock [128]. We noticed that the signal for Hsf1 binding was asymmetric 

across the two divergent ORFs. The peak of Hsf1 binding occurred between the start sites 

of TAD2 and KAR2 but the tail of the Hsf1 ChIP-seq signal extended toward KAR2, not 

TAD2 (Figure 3.11A). Based upon the differential binding of RNAPII Ser5P after heat 

shock, KAR2 was strongly transcriptionally activated, while TAD2 was not. 99 genes out 

of the top 200 RNAPII Ser5P heat shock DBTs shared promoters with another 

divergently transcribed gene. At these genes, the tails of Hsf1 binding stretched toward 

the DBTs (Figure 3.11B). Thus, the ChIP-seq binding signals over ORFs for transcription 

factors that strongly regulate gene expression can potentially identify the correct target 

gene from bidirectionally transcribed ORFs. 

3.4.9 The expression bias is amplified during library construction 

To establish whether the expression bias is primarily an artifact arising during 

sequencing library construction procedures or already exists in the immunoprecipitated 

DNA, we carried out quantitative PCR using ChIP-ed DNA before and after library 

construction.  
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Figure 3.12 qPCR shows higher expression bias in sequencing library than mock ChIP 

Three ORFs showing high enrichment of RNAPII Ser5P and high expression levels by 
RNA-seq were selected as high TR genes, shown in red (CCW12, TDH3, and PDC1). 
Three ORFs were picked as low TR genes using the same criteria, and are shown in green 
(PDR8, HKR1, and BIT1). For relative quantification of targets, two different controls 
were used (iYHL004W, plotted on left and iYCR024C, plotted on right), and fold-
changes were calculated by dividing the mean of target quantities by the mean of control 
quantities. Three biological replicates were carried out with two independently prepared 
mock ChIP samples, one of which was used for sequencing. Error bars represent the 
standard deviation of three log2-transformed fold change values from the replicate 
experiments. 
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As examples of genes showing the expression bias, we chose three genes, 

CCW12, TDH3, and PDC1, which had the highest expression bias based on the mock 

ChIP read counts and also ranked within the top 20 most highly expressed genes based on 

read counts from RNA-seq and RNAPII Ser5P ChIP-seq. As negative targets, we selected 

PDR8, HKR1, and BIT6 as they had low read counts in mock ChIP, RNA-seq, and 

RNAPII Ser5P ChIP-seq. In mock ChIP DNA, the genes showing high expression bias 

were overrepresented, whereas the genes showing no expression bias were 

underrepresented, indicating that the expression bias was present even before sequencing 

libraries were made (Figure 3.12). In the sequencing libraries, these differences in 

representation were magnified (Figure 3.12), indicating that amplification during 

sequencing library construction could result in the over-representation of high TR 

genomic regions in sequencing results. 

 

3.4.10 Nucleosomal periodicity of RNAPII Ser5P ChIP  

We observed that many ChIP-seq profile plots showed a periodicity of mean read 

counts over regions devoid of strong peaks (Figure 3.2 and 3.3). This periodicity within 

gene bodies, which was identical to nucleosomal periodicity, was also present in RNAPII 

Ser5P ChIP and especially noticeable for low TR genes (Figure 9A).  
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Figure 3.13 Nucleosomal periodicity in a ChIP-seq dataset 

ORFs were grouped by RNAPII Ser5P occupancy into 3 categories as indicated, and 
normalized sequencing reads of the 3 categories are shown on the Y-axis. (A) In the 
RNAPII Ser5P ChIP-seq read profiles, low expressed genes (blue and green lines) 
exhibited nucleosomal periodicity. Occupancy within each set was independently scaled 
and the profiles were set to start at the zero position on the Y-axis. (B) Input shows strong 
nucleosomal periodicity although average signal intensity is low (C) By subtracting input 
signal from RNAPII Ser5P signals, the apparent nucleosomal periodicity of RNAPII 
Ser5P was greatly reduced. Scaling factor for each group of genes was the same as in A 
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The naïve interpretation of these data would be that active RNAPII binds to 

individual nucleosomes and/or that RNAPII stalls at the center of nucleosomes during 

transcription. However, this interpretation, solely based on this observation would be 

misleading because even input exhibited similar strong periodicity (Figure 3.13B), as did 

Tup1 and Swi6 (Figure 3.2 and 3.3). When we normalized the RNAPII Ser5P read counts 

by the input read counts for each corresponding gene, the nucleosomal periodicity of the 

RNAPII Ser5P ChIP-seq was eliminated (Figure 3.13C), indicating that this periodicity 

was not a true signal but rather another artifact. 

 

3.5 Discussion 

In the analysis of ChIP-seq data, two types of normalization or correction controls 

are commonly used: mock ChIP and input DNA. The input sample has the advantage that 

all the regions of the genome are well represented, the sample concentration is ample and 

stable for constructing sequencing libraries, and the same sample can potentially serve as 

the control for several related experiments. The input generates a baseline signal for reads 

across the genome, factoring in sequence mappability and copy number differences 

relative to the reference genome. For these reasons, input has been suggested as a more 

effective control [129]. However, our results show that a background signal deriving 

from expression bias, namely genes transcribed at high rates, is not adequately 

represented in the input (Figure 3.3C). A mock ChIP sample processed in parallel 

through the immunoprecipitation and subsequent steps better reflects the 
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background enrichment from highly transcribed genes and therefore is a better control for 

minimizing the appearance of occupancy signal over transcribed regions. However the 

DNA yield after a mock ChIP step is typically lower and likely to be more variable from 

experiment to experiment.  

