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A variety of chemical routes exist for a wide range of nanomaterials with tunable 

size, shape, composition and surface chemistry. Of these materials, silicon (Si) and 

germanium (Ge) nanomaterials have been some of the most challenging to synthesize. 

Solution-liquid-solid (SLS) growth of Si was studied using tin (Sn) as the seeding metal. 

Si nanorods with narrow diameters can be grown by the decomposition of trisilane in hot 

squalane in the presence of Sn nanocrystals. Photoluminescence could be obtained from 

the Si nanorods by thermal hydrosilylation passivation. This colloidal synthesis could be 

further simplified to a single-step reaction procedure by the in situ formation of Sn seed 

particles. In addition to trisilane as a Si source, isotetrasilane, neopentasilane and 

cyclohexasilane were studied for Si nanorod growth: all three reactants enabled nanorod 

formation at lower growth temperatures. A monophenylsilane (MPS) enhanced growth 

was discovered for supercritical fluid-liquid-solid (SFLS) growth of Ge nanowires that 

enables the Ge conversion of ~100%. A variety of metalorganic compounds were studied 

for replacing pre-synthesized metal nanoparticles to induce Ge nanowire growth. 

Si and Ge nanowires are some of the most promising anode materials in lithium 

ion batteries (LIBs) because of their high lithium storage capacity. However, the 

significant chemical and physical changes that occur during cycling hamper their 
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practical uses. In situ transmission electron microscopy (TEM) techniques were 

conducted to observe and understand structural and interfacial changes of the Si and Ge 

nanowires during electrochemical cycling; and, therefore, resolving the problems with 

current anodes by materials modification. The in situ TEM experiments showed that the 

incorporation of Sn into Si nanowires can enhance their rate capability. But the enhanced 

Li diffusion leads to the premature pore formation in Si nanowires. Ge nanowires has 

been discovered the potential as sodium ion battery anodes after an initial activation with 

a lithiation step to amorphize the nanowires. 
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SECTION I:  SYNTHESIS OF SILICON AND GERMANIUM 
NANOSTRUCTURES 

Chapter 1: Introduction to Silicon and Germanium Nanostructures  

1.1 INTRODUCTION TO SILICON AND GERMANIUM NANOWIRE SYNTHESIS 

Nanowires is a nanostructure with diameters in the order of a nanometer and 

lengths ranging from micrometers to millimeters. Nanowires are an interesting class of 

materials with a wide range of applications, including field effect transistors,1,2 light 

emitting diodes,3,4 photovoltaics5,6 and high-performance lithium ion batteries.7,8 

Nanorods is a similar one-dimensional nanostructure with aspect ratio lower than 

nanowires. Figure 1.1 shows scanning electron microscope (SEM) image of gold (Au) 

seeded germanium (Ge) nanowires and transmission electron microscope image of Au 

seeded silicon (Si) nanorods. Since nanowires and nanorods are similar nanostructure 

with the only difference in aspect ratios and synthesized with basically the same growth 

mechanism, the following introduction of the synthetic methods will not differentiate 

nanorods from nanowires.   
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Figure 1.1 (a) SEM image of Au-seeded Ge nanowires and (b) TEM image of Au-
seeded Si nanorods. 

 

1.1.1 Seeded Growth of Nanowire 

In 1964, Wagner and Ellis reported the growth of Si whiskers from Au droplets in 

a chemical vapor deposition (CVD) system.9 This work introduced the term vapor-liquid-

solid (VLS) to describe the growth mechanism: the vapor refers to the reaction medium; 

the liquid refers to the fact that the metal seed forms a liquid alloy with the 

semiconductor; the solid refers to the crystalline nanowire that extrudes as the resulting 

product.10 The VLS growth process can be traced on the binary phase diagram. Figure 1.2 

shows the Au-Si binary phase diagram to rationalize the growth mechanism of Au-seeded 

Si nanowires. From the left side of the phase diagram, at a temperature above the eutectic 
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temperature, the Au seed particles start in the solid phase. Si precursors decompose into 

Si atoms, which diffuse into the Au particles (region I). Si keeps accumulating in the 

solid particle. When the composition of the particle passes the left liquidus line, the 

particle liquefies into an Au-Si alloy droplet (region II). After the Au-Si alloy droplet 

supersaturated with Si, Si precipitates from the liquid surface and crystallizes. 

Continually feeding of Si in this supersaturated system results in the growth of a 

crystalline Si nanowire (region 3). In this seeded growth, the nanowire diameter could be 

controlled by the diameter of metal seeds, while the length could be adjusted by the 

semiconductor-metal atomic ratio. 

 

 

Figure 1.2 Illustration of a typical growth of Au seeded Si nanowires. (a) Au-Si phase 
diagram: the arrows track the composition change as Si adding to Au and 
divide the growth process into three steps. (b) Schematics of the nanowire at 
different growth step. 

 

1.1.2 Solution-based Synthesis 

In1995�Buhro group developed the seeded growth of III-V semiconductor 

nanowires in solution and named their growth mechanism as solution-liquid-solid (SLS) 
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following the naming convention from VLS growth.11 The SLS has been shown 

effectiveness in growing both III-V semiconductor nanowires12–14 and II-VI 

semiconductor nanowires.14,15 The SLS growth of Si and Ge nanowires is more difficult, 

since they require much higher growth temperature. High boiling point solvents such as 

squalane, trioctylphosphine and octacosane must be used to reach the high reaction 

temperature (> 350oC) at atmospheric pressure. It has been recently shown that Si and Ge 

nanowires can be grown in solution by using those high boiling point solvents.16–18 

To overcome the limit of solvent, an alternative is to use the common solvents, 

such as hexane and toluene, and pressurize above their critical points to form the high-

temperature, high-pressure, supercritical fluid phase. Supercritical fluid enables high 

reaction temperatures that require for growing Si and Ge nanowires. This method is 

pioneered by Korgel group and named as supercritical fluid-liquid-solid (SFLS) growth. 

The SFLS method has been demonstrated success in producing high quality Si and Ge 

nanowires and also the capability of scaled-up production.19–22 

 

1.2 PHOTOLUMINESCENT SILICON NANOMATERIALS 

1.2.1 Light Emission from Silicon 

Si is an indirect band gap semiconductor, of which the top of the valance band 

and the bottom of the conduction band are not aligned in the momentum space. Due to 

the momentum conservation law, the recombination of the electron and the hole in the 

indirect band gap semiconductor must involve the absorption or emission of a phonon, 

where the difference between the electron and hole momentum is compensated by the 

phonon (Figure 1.3). The involvement of phonon makes the light absorption and emission 

highly inefficient in Si. 
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To improve the absorption/emission of Si, one of the approaches is to shrink the 

size of crystalline Si until it is smaller than its Bohr radius (~ 4.5 nm). When the electron 

and the hole are confined in such small nanocrystals, their wave functions would expand 

and overlap in momentum space, leading to the direct electron-hole recombination. This 

effect is known as quantum confinement.23 Quantum confinement could be achieved in 

not only 0-dimensional nanostructures, i.e. Si nanoparticles,24,25 but also in 1-dimensional 

nanostructures, i.e. Si nanowires and nanorods,26 when their diameters are approaching 

the Bohr radius. The density of states in quantum-confined nanostructures is also 

different from that of the bulk counterpart. Shrinking the size leads the energy density 

more close to a molecule or atom. This makes the photoluminescence (PL) can be 

adjusted by changing the size of quantum-confined Si nanomaterials. 

 

 

Figure 1.3 Schematics show (a) electron-hole recombination in an indirect band gap 
semiconductor and (b) overlapping of electron and hole wavefunctions in a 
quantum-confined nanostructure. 

1.2.2 Synthesis of Quantum-confined Silicon Nanomaterials 
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Up to date, many methods have been developed for synthesizing Si nanocrystals. 

Si nanocrystals embedded in the SiO2 thin film could be obtained by thermal annealing 

substoichiometric glass (SiOx, x<2) under inert atmosphere at temperatures around 

1100oC.27–29 Cannon et al. demonstrated that Si clusters could be obtained by the laser-

induced pyrolysis of silanes.30,31 Si nanocrystals could also be synthesized by the plasma-

induced dissociation of silane molecules.32,33 However, those methods either have poor 

control over the size distribution of Si nanocrystals or have low production yield. 

In 2006, Hessel et al. demonstrated the synthesis of Si nanocrystals by thermal 

decomposition of hydrogen silsesquioxane (HSQ).34 Figure 1. Illustrates the reaction 

pathway of this synthesis.25,35 HSQ is first annealed under forming gas at temperature 

ranging from 1000oC to 1400oC for an hour to form silicon crystallites embedded in SiO2 

matrix. Annealing temperature could control the size of nanocrystals. The obtained 

powder is then etched in a mixture of hydrofluoric acid and hydrochloric acid to form 

hydride-determinated Si nanocrystals, which can be passivated by alkenes through the 

hydrosilylation reaction. This method has good control over the size of the Si 

nanocrystals and is adopted by our group for the Si quantum dots study. 

However, synthesis of quantum-confined Si nanostructures in solution is still 

challenging. The difficulties come from the identification of suitable silicon precursor for 

colloidal synthesis, relative high crystallization temperature that beyond the processing 

range of most organic solvents, tendency to oxidize and different capping ligand 

chemistry.36 The exploration of the colloidal synthesis of quantum-confined Si nanorods 

will be the focus in this section.  
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Figure 1.4 (a-f) TEM images of alkene-passivated Si nanocrystals obtained at different 
annealing temperatures, (g) scheme of the synthesis of alkene-passivated Si 
nanocrystals by HSQ decomposition. 

 

1.3 SECTION OVERVIEW 

This section focuses on developing solution-based syntheses for one-dimensional 

Si and Ge nanostructures. Chapter 2 demonstrates the synthesis of Si nanorods by 
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trisilane decomposition in hot squalane in the presence of Sn nanocrystals. Bright 

photoluminescence has been induced in those Si nanorods by hydrofluoric acid etching 

and then hydrosilylation with 1-octadecene. Chapter 3 discusses a simplified, single-step 

reaction for colloidal quantum-size Si and Ge nanorods, where Sn seed particles prepared 

by in situ reduction of a molecular tin(II) complex by trisilane. Chapter 4 investigates 

isotetrasilane, neopentasilane and cyclohexasilane as reactants for Si nanorod growth.  

These polysilane hydrides were found to enable lower growth temperatures in solution 

than any other silane reactants used to date. Chapter 5 explores the SFLS growth of Ge 

nanowires using either Au or Ni seeds. It is found that the addition of monophenylsilane 

(MPS) could dramatically improve the yield and quality of both Au- and Ni-seeded Ge 

nanowires, producing straight nanowires with nearly 100% conversion of 

diphenylgermane (DPG) to Ge. Chapter 6 demonstrates that Ge nanowires can be 

produced using a wide range of commercially available metalorganic compounds as 

catalysts instead of pre-synthesized metal nanoparticles including those with Mn, Fe, Ni, 

Cu, Ga, In, Pb and Bi. Chapter 7 summarizes the conclusions from this section and 

provides ideas for further studies. 
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Chapter 2:  Luminescent Silicon Nanorods§ 

2.1 INTRODUCTION 

Many different nanomaterials can be made with controlled size and shape using 

colloidal synthesis1–4 and various strategies have been developed for semiconductor 

nanorods, including ligand-assisted growth,5–11 oriented attachment,12–14 and metal 

nanoparticle seed-induced solution−liquid−solid (SLS) growth controlled by the addition 

of capping ligands.15–17 Quantum-size nanorods are interesting because their optical 

properties can differ significantly from spherical nanocrystals.18 For example, radiative 

electron−hole recombination rates and other photophysical processes like Auger 

recombination can be significantly different in nanorods compared to nanocrystals19,20 and 

can lower thresholds for multiexciton generation (MEG)21 and optical gain,22 which are 

important for higher-efficiency photovoltaic devices and nanocrystal-based lasers. To 

date, silicon (Si) nanorods have been grown colloidally only in one instance by ligand-

assisted SLS growth using gold nanocrystal seeds.16 Although these nanorods were less 

than 5 nm in diameter and small enough for quantum confinement, they were not found 

to be photoluminescent.16,23 Bulk Si is a poor light emitter because of its indirect band 

gap, but nanoscale Si can exhibit bright luminescence because conservation of crystal 

momentum is relaxed24,25  and a variety of synthetic routes have been developed for 

producing luminescent colloidal Si nanocrystals.26–36 Kamins and co-workers37 have 

shown that gold seeds can quench photoluminescence (PL) in Si nanowires, at least in the 

case of those grown by the vapor−liquid−solid (VLS) approach. Therefore, Si nanorods 

grown using Au seeds may not have been luminescent because of Au contamination.  

                                                
§ This chapter appears in Nano letters 2013, 13, 3101-3105. 
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Other seed metals have been used to grow Si nanowires by VLS-like approaches, 

including Ni,38 Co,39 Cu,40 and Sn.41–47 The transition metals all create trap states deep 

within the Si band gap48 that could quench Si PL. Sn on the other hand does not create 

deep trap levels in Si;48 therefore, Sn was explored as a seed metal for Si nanorod 

synthesis in an attempt to generate luminescent colloidal Si nanorods. Here, we report 

that Si nanorods can indeed be synthesized using Sn seeds and show that these nanorods 

can exhibit bright photoluminescence. 

 

2.2 EXPERIMENTAL DETAILS 

2.2.1 Materials 

Diphenyl ether (Aldrich, >99%), bis[bis(trimethylsilyl)amino]tin(II) 

(Sn[N(SiMe3)2]2, Aldrich), sodium bis(trimethylsilyl)amide solution (Na[N(SiMe3)2], 

Aldrich, 1.0 M in THF), dodecylamine (98%, Aldrich), squalane (>95%, Aldrich) were 

purchased and used without further purification. Poly(vinylpyrrolidinone)-hexadecane 

(PVP/HDE) copolymer (Ganex V-216, MW= 7300 g/mol, product ID 72289D) was 

obtained from ISP Technologies, Inc. Trisilane (Si3H8, 100%) was purchased from 

Voltaix. 

2.2.2 Sn Nanoparticle Synthesis 

For the synthesis of 8 nm Sn nanoparticles, 2 g of PVP-HDE copolymer and 18 g 

diphenyl ether were degassed under vacuum at 80oC for 30 min, then blanketed with N2 

and heated to 180oC. A reactant solution of 348 µL of Sn[N(SiMe3)2]2 and 1800 µL of 

Na[N(SiMe3)2] in THF (1.0 M) was prepared in the glovebox and loaded into a syringe. 

Once the PVP-HDE solution reached 180oC, the Sn reactant solution was quickly injected 



 14 

through a septum into the hot solution. The reaction was maintained at 180oC for 30 min 

under N2 flow and then removed from the heating mantle to cool the reaction. 

The Sn nanoparticles were purified by washing with toluene and ethanol followed 

by centrifugation for three times. For a typical purification step, about 20 mL of toluene 

was added, followed by the addition of ethanol until the mixture began to appear slightly 

turbid. The mixture was then centrifuged to precipitate and isolate the nanoparticles. 

Excessive ethanol addition led to phase separation, which can be relieved by adding more 

toluene. Purified Sn nanoparticles were then dispersed in dodecylamine to concentration 

of 0.1 M based on total Sn composition, degassed and stored in a nitrogen-filled glovebox 

prior to use.  

2.2.3 Si Nanorod Synthesis 

The Si nanorod synthesis was carried out on a Schlenk line installed in a nitrogen-

filled glovebox. 10 mL of degassed squalane and a glass stir bar were added to a flat-

bottom flask and attached to the Schlenk line and heated to 410oC under N2 flow. In a 1 

mL vial, a reactant solution consisting of 125 µL of trisilane and 600 µL of the 

dodecylamine-dispersed Sn nanoparticles were mixed and drawn into a syringe equipped 

with a 6” needle. Immediately prior to injection, the stopcock valve was closed to isolate 

the flask. The reactant solution was then quickly injected into the hot solvent. After 1 

min, the stopcock valve was reopened and the heating mantle was removed to cool the 

reaction. (Caution: trisilane is pyrophoric and must be handled with care.)  

Si nanorods were purified by centrifugation for four times with toluene and 

ethanol mixture. The first precipitation with ethanol should be conducted carefully to 

prevent phase separation as described in washing Sn seeds. After washing, the nanorods 

were redispersed in chloroform.  
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2.2.4 Surface Passivation of Si Nanorods 

The dispersion of Si nanorods was dried in a Teflon cup, followed by addition of 

4 mL of 37.5% HCl and 10 mL of 40% HF. The Si nanorods were etched under vigorous 

stirring in the dark for 7 hours, and then isolated from the HF solution by centrifugation. 

After centrifugation, the supernatant was discarded. The precipitate was washed with 

ethanol, and then transferred to glass centrifuge tube and washed with chloroform. The 

precipitate was dispersed in 6 mL of 1-octadecene and loaded into a 10 mL syringe and 

injected into a sealed flask through a septum and degassed with several freeze-pump-

thaw cycles on a Schlenk line. The dispersion was then heated at 190oC for 15 hours 

under N2. The 1-octadecene passivated Si NRs were washed four times with toluene and 

ethanol, and then dispersed in chloroform for further characterization. 

2.2.5 Materials Characterization 

Low-resolution transmission electron microscopy (TEM) images were acquired 

on a FEI Tecnai Spirit Bio Twin operated at 80 kV. High-resolution transmission 

microscopy (HRTEM) images were acquired on a field emission JEOL 2010F TEM 

operated at 200 kV. TEM samples were prepared by drop-casting 5 µL of dilute Si 

nanorods dispersion in chloroform onto a 200 mesh carbon-coated 200 mesh copper TEM 

grid (Electron Microscopy Science). 

X-ray diffraction (XRD) was performed on a Rigaku R-Axis Spider 

diffractometer with an image plate detector using Cu Kα radiation (λ=1.54 Å) and a 

graphite monochromator. XRD samples were prepared by mixing a small amount of 

dried Si nanorods with a droplet of mineral oil and mounting on a cryoloop. 

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were 

obtained on a Thermo Mattson Infinity Gold FTIR spectrometer equipped with a Spectra-

Tech Thermal ARK attenuated total reflectance module. 
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X-ray photoelectron spectroscopy (XPS) was performed on a Krato Axis Ultra X-

ray photoelectron spectrometer, utilizing a monochromatic Al K X-ray source (h=1486.5 

eV), hybrid optics (simultaneously employing magnetic and electrostatic lens) and a 

multi-channel plate detector coupled to a hemispherical analyzer. Si nanorods were drop-

cast onto indium tin oxide (ITO) coated glass slides. Measurements were taken with the 

photoelectron take-off angle normal to the surface of the sample and 45o to the X-ray 

beam. All spectra were recorded using a single sweep with the aperture slot of 300 m by 

700 m. High-resolution spectra were collected with 20 eV pass energy. Spectra were 

collected at 0.1 eV intervals and 1500 ms integration time through a tungsten coil set at 

4.8 V bias with respect to the sample. The pressure in the analysis chamber was typically 

3×10-9 Torr during data acquisition. Sample charging was corrected by shifting the Si0 

2p3/2 to a binding energy of 99.3 eV. Background subtraction was done using a Shirley 

background model. The Si0 2p3/2 and Si0 2p1/2 peaks were fit with Voigt profiles (30% 

Gaussian character) centered at 99.3 eV and 99.8 eV, respectively, and the intensity ratio 

was held at 2:1, corresponding to the spin-orbit splitting ratio for p-orbitals. The Si1+, Si2+, 

Si3+, Si4+, and Si-C peak contributions were fit using Voigt profiles, which include 

contributions from both the 2p3/2 and 2p1/2 energy states. 

Photoluminescence (PL) spectra were acquired on a Varian Cary Eclipse 

fluorescence spectrophotometer using a quartz cuvette with a 10 mm optical path length. 

Si nanorods quantum yield was determined by comparing the integrated photon count of 

nanorod samples to a Rhodamine 101 standard in anhydrous ethanol. 

Photoluminescence lifetime was measured by applying the time-corrected single 

photon counting method, on a Fluorolog-3 spectrophotometer (Horiba Jobin Yvon) with 

InGaAs photomultiplier tube for visible detection and a Hamamatsu H10330-45 detector 

for NIR detection. 3.0 mL of 0.05 mg/mL Si nanorods solution was transferred into a 
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quartz cuvette and secured with the sample holder. A NanoLED with wavelength of 372 

nm was used as excitation light source, PL decay was measured at a detection wavelength 

of 695 nm, and the time resolution of the measurement was 0.2 ns. The PL decay data 

was fit by a double exponential curve. 

 

2.3 RESULTS AND DISCUSSIONS 

The Si nanorods were made by decomposing trisilane (Si3H8) in squalane at 410oC 

in the presence of Sn nanoparticles and dodecylamine. Trisilane has been shown to be a 

useful reactant for colloidal growth of Si nanowires49 and nanorods,16 as it rapidly 

decomposes to Si at temperatures below the boiling point of some high boiling solvents, 

like squalane. Sn has also been shown to be a good seed metal for supercritical 

fluid−liquid−solid (SFLS) growth of Si nanowires in solvents at slightly higher 

temperature,47 and with a low melting point (232°C) and formation of a eutectic with Si it 

can also seed SLS growth.50–53 Without addition of Sn or other metal seed particles, 

trisilane decomposes to amorphous Si particles.54,55 Dodecylamine is added as a size-

stabilizing ligand, as demonstrated first by Heitsch et al.16 for gold-seeded SLS Si 

nanorod synthesis. The as-made nanorods were non-luminescent. Only after a subsequent 

etching procedure to remove surface oxide and an organic capping ligand passivation to 

prevent further oxidation was luminescence observed from the Sn-seeded Si nanorods. A 

similar etching and passivation procedure carried out on Au-seeded Si nanorods did not 

lead to luminescent material. 
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Figure 2.1 (a) Low and (b) high resolution TEM images of of Sn nanocrystals used to 
seed Si nanorod synthesis. The interplanar spacing of 2.1 Å measured in the 
TEM image in the inset of (b) corresponds to (110) lattice planes of 
tetragonal Sn. 

