Copyright
by
Christopher Timothy Curry
2016



The Dissertation Committee for Christopher Timothy Curry
certifies that this is the approved version of the following dissertation:

Transport in Higher Dimensional Phase Spaces

Committee:

Philip J. Morrison, Supervisor

Claude Wendell Horton, Jr.

Richard Hazeltine

Richard Matzner

Irene Gamba



Transport in Higher Dimensional Phase Spaces

by

Christopher Timothy Curry, B.S.; M.S. Bioengineering

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2016



Acknowledgments

I wish to thank my parents, family, and friends for their love and sup-
port over the many, many years. I am especially grateful to my advisor, Phil
Morrison, for his guidance and wisdom, and to The University of Texas at

Austin and the Department of Physics for financial support.

v



Transport in Higher Dimensional Phase Spaces

Publication No.

Christopher Timothy Curry, Ph.D.
The University of Texas at Austin, 2016

Supervisor: Philip J. Morrison

We use a four dimensional symplectic mapping, the coupled cubic-
quadratic map, to provide evidence of Arnol’d Diffusion in phase space. We
use the method of frequency analysis for dynamical systems to demonstrate the
existence of regular orbits, and show that these orbits enclose weakly chaotic
orbits which escape in finite time around the tori. A new collocation method
for frequency analysis is employed by adapting it to allow for higher precision
results. Arbitrary precision numerics are used to obtain highly accurate orbits
for long timescales, and the adapted frequency method is used to obtain highly
accurate frequencies of the mapping. We review the method of frequency anal-
ysis, demonstrate its effectiveness and accuracy in determining frequencies and
finding tori in simple systems and low-dimensional mappings, and extend the
results to higher dimensions. In the four dimensional mapping, we find several
regular orbits with irrational frequency ratios, indicating the existence of tori

in the phase space, as well as interior orbits that escape around these tori.
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Chapter 1

Preliminaries

1.1 Hamiltonian Mechanics

The Hamiltonian formalism!® is an elegant formulation of the laws of
mechanics that is entirely equivalent to to the laws of motion provided by
Newton’s equations for nondissipative systems. A dynamical system is often

described by a set of differential equations
2 =Vi(z), i=1,...,N (1.1)

where 2" are the coordinates of the configuration manifold Z and V(z) is an
appropriate vector field. It is customary to refer to the solution of (1.1) as
the flow. If the system has a time-dependent vector field V' =V (z,t), it is
referred to as non-autonomous. The time dependence of such systems can
always be removed by increasing the dimension; therefore in this work, we

deal only with autonomous, or time-independent systems.

The dynamics of a Hamiltonian system take place in the arena of phase
space, a 2N dimensional symplectic manifold in which volume and all other

Poincaré invariants [121] are inherently preserved under the Hamiltonian

1See, for example, [2, 7, 62, 82, 11, 103, 48, 112, 116, 126, 138]



flow. The phase space is described by a set of configuration coordinates ¢

and their canonically conjugate momenta p®. That is, for z = z(q, p),

2 =V2), a=1,....M (1.2)

where M = 2N. In canonical coordinates, we have

o0H
o a _ 7afB o
2 =Vg=J 9.8 a,f=1,....M (1.3)
where
_( Oy In
J. = <_IN 0N> ) (1.4)

In this case, V is a Hamiltonian vector field generated by the Hamiltonian
function H : Z — R, Oy is the N x N null matrix, and Iy is the N x N

identity matrix.

It is customary to write Hamilton’s equations as

OH 4 OH
_ i _ 1.

3

q

for H = H(q',p') and i = 1,2,..., N. The state of a dynamical system is
completely determined by the configuration (¢!, ¢?, ..., ¢"), the conjugate

momentum vector (p!,p?, ...,p"), and the Hamiltonian H.

1.2 The Poincaré Surface of Section

The study of modern dynamics began with Jules Henri Poincaré in the

late 1800s [120]. In addition to his remarkable abilities in virtually all areas of



mathematics and physics, Poincaré is regarded as the father of chaos theory.
This is due to his development of topological and qualitative approaches to
dynamics, his discovery of the hyperbolic tangle and the sensitive
dependence of trajectories on initial conditions, the Poincaré recurrence

theorem, and the surface of section technique which also bears his name.

Figure 1.1: The Poincaré surface of section. A Poincaré section is obtained by
the intersection of a surface with the flow in phase space.

The surface of section, also known as a Poincaré section, Poincaré
surface, or Poincaré map, is essentially a means to reduce the dimensionality
of the dynamics by one in order to better understand the higher-dimensional
flow. Consider an integrable Hamiltonian system with /N degrees of freedom.
The dimension of phase space is 2N, and the trajectories lie on an energy
surface of dimension 2N — 1, and the dynamics lie on a manifold M of

dimension N (see below). It is possible to choose a surface of section ¥ p that



is transverse to the flow and that is of dimension 2N — 2. The return map of
the flow, denoted by T : Xp — X p, is obtained by successive intersections of
the flow with the surface (Figure 1.1) [69, 88, 82, 116]. The Poincaré
recurrence theorem guarantees that orbits reurn to the surface of section,
and the map is invertible since the flow obeys time reversal. Importantly, the
symplecticity of the Hamiltonian guarantees the symplecticity of the return

map.

1.3 The KAM Theory
1.3.1 Integrable Systems

Integrability is a deep subject that forms the basis of much of the
theoretical foundations of modern dynamics. In practice, roughly speaking
an integrable system is one that can be integrated and for which analytical
solutions exist in the form of quadrature. The dynamics of an integrable
system in phase space lies on an N-dimensional torus. We begin with several

definitions and examples.

Definition 1.3.1. An N degree of freedom Hamiltonian system is Liouville
integrable if there exist N independent constants of motion, I;(z),

1 =1,2,..., N that are smooth, single-valued and in involution.

Definition 1.3.2. A function [ : Z — R is said to be a constant of motion if

. oI ., oI
1= 92 8ziv (2)

0 (1.6)



Corollary 1.3.1. [ is a constant of motion iff

[I,H] = %Vf}(z) =0, (1.7)

where [I,H] is the Poisson Bracket defined as follows.

Definition 1.3.3. The Poisson Bracket of two functions f and ¢ is

= a_fjaﬁ@
0z ¢ 0P’

[f. q]
where o,  =1,2,...,2N.

Example 1.3.1. J. is given by (1.4). Writing out (1.6) and (1.7), we see that

. ol , oI, ol , O0l0H 9I0H _ 0l _ ,0H
I (G ey (s
op’ dqt Opt  Opt O  0z“ 0P8

= — 1.
R p (1.9)

Definition 1.3.4. Two functions /; and I; are said to be in involution if
[1;, I;] = 0.

The constants of motion have important consequences on the geometry
of phase space. If N constants of motion exist, the trajectories of the system
can only explore an N-dimensional manifold M of the 2N-dimensional phase
space. For N > 1, the dimension of M is less than that of the energy surface
E. Therefore the trajectories cannot fully explore £, demonstrating that the
ergodic hypothesis is generally false. If the constants are in involution, M is
an N-dimensional torus [11, 116]. The tori of integrable systems are
invariant; an orbit or trajectory starting on an invariant torus remains on it

forever.



1.3.2 Action-Angle Variables and Canonical Transformations

A natural description of tori is provided by action-angle variables. That
is, we look for a transformation of coordinates z% = z%(z®) yielding a new
Hamiltonian H depending only on the new conjugate momenta p®. There are
many such choices. The most convenient is

piEJiEfpjdqj7 i:1727""N (110)
v

k3

where 7; is a closed loop in phase space and J; is the action. Conjugate to
the new momenta are the new coordinates on the torus, the angles . These
are obtained from the generating function (which ensures our new choice of

coordinates is canonical),
q .
S(q,J)=/ pidq’. (1.11)
qo

Since our generating function is of type II, we have

. 0S
0" = 1.12
o (1.12)
and we can write Hamilton’s equations in the new coordinates as
.. OH : OH
0= — Ji=——. 1.13
0J;’ ook (1.13)
Since the new Hamiltonian is independent of 6¢, we have
J; = const, 0" = W' (J;)t +0,, (1.14)



where

(1.15)

As stated, a trajectory that starts on a torus (defined by J;) stays on that

torus for all time.

There is a useful result regarding canonical transformations that we will

use later in Chap. 5. Consider the Poisson Bracket

af . dg
= —J7—= 1.1
1,9 = 202 (1.16)
Then, clearly,
ozt _..0zm
L . iJ — qlm
[z, 2] _8zij a7 J. (1.17)

But for a coordinate transformation z% = ngﬁ , where S'is a symplectic

matrix, we have

B 8Slﬂz5 O0S™ Y

2, 2" = — oI = STV S) (1.18)
Therefore, we must have
SiJIST = Jim, (1.19)



(a) Periodic (b) Quasiperiodic (¢) Quasiperiodic

Figure 1.2: Flows on tori in phase space.

1.3.3 Frequencies on the Torus

From (1.14), we see that motion on the torus is governed by the
frequency vector w'(J;). That is, each angle on the N-dimensional torus has
a corresponding frequency associated with it. If the frequencies are

commensurate, then for m; € Z, they satisfy the relation
miw' =0, (1.20)

and the orbit is periodic (Figure 1.2a), closing after some interval 7. If (1.16)
does not hold, the frequencies are said to be incommensurate, and the
trajectory is N-frequency quasiperiodic (Figure 1.2b). Since quasiperiodic
trajectories do not close on themselves, these orbits eventually cover the

entire surface of the torus (Figure 1.2¢).

1.3.4 A Note on Integrability

What happens to an integrable system when it is perturbed? This is the
central question at the heart of the KAM (Kolmorogov, Arnol’d, and Moser)
theorem. On the one hand, if integrability is the general rule, then we could

always reduce the motion to an N-torus phase space, given the appropriate



coordinates, and assuming our ability to analytically find the constants of
motion. On the other hand, if integrability is a rare exception, and most
systems are in fact non-integrable, then one might expect a small
perturbation of an integrable system to eliminate the constants of motion,
destroy the tori, and allow the trajectory to wander throughout and
eventually fill a manifold in phase space of dimension greater than M. In
this case, stability then becomes a question of how rare and how small, and a
rigorous answer is provided by KAM. The KAM theorem guarantees that,
although the set of integrable systems is of measure zero in the set of all
Hamiltonian systems [110, 111], for sufficiently small perturbations satisfying

a Diophantine condition, most of the invariant tori survive [68, 4, 108].

To achieve this result, Kolmorogov, Arnol’d, and Moser considered the
effect of a perturbation on an integrable system. This is a question with deep
physical implications and of significant practical importance. For example,
the orbit of the Earth under the influence of the sun is integrable, a
Keplerian orbit. What happens to this orbit under the influence of external
perturbations, such as the the gravitational force from other planets and
celestial objects? Is the orbit stable? For years, astronomers were plagued
with this question. As we will see, seeking the solution to such a perturbed
Hamiltonian system with classical perturbation theory fails because of the
problem of small divisors, but KAM were able to guarantee convergence of
solutions and the existence of tori for sufficient conditions. We do not

provide details of the proof here, but refer readers to those works that



provide further analysis. Details can be found in [11, 116, 126], and an

elementary outline of the proof in [61].

The example of Earth’s orbit and the survival of tori under weak
perturbations represents one extreme of the problem at hand. On the other
end of the spectrum is ergodicity, the fundamental ansatz of statistical
mechanics that a system is equally likely to be found in a particular state as
it is in any other. This is true if the system explores the entire energy surface
available. One can imagine that a perturbation might sufficiently destroy the
tori in phase space such that a trajectory could wander in such a way. If so,
there would be no long term stability, but for a small perturbation a
trajectory might be able to remain near a torus for a very long time.
Although false in general, the ergodic theorem holds for two or more
interacting hard spheres, so the foundations of statistical mechanics seem to

be safe.

1.3.5 The Failure of Classical Canonical Perturbation Theory

Here we illustrate the problem of small divisors and the failure of

classical perturbation theory [11, 116]]. Consider the perturbed Hamiltonian
H(J;,0") = Hy(J;) + eHy(J;, 0°). (1.21)

For tori to exist in this new system there must be a new set of coordinates

(J;, 0") satisfying

H(J;,0) = H(J3), (1.22)



and the new coordinates are generated from the old by the canonical

generating function S(.J;, ")) such that

83 88
L=y 0= (1.23)

From the previous two equations, we obtain the Hamilton-Jacobi equation

for S:

oS
06"’

H(—,0") = H(J;). (1.24)

To establish the existence of tori, we seek solutions to (1.20) in the form of a

power series,
S=25,+€eS;+ eS8 +... (1.25)

where S, = #°J; so that §° = #, J; = J; when € = 0. We substitute this into

(1.20), using H as given by (1.18). Then we have
Hy(Ji+ et +..) +eHy(J+....07) = H(J,). (1.26)

We can expand this in powers of €. Retaining only the first-order terms, we

are left with

0H, 05

HO(Jl)‘FEajZ Eaez

+ . )+ eH (], 0 = H(J;). (1.27)

We note that H; and S; are periodic in 0" and we can write

S$1(J:0) =D Sum(T)e™” (1.28)
Hy(J;, 0) = Hypu(J;)e™? (1.29)



If we substitute these expressions into (1.23) we obtain the generator of the

new tori,

o oo ()
S(J;,0") = S, + € iz 1’L(Jf)e”"ie , (1.30)

= miwy (i)
where wi(.J;) is the N-dimensional frequency vector defined in (1.15).
Unfortunately, this results in the pathological divergence of (1.26); for
unperturbed tori with commensurate frequencies there are always terms that
satisfy mw’ = 0. For these tori, the series diverges and our attempted

solution fails. However, there are tori for which the series converges; these

are the so-called KAM tori (below).

1.3.6 The Destruction of Tori

The central result of the KAM theorem is that for sufficiently small
perturbations, most tori survive. How do these tori survive and what
happens when tori do not survive? The answer lies in the so-called
“Arithmetic of Torus Destruction” [11]. Here we refer the reader to
references [116, 82, 124] for a general discussion, and merely restate the
central result (recall Sec. 1.3.4): for sufficiently small perturbations,
sufficiently irrational tori survive and are not destroyed. The meaning of
“sufficiently irrational” is illustrated by considering the continued fraction

expansion of an irrational number x:

(1.31)

T = [ag, a1, a9, -] =ag+

a+————
a2+...