It is often assumed that measuring the binding of a transcription factor under two 

different conditions and identifying the differentially bound targets (DBTs) offers the 

most reliable way to identify targets of biological significance. This assumes that most 

sources of background signal are canceled out between the two samples in such an 

experimental strategy. Our results indicate that this assumption is risky. Because the 

expression bias derives directly from actively transcribed genes, and transcription will 

differ between the two conditions, it will appear as if the factor under study shows 

differential binding when in fact it is the background expression bias that is differently 

represented in the two conditions. We suggest therefore that even in these cases, the ChIP 

data from each condition has to be properly corrected by the corresponding mock ChIP 

data to minimize false positives. 

The expression bias we demonstrate has the potential to skew ChIP-seq data into 

representing any chromatin-associated protein as being associated with gene bodies or 

ORFs in yeast, regardless of the protein’s true role. In particular, this misinterpretation is 

easy to arrive at when the proteins of interest are ones that often show low signal strength 

in ChIP-seq experiments, such as chromatin remodelers, histone modifying or associated 

factors, or components of the general transcription machinery [126, 130, 131]. 
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It is beyond the scope of this study to definitively identify the source and 

mechanism of this background expression bias in ChIP-seq data. However, given that it is 

most strongly observed at highly transcribed genes, we speculate that in many cases it 

arises from direct or indirect non-specific interactions of the immunoprecipitated protein 

with DNA in open chromatin at highly transcribed regions, trapped by the crosslinking 

process. It is unclear why the phenomenon exists even in mock ChIP datasets, where 

there is no expected interaction between the non-specific antibody and any cellular 

protein that might interact with DNA. Here, it is possible that even low level non-specific 

interactions between the antibody and cross-reacting cellular proteins contribute to this 

phenomenon, or that open chromatin shows preferential recovery through the 

immunoprecipitation process. Indeed, the latter property underlies methods such as 

FAIRE and Sono-seq, which are aimed at globally recovering open chromatin regions 

[44, 132]. 

This pattern of the Hsf1 ChIP-seq signal is informative with regard to how 

background peaks derived from expression bias might be related to true occupancy in 

some cases. The strong background starts just downstream of the true Hsf1 binding site 

and gradually tapers off toward the 3’ end of the gene (Figure 3.11). This tail structure 

suggests a model in which high TR genes that are opened by the transcription process 

facilitate the expression bias. The transcription machinery and co-factors are recruited 

onto the open chromatin of heat-activated genes upon heat shock in conjunction with 

Hsf1 recruitment. The close proximity of Hsf1 to this transcription machinery can allow 
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them to be cross-linked and co-immunoprecipitated. We speculate that this proximity 

effect of HSF1 around open chromatin generates the tail structure observed. The 

expression bias in the other ChIP data may similarly be derived from these open 

chromatin interactions. Importantly, to the extent that the expression bias is always 

related to transcriptional activity, and will be observed most strongly when a transcription 

factor capable of interacting with chromatin is immunoprecipitated after crosslinking, this 

background is essentially indistinguishable from true "biological" targets, especially 

when the true targets are seen at low levels. Our data address this phenomenon only in 

yeast ChIP-seq data, but conceivably, this could extend to ChIP-seq experiments in other 

eukaryotes as well. For example in mammals, cell-type or tissue-specific open chromatin 

is known to occur at promoters and enhancers [133]. A similar phenomenon as we 

described here for yeast could in part explain observations of hotspots of transcription 

factor binding and instances of neutral transcription factor binding, where such apparent 

binding has no biological meaning [134, 135]. 

The nucleosomal periodicity observed in input and non-target regions from ChIP 

may be the result of the high susceptibility of linker DNA to shearing. Linker DNA is not 

protected by histones and may be easier to break by shearing. As a result, the ends of 

sheared DNA even in the input are more likely to be in linker DNA and have a higher 

chance of being ligated by sequencing adapters. The resulting sequenced fragments 

would show the nucleosomal periodicity that is typically observed in MNase-seq 

experiments (Figure 3.14).  
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Figure 3.14 Transcription depletes nucleosomes 

Both H3 MNase ChIP [77] and MNase-seq from our lab showed lower nucleosome 
occupancy in the top 100 highly transcribed genes under normal growth conditions 

These low-level nucleosomal periodicity signals are not typically of concern in 

transcription factor ChIP because these experiments usually focus on stronger peaks at 

regulatory elements. However, the background nucleosomal periodicity may give a 

misleading picture when analyzing ChIP-seq against proteins that are localized within 

gene bodies, such as RNAPII-associated factors or chromatin remodelers, which do in 

fact associate with nucleosomes and/or demonstrate peaks in a similarly low range to the 

nucleosomal background. Our findings urge careful choice of ChIP-seq normalization 

controls and call for caution in interpreting the signals from ChIP-seq datasets showing 

transcription dependent occupancy of proteins over coding regions. 
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Chapter 4 Genome-wide Chd1 Co-occupancy with Early 