Figure 2.2a shows a TEM image of Si nanorods produced by this method. The 

nanorods are relatively monodisperse with typical lengths of 10−20 nm and diameters 

ranging from 3 to 4 nm. X- ray diffraction (XRD) confirmed that the nanorods are 

crystalline, diamond cubic Si (Figure 2.3). Diffraction peaks are also observed from 

tetragonal Sn.  
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Figure 2.2 TEM images of as-made Sn-seeded Si nanorods prior to surface etching and 
passivation. The dark dots in (b) are Sn nanoparticles that peeled off from Si 
nanorods during cooling. 

 

Figure 2.3 XRD of Sn-seeded Si nanorods (a) as-synthesized and (b) after HF etching 
and hydrosilylation with 1-octadecene. Reference patterns are shown for 
diamond cubic Si (PDF no.: 01-077-2108) and tetragonal Sn (PDF no.: 01-
089-2958) 
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With an average diameter of less than 4 nm, the as-prepared nanorods are small 

enough for quantum confinement26 but do not luminesce. X-ray photoelectron 

spectroscopy (XPS) (Figure 2.4) showed that the surfaces of the nanorods were oxidized, 

and the presence of excess amine could be a source of PL quenching, as alkylamines are 

known to quench the PL of porous Si.56 Therefore, to induce PL from the nanorods, they 

were stripped of surface oxide by HF etching. Since alkenes are known to provide good 

surface passivation of luminescent Si nanocrystals,26,29,30 the nanorods were also 

passivated with 1-octadecene by a thermal hydrosilylation to prevent subsequent 

oxidation. Figure 2.5 illustrates the synthesis procedure.  
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Figure 2.4 XPS of Sn-seeded Si nanorods (A) as-synthesized, (B) after HF etch, (C) 
after hydrosilylation with 1-octadecene, and (D) after 2 months of air 
exposure. Data points represented by black circles were fit (black line) by 
separate peak contributions of the Si0 2p3/2, Si0 2p1/2, Si1+, Si2+, Si3+, Si4+, and 
Si−C signals. 
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Figure 2.5 (i−iii) Illustration of photoluminescent Si nanorod preparation. (i) Si 
nanorods are made by Sn-seeded SLS growth. (ii) Hydride-terminated Si 
nanorods are obtained by HF etching in dark. (iii) Hydride-terminated Si 
nanorods then react with 1- octadecene to grow an alkyl monolayer via 
thermal hydrosilylation. The octadecene-passivated nanorods are 
luminescent under UV excitation.  

 

Figure 2.6 Photos show the changes occurring during etching: (a) as-made Sn seeded 
Si nanorods after washing and drying; (b) bubbling is observed immediately 
after adding HCl; (c) the nanorods become yellowish brown, which is the 
color of Si nanocrystals. After etching, the weight of Si nanorods decreases 
by ~40%, indicating most of the Sn has been etched away.  
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After 1-octadecene passivation, the Si nanorods exhibit bright orange 

photoluminescence (Figure 2.7). The absorbance and photoluminescence excitation 

(PLE) and emission spectra of the nanorods are qualitatively similar to those of 

luminescent alkene-passivated Si nanocrystals, with relatively broad PL emission peak, a 

large apparent Stokes shift between the PLE and PL, and featureless absorbance spectra.26 

The fluorescence is relatively bright for nanorods with a PL quantum yield (QY) of 4.3%.  

 

 

Figure 2.7 (A) Room-temperature optical absorbance (red line), PLE (λem = 720 nm; 
black line) and PL spectra (λexc = 370 nm; blue line) of octadecene-
passivated Si nanorods dispersed in chloroform. (B) Photographs of (left 
vials) as-made and (right vials) 1-octadene-passivated Si nanorod 
dispersions under room and UV (365 nm) light. The as-made nanorods are 
not luminescent. The nanorods disperse in organic solvents and remain 
dispersed without settling for days. (C) The photoluminescence decay trace 
of passivated Si nanorods (λexc = 372 nm; λem = 695 nm). The PL decay 
lifetime was fitted by using a double exponential function (red curve). 

Figure 2.8 shows TEM and high-angle annular dark field scanning transmission 

electron microscopy (HAADF STEM) images of the nanorods after the etching and 
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passivation procedure. The etching and passivation procedure has little effect on the 

nanorod dimensions. XRD (Figure 2.3b) showed that the nanorods also retain their 

diamond cubic crystal structure with no loss in crystallinity. XPS (Figure 2.4b,c) 

confirmed that the etching and passivation procedure removes the surface oxide layer and 

leaves a covalently Si−C bonded organic monolayer. There are no perceptible oxide 

signals in the XPS of nanorods after hydrosilylation with 1-octadecene (Si3+ (102.6 eV), 

Si2+ (101.5 eV) and Si1+ (100.4 eV)). The prominent XPS peak at 102.0 eV in the 

passivated sample results from Si−C bonding of the ligand after hydrosilylation, 

confirming covalent ligand attachment.57 

 

 

Figure 2.8 (a) TEM images and (b) HAADF STEM image of Sn-seeded Si nanorods 
after 1-octadecene passivation. 

The octadecene nanorods imaged by high resolution TEM are crystalline with 

distinct interfaces. Figure 2.9 shows several high-resolution TEM images of the 

octadecene-passivated Si nanorods. Observed interplanar spacings are consistent with 

diamond cubic Si with mostly {111} lattice fringes appearing. Straight nanorods tend to 

have ⟨111⟩ growth direction, similar to Au-seeded Si nanorods.16 Many kinked nanorods 
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also appear in the sample, which often contain crystallographic defects, including twins. 

(111) twins are also a common defect in SFLS-grown Si nanowires.58  

 

 

Figure 2.9 (a−d) HRTEM images of Si nanorods after 1-octadecene passivation. (c) 
The nanorod on the left is straight and exhibits fringes corresponding to 
(111) interplanar spacings of diamond cubic Si. The nanorod on the right 
also exhibits {111} fringes, but changes growth direction in the middle. The 
nanorod in (d) provides an example of a twin defect. 
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ATR-FTIR spectra (Figure 2.10) are also consistent with effective surface 

passivation of the nanorods by hydrosilylation. FTIR spectra of the as-prepared nanorods 

have a broad band at 1070 cm−1 related to Si−O−Si stretches, which is consistent with the 

oxidized Si surface observed by XPS. After HF etching, the Si−O−Si signal has nearly 

disappeared and intense bands at 2103 and 2083 cm−1 corresponding to Si−H2 and Si−H 

stretching and at 903 cm−1 due to Si−H2 scissoring appear, consistent with H-termination. 

(The remaining weak absorption of Si−O−Si species at 1070 cm−1 most likely forms 

during the washing procedure, which leads to about 2 hours of air exposure.) After 

reacting with 1-octadecene, the absorption related to Si−H stretching and scissoring 

disappear, and strong sp3 C−Hx stretching absorption at 2853, 2919, and 2954 cm−1 as 

well as a sharp peak at 1462 cm−1 corresponding to C−CH3 deformations appear. 

Compared with Figure 2.10D, which shows an FTIR spectrum of 1-octadecene, C=C 

stretching at 1640 cm−1 and C−H2 sp2 carbon stretching above 3000 cm−1 are not evident 

in the passivated Si nanorod sample, further indicating that hydrosilylation has proceeded 

on the Si nanorods.  
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Figure 2.10 ATR-FTIR spectra of (a) as-prepared Sn-seeded Si nanorods, (b) HF-etched 
Si nanorods, (c) 1-octadecene passivated Si nanorods, and (d) pure 1-
octadecene. 

The etching procedure also removes Sn from the sample. After etching and 

passivation of the nanorods, Sn particles are no longer found in TEM images and Sn 

peaks are no longer observed by XRD. EDS (Figure 2.11) also shows no sign of residual 

Sn after etching and passivation. The removal of Sn during the etching procedure is also 

observed visually as the dispersion changes color nearly instantaneously after HF 

addition from dark brown to yellowish brown, the color of the pure Si nanorods (Figure 

2.6). One additional point here is that the same etching procedure does not work with Au-
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seeded Si nanorods. As shown in Figure 2.12, residual Au in the nanorods catalyzes HF 

etching of Si and damages the nanorods. It has not been possible to controllably etch Au-

seeded Si nanorods with HF without destroying the sample. The Sn-seeded Si nanorods 

on the other hand are reliably and controllably etched and passivated to yield the 

luminescent nanorod sample.  

 

 

Figure 2.11 (Left) EDS spectrum obtained from the region of 1-octadecene passivated Si 
nanorods shown in the (Right) HAADF STEM image.  There is no Sn 
signal.  The predominant Si signal confirms that the nanorods are 
composed of Si.  The Cu signal is from the Cu TEM grid and C and O are 
background signals.  
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Figure 2.12 TEM images of (a) as-made Au-seeded Si nanorods, and (b) Si nanorods 
after removal of the Au seed particles at the nanorod tips by Aqua Regia. 
The inset photos show the color change before and after Au removal. (c) and 
(d) show the Si nanorods after exposure to HF for 5 min. The dark particles 
are newly formed Au particles. (e) and (f) show the nanorods after one hour 
of HF exposure; the dark particles are newly formed Au particles. 
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The PL lifetime of the Si nanorods was also measured for comparison to spherical 

Si nanocrystals. The decay trace in Figure 2.7c exhibits two distinct decay times that can 

be fit with a double exponential function of the form59 

! ! = !! exp − t
τ!
! + !!! exp − t

τ!
!  

indicating that there are competing fast and slow electron−hole recombination processes 

that occur in the nanorods. Fitting equation to the data in Figure 2.7c gives values of τs = 

12.7 ns and τd = 838.8 ns. For comparison, the PL liftetimes were measured for spherical 

2.3 nm diameter 10-undecenoic acid-capped Si nanocrystals and found to have similar τs 

(14.9 ns) but shorter τd (494.2 ns). The nanorods, however, have a slightly larger average 

diameter (between 3 and 4 nm) than these nanocrystals. Since lifetimes increase with 

increasing nanocrystal size,60 further work is needed to verify whether the electron−hole 

recombination rates are indeed significantly slower in nanorods than in spherical 

nanocrystals of the same size.  

The 1-octadecene passivated Si nanorods remained luminescent after two months 

of storage in air, but the PL quantum yield decreased from 4.3 to 2.0%. XPS (Figure 

2.4d) showed that some oxidation occurred during this time with the appearance of a 

Si1+ suboxide peak. There is also a noticeable decrease in Si−C signal, which perhaps 

indicates that Si−O forms at the expense of Si−C bonds. The loss of Si−C passivation is 

probably related to the decreased quantum yield.  
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2.4 CONCLUSIONS 

Luminescent Si nanorods can be synthesized by SLS growth using Sn seeds. The 

as-synthesized material does not emit light, but can be made luminescent after HF etching 

and 1-octadecene surface passivation. The etching and organic ligand passivation 

procedure removes tin, surface oxide, and excess amine. XPS showed that the ligand 

passivated nanorods are relatively stable with respect to oxidation and retain most of their 

luminescence when stored in air. The data presented here confirm that the seed metal can 

significantly impact the optical properties of quantum-sized Si nanorods and need to be 

considered. Sn appears to be a relatively benign seed metal for Si nanomaterials. These 

luminescent Si nanorods now offer samples useful for a variety of future studies, 

including those focused on multiple exciton generation and optical gain.  
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Chapter 3:  A Single-Step Reaction for Silicon and Germanium 
Nanorods** 

3.1 INTRODUCTION 

Silicon (Si) and germanium (Ge) are two of the most widely used semiconductors 

in commercial electronic and optoelectronic devices, but they are poor light emitters and 

weak light absorbers due to their indirect band gaps. Si and Ge quantum dots, however, 

can exhibit very bright visible-light emission with size-tunable color and a variety of 

synthetic methods have been developed for Si and Ge nanocrystals.1–14 Quantum rods of 

Si also luminescence,15 and—like other semiconductor nanorods—should exhibit an even 

wider range of unique optical properties,16,17 such as enhanced birefringence,18 faster 

carrier relaxation,19 and higher photon absorption cross sections,20 but their synthesis is 

much less developed. 

Si and Ge nanorods have been synthesized by solution–liquid–solid (SLS) growth 

with capping ligand stabilization, using either gold (Au), bismuth (Bi) or tin (Sn) 

nanocrystals as seeds,15,21–24 and relatively bright photoluminescence was obtained from 

Sn nanoparticle-seeded nanorods after appropriate surface passivation.15 Alternative 

synthetic approaches developed for other types of semiconductor nanorods, such as 

oriented attachment25–27 and ligand-directed growth,28–32 probably cannot be applied to Si 

and Ge. Similar to vapor–liquid–solid (VLS) growth of nanowires,33–35 SLS growth relies 

on the use of a metal that forms a eutectic with the semiconductor to induce 

crystallization at relatively low temperature.36 To achieve nanorod growth—as opposed to 

much higher aspect ratio nanowires—the amount of semiconductor added to the reaction 

compared to seed metal is relatively low and capping ligands are introduced to prevent 

agglomeration.37 

                                                
** This chapter appears in Chemistry - A European Journal 2014, 20, 5874-5879. 
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This chapter reports that SLS-induced Si and Ge nanorods growth can be carried 

out using only a single reaction step, by adding a tin(II) complex instead of pre-formed 

Sn particles. This approach eliminates a reaction step, simplifies the synthesis, and 

improves reproducibility by eliminating the need for relatively unstable seed particles as 

reagents. Nanocrystals of low-melting metals like Bi,23,24,38–42 In,43,44 and Sn,15 that are 

needed for SLS growth can be difficult to prepare and introduce as stable reagents. In 

fact, the synthesis of these nanoparticles was the biggest challenge facing the early 

development of SLS nanowire growth and required new chemistry, like Kuno’s45 Au–Bi 

core–shell nanocrystals and Buhro’s38,39 poly(1-hexadecene-co-1-vinylpyrrolidinone) 

(PVP-HDE)-stabilized Bi nanocrystals. Small Au nanoparticles with depressed melting 

temperature37,46,47 were also explored, but usually still had melting temperatures that were 

too high to achieve relatively long nanorods. To circumvent the need for stable 

nanocrystals as reagents, Mews48 and Kuno49 both showed that CdSe nanowires could be 

made by adding bismuth salts instead of Bi nanoparticles. In their reactions, the capping 

ligand (trioctylphosphine) reduced the Bi salt to Bi nanoparticles in situ. Our work builds 

off Lu’s15 approach of seeding Si nanorod growth with Sn nanocrystals and the work of 

Chockla50 and Bogart,51 who have shown that direct injection of a tin(II) complex into a 

supercritical-fluid–liquid–solid (SFLS) growth reaction could seed Si nanowires. 

 

3.2 EXPERIMENTAL DETAILS 

3.2.1 Materials 

Bis[bis(trimethylsilyl)amino]tin(II) ([Sn(hmds)2] , Aldrich), trisilane (Si3H8, 

Voltaix), diphenylgermane (DPG, Gelest), dodecylamine (98%, Aldrich), octadecane 

(99%, Aldrich), squalane (>95%, Aldrich), trioctylphosphine oxide (TOPO, 99 %, Sigma 
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Aldrich), poly(vinylpyrrolidinone)hexadecane (PVP-HDE) copolymer (Ganex V-216, 

ISP Technologies, Inc.) were used without further purification. Solutions of PVP-HDE 

dissolved in dodecylamine (33% w/w), PVP-HDE in dissolved octadecane (33% w/w) 

and squalane were degassed under vacuum at 80oC for 45 min, and then stored in a 

nitrogen- filled glovebox prior to use. 

3.2.2 Nanorod Synthesis 

The synthesis was carried out on a Schlenk line operated inside a glovebox. For a 

typical growth of the Si nanorods, squalane (10 mL) was heated to 410oC under N2 flow 

in a flat-bottomed flask attached to the Schlenk line. Separately, a precursor solution 

consisting of PVP-HDE dodecylamine solution (1.2 mL), [Sn(hmds)2] (20 mL) and 

trisilane (75 mL) was prepared in a 3 mL vial, which immediately turned dark brown 

after mixing. The precursor solution was then drawn into a syringe equipped with a 6“ 

needle. Prior to injection, the stopcock valve was closed. The mixture was quickly 

injected through the septum into the hot solvent. After 1 min, the heating mantle was 

removed. The stopcock valve was closed throughout the whole reaction to reduce 

evaporation. (Caution: trisilane is relatively volatile, highly flammable and pyrophoric. It 

ignites spontaneously in air, creating a thermal burn risk. Must be handled with care!) Ge 

nanorods were synthesized using TOPO (4 g) and squalane (5 g) as the solvent. The 

solvent was degassed under vacuum at 85oC for 30min on a Schlenk line outside the 

glovebox, then moved into the glovebox for the reaction. The reaction temperature for Ge 

nanorods was 350oC. The precursor solution was prepared by combining PVP-HDE 

octadecane solution (1.2 mL), [Sn(hmds)2] (20 mL) and trisilane (2 mL). Once this 

solution turned dark brown, diphenylgermane (48 mL) was added and then injected as 

described for the Si nanorods. After 5 min, the reaction flask was removed the heat and 

allowed to cool to room temperature. 
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The as-obtained Si or Ge nanorod dispersion was diluted with toluene (10 mL) 

and transferred to a centrifuge tube. Ethanol (ca. 15 mL) was added and the solution was 

centrifuged at 1000 rpm for 10 min. The supernatant, which should be clear, was 

discarded. The precipitate was redispersed in toluene and washed by repeating the 

precipitation procedure at least three times. The final product was dispersed and stored in 

chloroform. 

3.2.3 Materials Characterization 

Low-resolution transmission electron microscopy (TEM) images were obtained 

on a FEI Tecnai Spirit Bio Twin operated at 80 kV. High-resolution transmission 

microscopy (HRTEM), high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM), and energy-dispersive X-ray spectroscopy (EDS) 

elemental mapping images were obtained on a field emission JEOL 2010F TEM operated 

at 200 kV equipped with an Oxford INCA ED spectrometer. Scanning electron 

microscopy (SEM) images were obtained on a Zeiss Supra VP SEM operated at 2 kV 

accelerating voltage and working distance of 5 mm. X-ray diffraction (XRD) 

measurements were performed on a Rigaku R-Axis Spider diffractometer using CuKα 

radiation (λ = 1.54 Å ︎ ). Small-angle X-ray scattering (SAXS) measurements were 

performed on a Bruker Nonius diffractometer with a Molecular Metrology system and 

Enraf–Nonius FR591 Cu anode (λ = 1.54 Å) operating at 3.0 kW. 

 

3.3 RESULTS AND DISCUSSION 

The single-step reaction of Si nanorods (illustrated in Figure 3.1) proceeds by 

injecting bis[bis(trimethylsilyl)amino]tin(II) ([Sn(hmds)2]), trisilane (Si3H8), and 

poly(vinylpyrrolidinone)hexadecane copolymer (PVP-HDE) into squalane at 410oC. 
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Squalane boils at around 420oC.21,22 Dodecylamine is typically added as a capping ligand 

to prevent agglomeration;21,22 however, it is possible to still make Si nanorods without 

dodecylamine, but more difficult to disperse them after purification. Key to the reaction 

is the in situ reduction of [Sn(hmds)2] by trisilane to form Sn nanoparticles. The Sn 

nanoparticles are stabilized by PVP-HDE and are about 8nm in diameter (see Figure 3.2). 

The precursor solution is injected into squalane at 410oC to initiate SLS growth of Si 

nanorods. Trisilane provides Si for nanorod growth and decomposes rapidly in the 

presence of the Sn seeds with the reaction reaching completion in one minute. 
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Figure 3.1 A single-step reaction for Si and Ge nanorods. The reactant solution of 
trisilane, PVP-HDE and [Sn(hmds)2] is injected into squalane (with 
dodecylamine) at 410oC. Sn nanoparticles capped by PVP-HDE formed by 
trisilane reduction seed the SLS growth of the Si (or Ge) nanorods. Ge 
nanorods are produced by injecting the reactant mixture including 
diphenylgermane (DPG) into squalane at 350oC. 
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Figure 3.2 Sn nanoparticles formed in situ for Si and Ge nanorod seeding: (a) and (b) 
TEM images and (c) HRTEM image of the Sn nanoparticles. (d) SAXS of 
nanocrystals dispersed in toluene. Best fits (solid line) of the SAXS data in 
i) plot I(q) versus q and ii) a Porod plot with I(q)×q4 versus q give an 
average nanocrystal diameter of 8.4±1.0 nm. The Sn nanoparticles are 
stabilized by PVP-HDE added to the reaction and are well-dispersed. They 
can be stored in the glovebox as a solvent dispersion for over a month 
without precipitation. 

Figure 3.3 shows TEM images of Si nanorods produced using this approach. The 

average diameter of the nanorods was typically between 6 and 7 nm (based on TEM 

images of about 50 nanorods per sample) and similar to the size of the Sn seed particles. 

The nanorod length could be tuned over a rather wide range by modifying the [Si]/[Sn] 
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molar ratio. Figure 3.3 shows nanorods made with four different average lengths, ranging 

from 25 to more than 100 nm. Very long nanorods were also possible, and aspect ratios 

exceeding 100 (i.e., nanowires) could be produced, as shown in Figure 3.4. These 

nanowires were made with a [Si]/[Sn] ratio of 400 and have lengths exceeding 1 mm. 