12



If we terminate the sequence at a finite number n, we have

x = [ag, a1, ,an] = ao + (1.32)

. 1
a
! 1

S
an

Recall that tori in phase space are identified by their frequency ratio w; /ws.

Then we can approximate any irrational tori to any arbitrary degree of

closeness with its finite continued fraction expansion. Clearly, this

approximation converges faster if the sequence |[ag, a1, - - , a,| diverges faster.

In that sense, the “most irrational” number, the number that converges the

slowest, and which was conjectured to be the last remaining torus by Greene

[42], is the Golden Mean:

1 51
[1,1,---1] =1+ —= f2 ~ .618033989... (1.33)

1.4 The Arnol’d Diffusion

The Arnol’d Diffusion is a phenomena of higher degree of freedom
(N > 2) systems. For systems with low degrees of freedom, invariant tori of
dimension N divide the 2N — 1 energy surface (the region of phase space
that is energetically available), and irregular orbits are constrained by tori.
An analogy is that while a line divides a plane, a line does not divide a three

dimensional space. In much the same way, chaotic orbits that were proven by

13



KAM to exist arbitrarily close to tori, are now free to wander around tori in

higher dimensions.

The classical meaning of the Arnol’d Diffusion is that ascribed by
Arnol’d in his seminal paper [5]; a perturbed Hamiltonian system forms a
dense network of interconnecting resonances (the Arnol’d Web) that
permeates the entirety of phase space, and the chaotic regions surrounding
the resonances intersect. Therefore, an initial condition lying in the chaotic
region may diffuse arbitrarily far from its starting point; this is the Arnol’d
Diffusion [134, 135, 18, 126, 116, 82], a fundamental property of Hamiltonian

systems subjected to perturbation.

Technically, Arnol’d Diffusion refers only to motion along the resonance
network or web, specifically the diffusion along the dominant (guiding)
resonance onto intersecting resonance (see [126] for a discussion of the
guiding resonance of Arnol’d’s Hamiltonian presented in [5]). However, it is
not uncommon to refer to any motion of a trajectory around existing tori in
higher dimensional phase spaces as such, and different types of diffusion

[134, 135, 82] can occur.

1.5 Symplectic Mappings
1.5.1 Symplectic Maps and the Poincaré Surface of Section

As we have seen, the return map 7 : ¥p — Xp of the flow (the Poincaré
surface of section) is a valuable technique for analyzing the dynamics of a

flow. For integrable systems, we can derive an exact map (known as a twist

14



mapping; see [11, 116]) that relates the return of the flow to the previous
intersection:

r'=r,, Q' =0, + 2rar,, (1.34)

where « is known as the rotation number of the map.

However, since integrable systems are the rare exceptions, it is natural
to ask if there are other maps which correspond to nearly integrable
Hamiltonian flows. It turns out there are, by a theorem due to Moser [113].
Return maps inherit symplecticity from the Hamiltonian flow, and we may
easily construct symplectic mappings by means of a generating function. In

Chap. 3 we shall do just this.

1.5.2 The Standard Map

The standard map, also known as the Chirikov-Taylor map, is one of the
most important models in modern dynamics. It is an essential tool for
understanding KAM, the breakup of tori, and the transition to chaos. Boris
Chirikov derived the map as a universal description for resonances in
Hamiltonian systems [18], and Bryan Taylor derived it as a model of charged
particles in a magnetic field [98, 99, 42]. The standard map is also useful as a
model of magnetic field lines [104], but it is the universal description of the

behavior of Hamiltonian systems that chiefly interests us here.
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Perhaps the most natural expression of the standard map is

0 = 0+

k
J = J—{—%sin@ﬂ@), (1.35)

where k£ > 0. In this setting, the initial value of J determines the torus, 6 is
the angle of the cross section, and the map corresponds to a Poincaré section
of the flow on the torus T?. There are two angles §; and 0y with two
respective frequencies vy and v, on this torus. If the ratio of the frequencies
v1/vs is rational, then the trajectory goes around the 6; cross section of the
torus a times for every b revolutions around the 5 cross section. The result
of this is a set of points in the Poincaré section. If the frequency ratio is
irrational, the trajectory is quasiperiodic, resulting in a continuous curve in
the phase space of the map. To visualize the map, one iterates a variety of
initial conditions for some number and plots the results in phase space

(Figures 1.1 and 1.2).

Example 1.5.1. If a = 1 and b = 3, then the frequency ration is % The
Poincaré section of this trajectory is simply three evenly spaced points that

lie on a circle. This is referred to as the % resonance.

1.5.2.1 Rotation Numbers, Winding Numbers, and the Breakup
of Tori

In Sec. 1.3, the ratio of the frequencies on the torus was defined to be
the rotation number of a twist map. However, one can calculate this ratio a

posteriori from the Poincaré section without knowledge of the flow.
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Figure 1.3: The standard map in polar coordinates (k = 0.3).

Definition 1.5.1. The rotation number p of an orbit defined by the

area-preserving map 7': R — R is

"0, — 0, Af
p:hmize AL (1.36)

n—o0o 27 7 2mn

=1
where A# is the total angle between the first and nth iterations, as measured

relative to the island of interest.

Example 1.5.2. The angle between subsequent iterations of the % resonance
is 120 degrees. Clearly then, from (1.36), the rotation number of the %

resonance is %

Note that it is possible to obtain rotation numbers for any region of the
map containing closed curves (see Figure 1.2). These regions, surrounding
the elliptical fixed points that appear when the resonant tori break up, are
known as islands, and a set of rotation numbers for each island may be

calculated using (1.36), where 6 is measured relative to the center of the
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island of interest. This is not the usual procedure, but it may help to clear
up confusion that can arise when using the terms frequencies, winding
numbers, and rotation numbers interchangeably. As we have seen in Sec. 1.3
and by direct example above, the rotation number of a twist map is equal to
the ratio of the frequencies on the torus. In fact, the terms winding number
and rotation number are often used interchangeably, but here we reserve the
term winding number for that frequency associated with the lift (see below)

of an area-preserving map.

It is also common (and instructive) to write the standard map as

/

¥ = x+p modl

Py = p+ % sin(27x), (1.37)

where k£ > 0. One may also take k£ < 0, which is equivalent to shifting the
value of 6 by 7. In this work, we take k£ > 0 and shift the center island to the
middle of the domain of interest. Figure 1.2 shows the phase portrait of the
standard map in these coordinates for increasing values of k. For k£ = 0, the
map is integrable and the frequencies are simply the initial values of p. If p,
is rational, a periodic orbit results; if irrational, we obtain a quasiperiodic
orbit (Figure 1.2a). As k increases, the resonant tori break up and are
replaced by alternating elliptical and hyperbolic fixed points orbits, leading
to stochasticity in the phase space (Sec. 1.3). This can be seen in Figure
1.2b, where new islands surrounding the elliptical fixed points have appeared

in the phase space. Increasing k further results in the breakup of more tori
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and a more complicated picture in phase space. Below the critical value of

k.= 0.9716..., the last remaining torus is intact (Figure 1.2d).

What happens to the frequencies as the tori break? First, let us
compare the standard map in polar coordinates and as given by (1.37).
Directly, compare Figure 1.3 and Figure 1.4b. In polar coordinates, the tori
are circles, as one would expect from a Poincaré section of the flow on a
torus. In Figure 1.4b, the tori are the roughly horizontal lines, and the center
island corresponds to the “banana” region of the polar phase portrait. How
then, do we compare frequencies between these two representations? What
are the frequencies on the torus? From Figure 1.3, there are two rotation
numbers, or frequencies, to calculate using (1.36). One, the rotation number
around the center of the phase portrait, and two, the rotation number of the
“banana” island region. Clearly, one could measure the rotation number of
this island that lies at the center of Figure 1.4b, but how can one measure
the other frequencies? The answer to this question lies in the winding

number of the map.

Definition 1.5.2. The winding number of an orbit of the area-preserving
map 7T :R — R is
w= lim —, (1.38)

n—oo M

() = (). (139
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Figure 1.4: Phase portraits of the standard map. Portraits are shown for
increasing values of the parameter k. (a) When k = 0, the system is integrable
and the tori are straight lines in the phase space. (b) — (d) As k increases,
resonance overlap and the breakup of the tori occurs, leading to stochastic
regions. At k = 0.97, the last remaining tori is still intact, but barely.
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Note that the winding number is obtained from the lift T x R, where ¢, is

lifted to R instead of T. Figure 1.5 demonstrates the lift of the standard map.

In the “natural” coordinates (., 6) of the standard map (1.35), the
winding number corresponds to the ratio of the two frequencies on the
2-dimensional torus (recall Sec. 1.3.2). In part, this is due to the fact that it

¢

is common for mathematicians to refer to the “winding number” of a knot or
a curve on a torus. In this setting, the winding number is simply the number
of times the curve winds around in one direction versus the other. Since the
Poincaré section sets one of the frequencies to 27 or 1, it is common to refer

to the winding number as “the frequency” of the standard map. See

[11, 88, 82, 126] for further discussion.

Example 1.5.3. The lift of the standard map as written in (1.37) is simply

/

¥ o= x+p
/ ko
P = p+ —sin(27x). (1.40)
2m

Now the map is identical to (1.35), given the transformation (p,x) — (J, ).

Therefore, the winding number is merely

w = lim 9—”, (1.41)

n—oo 1
which is equivalent to (1.36) for the rotation number. There is no factor of
27 because we have written the standard map for the domain [0,1].
Conversely, one could iterate the map of (1.35), calculate the change in angle
over each iteration, and take the average as defined by (1.36) and in this

manner obtain the rotation number.
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(a) k =0.3 (b) lift, k = 0.3
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Figure 1.5: Lift of the standard map. The standard map is shown in T? (left)
and the lift T x R (right). The winding number is defined only for the lift.
Note the similarity to the “Devil’s Staircase” in (d).
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Example 1.5.4. For the % resonance, the lift of the standard map with

k =0 gives 0, = %, %, %, %, = %n A good approximation of the winding

number is obtained by letting n — oo. If we take n = 10°, the winding
number is w = 1/% = % This is the same result that we obtained in

example 1.5.2 demonstrating the calculation of the rotation number.

Thus far we have been concerned with the frequencies of the map
relative to the center of the map in polar coordinates. These are the winding
numbers shown in Figure 1.5. Here, the winding numbers have been
calculated for 1000 trajectories evenly spaced in p,. For k = 0, the map is
integrable and the frequencies are simply the initial values of p. Thus, a plot
of the winding numbers is a straight line. A nonzero values of k adds a
nonintegrable perturbation to the map, and as demonstrated in the phase
portraits of Figure 1.4, the tori breakup and islands appear. This
corresponds to the appearance of the (vertically) flat region in Figure 1.5d.
Recall that the center island of the standard map in the p — x plane is the
“banana” region of the map as plotted in polar coordinates. Attempting to
measure the rotation of these trajectories around the center of the plot yields
an average of zero, but here we have shifted the island by % so that it
appears in the center. Therefore, the frequency obtained is % In the
literature it is common to see this plot shifted up or down, with the island
region at the bottom of the plot. As k increases (cf. Figures 1.4 and 1.6),
further islands appear in the phase portrait and we see corresponding flat

regions in the frequency plot. This is the so-called “Devil’s Staircase”. At
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any scale of the map, islands exist, and so zooming in on the frequency plot
yields further and further appearances of “steps” in the staircase. However,
as k increases, even as steps on the staircase appear, entire regions of stairs
disappear and “blow up”. Further, the flat regions of the staircase shift as a

result of the perturbation. Hence, the description is apt.

1.5.3 Higher Dimensional Symplectic Mappings

Examples of higher dimensional symplectic mappings exist in the
literature [29, 33, 30, 63, 139]. Here we introduce some phenomena of a
higher dimensional mapping through a four dimensional systen which has
been extensively studied [29, 33, 76, 63]. This map is a composition of two
coupled standard mappings and is used to model the evolution of galaxies in
the solar system as well as for the study of higher dimensional systems. In
Chap. 4 we use this mapping to demonstrate agreement of our frequency
method with results in the literature. Here we use the map to illustrate the
complexity of trajectories in the phase space that can result from four

dimensions instead of two.

1.5.3.1 The Froeschlé Map and the Generalized Coupled
Standard Mapping

The Froeschlé map is a generalized coupled standard mapping that was

suggested by Arnol’d to M. Hénon?. It is directly related to the inverse of the

2The original reference is [33]. For an interesting account and a partial reproduction of
Arnold’s original letter to Hénon, see [79].
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Figure 1.6: Winding numbers and the devil’s staircase in the standard map.
As k increases, islands appear on every scale. This is reflected in the frequency
(winding number) plot as the appearance of “steps” in the Devil’s Staircase.
No matter how far one zooms in, further “steps on steps” with be revealed.
As k increases from 0 (a), the frequency plot breaks up, corresponding to
stochastic regions in the map.
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Chirikov-Taylor map, as we will now demonstrate. The standard

Chirikov-Taylor mapping can be written as

¥ = x+y mod2r

Y = y+ksin(z). (1.42)
The inverse of this is

¥ = x—ymod2r

y = y— ksin(z). (1.43)

Making the substitution (z,y) — (=7, %) , and setting k = a yields

Yy = y+xmod 27

¢ = x4 asin(y), (1.44)

where the tildes have been dropped for convenience. Coupling two of these

maps with the coupling parameter b gives the Froeschlé map,

¥y = x4 apsin(y)) + b sin(y; + vh)
Yy, = Y1+ 21 mod 271
Ty = o+ axsin(yh) + b sin(y; + vh)

Yy = Y2+ T2 mod 2T, (1.45)
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or equivalently,

¥y = m +aysin(y; +x) + b sin(yr + x1 + yo + x2)
Yy, = t+x; mod 2w
xrh = g+ agsin(ys + xo) + b sin(yr + x1 + y2 + x2)

Yy = Y2+ T2 mod 2. (1.46)

Alternatively, one may examine the generalized coupled standard mapping

[63]:

¢, = 601+ 1; mod 1
I = L+ Lol sin(6,) + b sin(6, + 6s)
2m 2m
0, = 0y+ 1, mod 1
I, = I+ L sin(6,) + b sin(6y + 6s).
2m 2m
(1.47)

Examples of the trajectories obtained from this mapping are shown in
Figure 1.8. Note the complexity and different types of orbits. For small b,
the phase portrait in each of the I; — 6; planes is close to what we see for a
2-dimensional standard map (Figure 1.4). Just as increasing k in the
standard map leads to the destruction of tori in the phase space, increasing k;
or ko has the same effect here. However, the coupling parameter also plays a
large role. Immediately upon b > 0, the curves of the 2-dimensional standard

map are perturbed into more complicated orbits. Instead of a 2-dimensional
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map, each of the of I; — 6, planes is now a projection of the 4-dimensional
mapping. In addition, the coupling of the maps introduces an additional
frequency in each, i.e., each map now has a contribution from #; and 6, with
frequencies w; and wy. This leads to the complex figures of Figure 1.8, which

are orbits of the 4-dimensional mapping plotted in the I; — #; plane.