Transcription Elongation Factors 

 
4.1 Abstract 

Chromatin in yeast consists of well-organized nucleosomes that are controlled by 

adenosine triphosphate (ATP)-dependent chromatin remodeling complexes. One 

remodeler, chromodomain helicase DNA binding protein 1 (Chd1), plays an integral role 

in nucleosomal organization as the loss of Chd1 is recognized to cause widespread 

disruption. Despite its importance, the functional and physical localization of Chd1 on 

chromatin remains largely unknown and controversial. Here, we quantitatively showed 

that the deletion of CHD1 significantly disrupted nucleosome arrays within the gene 

bodies of highly transcribed genes. Further, using ChIP-seq followed by a quantitative 

comparison of peak shapes, we found that the structure of the Chd1 occupancy signal for 

gene bodies was highly similar to that of RNAPII Ser 5-P, not RNAPII Ser 2-P. Follow-

up experiments revealed that local RNAPII Ser 5-P occupancy was altered in the chd1Δ 

strain whereas the deletion did not affect RNAPII Ser 2-P occupancy, suggesting that 

Chd1 is associated with early transcription elongation. Previous studies had suggested 

that Chd1 is associated with a methylated histone, H3K36me3, found in highly 

transcribed gene bodies. To investigate this possibility, we mapped genome-wide Chd1 

occupancy in a strain lacking the histone methyltransferase for H3K36 (i.e. set2Δ). 

Unexpectedly, deletion of SET2 did not appear to affect either nucleosome positioning or 
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Chd1 occupancy. Therefore, it is reasonable to conclude that Chd1 is recruited onto the 

gene bodies of highly transcribed genes in a Set2-independent manner. 

 

4.2 Introduction 

A nucleosome represents the basic unit of chromatin and is typically composed of 

~147 bp DNA wrapped around a histone octamer. The biochemical modification and 

physical position of individual nucleosomes play a critical role in both the structure and 

transcriptional regulation of chromatin [136]. The advent of microarray and deep 

sequencing technology has allowed us to comprehensively map nucleosomes and has 

revealed that nucleosome arrays are well organized in vivo [24, 137, 138]. The conserved 

organization is comprised of two main structures: (i) a nucleosome depleted region 

(NDR) flanked by -1 and +1 nucleosomes and (ii) well-positioned nucleosomes separated 

at regular distances by linker DNA. In vitro DNA-histone reconstitution assays and in 

vivo micrococcal nuclease (MNase) digestion experiments have shown that preferable 

DNA sequences and structural features on nucleosomes determine nucleosomal 

organization [138-140]. In addition, ATP-dependent chromatin remodeling complexes 

were also revealed to be key determinants of nucleosome organization [141]. High-

resolution mapping of chromatin remodelers on chromatin showed that the complexes 

demonstrate position specificity to nucleosomes relative to the transcription start site 

(TSS) [42].  

Chromatin remodeling complexes control nucleosome turnover, sliding, and 
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spacing, so it is somewhat surprising that the deletion of a single complex does not 

necessarily result in catastrophic disruption. That is, global nucleosome positions are not 

typically altered by a single deletion yet tend to be significantly disrupted by double or 

triple deletions [26, 27], which suggests that chromatin remodeling complexes operate 

with redundant functionality. Exceptions to this trend however can be observed. For 

example, in contrast to other chromatin remodelers, the singular loss of Chd1 severely 

disrupts well-organized nucleosome arrays in yeast [26, 28, 29].  

Originally, high-throughput experiments exploring the functional localization of 

Chd1 in Schizosaccharomyces pombe reported that nucleosome arrays in a strain deleted 

for CHD1 were more disorganized at highly transcribed genes [29]. A more recent high-

throughput study however showed that genes with high and low transcription rates are 

equally disrupted [28]. Though conflicting in their interpretations, the two papers actually 

reported very similar nucleosome profiles. Their divergence highlights lacks of a 

definitive quantitative method for the comparison of nucleosomal periodicities.  

Low-throughput studies regarding the physical localization of Chd1 showed that 

Chd1 localizes on highly transcribed genes and interacts with transcription elongation 

factors [142, 143]. Consistent with these observations, Chd1 ChIP-seq confirmed the 

localization of Chd1 within gene bodies and with high enrichment at highly transcribed 

genes [26]. Interestingly, the average nucleosome profile of chd1Δ showed that the extent 

of disruption was particularly strong at +2 and later nucleosomes, implying that Chd1 

works in non-promoter regions [26, 28, 29]. Although a conflicting report was recently 
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published showing Chd1 binding to promoters [126], the Chd1 association with 

transcription elongation continues to be observed. For example, the loss of transcription 

elongation factors leads to serious nucleosome disruption, and transcription elongation 

factor mutants display patterns of disorganization very similar to those of chd1Δ [144, 

145]. While evidence of the physical and functional association of Chd1 with 

transcription elongation factors continues to accumulate, the exact transcription 

elongation step involved remains unknown.  

Chd1 has two chromodomains that are known to interact with H3K4me3 [146]. In 

fact, recent mass spectrometry experiments following H3K36me3 IP from 

mononucleosomes linked Chd1 to H3K36me3 [147]. Two additional independent studies 

clarified that deletion of CHD1 does not affect the levels of H3K36me3 but rather moves 

the distribution of H3K36me3, not H3K4me3, upstream in the gene bodies [31, 147]. 