These very long nanorods required a longer reaction time of 10 min and the average 

diameter of 10 nm was slightly larger than the typical diameter of the shorter nanorods. 
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Figure 3.3 TEM images of in situ Sn seeded Si nanorods with varied [Si]/[Sn] atomic 
ratio calculated from the precursors in the synthesis: (a) [Si]/[Sn] = 24, the 
average length of the nanorods is 25 nm; (b) [Si]/[Sn]=36, the average 
length is 33 nm; (c) [Si]/[Sn]=48 the average length is 50 nm; (d) [Si]/[Sn] = 
60, it’s hard to give an average length of the tangled nanorods in this 
sample, but most of them are over 100 nm. 
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Figure 3.4 (a) SEM and b) and c) TEM images of high aspect ratio Si nanorods (i.e., 
nanowires) made with [Si]/[Sn]=400. The nanorods exhibit kinking at their 
ends, as highlighted by rectangle segments in b) and c), which indi- cates 
relatively unstable growth conditions at the beginning and end of the 
reactions. 

The nanorods were crystalline diamond cubic Si (see XRD in Figure 3.7, below) 

and tended to grow in the [111] direction (Figure 3.5 a–b). Nanorods grown in the [1-10] 

direction were also observed (Figure 3.5c) and were generally kinked, with stacking 

faults and twins (Figure 3.5 e–f) usually at {111} planes, as commonly found in other Si 

nanowires52–55 and nanorods.21,22 Longer nanorods (> 100 nm) made with [Si]/[Sn] ratios 

higher than 60 exhibited a significant amount of branching (Figure 3.3d), indicating that 

under these conditions the Sn seeds either fused or induced geminate nucleation of 

multiple nanorods.16,17,23 Much longer nanorods (> 1 μm ; i.e., nanowires), however, do 

not branch and have relatively straight midsections, but with significant kinking at their 

ends as seen in Figure 3.4b and c. Kinked growth usually indicates non-ideal growth 
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conditions, most likely related to the initial temperature drop that occurs upon reactant 

injection and reactant depletion at the end of the reaction.41,56 

 

 

Figure 3.5 HRTEM images of Si nanorods made with [Si]/[Sn]=400. (a) and' (b) 
Straight nanorods with [111] growth direction. (c) A straight nanorod with 
[1-10] growth direction. (d) A nanorod with one bend but no obvious crystal 
defect. (e) A nanorod with a dislocation. (f) A kinked nanorod exhibiting'a 
series of twins. The wavy lines show the traces of {111} lattice plane cross 
the boundaries in (e) and (f).  

The single-step reaction for Si nanorods could also be used to make Ge nanorods. 

Still using trisilane to reduce [Sn(hmds)2] to Sn nanocrystals in situ (with a concentration 

of [Si]/[Sn]=1), diphenylgermane (DPG) was introduced as a Ge reactant. Dodecylamine 

was replaced with trioctylphosphine oxide as a capping ligand, since dodecylamine forms 

stable, unreactive amine–Ge complexes.57 Figure 3.6 shows TEM images of Ge nanorods 
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with average diameter of 9 nm and length of 74 nm. Unlike the Si nanorods, the Ge 

nanorod length could not be easily manipulated and the product quality deteriorated 

significantly when reactions were carried out with higher or lower Ge concentrations. 

The Ge nanorods were also crystalline with diamond cubic crystal structure (see XRD in 

Figure 3.7). The primary growth direction of the Ge nanorods was <111>, with some 

bends associated with {111} twin defects. Overall, the Ge nanorods tended to be much 

straighter than the Si nanorods and there were many more Sn seeds still attached to the 

Ge nanorods than the Si nanorods. These differences might be related to the much slower 

decomposition of DPG compared to trisilane. 



 49 

 

Figure 3.6 TEM images of Ge nanorods seeded with in situ grown Sn seeds. (a) Sn 
seeds are observed at the ends of most Ge nanorods. (b) HRTEM image of 
the Sn/Ge interface at the end of a Ge nanorod: the Sn (101) planes are 
aligned with Ge (111) planes. (c)–(e) HRTEM images of three different 
segments of the nanorod in (f). 



 50 

 

Figure 3.7 XRD of (a) Si and (b) Ge nanorods produced in a single reaction step with 
Sn seed particles formed in situ during the reaction. (c) XRD of the Sn 
nanoparticles isolated from the precursor solution. The reference patterns 
(black lines) and PDF numbers are shown for diamond cubic Si, Ge, and 
tetragonal Sn. 

The interfaces between the Sn seeds and the Si and Ge nanorods were observably 

different. Most of the Ge nanorods still had Sn seeds at their tips, whereas many Si 

nanorods did not. It is fairly common for nanowires made by SLS reactions using low-

melting metals not to have significant numbers of seed particles remaining on their tips.49 
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In the case of Si, the much longer (> 100 nm) Si nanorods had many more Sn seeds 

remaining at their tips. Figure 3.8 shows high-angle annular dark-field (HAADF) 

scanning transmission electron microscopy (STEM) images and energy-dispersive X-ray 

spectroscopy (EDS) maps of Si and Ge nanorods with Sn seeds at their tips. HAADF-

STEM image contrast is very sensitive to atomic number (so-called Z-contrast imaging) 

and the Sn seeds are much brighter than the Si and Ge segments. EDS maps confirm that 

Sn is located in the seeds and that the nanorods are composed of Si or Ge. The HAADF-

STEM images also show that the interface between Sn and the Si and Ge nanorods has 

slightly different structure. Figure 3.9 shows a TEM of the interface between a Sn seed 

and an Si nanorod. The interface is somewhat diffuse and the Sn seed is separated from 

the Si nanorod by an amorphous segment. The seed itself consists of multicrystalline 

domains of Si and Sn. In contrast, the interface between Sn seeds and Ge nanorods is 

sharp and flat. There appears to be epitaxial inter- facing between Sn and Ge, as shown in 

Figure 3.6b, in which the Ge (111) planes align in parallel with the (101) planes of Sn 

with a sharp boundary between them. This difference could also explain the observed 

adhesion of the Sn seeds at the tips of Ge nanorods and not Si nanorods. 
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Figure 3.8 HAADF STEM images of (a) Si and (b) Ge nanorods with Sn seeds 
attached. The elemental maps of these nanorods confirm that the nanorod 
bodies are composed of Si and Ge, respectively, and that the seeds are 
composed of Sn. According to the quantified EDS data, less than 1 and 4 
at.% of Sn is observed in the Si and Ge nanorods, respectively. This is 
consistent with the very low Sn solubility in Si and Ge: the solid solubility 
of Sn in Si at the reaction temperature of 410oC is approximate 0.013 at.%, 
while the solid solubility of Sn in Ge at 350oC is as high as 1.1 at. %. 
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Figure 3.9 High-resolution TEM images of Sn-Si nanorod interfaces: (a) c-Si nanorods 
and c-Sn seed separated by an amorphous section; (b) c-Si nanorods with a-
Sn seed; (c) polycrystalline seed containing Si grains (yellow) and Sn grains 
(green) which are determined by the measurement of interplanar spacings: 
0.31 nm corresponds to (111) of diamond cubic Si; 0.29 nm corresponds to 
the (200) of tetragonal Sn.  

 

3.4 CONCLUSIONS 

In conclusion, Si and Ge nanorods with high crystallinity and controlled size can 

be obtained in a single reaction step by in situ Sn nanoparticle formation and seeding. 

Monodisperse Sn nanoparticles are generated during the reaction, which helps limit 

oxidation of the Sn seeds and improves repeatability and synthesis control. Furthermore, 

as this reaction is conducted in solvent under ambient pressure, it provides a convenient 

and fast way to prepare Si and Ge nanorods and significantly expands the synthetic 

conditions available to now make crystalline Si and Ge nanomaterials. Additionally, the 

use of Sn seeds for the Si and Ge nanorods is very well suited for use in lithium ion 

batteries as new electrode materials, as the incorporation of Sn into Si has been shown to 

have a beneficial impact on the lithiation properties of the materials.50,51,58 
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Chapter 4: Low Temperature Synthesis of Silicon Nanorods From 
Isotetrasilane, Neopentasilane, and Cyclohexasilane†† 

4.1 INTRODUCTION 
Crystalline silicon (Si) nanorods and nanowires can be obtained by metal 

nanoparticle-seeded solution-liquid-solid (SLS) growth in solution.1–5 This method 

requires a solvent, a silane reactant, and nanoparticles of a metal that forms a eutectic 

with Si, such as gold (Au) or tin (Sn). Similar to the vapor-liquid-solid (VLS) growth 

process for nanowires in the gas-phase,6,7 SLS growth involves the decomposition of a 

silane reactant to Si, which dissolves into the metal seed to form a liquid droplet and then 

recrystallizes at the droplet surface to form the nanowire. The rate of nanowire growth 

and the morphology of the nanowire depend sensitively on the rate of Si addition to the 

seed.8–10 A while back, we found that carbon-containing phenylsilanes, which are very 

effective for the synthesis of Si nanowires at higher temperatures in supercritical fluids10–

14 (i.e., by supercritical fluid-liquid-solid (SFLS) growth), are not sufficiently reactive at 

the lower SLS growth temperatures (<400oC) to produce nanowires or nanorods, and the 

much more reactive trisilane (Si3H8) must be used.1,2  Trisilane certainly works well for 

SLS growth of Si nanowires and nanorods, but still requires relatively high reaction 

temperatures (~400oC)—significantly higher than the eutectic temperatures of both Si/Au 

and Si/Sn—and we have been searching for silane reactants to make Si nanorods and 

nanowires at significantly lower temperature. Here, we show that Si nanorods can be 

produced at reduced temperatures using isotetrasilane (Si4H10), neopentasilane (Si5H12) or 
                                                
†† Manuscript submitted to Chemistry of Materials: Lu, X.; Anderson, K. J.; Boudjouk, P. and Korgel B. 
A. Low Temperature Colloidal Synthesis of Silicon Nanorods From Isotetrasilane, Neopentasilane, and 
Cyclohexasilane  
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cyclohexasilane (Si6H12).  Of these, cyclohexasilane enabled the lowest temperature 

growth, down as low as 200oC. 

 

4.2 EXPERIMENTAL DETAILS 

4.2.1 Materials 

Bis[bis(trimethylsilyl)amino]tin(II) (Sn(hmds)2, Aldrich), trisilane (Si3H8, 

Voltaix), isotetrasilane (Si4H10, Gelest, Inc.), neopentasilane (Si5H12, Gelest, Inc.), 

dodecylamine (98%, Aldrich), squalane (>95%, Aldrich), poly(vinylpyrrolidinone)-

hexadecane (PVP-HDE) copolymer (Ganex V-216, ISP Technologies, Inc.) were 

obtained commercially and used without further purification. PVP-HDE is dissolved in 

dodecylamine to make a 33% w/w copolymer solution. The copolymer solution and the 

squalane are degassed under vacuum at 80oC for 45 min, and then stored in a nitrogen-

filled glovebox prior to use.   

4.2.2 Nanorod Synthesis 

Si nanorod synthesis was carried out using a single-step Sn-seeded Si nanorod 

growth reaction similar to previously described methods.16 The reactions were carried out 

on a Schlenk line setup operated inside a nitrogen-filled glovebox.  In a typical reaction, 

10 mL of squalane was heated to 380oC under N2 flow in a flat bottom flask attached to 

the Schlenk line assembly. Separately, a precursor solution of 1 mL PVP-HDE 

dodecylamine solution (containing 27.5 mg of PVP-HDE), 20 µL of Sn(hmds)2 and 76 

µL of trisilane was prepared in a 3 mL vial, which immediately turned dark brown after 

mixing due to the formation of Sn nanoparticles. The precursor solution was drawn into a 

syringe equipped with a 6” needle. Prior to injection, the stopcock valve was closed. The 

mixture was injected through the septum into the hot solvent. After 3 min, the reaction 
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flask was removed from the heating mantle and allowed to cool to room temperature. The 

stopcock valve was closed throughout the reaction to reduce evaporation. In the other 

reactions, the precursor solutions were made of 70 µL of isotetrasilane, 68 µL of 

neopentasilane and 56 µL of cyclohexasilane, respectively, to maintain a consistent [Si] 

concentration in each reaction. Reaction temperatures ranging between 380oC and 180oC 

were explored.  

Si nanorods were purified by adding 10 mL of toluene to the crude reaction 

solution, transferring to a centrifuge tube, and then adding about 15 mL of ethanol 

slowly. The mixture was centrifuged at 1000 rpm for 10 min to isolate the products. The 

supernatant was discarded. The precipitate was redispersed in toluene and washed by 

repeating the precipitation procedure for three times. The final nanorod product was 

dispersed and stored in chloroform. 

4.2.3 Surface Passivation of Si Nanorods 

Si nanorods was dried in a Teflon cup, then 4 mL of 37.5% HCl and 10 mL of 

40% HF were added. The Si nanorods were stirred in the dark for 6 hours, and then 

isolated from the HF solution by centrifugation.  The supernatant was discarded. The 

precipitate was washed with ethanol, and transferred to glass centrifuge tube for the third 

wash with chloroform. After centrifugation, the precipitate was dispersed in 8 mL of 1-

octadecene and injected into a sealed flask with a 10 mL syringe. After degassing with 

three freeze-pump-thaw cycles on a Schlenk line, the dispersion was heated at 190oC for 

12 hr under N2. The 1-octadecene passivated Si nanorods were washed three times with 

hexane and ethanol, and then redispersed in toluene for further characterization. 

4.2.4 Materials Characterization 

Low-resolution transmission electron microscopy (TEM) images were acquired 

using a FEI Tecnai Spirit Bio Twin operated at 80 kV.  Samples were drop-cast from 
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chloroform dispersions onto carbon-coated 200 mesh copper TEM grids (Electron 

Microscope Science).  High-resolution transmission microscopy (HRTEM) images were 

obtained on a field emission JEOL 2010F TEM operated at 200 kV.  For high-resolution 

imaging, nanorods were drop cast onto 200 mesh copper TEM grids with lacey carbon 

(Electron Microscope Science) and found at the edge of the carbon support extended over 

the vacuum background. 

X-ray diffraction (XRD) was obtained on a Rigaku R-Axis Spider diffractometer 

with an image plate detector and Cu Kα radiation (λ=1.54 Å). Samples were prepared on 

cryoloops and scanned for 10 min at 10 deg/s sample rotation under radiation at 40 kV 

and 40 mA. 

Photoluminescence (PL) spectra and PL lifetime were acquired on a Fluorolog-3 

spectrophotometer (Horiba Jobin Yvon) with InGaAs photomultiplier tube for visible 

detection and a Hamamatsu H10330-45 detector for NIR detection, using a quartz cuvette 

with a 10 mm optical path length. The PL emission quantum yield was quantified by 

comparing the integrated photon counts of the nanorods to a Rhodamine 101 standard in 

anhydrous ethanol.  The PL emission lifetime was measured using the time-corrected 

single photon counting method. A NanoLED with wavelength of 402 nm was used as 

excitation light source and PL decay was measured at a detection wavelength of 655 nm.  
 

4.3 RESULTS AND DISCUSSION 

4.3.1 Silicon Nanorods Synthesis 

Figure 4.1 shows TEM images of Si nanorods obtained using trisilane, 

isotetrasilane, neopentasilane or cyclohexasilane in a single-step Sn-seeded SLS reaction 

conducted at a range of temperatures.  The yields of these reactions, the nanorod 
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dimensions and the overall product morphology are summarized in Table 4.1.   At 

380oC, all four silanes produce Si nanorods.  At a slightly lower reaction temperature of 

340oC, trisilane no longer produces nanorods.  The decreased reaction temperature leads 

to a reduced average nanorod length from 200 nm at 380oC to 65 nm at 340oC obtained 

using isotetrasilane and neopentasilane (Figures 4.1c and 4.1e).  With a further 

reduction of growth temperature to 320oC, isotetrasilane and neopentasilane no longer 

produced nanorods.  Cyclohexasilane on the other hand yields nanorods at growth 

temperatures as low as 200oC, which is even slightly below the Si-Sn eutectic 

temperature of 232oC. The trend of decreasing minimum growth temperature for Si 

nanorods with an increasing number of Si atoms in the reactant follows expectations 

based on experience from chemical vapor deposition (CVD) in which tetrasilane for 

example has lower activation energies than trisilane and disilane and can be used to depos 

amorphous silicon films at lower temperature.17 
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Figure 4.1 TEM images of Si nanorods obtained from Sn-seeded SLS reactions carried 
out at various temperatures with four different silane reactants: (a) trisilane 
at 380oC; (b) isotetrasilane at 380oC and (c) 340oC; (d) neopentasilane at 
380oC and (e) 340oC; (f) cyclohexasilane at 380oC, (g) 340oC, (h) 280oC, (i) 
240oC and (j) 200oC. The [Si]/[Sn] molar ratio was 35 in all reactions.  

 
Table 4.1 Summary description of the reaction products obtained using four different 
silane reactants to grow Si nanorods in a single-step Sn-seeded SLS reaction.  Si 
nanorod yields from Sn-seeded SLS reactions using four silanes carried out at different 
temperatures.a 

Temp. trisilane isotetrasilane neopentasilane cyclohexasilane 
380oC NRs (28.8%) NRs (32.3%) NRs (32.8%) NRs (54.6%)b 
360oC NRs (16.7%) NRs (31.2%) NRs (29.7%) NRs (63.7%) 
340oC short NRs (12.5%) NRs (23.1%) NRs (23.3%) NRs (49.5%) 
320oC - short NRs (13.9%) short NRs (17.0%) NRs (44.4%) 
300oC - - - NRs (45.3%) 
280oC - - - NRs (38.6%) 
260oC - - - NRs (42.5%) 
240oC - - - NRs, thin (33.3%) 
220oC - - - NRs, thin (30.5%) 
200oC - - - NRs, thin (25.1%) 
180oC - - - - 

 
a Since we do not know precisely the conversion of Sn reactant to Sn seed particles, the percentage 
production yield in parentheses is the quotient of the weight of dried product divided by the total mass of 
Sn and Si added to the reaction. If one assumes that Sn(hmds)2 fully converts to Sn nanoparticles, the 
minimum production yield for the reaction would be 10.8%, i.e. no Si is produced. 
b At 380oC, many Sn seeds detach from the Si nanorods, which makes some of the Si nanorods shorter than 
the Si nanorods obtained at 360oC and also seemed to result in lower yields at this reaction temperature. 
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In terms of reactivity, there is an important difference between cyclohexasilane 

and the other silanes.  The decomposition of acyclic silanes, i.e. trisilane, isopentasilane 

and neopentasilane, yields lower silanes, like monosilane and disilane, that are not 

utilized in the solution nanorod growth because these molecules are too stable and 

volatile and do not decompose to Si in an appreciable way. The high reaction yield of 

cyclohexasilane on the other hand is enabled to a significant extent by the formation of 

silylene intermediates in a ring-opening process,18 which are highly reactive and easily 

captured by the Sn seeds via chemisorption without Si atom loss. The high atom 

utilization of cyclohexasilane is reflected in both yield and nanorod morphology.  The 

cyclohexasilane-generated Si nanorods are significantly longer than those obtained from 

the other reactants.  Reactions carried out at 360oC gave nanorods with an average 

length of about 125 nm when trisilane, isotetrasilane or neopentasilane was used.  

Cyclohexasilane gave significantly longer nanorods with average length close to 300 nm.  

Cyclohexasilane also enabled thinner nanorods to be produced by decreasing the 

reaction temperature.  The nanorods had diameters of about 2-3 nm when grown at 

240oC (Figurs 4.1i and 4.1j) compared to 8-9 nm when grown at 380oC.  The nanorods 

grown at 200oC were produced below the Si-Sn eutectic temperature (232oC).  These 

nanorods most likely evolve solid Sn seeds.  Solid-phase seeding of semiconductor 

nanowires tends to give thinner nanowires compared to liquid-phase seeding19 and in situ 

TEM has also shown that the same catalyst material yields smaller diameter nanowires 

when growth occurs below the eutectic temperature.20 However, it is possible that the Sn 

nanoparticles at 200oC might be melted due to size-dependent melting point depression.21   
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4.3.2 Crystallinity and Crystal Structure 

All of the nanorods produced using the four different silanes were crystalline with 

diamond cubic Si crystal structure.  Figure 4.2 shows high resolution TEM images of Si 

nanorods made from the four different silanes at 380oC.  The nanowires are crystalline 

and have predominantly grown in the [111] direction. Figure 4.3 shows XRD patterns for 

nanorods made with all four silanes used in this study.  In all samples, the diffraction 

peaks from the Sn seeds are relatively strong.  This is due in part to the fact that Sn 

scatters X-rays more strongly than Si.  But there is also a significant amount of Sn in 

these reactions to seed the relatively short Si nanorods.  Of the nanorods grown at 

380oC, only those made with cyclohexasilane had Si diffraction peaks that were more 

prominent than the Sn-related peaks.  This matches the relative yields of the reactions 

and the relative lengths of the nanorods.  Cyclohexasilane gave higher conversions of 

reactant to Si and produced the longest nanorods. 
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Figure 4.2 HRTEM images of Si nanorods obtained from reactions at 380oC using (a-
b) trisilane; (c-d) isotetrasilane; (e-f) neopentasilane and (g-h) 
cyclohexasilane. 
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Figure 4.3 XRD of Si nanorods synthesized with Sn seeds using trisilane, 
isotetrasilane, or neopentasilane at 380oC, or cyclohexasilane at 380oC, 
280oC or 200oC. All curves are normalized to the Sn (200) peak height, 
except the pattern for the Si nanorods generated with cyclohexasilane at 
200oC.  The reference patterns and corresponding PDF reference numbers 
are provided for diamond cubic Si and tetragonal Sn.  