The complexity of the orbits from a higher dimensional mapping poses
problems for analyzing the dynamics with the tools developed for lower
dimensional systems. Ordinarily, one could examine the frequencies of the
map by analyzing the winding or rotation numbers discussed earlier. This
would allow us to find the tori in phase space, essential for demonstrating
Arnol’d Diffusion. However, as seen in Figure 1.7 (also, Figure 3.7), the
addition of a second frequency makes this difficult with sufficient coupling.
To define a rotation number, one must have a set of points with an
appropriate choice of origin. Clearly this is not the case for most of the
trajectories in Figure 1.7. But since the map is symplectic, regular
trajectories must lie on tori, and with an appropriate coordinate choice we
can recover a projection that yields simple closed curves in phase space. We
can then take the rotation numbers as needed (Chap. 5). However, the
method of frequency analysis allows us to obtain the frequencies on the
torus, which are identical to the rotation numbers for our map, without this

procedure (Chap. 4).
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Figure 1.7: Phase portraits of the coupled standard map for ky = ko = 0.7,b =
0.01. The map was iterated 2! times for each initial condition and the results
plotted in the I; — 6; plane (see the explanation of Table 1.1).
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Table 1.1: Initial conditions for Figure 1.8. As we move down the table, the
initial conditions increase in x; and x5, corresponding to the orbits in Figure
1.8 from left to right, top to bottom.

I n T2 Y2

0.5020000000000000  0.5000000000000000 0.5500000000000000 0.5000000000000000
0.5030000000000000  0.5000000000000000 0.5520000000000000 0.5000000000000000
0.5040000000000000  0.5000000000000000  0.5540000000000000  0.5000000000000000
0.5050000000000000  0.5000000000000000 0.5560000000000000 0.5000000000000000
0.5060000000000000  0.5000000000000000  0.5580000000000000 0.5000000000000000
0.5070000000000000  0.5000000000000000  0.5600000000000000  0.5000000000000000
0.5080000000000000  0.5000000000000000 0.5620000000000000 0.5000000000000000
0.5090000000000000  0.5000000000000000  0.5640000000000000  0.5000000000000000
0.5100000000000000  0.5000000000000000  0.5660000000000000  0.5000000000000000
0.5110000000000000  0.5000000000000000  0.5680000000000000  0.5000000000000000
0.5120000000000000  0.5000000000000000  0.5700000000000000  0.5000000000000000
0.5130000000000000  0.5000000000000000  0.5720000000000000  0.5000000000000000
0.5140000000000000  0.5000000000000000  0.5740000000000000  0.5000000000000000
0.5150000000000000  0.5000000000000000  0.5760000000000000  0.5000000000000000
0.5160000000000000  0.5000000000000000  0.5780000000000000  0.5000000000000000
0.5170000000000000  0.5000000000000000  0.5800000000000000  0.5000000000000000
0.5180000000000000  0.5000000000000000  0.5820000000000000  0.5000000000000000
0.5190000000000000 0.5000000000000000  0.5840000000000000  0.5000000000000000
0.5200000000000000  0.5000000000000000  0.5860000000000000  0.5000000000000000
0.5210000000000000 0.5000000000000000  0.5880000000000000  0.5000000000000000
0.5220000000000000  0.5000000000000000 0.5900000000000000 0.5000000000000000
0.5230000000000000  0.5000000000000000 0.5920000000000000 0.5000000000000000
0.5240000000000000  0.5000000000000000  0.5940000000000000  0.5000000000000000
0.5250000000000000  0.5000000000000000  0.5960000000000000 0.5000000000000000
0.5260000000000000  0.5000000000000000  0.5980000000000000 0.5000000000000000

30



1.5.3.2 A Note on Higher Dimensional Poincaré Sections

As we have seen, the dynamics of an /N-dimensional integrable
Hamiltonian system takes place on an N-dimensional torus in phase space. A
2N — 2-dimensional symplectic map is generated by taking a Poincaré section
of this flow. For a 2-degree-of-freedom system, the map is 2-dimensional, but
for three degrees of freedom, the map is 4-dimensional. Clearly, we cannot
easily visualize a four-dimensional object, but if we are in action-angle
variables it is simpler to visualize projections of a four-dimensional Poincaré
section. We have Ji, Jo, 01,05 and we can use closed curves in the J; — 6;
planes to define a torus. In Chap. 5, we decompose a higher dimensional
mapping into N — 1 projections that yield simple, closed curves. In Chap. 3,
we will introduce a simpler, computationally less expensive 4-dimensional
map that will allow us to explore the phenomena of Arnol’d Diffusion: the
coupled cubic-quadratic map. This mapping arises naturally from
considerations of stability and the phenomena of Negative Energy Modes
(Chap. 2), and provides a natural means to explore Arnol’d Diffusion in a

lower dimensional Hamiltonian system.
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Chapter 2

Stability of Equilibria and Negative Energy
Modes

Stability is of paramount importance in classical physics, and has a rich
history. Of relevant interest to this work is the existence of negative energy
waves or modes of oscillation that turn unstable when dissipation is added to
the system (Sec. 2.2). Numerous examples and discussions can be found in
the literature. Treatments of stability be found in [103, 105], as well as the
classical texts of [7] and [2]. For negative energy modes, see [102, 106, 71].
For a comprehensive analysis of linear stabily in two-dimensional and
four-dimensional maps, see [88]. Here we offer definitions of the various types
of stability that are of primary interest to Hamiltonian Dynamics, describe
the Negative Energy Modes that can exist in Hamiltonian Systems, and offer
examples of such behavior to motivate our introduction of the coupled
cubic-quadratic mapping in Chap. 3.

Generally speaking, stability refers to the behavior of solutions of a flow
2 =V'(z) around fized points, or equilibria, z, that satisfy V(z.) = 0 for
all time. Equilibria are said to be stable if solutions that begin within a

sufficiently small distance of z, remain close to z, for all time. Systems may
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be linearly stable, under the linearized dynamics of the flow, or nonlinearly
stable (see below). A system may also be Lyupanov stable or spectrally

stable.

2.1 Types of Stability

Definition 2.1.1. An equilibrium point of the flow 2* = V¥(2),i=1,..., N,

satisfies the condition V' (z.) = 0.

Definition 2.1.2. The equilibrium point z. is said to be stable if, for any
neighborhood N of z., there exists a sub-neighborhood S C N of z. such

that if z(t = 0) € S, then z2(¢) € N for all time ¢ > 0.
Definition 2.1.3. z. is said to be asymptotically stable if lim;_,, 2(t) = z..

Definition 2.1.4. If z(t) is stable according to the above definition under

the linearized dynamics

v

0z 0z

(2)027, (2.1)

then z. is linearly stable. Equivalently, the linearized flow z(t) ~ z, + 0z, or

Eq. (2.1) itself, is said to be linearly stable.

Linear stability is sometimes referred to as local stability. If an
equilibria is stable under the full dynamics, it is said to be nonlinearly or
globally stable. This type of stability is also referred to as Lyapunov stability
[86]. If an equilibria is linearly stable, but unstable under the full nonlinear

dynamics, it is said to be nonlinearly unstable. A finite amplitude
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instability refers to an equilibrium point that is perturbed far enough to be
unable to remain stable. For example, many physical systems will not remain

stable under an earthquake or other large amplitude perturbation.

One last type of stability is related to the linear flow (3.1). If a system is
linearly stable, then under the substitution dz = §2e*, we obtain an

eigenvalue problem for .

Definition 2.1.5. A linear system of the form ' = A% 2/ is spectrally stable

if all the eigenvalues of the matrix A; are pure imaginary.

2.2 Negative Energy Modes: Definition and Examples

Negative energy modes [101, 137, 103, 71, 73, 90, 102, 106, 22, 43| are
found in fluids and plasma systems, general mechanical systems with
gyroscopic forces (such as the Coriolis force), in the dynamics of particles in
magnetic fields, and the well known “three wave” problem. Here we outline

the motivation behind the terminology.

If a Hamiltonian system is not separable, but can be written as a general
function of ¢ and p, Dirichlet’s theorem [23] gives a sufficient condition for
stability. If families of constant H surfaces define a good neighborhood near
an equilibrium point, then the equilibrium is nonlinearly stable. If the
Hamiltonian is well behaved, a definite ' matrix 9*H (z.)/02'027, where

z = (q,p), indicates stability. Note that H can be a maximum of the energy,

1A matrix is definite if all eigenvalues have the same sign and are greater than zero.
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as is typical for localized vortices in fluid mechanics and can also occur for

rigid bodies [103].

However, if the matrix is indefinite it can be globally (spectrally)
unstable, but linearly stable. In this case, the system possesses both positive

and negative energy modes. We examine such a case next.

2.2.1 Cherry’s Example: Wave-Wave Resonance

Cherry’s Hamiltonian [17] is

1 1 1
H = §wz(p§ +4q3) — §w1(pf +4qi) + S0l2apip2 — 0 (g7 — p)] (2.2)

where the frequencies wy and w; > 0, and « is a nonlinear parameter.
Oscillator one (wy) is what is commonly referred to as a Negative Energy
Mode, and due to the minus sign the matrix 9*H (z.)/02'02’ is not definite.

Hence, the system is linearly stable but nonlinearly unstable.

With the transformation ¢; = v/2J;sin0;, p; = v/2.J; cos8;, Cherry’s

Hamiltonian takes the following form:
H = w1J1 — CL)QJQ + OéJl JQ sin (291 + 92) (23)

Kueny [70, 71] extensively analyzed Cherry’s system in the context of

wave-wave resonance and explosive growth. Solutions exist for the resonance
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condition 2w; = wy. They are:

V2 o
G = p—— sin (w1t + 7)
2

po= \—/_oaf cos (wit + )

r .
@ = ——_sin (2wit + 27)

1
P2 = ——_cos (2wt + 27). (2.4)

Note that these solutions diverge in finite time. This behavior is known as
explosive growth and is found in systems with positive and negative energy
modes in resonance. When the resonance condition does not exist, solutions
diverge only above critical amplitudes. Figure 2.1, adapted from [70],
demonstrates this phenomena. Note the similarity between the surface of
section for Cherry’s Hamiltonian in this figure, and the phase portraits of the
cubic and quadratic mappings introduced in Chap. 3 (Figures 3.1 and 3.4).
Indeed, the coupled cubic-quadratic mapping was devised to mimic the
explosive growth found in systems with Negative Energy Modes, exemplified
by Cherry’s example and the wave-wave resonance interactions commonly

found in plasma systems.

2.2.2 Wave-Wave Problems in Plasma Physics

The general Hamiltonian for a three-wave resonance is

H = w1J1 — CUQJQ + O'W3J3 =+ ay/ J1J2J3 sin (91 + 02 — 0'03). (25)
See [137, 70, 70, 71] for further discussion, among others. Nopte that o = 1

36



q2

q

Figure 2.1: Poincaré sections for Cherry’s Hamiltonian. Instersections of the
orbits with the ¢; plane (a) and g2 = 0 (b) for the resonant (2w; = ws) and
non-resonant cases. Figure adapted from [70]. The resonance condition results
in explosive growth, while non-resonance means that solutions diverge only
above some critical amplitude. We will mimic this behavior with a symplectic
mapping introduced in the following chapter.
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signifies a positive energy resonance, and ¢ = —1 a negative energy
resonance. With an appropriate canonical transformation and judicious

choice of constants [70], the above can be written as
1 o .
H = 5(&)1 — CL)Q)[l + O'(.Ug[g + 5[1 [3 Sin (21p1 — O'wg), (26)

which becomes a two-wave resonance for 0 = 1. For 0 = —1, we recover the

form of Cherry’s Hamiltonian from the previous section.

2.2.3 FLR Stabilization

As a model of finite Larmor radius (FLR) stabilization [102, 106, 107],
consider a particle subjected to a uniform, inverted harmonic potential (as
may arise from MHD equilibrium) and a uniform magnetic field in the

z-direction. The Hamiltonian may be written as

1 1
H= —é(p% +p3) + wr(@ep — apr) + E(Wi —wo)lar + @) + Vs (27)

where V3 is an anharmonic contribution to the potential with terms of order
three, wy, is the Larmor frequency eB/2me, and wy is the natural frequency
\/k/m. Upon a canonical transformation, this Hamiltonian has a standard

negative energy mode,
1 1
H = —§w1(P12 +Q}) + §w2(P22 + Q%) + V3, (2.8)

and V3 is now a function of the new coordinates. When energy is dissipated
from this system, the negative energy modes are destabilized. Further, upon

the standard Hamiltonian perturbation method of averaging, and under the
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resonance condition 2w; = wsy, we recover Cherry’s Hamiltonian (Eq. 2.2).
As we have seen above, Cherry’s system is spectrally stable, but globally
unstable as the nonlinearity of the system diverts energy from the negative

energy mode to the positive.
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Chapter 3

The Coupled Cubic-Quadratic Mapping

3.1 Introduction

As alluded to in the previous chapter, to mimic the the explosive growth
found in Hamiltonian systems with Negative Energy Modes such as Cherry’s
example and wave-wave interactions in plasma physics, we couple the
symplectic (area-preserving) cubic and quadratic mappings introduced in
Chap. 1 via a type 1 generating function F'(qod, qnew) [2, 62]. Note that,
although it is common in the literature for ¢ and p to represent the old
coordinates, and ) and P the new, here we reserve (¢, @, p, P) for the
coordinates of the coupled map. In the case of a type 1 generating function,

the new equations are

oF oOF
) Prew = — )
ac]old aqnew

Pold =

and it is customary to invert the first equation for the p,4 to obtain
equations for the new canonical coordinates. We now illustrate this
procedure for the uncoupled cubic and quadratic maps and demonstrate how
the coupled cubic-quadratic map is derived from a generating function with

the simplest type of coupling.
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3.2 (Generating the Cubic Map

We write the generating function for a cubic map as
Fcubic = qq/ + tq2/2 + q4/4 (32)

For a type 1 generating function, with ¢’ taking the place of ¢, 1, the

equations are

oF ;
p = -=q¢+tilgtyq
dq

, or

This yields the equations for the symplectic (area-preserving) cubic mapping

p = —q

¢ = p—tqg—q’. (3.4)

3.3 Generating the Quadratic Map

We write the generating function for a quadratic map as

Fquadratic = QQ/ + TQQ/Q + Q5/3 (35)

For a type 1 generating function, with @’ taking the place of @, .1, the

equations are

P = S5 QHTQ
, __OF
P ) (3.6)
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This yields the equations for the symplectic quadratic mapping

P = —Q

Q = P—-—1Q-Q> (3.7)

3.4 Generating the Coupled Mapping

To generate the coupled cubic-quadratic mapping from the cubic and
quadratic maps previously given, we choose the simplest type of coupling
aq@), where a controls the strength of the coupling. Then one such

generating function for the coupled cubic-quadratic mapping is

Fuowled = 40 +QQ'+1¢*/2+7Q*/2+ Q*/3+ ¢ /A + aqQ.  (3.8)
We have oF
p=——=q+tg+¢+aQ
dq
J OF
= —— = —q
/
a? (3.9)
P=5=@+70Q+Q" +ag
OF
P = =—Q.
Q! @
and the equations for the coupled map are
p=-—q
¢ =p—tqg—q¢ —aQ
(3.10)

P =-Q
Q'=P-7Q- Q" ~ag.
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We shall refer to Eq. (3.10) as the first form or Form; of the mapping.