This is significant because it suggests that Chd1 plays a role in maintaining the 

positioning of H3K36me3. 

In this study, we first quantitatively compared the shapes of nucleosomal peaks 

between the WT and chd1Δ strains by mathematically smoothing signals and then 

calculating the Pearson correlations for each gene. This novel approach (termed 

‘shapeDiff’) revealed that Chd1 function is more important at highly transcribed genes. 

Next, to determine where within these highly transcribed gene bodies Chd1 localizes, we 

mapped the occupancy of the initiating and elongating forms of RNA polymerase, 

RNAPII Ser 5-P and Ser 2-P, respectively. Then, we compared these peak shapes with 
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those of Chd1. A strong similarity between Chd1 and RNAPII Ser 5-P peak shapes 

suggested that Chd1 co-occupied with early transcription elongation factors. We also 

found that the local RNAPII Ser 5-P peak shapes were altered when CHD1 was deleted. 

Lastly, we tested the possibility that methylated H3K36 may determine Chd1 occupancy. 

The mapping of Chd1 in set2Δ revealed that methylation levels at H3K36 have no effect 

on Chd1 occupancy and nucleosome organization. 

 

4.3 Materials and Methods 

4.3.1 Yeast strains and cell culture 

The S. cerevisiae BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was used as 

a wild type strain and background genotype for chd1Δ and set2Δ. chd1Δ strain in Figure 

4.1B was obtained from the yeast deletion collection (Open Biosystems) [112]. For 

chd1Δ strain in Figure 4.1A, we deleted CHD1 by replacing the protein coding region of 

CHD1 with the His3MX6 cassette.  

All cells were cultured in YPD (yeast extract, peptone, dextrose) media at 30 

°C to an A600 OD of 0.8 with shaking 250 rpm. For a heat shock sample, harvested cells 

were incubated in 39 °C water bath for 15 mins, treated with formaldehyde, and then 

stored at -80 °C. To tag endogenous Chd1, 13Myc-His3MX6 cassettes were amplified 

from pFA6a-13Myc-His3MX6, and transformed into WT or set2Δ [148]. The cassettes 

were integrated into the CHD1 stop codon, and 13XMyc at the C terminal of Chd1 was 

confirmed by PCR and western blot.  
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4.3.2 Western Blot 

Whole cell extracts were prepared from 30 ml culture of 0.8 OD WT and set2Δ 

cells carrying endogenous 13XMyc tagged Chd1. 30 ul of each extract was run on a 4-20 

% gradient SDS-polyacrylamide gel and transferred to a PVDF membrane. In order to 

confirm 13XMyc tagging of Chd1 and compare the levels of Chd1 expression between 

WT and set2Δ, we detected Chd1 using HRP-conjugated c-Myc antibody (Santa Cruz 

Biotechnology, 9E10, cat.# sc-40). Reduced levels of H3K36me3 in set2Δ were probed 

with anti-Histone H3 (tri methyl K36) antibody (Abcam, cat# ab9050), and GAPDH 

antibody (Santa Cruz Biotechnology, FL-335, cat.#sc-25778) was used to visualize 

loading control proteins. 

4.3.3 Chromatin Immunoprecipitation 

150 ml cells were treated with formaldehyde to be a final concentration 1 % for 

15 min, then quenched with glycine to a final concentration of 125 mM for 5 min. The 

DNA-protein complexes were sheared by ultra-sound sonication, then incubated 

overnight with 100 μl of anti-Myc conjugated agarose beads (Sigma Aldrich, cat.# 

E6654), 8 μg of RNAPII Ser 5-P specific antibody (Abcam, cat.# ab5131), and 8 μg of 

RNAPII Ser 2-P specific antibody (Abcam, cat.# ab5095) to pull down Chd1, RNAPII 

Ser 5-P and, Ser 2-P, respectively. Then, for RNAPII ChIP, 100 μl of pre-washed protein 

A beads were added and incubated for 4 hours. After serial wash steps, 

immunoprecipitated DNA was recovered with overnight incubation at 65°C water bath 

followed by ethanol precipitation. Subsequently, sequencing libraries were prepared 
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using NEBNext® ChIP-Seq Library Prep Master Mix Set (cat.# E6240L) and Bioo 

multiplex adapter for Illumina, then sequenced in Illumina HiSeq 2000.  

4.3.4 Mononucleosome isolation 

We followed the mononucleosome isolation protocol described in [24]. Briefly, 

cells were prepared as described above for ChIP by the quenching step and resuspended 

in 20 ml of zymolyase buffer. 250 μg of zymolyase (MP Biomedicals, cat.# IC320921) 

were added to make spheroplasts, then resuspended in 2 ml NP buffer. The spheroplasts 

were treated with MNase (Worthington Biochemical Corp., cat.# LS004797) at a 

concentration from 40 U-100 U for 10 min at 37 °C. The DNA-protein complexes were 

reverse-crosslinked in 10 mM EDTA and 1% SDS buffer with Proteinase K at 65 °C 

overnight. RNA was removed by RNase A treatment, then DNA was extracted with 

phenol-chloroform and purified by ethanol precipitation. Finally, DNA was run on an E-

gene (Invitrogen), and ~147 bp DNA fragments were size-selected. Library preparation 

and sequencing were performed as described above for ChIP-seq. 