As shown in Figure 4.3, the diffraction peaks broadened for both Si and Sn as the 

nanorod growth temperature was lowered.  This diffraction peak broadening with 

reduced growth temperature is consistent with the observed reductions in nanorod 

diameter with decreased temperature that were observed by TEM (See Figure 4.1j for 

example).  The diffraction peaks from the nanorods made at 200oC are very broad, with 

significant overlap of the Si and Sn peaks. The nanorods are nonetheless crystalline, as 

further confirmed by TEM (Figure 4.4).   
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Figure 4.4 HRTEM images of the Si nanorods at 200oC with cyclohexasilane. The 
lattice fringes could be observed from those nanorods demonstrating that the 
Si nanorods obatained at such low temperature are still in crystalline phase. 

 
4.3.3 Photoluminescence 

None of the nanorods exhibited photoluminescence as synthesized.  However, 

the nanorods could be made to become photoluminescent by etching away the Sn seeds 

and passivating the nanorod surfaces. Figure 4.5 shows a luminescent sample of Si 

nanorods made at 260oC from cyclohexasilane.  Figure 4.5a shows a TEM image of the 

nanorods as synthesized.  The darker Sn see particles are clearly visible at the ends of 

the nanorods.  Figure 4.5b shows a TEM image of the sample after HF etching and 
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thermal hydrosilylation with 1-octadecene.  The Sn seeds are no longer present and the 

nanorods fluoresce red.  Figure 4.5c shows the PL emission spectra of the nanorods.  

The PL emission quantum yield of these nanorods dispersed in toluene at room 

temperature was 2%.  Generally, the absorbance and emission spectra of these Si 

nanorods are similar to alkene-passivated Si nanocrystals29-32 and Si nanorods made at 

higher temperature with trisilane and Sn seeds particles.3 Figure 4.5d shows the time-

dependent PL decay.  The time-dependent PL intensity (N(t)) data in Figure 4.5d fit well 

to a triple exponential:33 

# # (1) 

with characteristic lifetime values of τ1 = 30 ns, τ2 = 700 ns and τ3 = 8.5 µs.  It appears 

that there are three competing electron-hole recombination processes in the luminescent 

Si nanorods.  The microsecond lifetimes are characteristic of organic ligand-passivated 

Si nanocrystals.   
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Figure 4.5 TEM images of Si nanorods obtained from cyclohexasilane at 260oC (a) 
before and (b) after HF etching and thermal hydrosilylation with 1-
octadecene. (c) Room-temperature optical absorbance (blue line) and PL 
spectra (λexc = 425 nm; red line) of octadecene-passivated Si nanorods 
dispersed in toluene. (d) The photoluminescence decay trace of passivated 
Si nanorods (λexc = 402 nm; λem = 655 nm). The PL decay lifetime was fitted 
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to Eqn (1) (red curve) to obtain characteristic values of τ1 = 30 ns, τ2 = 700 
ns and τ3 = 8.5 µs.   

 

4.3.4 Dehydrogenation of Silane Reactants 

Figure 4.6 illustrates the mechanism of Sn-seeded Si nanorod growth.  In the 

single-step reaction approach, Sn nanoparticles are formed in situ from Sn(hmds)2 by 

reduction with silanes.5 The Sn nanoparticles can catalyze the dissociation of Si-H bonds 

and release hydrogen gas22 while the Si atoms dissolve into the Sn.  Si nanorods then 

crystallize from the alloyed droplet when the Si concentration is higher than the solubility 

limit.  The Sn-Si eutectic is located at 5×10-5 at.% Si and 1×10-4 oC below the melting 

point of Sn (231.9oC).23 Saturation of the Sn seeds with Si is readily achieved; in fact, it 

only takes a single Si atom to overcome the solubility limit in Sn.24 Some Sn seed 

particles grow up to 25 nm in diameter, and even these largest Sn seed particles only need 

5 to 6 Si atoms to become saturated.  This means that the decomposition of only one or 

two silane molecules can saturate a Sn seed particle and induce nanorod growth.   
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Figure 4.6 Illustration of Si nanorods synthesis using the example of cyclohexasilane. 
Sn(hmds)2 is firstly reduced into Sn nanoparticles at room temperature. 
After injected to the hot solvent, those Sn nanoparticles catalyze the 
decomposition of cyclohexasilane releasing hydrogen. The Si atoms 
dissolves into the Sn droplet forming Sn:Si alloy. When reaching the critical 
concentration, Si precipitates from the surface of alloy droplet and 
recrystallize into the Si nanorod. 

 

The nanorod growth rate depends on the rate that Si atoms are fed to the seeds, 

which is directly related to the silane decomposition rate.9,12  Si atoms are produced 

from the silanes by the dissociation of Si-H and Si-Si bonds.  The work by Shimoda et 

al.25,26 utilizing cyclopentasilane to make the amorphous Si films reveals that Si-Si bonds 

in the polysilane break around 280oC and Si-H bonds break above 300oC.  The Si-Si 

bonds break at lower temperature than required for Si-H dissociation. However, as Si-Si 

bond formation during crystallization of the Si nanorods is the reverse of the bond 

dissociation that occurs during reactant decomposition and does not require extra energy 

input, the difference in silane decomposition of the different reactants mostly reflects the 

different dehydrogenation pathways of the silanes, i.e. breaking of Si-H bonds.  The 

minimum nanorod growth temperature is therefore related to the Si-H bond dissociation 

energy (BDE) of the silanes.  The total Si-H BDE increases from 689.8 kcal/mol for 
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trisilane to 1010.4 kcal/mol for cyclohexasilane since there are a larger number of Si-H 

bonds in the cyclohexasilane molecule, but the Si-H BDE per Si atom drops significantly 

from trisilane (229.9 kcal/mol), isotetrasilane (216.1 kcal/mol), neopentasilane (208.6 

kcal/mol) to cyclohexasilane (168.4 kcal/mol).27,28 The reduced Si-H BDE of 

cyclohexasilane is consistent with the low nanorod growth temperature enabled by this 

reactant.  Furthermore, like the other cyclic silanes,25,26 cyclohexasilane is subject to the 

ring-opening process18 and forms the highly reactive silylene intermediates which is 

easily to be caught by the Sn surface via the silylene insertion. This also contributes to 

the low activation energy for cyclohexasilanes in the Sn seeded Si nanorod growth. 
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Table 4.2 Calculation summary of bond dissociation energy of various silanes. 
(kcal/mol) 

Silane Si-H BDE Si-H & Si-Si 
BDE 

Si-H BDE  
per Si 

Si-H & Si-Si 
BDE per Si 

 
(Si3H8) 

  

689.8 831.8 229.9 277.3 

 
(Si4H10) 

 

864.2 1077.2 216.1 269.3 

 
(Si5H12) 

 

1042.8 1326.8 208.6 265.4 

 
(Si6H12) 

1010.4 1418.4 168.4 236.4 

 

4.4 CONCLUSIONS 
Polysilicon hydrides are effective reactants for solution-based synthesis of 

crystalline Si nanorods.  These molecules degrade to Si at sufficiently low temperature 

with the necessary reactivity to generate crystalline nanorods with Sn seeds in high 

boiling organic solvents at ambient pressure.  Cyclohexasilane is able to generate Si 

nanorods at temperatures as low as 200oC.  The low volatility of the reactant also 

enables higher yields than the higher volatility trisilane for example, which leads to a 

significant loss of reactant by vaporization.   
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Now there is a reasonably wide choice of silicon reactants to generate significant 

yields of Si in solution under the typical reaction conditions used for other more common 

semiconductors.34,35  The next steps for colloidal Si nanomaterials chemistry involves 

the application of this chemistry to more complicated systems, like for example, 

heterostructures involving silicon—either axial or core-shell.  One of the ultimate goals 

in nanomaterials chemistry still remains an effective high yield route to crystalline Si 

nanocrystals with tunable size.  Perhaps polysilicon hydrides could provide a suitable 

reactant for these materials.  The challenge for nanocrystals is to somehow induce or 

enable their crystallinity at relatively low growth temperatures without the use of a 

crystallization promoter like Sn.  The silanes also evolve significant amounts of 

hydrogen and hydrogen is also known to lower the crystallization temperature of Si.  At 

any rate, polysilicon hydrides represent a potentially useful category of Si reactants for 

nanomaterials chemistry, which are largely unexplored.   
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Chapter 5: Enhanced Synthesis of Germanium Nanowires‡‡ 

5.1 INTRODUCTION 

Semiconductor nanowires have been proposed for many uses, including 

thermoelectrics, thin film transistors, chemical sensors, photovoltaics, as semiconducting 

fabric, membranes and lithium ion battery electrodes, which often require large quantities 

of nanowires at reasonable cost.1 Solution-based approaches of solution-liquid-solid 

(SLS)2–4 and supercritical fluid-liquid-solid (SFLS)5,6 growth provide versatile synthetic 

routes to semiconductor nanowires with tunable size and a wide range of compositions, 

including Si,7,8 Ge,9,10 III-V,11–14 IV-VI,15 and II-VI16–22 compounds, and even ternary 

CuInSe2.23,24 These methods rely on the use of metal particles to seed nanowire growth, 

usually at reaction temperatures exceeding a metal-semiconductor eutectic similar to 

vapor-liquid-solid (VLS)25,26 growth in the gas phase. For Ge nanowires, Au has been the 

most widely used seed metal for VLS and SFLS growth;9,27–40 it forms a relatively low 

temperature eutectic with Ge (361oC),41 induces the growth of high quality nanowires and 

is chemically inert. Au, however, is a relatively expensive metal and creates electronic 

traps in Ge.42 Therefore, a variety of other seed metals have been explored to grow Ge 

nanowires, including Ni,43–47 Co,44 Cu,44,48–50 Mn,44 Fe,44 Bi,10 Ag,51 and stainless steel.52 

However, there have been few direct comparisons of how these different seed metals 

influence nanowire growth.  

In our own search for a good alternative seed metal for Ge nanowires, we have 

observed significant differences between Au and Ni seeding of Ge nanowire growth in 

supercritical fluids. Au appears to catalyze the decomposition of the reactant 

diphenylgermane (DPG),53 whereas Ni does not. The supercritical reaction temperatures 

                                                
‡‡ This chapter appears in Chemistry of Materials 2013, 25, 2172-2177. 
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(<625oC) are well below the Ni:Ge eutectic temperature of 762oC and nanowire growth 

occurs through a solid phase seed, which can significantly influence the quality of the 

nanowires.43,46 Comparatively, Ni is a relatively poor seed metal compared to Au under 

typical growth conditions. However, we discovered that greatly enhanced DPG 

decomposition by addition of monophenylsilane (MPS) to the reaction can lead to 

extremely high quality Ge nanowires from Ni seeds with very high product yields, 

approaching 100% conversion of DPG to Ge. MPS is a typical reactant for solution-based 

growth of Si nanowires,5,8,54–59 but is employed here only as a phenyl group scavenger 

that does not participate in the growth reaction. Here, we report these findings.  

 

5.2 EXPERIMENTAL DETAILS 

5.2.1 Materials  

Anhydrous toluene (99.8%) was purchased from Sigma-Aldrich, 

diphenylgermane (DPG) and phenylsilane (MPS) were purchased from Gelest. Hydrogen 

tetrachloroaurate(III) trihydrate (≥99.9%), tetraoctylammonium bromide (98%), and 

sodium borohydride (≥98.0%) were purchased from Aldrich. Nickel(acetylacetonate)2 

(95%), trioctylphosphine (90%) and oleylamine (70%) were purchased from Aldrich. All 

chemicals were used as received. 

Au nanocrystals averaging 2 nm in diameter were prepared by Brust’s method.60 

Ni nanocrystals averaging 4 nm in diameter were prepared by the method of Hyeon’s 

method.61 The purified Au and Ni nanocrystals were redispersed in anhydrous toluene 

and stored in a glovebox. 
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5.2.2 Ge Nanowire Synthesis 

Ge nanowires were synthesized in a 10 mL titanium tubular reactor connected to a 

high pressure liquid chromatography (HPLC) pump as previously described.62 Au-seeded 

Ge nanowires were synthesized with a 28 mL reactant solution of 3.6 mg/L Au 

nanocrystals and 7.3 mM DPG in anhydrous toluene prepared in a nitrogen-filled 

glovebox. Ni-seeded Ge nanowires were made using a 28 mL reactant solution of 5 mg/L 

Ni nanocrystals and 7.3 mM DPG in anhydrous toluene prepared in the glovebox. 

Nanowires were also made by adding 7.3 mM MPS to the reactant solutions. Prior to 

precursor injection, the 10 mL titanium tubular reactor was filled with N2 in the glovebox 

and then connected to the six-way valve and the backpressure regulator at two ends. After 

the reactor was preheated to 500oC and pressurized to 10.3 MPa with anhydrous toluene, 

nanowire growth was carried out with the reactant solution fed into the reactor at a rate of 

0.5 mL/min for 40 min. The outlet pressure was maintained at 10.3 MPa. After 

completing the injection of the reactants, the reactor was sealed and removed from the 

heating block. The effluent was also collected during each reaction. After the reactor 

cooling to room temperature, the nanowire product was collected and washed with a 

mixture of 4 mL of chloroform, 2 mL of toluene and 2 mL of ethanol, followed by 

centrifugation at 8000 rpm for 5 min. The purification procedure was repeated three times 

to remove unreacted reagent and molecular byproducts. 

5.2.3 Materials Characterization 

Scanning electron microscopy (SEM) images were acquired on a Zeiss Model 

SUPRA 40 VP SEM with an in-lens arrangement, a working voltage of 5.0 kV and a 

working distance of 5 mm. The SEM samples were prepared by drop-casting Ge 

nanowires onto silicon wafers and drying. 
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Low-resolution transmission electron microscopy (TEM) images were acquired 

on a FEI Tecnai Spirit Bio Twin operated at 80 kV. High-resolution transmission 

microscopy (HRTEM) images were acquired on a field emission JEOL 2010F TEM 

operated at 200 kV. TEM samples were prepared by drop-casting 5 µL of dilute Ge 

nanowire dispersion in chloroform onto a 200 mesh copper lacey carbon TEM grid 

(Electron Microscopy Science). 

X-ray diffraction (XRD) was performed on a Rigaku R-Axis Spider 

diffractometer with an image plate detector using Cu Kα radiation (λ=1.54 Å) and a 

graphite monochromator. XRD samples were prepared by mixing a small amount of 

dried Ge nanowires with a droplet of mineral oil and mounting the mixture on cryoloop. 

Gas chromatography-mass spectrometry (GC-MS) data were obtained using a 

Thermo TraceGC interfaced to a Thermo TSQ triple quadrupole mass spectrometer 

operating in positive CI mode, with methane as the reagent gas. Samples were injected in 

splitless mode onto a Restek Rxi-5Sil MS column (30 m, 0.25 mm ID, 0.25 µm) with an 

injector temperature of 280oC, and separated at a constant flow of helium (1.2 mL/min) 

by ramping temperature from 40 to 320oC at 30oC/min. 

 

5.3 RESULTS AND DISCUSSIONS 

5.3.1 Ge Nanowires Grown with Au vs Ni Seeds 

We directly compared Ge nanowire growth in supercritical toluene using DPG as 

a reactant using Au and Ni nanocrystals as seeds. The optimum reaction temperature for 

SFLS growth of Ge nanowires from DPG using Au seeds is 380oC.33,62,64 Reactions at 

380oC using Ni seeds did not yield any nanowires and produced only microspheres and 

rods. It was necessary to raise the reaction temperature to 500oC to produce any Ge 
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nanowires with Ni seeds. But even at the relatively high temperature of 500oC, the yield 

and quality of Ge nanowires were relatively poor, especially compared to Au-seeded 

reactions. Figures 5.1A and 5.1B show SEM images of typical Ge nanowire product 

grown with Au and Ni seeds in supercritical toluene with DPG at 500oC. Although Ge 

nanowires grown with Au seeds at 500oC are not as pristine as those grown at 380oC, due 

to more severe Au seeds agglomeration and secondary growth of Ge on the existing Ge 

nanowires, the nanowires are still mostly straight and long with high aspect ratio and 

diameters ranging between 10 and 40 nm. In contrast, the Ni-seeded Ge nanowires are 

highly kinked and relatively short with low reaction product yield (20% conversion of 

DPG to Ge). 
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Figure 5.1 SEM images of Ge nanowires formed at 500oC with (a) Au nanocrystal 
seeds; (b) Ni nanocrystal seeds; (c) Au nanocrystal seeds with addition of 
MPS; (d) Ni nanocrystal seeds with addition of MPS. 

 

5.3.2 MPS Addition 

The addition of monophenylsilane (MPS) to the DPG reaction with Ni 

nanocrystals greatly increases the quality of Ge nanowires. See for example the SEM 

images in Figure 5.1d of the Ni-seeded Ge nanowires grown with addition of MPS. The 

nanowires are long and straight with average diameter of 14 nm and a relatively narrow 

diameter distribution. The reaction yield of the Ni-seeded nanowires is also very high 
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with a conversion of DPG to Ge of 92%. The difference in quality and yield of product is 

dramatic.  

MPS addition also improves the yield and quality of the Au-seeded reactions 

carried out at high temperature, as shown in the SEM images in Figure 5.1a and 5.1c. The 

Au-seeded nanowires grown with added MPS are noticeably straighter than those made 

without MPS present and the reaction yields are significantly higher. The Au-seeded Ge 

nanowires made at the higher temperature of 500oC have similar quality as those made 

without MPS under optimized conditions at 380oC. The yield of the reaction with MPS at 

500oC increases to nearly 100% from 30%, which represents a significant advance in this 

synthetic approach. Table 5.1 summarizes the yield of the various Ge nanowire growth 

reactions.  

Table 5.1 Molar conversion of DPG to Ge nanowire product for reactions in 
supercritical toluene at 500oC involving Au and Ni seeds with and without 
added MPS. The theoretical yield in the absence of MPS is 50%.53 

 

 

5.3.3 Role of MPS 

Figure 5.2 shows XRD data from Ge nanowires grown with Au and Ni seeds with 

and without MPS added. All of the XRD patterns index to diamond cubic Ge, indicating 

that MPS addition does not lead to significant Si incorporation into the nanowires. High-

resolution TEM determinations of the nanowire crystal structure and lattice spacing are 

also consistent with diamond cubic Ge. Figure 5.3 shows examples of TEM images of Ge 

nanowires grown with Ni seeds and added MPS. Ni germanide alloy is found at the tips 

Reaction DPG Conversion (%) 
Au seeds, no MPS 30.1 
Ni seeds, no MPS 20.4 

Au seeds, with MPS 93.5 
Ni seeds, with MPS 92.2 
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of the nanowires, similar to other Ni-seeded Ge nanowire growth studies.43-47 The [110] 

growth direction is similar to other SFLS-grown Ge nanowires.6,43,46,63  

 

 

Figure 5.2 XRD of Ge nanowires made by decomposing DPG in supercritical toluene 
at 500oC with either Au or Ni seeds with or without MPS MPS added to the 
reaction. The seed particle and reactants are indicated beside each 
diffraction pattern. A reference pattern for diamond cubic Ge is provided 
(PDF no.: 03-065-0333.). 
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Figure 5.3 TEM images of Ge nanowires synthesized with Ni seeds and added MPS. 
(a) The core of a Ge nanowire with (220) fringes perpendicular to the [110] 
growth direction; (b) Ge nanowire showing crossed {111} fringes at 35° to 
the [110] growth direction. The inset shows the corresponding FFT pattern 
indexed to diamond cubic Ge; (c) Ge nanowires with Ni3Ge at its tip. The d-
spacing of 0.36 nm in the tip corresponds to the (100) planes of cubic 
Ni3Ge. 

There is no evidence of Si incorporation into the nanowires (i.e., Si-Ge alloying) 

and no separate Si diffraction peaks are detected either. MPS is behaving as a spectator to 

nanowire growth, while significantly enhancing DPG decomposition kinetics. DPG 

decomposition proceeds by phenyl redistribution into germane and higher order 
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phenylgermanes, triphenyl germane (TPG) and tetraphenyl germane (QPG).53,65 The 

theoretical yield of Ge nanowires from DPG is only 50% because the TPG and QPG 

byproducts do not decompose,63 explaining the low nanowire yields in Table 5.1 using 

DPG (without added MPS). Also without MPS added, the Au-seeded reactions also have 

noticeably higher conversions of DPG to Ge nanowires than the Ni-seeded reactions. 

This is consistent with previous studies showing that Au has a catalytic effect on DPG 

decomposition.53 Ni apparently does not play the same role.  

With MPS was added, the Ge yield from DPG increases to more than 90%—both 

with Au and Ni seeds—which is well above the theoretical yield. At 500oC, MPS also 

undergoes phenyl redistribution, and decomposes typically to silane and tetraphenyl 

silane (QPS).8,54 In the presence of DPG, it appears that phenylsilane becomes a phenyl 

sink, withdrawing phenyl groups from DPG to form higher order phenylsilanes while 

pushing the distribution of DPG decomposition products towards Ge. This reaction 

pathway is consistent with stronger Si-C bonding compared to Ge-C.66 

 

5.3.4 Phenyl Redistribution between DPG and MPS 

The phenyl redistribution pathway between DPG and MPS was confirmed by GC-

MS analyses of reactor effluent. Figure 5.4 shows the GC-MS data obtained from Au and 

Ni seeded reactions with and without MPS. Without MPS added to the reaction, 

unreacted DPG is detected, along with significant TPG. QPG is not detected because it is 

insoluble and accumulates in the reactor. More DPG was observed in the effluent from 

the Ni seeded reactions than the Au seeded reactions, consistent with the lower product 

yield in those reactions.  