Let us take
t=1.1, T = .9864, a=0.01. (3.11)
Then we have )
b =—q
¢ =p—11¢— ¢ — .01Q
(3.12)
P =-Q

Q' =P — .9864Q — Q* — .01Q.
Now let (P, Q') — (—Q',—P') and a — —a. The new generating function

and governing equations are
Fcoupledg - qq, - QQ/ + tq2/2 + TQ2/2 + Q3/3 + q4/4 - CLQQ (313)

oF
p=—-=q+tg+q —aQ

dq
P = or q
e ——/ = —
5 ]?q (3.14)
P=55= —Q' +7Q+ Q% —aq
oF
P = — =Q.
Q! ¢
The new equations for the coupled map are
P=-q
r_ 3
¢ =p—tqg—q +aQ
(3.15)

P'=Q

Q =-P+7Q+Q*—aq.
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This is an alternative form of the mapping that we shall refer to as the
second form or Forms. Interesting orbits were obtained with this mapping for

t=1.1,7=1.1, a=0.1 that are similar to those found in [102].

Notice that if we let let (P', Q') — (—Q’, —P’) in the second form, and choose

t=11, 7=.9864, a=—-0.01 (3.16)

then we recover Eq. (3.12).

3.5 The Cubic Map

The cubic map is

p = —q

J = p—qt—q¢>. (3.17)

Here we take ¢t = 1.1, for reasons that will be discussed further in Chap. 2.
Figures 3.1 and 3.2 show the phase portrait and frequencies of the cubic
map, respectively, and Figure 3.3 shows a series of phase portraits for
increasing t. Note that the % resonance corresponds to the flat region of
Figure 3.2. This corresponds to the island region in the phase portrait
around (p, q) =~ (.6,.6). The map is centered around an elliptical fixed point
at (0,0), which is stable, and there are two hyperbolic fixed points at
(—1,—1) and (1,1). Trajectories with initial conditions greater than the

critical values (per, ger) escape to infinity (Figure 3.1).
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Figure 3.1: Phase portrait of the uncoupled cubic map. We utilize a symplectic
mapping to mimic the explosive behavior found in systems with Negative En-
ergy Modes, such as Cherry’s Hamiltonian and wave-wave problems in plasma
physics. Note the resemblance to the surface of section in Figure 2.1. For an
appropriate parameter value ¢, solutions diverge above a critical amplitude.
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Figure 3.2: Rotation numbers (frequencies) of the uncoupled cubic map.
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Figure 3.3: Phase portraits of the cubic map for increasing t.
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3.6 The Quadratic Map

The quadratic map is

P = —Q

Q = P-Qr—Q> (3.18)

Figure 3.6 shows a series of phase portraits for increasing 7. The phase
portrait and frequencies of the quadratic map for 7 = .9864 are shown in
Figures 3.4 and 3.5, respectively. Essentially an island region centered
around a fixed point, the quadratic map also contains trajectories that can

escape to infinity (Figure 3.4).

3.7 Generalized Polynomial Mappings

An alternative derivation of the area-preserving cubic, area-preserving
quadratic, and symplectic 4D coupled map is to rely upon the normal form
for a generalized polynomial mapping, as given by Engels [24, 25]. One may
then choose appropriate constants to arrive at two respective (cubic and
quadratic) families of one parameter maps, and couple these maps by
preserving symplecticity. To introduce Engel’s form for the general
polynomial mapping, we review Hénon’s derivation of the generalized
quadratic mapping. Note that our quadratic mapping is simpler than
Hénon’s fully generalized polynomial mapping, as we choose to let some

terms vanish (below).
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Figure 3.4: Phase portrait of the uncoupled quadratic map. We utilize a
symplectic mapping to mimic the explosive behavior found in systems with
Negative Energy Modes, such as Cherry’s Hamiltonian and wave-wave prob-
lems in plasma physics. Note the resemblance to the surface of section in
Figure 2.1.
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Figure 3.5: Rotation numbers (frequencies) of the uncoupled quadratic map.
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Figure 3.6: Phase portraits of the quadratic map for increasing 7.
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Figure 3.7: The effect of coupling on the phase portrait. Uncoupled (a) and
coupled (b) orbits in the p — ¢ plane. Trajectories were plotted at regularly
space intervals in the p — ¢ plane (a) and (P, Q) was held constant at (0,0) to
illustrate the effects of coupling (b).

52



The popular and well known “Hénon Map” [52],
¥ =y+1—ar? y = bx, (3.19)

designed to mimic the Lorenz [85] attractor, is the most general quadratic
mapping with a constant Jacobian and for b = —1 is area-preserving (but no
longer contains a strange attractor). However, in an earlier (1969) paper [51]
M. Hénon derived the general quadratic mapping that is “in a sense the
simplest nontrivial mapping”. In his derivation, Hénon referenced work by
Engel [24, 25] showing that any polynomial area-preserving mapping T' can
be written as the product of two simpler mappings: 7' = RS, where R
represents a rotation, and S is a shearing. Here we briefly reproduce part of
his derivation and compare it to Engel’s form for the general polynomial
area-preserving map and our quadratic mapping. Our intent is mainly to

demonstrate the simplicity of our chosen cubic and quadratic maps.

Hénon begins with the mapping

x’ = f(x,y), y1 = g(x,y) (3.20)

and reminds us that, for the simplest case of f(x,y) and g(z,y) being linear
polynomials (which also speeds up computation times), a coordinate

transformation reduces the mapping to a simple rotation about the origin:
2’ = xcos(f) — ysin(h), "= zsin(f) + y cos(6), (3.21)

where 6 is a constant. Moving to the next degree in f and g, we have the
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general quadratic mapping

v’ = ax + by + ca® + dry + ey?
(3.22)
y =dz+by+ 2+ dzy+ eyt
Hénon then uses the area-preserving condition and a linear change of

coordinates to transform this mapping to a one parameter mapping (instead

of the ten coefficients above)

v’ = zcos(f) — (y — 2?)sin(0)

(3.23)
y = zsin(d) + (y — 2*) cos(d),
which is a product of the shearing
Tg =, ys =y — (3.24)
and the rotation
1’ = xgcos() — yg sin(6)
(3.25)
y = xgsin(f) + ys cos().
Engel’s form for the general polynomial area-preserving map is
p
' = go + 9107 + gy + Z ax[(@gio — Bhio)x + (agor — Bhot)y]"
K=2
» (3.26)
' = go + g7 + gory + B Z ax[(@gro — Bhio)x + (agor — Bho)y]"
K=2

with g10ho1 — go1h1o # 0. From this equation, we can see that the general
area preserving map with a given linear and cubic term has two free
parameters. In our case we have set one of those parameters («) to be zero.

This leaves us with a one parameter cubic mapping. Similarly, by making the
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appropriate choices in the normal form we end up with a one parameter (7)

family of quadratic maps. To couple the maps, we choose a coupling term

that preserves the symplecticity of the map.

Table 3.1: Initial conditions for Figure 3.8. As we move down the table, the
initial conditions increase in p and ¢, corresponding to the orbits in Figure 3.8
from left to right, top to bottom. Here a = .01,¢ = 1.1, 7 = .9864

p

q

P

Q

0.6400000000000000
0.6420000000000000
0.6440000000000000
0.6460000000000000
0.6480000000000000
0.6500000000000000
0.6520000000000000
0.6540000000000000
0.6560000000000000
0.6580000000000000
0.6600000000000000
0.6620000000000000
0.6640000000000000
0.6660000000000000
0.6680000000000000
0.6700000000000000
0.6720000000000000
0.6740000000000000
0.6760000000000000
0.6780000000000000
0.6800000000000000
0.6820000000000001
0.6840000000000001
0.6860000000000001

0.6400000000000000
0.6420000000000000
0.6440000000000000
0.6460000000000000
0.6480000000000000
0.6500000000000000
0.6520000000000000
0.6540000000000000
0.6560000000000000
0.6580000000000000
0.6600000000000000
0.6620000000000000
0.6640000000000000
0.6660000000000000
0.6680000000000000
0.6700000000000000
0.6720000000000000
0.6740000000000000
0.6760000000000000
0.6780000000000000
0.6800000000000000
0.6820000000000001
0.6840000000000001
0.6860000000000001

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
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Figure 3.8: Phase portraits of the coupled cubic-quadratic map (I). The map
was iterated 2'! times for each initial condition and the results plotted in the
P — @ plane (see the explanation of Table 3.1).
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Figure 3.9: Phase portraits of the coupled cubic-quadratic map (II). The pro-
cess is identical to that of Figure 3.8, except the initial conditions scan in P.

See the explanation of Table 3.2 and the following discussion.
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Table 3.2: Initial conditions for Figure 3.9. As we move down the table, the
initial conditions increase in P, corresponding to the orbits in Figure 3.9 from
left to right, top to bottom. Here a = .01,f = 1.1, 7 = .9864

p q P Q
0.6400000000000000  0.6400000000000000 0.0010000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0015000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0020000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0025000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0030000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0035000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0040000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000  0.0045000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0050000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0055000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0060000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0065000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0070000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0075000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0080000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0085000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0090000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0095000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0100000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0105000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0110000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0115000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000 0.0120000000000000  0.0000000000000000
0.6400000000000000  0.6400000000000000  0.0125000000000000  0.0000000000000000
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3.8 The Geometry of Phase Space

As previously demonstrated, there are two sub-planes of the
four-dimensional space that are convenient to plot the dynamics of the map:
p—qand P — Q. Figures 3.7-3.9 show some examples of the types of orbits
obtained for Form; of the mapping (Eq 3.10; ¢t = 1.1, 7 = .9864, a = .01). For
these parameters, the contribution from the quadratic mapping to the cubic
via the coupling term is relatively small, and the contribution from the
quadratic to the cubic is relatively large (cf. Figure 3.1 and 3.4). Notice that
we obtain similar results in the P — @ plane (Figure 3.8, Table 3.1) if we
choose a number of orbits by scanning along the p — ¢ diagonal with P — @)
constant at (0,0), or if we hold (p, q) constant and scan the P — () orbits
(Figure 3.9, Table 3.2). For these parameters, the orbits in the P — Q
sub-plane no longer appear regular, but highly convoluted!. In the p — ¢
sub-plane, the orbit may appear to have little or no change, but a closer look
reveals the finer features due to the influence of the quadratic upon coupling

(Figure 3.7).

In the following chapter, we will more closely examine the second form
of the mapping (3.15). Figure 4.3 shows the phase portraits for Formy of the
mapping with ¢t = 1.1, 7 = 1.1, and a = .1. Note the qualitative difference
resulting from the choice of parameters; for ¢ ~ 7, the respective uncoupled

orbits have approximately the same amplitude, and there is no drastic effect

I Also see Figure 5.3 and others throughout this work.
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of one upon the other (cf. Figures 3.7-3.9). In the phase portraits and the
frequency analysis (Chap. 4), one observes orbits of a more diffusive nature

in Forms of the mapping (when ¢ ~ 7) than Form,.

In Chap. 5, we discuss a method for “unwinding” the convoluted
projections in the lower dimensional sub-spaces. To reiterate, even if an orbit
lies on a torus, in higher dimensions we cannot accurately obtain the rotation
number (frequency) via the straightforward method of Eq. (1.36) if we
cannot easily obtain the angles of successive iterations about some center. In
addition, the complicated projections obtained in the sub-planes make it
difficult to tell whether an orbit is in fact, a simple, closed curve. The
dynamics occurs in higher dimensions upon coupling, and the orbit is
projected into lower dimensions sub-planes, just as a three-dimensional
object’s shadow is projected onto a two-dimensional surface. The p — ¢ and
P — () sub-planes are just one set of projections we may make, and in Chap.
5 we examine a process that allows us to untangle the projection to reveal
orbits that are in fact, simple, closed curves in phase space (as expected for
invariant tori). First, however, in Chap. 4 we introduce and apply the
method of frequency analysis, which allows us to obtain the frequencies
(rotation numbers) of orbits with or without transforming to a simple

projection space.
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Chapter 4

Frequency Analysis and Dynamical Systems

4.1 Introduction

In this chapter we introduce the method of frequency analysis as treated
extensively by Laskar [80, 77, 78, 76, 75, 74, 127], and demonstrate the use of
an improved method by Gomez [39, 40]. In Sec. 4.3.1, we use the frequency
analysis method to obtain the well known Devils Staircase in the
Chirikov-Taylor (Standard) Mapping. In the same section, we use sample
data from known sinusoids and the integrable case of the Standard Map to
demonstrate that the frequencies obtained are accurate to 19 decimal places.
We discuss the use of high precision computations used to obtain this result
in Sec. 4.5. The standard in modern scientific computing is double precision,
or 53 bits, corresponding to 15-17 decimal places. See [38] for an interesting
discussion of precision and computing. We obtain the two-dimensional
frequency map for the Froeschle Mapping, which agrees well with previous
work [76], in Sec. 4.3.2. In Sec. 4.4, we apply the method of frequency
analysis to the four-dimensional coupled cubic-quadratic mapping, obtaining
the frequency map for two qualitatively different sets of parameters, and
following the frequency of specific orbits for long time scales (~ 10°). In this

manner, we provide evidence of higher dimensional transport phenomena
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that appears to demonstrate both diffusion along resonances and motion

around tori. These phenomena are often referred to as Arnol’d Diffusion.