4.3.5 Bioinformatics Analysis 

Sequencing reads were mapped onto the sacCer3 reference genome using bwa 

(version 0.6.2) with default options [73]. Wig files were generated from the bam files and 

loaded on the UCSC Genome Browser mirror to take snap shots. For shapeDiff analysis, 

genomic regions between TSS and PAS were divided into bins of 10 bp, and reads were 

counted. Then, the counts were smoothened using a built-in spline function in R with 

default parameters (R version 3.0.2). For a given gene, Pearson correlation coefficient 
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was calculated for the smoothened value of counts between two samples. This process 

was iterated for every gene that has TSS and PAS coordinate [149]. 

4.3.6 Accession number 

 The ChIP-seq data from this study have been deposited in the Gene Expression 

Omnibus (GEO) database under accession number GSE56061. The MNase-seq data are 

also available from GEO as accession number GSE56095. 

 

4.4 Results and Discussion 

4.4.1 A correlation-based comparison of nucleosome positioning  

Figure 4.1 Average nucleosome profile of chd1Δ 

Average nucleosome profiles for all genes show that nucleosome densities are reduced at 
the gene bodies of chd1Δ. The changes are stronger at later nucleosomes than early 
nucleosomes. Y-axis represents average read counts per million reads (M) (A) CHD1 is 
deleted using a His3MX6 cassette (B) Nucleosome disruption is consistently observed in 
a strain deleted for CHD1 by a G418 resistance marker 

As previously observed in both budding and fission yeast [26, 28, 29], the loss of 

Chd1 disrupted nucleosome organization within gene bodies (Figure 4.1A). We further 

confirmed this phenotype in the chd1Δ strain with a different resistance marker 



 

 98 

(Materials and Methods, Figure 4.1B). Although studies revealed that global nucleosome 

occupancy is altered, the challenge of identifying the specific genomic loci exhibiting a 

high level of disruption remained. Here, we developed a simple but powerful approach.  

MNase digestion followed by deep sequencing (MNase-seq) has been widely used 

in studies seeking (i) to define the positions of individual nucleosomes on a genome-wide 

scale as well as (ii) to investigate changes in nucleosome occupancy. The analysis 

pipeline adopted the use of peak calling algorithm implemented in ChIP-seq analysis [24, 

49, 50]. However, this approach remains three problems. First, the low and dense 

nucleosomal peaks in MNase-seq make analysis for challenging; traditional peak calling 

methods rely upon the ability to measure high, individual, and disperse peaks. Second, 

total number of nucleosome calling is correlated with sequencing depth [49], thus 

different sequencing depth can be mis-interpreted as nucleosome depletion or acquisition 

when two MNase-seq data sets are compared. Third, peak height can be varying by 

artifacts that occur as the result of different MNase digest concentrations [150], but this 

widespread artifacts have little effect on nucleosomal periodicity. Therefore, studies 

instead chose to use a different analytical tool – the Pearson correlation – as it 

conveniently offered a solution to these disadvantages. 

The Pearson correlation is a computational technique that can be applied to 

quantitatively compare two sets of MNase-seq data for levels of nucleosome occupancies 

at a given loci [150, 151]. It compares correlation coefficients and in doing so observes 

trends between data sets; by ignoring individual peak data in favor of comparative trends, 



 

 99 

the Pearson correlation mitigates the effect of MNase artifacts. Moreover, the Pearson 

correlation between two MNase-seq data sets at given genomic window is a more 

accurate quantification to compare nucleosome positioning as peak shape is a more 

informative indicator to measure nucleosome dynamics than the peak calling utilized 

with ChIP-seq.  

Figure 4.2 Examples of shapeDiff analysis 

Y-axis represents normalized read counts (A-B) Before performance of smoothing with a 
spline function: Spline smoothing removes the noisiness possibly led by low read 
coverage and produces the smooth pictures of nucleosome occupancy in ‘C’ and ‘D’. (C) 
MET14 has a high correlation coefficient due to the high similarity of nucleosome 
occupancy. (D) shapeDiff estimates the nucleosome occupancy similarity as 0.31 
between WT and chd1Δ at RPL37B gene body. 

Thus far, for our experiments MNase-seq analyzed via the Pearson correlation 

appeared to be the strongest plan, with one exception. Sequencing depth could pose a 
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critical problem as the noisy signals characterized by low sequencing depth could 

subsequently result in low correlations. In order to resolve this issue, we implemented a 

novel method called “shapeDiff analysis” wherein we smoothed nucleosome occupancy 

signals using a spline function as a preliminary step before the Pearson correlation 

(Figure 4.2A and 4.2B). Fortunately, due to the nature of the Pearson correlation, the 

process of normalizing sequencing depth (i.e. multiplying or dividing peaks by a scaling 

factor) should not affect any correlation calculations.  

In our first experiments using shapeDiff analysis, we began by comparing WT 

and chd1Δ strains, focusing on a window ranging from the transcription start site (TSS) 

to the polyadenylation site (PAS) for all genes with TSS and PAS annotation [149]. For 

example, MET14 has 4 distinct nucleosomes within the gene body, both for the WT and 

the mutant (Figure 4.2C); in accordance with the small nucleosome shifts observed 

between the two strains, shapeDiff measured a high correlation for the nucleosomes. In 

contrast, the densities of the +1 and +2 nucleosomes for RPL37B were visibly 

dramatically reduced in chd1Δ and shapeDiff showed that nucleosomal periodicity 

disappeared altogether at the 3’ end of the gene (Figure 4.2D).  