From reactions with MPS added, the predominant byproduct observed by GC-MS 

was TPS and very little TPG. Some unreacted DPG was still observed in the reactions 
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with Ni seeds, consistent with the slightly lower yields using Ni than Au. These data 

confirm that MPS enhances DPG conversion to Ge by withdrawing phenyl groups as 

illustrated in Figure 5.5a. With the addition of MPS, the theoretical yield becomes 100%. 

 

Figure 5.4 Gas chromatography spectra of effluents collected after different times from 
Ge nanowire growth reactions using (a) Au (no MPS), (b) Ni (no MPS), (c) 
Au with MPS, (d) Ni with MPS. Peak heights have been normalized to the 
highest peak in each column. (e) Mass spectra of major byproducts in the 
reaction.68 
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Figure 5.5 (a) DPG decomposition pathway with and without MPS. Ge nanowires form 
by SFLS or SFSS growth depending on whether the seed particles become 
liquid or remain solid; (b) Au-Ge41 and (c) Ni-Ge67 phase diagrams. 
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5.3.5 Ni vs. Au Seeding of Ge Nanowires 

The Ge nanowire growth kinetics are substantially different when seeded with Au 

than with Ni. One obvious difference between the two metals is their significantly 

different Au:Ge and Ni:Ge eutectic temperatures (Figure 5.5). Au-seeded growth occurs 

above the Au:Ge eutectic and Ge nanowires crystallize from liquid Au:Ge droplets; 

whereas, Ni-seeded Ge nanowire growth occurs at temperatures well below the Ni:Ge 

eutectic and nanowires evolve from a solid nickel germanide phase. A crystalline Ni3Ge 

seed at the end of a Ge nanowire is shown in the TEM image in Figure 5.3c. It is 

noteworthy that the Ni3Ge alloy has a relatively small lattice mismatch of less than 10% 

with Ge. One other difference between the two metals is that Au appears to catalyze DPG 

decomposition,53 whereas there is no evidence that Ni does. MPS addition to the Ni-

seeded nanowire reactions is needed to speed DPG decomposition enough to evolve high 

quality nanowires. The addition of MPS does not affect the Ni:Ge phase behavior—and 

nanowire growth still occurs from solid-phase seeds—but but DPG decomposition 

becomes sufficiently fast in the presence of MPS to lead to nanowires with few crystal 

defects.  

With sufficient reactant decomposition rates, one apparent advantage of solid-

phase seeding compared to liquid-phase seeding appears to be less agglomeration of seed 

particles, as first reported by Tuan, et al.43 The Ni-seeded nanowires (with MPS added) 

had a very narrow diameter distribution, much narrower than the nanowires produced 

with Au seeds. The average diameter of the Au-seeded Ge nanowires made in the 

presence of MPS was 40 nm. Thombare et al.46 have also observed similar diameter-

dependent differences in Ge nanowire growth from Ni seeds.  
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5.4 CONCLUSIONS 

Ge nanowire synthesis using Ni nanocrystals as seeds can be carried out in 

supercritical toluene using DPG as a reactant. However, unlike Au, Ni seeds are rather 

poor catalysts for Ge nanowire growth—unless an additive is present to speed DPG 

decomposition. DPG decomposes by phenyl redistribution to germane and higher order 

phenylgermanes like triphenylgermane and tetraphenylgermane. Ge incorporates into the 

nanowires by decomposition of germane, while TPG and QPG are unreactive. MPS was 

found to significantly enhance DPG decomposition and greatly improve Ge nanowire 

growth by withdrawing phenyl groups from DPG and serving as a phenyl sink to push the 

reaction product to germane. This enables the production of a high yield of straight 

nanowires with narrow diameters and narrow diameter distributions using Ni seeds.  

This study highlights the essential role of reactant decomposition kinetics and 

control for making high quality nanowires. The seed metal and its interaction with the 

semiconductor is obviously influential, but the rate at which the semiconductor is fed to 

the seed particle is also extremely important.  
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 Chapter 6:  The Use of Metalorganic Compounds for Growing 
Germanium Nanowires§§ 

6.1 INTRODUCTION 

Semiconductor nanowires exhibit properties that make them uniquely suitable for 

a variety of applications, especially those that require the electrical and optical properties 

of crystalline semiconductors with the mechanical flexibility of polymers.1–5 Because of 

the mechanical toughness and electrochemical properties, silicon (Si) and germanium 

(Ge) nanowires have gained significant interest for use as anodes in lithium and sodium 

ion batteries recently.6–10 Many of these applications require significant quantities of 

material that can be produced at reasonably low cost. Solution-based syntheses, such as 

solution-liquid-solid (SLS) and supercritical fluid-liquid-solid (SFLS) growth have 

proved capable of producing large quantities of nanowires with low cost. The production 

yield of Si nanowires in gram scale could be easily achieved using SFLS growth in the 

pilot-scale batch reactor.11 

SFLS approach relies on supercritical toluene as solvent, liquid semiconductor 

precursors, and metal nanoparticles to introduce the growth of nanowires. The metal 

nanoparticles perform as semiconductor atom reservoir and catalyst to promote those 

semiconductor atoms precipitating at the interface into nanowires. Their quality 

determines both the quality and the quantity of obtained nanowires. With the 

development of colloidal nanoparticle synthesis, it is not difficult to make monodisperse 

metal nanoparticles on a laboratory scale. However, the chemical stability of those metal 

nanoparticles accompanying the scale-up difficulties still hinders the further development 

of nanowire production. An interesting research direction of solving this problem is 
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Germanium Nanowires in Supercritical Solvent 
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growing Si and Ge nanowires directly on the metal films.12,13 Another direction is to use 

metal compounds instead of colloidal metal nanoparticles. Metalorganic reactants have 

been widely used in carbon nanotube growth reactions by chemical vapor deposition 

(CVD).14,15 In solution-based reactions, especially the continuous flowing solution 

reactions, the usage of metal compounds faces more challenges, like solubility of the 

metal precursors and their reactivity at low temperatures. We have observed a few 

examples of nanowire and nanotube growth using organometallic reactants in our own 

group. For example, multiwall carbon nanotubes were synthesized in supercritical toluene 

using ferrocene and cobaltocene as molecular precursors to iron (Fe) and cobalt (Co) 

seeds;16 Si nanowires were obtained in supercritical toluene using 

bis(bis(trimethylsilyl)amino)tin ([Sn(hmds)2]) to generate tin (Sn) seed particles;17 and we 

recently found the organotin compound can be used in place of Sn seed particles to grow 

Ge and Si nanorods in solution.18 

Herein we expand the exploration of metalorganic compound-catalyzed nanowire 

synthesis with the demonstration of Ge nanowires. Ge nanowires can be obtained with 

various metal compounds, including metals with both low (Ga, In, Pb, Bi) and high (Mn, 

Fe, Ni, Cu) melting points. All of these metals offer an alternative to Au, which can 

hamper the electrical and optical properties of Ge and Si nanowires. This method can be 

applied to scaled-up production of semiconductor nanowires with any metal that is 

desired. 

 

6.2 EXPERIMENTAL DETAILS 

6.2.1 Materials 
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Diphenylgermane (DPG, Gelest Inc.) and phenylsilane (MPS, Gelest Inc.), 

anhydrous toluene (99.8%, Sigma-Aldrich), manganese carbonyl (Mn2(CO)10, 98%, 

Aldrich), iron pentacarbonyl (Fe(CO)5, >99.99%, Aldrich), bis(cyclopentadienyl) 

nickel(II) (nickelocene, Aldrich), copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) 

(Cu(TMHD)2, 99%, Aldrich), gallium(III) acetylacetonate (Ga(acac)3, 99.99%, Aldrich), 

indium(III) acetylacetonate (In(acac)3, >99.99%, Aldrich), lead bis(2,2,6,6-tetramethyl-

3,5-heptanedionate) (Pb(TMHD)2, 97%, Aldrich), bismuth neodecanoate (Aldrich) were 

used as received. The metal compounds were stored in an Ar-filled glovebox and dissolve 

in toluene before use. 

6.2.2 Ge Nanowire Synthesis 

Ge nanowires were synthesized in supercritical toluene using a 10 mL titanium 

tubular reactor connected to a high pressure liquid chromatography (HPLC) pump as 

described in literature.30 Taking Ni seeded Ge nanowire synthesis as example, a 28 mL of 

reaction solution containing 0.446 mM nickelocene, 35.7 mM DPG and 23.8 mM MPS in 

anhydrous toluene was prepared in the Ar-filled glovebox. Meanwhile, the titanium 

tubular reactor sealed in the glovebox was placed in the preheated brass heating block 

and connected to the six-way valve. Prior to precursor injection, the reactor was heated to 

500oC and pressurized to 10.3 MPa with anhydrous toluene. Nanowire synthesis was 

carried out with the reactant solution injected into the reactor at a rate of 0.5 mL/min for 

40 min. The pressure was maintained at 10.3 MPa by adjusting the back-pressure 

regulator. After reaction, the reactor was sealed and allowed to cool to room temperature. 

The contents of the reactor was collected and dispersed in a mixture of chloroform, 

toluene and ethanol, followed by centrifugation at 8000 rpm for 5 min. This purification 

procedure was repeated three times. The products were redispersed in chloroform for 

storage. 
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The synthesis with other metalorganic compounds is similar as mentioned above. 

The changes are summarized as following: Mn reaction solution contains 1.116 mM 

manganese carbonyl; Fe reaction solution contains 0.446 mM iron carbonyl; Cu reaction 

solution contains 0.446 mM Cu(TMHD)2; Ga reaction solution contains 2.232 mM 

Ga(acac)3 and the reaction was carried out at 400oC, 6.9 MPa; In seeded nanowires used 

the reaction solution containing 2.232 mM In(acac)3 and the reaction was carried out at 

400oC, 6.9 MPa; Pb reaction solution contains 2.232 mM Pb(TMHD)2 and the reaction 

was carried out at 400oC, 6.9 MPa; Bi reaction solution contains 2.232 mM bismuth 

neodecanoate and the reaction was carried out at 400oC, 6.9 MPa. 

6.2.3 Materials Characterization 

Scanning electron microscopy (SEM) images were acquired on a Zeiss Model 

SUPRA 40 VP SEM with the in-lens arrangement, 5.0 kV of working voltage and 5 mm 

of working distance. The SEM samples were prepared by drying Ge nanowires onto 

silicon wafers. 

X-ray diffraction (XRD) was performed on a Rigaku R-Axis Spider 

diffractometer using Cu Kα radiation (λ=1.54 Å) and a graphite monochromator. 

Transmission electron microscopy (TEM) images were acquired on a FEI Tecnai 

Spirit Bio Twin operated at 80 kV. 

High-resolution transmission microscopy (High-res TEM) images, high-angle an- 

nular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-

dispersive X-ray spectroscopy (EDS) elemental mapping and electron energy loss 

spectroscopy (EELS) line scan were acquired on a field emission JEOL 2010F TEM 

operated at 200 kV. TEM samples were prepared by drop-casting 5 �L of dilute Ge 

nanowire dispersion onto a 200 mesh copper lacey carbon TEM grid (Electron 

Microscopy Science). 
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6.3 RESULTS AND DISCUSSIONS 

As illustrated in Figure 6.1, the nanowire formation process could be divided into 

three steps: i) metalorganic compounds thermally decompose into metal nanoparticles; ii) 

germanium precursor, i.e. diphenyl germane (DPG), crack at the surface of particles; iii) 

germanium atoms diffuse across the nanoparticles and grow out of catalyst particles into 

a nanowire.19  Depending on the metal particles formed in the first step are whether 

liquid or solid, the growth mechanism is known as supercritical-fluid-liquid-solid (SFLS) 

or supercritical-fluid-solid-solid (SFSS) nanowire growth. 

 

 

Figure 6.1 Illustration of the growth of the Ge nanowires. The metalogranic 
compounds thermally decompose into metal nanoparticles. Ge atoms feed to 
these metal nanoparticles by the decomposition of DPG and the Ge 
nanowires begin to grow. The nanowire growth can be divided into SFLS or 
SFSS mechanism depending on the state of the seed particles. 

As the metal seeds formation is in the initial step, it decides whether the following 

steps can be carried out and also influences the quality of the nanowires. The first 

concern of the successful synthesis is choosing suitable metal precursors. For a 
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metalorganic compound to be adopted in the nanowire growth, it should have at least 

three characteristics. The prerequisite is that the metal compounds should have decent 

solvability in the reaction solvent, or they cannot be delivered to the reactor in a 

continuous flowing setup. For example, copper(II) acetylacetonate (Cu(acac)2) has very 

low solvability in toluene; therefore, it is replaced by copper(II) bis(2,2,6,6-tetramethyl-

3,5-heptanedionate) (Cu(TMHD)2) which has the similar molecular structure but shows 

much higher solvability in toluene with four metyl groups replaced by butyl groups. 

Second, the decomposition of metal precursors should not interfere with the 

decomposition of the semiconductor precursor. Third, they should have suitable 

decomposition reaction kinetics; that is, metal precursors must decompose ahead of 

semiconductor precursors. This is crucial for the success. Taking iron (Fe) as an example, 

the first-order decomposition rate constant (k) of iron carbonyl (Fe(CO)5) is several 

orders of magnitude higher than ferrocene.15,20 Ferrocene only has decent decomposition 

rate above 1050oC, while Fe(CO)5 starts to decompose as low as room temperature 

(300K).21 Though Fe(CO)5 undergoes a series of decarbonylaztion steps and the complete 

decomposition requires temperature higher than 300K, Fe(CO)5 has already achieved 

sufficient decomposition rate at our reaction temperature (500oC). The different 

decomposition rates of metalorgranic compounds directly influence the morphologies of 

the products. With insufficient Fe feeding, ferrocene only yielded amorphous Ge spheres 

and few nanowires, while Fe(CO)5 catalyzed reaction produced high yield of Ge 

nanowires (Figure 6.2). 
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Figure 6.2 Reaction products obtained with (a-b) ferrocene and (c-d) iron carbonyl. 
With addition of ferrocene, few nanowires/nanorods formed. The majority 
of the products are amorphous Ge spheres, which form when DPG 
decomposed without enough seeding. With iron carbonyl, the obtained 
products are long nanowires. 

Temperature, which affects the decomposition rate of metalorganic compounds, is 

another crucial parameter. The influence of reaction temperature can be reflected in the 

comparison experiments of the nickelocene catalyzed nanowire growth at 450oC and 

500oC (Figure 6.3). According to literatures, nickelocene decompose into Ni above 450oC 

at 101.325kPa without hydrogen in the system22 but this pyrolysis favors low pressure.23 

The supercritical condition requires high pressure. So, a 450oC reaction only yielded 

short nanowires accompanying amorphous Ge spheres, indicating the unbalanced 

decomposition of DPG and nickelocene. At 500oC, the vast majority of the products are 
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long nanowires. Higher temperature also accelerate diffusion rate of Ge in catalyst 

particles, which is also preferred in solid state seeding. 

 

 

Figure 6.3 Ge nanowires catalyzed by nickelocene grown at (a-b) 450oC and (c-d) 
500oC. At 450oC, short nanowires present with Ge spheres which is the by-
product forming due to the lack of seeds. At 500oC, the majority of the 
obtained products are long nanowires. 

Concentration of metalorganic compounds also affects. Taking gallium 

acetylacetonate (Ga(acac)3) as an example, by employing the concentration of 0.446 mM, 

no nanowire was yielded from the Ga(acac)3 reaction. Only by increasing the 

concentration of Ga(acac)3 to 2.232 mM, Ge nanowires can be obtained. Higher 

concentration accelerates decomposition of metalorganic compounds. And, low melting 

point metals, like Ga, are easy to fuse together at reaction temperature and decrease their 
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efficiency of seeding the nanowire growth. They also evaporate more easily than high 

melting point metals.17  

By choosing suitable metalorganic compounds and reaction conditions, Ge 

nanowires with various seeding could be obtained. Figure 6.4 shows the SEM and TEM 

images of the Ge nanowires catalyzed by eight different metalorganic compounds and 

Table 6.1 summarizes these reactions. Generally, SFSS nanowires are thinner and more 

uniform in diameter than SFLS nanowires.24 The average diameters of SFSS nanowires 

are between 10 nm and 20 nm, whereas SFLS nanowires are over 50 nm. The solid seeds 

prevent the aggregation better than the liquid seeds and are more likely to produce 

nanowires with narrow diameter distribution. This result is in good accord with previous 

observation that solid state seeding has better control over the diameter of the nanowire.25 

For SFLS nanowires, the reaction temperatures (400oC) are 370oC, 244oC, 73oC and 

129oC higher than the eutectic temperature of Ga-Ge, In-Ge, Pb-Ge and Bi-Ge, 

respectively. Interestingly, the temperature differences are proportional to the average 

diameters of nanowires, indicating liquid phase seeding necessities lower temperature to 

narrow the nanowire diameters. Moreover, SFSS nanowires have higher yields than 

SFLS nanowire in general. Fe and Pb give the highest yield, which nearly achieve the 

theoretical maximum of DPG conversion. 
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Figure 6.4 Overview of the Ge nanowire morphologies catalyzed by different 
metalorganic compounds. The top two rows are the SEM and TEM images 
of the SFSS nanowires, and the bottom two rows are of the SFLS 
nanowires. The statistical analysis of the nanowire diameters are plotted in 
the right column and also categorized into SFSS and SFLS nanowires. The 
images are arranged by the atomic number of the seed metal. 
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Table 6.1 Summary of metalorganics, reaction conditions and selected properties of 
the Ge nanowires. 

Seeding 
Metal 

Metalorganic 
Compound 

Lowest 
Eutectic 

Temp. (oC)a 

Growth 
Temp. 

(oC) 

Average 
Diameter 

(nm)b 

Yield 
(mg) 

DPG 
Conversionc 

Mn Mn2(CO)10 720 500 11.9 ± 2.2 35.4 67.4% 
Fe Fe(CO)5 838 500 24.3 ± 6.7 49.9 95% 
Ni Nicklocene 762 500 18.7 ± 7.0 46.6 88.7% 
Cu Cu(TMHD)2 644 500 15.8 ± 5.0 38.7 73.6% 
Ga Ga(acac)3 30 400d 119.2 ± 63.7 34.8 66.2% 
In In(acac)3 156 400 104.9 ± 35.1 30.7 58.4% 
Pb Pb(TMHD)2 327 400 58.5 ± 16.9 51.0 97.1% 
Bi Bi neodecanoate 271 400 75.7 ± 33.8 21.9 41.7% 

a Refer to Supporting Information for phase diagrams.  
b This statistical data is obtained from the measurement of over 150 nanowires under 
TEM.  
c Molar conversion of DPG to Ge.  
d Though Ga(acac)3 decomposes around 196oC,31 the reaction temperature is set at 400oC 
because the nanowire growth also requires efficient DPG decomposition . 
 

Figure 6.5 shows XRD of the eight Ge nanowires from different seedings. All the 

major peaks can be indexed to diamond cubic germanium, indicating the good 

crystallinity of both SFSS and SFLS nanowires. Bi, Pb, In could be detected in SFLS 

nanowires; no Ga was detected because the melting point of Ga is close to room 

temperature. Since the sizes of solid seeds are much smaller than liquid seeds, only weak 

signal of Cu3Ge was detected in SFSS nanowires (Figure 6.6). As Cu3Ge is the most 

stable congruently melting phase next to the lowest eutectic in the Cu-Ge binary phase 

diagram, this result verifies the prediction of the first crystalline phase nucleated at 

subeutectic temperatures26,27 and is in accord with previous research.13,28 
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Figure 6.5 XRD of Ge nanowires catalyzed by different metalorganic compounds. All 
the curves are normalized to the (111) peak of Ge. The seeding metals are 
labeled on the left. The reference patterns of Ge, Cu3Ge, In, Pb, Bi and PDF 
numbers are shown on the right.  



 111 

 

Figure 6.6 Zoomed-in XRD of Ge nanowires catalyzed Cu(TMHD)2. The reference 
pattern of Cu3Ge and PDF numbers is shown below. 

Energy dispersive X-ray spectroscopy (EDS) mapping of those nanowires (Figure 

6.7) supplements the absent information of the seeds composition in XRD. In SFLS 

nanowires, there is only metal signal detected in the seeds. In contrast, both of metal and 

Ge signals are detected in the seeds of SFSS nanowires, indicating those seeds are metal 

germanides instead of pure metals. SFLS nanowires are catalyzed by alloy droplet with 

low concentration of Ge. Upon cooling, the alloy droplet will phase segregate into pure 

metal. SFSS nanowires are seeded by the solid-state germanide that would not change 

composition upon cooling. 
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Figure 6.7 HAADF STEM images and EDS mappings of Ge nanowire taken in the 
seeding area: (a) Mn, (b) Fe, (c) Ni, (d) Cu, (e) Ga, (f) In, (g) Pb, (h) Bi 
seeded nanowires. 

Three families of growth directions, <111>, <110> and <112>, have all been 

observed in our nanowires (Figure 6.8), with <111> the dominant growth direction. This 

is consistent with our previous observations in the pre-made nanoparticle seeded SFLS 

and SFSS Ge nanowires.29 
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Figure 6.8 High-resolution TEM images of (a) Mn, (b) Fe, (c) Ni and (d) Bi seeded Ge 
nanowires. 