4.2 The Method of Frequency Analysis

The method of frequency analysis is a useful tool for the analysis of
dynamical systems [80, 77, 78, 76, 75, 74, 127]. For a perturbed Hamiltonian
system (Eq. (1.21)) with n degrees of freedom, the flow (recall Egs. (1.1) and
(1.14)) can take the form of a Fourier series on KAM tori [78],

A(t) = 2Lt ) i, (4.1)

m

F = mwt + mow? + ... +

where the aé depend on the frequencies, and mw
myw™. To high accuracy, this can be represented by the quasiperiodic

approximation,

( — Zzelw it + Z CL lm]th (42)

to a desired accuracy by retaining /N terms. Therefore, for some quasiperiodic
function f(t) obtained numerically, it is possible to obtain a quasiperidoc
approximation of f(t) to a high degree of accuracy by computing the
Discrete Fourier Transform of f(t) and obtaining the frequencies and
amplitudes of (4.2). Improvements in accuracy were made by Laskar [80, 78]

by seeking the maximum of a special function in frequency space,

_ /0 " et (4.3)
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Once the location of the first frequency is obtained, the contribution of the
first frequency term is subtracted out from the quasiperiodic approximation
and the process is repeated. In this manner, one can iteratively arrive at the
quasiperiodic approximation. Data windowing by use of the Hanning Filter
[12] reduces the displacement of each peak by perturbations from each of the
other, ensuring that the frequencies are more accurately determined. It is
believed [127, 78] that the accuracy of the frequencies determined by this
method for a KAM orbit is on the order of 1/7%, instead of 1/T? without a

Hanning window and 1/7T for an ordinary FFT.

Recently, further improvements [39, 40] in the method of frequency
analysis have been made by Gomez, et al. Their method for the
determination of the quasiperiodic approximation is based on a collocation
method in frequency space, and is exact for finite trigonometric polynomials.
Further, even when f(t) contains infinitely many linear combinations of a
basic frequency subset, the collocation method is able to determine a small
number of frequencies with high precision. One of the goals of this work is to
demonstrate the practical applicability of this method and test its accuracy

and precision.

4.3 Frequency Analysis of Symplectic Mappings
4.3.1 Area-Preserving Mappings: The Standard Map

Recall that the standard map is

k.
Tp4+1 = T, + Pn+1, Pn+1 = Pn + % Sln(2ﬂ'$n) (44)
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and one can calculate (what we refer to as) both a rotation number and
winding number (Sec. 1.5.1) of this system. Here we compare the
calculations of these numbers using Eq. (1.36) and Eq. (1.38) to the values

obtained from the method of frequency analysis.

As a test of the frequency method we use the case of k = 0, for which
the map is integrable, to determine known frequencies to a high degree of
accuracy. In this case, p is a constant of motion and the frequencies are equal
to the initial p values. We can use this fact to test our numerics to a high
degree of accuracy. If our initial p, is known to many decimals, then a
comparison of the frequency yields a measure of the accuracy of the method.
Given a sufficient number of data points, we find that the frequencies are

accurate to at least 19 decimals (Tables 4.1-4.2, Figure 4.1 ).

4.3.2 Higher Dimensional Mappings
4.3.2.1 The Froeschlé Map

As a test of the method, we generate the frequency map [76] of the
Froeschlé Mapping of Eq. (1.46) for various values of the coupling parameter
b. The results are shown in Figure 4.2. For b = 0, the maps are integrable
and we observe a regular frequency space. Upon coupling, the 1:1 resonance
appears and irregularities are observed, denoting regions of instability. As b
increases, more and more tori are destroyed, which is reflected in the
frequency mapping. In the following section, we will use the frequency map

for the coupled cubic-quadratic mapping.
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Figure 4.1: Frequencies and the devil’s staircase in the standard map. Com-
pare Figure 1.4. Increasing the number of samples N increases the accuracy
of the calculated frequencies (cf. Table 4.1 and 4.2).
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Table 4.1: Frequencies of the Integrable Standard Map, & = 0 (I). For £ = 0, the frequencies of the
standard map are the initial action-like values (p,,first column). We compute the frequencies using the
FFT collocation method for N = 210, 21 217 and 22°. This demonstrates that frequencies are accurate to

nineteen decimal places.

Po

w (210)

w (214)

w (217)

w (220)

0.0100000000000000000
0.0100000000000314159
0.0100000000000628319
0.0100000000000942478
0.0100000000001256637
0.0100000000001570796
0.0100000000001884956
0.0100000000002199115
0.0100000000002513274
0.0100000000002827433
0.0100000000003141593
0.0100000000003455752
0.0100000000003769911
0.0100000000004084070
0.0100000000004398230
0.0100000000004712389
0.0100000000005026548
0.0100000000005340708
0.0100000000005654867
0.0100000000005969026
0.0100000000006283185
0.0100000000006597345
0.0100000000006911504
0.0100000000007225663
0.0100000000007539822

0.0099999999999999991
0.0100000000000314158
0.0100000000000628316
0.0100000000000942471
0.0100000000001256631
0.0100000000001570780
0.0100000000001884943
0.0100000000002199107
0.0100000000002513257
0.0100000000002827424
0.0100000000003141572
0.0100000000003455744
0.0100000000003769895
0.0100000000004084060
0.0100000000004398221
0.0100000000004712385
0.0100000000005026535
0.0100000000005340696
0.0100000000005654850
0.0100000000005969012
0.0100000000006283187
0.0100000000006597338
0.0100000000006911500
0.0100000000007225650
0.0100000000007539815

0.0100000000000000000
0.0100000000000314159
0.0100000000000628319
0.0100000000000942478
0.0100000000001256637
0.0100000000001570796
0.0100000000001884956
0.0100000000002199115
0.0100000000002513274
0.0100000000002827433
0.0100000000003141593
0.0100000000003455752
0.0100000000003769911
0.0100000000004084070
0.0100000000004:398230
0.0100000000004712389
0.0100000000005026549
0.0100000000005340707
0.0100000000005654866
0.0100000000005969026
0.0100000000006283185
0.0100000000006597345
0.0100000000006911504
0.0100000000007225664
0.0100000000007539822

0.0100000000000000000
0.0100000000000314159
0.0100000000000628319
0.0100000000000942478
0.0100000000001256637
0.0100000000001570796
0.0100000000001884956
0.0100000000002199115
0.0100000000002513274
0.0100000000002827433
0.0100000000003141593
0.0100000000003455752
0.0100000000003769911
0.0100000000004084070
0.0100000000004:398230
0.0100000000004712389
0.0100000000005026548
0.0100000000005340707
0.0100000000005654867
0.0100000000005969026
0.0100000000006283185
0.0100000000006597345
0.0100000000006911504
0.0100000000007225663
0.0100000000007539823

0.0100000000000000000
0.0100000000000314159
0.0100000000000628319
0.0100000000000942478
0.0100000000001256637
0.0100000000001570796
0.0100000000001884956
0.0100000000002199115
0.0100000000002513274
0.0100000000002827433
0.0100000000003141593
0.0100000000003455752
0.0100000000003769911
0.0100000000004084070
0.0100000000004398230
0.0100000000004712389
0.0100000000005026548
0.0100000000005340707
0.0100000000005654867
0.0100000000005969026
0.0100000000006283185
0.0100000000006597345
0.0100000000006911504
0.0100000000007225663
0.0100000000007539822
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4.3.2.2 The Coupled Cubic-Quadratic Map

Here we consider the four-dimensional cubic quadratic mapping
introduced earlier. The uncoupled phase portraits and frequencies of the
system are shown below. The subscripts denote frequencies of the cubic and
quadratic maps, respectively, and we scan the frequencies along the 1:1

diagonal (r) from the origin (Figure 4.4).

Upon coupling (a = .1), we see that the respective regions around the
resonances have become irregular (Figure 4.6), and frequencies around the
higher resonances are missing. To determine the fate of these missing
frequencies, we visualize the frequency map as suggested by Laskar [76]. For
a grid of 90,000 initial conditions in four dimensions, we iterate the map for
210 jterations, obtain the frequencies and plot the result for different values of
the coupling constant a (Figure 4.7). In general, we find that as we increase
the number of initial conditions, more stable orbits are observed in the
frequency space. This matches the description given by KAM in which tori

are pathologically distributed, but rare.

4.4 Evidence of Arnol’d Diffusion and Generalized
Transport Phenomena

Here we describe some results related to the Arnol’d Diffusion (see Sec.
1.5, [18, 5]) and generalized motion around tori in the the higher dimensional
phase space of the 4D mapping. In this chapter we focus on results related to

the frequency analysis. In Chap. 6 we provide further evidence of motion
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Table 4.2: Frequencies of the Integrable Standard Map, k = 0 (II). Frequencies
computed over a greater range of initial conditions than the previous table.
For k = 0, the frequencies of the standard map are the initial action-like values
(po, first column). This demonstrates that frequencies are accurate to nineteen
decimal places.

Po

w (217)

0.0010000000000000000
0.0410000000000000000
0.0810000000000000000
0.1210000000000000000
0.1610000000000000000
0.2010000000000000000
0.2410000000000000000
0.2810000000000000000
0.3210000000000000000
0.3610000000000000000
0.4010000000000000000
0.4410000000000000000
0.4810000000000000000
0.5210000000000000000
0.5610000000000000000
0.6010000000000000000
0.6410000000000000000
0.6810000000000000000
0.7210000000000000000
0.7610000000000000000
0.8010000000000000000
0.8410000000000000000
0.8810000000000000000
0.9210000000000000000
0.9610000000000000000

0.0010000000000000000
0.0410000000000000000
0.0810000000000000000
0.1210000000000000000
0.1610000000000000000
0.2010000000000000000
0.2410000000000000000
0.2810000000000000000
0.3210000000000000000
0.3610000000000000000
0.4010000000000000000
0.4410000000000000000
0.4810000000000000000
0.5210000000000000000
0.5610000000000000000
0.6010000000000000000
0.6410000000000000000
0.6810000000000000000
0.7210000000000000000
0.7610000000000000000
0.8010000000000000000
0.8410000000000000000
0.8810000000000000000
0.9210000000000000000
0.9610000000000000000
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Figure 4.2: Frequency maps of the Froeschlé mapping. Compare to [76]. As
a demonstration of the frequency method, we generate the frequency map for
the mapping of Eq. (1.46) around the 1/6 resonance for various values of the

coupling parameter b.
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Figure 4.3: Phase portraits of the uncoupled cubic-quadratic mapping (Forms,
t=7=11).

0.42 0.18
0.41 _ 0.17
0.40 ' 0.16

y
0.39 / 0.15
q U.

w, 0.38 / wg 0.14
0.37 0.13
0.36 0.12 N\
N\
0.35 0.11 —

0'340.0 0.2 0.4 0.6 0.8 1.0 0.100.0 0.2 0.4 0.6 0.8 1.0

r r

Figure 4.4: Frequencies of the uncoupled cubic-quadratic mapping (Formsy,
t=17=11a=.1).
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Figure 4.5: Phase portraits of the coupled cubic-quadratic mapping (Forms,
t=17=11a=.1).
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Figure 4.6: Frequencies of the coupled cubic-quadratic mapping (Forms, t =
T=11,a=.1).
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Figure 4.7: The frequency map for various a values. Frequency maps for a = 0
(top left), 0.025 (top middle), 0.05 (top right), 0.075 (bottom left), and 0.1
(bottom right). Note the appearance of the resonance near (.38, .16).

72



around tori by investigating the escape times of the mapping and the

long-term stability of orbits.

4.4.1 Example I

We iterate the initial condition (.623,.6253,0.0,0.0) for a = 0.01,
t = 1.1, 7 = 1.1 using Form; of the mapping. See Figures 4.8-4.10. In Figure
4.8, we plot three snapshots consisting of 26 iterations each in the respective
sub-planes for an orbit that escapes after approximately 10° iterations. Note
the difference in the orbit in each successive row. With these parameters,
escape can occur quickly (Chap. 6). Figure 4.9 shows an alternative, closer
view of the last 2'¢ before escape, as in the bottom row of Figure 4.8.
Looking closely, one can see the points of the orbit diverge in the bottom
pane of Figure 4.8 and in Figure 4.9. To demonstrate evidence of diffusion in

frequency space, we analyze the frequencies of the orbit (Figure 4.10).

For comparison, we analyze the cubic and quadratic frequencies of the
coupled map (Figure 4.10) and the uncoupled maps. Figures 4.11 and 4.12,
respectively, show the uncoupled quadratic and cubic frequencies in chunks
of 29 and 2! for an orbit of total length 2'°. We observe numerical artifacts
in the short time (n = 2%) frequency analysis of the uncoupled quadratic.
However, note the regularity of this uncoupled frequency (Figure 4.11)
relative to the frequency of the coupled orbit analyzed in the same manner
(Figure 4.10, top). It appears that the artifact is due mainly to the small

amplitude of the quadratic, as we observe nothing similar in the n = 2°
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uncoupled cubic frequency analysis. At approximately 7' = 10° (Figure 4.8,
bottom; Figure 4.9) the orbit suddenly increases in amplitude in a short
number of iterations and becomes unbounded. This transition takes place
too quickly to be observed in the frequency space (Figure 4.10), but we
observe the transition in phase space (Figure 4.8, 4.9). Next we introduce

two examples with longer exits that may be observed in frequency space.

4.4.2 Example I1

We iterate the initial condition (.69,.7,0.0,0.0) fora = 0.1, t =7 =1.1
using Formy of the mapping and plot the frequencies of the orbit in Figure
4.13. The frequencies diffuse near the initial value, suggesting the existence
of a torus. Suddenly, the orbit jumps to a new frequency in the quadratic,

and eventually escapes after approximately 108 iterations.