Globally, we observed that when comparing WT and chd1Δ nucleosome 

positioning the Pearson correlation is significantly lower at highly transcribed genes, 

indicating that the mutant nucleosome arrays experience greater disorganization at loci 

with high transcription rates (Figure 4.3B).  
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Figure 4.3 Functional Chd1 localization at highly transcribed genes 

(A) Upon heat shock, RP genes are highly down-regulated [120] and the nucleosome 
arrays are also significantly disorganized [24]. The disorganization extents at RP gene 
bodies by the loss of Chd1 are severer than that those by heat shock. (B) Nucleosome 
arrays are significantly disrupted at the gene bodies of highly transcribed genes in chd1Δ 
(D) Average nucleosome profile for RP genes confirms severe nucleosome disruption at 
RP genes by deletion of CHD1 

In order to understand the relative value of this chd1Δ disruption, we compared it 

to heat shock conditions – a biological phenomenon also known to disrupt the 

nucleosome organization of highly transcribed genes. Specifically, we compared (i) the 

correlation between WT ribosomal protein (i.e. RP) genes under normal conditions and 

heat shock and (ii) the correlation between RP genes in WT and chd1Δ strains. RP genes 
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serve as a good comparative measure for nucleosome occupancy affected by Chd1 

deletion because (i) they exhibit high transcription levels, (ii) they are dramatically 

repressed by heat shock conditions, and (iii) their nucleosomes are significantly depleted 

[24, 120]. For RP genes, the median correlation of nucleosome occupancies between 

normal and heat shock conditions in WT was 0.39, whereas the median correlation 

between WT and chd1Δ was 0.20. This suggests that the deletion of CHD1 more strongly 

depleted nucleosome arrays at highly transcribed genes than acute heat shock did (Figure 

4.3A and 4.3C). 

4.4.2 The Chd1 binding peak shape is similar to RNAPII Ser 5-P 

The first low-throughput experiments performing Chd1 ChIP followed by qPCR 

showed that Chd1 localizes within gene bodies [142, 152]. More recently, two high-

throughput studies characterized genome-wide Chd1 occupancy [26, 126], but they drew 

conflicting conclusions with respect to global Chd1 localization. One study performed 

native MNase ChIP-seq for Chd1 that was tagged with 3 FLAG repeats [126]; the authors 

showed that Chd1 bound to promoters. Another study used formaldehyde-treated ChIP-

seq after tagging Chd1 with 13 Myc repeats (i.e. Chd1-13XMyc) [26]; their results 

revealed that Chd1 localized within gene bodies. For our experiments, we repeated the 

latter approach, generating Chd1-13XMyc and immunoprecipitating Chd1 after 

formaldehyde treatment. Consistent with the latter study, we observed Chd1 occupancy 

within gene bodies (Figure 4.4A).  Additionally, we observed that Chd1 occupancy 

appeared similar to RNAPII signals, which are associated with various steps in 
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transcription. As such, we pulled down two different active elongating RNAPII (RNAPII 

Ser 5-P and RNAPII Ser 2-P) and performed deep sequencing to investigate whether 

Chd1 is associated with the early or late elongation step in transcription. From the initial 

wide view, Chd1 occupancy appeared indistinguishable between the published Chd1 

data, our own Chd1 data, RNAPII Ser 5-P occupancy, and RNAPII Ser 2-P occupancy 

(Figure 4.4A). When we zoomed in however and examined the Chd1 peak shapes at 

individual genes, surprisingly the Chd1 peaks appeared similar to the peaks of RNAPII 

Ser 5-P but not to those of RNAPII Ser 2-P (Figure 4.4B). To quantify this perceived 

similarity in peak shape we applied shapeDiff analysis for Chd1 and RNAPII (just as 

done before with nucleosome occupancy) as calculating the correlation for peak shapes 

demanded a more sophisticated approach than the simple measurement of peak height. 

Once again, the selected windows spanned from TSS to PAS for each gene. The 

correlation distribution of Chd1 and RNAPII Ser 5-P skewed towards a positive 

correlation (median = 0.54) but the distribution of Chd1 and RNAPII Ser 2-P was 

centered on 0 (median = 0.04)  (Figure 4.4C). The peak shape correlations confirmed that 

Chd1 is co-localized with early transcription elongation factors and not late transcription 

elongation factors. 
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Figure 4.4 Chd1 co-occupancy with RNAPII Ser 5-P 

Chd1 co-localizes with elongating RNAPII, and the binding peak shapes of Chd1 are 
highly similar to those of RNAPII Ser 5-P. (A) In a wide view, Chd1 occupancy is 
similar to localization of RNAPII Ser 5-P and Ser 2-P. (B) Zoomed-in snap shots for 
some highly expressed genes reveal that Chd1 peak shapes appear similar RNAPII Ser 5-
P peak shapes, but not Ser 2-P shapes. (C) The peak shapes of Chd1 are compared with 
the peaks of either RNAPII Ser5-P or Ser 2-P. Histogram of correlation coefficients 
shows that RNAPII Ser 2-P has no correlation with Chd1 at level of local peak shapes on 
a genome wide scale. In contrast, 2056 genes have over correlation coefficient 0.6 in the 
peak shape comparison between Chd1 and RNAPII Ser 5-P. 
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Figure 4.5 Loss of Chd1 leads to changes in local occupancy of RNAPII Ser 5-P 