 

6.4 CONCLUSIONS 

In summary, we demonstrate a simplified growth of Ge nanowires in supercritical 

toluene by using the commercially available metalorgainc compounds to replace pre-

synthesized metal nanoparticles. Both liquid state and solid state seeded Ge nanowires 

can be easily obtained by this method. The choice of metalorganic compounds is the key 

determinate in this reaction. The suitable metalorgainc compounds should have high 

decomposition kinetics under reaction condition and produce enough seeds before the 

homogenous nucleation of Ge. By abandoning the necessity of pre-made seed particles, 
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our approach represents a significant advance towards scalable production of Ge 

nanowires and provides insight to the synthesis of other semiconducting nanowires. 

 

6.5 ACKNOWLEDGEMENTS 

This work was supported by the Robert A. Welch Foundation (grant no. F-1464) 

and the National Science Foundation (grant no. CHE-1308813). X.T.L. thanks Philip Liu 

for assistance with EELS measurement and Timothy Bogart for helpful discussions. 

 

6.6 REFERENCES 
1. Kuno, M. An Overview of Solution-Based Semiconductor Nanowires: Synthesis 

and Optical Studies. Phys. Chem. Chem. Phys. 2008, 10 (5), 620. 
2. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. Nanowire Electronic and Optoelectronic 

Devices. Mater. today 2006, 9 (10), 18–27. 
3. Thelander, C.; Agarwal, P.; Brongersma, S. Nanowire-Based One-Dimensional 

Electronics. Mater. today 2006, 9 (10), 28–35. 
4. Law, M.; Goldberger, J.; Yang, P. Semiconductor Nanowires and Nanotubes. 

Annu. Rev. Mater. Res. 2004, 34 (1), 83–122. 
5. Hochbaum, A. I.; Yang, P. Semiconductor Nanowires for Energy Conversion. 

Chem. Rev. 2010, 110 (1), 527–546. 
6. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, 

Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nat. 
Nanotechnol. 2008, 3 (1), 31–35. 

7. Bogart, T. D.; Chockla, A. M.; Korgel, B. A. High Capacity Lithium Ion Battery 
Anodes of Silicon and Germanium. Curr. Opin. Chem. Eng. 2013, 2 (3), 286–
293. 

8. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; 
Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A. Silicon Nanowire 
Fabric as a Lithium Ion Battery Electrode Material. J. Am. Chem. Soc. 2011, 133 
(51), 20914–20921. 

9. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. a. Solution-Grown 
Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. 
Interfaces 2012, 4 (9), 4658–4664. 



 115 

10. Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; 
Kalisvaart, W. P.; Mitlin, D. Activation with Li Enables Facile Sodium Storage in 
Germanium. Nano Lett. 2014, 14 (10), 5873–5882. 

11. Zhou, H.; Nanda, J.; Martha, S. K.; Unocic, R. R.; Meyer, H. M.; Sahoo, Y.; 
Miskiewicz, P.; Albrecht, T. F. Role of Surface Functionality in the 
Electrochemical Performance of Silicon Nanowire Anodes for Rechargeable 
Lithium Batteries. ACS Appl. Mater. Interfaces 2014, 6 (10), 7607–7614. 

12. Mullane, E.; Geaney, H.; Ryan, K. M. Size Controlled Growth of Germanium 
Nanorods and Nanowires by Solution Pyrolysis Directly on a Substrate. Chem. 
Commun. (Camb). 2012, 48 (44), 5446–5448. 

13. Richards, B. T.; Gaskey, B.; Levin, B. D. A.; Whitham, K.; Muller, D.; Hanrath, 
T. Direct Growth of Germanium and Silicon Nanowires on Metal Films. J. Mater. 
Chem. C 2014, 2 (10), 1869. 

14. Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct 
Synthesis of Long Single-Walled Carbon Nanotube Strands. Science 2002, 296 
(5569), 884–886. 

15. Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; 
Kauppinen, E. I. Single-Walled Carbon Nanotube Synthesis Using Ferrocene and 
Iron Pentacarbonyl in a Laminar Flow Reactor. Chem. Eng. Sci. 2006, 61 (13), 
4393–4402. 

16. Smith, D. K.; Lee, D. C.; Korgel, B. a. High Yield Multiwall Carbon Nanotube 
Synthesis in Supercritical Fluids. Chem. Mater. 2006, 18 (14), 3356–3364. 

17. Bogart, T. D.; Lu, X.; Korgel, B. A. Precision Synthesis of Silicon Nanowires 
with Crystalline Core and Amorphous Shell. Dalton Trans. 2013, 42 (35), 12675–
12680. 

18. Lu, X.; Korgel, B. A. A Single-Step Reaction for Silicon and Germanium 
Nanorods. Chem. - A Eur. J. 2014, 20 (20), 5874–5879. 

19. Schmidt, V.; Wittemann, J. V; Gösele, U. Growth, Thermodynamics, and 
Electrical Properties of Silicon Nanowires. Chem. Rev. 2010, 110 (1), 361–388. 

20. Lewis, K. E.; Smith, G. P. Bond Dissociation Energies in Ferrocene. J. Am. 
Chem. Soc. 1984, 106 (16), 4650–4651. 

21. Xu, M. Mechanistic Studies of the Thermal Decomposition of Metal Carbonyls 
on Ni(100) Surfaces in Connection with Chemical Vapor Deposition Processes. J. 
Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1996, 14 (2), 415. 

22. Brissonneau, L.; Sahnoun, R.; Mijoule, C.; Vahlas, C. Investigation of 
Nickelocene Decomposition during Chemical Vapor Deposition of Nickel. J. 
Electrochem. Soc. 2000, 147 (4), 1443. 



 116 

23. Hedaya, E. Techniques of Flash Vacuum Pyrolysis. Cyclopentadienyl Radical and 
Its Dimer. Acc. Chem. Res. 1969, 2 (12), 367–373. 

24. Tuan, H.; Lee, D. C.; Hanrath, T.; Korgel, B. A. Germanium Nanowire Synthesis: 
An Example of Solid-Phase Seeded Growth with Nickel Nanocrystals. Chem. 
Mater. 2005, 17 (23), 5705–5711. 

25. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium Nanowire 
Growth below the Eutectic Temperature. Science 2007, 316 (5825), 729–732. 

26. Wittmer, M.; Nicolet, M.-A.; Mayer, J. W. The First Phase to Nucleate in Planar 
Transition Metal-Germanium Interfaces. Thin Solid Films 1977, 42 (1), 51–59. 
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Chapter 7: Conclusions and Future Direction 

7.1 CONCLUSIONS 

This section demonstrated several different solution-based synthetic methods for 

growing Si and Ge nanorods and nanowires. Chapter 2 showed the SLS growth of Si 

nanorods with narrow diameters (<10 nm) and quantum-confined optical properties by 

the decomposition of trisilane in hot squalane (~400oC) in the presence of Sn 

nanocrystals stabilized by poly-(vinylpyrrolidinone-hexadecene). Photoluminescence 

with quantum yields of 4-5% was obtained from the Si nanorods by post-reaction surface 

etching with hydrofluoric acid to remove residual surface oxide, followed by thermal 

hydrosilylation passivation with 1-octadecene. Chapter 3 simplified this growth to a 

single reaction step by combining Sn(hmds)2 with trisilane in the reaction solution.  

Trisilane reduces Sn(hmds)2 to Sn in situ, simplifying the reaction procedure and 

improving repeatability by eliminating the need to use pre-synthesized seed particles. Si 

and Ge nanorods with various aspect ratio and Si-Ge heterostructured nanorods can be 

obtained with this approach. Chapter 4 examines silanes that are more reactive than 

trisilane to further lower the synthesis temperature for Si nanorods. Isotetrasilane, 

neopentasilane and cyclohexasilane have all exhibited Si nanorod synthesis at lower 

reaction temperatures than trisilane. Cyclohexasilane is particularly interesting, enabling 

Si nanorod growth with Sn seeds at temperatures as low as 200oC. Chapter 5 showed that 

the addition of monophenylsilane dramatically improves the yield and quality of Ge 

nanowires, producing straight nanowires with relatively uniform diameter and nearly 

100% conversion of diphenylgermane (DPG) to Ge. MPS participates in the phenyl 

redistribution reaction of DPG and serves as a phenyl sink that speeds DPG 

decomposition and increases the conversion to Ge to nearly 100%. Chapter 6 explores 

metalorganic compounds for single-step reactions for Ge nanowire growth. The relative 
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decomposition rates of metalorganic compounds and Ge precursor have been found to be 

important. The metal precursor must have faster decomposition kinetics than Ge 

precursor. So far, in situ Mn, Fe, Ni, Cu, Ga, In, Pb and Bi seeded Ge nanowires have 

been successfully grown in supercritical toluene.   

 

7.2 FUTURE DIRECTION 

Solution-based synthesis offers a high throughput, low cost route to producing Si 

and Ge nanomaterials in relative large quantities, comparing with vapor phase reactions. 

Replacing metal nanocrystals with metalorganic compounds is an advance to realize 

large-scale production of nanowires at reduced production cost and improved 

repeatability. A variety of different metalorganic compounds have been investigated for 

the Ge nanowires growth in this section. This exploration should be extended to the 

growth of Si nanowires in the future. 

Sn seeds have been proved effectiveness in growing quantum-confined Si 

nanorods. To prevent aggregation at high reaction temperatures, Sn nanoparticles require 

the passivation of poly-(vinylpyrrolidinone-hexadecene). This copolymer, however, 

could yield Sn nanoparticles of a particular diameter that cannot be altered by 

temperatures, chemical concentrations or other common reaction parameters. For the 

development of Si nanorods growth, either Sn or the copolymer should be replaced.  

Si-Ge heterostructured nanorods could be easily synthesized by multiple 

injections using the Sn-seeded SLS reaction described in this section. Si-Ge 

heterojunction is a type II heterojunction, which could be explored the use in 

photocatalysis. 
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SECTION II:  IN SITU TRANSMISSION ELECTRON MICROSCOPE 
STUDY OF SILICON AND GERMANIUM NANOSTRUCTURES AS 

ANODE MATERIALS 

This section focused on the in situ transmission electron microscope (TEM) study 

of Si and Ge nanowires as lithium ion battery anodes. 

 

Chapter 8:  Introduction to In Situ TEM Study of Anode Materials 

Lithium ion batteries (LIBs) are the dominant power source for portable 

electronic devices. However, to power electric vehicles or store energy for electrical 

power grids, LIBs need significantly higher energy density, better power performance 

and longer cycle life.1–3 Efforts have been made to develop more advanced electrolytes4 

and positive and negative electrodes with higher energy density.5–7,8–10 Of the possible 

negative electrodes, or anodes, Si and Ge offer much higher lithium storage density 

compared to the commercially used graphite (Si: 3579 mAh/g, Ge: 1362 mAh/g, C: 372 

mAh/g), making them some of the most promising replacements for the standard graphite 

anodes.9,11 

 

8.1 LITHIUM ION BATTERIES 

In a typical lithium ion battery (LIB), electrodes, i.e. cathode and anode, are 

separated by an electrically insulating Li ion permeable membrane and immersed in the 

ion-conductive electrolyte solution (Figure 8.1). LIBs operate by shuttling Li ions 

between the electrodes: during charging, a voltage is applied to force Li ions stored in 

cathode side flowing to the anode; during discharging, Li ions diffuse back into the 

cathode and electricity flows though the external circuit to power the devices. 
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Figure 8.1 Schematic of a typical lithium ion battery. 

Energy density of the battery is calculated as the product of the discharge voltage 

and the charge storage capacity of the electrodes. The open circuit voltage is determined 

by the redox potential difference between cathode and anode; the capacity of an electrode 

is determined by the amount of Li it can store. In the conventional LiB, the maximum 

theoretical capacity of LiCoO2 (cathode) and LiC6 (anode) are only 274 mAh/g and 372 

mAh/g, respectively. The low energy density of conventional LIBs encourages people 

seeking for the replacement electrode materials with higher energy density. 

 

8.2 LITHIATION OF SILICON AND GERMANIUM 

On the anode side, Si and Ge are the leading candidates for replacing 

carbonaceous anodes. They provide much higher lithium storage density compared to the 

graphite (Si: 3579 mAh/g, Ge: 1362 mAh/g, C: 372 mAh/g).12–14 Besides the high 

specific capacity, Si and Ge also have low working potential close to the Li metal and are 



 121 

abundant in earth’s crust, making them the most attractive anode materials in battery 

research. 

At room temperature, the fully lithiated phase of Si is Li15Si4. Before reaching to 

the final lithiation state, Si first forms an amorphous LixSi alloy upon lithiation. Namely, 

Si lithiates via a two-step reaction:15,16 
!"! !" !! − !"!!"

!" !!"!"!"!                               (1) 

From the Equation 1, lithiation of Si gives rise to two plateaus in the voltage profile, or 

two peaks in the differential capacity plot, due to the two phase reactions (Figure 8.2). 

Region I relate to the phase separation between Si and a-LixSi and Region II indicates the 

two-phase regions of a-LixSi and Li15Si4. SEM imaging of the a-Si disks during 

electrochemical lithiation verifies this two-step process.17 In the first step, a shell of a-

LixSi (x ~ 2.5) forms and migrates into the Si core. After the entire disk has turned into a-

Li2.5Si, it then further lithiates to a-Li3.7Si (Figure 8.2c). The complete lithiation leads to a 

volume expansion around 280%. Similar as Si, Ge adopts a two-step, or multi-step, 

lithiation process to reach the fully lithiated Li15Ge4 phase.18–20,13 
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Figure 8.2 (a) Typical voltage profile and (b) differential capacity plot for a Si-based 
lithium ion battery anode. (c) SEM images shows the morphology evolution 
of a-Si disk during electrochemical lithiation: (top) as-fabricated a-Si 
electrode, (middle) intermediate lithiated state of the electrode, (bottom) 
fully lithiated state of the electode. 

 

8.3 IN SITU TEM STUDY OF ANODE MATERIALS 

Although Si and Ge are promising anode candidates of LIBs, the massive volume 

change of Si and Ge, up to nearly 300%, during lithiation/delithiation cycles can lead to 

materials degradation, resulting in capacity fade and battery failure.21–23 Nanostructures 

can mostly tolerate the dramatic structural changes, but the details about how structure 
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changes and evolves during battery operation are only recently beginning to be 

uncovered.10 A burst of research has occurred during the past few years in investigating 

the structural evolution of advanced LIB electrode materials that occur during cycling 

using various nanostructures, including nanowires, nanotubes, nanorods, and 

nanoparticles, as well as nanocomposites.24 Among those nanostructures, nanowires are 

particularly useful because of their small and uniform diameter, needed to resist the 

formation and propagation of cracks, and their extended length, which provides a 

convenient one-dimensional path for charge and lithium transport. 

High resolution TEM (HRTEM) provides observation of materials with atomic 

level resolution and various sample stages have been developed to enable application of 

various stimuli, thus enabling the TEM as a laboratory to study nanoscale phenomena in 

real-time with atomic resolution. A model system mimicking the lithium battery can be 

built inside the TEM to provide a unique testing ground for direct observation of what 

happens to electrode materials in LIBs during lithiation and delithiation.25 An open-cell 

nanobattery setup that enable in situ TEM characterization of lithium battery materials is 

shown in Figure 8.3. 
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Figure 8.3 Setup of a nanobattery inside the TEM. (a) In the open cell setup, the key 
components include the anode materials (such as nanowires), Li source (the 
oxide layer of Li2O works as electrolyte) and current collectors (Au rod and 
W rod in the figure). (b) Photograph of the front-piece of the Nanofactory 
TEM holder. 

 

In the open cell configuration, anode nanomaterials are deposited on the current 

collector and directly make contact with lithium through a Li2O layer that acts as a solid 

electrolyte. During lithiation, a voltage is applied to drive the Li ions into the anode from 

Li source. Upon delithiation, a reverse bias is applied to drive the Li back to the source. 

As nothing blocks the electron beam (i.e., like electrolyte), this setup is capable of 

observing the nanomaterials in atomic resolution. Therefore, it is an excellent method to 

study the structural evolution of anode materials upon charge cycling.  
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With in situ TEM, lithium insertion and extraction can be visualized in real time 

during electrochemical charge/discharge cycling, as occurs in a battery.16 The structural 

evolution of individual nanostructures can be observed and related to anode performance 

in batteries and used to understand failure and improve performance. Recent in situ TEM 

studies, combined with ex situ experiments, have revealed that lithiation of Si is sensitive 

to the crystallographic orientation (Figure 8.4a-b).26,27 But Ge undergoes a nearly 

isotropic lithiation with equivalent volume expansion along all directions (Figure 8.4c-

d).28,29 The anisotropic lithiation of Si is resulted from the different onset lithiation 

potentials of (100), (110) and (111) planes of Si. With highest onset lithiation potential, 

(110) planes undergo the fastest lithiation. Different planes in Ge, however, exhibit no 

obvious lithiation potential difference. This makes Ge having a more isotropic 

lithiation.30,31 Along with those discoveries, c-Si particles has been found a critical 

fracture diameter of ~150 nm, above which the particles crack due to the significant 

mechanical stress.32 Ge particles up to 620 nm do not fracture upon lithiation, due to the 

isotropy of the lithiation strain at the reaction front.33 With assistance of in situ TEM, 

new guidelines can be developed for improving Si and Ge anode performance in LIBs. 
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Figure 8.4 Comparison of in situ and ex situ results on the (a-b) anisotropic lithiation of 
Si and (c-d) isotropic lithiation of Ge.  

 

8.4 SECTION OUTLINE 

The chapters in this section will focus on the in situ TEM investigation of the Si 

and Ge nanowires obtained from the solution-based synthesis (described in Section I) as 

the potential anode materials. Chapter 9 looks at the Si nanowires with significant 

amounts of Sn.  The incorporation of Sn led to significantly enhanced lithiation rates 

compared to typical Si nanowires. Fast diffusion of Li results in the formation of pores 

during delithiation.  Sn-containing Si Nanowires coated with an a-Si shell had similar 

fast lithiation and delithiation rates, but pore formation was not observed in these 

nanowires by in situ TEM. Chapter 10 investigates the Ge nanowires as a sodium ion 

battery material. Crystalline Ge nanowires can be sodiated only after an initial activation 



 127 

with a lithiation step to amorphize the nanowires.  Our in situ TEM results show that a-

Ge nanowires can be charged with sodium at a very fast rate and that the final sodiation 

product exhibits over 300% volume expansion, close to Na3Ge instead of NaGe. 

Desodiation led to pore formation in the nanowires. Chapter 11 finishes this section by 

summarizing the results from these in situ TEM studies and provides directions for future 

study. 
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Chapter 9: Fast Lithiation and Pore Evolution in Silicon Nanowires 
with High Concentrations of Tin*** 

9.1 INTRODUCTION 

Lithium ion batteries (LIBs) are the dominant power source for portable 

electronic devices. However, to power electric vehicles or store energy for electrical 

power grids, LIBs need significantly higher energy density, better power performance 

and longer cycle life.1-3 Efforts have been made to develop more advanced electrolytes4,5 

and electrodes with higher energy density.6-11 Of the possible negative electrodes, or 

anodes, silicon (Si) offers the highest gravimetric and volumetric capacity (3579 mA h g-

1, 8334 A h L-1, when fully lithiated to Li15Si4 at room temperature), only second to 

lithium metal, and is considered to be a promising replacement or complement for 

graphite.12 One of the biggest problems with Si, however, is that it undergoes a massive 

volume change—of about ~280%—to become fully lithiated.13 Nanoscale Si can largely 

tolerate this huge volume change,10,14-22 but stabilizing battery performance over long 

periods of time is still a challenge.  

There are several reasons for fade in Si electrode performance, not only the loss 

of structural integrity of the Si over time, which include the irreversible loss of lithium in 

unstable solid-electrolyte-interface (SEI) layers and a loss of electrical connectivity and 

mechanical integrity of the electrode layer due to its continual volume expansion and 

contraction.23 With respect to the integrity of the electrode layer, Si nanowires have an 

advantage over nanoparticles, as they provide not only a resistance to fracture but also a 

continuous path for lithium uptake and electrical conductivity that can help improve 

battery performance.12,15,24-26 However, intrinsic Si nanowires also have a very low 

                                                
*** Manuscript submitted to ACS Applied Materials & Interfaces: Lu, X. T.; Bogart, T. D.; Gu, M; Wang, 
C. M. and Korgel, B. A. Fast Lithiation and Pore Evolution in Silicon Nanowires with High Concentrations 
of Tin 
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electrical conductivity that can hamper the full lithiation of the electrode layer, especially 

in relatively thick, slurry-cast electrode layers.16,17,27 The electrical conductivity of Si 

nanowires can be increased for better LIB performance by adding electrically-active 

dopants28 or carbon coatings.25,29-31 The addition of Sn to Si nanowires has also been 

shown improve the cycling performance of Si nanowires.18,32-34 We recently showed that 

Sn can be incorporated into Si nanowires at relatively high concentrations35 and that these 

nanowires exhibited significantly better performance than intrinsic Si nanowires in a LIB: 

slurry-cast electrode layers of Sn-containing Si nanowires exhibited relatively high 

capacity (~1 A h/cm2 at the rate of 1C for 100 cycles) without any added conductive 

carbon.33 Here, we report in situ TEM studies of Si nanowires with large concentrations 

of Sn undergoing very fast lithiation and delithiation. We find that the extremely fast 

delithiation rates lead to pore formation in the nanowires, and that this pore formation 

process is reversible: lithiation leads to a refilling of the pores and subsequent delithiation 

leads to their reappearance.  