From the frequency analysis of the trajectory we note three types of
orbits; nearly regular, chaotic, and a transitory orbit that “flips” between
two frequencies. To investigate further, we record and plot the (p, q, P, Q)
coordinates in their respective sub-planes for 10° iterations corresponding to
qualitatively different regions of Figure 4.8. The p; — ¢; projections are shown
in Figure 4.15. In frequency space, the orbit diffuses along a resonance,
where nearby exist stable orbits, before jumping to a new resonance (Figures

4.14 and 4.17) and exiting, suggesting the existence of Arnol’d Diffusion.

74



0.04
0.8
0.02
0.6
q Q
0.00
0.4
0.2 ood
085 0.2 04 06 0.8 1.0 ~0.04 -0.03 -002 -001 000 001 002 003
P
p
1. 0.04
0.03
0.8
0.02
06 / ﬁ 0.01
q Q
0.00
0.4
~0.01
02 -0.02 §
-0.03
085 0.2 04 06 0.8 1.0 -003 -002 -001 000 001 002 003
b P
1.
0.04
0.8
0.02
Q 0.00
-0.02
-0.04
080 0.2 0.4 0.6 0.8 1.0 ~0.04 -0.02 0.00 0.02 0.04

p

Figure 4.8: Escape orbit for Form; of the coupled map (I). ICs
(.623,.6253,0,0), Form; of the map. With these parameters, escape (bottom
row) occurs quickly (also see Chap. 6).
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Figure 4.9: Escape orbit for Form; of the coupled map (II). ICs
(.623,.6253,0,0), Form; of the map. With these parameters, escape occurs
quickly.
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(Formy, t =7 = 1.1). The trajectory diffuses along the primary resonance for
approximately 10°, then suddenly jumps to a new resonance (cf. Figure 4.12).
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Figure 4.15: Diffusion along resonances: orbits. Sub-plane projections corre-
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ize three types of orbits that are described by their behavior in the frequency
space: nearly regular, chaotic, and transitory. See text for further description.
The initial condition is (.69,.7,0.0,0.0), (Formy, t =7 = 1.1).
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Figure 4.16: Frequency scan near the irregular orbit. For a series of initial
conditions near (.69,.7,0.0,0.0) (Forms, t = 7 = 1.1) we obtain the frequency
of three consecutive chunks of 220 iterations. We note the existence of several
orbits with constant frequencies, suggestive of tori.
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Figure 4.18: Frequency scan for the coupled mapping (I). To find tori we
perform a frequency search near the regular region of the frequency map.
Shown are the frequencies obtained from P (cf. Eq. (3.15)).
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Figure 4.19: Frequency scan for
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the coupled mapping (II). To find tori we
perform a frequency search near the regular region of the frequency map.
Shown are the frequencies obtained from p (cf. Eq. (3.15)).
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Figure 4.20: Frequency analysis of a possible torus (I). Frequency analysis (of
the first 100 x 107 x 2% iterations) for one of the initial conditions above. We
iterate the map for 107, then obtain the frequency of the next 2% iterations,
and repeat 100 times for an orbit length of approximately 10%°.
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Figure 4.21: Frequency analysis of a possible torus. Frequency analysis (of
the first 100 x 107 x 2% iterations) for one of the initial conditions above. We
iterate the map for 107, then obtain the frequency of the next 2% iterations,
and repeat 100 times for an orbit length of approximately 10%°.
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4.4.3 Regular Orbits

To search for regular orbits (e.g., Figure 4.22) and provide good
evidence of orbits that lie on or near tori, we scan for constant frequencies
(Figure 4.16) around the irregular orbits of the previous sections. Figure 4.16
shows a scan of frequencies that were obtained in three consecutive chunks of
220 A deeper search is illustrated in Figures 4.18 - 4.22. First, we scan in the
frequency space to find likely candidates. Then, for a given initial condition,
the map is iterated for 107, the frequency of the next 2% iterations is
obtained, and the procedure is repeated 100 times for an orbit length of
approximately 10'° (Figures 4.20 and 4.21). In general, we find many such
orbits that correspond with the frequency map and escape time analysis

(Chap. 6).

4.5 Accuracy and Precision
4.5.1 Shadowing of Orbits

We use the arbitrary precision GNU MPFR library [26] or FORTRAN
quadruple (128 bit) precision® for accurate computation of the mappings.
While the Shadowing Theorem [45, 46] guarantees the existence of true
orbits for the dissipative Hénon Map, high-accuracy computations are

necessary to avoid small-scale diffusion in the frequency space due to the

!Through shadowing computations we find that quadruple precision, corresponding to
38-39 decimal places, is usually sufficient to retain over 20 decimal places of accuracy for
orbits up to length 10'2.
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Figure 4.22: A regular orbit for Form; of the coupled map. ICs (.65, .65,0,0),
Form 1 of the map. With these parameters, the orbit remains bounded and
well-defined for at least 10'? iterations. For regular orbits, we can find constant
frequencies (see Figures 4.18 - 4.21).

random error introduced from finite-precision calculations [65] and provide
good evidence that our computations successively approximate a true orbit
as we increase precision. The accuracy of trajectories is easily determined by
a trial and error process in which an initial condition is iterated with
increasing precision. In this manner one can obtain the number of iterations
before the trajectories differ by some finite amount, and hence a lower bound
for accuracy within that specified value. In the language of the Shadowing
Theorem, we show that true orbits exist that remain within 107 of the
noisy orbit for 10'2 iterations. This is proved by observing that for nearby
initial conditions (§ << 107%), the two highest precision computations (of

each initial condition) are identical to 64 decimal places after 10'? iterations.
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Generally speaking, orbits of the mapping that are used to compute
frequencies are accurate to 32 or more decimal places, and one hopes for an
accuracy of at least 1/7T% in the KAM frequencies when 7T is the time interval
of interest [127, 78]. However, the collocation method relies upon the FFTW
[27] and LAPACK ([3] libraries, which were compiled with long double
precision options (80 bits; about 24 decimal places). This represents an
improvement of several orders of magnitude over the the precision used in
most modern scientific computations; double precision (53 bits, or 15-17

decimal places) binary floating-point specified by the IEEE 754 standard.

The Shadowing Theorem [45, 46] is a proof by construction of the
accuracy of computing trajectories. In short, by incrementally increasing the
precision of computations and comparing the separation distance between
nearby trajectories, it is demonstrated that for an initial amount of noise (or
separation) J;, we remain within a specified amount of separation ¢ for an

orbit of length N.

The shadowing plots show the dependence of the separation time N on
the noise amplitude §. Hammel, et al. [45] found that N ~ 1/4/(8) for the
dissipative Hénon mapping. Following a similar procedure, the uncoupled
cubic, uncoupled quadratic, and coupled cubic-quadratic mappings were
iterated until a separation of 1/1/(8) occurred. The maximum number of
iterations is 10%, which explains the saturation at higher N of the plot.
Saturation occurs at the lower end since we plot anything under 103 at that

point.
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Figure 4.23: Shadowing plots for the uncoupled cubic (top) and quadratic
(bottom) mappings.
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Figure 4.25: Shadowing of orbits. Shadowing for double and 3200 bit precision.
We plot the RMSD, respectively, from the 6400 Bit trajectory. Note that the
3200 bit trajectory is within 1072° after 8 x 10° iterations.
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4.5.2 Accuracy and Precision of Frequencies

By using the shadowing results for orbits, we are now in a position to
demonstrate the accuracy of frequencies by choosing a high enough precision
for our orbit computations. Starting with an initial condition of (.69,.7,0,0),
we analyze the frequency with increasing precision and observe consistent
diffusion in the frequency space. Observe that the frequencies of the 3200 bit

and 6400 bit orbits are identical to approximately 10° iterations.

As a further test and illustration of the frequency analysis and to gain
insight into the authenticity of the orbit, we perform the frequency analysis
over 2.5 x 10% iterations in chunks of 28,29 210 214 216 218 for the initial
condition (.69,.7,0,0). On a torus, we expect the frequencies to converge as
we increase the number of data points, but for this wandering orbit we note
that the irregularity of the frequencies persists to high sample lengths up to
2% (Figure 4.30). Although we observe a kind of averaging effect with
increasing sample length (Figures 4.29 and 4.30), it is important to note that
for longer sample lengths (e.g., 22°) (not shown), the FFT method does not
converge for this orbit. In general, we find that a lack of convergence at any
sample length is an indicator of chaotic orbits or orbits that escape in too

short a time for an accurate FFT.

96



0.180 ‘ ‘ ‘ ‘ ‘
0.175¢ - 53Bit
0.170;
wWq 0.165}
0.160;
0.155;

0.150 l l ' ' '
0 500000 1.0x10% 1.5x10% 2.0x10% 2.5x10°

T

& & ahali y
,.v’*s-k i R AN S SRR DR ALY s Fee—

0.180
0.175;
0.170¢
0 160¢
0.155;

0.150 ‘ l ' ‘ ‘
0 500000 1.0x10% 1.5x10% 2.0x10% 2.5x10°

T

- 200 Bit

0.180 , — , '
0.175 v 400 Bit
0.170;

wq°165MW‘WW

0.160

01557 v WS VW e W
0.150 ‘ e
0 500000 1.0x10° 1.5x10° 2.0x10° 2.5x10
T

Figure 4.27: Frequency shadowing for the coupled cubic-quadratic mapping
(I). Although all plots are qualitatively similar, notice the similarity between
successive plots as we increase precision.
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Figure 4.28: Frequency shadowing for the coupled cubic-quadratic mapping
(II). Although all plots are qualitatively similar, notice the similarity between
successive plots as we increase precision.
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Figure 4.29: Frequency shadowing for the coupled cubic-quadratic mapping
(III). Comparison of the 3200 bit and 6400 bit trajectories reveals that the
frequencies are identical until approximately 10° iterations.
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Figure 4.30: Frequency shadowing for the coupled cubic-quadratic mapping
(IV). The 53 bit (double precision), 3200 bit, and 6400 bit trajectories are
qualitatively similar.
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quencies of the orbit with initial condition of (.69,.7,0,0) in chunks of
28 29 210 914 916 918 = Note that the irregularity of the frequencies persists
to high sample length.
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Chapter 5

Visualizing Tori in Higher Dimensions

5.1 Canonical Transformations and Higher
Dimensional Symplectic Mappings

As we have seen in earlier chapters (Chap. 1, Figure 1.7; Chap. 3),
coupling an additional degree of freedom leads to complicated pictures in the
usual p; — ¢; projections in phase space. Since these are not simple, closed
curves in this projection, it is not possible to take the correct rotation
number (by measuring the angle of rotation around a center as in Eq. (1.36))
of the orbit in these planes. As added evidence that we are no longer in the
correct projection space, taking the rotation number (not shown) of these
curves no longer agrees with the frequencies obtained via FFT (Chap. 4).
When the perturbation from the other degree of freedom is small (cf. Figures
3.7 and 4.22 (a), the rotation number obtained may remain close but takes
even longer to converge than usual. Taking the rotation number of the more
complicated sub-plane projections (e.g., Figure 1.7, 3.7, and 4.22 (b)) yields

an incorrect value due to the contribution from the additional frequency.

The difficulty arises because of the increased dimensionality of the
system, which increases the number of frequencies. Upon coupling, each

curve in the p; — ¢; plane has a contribution from the other frequency. For
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example, in two dimensions, we are used to seeing a simple curve in the p —q
plane, as shown for the uncoupled cubic and quadratic maps in Chap. 3.
These simple curves can be thought of as resulting from the Poincaré section
of a higher dimensional quasiperiodic flow on a torus. Upon coupling
however, the trajectory is no longer a simple closed curve, due to the effect of
one degree of freedom on the other. One can think of the quadratic orbit
being “carried” along this new torus some distance corresponding to the
frequency of the cubic contribution, and vice versa; hence, upon one iterate
of the map, a point in the P — () plane is carried to a new point that is
remarkably different from the equivalent uncoupled motion. This is
responsible for the complex curves depicted in Chap. 1 for the coupled
standard mapping, and Chap. 3 for the coupled cubic-quadratic. Figure 5.1b
shows a projection of this higher dimensional torus, and reveals how the
triangular orbit of the quadratic mapping is coupled to an elliptic cubic
orbit. In the usual P — ) projection, the orbit is complicated (Figure 5.1a),
but an appropriately oriented Poincaré section (Figure 5.2 and Sec. 5.3)

reveals simple, closed curves.

To visualize a higher-dimensional trajectory, it is desirable to decompose
the orbit into a set of p; — ¢; projections in phase space [82]. In two
dimensions, these are just the usual p — ¢ (cubic) and P — @ (quadratic)
planes, respectively. But in higher dimensions, the addition of an extra
degree of freedom means that these projections may no longer be ideal. Tori

become warped and rippled from coupling (e.g., Figures 3.7, 3.9, 5.1, 5.3, and
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5.4), and the new projection plane must be appropriately oriented to account
for these effects and yield a simple, closed curve. If one tries to take the
rotation number of a higher dimensional curve by projection into a two
dimensional plane, it must be the correct plane; one that results in a simple

closed curve.

To arrive at the correct projection, one looks for a canonical

transformation S satisfying
ijoB _ qaf
SiJ2SE = J27, (5.1)

where J is the canonical matrix given in Eq. (1.4). That is, we look to
transform the coupled cubic-quadratic mapping into a set of new coordinates
that reveal the existence of two simple closed curves in the phase space. The
simplest such transformation! is a linear one given by

P = anp + a12q + a13P + a14Q

¢ = anip + axng + aP + auQ

(5.2)

P’ = agip + asaq + assP + a34Q

Q' = anp + a42q + as3P + a44Q.
Note that the primes indicate a coordinate transformation here. Below, we
use the data visualization software GGOBI to visualize the four-dimensional

data and obtain preliminary data toward projections of this form.