(A) Zoomed-out snap shot cannot discriminate elongating RNAPII localization between 
WT and chd1Δ. (B) In a narrow view, the peak shapes of RNAPII Ser 5-P shift upstream 
at highly transcribed genes in chd1Δ, but RNAPII Ser 2-P peaks appear identical between 
WT and chd1Δ. (C) shapeDiff analysis quantifies the peak shape similarity of either 
RNAPII Ser 5-P or RNAPII Ser 2-P between WT and chd1Δ. The effect of CHD1 
deletion on changes in peak shape is much stronger for RNAPII Ser 5-P 
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4.4.3 The loss of Chd1 alters the peak shapes of RNAPII Ser 5-P  

Gene expression levels were only slightly altered by the loss of Chd1 [30, 32], but 

cryptic and antisense transcription were notably increased in the absence of Chd1 [28, 

29]. Based on these observations, we hypothesized that the loss of Chd1 does not lead to 

the complete delocalization of elongating RNAPII but rather alters its local positioning. 

To test this hypothesis, we mapped the occupancy of RNAPII Ser 5-P and RNAPII Ser 2-

P separately in a strain carrying chd1Δ. In the wide view of our results we did not 

observe changes in either elongating RNAPII occupancy (Figure 4.5A). When we 

examined individual peaks however, the peak shapes of RNAPII Ser 5-P were disrupted 

at some highly transcribed genes, especially RP genes (Figure 4.5B). In order to measure 

the peak shape similarities of elongating RNAPII between WT and chd1Δ strains on a 

genome-wide scale, we performed shapeDiff to generate correlations for each gene. 

Interestingly, RNAPII Ser 2-P was unaffected by the loss of Chd1 (median=0.69), but 

relative to WT the correlation in peak shapes for RNAPII Ser 5-P decreased by deleting 

CHD1 (median=0.38) (Figure 4.5C). This implies that Chd1 may regulate the 

processivity of early transcription elongation machinery but not late stage. 

4.4.4 The deletion of SET2 does not appear to affect Chd1 occupancy or 

nucleosome positioning 

Although Chd1 chromodomains interact with H3K4me3 [146], some evidence has 

suggested that Chd1 may functionally and physically associate with H3K36 methyl 

groups. First, Chd1 was shown to be associated with H3K36me3 by mass spectrometry 
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[147]. Second, H3K36me3 was shifted upstream by the loss of Chd1 whereas H3K4me3 

showed no change [31, 147]. Third, nucleosome disruption in chd1Δ occurred mainly at 

the +2 nucleosome as well as later nucleosomes where H3K36 methylation is more 

abundant than H3K4 methylation [26]. Fourth, H3K36me3 is a well-known mark within 

the gene bodies of highly transcribed genes during transcription elongation while we 

separately showed in our experiments that Chd1 localized within gene bodies as well 

[153-155]. Fifth, RNAPII Ser 5-P was co-purified with the H3K36 methyltransferase 

Set2 [156].  

Figure 4.6 Confirmation of SET2 deletion and H3K36me3 levels 

(A) Chd1 ChIP-seq in WT and set2Δ. Almost no read on the SET2 genomic region 
confirms that successful deletion of SET2 in the Chd1 ChIP-seq data. (B) Chd1 is tagged 
with 13 repeats of Myc. Deletion of SET2 does not affect the expression levels of Chd1, 
but the loss of Set2 significantly reduces H3K36me3 
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Figure 4.7 Chd1 localization on chromatin is Set2-independent  

(A, B) The peaks shapes of Chd1 binding are indistinguishable between WT and set2Δ. 
(C) shapeDiff analysis re-confirms that set2Δ has no effect on Chd1 occupancy on a 
genome wide scale. 

Based on this evidence, we hypothesized that Chd1 is recruited onto chromatin via 

the recognition of H3K36me3. To test this hypothesis, we generated a Chd1-13XMyc 

strain carrying a SET2 deletion and measured the Chd1 occupancy in the mutant. 

Sequencing data confirmed the successful deletion of SET2 in that only a few reads were 

mapped to the SET2 gene body (Figure 4.6A). Immunoblotting revealed that the levels of 

H3K36me3 were greatly reduced by loss of Set2, however the loss did not alter 
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expression levels of Chd1 (Figure 4.6B). Despite the evidence in support of our 

hypothesis, global Chd1 occupancy in set2Δ appeared identical to that in WT (Figure 

4.7A). Even looking more closely at a few individual genes, no changes were observed in 

the Chd1 peak shapes (Figure 4.7B). Additionally, shapeDiff analysis also revealed a 

high similarity between Chd1 occupancies in WT and set2Δ (median=0.71) (Figure 

4.7C). To place this in context, the shapeDiff analysis of two independent replicates WT 

Chd1 ChIP-seq yielded a median value of 0.65.  Thus, we concluded that loss of Set2 had 

no effect on Chd1 occupancy, suggesting that Chd1 occupancy within gene bodies is 

Set2-independent. This observation was also supported by the fact that set2Δ has normal 

nucleosome organization (Figure 4.8A and 4.8B). The average nucleosome profile of 

set2Δ displayed well-organized nucleosome arrays similar to WT as well as no difference 

in shapeDiff analysis. Therefore, we conclude that Chd1 is recruited onto chromatin in a 