The evolution of pores has been observed by in germanium (Ge) nanowires in situ 

TEM during delithiation,35 and in Si nanoparticles.36 Pores have also been observed in Si 

nanowires after disassembling coin cell batteries after many charge/discharge cycles,37 

but their formation has never been observed directly by in situ TEM. The pores evolve as 

a result of rapid dealloying kinetics—essentially, pores form when the rate of Li diffusion 

out of the nanowire greatly exceeds the rate of Ge (or Si) self-diffusion to fill the 

vacancies created by the loss of Li.35 Si lithiates (and delithiates) at a much slower rate 

than Ge,38 making the direct observation of pore formation much less likely. The 

formation of pores in the Sn-containing Si nanowires, however, is consistent with much 

faster delithiation rates compared to intrinsic Si nanowires. We found that pore formation 

could be slowed significantly by coating the nanowires with a shell of amorphous Si (a-
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Si). These still exhibited fast lithiation/delithiation rates in the nanowire core, but the 

shell largely prevented pore formation.  

 

9.2 EXPERIMENTAL DETAILS 

9.2.1 Materials 

All reagents and solvents were used as received without further purification. 

Toluene (anhydrous, 99.8%), ethanol (EtOH, 99.9%), chloroform, 

bis(bis(trimethylsilyl)amino)tin (Sn(hmds)2, lot10396PKV, 99.8%), ethylene carbonate 

(EC, 99%), diethyl carbonate (DEC, ≥99%, anhydrous), lithium hexafluorophosphate 

(LiPF6, ≥99.99%), alginic acid sodium salt (NaAlg), polyacrylic acid (PAA, 

Mv~450,000) were purchased from Sigma-Aldrich. Trisilane (Si3H8, 100%) was 

purchased from Voltaix.Fluoroethylene carbonate (FEC, >98%) was purchased from TCI 

America and Li metal foil (1.5 mm 99.9%) was purchased from Alfa Aesar. Conductive 

carbon super C65 was supplied by TIMCAL and Celgard 2400 membranes (25μm) were 

provided by Celgard. Copper foil (9 μm thick) and coin cells (2032 stainless steel) were 

purchased from MTI Corporation. Si nanowires were prepared by supercritical fluid-

liquid-solid (SFLS) growth in toluene with trisilane and Sn(hmds)2 using the procedure 

we have previously described.35 

9.2.2 In Situ TEM Lithiation of Si Nanowires 

Electrochemical experiments with in situ TEM imaging were performed on the 

Nanofactory TEM holder in a Titan 80-300™ scanning/transmission electron microscope 

(S/TEM).34 Si nanowires are dropped on a gold wire working electrode; lithium metal on 

a tungsten wire counter electrode, a native Li2O layer worked as a solid-state electrolyte. 

Inside the TEM, the Li/Li2O electrode is moved by a piezo-positioner to touch the Si 
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nanowire. Once a connection is made, a bias of -2 V is applied to initiate lithiation. 

Delithiaton is carried out by applying a bias of 2V. The beam intensity was minimized 

during imaging to avoid significant beam effects. 

9.2.3 Coin Cell Battery Tests  

Si nanowire slurries were prepared by mixing 80 mg of Si nanowires with PAA, 

NaAlg, and conductive carbon in a 7:1:1:1 weight ratio in 2 mL of ethanol and 2 mL of 

DI-H2O followed by probe sonication. The slurry was doctor-bladed (200 μm gap) onto a 

Cu foil and dried in air. The films were then heated to 150oC under vacuum overnight. 

Individual 11 mm diameter circular electrodes were hole-punched from the coated Cu 

foil. Typical mass loadings were 0.5-1.0 mg cm−2. Coin cells (2032 stainless steel) were 

assembled in an argon-filled glovebox (<0.1 ppm O2) using Li foil as the counter 

electrode and 1.0 M LiPF6 in 1:1 w/w EC:DEC with 5 wt% FEC as the electrolyte. The 

coin cell was crimped and removed from the glovebox for testing with an Arbin BT-2143 

test unit cycling between 2.0 V and 0.01 V vs Li/Li+.  

9.2.4 Ex Situ TEM Characterization of Si Nanowires 

For TEM analysis of the nanowires after cycling, the coin cells were disassembled 

in an argon-filled glovebox. The Cu foil covered with nanowires was soaked in DEC 

overnight and then rinsed with toluene. The nanowires were removed from the Cu foil by 

bath sonication and redispersed in chloroform and drop-cast onto a 200 mesh copper 

lacey carbon TEM grid (Electron Microscopy Science). TEM images were obtained using 

a FEI Tecnai Spirit Bio Twin operated at 80 kV. 
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9.3 RESULTS AND DISCUSSIONS 

9.3.1 Fast Lithiation in Sn-incorporated Si Nanowires 

Crystalline Si nanowires were synthesized with a high concentration of Sn either 

with (c-@a-Si) or without (c-Si) a shell of amorphous Si using previously reported 

methods.29,35 Figure 9.2 shows a scanning transmission electron microscopy (STEM) 

high-angle annular dark-field (HAADF) image of a c-Si nanowire and corresponding 

STEM-EELS elemental maps of Si and Sn. Sn is distributed across the nanowire, 

incorporating both into the core and depositing as nanoparticles on the surface. The Sn 

nanoparticles appear as bright dots in the STEM-HAADF image in Figure 9.2 and dark 

dots in the bright field TEM images in Figure 9.3. The c-Si and c-@a-Si nanowires 

studied by in situ TEM had approximately 10 at% and 3 at% Sn, respectively.  
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Figure 9.1 SEM and TEM images of Si nanowires made with different Si:Sn mole 
ratios. The SEM images in (a-i) and (a-ii) and TEM image in (a-iii) show 
the nanowires made with a Si:Sn mole ratio of 20:1. These nanowires have 
crystalline cores with no amorphous Si shell. The SEM images in (b-i) and 
(b-ii) and TEM image in (b-iii) show nanowires made with a Si:Sn mole 
ratio of 40:1. These nanowires have a crystalline core and an amorphous Si 
shell.  
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Figure 9.2 (Left) STEM HAADF image of a segment of a c-Si nanowire with 
associated EELS maps of (Middle) Si and (Right) Sn. Based on EDS, the Si 
nanowire has 10 at.% Sn.  
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Figure 9.3 In situ TEM observation of a c-Si nanowire with 10 at.% Sn undergoing an 
initial lithiation cycle. The time when each image was taken is shown. 
Initially, in (a-e), lithiation begins on the nanowire surface. The Sn 
nanoparticles on the nanowire surface are used to mark the Li diffusion front 
as it propagates down the nanowire (yellow arrows). After the surface 
becomes saturated with Li, the lithiation front gradually moves towards the 
center of the nanowire and the nanowire diameter expands from 32 nm to 80 
nm as shown in (f-g).  

Figures 9.3a-j show the microstructural evolution of a c-Si nanowire with about 

10 at.% Sn observed by in situ TEM during an initial lithiation cycle. Lithiation was 

initiated by applying a bias of -2 V vs Li. As observed in Figures 9.3a-e, lithiation occurs 

initially along the nanowire surface. Once the surface is saturated, the lithium diffusion 

front evolves into the core of the nanowire, as shown in Figures 9.3f-j. A similar 
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progression of rapid surface and interface diffusion preceding bulk lithiation has been 

observed before in other materials, such as a-Si coated carbon fibers.39  

The surface diffusivity of Li was calculated using the Sn nanoparticles as markers 

to follow the Li diffusion front. The Sn nanoparticles swell as they lithiate, which 

decreases their imaging contrast. The pair of red arrows in Figures 9.3b-d shows the 

position of the Li diffusion front as it moves down the length of the nanowire. The 

surface diffusivity of Li on the Si nanowire is 1.5×10-11 cm2/s. To compare this to a 

typical diffusion rate of Li in Si, a volume diffusivity can be estimated by considering the 

energy gain of Li when it diffuses from the surface to the core of the nanowire of ~0.2 

eV,40 giving a volume diffusivity of Li in Si of ~10-12 cm2/s. This is two orders of 

magnitude higher than the diffusion coefficient of dilute Li in bulk Si, ~3×10-14 cm2/s.41 

 
 

Figure 9.4 The position of the Li surface diffusion front plotted versus t1/2. The 
diffusion coeffecient D, calculated from Fick’s second law, x t = 2! D!t, 
is D=1.5×1011 cm2/s. 
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After 100 sec of lithiation, the nanowire in Figure 9.3 begins to expand as the core 

of the nanowire begins to be lithiated and converted to amorphous LixSi. Such a 

sequential core-into-shell progression of lithiation is known to occur for crystalline Si 

nanowires; however, the Li diffusion front is typically tapered, indicating that the surface 

Li diffusion in the axial direction occurs at about the same rate as the radial diffusion of 

Li into the core of the nanowire.11,27 The Sn-containing Si nanowires do not exhibit such a 

tapered diffusion front and it appears that the rate of Li diffusion on the nanowire surface 

is much faster than the rate of lithiation into the core of the nanowire. Nonetheless, the 

core lithiation rate of the Sn-containing nanowires is still significantly faster than the 

lithiation rate of intrinsic Si nanowires. For example, the lithiation rate of the nanowire in 

Figure 9.3 is 280 nm h-1, which is comparable to the lithitation rate of Ge nanowires35 and 

much faster than the typical lithiation rate of 35 nm h-1 for intrinsic crystalline Si 

nanowires.31 So, the lack of significant tapering of the diffusion front is mostly the result 

of the extremely fast surface diffusion rate. 

The nanowire in Figure 9.3 has become fully lithiated after 330 sec. The fully 

lithiated nanowire shown in Figure 9.3j has a diameter of 80 nm. Considering that the 

initial diameter of the nanowire was 32 nm, the volume of the nanowire has expanded by 

276%, which is very close to the expected value for the fully-lithiated phase of Li15Si4.  

 

9.3.2 Pore Formation 

After a third delithiation cycle, the nanowire begins to evolve pores. Figure 9.5a-i 

shows a segment of the nanowire in a lithiated state and Figure 9.5b-i shows the nanowire 

after it has been delithiated. Pores form as lithium is removed from the nanowire. Figures 

9.5c-f show snapshots of the morphology of the nanowire after the fifth and sixth 

lithiation/delithiation cycles. Pores are formed in the nanowire after each delithiation 
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event, and these pores disappear as the nanowire swells with lithium. After lithiation, the 

pores have disappeared in the nanowire, except near the surface. In these later lithiation 

cycles, the diameter increase (of 120%) corresponds to a volume expansion of only 170% 

(compared to 280%), because of the void volume remaining within the nanowires after 

delithiation. The Si still fully lithiates and exhibits the expected volume expansion, but 

the nanowire diameter does not need to expand as much to accommodate the lithium 

because of the pore volume in the core of the nanowire. Figures 6.5d and 6.5f show the 

nanowire in its delithiated state after subsequent cycles. The pores reappear in the 

nanowire at nearly the same location, indicating that the pores do not completely 

disappear when the nanowire lithiates. 
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Figure 9.5 Pore evolution in a Sn-incorporated Si nanowire. (a-i) TEM image of the 
nanowire after lithiation and (a-ii) a corresponding EDP showing a-LixSi 
rings (labeled in blue) and unlithiated c-Si bright spots (labeled in yellow). 
(b-i) TEM image of the nanowire after delithiation and (b-ii) corresponding 
EDP showing a-Si rings and unlithiated c-Si bright spots (labeled in 
yellow). (c-f) shows TEM images of the Si nanowire as pores reversibly 
open and close during sequential lithiation and delithiation cycles.  
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The locations of the pores appear to be associated with domains in the nanowire 

that do not become fully lithiated. Even though the measured diameter expansion is 

consistent with nearly full lithiation of the nanowire, electron diffraction patterns (EDPs) 

of lithiated nanowires show rings from amorphous LixSi and bright spots from crystalline 

Si that indicate some regions of the nanowire do not get fully lithiated. Figure 9.5a-ii 

shows an example of a diffraction pattern taken from a region of a lithiated nanowire. 

Figure 9.5b-ii shows a diffraction pattern from the same region after delithiation: 

diffraction spots from crystalline Si are also observed. Figure 9.6 shows high-resolution 

TEM images of a nanowire in its lithiated and delithiated states with observable 

crystalline domains in each structure. These non-lithiated regions are the result of 

lithiation-induced stresses in the nanowire, which are known to limit the extent of 

lithiation in nanowires.42 Previous reports of this behavior in Si nanowires have shown 

unreacted crystal domains with a staircase-like appearance.43 In the Sn-containing Si 

nanowires studied here, the unreacted grains appear as randomly-dispersed islands 

surrounded by amorphous LixSi.  
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Figure 9.6 TEM images of a Sn-incorporated Si nanowire that has been (a) lihitated 
and (b) delithiated with unlithiated regions highlighted in yellow and pores 
in the delithiated nanowire identified with blue dashes. 
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Pore formation has been observed in various dealloying systems, including Li-

Sn44 and Ag-Au.45 Pores result from the aggregation of vacancies that form during the 

phase separation or dealloying process when the diffusion rate of the out-diffusing 

species is much faster than the atomic diffusion rate of the host material. Pore formation 

has also been observed by in situ TEM of lithiated Ge nanowires that are undergoing 

delithiation.35 In Ge, the rate of Li diffusion is much faster than Ge atom diffusion. Thus 

far, pore formation has not been observed by in situ TEM studies of delithiating Si 

nanowires because of the relatively slow Li diffusion rates in Si, which provide vacancies 

sufficient time to migrate to the nanowire surface or to be filled with Si atoms before 

nucleating a hole. Pore formation is observed in these Sn-containing Si nanowires 

because of the significantly increased Li diffusion rate. 

There are still noticeable differences in the way pores form in the Sn-containing 

Si nanowires compared to Ge nanowires. First, the pores in the Si nanowires do not show 

up in the first lithiation/delithiation cycle. The pores do not become obvious until several 

charging/discharging cycles have been completed. Another difference is that there is no 

distinct delithiation front to clearly differentiate the delithiated porous region from the 

lithiated nonporous region in Si nanowires as there is in Ge nanowires.35 The pore 

formation process in the Si nanowires appears to have slower kinetics than in the Ge 

nanowires. The other major difference is that nanocrystalline domains are still detected in 

the Si nanowires after lithiation/delilthiation cycles have been completed, as shown in 

Figure 9.6. These crystal grains prevent uniform structural changes in the nanowires and 

lead to an accumulation of stresses in the nanowire that can ultimately lead to pore 

formation.  

Figure 9.7 illustrates this mechanism of pore formation in Sn-containing Si 

nanowires. First of all, the Si nanowires studied here have a variety of defects. Most of 
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the nanowires are not straight and contain defects that give rise to a torturous 

morphology. These defects include line and plane defects that can provide channels for 

fast Li diffusion.39,46 A gathering of Sn along these defects can further increase Li 

diffusivity.47 Such Li diffusion channels would naturally lead to domains of Si that do not 

get lithiated, thus creating a compressive stress in the nanowire and an intensified hoop 

tension48 that eventually leads to crack formation. During delithitation, some vacancies 

migrate to the cracks and form pores. These pores increase in size after each 

lithiation/deslithiation cycle and finally become observable after several cycles.  

 

 

Figure 9.7 Pore formation in a crystalline Sn-containing Si nanowire. Fast Li diffusion 
along defects, including dislocations and twin boundaries, leaves crystalline 
domains that do not lithiate due to the buildup of stress. Intensified hoop 
tension around the unlithiated nanocrystalline domains then lead to cracks 
during lithiation. Pores appear in the cracked sites when Li ions are 
extracted and the nanowire shrinks. These pores become obvious after 
several lithiation/delithiation cycles. 

Coating the Sn-containing nanowires with an amorphous Si shell (i.e., c-@a-Si 

nanowires) was found to significantly slow the formation of pores. High lithiation and 

delithiation rates were still observed in the c-@a-Si nanowires by in situ TEM, similar to 

the c-Si nanowires. For example, a complete charge/discharge cycle only took 150 s to 

complete in the segment in the field of view. But no pore formation was observed in 
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these nanowires, even after ten lithiation/delithiation cycles. The structural stability of the 

nanowires probably results from the isotropic expansion of the amorphous shell, which 

can counter the anisotropic expansion of the crystalline core that has been observed in Si 

nanowires during initial lithiation cycles.49 The lithiated shell also exerts a uniform 

compressive stress onto the core that can help promote isotropic lithiation of the 

crystalline core.50 This compressive stress also counters the expansion of the core and 

buffers the tension buildup around unreacted crystalline domains in the core, preventing 

the early appearance of pores. 
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Figure 9.8 (a) STEM HAADF image of a crystalline Si nanowire containing Sn with an 
amorphous shell (c-Si@a-Si). The amorphous shell and crystalline core are 
distinguished by their differing contrast. (b-g) In situ TEM images of the 
nanowire undergoing three lithiation/delithiation cycles.  
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9.3.3 Ex Situ TEM Characterization 

Post-mortem TEM characterization of Sn-incorporated Si nanowires was carried 

out after coin cell battery tests for comparison with in situ observations. Coin cells were 

made with nanowire slurries containing poly(acrylic acid) (PAA), sodium alginate 

(NaAlg) and conductive carbon cast onto Cu foil. The nanowires were cycled against Li 

metal in a half-cell at a relatively slow rate of C/10 for the first cycle and then at 1C for 

the remaining cycles. The batteries were stopped in the delithiated state and disassembled 

for imaging. Figures 9.9a and 9.9b show TEM images of crystalline Si nanowires with 

and without an amorphous Si shell after the first cycle of C/10. Both types of nanowires 

become amorphous after the initial cycle. After ten cycles at 1C, there is a noticeable 

difference in morphology between the two types of nanowires. The c-Si nanowires 

exhibit many small cavities (Figure 9.9c); whereas, the c-@a-Si nanowires did not show 

any visible pores, and the core-shell structure was largely unaffected (Figure 9.9d). After 

100 cycles, the c-Si nanowires have become extremely porous (Figure 9.9e), similar to 

what was observed by in situ TEM after five cycles. This indicates that the result of the in 

situ battery test is consistent with the ex situ test, while the cycle rate is much higher in 

the in situ TEM experiment setup and the structural evolution is accelerated with 

exposure to high energy electron beam.51 The core-shell structure of the c-@a-Si 

nanowires was still visible after 100 cycles, as shown in Figure 9.9f. The shell has 

become porous, but the core is still relatively non-porous. This architecture appears to be 

useful for batteries and exhibits better stability, as also reflected by the slower loss of 

charge capacity compared to the c-Si nanowires after 100 electrochemical cycles in our 

previous publication.33  
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Figure 9.9 TEM images of Sn-incorporated Si nanowires with and without amorphous 
shells extracted in the delithiated state from half cells after cycling at a rate 
of 1C: (a) c-Si and (b) c-@a-Si nanowires after 1 cycle; (c) c-Si and (d) c-
@a-Si nanowires after 10 cycles; (e) c-Si and (f) c-@a-Si nanowires after 
100 cycles. 

 

9.4 CONCLUSIONS 

Very fast lithiation and pore formation was observed by in situ TEM of lithiating 

and delithiating Si nanowires containing high concentrations of Sn. The average lithiation 

rate was 280 nm h-1, which is nearly an order of magnitude faster than the lithiation rate 

of intrinsic crystalline Si nanowires. The application of an amorphous Si shell on the 
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nanowires significantly limited the rate of pore formation while still retaining fast 

lithiation/delithiation kinetics. The shell-coated nanowires did not exhibit pore formation 

in the in situ TEM measurements, even after ten cycles of lithiation and delithiation, and 

ex situ TEM images of nanowires cycled in coin cell batteries showed that the rate of 

pore formation was significantly slowed by the application of the shell. These results 

further demonstrate that the incorporation of Sn in Si nanowires can provide significantly 

enhanced lithium ion battery performance for Si electrodes, with enhanced rate capability 

while retaining high capacity, even alleviating the need to add carbon to the electrode 

layer.  
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Chapter 10: Germanium Nanowires as Sodium Ion Battery Anodes††† 

10.1 INTRODUCTION 

Li-ion batteries are widely used to power portable electronic devices and are now 

advancing into other commercial markets of electric vehicles and large-scale power grid 

storages.1 Li-ion batteries, however, do have challenges related to cost, safety, lifetime 

and cycling performance.2 Because sodium (Na) is naturally abundant, it has attracted 

attention as a potential replacement for Li in rechargeable batteries, i.e. Na-ion batteries.3–

6 Although Na has similar chemical properties as Li in many respects, electrodes that 

have been developed for Li-ion batteries do not always work for the Na-ion system. For 

instance, graphite is commercially used as the anode in Li-ion batteries, but shows very 

low and highly irreversible capacity in Na-ion batteries.7 A suitable anode for Na ion 

batteries is needed. So far, non-graphitic carbon,8–11 tin (Sn; the theoretical capacity is 847 

mAh·g-1 for Na15Sn4 and the observed capacity has ranged from 300 mAh·g-1 to 864 

mAh·g-1),12,13 antimony (Sb; the theoretical capacity is 660 mAh·g-1 for Na3Sb and the 

observed capacity has ranged between 544 mAh·g-1 and 600 mAh·g-1),14–16 and their 

alloys17,18 have shown some success in Na-ion batteries. Ceder et al.,3 have calculated that 

both silicon (Si) and germanium (Ge) should alloy with Na at room temperature to form 

NaSi and NaGe. However, crystalline Si and Ge, which have been shown to be promising 

high storage anodes for Li-ion batteries,19–21 have not worked in Na-ion batteries, 

apparently because of a high diffusion barrier for Na ions in the Si and Ge lattices.22 

Recently, the groups of Mullins23 and Mitlin18,24 have demonstrated that amorphous Ge 

(a-Ge) exhibits reversible Na insertion in batteries. The high defect density of a-Ge 

significantly lowers the activation barrier for Na diffusion.23 Now, we find that in 
                                                
††† Manuscript submitted to Nano Letters: Lu, X. T.; Adkins, E. R.; He, Y.; Zhong, L.; Mao, S. X.; Wang, 
C. M.; Korgel, B. A. Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation 
Kinetics with High Capacity 
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addition to amorphization, the addition of tin (Sn) to the Ge nanowire surface, further 

enhances the sodiation rates.  