!This rotation is only a first step toward transforming the coordinates. Due to the
warping, rippling effect of the coupling a rotation alone may not suffice, but as we will see,
provides an effective means of visualizing the higher-dimensional data.
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5.2 Projections of Higher Dimensional Data:
Unwinding the Torus

GGOBI is an open-source visualization system for exploring data in
higher dimensions [130]. GGOBI was developed and is mainly utilized as
statistics software, but for our purposes, it allows one to manipulate data in
higher dimensions and obtain projection coefficients that will transform the
raw data into the projection shown onscreen. Screenshots of a typical
GGOBI session are shown in Figure 5.1. In Figure 5.1(a), we see the Q — P
projection of a trajectory resulting from 10° iterations of the coupled
cubic-quadratic mapping with initial conditions (.65,.65,0,0). Figure 5.1(c)
shows the p — ¢ projection, and Figure 5.1(b) shows a projection into a plane
given by the projection coefficients shown in the bottom right of the
screenshot. The selection of highlighted points is the same in each subfigure,
merely in different projections. Notice that the projection in Figure 5.1(b)
resembles a torus with triangular (highlighted) and elliptical cross-sections.
This is a preliminary indication that in the appropriate projection two simple

closed curves will be revealed, providing further evidence of tori.

As demonstrated in Chap. 3, orbits of the uncoupled cubic (with
t = 1.1) and quadratic (with 7 = .9864) maps are elliptic and triangular,
respectively. It is helpful to consider the first iterate of the coupled map
when the initial conditions begin at (p,q, P, Q) = (po, ¢, 0,0). Due to the
coupling (Eq. (3.10)), the trajectory “jumps” to a set of values (p1, p2, P, Q1)

where P, and ()1 are non-zero. In a sense, one can think of the quadratic
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(a) (b) ()

Figure 5.1: The coupled cubic-quadratic map in GGOBI. (a). The Q— P plane.
(b) A projection of the mapping’s four-dimensional phase space, suggesting a
torus with a elliptical and triangular cross-sections. (c¢) The p — ¢ plane.

trajectory starting at a new set of initial conditions (P, 1) that determine
the orbit and frequency of the quadratic contribution to the mapping. For
example, (P, Q) = (0,0) is an equilibrium point in the uncoupled quadratic
map, but (pg, qo, 0,0) in the coupled map usually has a non-zero frequency
that is close to the frequency of an uncoupled orbit of the quadratic mapping
with initial conditions close to the (P, Q) coordinates after one iteration of
the map (p1, 1, P1,@1). We can calculate the frequencies of the coupled orbit
via the FFT method (Chap. 4) and find an uncoupled orbit with an identical
(to as many decimals as accuracy permits) frequency (Figure 5.5). For these
reasons, in some projection space we expect to find a closed curve that

closely resembles? a triangular-shaped orbit of the uncoupled quadratic map.

What is the projection in Figure 5.1b? In other words, what are we

looking at? We are looking at a two dimensional projection of the

2Tt may be necessary to apply an additional transformation to undo the warping of the
axes.
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four-dimensional Poincaré section corresponding to the 4D coupled mapping.
Below, we will visualize this four-dimensional object in another manner. For
now, we refine the results from GGOBI to obtain a good approximation of a

closed curve in the appropriate sub-planes given by Eq. (5.2).

5.2.1 The Projection Matrix

We obtain a projection that approximately locates a simple closed curve
resulting from the quadratic contribution to the coupled mapping (Figure
5.2). This is the triangular orbit that we expect from the uncoupled
quadratic map (cf. Figures 3.1 and 3.4). The projection coefficients from
GGOBI (Figure 5.2), in matrix form (cf. Eq. (5.2)), are

a1 a12 ais aiq

_ 21 ago a923 a9y
5= | Z381/1.36 —.002/1.36 925/.07 0 (53)
—.002/1.36 —3.76/1.36 0 .927/.07

The numbers obtained from the GGOBI projection are the projection
coefficients for half of the transformation; the half corresponding to the plane
shown in Figure 5.2. Eq. (5.1) can be written as SJST = J, and since we
look for an orthogonal coordinate transformation, we have ST = S~!. This
leads us to solve the equation J~1S.J = S by comparison for the coefficients

in Eq. (5.2). Doing so, we have

0.999775 0 0.0211956 0.000111263
o 0 0.999782  —.000111023 0.0208724 (5.4)

(—3.81/1.36 —.002/1.36  .925/.07 0)/13.2172550 | "\

(—.002/1.36 —3.76/1.36 0 927/.07)/13.245742
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1:0.381,-0.002(1.36)
2:0.002,0.376(1.36)

3:-0.925,0.000(0.07)

Figure 5.2: Projection of the coupled cubic-quadratic map in GGOBI. Note
the four-dimensional axis (left) and projection coefficients (right). We rotate
the data in four dimensions until we observe an approximately simple, closed
curve.
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The dividing factors in rows 1 and 2 are to normalize the vector to unity.

Simplifying gives

0.999775 0 0.0211956  0.000111263
g _ 0 0.999782  —0.000111023  0.0208724 (5.5)
—0.0211956 —.000111023 0.999775 0 ' ’
0.000111023  —0.0208724 0 0.999782

Checking to see if this satisfies Eq. (5.1), we compute S&J% Sjﬁ , which should

yield
0 0 10
o 0 0 01
JoP = 10 00 (5.6)
0 -1 0 0
We obtain
—1.86 x 107 9.40 x 10722 1 0
0 —347Tx718  847x"22 1
aB _
Jo = -1 4.24 x 10722 0 0 (5.7)
—8.47 x 10722 -1 0 0

Figures 5.3 and 5.4 illustrates the effect of the transformation. In the
cubic plane (p’ — ¢/, approximately the usual p — ¢ plane of the uncoupled
cubic), the effects are small (Figure 5.3, (a) and (b)). This is because the
amplitude of the perturbation from the quadratic on the cubic is small; the
scale of the quadratic trajectories is approximately 0.01 while orbits of the
cubic map range from [-1,1] (Chap. 3). However, clearly an effect is
observed. The cubic trajectory flattens out and becomes less whorled. The
transformation in the P — @) plane is much more drastic. The complex

pattern of Figure 5.4(a) is revealed to be to be a simple, closed curve of
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0.6

(a) (b)
Figure 5.3: The coupled and transformed cubic orbit.

triangular fashion (Figure 5.4, (b) and (c)), as we would expect from the
phase portrait of the uncoupled quadratic. For comparison, we include a
comparison between the transformed curve and an orbit of the uncoupled
quadratic mapping which has the same frequency (Figure 5.5). By choosing
initial conditions (uncoupled), we find an orbit of the uncoupled quadratic

mapping with the same frequency (to nineteen decimals) as the coupled orbit.

5.2.2 Unwinding the Torus via a Simple Canonical
Transformation

The form of S suggests seeking a transformation

cos 0 sinyy 0
0 cos 0 sin®y
—sin 0 cosy 0 ’
0 —siny 0 cosy

S =
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(a) (b) ()

Figure 5.4: Symplectic transformation of the coupled cubic-quadratic map-
ping. (a) The map is plotted in the P — @ plane and (b), (c) the transformed
coordinates obtained from GGOBI and given in Eq. (5.2). 2 x 10° iterations
are shown in (a) and (c), and the first 10* in (b).
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Figure 5.5: Comparison of the uncoupled and transformed quadratic orbit.
By choosing initial conditions, we find an orbit of the uncoupled quadratic
mapping with the same frequency (to nineteen decimals) as the coupled orbit.
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where ) is an angle of rotation that can be systematically varied to find the
best projection. In Figure 5.6 we show a series of projections in the P — @)’
plane that demonstrate this procedure. Notice that if ¢ is zero, we recover
the identity matrix; i.e., if there is no perturbation to the p; — ¢; coordinates,

the p; — ¢; sub-planes are the appropriate choice of coordinates.

5.3 A Higher Dimensional Poincaré Section Method

In Chap. 4, the frequency analysis method was used to demonstrate
evidence for the existence of tori; in this chapter, we have shown that it is
possible to find a projection demonstrating the existence of an approximately
simple, closed curve (Figures 5.3-5.5). In this section we propose a method to
demonstrate the existence of a simple, closed one-dimensional curve in an
appropriate two dimensional sub-surface of the phase space (Figure 5.8). The
rotation number (or frequency; see Figure 5.9) of this curve in the
appropriate surface-of-section matches exactly (to numerical accuracy) that
of the frequency analysis method, providing good evidence that the orbit lies

on or near a torus.

In the literature, one finds reference to the “decompositions” of a higher
dimensional Poincaré section. These are the p; — ¢; projections referred to
throughout this work, particularly in the previous section. However, it also
possible to decompose a torus into two cross-sections. Ordinarily, one forms
a torus from the cross product of two circles (or closed curves). One can then

reverse the process and slice the torus in two orthogonal directions, yielding
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Figure 5.6: Unwinding the torus via a canonical transformation. We apply the
transformation described in the text, successively increasing the angle until we
approximate a simple, closed curve.

115



0.04 T T T T T T T

0.03 1

0.02 1

0.01 -

0}

-0.01

-0.02

-0.03 1

_0_04 1 1 ! 1 1 1 !
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

004 T T T T T T T
0.03 1
0.02 1

0.01 | r .

P, ol 1

-0.01 1

-0.02 4

-0.03 + 1

_004 1 L | | 1 Il 1
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

[0}

Figure 5.7: Comparison of unwound coupled orbit (top) and uncoupled orbit
with matching frequency (to nineteen decimals). top: (.6419, .6419, 0,0), 10k
iterations. bottom: uncoupled w matching frequency.
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the two original closed curves. The familiar Poincaré section of flow on a
torus is such a slice that yields a one-dimensional curve (Chap. 1, Figure

1.1). In higher dimensions, the section is itself a torus, as we now argue.

Consider the flow obtained from the Hamiltonian H(.J;, 6;,) where
1 =1,2,3,... N. The phase space is 2N-dimensional, the energy surface is
2N — 1-dimensional, and the dynamics takes place on a N-dimensional torus.
It is possible to take an appropriate Poincaré section of this torus to yield a
N — 1-dimensional torus which is defined by N — 1 angles. If N is odd, we
can decompose this torus into further sections defined by holding each
respective angle constant. For example, if N = 3, the Poincaré section is a
2-dimensional torus. We can slice this two-dimensional section and yield two
cross sections. If the flow is quasiperiodic, we will obtain two closed curves.

We now demonstrate this process for the coupled cubic-quadratic mapping.

The process is simple and amounts to holding the angle of rotation, as
defined in Eq. (1.36), for each respective p; — ¢; sub-plane. To do this, we
iterate the map and impose a condition to select points around (p,, ¢,). In a
sense, we are taking a Poincaré section of an orbit in the cubic plane (cf.
Figure 2.2), which is a line that is intersected by the orbit as the map is
iterated. However, drawing a line in this manner would result in twice the
number of points and a doubling effect when we plot the points in the P — @
plane. Selecting points around (p,, q,) avoids this. this is analogous to taking
a Poincaré section through a torus that selects only one “side”, which is the

usual method that we are accustomed to seeing in discussions of the
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derivation of twist maps and reducing the flow by one dimension (Chapters 1
and 2; [82]). Results are shown in Figures 5.8 and 5.9. With an appropriate
choice of the thickness of the Poincaré section, we obtain a simple, closed
curve in a projection space (Figure 5.8) with a rotation number (Figure 5.9)
that closely matches the results of the frequency analysis

w = 0.332656682319030....

5.4 Discussion: Tori or Not Tori?

We note that the transformations of (5.2) and (5.8) are not perfect; we
do not obtain a set of points that can be considered a one dimensional curve.
Indeed, the trajectory seems “fuzzy”, and it may seem possible that this is in
fact not a torus, but a stochastic orbit or a trajectory that is diffusing
between tori®. Here we discuss these concerns. One, the GGOBI process is
far from perfect. Rotating four dimensions of data by hand on a two
dimensional screen is not easy, and not likely to yield an exact
transformation. Second, the tori in question are perturbed by the coupling.
The surface acquires ripples and is tilted in phase space. If one considers
what a projection of such a rippled, tilted surface would look like, it is quite
plausible that a projection will not yield a one-dimensional curve. No matter
how we may project the surface, the curvature and ripples mean that there

will always be some thickness to the curve obtained. It may be helpful to

3However, it is also possible that the fuzziness comes from the warping of the coordinates
and cannot be removed by a simple rotation. This is left to future work.
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Figure 5.8: A higher dimensional Poincaré section We apply the surface of
section method (Chap. 1) to the four-dimensional map by selecting those
points in the P — @ plane that correspond to the intersection of the plane
p = .65,q=.65.
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Figure 5.9: Rotation number via Poincaré section. We apply the surface of
section method to the four-dimensional map and calculate the rotation number
as described in Chap. 1. The result is close to that obtained via the frequency
method (w = .0.332656682319030...).
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think of this process as shining a light on a distorted three dimensional
object with a rippled surface and casting a shadow on a wall behind the
object. If the surface is rippled in each direction, then there are no

perspectives that will yield a one-dimensional curve.

If the trajectory is in fact executing motion near but not on a torus, or
wandering between two tori, we observe this in the frequency analysis (Chap.
4). In the case of constant frequencies (to nineteen decimals; see Chap. 4),
we have good evidence that the orbit is near or on a torus. If we are not on a
torus, there are two possibilities to consider: one, that the orbit is very close
to a torus, but slightly wandering, and two, that the trajectory is well off. If
the first case is occurring, then the only way to observe the “fuzzy” curve
would be at a highly skewed perspective. In other words, if there are in fact
two curves very close together, which would be necessary to escape detection
in the frequency analysis, then the only way to observe their separation via a
projection would be at a highly skewed perspective. If this is the case, there
would be many other P’ — @)’ projections that show the two nearby curves as

one; we do not observe this.

It may seem from Figures 5.2 and 5.5 that in fact the trajectory is not a
torus. After all, the width of the triangle is roughly a tenth of the amplitude
of the orbit. But the regularity of the orbit in the projection (and a constant
frequency of the orbit) is precisely what makes unlikely the possibility of this
being an orbit that wanders between nearby tori. If an orbit wandered in

such a manner, we would see a corresponding change in the frequency over
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the duration of the orbit (recall Chap. 4). We do not. In fact, we argue that
it is the ripples in the surface in higher dimensions that result in this
appearance. One might compare this to shining a light straight down a
rippled piece of string or piece of paper, and projecting the results on the
floor. Or perhaps more enjoyably, a piece of bacon that is cooked and rippled
in every direction. Attempting to do this results in a projection that has
more thickness than the object itself, because the ripples are what is

projected.