H3K36 methylation-independent manner and that methylation at H3K36 has no effect on 

well-organized nucleosome arrays. 
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Figure 4.8 Loss of Set2 has no effect on nucleosome organization 

(A) Average nucleosome profile represents that high degree of overlap between WT 
replicates, and the similarity between WT and set2Δ is as close as the WT replicates 
similarity. (B) Peak shape comparison by shapeDiff shows that nucleosome occupancy in 
set2Δ has no difference from that in WT on a genome wide scale. 
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Chapter 5 Summary and Future Direction 

 

Using SMORE-seq described in chapter 2, we comprehensively mapped TSS and 

PAS at single-nucleotide resolution in yeast and identified potentially mis-annotated 

genes that have TSS within their internal coding regions. However, we cannot rule out 

the possibility that those genes are isoforms and have multiple start codons with different 

frequency of usage. One of the internal TSS genes is ISW1, which is a well-studied and 

characterized chromatin remodeler [147, 157]. If the ATG downstream of our reported 

internal TSS is the start codon of a new isoform, functional comparison between the two 

isoform Isw1 proteins for chromatin remodeling could prove illuminating. If the internal 

TSS is the only TSS for ISW1, the current SGD annotation is wrong and should be 

corrected as soon as possible for the community.  

 

Another key finding in chapter 2 is widespread bidirectional transcription in WT. 

Although the bidirectional nature of transcription has been previously reported [98, 158, 

159], the role of bidirectional transcripts in cells is largely unknown, and mechanistic 

models by which the ncRNA are controlled are poorly proposed. SMORE-seq in a variety 

of yeast strains that have slightly different promoters can elucidate how promoter 

sequences affect levels of bidirectional transcription. Additionally, SMORE-seq in TF-

deletion strains can provide clues for understanding the role of promoter-associated 

proteins in transcriptional directionality. 
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In chapter 3, we showed that unrelated TFs appear to bind to highly transcribed loci 

in ChIP-seq, and that this artifact was also present in ChIP-seq from some human cell 

lines. Recent large-scale analyses of co-occupancy showed that a large number of TFs co-

localize with RNAPII at highly transcribed genes [118, 119]. It is possible that this 

observation could be the ChIP-seq expression bias without any biological meaning. We 

also cautiously speculate that a portion of the signals reported at super-enhancers may be 

explained by the ChIP-seq expression bias because super-enhancers are bound by many 

TFs and are highly transcribed [160, 161]. Further and careful investigation is necessary 

to discriminate biologically meaningful signals from technically biased ones. To achieve 

this goal, affinity-purified naturally isolated chromatin (ORGANIC) profiling was 

proposed and shown to remove ChIP signals at known, potentially artifactual hotspots 

[43]. However, the native ChIP-seq data in Figure 3.10 of this dissertation were produced 

by the ORGANIC method, and the ChIP-seq expression bias was still observed [126], 

suggesting that the performance of ORGANIC could vary from sample to sample. 

Therefore, development of robust experimental and computational methods is critical to 

accurately map protein localization on chromatin on a genome wide scale.  

 

Another bias we showed in chapter 3 was a nucleosomal periodicity in ChIP-seq 

signals. For proteins that bind to gene bodies, this bias can suggest a misleading 

interaction of the immunoprecipitated proteins with nucleosomes. Therefore, input data 
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that are prepared in parallel (with the same extent of cross-linking and sonication) is an 

essential control to correctly analyze ChIP-seq data. 

 

From the chapter about the effect of Chd1 on nucleosomes, we saw that Chd1 binds 

to early transcription elongation regions in a H3K36 methylation independent manner. 

This study together with previous reports [26, 28, 30-32, 147] leaves three challenging 

questions: i) Why does loss of Chd1 have little effect on transcription and growth defects 

although nucleosomes are severely disrupted? ii) Why does loss of histone marks (e.g. 

H3K36me3) not affect either nucleosome positioning or occupancy of transcription 

elongation machinery? iii) How is Chd1 recruited onto chromatin? To speculate on the 

first question, it is important to note that nucleosome positioning regulates transcription 

[22], but conversely transcription elongation also influences nucleosome positioning [144, 

162]. The latter observation suggests that loss of Chd1 as a transcription elongation factor 

might slow down transcription elongation but not lead to significant change in the 

abundance of transcripts. Instead, a reduced transcription rate could disorganize 

nucleosome arrays. Regarding the second question, ChIP-seq for transcription elongation 

factors in the mutants and MNase-seq in the mutants may not be sensitive enough to 

capture the dynamic changes from ensembles of millions of cells. High-resolution 

biochemical methods could be more appropriate methods for monitoring the dynamics of 

chromatin-associated proteins at single molecule levels in single cells. Lastly, it is 

possible that transcription elongation factors recruit Chd1 onto chromatin based on the 
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observation that Chd1 directly interacts with the PAF complex and that occupancy 

patterns of Chd1 appear nearly identical to those of early transcription elongation factors. 

Therefore, Chd1 ChIP-seq in strains deleted for transcription elongation factors will be 

important experiments to examine to determine whether interaction of Chd1 with 

transcription elongation factors is essential for its localization on chromatin. 
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