We carried out real-time in situ TEM studies of the sodiation and desodiation of 

Ge nanowires coated with tin (Sn). The addition of Sn to Si nanowires significantly 

enhances the lithiation and delithiation rates of Si nanowires,25,26,27 so we tried this 

approach to Ge nanowires to see if it would also enhance the sodiation/desodiation rate of 

Ge nanowires. As expected, in situ TEM experiments showed that crystalline Ge 

nanowires do not sodiate, but by amorphizing the nanowires with an initial 

lithiation/delithiation cycle, the nanowires become effective sodiation electrodes. The 

sodiation kinetics are very fast and the observed volume expansion is unexpectedly large. 

The volume of the amorphous Ge nanowires expand by more than 300%, which is 

significantly higher than expected based on a final sodiated phase of NaGe, and close to 

Na3Ge. Significant pore formation was also observed in the nanowires after desodiation. 

Pores have also been observed in Ge nanowires after delithiation,28,29 but the pores that 

form after sodiation are larger and more concentrated. During sodiation, the pores 

disappear and the Ge nanowires heal without any significant structural change. The in 

situ studies are carried out at an exceptionally fast C-rate of 360C,30 showing that 

sodiation and desodiation of a-Ge nanowires can occur at high rates and yield relatively 

high sodium storage capacities in Na-ion batteries. 

 

10.2 EXPERIMENTAL DETAILS 

10.2.1 Materials 

Anhydrous toluene (99.8%, Sigma-Aldrich), tetraoctylammonium bromide (98%, 

Aldrich), sodium borohydride (≥98.0%, Aldrich), bis[bis(trimethylsilyl)amino]tin(II) 
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(Sn(hmds)2, Aldrich), hydrogen tetrachloroaurate(III) trihydrate (≥99.9%, Aldrich), 

diphenylgermane (DPG, Gelest Inc.), trisilane (Si3H8, Voltaix) were obtained 

commercially and used without further purification. Gold (Au) nanocrystals averaging 2 

nm in diameter were prepared by Brust’s method.53  

10.2.2 Synthesis of Sn-coated Ge Nanowires  

Ge nanowires were synthesized in a 10 mL titanium tubular reactor connected to a 

high pressure liquid chromatography (HPLC) pump. A 28 mL reactant solution of 18 

mg/L Au nanocrystals and 35.7 mM diphenylgermane (DPG) in anhydrous toluene 

prepared in a nitrogen-filled glovebox. Prior to precursor injection, the 10 mL titanium 

tubular reactor was filled with N2 in the glovebox and then connected to the six-way 

valve and the backpressure regulator at two ends. After the reactor was preheated to 

380oC and pressurized to 6.9 MPa with anhydrous toluene, nanowire growth was carried 

out with the reactant solution fed into the reactor at a rate of 0.5 mL/min for 40 min. The 

outlet pressure was maintained at 6.9 MPa. After completing the injection of the 

reactants, the reactor was sealed and removed from the heating block. After the reactor 

cooling to room temperature, the nanowire product was collected and washed with a 

mixture of 4 mL of chloroform, 2 mL of toluene and 2 mL of ethanol, followed by 

centrifugation at 8000 rpm for 5 min. The purification procedure was repeated three times 

to remove unreacted reagent and molecular byproducts. 

Purified Ge nanowires were dispersed in 10 mL of anhydrous toluene with 50 

mM Sn(hmds)2 inside a N2-filled glovebox.  Dilute trisilane (~ 0.03 mmol) was added as 

a reducing agent to generate Sn nanoparticles on the nanowire surface.  The dispersion 

was stirred overnight to obtain a uniform Sn nanoparticle coating on the nanowires. 
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10.2.3 In Situ TEM Lithiation/Sodiation of Si Nanowires 

In situ TEM measurements were carried out with a Nanofactory TEM-STM 

holder inside a Titan 80-300™ scanning/transmission electron microscope (S/TEM). 

Nanowires were drop-cast onto a gold probe as a working electrode and lithium metal 

was mounted on a tungsten probe as a counter electrode. A native Li2O layer formed by a 

short exposure of Li to air functions as a solid-state electrolyte.31,32 Inside the TEM, a 

piezo-positioner moves the Li/Li2O electrode into contact with the nanowire. After 

contact, a bias of -2 V is applied to initiate lithiation. Once lithiation is completed, a bias 

of 2V is applied for delithiation. After the lithiation/delithiation cycle was complete, the 

holder was brought out of the TEM and Li was replaced with Na in an Ar-filled 

glovebox. Similarly, in situ TEM imaging of sodiation/desodiation was carried out, with 

a thin layer of Na2O and NaOH serving as the electrolyte.13,33 

 

10.3 RESULTS AND DISCUSSIONS 

For these studies, Ge nanowires were synthesized by a supercritical fluid-liquid-

solid (SFLS) method, and then a uniform Sn nanoparticle coating was deposited on the 

nanowires using previously described methods.34,35,36 Sodiation of crystalline Ge (c-Ge) 

nanowires was first attempted, but no sodiation was observed (Figure 10.2). Sodiation of 

the nanowires was only observed after an initial lithiation/delithiation cycle was utilized 

to amorphize the nanowires, as shown in Figure 10.3a. Sodiation and desodiation of the 

nanowires was carried out by applying biases of -0.5 V vs Na and between 2 to 5 V vs 

Na, respectively. The applied potential for desodiation in the TEM is significantly larger 

than what is needed in actual Na-ion battery tests13 in order to offset the spontaneous 

diffusion of Na,37 activation of the electron beam,38 and potential barrier at the contacts. 

This is common for in situ TEM studies; for example, in situ lithiation of Si requires the 
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application of -2V vs Li, whereas, the lithiation window in Li-Si half cells is 0 to +2V vs 

Li. This difference does not appear to change the behavior of the material.32,39  

 

 

Figure 10.1 Elemental analysis of a Sn-coated Ge nanowire. (a) EDS mapping and (b) 
EDS spectrum of a Sn coated Ge nanowire. 
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Figure 10.2 Fast surface diffusion of sodium along the length of a crystalline Ge 
nanowire. (Left) Only sodium diffusion on the surface of the c-Ge nanowire 
was observed by applying -2V bias for 2 hours, the diameter and crystalline 
structure of the Ge nanowire was unchanged. (Right) The surface sodium 
could be rapidly withdrawn in a few minutes by applying positive bias. The 
c-Ge nanowire was intact after this contrast experiment, indicating that the 
crystalline Ge nanowire cannot be sodiated without amorphization.   
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Figure 10.3 Schematic showing the in situ TEM experiment procedure. In a first step, a 
crystalline Ge nanowire is cycled against Li to obtain an amorphous 
structure. Then, Li is replaced by Na and the a-Ge nanowire is cycled 
against Na.  

Figures 10.4b-f show TEM images of the first lithiation process of a <111>-

oriented Ge nanowire with Sn particles coated on the surface. The two major orientations 

of our Ge nanowires are <111> and <110>. As these two nanowires do not exhibit 

significant difference upon lithiaion40 and our discussion are focused on the sodiation 

after amorphization, the following discussion will not differentiate the original 

orientation of the nanowires. Since the Sn nanoparticles swell upon lithiation (Figure 

10.4b-c), they were employed as markers for tracking the lithiation front as it moved 

down the length of the nanowire, as we have done previously with Si nanowires.26 The Li 

diffusion front moves down the length of the nanowire at a rate of ~860 nm/min, which is 

slightly higher than what we previously measured in Sn included Si nanowires, which 

was 450 nm/min.25 Similar to the case of Si, the Sn coating significantly enhances the 

surface lithiation rate in the Ge nanowires. As a result of a much slower bulk diffusion of 



 162 

Li, the first lithiation of Ge nanowires occurs in a surface-into-core sequence, as shown in 

Figure 10.5a, which has been observed for other materials as well.41,42 The average radial 

lithiation rate was 4.4 nm/min for the Ge nanowire with original diameter of 31.7 nm 

(Figure 10.4); and for the nanowire with initial diameter of 68 nm (Figure 10.5) this rate 

was slower, at 1.02 nm/min. The much slower lithiation rate into the thicker nanowire is 

the result of lithiation-induced stress, which accumulates more severely in thicker 

nanowire and prevents full lithiation in nanowires with diameter over 100 nm.43 The 

lithiation rates we observe in the Sn particle-coated Ge nanowires are are close to the 

average radial migration rates observed in heavily doped <111> Si nanowires of 3.9 

nm/min.41  
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Figure 10.4 In situ TEM images of real-time lithiation of a lattice-resolved Ge nanowire 
with Sn coating the surface. (a) The pristine Ge nanowire with a [111] 
growth direction; (b-c) Lithiation swells the Sn nanoparticles decorating the 
nanowire surface (Sn nanoparticles are highlighted in yellow and red before 
and after lithiation, respectively), providing a marker Li diffusion along the 
length of the nanowire; (d-f) lithiation of the Ge nanowire occurred in the 
radial direction in a core-into-shell mode at much slower rate as reported 
previously.28 

The Ge nanowires were delithiated and then cycled against Na. It is worth noting 

that we did not observe any pores28 in the delithiated Ge nanowires after this single 

lithiation/delithiation cycle. The amorphized, delithiated Ge nanowires undergo visibly 
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rapid sodiation. Figure 10.5b shows a sequence of TEM images of an a-Ge nanowire 

undergoing its first sodiation cycle. Similar structural evolution was observed in several 

other nanowires during sodiation.  

 

 

Figure 10.5 Time series images of (a) lithiation and (b-c) sodiation of a Sn-coated Ge 
nanowire, where sodiation proceeds faster than lithiation by two orders of 
magnitude. The segment investigated in (b) is the area marked with dotted 
blue frame in (c). Comparison of electron diffraction patterns of (d) a-LixGe 
and (e) a-NaxGe feature an obvious shrinking of the diffraction rings of a-
NaxGe, indicating the further lattice expansion upon Na insertion.  
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The diameter of the Ge nanowire in Figure 10.5b expanded from 68 nm to 74 nm 

after the lithiation/delithiation cycle, corresponding to a volume expansion of 129% for 

amorphization. Ge typically undergoes isotropic lithiation,44 occurring by a surface-into-

core diffusion mechanism as others have described.28 Sodiation of the nanowire on the 

other hand creates a V-shaped sodiation front, similar to the lithiation behavior of the 

carbon-coated and phosphorous-doped Si nanowires where ultrafast lithiation was 

observed.45 The V-shape indicates that bulk Na diffusion into the Ge nanowire occurs at a 

rate nearly comparable to the surface diffusion rate of Na down the length of the 

nanowire. The sodiation rates in the axial and radial directions of the nanowire in Figure 

10.5b were respectively, 1903 nm/min and 740 nm/min. For the nanowire segment in the 

viewing field with starting diameter of 74 nm and length of 630 nm, it only took 30 s to 

complete sodiation. This corresponds to an extremely fast charging rate of ~44.27 A·g-1, 

or 120C (with 1C = 369 mA·g-1 for the alloying of Ge to NaGe).3 After sodiation, the 

nanowire diameter has expanded from 74 nm to 115 nm and, in the low-magnification 

image (Figure 10.5c), the length of one segment has increased from 589 nm to 740 nm 

(this measurement is subject to the curling of the nanowire and projection nature of the 

TEM image). This corresponds to a volume expansion of 303%,46 which is much higher 

than expected based on a saturated NaGe phase, which would only lead to a volume 

expansion of 134%.47 Electron diffraction confirmed that Na was inserting into the 

nanowires, as Figure 10.5d shows, comparing the electron diffraction patterns of LixGe 

and NaxGe nanowires. The diffraction rings of NaxGe are closer to the center spot, which 

is consistent with a more significant lattice expansion in the nanowire when Na inserts 

compared to Li. 

Na3Ge is the only other phase known to exist on the Na-Ge phase diagram48 with 

higher Na content than NaGe, and better matches the volume expansion observed. If 
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Na3Ge were indeed the final sodiation product, three times the amount of sodium would 

be incorporated into the nanowire than if it were NaGe, which would effectively increase 

the initial charging rate estimate ever further to 360C (with 1C = 1108 mA·g-1 for the 

alloying of Ge to Na3Ge). Due to the other kinetic barriers in actual batteries,49 like slow 

transport across the solid electrolyte interface (SEI) layers, such rate performance might 

not be achievable in a real battery setup with much higher mass loading. Nevertheless, 

these in situ observations show a-Ge nanowires might be a very effective negative 

electrode material for Na-ion batteries.  

The electron beam had a strong effect on the sodiated nanowires and needed to be 

minimized during the measurements to avoid artifacts in the measurement. For instance, 

an instantaneous swelling of nanowires was observed immediately when the beam was 

illuminated after a long period of beam-blanked desodiation. The electron beam induces 

Na insertion into Ge, especially when the beam is at a high energy. Similarly, beam-

induced lithiation of Si particles has been observed by others.31 Beam-induced sodiation 

occurs because Na has a much lower activation energy for self-diffusion,37 and sodiation 

is more kinetically favored than desodiation.50 Migration of Na induced by the beam can 

become so severe that a thick shell of Na can form on the nanowire within a few minutes 

of illumination (Figure 10.2). Sodiation can also be readily triggered by the electron 

beam, even during the desodiation process. Therefore, a high positive voltage is applied 

to minimize the effect of the electron beam, as well as the retardation of interstitial 

diffusion of Na by defect-trapping in a-Ge.51,52 We further improved the imaging of the 

desodiation processs by avoiding direct diffusion of Na from the Na reservoir into the 

nanowire by bridging the target nanowire with another set of nanowires (Figure 10.6).  
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Figure 10.6 Bridging of nanowires to avoid fast surface diffusion of Na. Bridging the 
nanowires to avoid fast surface diffusion of Na from Na@Na2O/NaOH 
reservoir.  

Pores were observed in the nanowires after the first desodiation event; whereas, 

pores were not observed after the first lithiation/delithiation activation step. One would 

perhaps expect pore formation to be more likely after desodiation than delithiation 

because of the much larger atomic volume of Na (24.43 Å3/atom, elemental volume) 

compared to Li (12.77 Å3/atom). Figure 10.7 shows the comparison between pristine, 

delithiated and desodiated Ge nanowire. The delithiated Ge nanowire has nearly returned 

to its original diameter with without any visible pores. The desodiated Ge nanowire on 

the other hand contains a large concentration of pores and retains a much larger diameter 

than its starting diameter after desodiation. The porous structure creates an electron 
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diffraction pattern with significantly more diffuse diffraction rings in the desodiated 

nanowire (Figure 10.7e) compared to a delithiated nanowire (Figure 10.7d). 

 

 

Figure 10.7 Pore formation during desodiation. (a-b) the pristine Ge nanowire with 
[110] growth direction before lithiation; (c) delithiated Ge nanowire features 
no pore after Li extraction and (d) electron diffraction pattern shows its 
amorphous structure; (f) pores appear in the nanowire after the first 
desodiation and (e) the diffraction rings of desodiated Ge nanowire 
broadened compared with delithiated Ge in (d), indicating more structural 
defects after Na extraction. 

The a-Ge nanowires also exhibited the ability to recover structurally after 

desodiation when they were re-sodiated. Figure 10.8c shows a TEM image of nanowire 

that was desodiated at a very fast rate by applying a very high bias of +10 V vs Na. This 

led to the formation of giant pores in the nanowires without any change in outer diameter. 

Despite the massive size of the pores, these pores were almost completely filled during 

the subsequent sodiation step (Figure 10.8d). More strikingly, by manipulating the 

voltage at the normal range (< +5V), only small pores appeared during the second 

desodiation, totally different from the giant pore in the first desodiation (Figure 10.8e). 

This is different than the reversible pore formation that has been observed during the 

lithiation/delithiation of Ge nanowires that has showed a memory effect in which pores 



 169 

would shrink during delithiation but never fully recover in subsequent cycles.28 The 

observation here demonstrates that a-Ge nanowires have excellent structural robustness.  

 

 

Figure 10.8 Structure evolution during sodiation/desodiation cycles. (a) The 
delithiated/amorphorized Ge nanowire. (b) Sodiated Ge nanowire. (c) A 
huge pore was created by applying high desodiation bias. (d) Porous 
structure was recovered from second sodiation. (e) Small pores, instead of 
huge one, reformed during second desodiation upon milder desodiation. (f) 
Those small pores could also be recovered from sodiation. 
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10.4 CONCLUSIONS 

The sodiation/desodiation of Ge nanowires was studied with in situ TEM for the 

first time. The experiment confirmed that Ge nanowires could be sodiated only after their 

crystalline phase was completely amorphorized. Our result suggests that NaGe is not the 

final sodiation product and Ge could uptake much more Na than 1:1 ratio according to 

over 300% volume expansion after sodiation. Fast sodiation was demonstrated in those a-

Ge nanowires. Moreover, porous structure was more easily formed from the desodiation 

rather than the delithiation process. This porous structure has excellent structural stability 

that could even recover from damage caused by ultrafast Na extraction. These results 

indicate that Ge provides a great anode candidate for Na-ion batteries, with significantly 

higher energy densities than previously thought to be attainable, excellent rate 

performance and structural robustness. 
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Chapter 11:  Conclusions and Future Direction 

11.1 CONCLUSIONS 

This section analyzed the performance of the nanowires as anode materials with 

in situ TEM technique. Chapter 9 showed that incorporation of Sn enhanced rate 

capability of Si nanowire anodes, which verifies the result obtained in previous half-cell 

battery test.1 In situ TEM experiments also showed that fast Li diffusion rate in Sn-

incorporated Si nanowires also led to the premature formation of pores, while the 

application of an amorphous Si shell on the nanowires significantly limited the rate of 

pore formation while still retaining fast lithiation/delithiation kinetics.  Chapter 10 

presented the sodiation/desodiation of Ge nanowires after their crystalline phase was 

completely amorphorized by lithiation cycle. The result suggested that Ge could uptake 

much more Na than 1:1 ratio and demonstrated the fast sodiation capability of this novel 

anode. 

The two examples of the in situ TEM study illustrate the power of this advanced 

analytical tool in the battery research. In situ TEM provides the real time record of the 

electrochemical and mechanical responses of electrode materials. Combined with 

traditional battery characterizations, these experiments are greatly useful for giving the 

guidelines for the rational design and modification of Si- and Ge-based anodes that suffer 

from more severe structure-related problems. 

 

11.2 FUTURE DIRECTIONS 

Besides material design and modification, the anode performance depends also on 

the battery formulation, such as the electrolyte and binder. The open cell configuration 

provides high-resolution recording of structural and chemical evolution of the anode 
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materials during lithiation/delithiation, but it does not mimic the liquid electrolyte 

environment of the electrodes and operation in real batteries. To observe the behavior of 

the nanomaterials under more realistic environmental conditions, especially concerning 

the interactions between the electrolyte and the nanostructure surface, a closed-cell 

configuration is needed. Such a direct observation of an actual slurry-based anode 

undergoing charge cycling by in situ TEM is more challenging, but extremely valuable. 

The liquid cell setup addresses the shortcomings of the open cell.2,3 In a liquid cell 

(Figure 11.1), the anode nanomaterials are welded on the Pt electrode, while the Li metal 

is on the counter electrode. Both electrodes are immersed in the electrolyte, which is 

sealed by Si3N4 membranes. This setup is very similar to the half-cell LIBs in ex situ 

testing of anode materials. Li ions are not transported through point contact (in open cell), 

but in the actual electrolyte, i.e. LiPF6 dissolved in ethylene carbonate (EC) and 

diethylene carbonate (DEC) with added fluoroethylene carbonate (FEC). Liquid cell 

characterization is important because it reflects the actual diffusion mode of Li ions in 

real batteries, not only via one-dimensional transport down the length of the nanowire but 

also three-dimensionally on all the interfaces of the anode contacting the electrolyte. It 

offers more representative structural information. Liquid cell characterization also 

involves the solid-electrolyte-interphase (SEI) layer, which forms due to side reactions 

with the solvent in the battery—primarily composed of the carbonate byproducts. A 

positive effect of the SEI is that it covers and protects the anode from degradation. 

However, it increases electrical resistance and hinders Li ion diffusion. By trapping a 

significant amount of Li, it also decreases the battery capacity.4 So, understanding SEI 

layer formation and behavior during battery cycling is crucial to understanding and 

improving anode performance. SEI chemistry is especially not well understood for Si and 

Ge anodes. In situ TEM imaging using a liquid cell offers a way to directly resolve the 
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interfacial reactions and SEI layer formation. By recording lithiation/delithiation cycles 

in real time relationships could be established between: 1) the structural evolution of 

anode upon charge cycles and crack formation and propagation mechanisms of the SEI 

layer, 2) solvent selection and SEI growth, and 3) anode failure and the stabilizing effect 

of the SEI layer. 

 

Figure 11.1 (a) Photograph of a liquid-cell TEM holder and (b) illustration of the liquid-
cell nanobattery: Si3N4 membranes are used to seal the electrolyte in the 
cell, while allowing the transmission of the electron beam. 
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