We admit the possibility that the first scenario of an orbit executing
motion between two nearby tori is occurring below the resolution of the
frequency analysis method; we can only detect frequencies to nineteen
decimals of accuracy. However, the structure of phase space and the
long-term stability (10'%) of the orbit in question provides further evidence of
the existence of a torus. See Chap. 6 for further discussion of this nature.
Essentially, the stability of the orbit and the constancy of the frequencies

implies that the curve lies on a torus or is sandwiched between tori.
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Chapter 6

Numerical Explorations of Symplectic
Mappings

6.1 Escape Times for the Coupled Cubic-Quadratic
Mapping
To gain insight into the stability of orbits in the phase space, we scan
along the p — ¢ diagonal for the initial conditions (p, ¢, 0,0) and plot the
escape time [64, 97] (Figure 6.1). Notice the similarity between single (32
bits), double (53 bits), and 6400 bit precision. Further, the histograms
(Figure 6.2) of the escape times for different precisions are similar, indicating

that the results are qualitatively unchanged at different precisions.

6.2 The Escape Mapping: A Fast Tool for Visualizing
Dynamics
To extend the results of the previous section to higher dimensions, we
pick two coordinates and plot the escape times of orbits with different colors
[100, 91] in the plane of the remaining coordinates (Figures 6.4 and 6.5).
First, we implement the method for the Hénon Mapping (Chap. 3), as
demonstrated by Figure 6.1. Escape times are colored with different colors

for exit times. To investigate a region of interest, one may pick a series of
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- Single Precision

- Double Precision

6400 Bit Precision

Figure 6.1: Exit times for the coupled cubic-quadratic mapping. We scan along
the ¢ = p axis for the initial conditions (g, p,0,0 and measure the number of
iterations before the 4D distance from the origin exceeds some threshold.
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Figure 6.2: Histograms of escape times.

points in the P — () plane, and observe how the distribution of orbits in the
p — ¢ plane changes. In this way, one may examine the stability of orbits in

well-defined neighborhoods.

The chief advantage of the escape mapping is that it may be
implemented in OpenCL or CUDA to utilize the massively parallel
processing power of Graphics Processing Units. The advantage of GPU
computing for these types of massively parallel tasks can be seen in Figure
6.3. As an example of a massively parallel computation, the Hénon Mapping
was iterated for a 400 x 400 grid. Computation times are shown for CPU
(Xeon) and GPU (others).

6.2.1 The Escape Mapping for the Hénon Map

Figure 6.4 shows the escape times of the quadratic Hénon Map,

¥ =y+1—ax’ y = bx, (6.1)

for a = 1.4,b = .3. These were the values chosen in the original paper by

Michelitsch and Réssler in their 1989 paper [100]. We include this example
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0. 0.4 0.8 1.2 1.6 2. 24 2.8 3.2 3.6 4.

Figure 6.3: Escape times for the Hénon map. Increasing times are colored
from red to blue.
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Computation Time

Hénon Map, n=400

GTX 960 Double Precision(0.008505 s)

GTX Titan Single Precision (0.00310747 s)

GTX Titan Double Precision (0.00106079 s)

Xeon e3-1240 v3

0.20 0.25 0.30 0.35

0.00 0.05 0.10 0.15

Figure 6.4: Benchmarking the escape times of the Hénon mapping. As an
example of a massively parallel computation, the quadratic Hénon map was
iterated for a 400 x 400 grid. Computation times are shown for CPU (Xeon)

and GPU (others).
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to demonstrate the escape time method for two dimensions and as a

benchmark of GPU computing.

6.2.2 The Escape Mapping for Higher Dimensional Systems

A collection of escape maps is shown in Figures 6.5 and 6.6 for
interesting parameters of t = 1.1 and 7 = —.9, a = .01. The p — q escape
map is obtained by iterating a grid of 400 x 400 initial conditions in the p — ¢
plane coupled with a chosen point in the P — () plane. To obtain a picture of
the full four-dimensional space, the (P, Q) can then be varied, usually in real
time due to the computational speedup of the GPU. As an example, the six
plates in Figure 6.5 correspond to (p, q, P, @), where (p, q) are the
coordinates in the visible sub-plane, and (P, @) takes on the values [(0,0),
(.1,.1), (.2,.2), (.6,.6), (.7,.7), (.9,.9)]. A similar P — @) escape map is shown
in Figure 6.6 for the p — ¢ values of [([(0,0), (.1,.1), (.2,.2), (.3,.3), (.8,.8),
(.9,.9)]. Note the resemblance of the escape maps to the respective phase

portraits of earlier chapters.

6.3 Toward Real-Time Frequency Maps

One of the chief advantages of the escape time procedure or “escape
mapping” is the computational speedup provided by a GPU implementation.
In contrast, generating a frequency map (Figures 4.2 and 4.7) takes several
orders of magnitude longer and provides less information about the long

term stability of orbits. Here, we coupled the method of frequency analysis
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Figure 6.5: Escape map sections for the cubic-quadratic. A collection of escape
maps for interesting parameters of ¢t = 1.1 and 7 = —.9, a = .01. The p — ¢
sub-plane section is shown; each panel corresponds to a different (Q,P) value.
Numbers in the legend indicate Logiq of the escape time.
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Figure 6.6: Escape map sections for the cubic-quadratic. A collection of escape
maps The P — @) sub-plane section is shown. Numbers in the legend indicate
Logyo of the escape time.
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with the exit times to provide a deeper picture of the dynamics. Figure 6.11
contains the results for a range of the coupling parameter a (cf. Figure 4.7).
Essentially, we superimpose the exit times on top of the uncoupled Arnol’d
Web (it is possible to use the frequency maps for larger a). Comparing
Figure 4.7 to Figure 6.11 demonstrates that it may be possible to obtain
qualitatively similar information about the dynamics of the system in real
time from an exit time analysis as from the frequency map. In Figure 6.12,
we simply plot the escape times obtained from the initial conditions used to
generate the frequency maps shown in Figure 4.7 without superimposing

them on top of the Arnol’d Web.

6.4 Comparing the Frequency and Escape Mappings

As discussed in Chap. 4, the accuracy of the frequency analysis method
is usually around 1/7*, where T is the number of data points. Further, we
have demonstrated that 220 (1,048,576) iterations are necessary to accurately

determine a frequency to nineteen decimals for the integrable Standard Map

(Table 4.1, Chap. 4).

When looking for evidence of Arnol’d Diffusion and in general
investigations of stability, long term behavior is of paramount importance.
“Long-term” in many cases, means 10° or greater [9, 75] even 10'® which is
beyond current practical reaches of computing. A modern CPU performs
approximately 10? cycles per second. Since iterating one initial condition is a

serial operation, and numerous floating point operations (FLOPs) are
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required for even a simple map, iterating for 10° and returning the result!
requires around one second of real time at best. In reality, we find that 10%
iterations of the coupled 4D map requires around one second. Thus, it would
take 107 seconds or around 110 days to iterate one initial condition for 10%.
Although it is common for supercomputer users to leverage up to 1,000 or
even 10,000 cores, this still only results in one small part of the parameter

space available to the system.

For example, to obtain the escape maps obtained in this chapter, 16,000
initial conditions were iterated for up to 10°, and this is at the lower end of
the computational capabilities available; we typically iterate 16,000 initial
conditions for 107 in real time on the GPU of a personal workstation. The
convenience of quickly computing a massive number of orbits for “long-time”

scales allows greater insight into the structure of phase space.

'Recording the data to a file or translating the data into a graphical representation which
is directly displayed onscreen; either way, this takes time.
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Figure 6.7: Single vs. double precision Formy (I). Numbers in the legend
indicate Logio of the escape time.
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(b) Double Precision

Figure 6.8: Single vs. double precision Formy (IT). Zoom of the previous figure.
Note the difference in the axes between top and bottom, but particularly the
difference between orbits.
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Figure 6.9: Exploring the structure of phase space (I). Numbers in the legend
indicate Log,o of the escape time for Form; of the mapping. Although we find
stable orbits up to 10'3, here we obtain a more general picture of the phase
space by iterating 16,000 initial condition in the p — ¢ plane corresponding to
(p,q,0,0) and a = 0.008.
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=

Figure 6.10: Exploring the structure of phase space (II). Results were obtained
as in Figure 6.9. By exploring different time scales, different structures are
observed in the sub-plane. This case is likely the result of strong resonance
overlap (cf. Figures 6.5 and 6.6)
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Figure 6.11: Escape times of the frequency map (I). Maximum time is 10%;
color scale is similar to other legends in this chapter.
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Figure 6.12: Escape times of the frequency map (II). The exit times of the
initial conditions of the frequency map are plotted without the Arnol’d Web
superimposition (see text).
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Chapter 7

Conclusion and Summary of Results

In Chap. 1, we introduced Hamiltonian Dynamics, the KAM theory, and
symplectic mappings. Hamiltonian systems fall into two categories,
integrable and non-integrable, and in fact integrable systems are the
exception. However, integrable systems provide a natural starting point, and
illustrate fundamental properties of the dynamcis in phase space, such as
motion on invariant tori and frequencies on the torus. Natural questions
arise concerning the stabilty of non-integrable systems. The KAM
(Kolmogorov, Arnol’d, and Moser) theory [68, 4, 108] guarantees the survival
of invariant tori that for Hamiltonian systems subject to sufficiently small
perturbations. Arnol’d [5] described a type of instability that arises from the
merging of stochastic regions into a single, connected web that permeates all
of phase space. This is the Arnol’d Web, and the motion that can occur in
higher dimensional phase spaces due to its existence is the Arnol’d Diffusion
[134, 135, 18, 126, 116, 82]. In two dimensions, invariant tori divide the
phase space, but in higher dimensions, stochastic trajectories can undergo
motion around tori due to the additional dimensionality. Symplectic
mappings (surfaces of section) are used to study dynamical systems due to

their theoretical and computational advantages. Many mathematical results
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exist concerning symplectic maps, and maps are computationally less
expensive to iterate than a full set of differential equations while still
retaining the essential feautres of the dynamics. The Standard Mapping (also
known as the Chirikov-Taylor Mapping [18, 98, 99, 42]) is analyzed to
illustrate the fundamental properties of mappings. The Froeschle Map

[29, 33, 76, 63], essentially two coupled inverse standard mappings, is used to
demonstrate the complicated pictures of dynamics that can emerge from

higher dimensional mappings.

In Chap. 2, we defined different types of stability in dynamical systems
and introduced the concept of Negative Energy Modes (NEMs)
[101, 137, 103, 71, 73, 90, 102, 106, 22, 43]. These are modes of oscillations
that are driven unstable by the dissipation of energy. NEMs occur in fluids
and plasmas from wave-wave resonance, such as the three-wave problem, in
mechanical systems with gyroscopic forces, and in the dynamics governing
the motion of particles in magnetic fields. To illustrate the concept, we
introduced Cherry’s Hamiltonian [17] and discussed its relevance to the

wave-wave and three wave problems of plasma physics [137, 70, 70, 71].

The coupled Cubic-Quadratic Mapping was derived in Chap. 3 by
coupling the symplectic (area-preserving) two-dimensional cubic and
quadratic mappings with a linear coupling. We derive the mapping via a
type 1 generating function and write down two equivalent forms of the
mapping which are used throughout this work. Hénon [51] derived a

one-parameter form for the simplest general quadratic mapping. We revisit
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the simplest quadratic mapping and use the result of [24, 25] that any
polynomial mapping may be put into a generalized polynomial form to
demonstrate that the cubic map is in fact, a special case of the simplest
general cubic mapping. Chapter 3 concludes with a brief discussion of the

geometry of the higher dimensional phase space of the coupled mapping.

In Chap. 4, we introduced the method of frequency analysis and applied
it to the standard, cubic, quadratic, and coupled cubic-quadratic mappings.
We discussed the method of frequency analysis for dynamical systems
[80, 77, 78, 76, 75, 74, 127] and a method recently introduced by Gomez et
al. [39, 40]. Using Gomez’s method, we constructed the frequency map for
various cases of the coupled cubic-quadratic, and used it to demonstrate the
existence of orbits with constant (to the degree of numerical accuracy)
frequencies, something we would expect to see for orbits that lie on invariant
tori. The existence of invariant tori is central to the idea of motion around

tori in higher dimensions.

Also in Chap. 4, we examined the different types of orbits that occur in
a four-dimensional mapping and plotted the frequencies obtained via the

FFT method. Diffusion in the frequency space was observed.

Chapter 5 introduced the data analysis and visualization of the
higher-dimensional phase space of the coupled cubic-quadratic mapping. We
use the open source software package GGOBI to obtain preliminary results
for a projection matrix that unwinds the complicated pictures in the usual

p; — q; sub-planes that emerge upon coupling. On a torus, there should be a
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perspective in four-space that reveals simple, closed curves with constant
frequencies in the sub-planes. We use the preliminary data from GGOBI to
solve the symplectic condition for a canonical transformation for the
remaining coefficients of a projection matrix. We then apply the projection
matrix and demonstrate that the tori are “unwound” by the transformation,
revealing simple, closed curves in appropriate sub-planes. This is good

evidence of the existence of tori, a requirement for the Arnol’d Diffusion.

Additionally in Chap. 5, we use the Poincaré surface of section technique
for the four-dimensional mapping to demonstrate the existence of simple,
closed curves. We obtain a simple, closed curve in the surface of section that

closely resembles the uncoupled orbit in the usual P — () sub-plane.

Further methods to investigate the stability of orbits and transport
phenomena in higher dimensional systems were introduced in Chap. 6. We
use the escape times [64, 97, 100, 91] of the map to color different initial
conditions in the sub-planes. This method is an improvement in some ways
to the method of frequency analysis, as it allows us to manipulate the
parameters and initial conditions of the mapping in real time to obtain new
insights into the structure of phase space. Additionally, while the frequency
method can only reveal stability over the time of the analysis (typically only
a few hundred or few thousand iterations), tracking the escape time of orbits
allows us to gain insight into stabilty over long time scales (10 — 10'2).
Further, since the escape time procedure is a massively parallel computing

task, it can be easily implemented on an ordinary graphics processing unit
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(GPU) that is common to modern computers. GPUs typically are capable of
hundreds of GigaFLOPs or TeraFLOPS, while CPUs manage only around 25
GigaFLOPS when all cores are utilized. The GPU implementation allows
real-time investigation of the phase space. In real-time, we can typically
manipulate 16,000 initial conditions for up to 10® iterations. This is not
possible with CPUs unless hundreds if not thousands of cores are involved;
even with supercomputer resources, the problem of collating and visualizing

the data in real-time remains.
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